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SUMMARY

Simple and higher-order difference methods for the solution for the natural

frequencies of vibration of a uniform beam are compared. The same basic higher-

order method is used throughout for the interior cells, but three different

methods of boundary-condition representation are given.

Tables and graphs of the error in mode frequencies, as compared with a

continuous beam, are given for the various methods as a function of the number

of cells. It is concluded that higher-order methods improve accuracy for a

given number of cells, with essentially no change in the quantity of com-

puting equipment required.

*The work reported here was performed under NASA Contract No. NsG-63-60, ad-

ministered through The University of Michigan's Office of Research Adminstra-

tion, Ann Arbor.
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I • INTRODUCTION

Oneof the most commonlyencounteredproblem_of structural dynamicsis
that of the lateral vibrations of beams. With th_ advent on a large scale of
analo6 anddigital computersof greatly improved_peedandcomputationalef-
ficiency, it is worthwhile to take another look a_ the methodsavailable for
performing these computations. This report is principally concerned_ith im-
provementsin analog computermethodsof analysis of the beam-vibrationprob-
lem. In particular, it is concernedwith methodsapplicable to the electronic
differential analyzer. Nevertheless, it will be _eenthat the matrix formula-
tion of the problemandmostof the results are directly applicable to digital
computationas well.

Until quite recently, all attempts to use anllog computersin the solu-
tion of partial differential equationsby differe_ce techniqueswerere-
stricted to simple methodswith accuraciesof sec)ndorder in the cell size
at best. In 1950, FisherI suggestedthe use of hlgher-order differences in
the solution of these problemson the analogcomplter and indicated someof
the advantagesto be expected. However,he wasn)t concernedin his examples
with the bem_equation anddid not study the problemof boundary-condition
representation using higher-order methods.

This report considers in detail the adequaterepresentation of boundary
conditions whenhigher-order methodsare used, an_ipresents the results of
rather extensive computationswhich enableone to obtain a feel for advantages
anddisadvantagesof eachmethod. Theanalysis il the main bodyof the re-
port is concernedwith uniform beams. Themode-f_equencyerrors for a tapered
cantilever beamare consideredin AppendixB and _omparisonsare madewith
the continuousbeam.

Noanalysis of mode-shapeerrors hasbeenin_:luded. However,spot checks
haveshownthese errors to be comparablein magnitudewith the frequencyerrors.

Theauthor wishesto acknowledgethe contribltions and helpful sugges-
tions of R. M. Howeof the Departmentof Aeronautical andAstronautical Engi-
neering, particularly with respect to the section on errors. Thanksare also
due C. K. Shah,whodid mostof the numerical com_utation,andJ. W. Thatcher,
whoaided in the digital computerprogramming.
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II. SYMBOLS

mode-amplitude matrix

constant coefficients

- IT] -_ [KJ

difference matrices

an element of matrix B

constant coefficients

capaci_ance_ constraint, matrix

constants

difference matrix

Young's modulus

constrain_ force

lateral force per unit length

c o ns t ant

c o nst ant

cell size

moment of inertia of cross section_ unit matrix

mode n_nber

system matrix In] -l [k]

stiffness matrix

bending; stiffness of a cell

inductanc_ total length of beam
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M

m

N

n

R

S

T

t

V

X

Y

Y

E

n

p

T

bending moment

mass, mass matrix

total number of cells

station designation, number of degrees of freedom

resistance

S = 0 is the characteristic equation

-l

. Also the time-dependent facto_ in the beam deflection

shear force

position along the beam

deflection amplitude

lateral deflection

eigenvalue for a continuous beam of unit length

a small perturbation of the designated quantity

frequency error

dimensionless lateral deflection

the square of a mode frequency

beam slope

eigenvalue for beam of length N

dimensionless position along beam

mass per un_ length

dimensionless time

I

J

D

9
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(

(

[

(-

)ij

)o

]T

J

)

[]

{}

eigenvalue for difference beam of unit length

indices referring to row and column, respectively

reference value

transpose of the designated matrix

computed in the modal (_) coordinate system

approximately equal to

amplitude of a sinusoidally varying quantity, detemuinant of a matrix

row matrix, or usual parenthesis notation

rectangular matrix, or usual brackets notation

column matrix, or usual braces notation
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III. CONTINUOUS BEI/_S

A. THE BEAM EQUATION

We will restrict ourselves to the study of the lateral vibrations of a

thin beam where linearity is assumed. The partial differential equation des-

cribing the motion is

_2 _EI $2y__ _2y _ f(x,t)

Sx--_ _ _--_J + p St 2
(i)

where

x : position along beam

y : lateral deflection

t : time

E1 = bending stiffness

p = mass per unit length

f : lateral force per unft length

It can be seen that Eq. (i) is of fourth orler in x and second order in

t. For our purposes it is often convenient to w_ite four equations of first

order in x.

