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CROSS-SECTIONAL DEFORMATIONS

OF MONOCOQUE BEAMS AND THEIR EFFECTS ON THE

_RAL VIBRATION FREQUENCIES

By Robert G. Thomson and Edwin T. Kruszewski

SUMMARY

The variational principle, differential equations, and boundary

conditions governing the cross-sectional distortions due to inertia

loading of a two-dimensional model of a thin monocoque wing are shown.

A theoretical analysis of this simplified model is made in order to

determine the nature of the coupling between the cross-sectional modes

and the spanwise deformation modes. General solutions are obtained in

flnlte-difference form for arbitrary cross sections and an exact solu-

tion is presented for a parabolic-arc cross section of constant cover

thickness. The application of these results in evaluating the coupled

frequencies of the actual structure is discussed. Frequencies evalu-

ated for a parabolic-arc monocoque beam show good agremment with

experimental values.

INTRO_CTION

Chordwise modes - that is, modes whose chordwise variation in

deflection is such that more than one node llne exists at every cross

section along the span - have been observed in several d_vnamic inves-

tigations of pure monocoque and multiweb wing models. For example, in

an extensive series of tests of aerodynamically heated multlweb wing

structures the principal mode of failure was established to be chord-

wise flutter. (See ref. 1. ) Also, in an investigation of the vlbra-

tlonal characteristics of circular-arc monocoque beams, discussed in

reference 2, several "extra" resonant conditions were observed experi-

mentall_ which, although referred to as panel modes, are more accu-

rately described as chordwise or cross-sectional modes. In addition,

the results of reference 2 indicate that the accuracy of the predicted

overall bending and torsion frequencies, even after the inclusion of

important secondary effects, such as transverse shear and shear lag

in bending and restraint of warping in torsion, are considerably

impaired by the presence of these chordwlse modes. For instance, the
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calculated frequency of even the first symmetrical torsion mode (mode2
in table II of ref. 2) differed from the one obtained experimentally by
72 percent while the third symmetrical modediffered by more than
250 percent.

The influence of cross-sectional distortions on the overall beam
modeswas investigated in references 3 and L. These investigations,
however, were not concerned primarily with lhe prediction of cross-
sectional modesbut rather wlth the influence of cross-sectional flexi-
bilities on the overall beammodes. Furthezmore, neither analysis is
applicable to monocoqueor multiweb wings w/th thin airfoil-type cross
sections such as those used in references 1 and 2.

The purpose of the present paper is to investigate the chordwise
modesand frequencies of beamswith thin airfoil-type cross sections
and to determine the influence of cross-sec_:ional flexibilities on the
overall beamfrequencies. A simplified modc_lwhich embodiesthe prin-
cipal mechanismsof cross-sectional and sp_ise flexibility is analyzed.
The differential equations and boundary conditions for the simplified
model appropriate for wings of arbitrary alrfoil-type cross section are
derived. An exact solution is found for the model for the particular
case of a monocoquewing of parabolic cross section. In addition, a
general solution is presented in finlte-difference form by applying the
calculus of variations directly to the ener_ expressions. A discussion
is madeof the use of these results to pre_ct the frequencies of both
the coupled cross-sectional modesand the overall beammodesof a mono-
eoquewing presented in reference 2.
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SYMBOLS

C

E

h

ho

I

kl,_,k

M

N

chord length of beam

modulus of elasticity

distance from x-axis to median li:.e of skin

maximum value of h

moment of inertia about median lize of skin, t3/12

spring constants

moment (see fig. 2)

number of discrete stations in finlte-difference analysis
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X

Y

Z
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C X

n

x

2x
_=_- 1

c

•, N

radius of curvature of midplane of beam

tangential coordinate

maximum kinetic energy

skin thickness

maximum strain energy

displacement of midplane in x-direction

displacement in s-direction, h'w + u

shear (see fig. 2)

deflection in z-direction (positive upward)

deflection normal to s-direction

chordwise coordinate

spanwise coordinate

coordinate perpendicular to x and y coordinates

frequency coefficient

frequency coefficient for uncoupled chordwise mode

strain in s-direction

strain in x-direction

nondimensional distance between stations on the half-chord

normal midplane force in the beam

0

o_

(DC

mass density of cover

natural frequency

uncoupled cross-sectional frequency
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_c,l

_exper

_r,B

_r,T

fundamental or first uncoupled cross-sectional frequency

experimental natural frequency

rigid-bodybending frequency,

rigid-body torsion frequency,

Primes on symbols denote differentiation with respect to

on matrices denote the transpose of a matrix.

x; primes
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Idealization

A rigorous approach to the problem of the vibrational characteris-

tics of a monocoque wing which includes both spanwise and cross-sectional

flexibilitieswould, of necessity, involve some type of shell analysis.

A more appealing although less rigorous apprcach, however, is to investi-

gate first the uncoupled chordwlse and spanwise characteristics of the

structure independently and then determine the influence on the natural

frequencies of the coupling of these motions. This can be done in a

manner similar to that used in references 3 end 4 by mounting a typical

cross section of the wing on elastic supports in such a way as to allow

for the necessary overall degrees of freedom.