D
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_g

where

_Y (2)
_x

M = EI _--_@ (3)
_x

_M
v - (4)

8x

___2Y _ _v + f(x,_) (5)
_t 2 _X

@ = slope of be_m

M : bending mom(nts

V : shear force



This set of partial differential equations is equivalent to Eq. (i). Wewill
see that the analogcomputerapproachto the problemis baseduponthis latter
set of equationsrather than the original fourth-order equation.

B. SOLUTIONSOF'I}IEBEAM EQUATION

i. General Solution.--In general_ the parameters 0 and E1 are functions

of x. Initially_ however_ we will assume that each is constant. Furthermore_

we will assume that units are chosen such that the coefficients are unity.

Our principal interest is in the solution of the homogeneous equation_ so let

us set f(x,t) = O. Then Eq. (i) becomes

by + _2y 0 (6)
_x4 _t2

It may be seen that essentially the same equation can be obtained by trans-

forming Eq. (i) to dimensionless form and again setting f(x,t) = O. Let

X

L

T - t EE_I

L2

where L is the length of the beam. Then

$4[ + _2_ 0 (7)

Equation (6) can be solved by the method of separation of variables. 2_

The solution is of the form

y = Y(x) T(t) (8)
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)tMI _ - 2C.z!B_I -_ x + !92x4 I9":2'<-5 + . (22)

\ 4: 5:

3. The Free-Free Beam.--For the case of a free-free beam, the boundary

conditions are

M(o) : M(L) : o (24) D
9

v(o) = M(I) : 0 (25) 6
4

Substituting into Eq. (9), we obtain

-C.z + Cs = 0

-C2 + C4 = 0

(26)

(27)

= o (28)

= 0 (29)

giving_ as before_

C2 cos_ - cosh'/_

Cx sinh_ - sin_/_

(_o)

The eigenvalue equation is the same as for the built-in case 3 namely;

1 - cosJ#oosh,,/Z : o (_l)
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The value _ = 0 has _hysical significance in this case but since the mode in-

volves no elastic deformation, it is omitted. The remaining eigenvalues are

identical with those for the built-in case.

The amplitude of the motion is

Y(x)

5 9

_4x8 #x5 #p= 2Cz(1 + l_x4 + -- + ...) + 2C2 ( _ x + -- + " + ...)
4: 8' 5' 9' (._2)

giving the approximate amplitudes

o .)_x 9 + (_J)
Y(_) _ 2c_ -4_x+ _'_ P + _'_8

4: 5: 8; 9:

I_1 _ 2cd_ l+ + +.. (}4)
3: 4: 7'. 8;

7
[_3 X 6IMI_ 2c,___ _x_+_____+ .. (35)

3: 6: 7:
5 #

ivt _ 2cj.__(d-_x !Sxe+ _x5 : lSSxS
- -- + • (36)

2: 5: 6:

If we compare the solution for the free-free beam with that for a beam

built-in at both ends, we note some important similarities. We have seen that

the nonzero eigenvalues are identical. Beyond that, the roles of the deflec-

tion y and the bending moment M are interchanged in the two cases as may be

seen by comparing Eqs. (20) and (35) and also Eqs. (22) and (33). Similarly,

the roles of the slope @ and the shear force V are interchanged. This sim-

ilarity will hold even for the finite difference solution which will be ob-

tained later. Therefore it will not be necessary to carry out separate calcu-

lations for built-in and free-free beams.

4. The Cantilever Beam.--The boundary conditions in this case are

y(O) = 0 (37

e(o) = o (38
M(1) : 0 (39

V(l) = o (4o

Applying these boundary conditions to the general solution given by Eq. (9),

we obtain

Cz + Ca = 0 (41

C 2 + C 4 : 0 (42
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FromEqs. (43) and (44) weobtain the eigen-ralueequation

and also

1 + cos _ cosh_ = 0

C_2a=- cos _ + cosh

el sin _ + sinh

(45)

(46)

the ratio being approximately -i for all modes higher than the first.

The first five eigenvalues are

BI = 5.516015

= 22.0_449

_s = 61.69721

_4 = 120.9019

= 199.8595

Note that, except for i = i, the value of _i in this case in approximately

equal to _i-i for the built-in or free-free case.