The only structures considered in this paper have uniform properties

in the spanwise direction with a symmetrical curved airfoil cross section,

as shown in figure l(a). The wing or beam is of either pure monocoque or

multiweb construction with no, or relatively few, bulkheads. An idealized

structure that can be easily analyzed but still possesses essentially the

same cross-sectlonal and spanwise flexibilitles as the original is shown

in fi e l(b).

The idealized structure consists of two curved beams attached at

the ends to elastic supports in such a manner as to maintain the angle

between the beams at each end. The idealization is the same for both

the monocoque and multiweb prototypes. Consequently, the spanwise webs

of the multiweb structure are assumed to contribute nothing to the chord-

wise stiffness of the wing. The webs, however, do tend to prevent any

relative motion between the top and bottom covers. Hence the additional

assumption is made that deflections of the top and bottom beams in the

idealized structure are the same. The depth of the individual beams in



the idealized structure is taken to be the sameas the thickness of the
covers in the prototype. The stiffness of the elastic supports or springs
is chosen to duplicate the bending or torsional stiffness of the proto-
type, depending on whether the motion is symmetrical or antisymmetrical
about the midchord.
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Method of Analysis

The structure to be analyzed is shown in figure 2 along with the

coordinate system and sign convention to be used. As the structure is

symmetrical about the x-axis and the distance between the top and bottom

segments is maintained, only half of the structure need be considered.

Each segment is assumed to carry midplane forces in addition to trans-

verse shear and bending moments (see fig. 2), and will be considered to

act in a manner consistent with elementary beam theory (i.e., plane sec-

tions remain plane).

The strain in the midplane of the beam is given by

_s = _ + d_ (I)
r ds

where

deflection normal to s-direction

radius of curvature of midplane

displacement in s-direction

tangential coordinate

Since the cross section of the prototype being analyzed is that of

a thin airfoil section and deformations are considered small, the tan-

gential coordinate s can be approximated by the chordwise coordinate x,

and the curvature by -h". Furthermore, the deflection w can be con-

sidered to be the same as the deflection in the z-direction, and the dis-

placement in the s-direction can be written as

= h'w+ u (2)

where w is the deflection in the z-direction and u is the displace-

ment in the x-direction. Hence the expression for strain in equation (1)

becomes

cx = h'w' + u' (3)
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If this expression is used for the strain, and w and u are considered

as amplitudes of displacement, the maximum strain energy for one of the

covers of the idealized structure vibrating in a natural mode becomes

/0c °u = ! _:(w")2_ + _(h'w' + u')ax +
2

where

EI

kl, k2

: k2_(o) (4)kl_(O) + :

bending stiffness of beam

normal midplane force

spring constants

The first term in equation (4) represents the contribution to the strain

energy due to bending of the idealized structure, the second represents

the strain energy due to the midplane force, _md the third and fourth

terms are the potential energy of the spring mounts.

In the present analysis the force k will be considered constant

and equal to the average midplane force; hence, with the use of equa-

tion (3),

lfoC= : Et(h'w' + u':idx (5)

Furthermore, if inextensional theory is e.ssumed u' vanishes in

equation (4), and equation (5) becomes

k = : Eth'w'dx (6)

The maximum kinetic energy of the Ideali_ed structure vibrating in
a natural mode is

_0 C
l pt_.2ax (7)

is the natural circular frequency oi the mode under consldera-

is the mass density of the cover.

where

tion and p
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A natural mode of vibration must satisfy the variational equation

¢) =o (8)

where the variation is taken independently with respect to w. Applica-

tion of equation (8) and the usual methods of the calculus of variations

results in the following differential equation and boundary conditions:

(Elw")" - kh" - ptco2w = 0 (9)

(V.Xw")Sw, = o (io)
X---C

Elw") - kh' - -7 Bw = 0 (il)
X=C

where

(Elw")Bw' x=O = 0

[(_.lw")' Xh' k2 w] 8w x= 0- +7 :0

is given by equation (6).

(i2)

(13)

If the cover thicknesses of the original wing are constant and if

the half-depth h of the wing is approximately parabolic (as, for

example, the circular-arc airfoils used in refs. i and 2) an exact solu-

tion to the differential equation is possible and is discussed in the

next section. However, for an airfoil of arbitrary shape and variable

cover thickness it is unlikely that an exact solution can be found.

For these cases the use of some approximate variational procedure is

advisable. One such approach is presented in the appendix. Here, by a

procedure similar to that discussed in reference 5, the energy is

expressed in matrix form in terms of the deflections at discrete points

by means of finite-difference relationships. The variational procedure

results in a frequency equation in matrix form from which the mode

shapes and frequencies of the structure can be calculated.

Exact Solution of Idealization of the Monocoque Be.am

of Parabolic-Arc Cross Section

For an airfoil of doubly symmetrical cross section and constant

cover thickness whose half-depth h can be represented by a parabolic

equation, an exact solution to the differential equation for the cross

section mounted on springs is possible. In order to take advantage of



the double symmetrythe origin of the coordinate system is now relocated
at the mldchord of the cross section and the nondimensional coordinate

2x
- 1 is used. Thus, the half-depth can be represented as

C

Furthermore, the spring constants are identical, so that kI = k2 = k.

Equation (9) can now be written in nondimensional form as

d4w kc 2 d2h

d_4 4EI d_2

_w : 0 (15)

where

4 c4ptxu2
- (16)

16El

4hotEI- c2 (-i) - w(1) + j w(_)d (17)

Because of the constant cover thicknesses of the original wing, the

more stringent conditions of inextensional theory are not necessary in

determining k. It need only be assumed that there is no overall short-

ening or stretching of the cross section; then the integral of u' will

vanish in equations (4) and (5) instead of u' being zero everywhere.

Because, in the general solution to the differential equation, the

symmetrical and antisymmetrical parts are easily recognizable, they are

presented separately.

S_mnetrical solution.- For the symmetrical solution the boundary
conditions, as given by equations (lO) and (ll), can be written in non-

dimensional form as

(18)

and

(_) d3w 4hok k w

=l

= o (_9)

L
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The symmetrical solution to the homogeneous part of equation (15) is

w = AI cos _ + BI cosh c_ (2o)

and the particular solution is simply

w - _h°c2 (21)
2EI_4

Thus

w : A 1 COS _ + B1 cosh c_ +--
_ho c2

(22)

Substitution of equation (22) into the boundary conditions for the sym-

metrical solution (eqs. (18) and (19)) yields, respectively,

AI _ cosh m BI (25)
COS

B1 cosh _ = 4Et3c_4J
-C _ (2_)

EI -_(tan _ + tanh _) - k
c)

Note that three unknowns appear in equations (23) and (24): AI,

B1, and h. However, by substituting equation (22) for w into equa-

tion (17) for k and performing the necessary integration, a third

expression is obtained:

8hotE (_ tan m+ tanh m)k = C_ B1 cosh (I 2 + C_ (25)

1 : (26)

If BI cosh m in equation (25) is replaced by its identity in equa-
k

tion (24), the characteristic or frequency equation is found, and can
be written as

[2a.-(tan m÷ tanh _S - 4E_

_4(tan m * tanh _)- _--_(t) 3



I0

Substitution of equations (23) and (25) into eluation (22) yields the
mode shape

t tanh _ 3k /C_ 3]

--- 27J\ )
cos _ cosh c_

- + -I (27)cos m cosh

Antis_mmetrical solution.- In the antisymnetrical solution the mid-

plane force h is zero, as can be seen from e%uation (6). In equation (6)

the integrand of the integral expression for k is an antisymmetrical

function about c/2; consequently its integral from 0 to c is zero.

The differential equation for the cross section, given by equation (15),

and the boundary conditions given by equations (I0) and (ii) therefore

reduce to

d% _4w : 0 (28)
d{4

and

d2w

d_2
=i

: o (29)

L
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(2)3EI d3w k wl = 0 (30)
d{ 3 2 _=l

Equations (28) to (30) are the differential equation and boundary

conditions for a beam supported by springs at _ = -i and { = i. The

solution is presented in most vibration text books, but for the sake of

completeness it will be repeated here. For the antisymmetrical solution

w = A2 sin _ + B 2 sinh (31)

Substitution of equation (31) into the boundary conditions yields

A2 _ sinh _ B2 (_2)
sin

2)3EI kcL3 (-A 2 cos _ + B2 cosh m) = _(A 2 ._,inm + B2 sinh _) (33)
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Thus, the characteristic or frequency equation becomes

and the mode shape is

coth _ - cot

2ct
(3a)

L
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W --

sin c_ sinh c_
+ (35)

sin _ sinh

NUMERICAL RESULTS FOR IDEALIZATION OF MONOCOQUE WING

WITH SYMMETRICAL PARABOLIC CROSS SECTION

Symmetrical Modes

The exact frequency and mode-shape equations of the idealized struc-

ture were obtained in the previous section. In equation (26) the fre-

quency parameter _ here _ = _c4p t / of the _--.symmetricalmodes was

given as a function of t/h o and the parameter _(_)3. The motion

of the idealized structure can be considered to be the result of the

coupling of two types of modes of vibration: an infinite set of

uncoupled cross-sectional modes which are obtained by omitting the

springs, and a rigid-bodymode represented by a rigid cross section

mounted on springs. Consequently, if the vibrations are considered in

this light a more useful parameter than _I_) 3 would be
_r, B/e,

where _r,B is the rigid-body translation frequency and is defined

by C_r,B = , so that

4E-  J
(56)

Thus the frequency equation (26) becomes

48 tan _ + tanh

4-8 + - tan _ + tanh _

= (37)



and the corresponding mode shape (eq. (27)) i:_ given by

tan _ + tanh __ 2(__) 2
cos _ cosh _w = + (}8)
cos _ cosh _ ,2

-!_ )
The coupled frequency coefficient _ was calculated from equa-

tion (57) for various values of and /_r,B) and the results

are shown in figure 3. Here the frequency coefficient _ for the first

is  otto  s f  tiono, ,orar geo 
from 0 to 0.09. As becomes greater than i, all curves approach

t These asymptotes have
horizontal asymptotes whose values depend on _.

the value of the uncoupled cross-sectional frequencies obtained by

letting k = 0 which correspond to the case where no coupling exists

between rigid and cross-sectional motion. Consequently the mode shapes

associated with these frequencies are ones which are predominantly cross

sectional in character - that is, they contain two or more nodal points.