The amplitudes are given by the equations

(47)
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5' 9' Ci_: 6' i0'

(48)

IMI
_x4 _x8 ,x_ _x8

= -2CI_ + 4: + 8.' + "'" + x + + + ..5: 9:

(49)

_ #xI!+ ...+_ + _x__+ mx_Z + ..
Ivl = -2c_-. + 7: c_\ 2'. 8:

(5o)

Each of these expressions contains the same powers of x as was obtained for

the corresponding built-in case in Eqs. (20) to (23).

5. The Pinned Beam.--The boundary conditions for a pinned beam are

y(o) = y(z) = 0 (51)

M(O) = M(1) = 0 (52)

Applying these conditions to the solution given in Eq. (9), we obtain

c_ = c3 = c4 = o (53)

and therefore

Y(x) = C2 sin_ x (54)

where the eigenvalues are

_i = i2_2 (i : l, 2, 3, ...) (55)
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The power series form of the solution is

5: 5.'

fZx 7 + ..

7.'
(56)

Also

IMI

Ivl

c_4Z_ - _x-£+2'_x_, _j£+4: 6: "'_ (57)

= + • (58)
\ 3: 5'

= c2_ l +-----+ . (59)
2: 4:

The eigenvalues in this case are not close t¢ those calculated in the

previous cases. In fact, for the higher modes (large i), the eigenvalues tend

toward positions midway between those for the bui]t-in_ free-free_ or cant-

ilever beams.

D

9
6

4

k
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IV. DIFFERENCES OF ORDER h 2

Previously we have obtained solutions for the partial differential equa-

tions describing a continuous uniform beam. Unfortunately, the analog com-

puter cannot solve partial differential equations directly but must solve the

set of ordinary differential equations which are obtained by finite difference

approximations to the spatial derivative. Thus we will obtain solution ampli-

tudes at a discrete set of points rather than continuously as a function of x.

At the given points, however, the finite difference solution should closely

approximate the solution for the continuous beam.

A. FINITE DIFFERENCE E_UATIONS

An analog computer approach to the beam-vibration problem u_ing finite 5' 6
difference equations of order h2 has been given by Howe and Howe _ and others.

The procedure in each case is based essentially upon Eq. (60).

_xSy l _ -Yn + Yn+l h2 --_SYl (60)n+_ h 24 _X3In_}

The interval between stations is designated by h. Subscripts refer to the sta-

tion at which y (or one of its derivatives) is calculated. The last term is

the first error term and is not included in the computer mechanization. It is

given to provide an estimate of the accuracy of the approximation. Equation

(60) can be derived by writing the Taylor expansions about station n+½ for Yn
By

and Yn+l and solving for _-Xln+½ after eliminating Yn+½"
!

Using the approximation of Eq. (60) and again assuming that E1 and p are

unity, the beam equations (2), (3), (4), and (5) can be written in difference

form:

-Yn + Yn+l (61)
@n+_ - h

_ -@n-_ + @n+½ (62)
M n -

h

V - -Mn + Mn+l (63)

n+_ h
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Vn-½-Vn+½
Yn : (64)

h

Note that displacements and bending moments are calculated at integer

stations whereas the slopes and shear forces are calculated at half-integer

stations. If one calculates all quantities only at integer stations, the re-

sult is to double the effective cell length and thereby to quadruple the first

error term. Therefore we will use "staggered" stations when finite difference

approximations to first derivatives are used.

The analog computer circuit representing a _ypical internal cell is

shown in Fig. i. It requires five amplifiers pc: cell if one reverses signs

at adjacent cells.

Another approach to the problem is to approximate the second spatial

derivative rather than the first derivative. In this case the finite dif-

ference approximation is

__ Yn-l - 2Yn + Yn+l _ h__2 ___41
n h2 12 3x In

and the corresponding beam equations solved on tle computer are

(65)

Yn-1 - 2Yn + Yn_l
Mn = (66)

h e

Yn = -Mn-i + 2Mn - M1+l (67)

ha

The analog computer circuit for this case r_quires only 3 amplifiers per

cell and is shown in Fig. 2. This circuit is su)ject to exactly the same

finite difference errors as the 5-amplifier circlit and, in fact, can be ob-

tained as a direct reduction of that circuit.

B. PHYSICAL INTERPRETATION

There are two ways in which one can give physical meaning to finite dif-

ference approximations to the beam equations.
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The first method is to consider a finite difference expression as an

approximation to a spatial derivative in the continuous beam_T,at a given point.

For example, the right-han_ side of Eq. (64) approximates - _xln' which, in

accordance with Eq. (5) for a continuous beam, is proportional to the accelera-

tion Yn of a local differential element.