For k equal to zero, equation (37) reduces to the frequency equa-

tion for the uncoupled cross-sectional mode:

)(_)= lan_ c + tanh _c
(39)

and equation (}8) reduces to the corresponding uncoupled cross-sectional

mode shape :

cos %_ cosh %_ 2w = + (40)oos% -- + 1
k%J

where

L
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In figures 4(a) and 4(b), _c is shown plotted as a function of

I \t 2

[h_o_ for the first two symmetrical frequencies. These plots serve to

determine the uncoupled chordwise frequency which corresponds to the

pure chordwlse modes of an infinitely long wing.

2

Values at (_r_)= 0 in figure 3 describe the condition where

the ends of the cross section are pinned; that is, k = _. Hence, mode

shapes for 0_ << i are also of predominantly chordwise character.
_r, B

For values of

_r, B

vertical asymptote

approximately equal to i the curves approach a

_) = 1 and correspond to the condition where

the mode shapes are of the rigld-body type; that is, they contain no

nodal points. As can be seen from figure 3, when (_) = 0 the curves

fall on the asymptotes and no coupling exists. This uncoupling of the

two motions could also have been surmised by examining the mode shape

2

as given by equation (9). Note that for (_) = 0 the tip deflec-

tions of the cross section in equation (9) are zero, and hence the

stiffness of the springs can have no influence on the overall motion.

The differences between the curves and their corresponding asymptotes
2

for the other values of I_) represent the change in frequency due

to coupling between the chordwlse and rigid motions. As can be seen

from the plots, the greatest effect is felt when _ < C_r,B.

One drawback with the curves presented in figure 3 is the difficulty

encountered in using these curves to calculate the coupled frequency,

since the unknown coupled frequency coefficient _ appears in both the

abscissa and ordinate of the curves. Thus the results of figure 3 have

been replotted in figures 5(a) and 5(b) in terms of slightly different

parameters.

In figures 5(a) and 5(b) the ratio of the coupled frequency _ to

the rigid-body frequency er, B is plotted as a function of the ratio

of the fundamental uncoupled chordwise frequency _c,l to the rigid-

body frequency er, B" Figure 5(a) presents the data for values of mc,l

r, B
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from 0 to 4.8 and _o from 0 to 3.2. Fig_.re 5(b) is simply an

_r, B

enlargement of figure 5(a) in the region where _°c'l goes from 0 to 2.0.

_°r,B

The values of _0 in the abscissa are bas_d on the first uncoupled
c,l

symmetrical mode for k = 0. Hence the abscissa depends only on the

stiffness properties of the structure and not on the frequency parameter.

The vertical asymptote of figure 3 appears in figure 5 as a horizontal

line at _ = 1.0, while the horizontal aslmptotes of figure 5 trans-

tot,B

form into straight lines which emanate from _he origin. Note that only

2

the (h_)= 0 asymptotes appear in figure i_ since the asymptotes for
\-_%) l

lie in such close proximity to the = 0

asymptotes that they cannot be easily distin_zuished.

Figure 5 shows that for values of _c,l greater than _r,B the

influence of coupling is appreciable only foc the first or lowest mode,

while for ec,l< i all modes investigated show substantial effects.

er, B

The frequencies of the coupled modes are easily obtained from figure 5,

since the abscissa depends only on the physi2al properties which, of

course, are assumed to be known. The difflcalty lles in establishing

the characteristics of the mode shapes - that is, in determining whether

the resulting mode is predominantly a rigid node with no nodal points or

predominantly a chordwise mode with two or more nodal points.

In order to try to resolve this problem, the first three modes for

2

(_) = 0.018 and _c,l = 0.987 and 0.409 were calculated and are
_r, B

shown in figures 6(a) and 6(b). From figure 6(a) it can be seen that

the first mode is predominantly rigid-body _otion while the remaining

modes consist of chordwise-type motions. Iz figure 6(b), however, the

second mode is the rlgid-body-type mode. Pxesumably, as _ is

er, B

reduced still further the third mode become_ the rigld-body mode and so

on. In order to illustrate the change in me de shape due to coupling of

chordwise and rigid-body motions, a sketch cf the second mode for

2

0 0 0
_r_ B

is shown in figure 6(c).

L
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From the foregoing discussion it can be seen that for _ > i the

mr, B

rigid mode is always the lowest mode. For _c,l < i it is advisable to

r,B

calculate the mode shape in order to determine which mode is actually

the rigid-body mode.

In reference 4 the behavior of rectangular bents with flexible

members, mounted on either deflectional or rotational springs, has been

analyzed in detail.

It is of interest to note that the assumption of ho = 0 (_o = _)

in the present paper corresponds to the limiting case in reference

where the depth of the web is assumed to become zero while the thickness

becomes infinite. For such a configuration the frequency equations of

the two papers are found to be identical. This is true for both the

symmetrical and the antisymmetrical modes.

Antisymmetrical Modes

For the antisymmetrical modes, the frequency parameter _ as given

in equation (34) is a function of _ only. This lack of dependence

of frequency on camber in the antisymmetrical modes is a consequence of

the vanishing of the midplane force h. Therefore, the equations for

the mode shapes and frequencies are those of the antisymmetrical vibra-

tions of a beam mounted on spring supports. As was true for the symmet-

rical modes, the motion of the idealized structure can be considered as

a result of the coupling between cross-sectional modes and rigid-body

modes. In the antisymmetrical case, however, the rigid-body mode is a

pitching or torsional mode. Hence, a more useful parameter than _I_) 3

2

is \ _ / , in which _r,T is now defined by

2 3k
= -- (42)

_r, T ptc

The parameter _r, T can be looked upon as a rigid-body torsion mode

represented by the well-known equation
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where

and

2 (43)
_r, T = Ip

2

ptc 3

Ip = 7- (45)

Note that Ip is the approximate polar moment of inertia for a thin

cross section. The characteristic or frequency equation (eq. (34)) can

then be written as

2

_ coth_-2 _ cot _ = (_) (46)

The mode shape is not an explicit function of the spring constant and
remains

sin _ + sinh _, (47)
w = sin _ sinh

The coupled frequency coefficient _ wa_ calculated from equa-

tion (46) for various values of and the results are shown in

figure 7. In figure 7 the first three modes cf _ are plotted as a

function of . The uncoupled cross-sectional modes are repre-

sented by dashed horizontal lines, at _ = 3..(,27and 7. 069, for k = O.

The pin-ended condition for k = _ is represented by the dashed lines

at = = _3 2_, and 3_. The rigid-body torsion mode is the dashed verti-
(o

cal line at -- = 1. The coupled modes are shown by the curved lines.
mr,T

The corresponding plot of _ as a function of c,1 is shown in

a¥, T a¥, T

figure 8. The values of _c, 1 in the abscissa are based on the first

uncoupled antisymmetrical mode for k = O. _%_e results are plotted in

a manner similar to that for the symmetrical modes but only one curve

is presented for each mode, the results being independent of the t__

to
or camber effect. The dashed horizontal line at -- = 1.0 represents

mr,T

L
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the rigld-body torsion mode, and the dashed straight lines inclined to

the abscissa represent the uncoupled chordwise modes.

Contrary to the case of the symmetrical modes, the predominantly

rigld-body mode with no nodal points is easily distinguished, as it is

always the first or fundamental mode.
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APPLICATION OF METHOD

The present paper has two objectives: (1) to analyze the chordwise

vibrational characteristics of thin wings with airfoil-type cross sec-

tions and (2) to obtain the effect of the coupling between the chordwise

and spanwise motions of the structure. Both of these objectives can be

accomplished by utilizing the results obtained from the analyses of the

simplified model.

In principle, the method presented is similar to that discussed in

references 5 and 4. In the present investigation, however, emphasis is

placed on the determination of the predominantly chordwise modes and

frequencies of the structure in addition to the modes and frequencies

of the overall beam motions. The results obtained from the analysis for

the model with springs can be used to give both the chordwise and the

spanwise coupled frequencies provided, of course, that the appropriate

choice of the spring constant is made. The uncoupled cross-sectional

modes and frequencies can be obtained from the analysis by letting the

spring constant vanish.

Since the rigid-body motion of the idealized structure depends only

on the spring constant while the relative chordwise motion depends on

the flexibility of its members, the value of the spring constant should

be chosen so that the uncoupled rigid-body frequency (either transla-

tional or torsional) of the idealized structure is the same as the span-

wise. frequency of the prototype. For the symmetrical chordwise modes

the spring constant should be determined from the frequencies of the

spanwise bending modes by means of the equation

k = (O2r,BPtc (48)

while for the antisymmetrical chordwise modes the spring constant should

be determined from the spanwise torsional frequencies by means of the

equation

2 otc (49)
k = mr, T -_-
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The spanwise frequency of the prototype should be obtained by the most

appropriate method available, with the provi._ion that the method be based

on the assumption that the cross section of °_he structure remain

undistorted.

At this time a note of caution as to the application of the method

presented is in order. The use of the idealized structure embodies the

assumption that all cross sections distort identically. Hence the influ-

ence of any bulkhead, rib, or other chordwise restraint is not included.

Consequently, the method is applicable only to wings in which the bulk-

head spacing is not very small.

In order to demonstrate the use of the method, both the coupled

chordwise and coupled spanwise modes and frequencies of a circular-arc

monocoque beam used in the experimental investigation of reference 2 will

be calculated. For the sake of completeness a short description of the

specimen used and the results obtained will be presented in this paper.

The aluminum monocoque beam was 140 incl_s long and 40 inches wide.

The nominal dimensions and average radius of curvature are shown in

h

figure 9. The beam had a ratio _oo of approximately 0.04 and a ratio
c

2

(_) of 0.06735. The cross sections were maintained by steel bulk-

heads located lO inches from each spanwise tip. Eighteen bending and

torsional modes were found, and in addition a number of so-called "panel"

modes were located. (See figs. 5 and 7 of ref. 2.)