The second method is to think of the set of finite difference equations

as representing exactly a lumped physical system whose response approximates

that of the continuous beam. The calculated values of accelerations, shear

forces, etc._ at the various stations have their real counterparts in the

lumped physical system. This approach is helpful in gaining physical insight

into the meaning of the equations, particularly for simple differences. Two

lumped physical representations of this finite difference approximation to

the beam equations are shown in Fig. 3.

In Fig. 3a the beam is approximated by a series of massiess levers con-

nected by pin joints. At each joint a spring produces a moment (corresponding

to the bending moment) which is proportional to the difference in slope angle

@ of the adjacent levers. The mass of the beam is lumped into point masses

at the joints. The deflection y is measured at the joints while the slope @

is measured at the midpoint of each lever.

Figure 3b shows an electrical circuit analog of the lumped mechanical

system of Fig. _a. It also is described by finite difference Eqs. (61) to

(64). The displacement velocities are represented by voltages and the shear

forces and bending moments are represented by currents. The lumped bending

stiffnesses are represented by inductors, while the lumped masses are repre-

sented by capacitors. The transformers, each of turns ratio i to h, perform

the coordinate transformations relating slopes to deflections, and can be

considered as the analog of the massless levers.

C. BOUNDARY CONDITIONS

We have previously given the equations stating the boundary conditions

on a continuous beam for the various cases under consideration. We must now

write corresponding equations for the finite difference beam. First, however,

we must decide whether to end the beam at a point where lateral deflection

and bending moment are computed (the "integer" stations), or at a point where

the slope and shear force are computed (the "half-integer" stations).

Experience has shown 7 that higher accuracy can be obtained for a given

amount of computation (or degrees of freedom) if the end occurs at a half-
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integer station for built-in or free ends. For the pinned case it is best to

end the beam at an integer station.

i. Built-ln End.mPreviously we have seen that the displacement y and

slope @ are zero at a built-in end of a beam. Euppose, for example, that the

beam ends at station n+½. We must approximate the deflection at a half-

integer station where it is not usually defined. Using the Taylor expansion

approach and keeping only the first error term, we find that

i ly 4- Yn+_Yn+½ - _ n
h 2 _2 I

c'y_

8 _x 2 n+½
(68)

Therefore, since Yn+_ and @n+_ are zero, we see from Eqs. (61) and (68) that

D
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Yn = Yn+1 : 0 (69)

implying that there is no lateral displacement st the integer station adjacent

to a built-in end.

2. Free End.mAt a free end we find that t_e bending moment M and shear

force V are zero. Using reasoning similar to that of the previous case, we

find that for a beam ending at station n+½

_4n = Mn. z = 0 (70)

9. Pinned End.--For a pinned end at statiog n the boundary conditions

are quite straightforward_ namely,

Yn = 0 (71)

M n = 0 (72)

In case the pinned end occurs at station n+:@, the boundary conditions
are



Yn = -Yn+l

Mn = -Mn+I

19

(74)

4. The Use of Symmetry.mFor vibration problems of a uniform beam where

the same boundary condition applies at each end, one can make use of symmetry

to reduce the required amount of computation. All the natural modes can be

classified according to whether the deflection curve has even or odd symmetry

about the midpoint of the beam. Consider, for example, a beam that is built-

in at both ends. If one arranges the modes in order of increasing frequency,

then modes i, 3, 5, etc., will have mode shapes with even symmetry about the

midpoint, whereas modes 2, 4, 6, etc., will exhibit odd symmetry about the

midpoint. (See Fig. 4.) In either event, however, one need analyze only one-

half of the beam since the motion of the other half can be deduced from sym-

metry.

For the case of even symmetry of the deflection curve, the bending mo-

ment curve will also show even symmetry, whereas the slope and shear force

curves will have odd symmetry. Conversely, for odd symmetry in y and M,there

will be even symmetry in @ and V.

The above symmetry assumptions are exact and therefore the same fre-

quencies and mode shapes result as for the case where the equations are writ-

ten for the complete beam.

D. ANALOG COMPUTER CIRCUITS

i. Cantilever Beam.m_he analog computer circuit for the cantilever beam

is useful in illustrating built-in and free end conditions. Two circuits are

shown in Fig. 5. The first circuit requires 3 amplifiers per cell, the sec-

ond, 5 amplifiers per cell. These are nominal values, however, and amplifiers

can be saved in representing the end cells because of the boundary conditions.

Thus it can be seen that the actual numbers of amplifiers required to repre-

sent a four-cell cantilever beam are 9 and 15, respectively. Cells can be

added by adding standard circuits such as those in Fig. i or Fig. 2 3 repre-

senting interior cells.

2. Built-ln Beam. mThe computer circuits for a six-cell beam that is

built-in at both ends are shown in Fig. 6. Note that only one-half of the

beam is actually represented on the computer; the motion of the other half is

inferred from symmetry. Circuits are shown for even or odd symmetry about the
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center of the span. In each case the center occurs at a half-integer station.

Circuits for the case where the center occurs at an integer station could

have been derived by a similar process. This situation would arise for a

built-in beam with an odd number of cellsj assuming, of course, that the ends

occur at half-integer stations.

3. Pinned Beam.--The computer circuits representing a six-cell beam

with both ends pinned are shown in Fig. 7. _he (ircuit for the case of odd

symmetry about the center, Fig. 7(b), is particu]arly simple because of the

additional symmetry about the quarter points alolg the span.

_he circuits to be used in the higher-order methods that we consider are

quite similar in general form to those of Figs. _(b), 6, and 7- However,

most amplifiers will have four rather than two ii_puts.

E. MATRIX FORMULATION OF THE DIFFERENCE EQUATIO}S

In the analysis of specific cases of finite difference beams, it is con-

venient to write the equations in matrix form. It is particularly important

to use this formulation if digital computations _re to be performed.

In this report the beam equations are, in general, written as four first-

order difference equations. Using matrix notation, they are as follows:

D
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or

(o} = [B_] (y} (75)

[M] = [B2] [9] (76)

[V] = [B3] [M) (77)

(Y} = [_4] (V} (78)

[y} + [K] [y} = 0 (79)

where

[K] : -[B4][B3][B2][B_] (8O)
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Although the B matrices are rectangular in general_ the K matrix must be square.

The natural frequencies are obtained from the determinantal equation

IK- _21J = o (81)

where h is the natural frequency in rad/sec and I is the unit matrix. For the

case where the K matrix is n x n, there will be n values of h2 (roo_s) cor-

responding to the n natural frequencies of the system.

As an example_ consider the case of a six-cell beam that is built-ln at

both ends. We will write the equations for modes with even symmetry at the

center. As before_ E1 and 0 are assumed to be unity. The matrix equations

are

(82)

= i (83)

(84)

(85)

Assuming a unit cell size (h = l) and performing the matrix multiplica-

tions, we obtain
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+ = 0

According to Eq. (81), the roots are obtained frDm

(86)

giving the characteristic equation

= o (87)

x4 - 8_$ + 3 = o (88)

D
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The roots are

h_,2 = 0.394449, 7.605_5

or

kz,2 = 0.628052, 2.75732

These are the actual frequencies for the moles with even symmetry and

h = I. For our purposes, however_ it is convenient to assume that the total

length of the beam is unity. This implies that I = I/N, where N is the number

of cells, and results in multiplying each frequency by N2. Denoting this

normalized frequency by e, we obtain

el = 22.6099

_2 = 99.2815
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The same basic matrix formulation will be used in the computations through-

out the report. The use of higher-order differences will add to the numerical

complexity but will not change the form of the equations.

F. RESULTS

The results of computations of the normalized frequency parameter m using

differences of order h 2 are summarized in Tables II and III. The computations

are for built-in (or free-free) and cantilever beams for various numbers of

cells. The finite difference error is plotted against the cell number N in

Figs. 13 and 12. These results are essentially the same as those given pre-

viously by Howe and Howe 4 and Michie_ 7 except that the higher mode fre-

quencies are also included.

G. ORTHOGONALITY

We have seen previously that the equations of motion can be put in the

form

[y] + [K] (y) = 0 (79)

We can also write

[m] [y) + [k] [y] = 0 (89)

where m and k are the mass and stiffness matrices_ respectively. Comparing

Eqs. (79) and (89), we see that

-1

[K] : [m] [k] (90)

Now, for the case of the first-order difference equations under considera-

tion here_ both the m and k matrices are symmetric. In fact_ the m matrix is

diagonal. It is always possible in these linear bilateral undamped systems

(whose kinetic and potential energies can be written as positive-definite
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quadratic forms) to find a coordinate transformati _n which will simultane-

ously diagonalize the m and k matrices. In this c _se the natural modes of the

system are said to be orthogonal.

The orthogonality of the modes is not surpristng since we have already

seen (Fig. 3) that these equations represent exactly a lumped mechanical or

electrical system composed of linear bilateral ele_ents. However, when we

discuss higher-order difference methods, we will find that the k matrix is

not always symmetric, in which case the modes are :lot orthogonal.
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We have given a brief review of the calculation of eigenvalues for a uni-

form beam, using simple finite difference approximations to the spatial deriv-

atives. In this way we have obtained some physical feeling for the main fea-

tures of this method and perhaps some insight into the more promising approaches

to the use of higher-order differences. In the remainder of the report we

will consider several higher-order methods and indicate some of the advantages

as well as problems in their use.