From a comparison of the spanwise node Lines shown in reference 2

and the mode shapes shown in figure 6, it c_L be concluded that many of

these panel modes can be described as chordwise modes. The variation

in position of the chordwise node lines is the result of coupling of

the symmetrical chordwise modes with the beam bending modes or coupling

of the antisymmetrical chordwise modes with the beam torsional modes.

Consequently, a family of chordwise modes is associated with each of

the spanwise modes. An additional node line appears at each spanwise

end of some of the chordwise modes. These no.de lines result from the

rigid tip bulkheads used in the construction of the specimens.

Since the covers of the monocoque beamwere uniform in thickness

and the camber of the cross section can be cilosely approximated by a

parabola, the exact solution previously discussed is applicable. Hence

the predominantly chordwlse and predominantly spanwise frequencies of

the monocoque including the influence of coupling can be obtained

directly from figures 5 and 8.
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Before this can be done, however, the uncoupled beam frequencies

_r,B and _r,T and the uncoupled cross-sectlonal frequency _Oc,1 must

be obtained. The uncoupled chordwise frequency _c, 1 was calculated

with the use of the curves in figure 4(a) or equation (39) for symmetrical

frequencies and equation (54) (with k = O) for the antisymmetrical case.

The uncoupled chordwise frequencies are listed at the top of tables I

and II. The bending frequencies of the beam were calculated in refer-

ence 2 by methods which include effects of transverse shear and shear

lag, and the torsional beam frequencies by methods which include restraint

of warping. These beam frequencies are listed in column _ of tables I
and II.

In the first column of tables I and II is shown a sketch of the

nodal pattern under consideration. The modes are grouped in pairs,

except for the first, with each pair consisting of a spanwise mode and

the corresponding first coupled chordwise mode. (The higher chordwise

modes were not obtained experimentally and thus are not included.) The

first mode in column _ of each table is the chordwise mode associated

with each of the rigid-body spanwise modes. The ratios _ and

_r,B _r,T

are shown in column _ of tables I and II, respectively. The corre-

sponding frequency ratios _ and _ were obtained from figures 5
_r, B clr,T

and 8 and are tabulated in column _. For the predominantly beam modes

this ratio represents the reduction in beam frequency due to cross-

sectional deformations. In an attempt to evaluate the results, the cal-

culated coupled frequency _ is presented in column Q and the experi-

mental frequency in column _.

In table I (for bending) the predominantly beam modes show little

effect due to coupling at the low frequencies. At the higher modes,

however, the coupling effect becomes appreciable, and it is encouraging

to note the good agreement between calculated and experimental frequencies.

This good agreement at the higher modes can also be looked upon as an

indication that the method is applicable to low-aspect-ratio wings.

In table II (for torsion) the predominantly beam modes are greatly

affected by the coupling due to cross-sectional deformations, even at

the low frequencies. However, the accuracy of prediction of the coupled

frequencies at the higher modes indicates that the applicability of the

method in torsion to low-aspect-ratio wings has limitations.

The calculated coupled chordwise frequencies show fair agreement

with experimental frequencies and indicate that a large number of chord-

wise modes are present over a narrow frequency band, sometimes falling

within a few cycles of each other. Unfortunately, as the investigation
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presented in reference 2 was primarily concerned with beammodes, the
experimental frequencies of the chordwise modeswere not always obtained
and someare missing in tables I and II. Further, because of the com-
plexity of the nodal patterns, it was difficult in someinstances to
correlate the experimental and theoretical mo,_ shapes. Thoughthe cor-
relation between the calculated and experimensal chordwise frequencies
is good, the application to low-aspect-ratio wings is open to question,
as the accuracy of prediction is not well established at the higher
frequencies.

It is to be noted that a second, thicker skinned monocoquebeamwas
discussed in reference 2, but for a number of reasons it has not been pre-

sented or discussed here. First, the I_l 2 ratio of 0.356 for the

thicker monocoque is felt to be straining the limits of some of the basic

assumptions of the present analysis. Second, because of a much higher

uncoupled chordwise frequency, the coupling effects on the beam frequencies

in bending would be much smaller than in the Zighter monocoque. Further-

more, the chord length and radius of curvature used in the calculations

of the uncoupled beam frequencies clr,B and _r,T are questionable,

as the frequencies of the rigid-body beam modes C_r,B calculated from

these dimensions are lower than those observed experimentally. Since
the theories used in these calculations do not include all the flexibil-

ities of the actual structure, the calculated values should be higher

than the experimental values, rather than low_:_r. It may also be noted

that the dimensions of maximum depth, chord length, and radius of curva-

ture for the thicker beam are not compatible with those for a circular

arc. When the radius of curvature was altered by 6 percent in order to

describe a circular arc, a 12-percent change was noted in the third and

fifth rigid-body modes. More than likely, t_!_n, the calculated rigid-

body frequencies of the thicker beam are somewhat higher in magnitude

than those calculated in reference 2.

L
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CONCLUDING R_ARKS

The vibrational behavior of thin wings w:Lth airfoil-type cross

sections has been investigated by means of an analysis of an idealized

structure consisting of two curved beams moun_;ed on springs. The results

obtained from an analysis of this model can be used not only to obtain

the chordwise modes and frequencies of the prototype but also to obtain

an estimate of the reduction in spanwise fre_Aency due to the coupling

effect between cross-sectlonal and spanwise motions. Both uncoupled

chordwise frequencies and the resulting coupled chordwise and spanwise

frequencies are presented for beams with uniform cover thickness and

parabolic cross sections. A comparison is made with existing experimental
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data on a circular-arc monocoque. The comparison shows good agreement
for the coupled beamfrequencies and fair agreement for the coupled
chordwise frequencies at moderate aspect ratios. For beamsof arbitrary
cross section an approximate matrix procedure is also presented.
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Langley Research Center,

National Aeronautics and Space Administration,

Langley Air Force Base, Va., September 21, 1961.
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_P_D_

APPROXIMATE SOLUTION OF AN ARBITRARY AIRFOIL SECTION

In this appendix an approximate solution for an idealized structure

of arbitrary shape and variable thickness is presented. The energies of

the system are expressed in discrete form by writing all derivatives as

differences and all integrals as summations according to the trapezoidal

rule. The deflections at discrete points are considered as the unknowns

of the system. After the boundary conditions are properly accounted for,

a system of linear simultaneous equations in terms of these unknowns is

obtained by minimizing the energy function U - T.

From equations (4), (6), and (7) the expression for U - T can be
written as

U- T i fO c . . i fO c
=_ m{'w,,)2ax +-

2 c fo c 1 hw(c)2Eth'w'dx h'w'dx +

L

1

4
4

4

+ ! k2w(O) 2 _2 fO c4 2 ptw2dx (A_I)

The first step in the procedure is to choose equally spaced stations

along the x-axis, numbering them from n = 0 to n = N. Integrals can

then be approximated, either in terms of values of the integrand at the
full stations

focf(x)dx = A + fl + " " + fN-i + (A2)

or in terms of the values at the half stations

f0° [f'Cx)dx = Z_fz/2 + s312 + " • + fN-(1/2)] (A3)

where _ is the equal distance between stations.

The first integral in equation (A1) is approximated by means of

equation (A2), as the values of the second derivative appearing in the

integrand are best approximated by differences at the full stations:
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fin_ Wn+l - 2wn + Wn-iw" (A4)
A 2

Consequently, the first integral can be written in matrix form as follows:

where the definitions of the matrices are given below, and the number of

rows and columns, in that order, are indicated beside each:

IEI] =

--I

i -2 i /

Ii -2 i

_EI

(El) 1

i -2 i

i -2

(EI)N_ I

i

(N+I)X(N+3) (A8)

(N+Z)x(N+Z) (Ag)

A prime on a matrix denotes the transpose of the matrix.
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Note that the values of w at stations corresponding to n = -1

and n = N + i (points not on the structure) appear in the matrices.

These points can be evaluated with the use of the flnite-difference form

of the boundary conditions in equations (10) and (12):

EIW,,I = Wn+l- 2WN + WN-I = 0 (AlO)
n=N A2

and

EIw" I Wl - 2w0 + w-I= = 0 (All)

In--0 A 2

With the conditions expressed in equations (A10) and (All), equa-

tion (A5) can be rewritten as

L

1

4

4

4

-_/o__,_.,,)_=_L.j[_]'[_][o_]lwl(A12)

where now

L,,,J--L,.-o,,,_, (i)x(N+i) (Al3)

i -2 i

1 -2 1

1 -2 1

i -2 i

(N-I)X(N+I)

(N-I)X(N-I)

(Al4)

(AiS)
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The second integral in equation (A1) is approximated by the use of

the values at the half stations (eq. (A3)), as the value of the first

derivative appearing in the Integrand is, in turn_ best approximated by
a half-statlon expression:

W'In+(i/2)_' Wn+iA - wn (_6)

Thus, by using both the half-station expressions (eqs. (A3) and (A16))
the second integral can be written in terms of the displacements at the
full stations:

He re

Iwl =LwJ'

(A_7)

(A_8)

(_9)

-1

!

hl/2

1

-1 1

-1

!

h_-(i/2)

(_)x(N+l)

(N)x(N)

(A2.0)

(A21)
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(Et)l/2 (Et)l/2

(Et)3/2 (Et)3/2

• • • • • ° ° • • • • ° , ° •

(_)N(I/2) (_)N(I/2)

(N)x(N) (_2)

The third term in equation (AI), or the potential energy of the

spring mounts, is given in matrix form by

1 klW(C)2 1 k2w(O) 2 1 w (A2.3)

whe re

k 2

0

0

0

0

k I

(N+I)X(N+I)

The last integral in equation (A1) is approximated by equation (A2):

_0 C
_2 ptw2dx = _2 AH[, t]lwl
2 2

where

\2 /0

(ot) I

(Pt)N. I

(A24)

(A25)

(N+I)X(N+i) (A26)
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With equations (AI2), (A17), (A2}), and (A25) the energy function

(eq. (A1)) can be written as

whe re

A] = 1

,foq
Application of the variation condition expressed in equation (8),

5(U - T) = 0, where the variations are taken with respect to each

results in

{[[A] + [A]' 1 - _I[BI+ [B]';}lwl = 0

Equation (A30) can be rewritten in a more usable fore as

since

(A27)