A. CHOICE OF THE BASIC DIFFERENCE EQUATION

Even before one gets into the questions concerning the representation of

boundary conditions, there are a number of possible choices one can make con-

cerning the basic higher-order difference equation to be used. First is the

question whether the approximation ought to be with respect to the first, sec-

ond, or possibly the fourth spatial derivative. We can immediately reject

the latter possibility on the grounds that it is quite sensitive to component

errors in the analog co, outer circuit.8,9 Also there is the disadvantage that

other variables of interest such as @, M, and V are not directly available

even though three amplifiers are required per cell.

The choice between approximating two second-order equations or four first-

order equations is more difficult. Let us consider each possibility in turn.

The most obvious approximation of order h4 for the second derivative wit_

respect to x is given by the central difference equation

_2y I __ -Yn-2 + 16Yn-1 - 30Yn + 16Yn+1

_ n - 12h 2

Yn+2

(91)

Using this approximation_ the equations set up on the computer are of the form

i (_Yn_2 + 16Yn_l _ 30Yn + 16Yn+l _ yn+_ (92)
12h 2

Yn : 12h21 (M n-2 - 16Mn i + 30Mn - 16Mn+l + Mn+2_
(93)
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where unity values are assumed for E1 and 0. The analog computer circuit re-

quires three amplifiers per cell and up to five i _puts per amplifier. (See

Fig. d. )

Consider now some of the higher-order approximations to $--_Y.
_x

central difference approximation of order h 4 is

The usual

_x n 12--_ n-2 - 6Yn-l + 8Yn+l - 7n+ + 30 SxS In

The resulting beam equations are

(94

@n - i Q + - Yn+2) (9512h n-2 - 8Yn-_ 8Yn+ t

Mn - 12hl (@•n-2 - 8@n-i + $@n+t - @n+2_ (96

J
_ i {M

Vn
12h _hu-2

(97

(98
Yn - 12hl _Vn_2 +SVn_l_SVn,1+Vn+2 )

where E1 and p are assumed to be of unit value. Ihe analog computer circuit

requires nine amplifiers per cell in this case be:ause each of the four output

variables must be generated with both signs. (Ea:h cell would require 2

integrators,,3 summers, and 4 inverters.)

Another possibility is to try a higher-order approximation using stag-

gered stations, i.e., calculate the derivatives as the midpoints between sta-

tions where the function is defined. A central difference approximation of

this sort is the following:

D
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24h n-z - 27Yn + 27Yn+i - _n+ 640 _XSln+½

(99)
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This approximation is seen to have a smaller error term than that for

Eq. (94). Furthermore, it will be seen that less analog computer equipment

is required to implement it.

Using the approximation of Eq. (99), the beam equations are

D
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- 24hl(yn__ -27Yn+2r_Yn+_ Jn+_

1 -_ 27@n-_. + 27@n+½ n+24h

(I00

(i01

V z-n+_ 24hi ( _n-z - 27Mn + 27Mn+z Mn+_ (102

Yn - 24hi _Vn-_ + 27Vn-_- 27Vn+_ + Vn+_ (109

where, as before, unit values are assumed for E1 and p. Note that y and M are

calculated at integer stations whereas @ and V are calculated at half-integer

stations.

The analog computer circuit representation of Eqs. (i00) to (109) re-

quires _ amplifiers per cell with up to _ inputs per amplifier. The circuit

for a typical cell is shown in Fig. 9. The signs of amplifier outputs alter-

nate on successive cells.

In spite of the fact that the circuit of Fig. 9 requires 5 amplifiers per

cell compared to 3 amplifiers per cell for the circuit of Fig. 8, the computa-

tions in this report are based on the beam equations as given by Eqs. (i00)

to (103). The reasons for this choice are (i) the greater accuracy of the

basic difference equation, (2) greater ease and flexibility in applying bound-

ary conditions and forcing functions, and (3) less sensitivity to computer

component errors.

B. BOUNDARY CONDITIONS AND RESULTS

Earlier we saw that the representation of boundary conditions was relatively

straightforward for the case of difference equations of order h2. When one

uses higher-order differences, the problem of applying boundary conditions be-
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comes more complex• Many approaches are possibl6 and the accuracy of the re-

3o

p

2

2

' @_7

2

i

540Oh

m
I

4800 0 0 ') " "

-6025 6066 -225 _)

225 -6075 6075 -225 ""

Ya

Y3

k

(i06)

Thus we find that we can omit Yl as a coord:nate in our analysis because

of the constraint expressed in Eq. (105). This _as also true when simple ap-

proximations of order h 2 were used_ but in that case Yl was equal to zero.

In a similar manner, using the approximatiol_s of Table I and Eq. (99),

we can write the remaining beam equations for th_ case of a built-in end.
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i

24h
M3

• i

• I

m

17 9 -5 i 0

-27 27 -i 0 0

i -27 27 -i 0

m

• °

p ,

%

%
2

@_v

i.

L

(i07)

1
24h

v_ I
21

• I

,'j

-93

-22

i

229 -225 iii

17 9 -5

-27 27 -I

-22

i

0 o o,

m

Mi

M3

A

(io8)
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Y_

2_

24

i

24h

m

-i 27 -27 z o

0 -i 27 -27 i

0 0 -i 27 -27

• o

q

2

Vs
2

p

V_
2

4

(io9)

Let us apply Eqs. (106) to (109) for the specific case of a 6-cell beam

that is built-in at both ends. 0nly the modes with even symmetry about the

center will be considered. The equations of motion are

le_ 5400h 8_6025 584
<2j

Mj 17 8

,½_ _ i 7 27

M_ 24h -26 L@_]

V_ , : 1 2 18 _ _
2 24h

V_ -27 26J [%
2

-27
_2 1

I -

Letting h = i and applying Eqs. ($0) and (81), we obtain

(izo)

(ill)

(ll2)

(liD)

(5.22099-X 2) -2.77559

-4.29987 (2.85815-h 2

= 0 (ii4)
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giving the characteristic equation

_4 8.07914_2 + 5.0@62 = 0 (115)

and roots

hi,2 = 0.625142, 2.T278

which can be normalized to

_i = 22.5051

= 99.8203
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Comparing these results with those for the case where simple differences

were used, one finds that the h4 approximation {lives somewhat better accuracy

for the first mode and approximately the same r(sults for the higher mode.

This improvement due to using an h4 approximaticn seems to be rather slight.

However; if one looks at the accuracy of a givel mode as the number of cells

is increased, the h4 approximation converges toward the correct result more

rapidly, as it must; of course; in the limit. See Table II and Fig. 15 for

a summary of the results.

3- Free Beam.--Previously we have seen that the representation of a free

end is obtained from that for a built-in end by interchanging the roles of y

and M and also those of @ and V. Furthermore, _e found for a continuous beam

that the nonzero mode frequencies are identical for the cases where both ends

are built-in or both ends are free. This is al_o true when finite difference

methods are used. To illustrate this, let us c_Aculate the mode frequencies

(even symmetry only) of a 6-cell beam that is free at both ends.

_ne equations of motion are

2

i

2 24h

2

-99 207 -i: 4

-22 18 4

i -27 2_

D

(ll6)
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iI1-2YM2 _ i

24h i

v 46oo
_ 1

tV_] 5400h 6025

21

564

(117)

(ii6)

- -27 (ii9)
24h 2

Performing the matrix multiplications for the case where h = i, we obtain

from Eq. (81) that

(0.20619-X 2 ) -0.00031 -0.20588

-2.16868 (5.46771-k 2 ) -3.29903

1.23959 -3.64483 (2.40524-_ 2

= o (i2o)

giving the characteristic equation

hm(h 4 - _.079i4k 2 + 3.00462) : 0 (i21)

Comparing Eqs. (115) and (121)_ we see that the nonzero roots are identical

even though the K matrices are quite different.

All computations in this report applicable to either a built-in or free

beam were actually set up considering the built-in case; using equations

similar to (ii0) to (113).

4. Cantilever Beam.--One can use the methods developed for obtaining

h 4 accuracy in the representation of a built-in end or a free end to write the

equations of motion for a cantilever beam. The minimum number of cells re-

quired for h4 accuracy is five. Other methods to be considered later will be
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applicable with fewer cells.

As an example of a typical calculation, con_ider a six-cell cantilever

beam. The equations of motion are

2

25_
2

27
2

2

5400h

i

4800 0 0 ( 0

-6025 6066 -225 ( 0

225 -6075 6075 -_25 0

0 225 -6075 t075 -225

-225 1125 -2025 -D825 4950

4950 -24975 50625 -_1525 20925
_

Y2

Ys

Y4

Y5

Ye

(122) D
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= i__
24h

17 9 -5 1

-27 27 -i 0

1 -27

0 i

0 0

0

0

27 -1 0 0

-27 27 -I 0

i -27 27 -I

w

l

o

o o_I

L ]

(12})

V!
2

V_
2

V_
2

V 2
2`

Vs__
2.