(A28)

(_99)

W_

(A30)

and the transpose of A is

F"]'=__1p_],[-_,1[,,_]+_[°_-]'["']['_:_1'E,,'][q +_-k_] (A_)

In order to establish the number of stations necessary to achieve

reasonable accuracy with the finite-difference method, a brief comparison

was made between the deflection shape of the first symmetrical mode as

calculated from the exact solution presented for the monocoque wing of

symmetrical parabolic cross section and the shape as calculated by

finite-difference methods. Since a symmetrical mode was chosen for the

comparison, only half of the doubly symmetrical parabolic-arc cross

section was considered and the origin was moved to the midchord. (The

limits of the integrals in eq. (AI) thus become 0 and c/2 instead of
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0 and c. ) With the additional simplification of constant cover thick-

ness and constant material propertles_ equation (A31) reduces to

lwl= 2 [Bl-12[A]lwl (A34)
c_ptoo 2

with

[B]=

1

2

1

1

1

1

1

2_

(N+l)×(N+l) (A35)

, 32ho2Et r _ k

(N+I)x(N+I) (A%)

c (A37)

Since the origin is now located at the mid,:hord the boundary condition

originally given by equation (All) (at x :: O) is replaced by that of

symmetry at the midchord:

W_l = wI (A_)

and D2 in equation (A53) becomes

-2 2

i -2 i

i -2 1

1

D 3 it: equation (A36):

-2 i

i -2 i

1 -2 i

(N)x(N+l) (A39)
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Furt he rmo re,
q-

1

2

3

-i 1

-i 1

0

1

5

-i

0

0

(_)x(N)
1

1
_%.

1
__%

1

-1

(N)x(_)

(N)x(_)

1

-1 1

(N)x(_+l)

(N+i)x(N+i)

29

(A40)

(A41)

(A42)

(A_3)

(A_4)
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If the rigid-body (translational) frequency i._:represented as

_2 k
r,B = c--_

with

t5
I = --

12

equation (A34) can be expressed in the parameters of the exact solution,

and be come s

0_4\,t / 2 4_1 (A45)

L
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In figure i0 a plot of the first symmetrical mode shape of the

parabolic-arc monocoque for k = 0 and = 0.018 is shown. The

curve was calculated from equations (59) and (40) of the exact solution,

and points were obtained from equation (A45) of the numerical procedure

for 6, 9, and ll stations across the half-chord. The error involved in

predicting the overall frequencies, in comparison with the exact solu-

tion, is 6 percent for 6 stations, 2.5 percent for 9 stations, and less

than 2 percent for ll stations across the half-chord.
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TABLE I.- NATURAL B_NDING FREQUENCIES OF EXAMPLE BEAM*

Mode

®

I I I I

I I I I

[_c, : _2 ,_= 107.851 c,ic_p t cp_]

I i I I

I I 14

I II I-I
I I I - "1'--]

I 1 I I l

II III 1,1

1111111

IIII1111

(Dr_B_

cps

®

17.01

4O.95

71.2_

io5.4o

149.70

188.20

%,__!
_,B

®

6.540

2.63_

O.740

0.573

,:0

m_, B

@

o993

654O

o, 96_*

2 6_0

0.895

i. 540

O. 800

1.062

C.660

C.810

C.537

C'.665

6D_

cps

®

107.85

16.89

_exper'

cps

®

108.60

16.95

io7.85 118.70

39.50 40.o5

108 ......

63.75 63.36

ii0 IPl. 70

8_. O0 83.75

i12 ]_20.40

118

96.20

i01.00

125

102.30

114.70

Dimensions of beam are given in figure 9.
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TABLE II.- NATURAL TORSIONAL FREQUENCIES OF EXAMPLE BEAM*

c,l = c,l c4_pt =

Mode _r,_
cps

®

[ ]

I I I

I I I

b-M--+--b--b--b--P_

F-4--4--+-4--+--+-4

37.90

75.5O

i13.50 O.7256

152. i0 O.540

192.60 O. 4264

229.80 O. 3575

(mr,T (Or,T cps

@ ®

2.167 O. 856

2. 510

1.o88 0.593

*Dimensions of beam are given in figure 9.

®

82.13 ......

32.45 32.80

95.30 ......

44.75 43.86

(Uexper_

cps

@

1.670 126 109.20

0.434 49.50 50.52

1.385 157 ......

O.347 52.80 57.75

1.160 176 ......

0.282 54.50 71.53

0.970 187 ......

0.240 55.20 89.10

0.890 2o5 ......
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×

(b) Idealization.

Figure i.- Thin airfoil-type cross section.



35

-$
r4

z

I
t

WV

_x

, / -PtJwl |

r dx'

V+dV

12
h'+ w'+ d ( h'+ w')

M+dM _'

_I h+w+d(h+w)

q
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cross section.
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(b) Second symmetrical frequencies.

Figure 4.- Uncoupled chordwise frequency coefficient _c

function of (h_)2 - 48 (t 2_c - i)
_c 4 an o_ + tanh ac "

as 8,
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Figure _.- Concluded.
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