Iv ii

i

5400h

-20925 51525 -50625

-4950 3825 2025

225 -6075 6075

0 225 -6075

0 0 225

0 0 0

q

;!4975 -4950

-i_125 225

-;!25 0

_i075 -225

-_i066 6025

,) -4800

Mi

½

Ma

_4

(124)
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Ysl

' Y4_' - 1
24h

%1

Y61

-1 27 -27 1 0

0 -1 27 -27 1

0 0 -1 27 -27 1

0 0 0 -1 27 -27

0 0 1 -5 9 17

o vA
2

V_
0 2

V_..
_ 2 W

V7
2

Vg_
2

VA3
2

(125)

The large numbers in Eqs. (122) and (124) result directly from using the

one-sided approximations of order h4 as given in part A of Table I.

Note the similarities in the matrices of Eqs. (122) and (124). Reading

from left to right, beginning with the first row of (122), one sees the neg-

ative of the numbers obtained in reading from right to left beginning with

the last row of (124). A similar relationship exists between Eqs. (123) and

(125), except for sign. This property is common to all finite difference

analyses of the cantilever beam and results from the complementary character

of y and M and also of @ and V.

Setting h = i, one obtains the characteristic equations for the system:

h_o _ 29.01745X8 + 221.62914h 6 _ 462.52608h4 + 148.71888_ 2 _ 1.37797

giving the normalized frequencies

ml = 3.51687

e2 = 22.1688

m s : 59.3364

m4 = 99.8114

a% : 153.687

= 0

( 126 )

Note that all except the lowest mode frequency are roughly equal to cor-

responding frequencies for the 6-cell built-in case. An even closer agree-

ment occurs in the percentage error for corresponding cases. In fact, for

large N and comparing the higher modes, one finds essentially identical re-

sults for the built-in and cantilever beams. (See Tables II and III.)
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C • ORTHOGONALITY

We have seen that the use of approximations _f order h2 leads to orthog-

onal modes. Also, one can obtain a lumped physical system composed of linear;

bilateral elements that is represented exactly by the equations of motion.

This is no longer true for the h 4 approximation u{ing one-sided differences

at the boundaries. If one writes the equations of motion; the m matrix is

symmetric but the k matrix is not. [See Eq. (120), for example.] Thus the

system is nonphysical, i.e., a passive system of Linear bilateral elements

cannot be obtained for which the equations are an exact mathematical repre-

sentation. Also, the modes are not orthogonal, i_plying that one cannot ob-

tain a coordinate transformation that diagonalize_ the m and k matrices

simultaneously.

To illustrate this point_ consider again the 6-cell built-in beam for

the case of even symmetry. For each mode; one ca_ calculate an amplitude

ratio that indicates the relative magnitude of th_ motions of Y2 and Y3"
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= 5.22o99-_ 2
A2 2.77553 (127)

The results for this case are given by the matrix

[A]
= I] °00°°

74028

i. O000l

/
-o.8 89LI

( 128 )

where each column corresponds to a natural mode _id the amplitude of the Y2

motion is arbitrarily set equal to unity.

The original mass matrix for this system is

L_.y 626162_

(129)
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The deviations from a unit matrix in this case are brought about by the elimina-

tion of Yl using the constraint equation

2 l (i}o)
:
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The stiffness matrix for the original system is

5._1695 -2.9950

[k ] = [m] [K] = (131)

4.94715 2 ._740J

Consider now the coordinate transformation

[y] : [A][y] (192)

The mass matrix in terms of the barred coordinate system is

T 140.05185 -0.5077_
[_] = [A] [m][A] = (193)

•50770 1.65671_

and the stiffness matrix is

[[] : EA]TI ][A]  0.19642  4.2750 

Thus we see that neither the mass nor the stiffness matrix is diagonalized

by the transformation to generalized modal coordinates, and therefore the modes

are not orthogonal. Furthermore, the [ matrix is not symmetric.

We have defined orthogonality of modes in terms of a simultaneous diagonaliza-

tion of the mass and stiffness matrices by a coordinate transformation. It should

be noted, however_ that a nonorthogonality of modes in this sense does not nec-

essarily imvly dependence or coupling of modes. In the above case, for example,

the matrix [_]-i[_] turns out to be diagonal.
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VI. THE USE OF SYMMETRY IN REPRESENTING BOUNDARY CONDITIONS

The use of an h4 approximation in a straighlforward manner has been shown

to require the use of one-sided differences near the ends, whereas central

differences can be used in middle portion. Another approach to the problem

of representing boundary conditions is to assume a virtual or image beam ex-

tending beyond the actual beam and to use values of y, @, M, and V in this

imaginary beam, as necessary, in the standard cel tral difference equations.

This approach will now be investigated.

A. SYMMETRY ASSUMPTIONS

In establishing the basic approach to the problem, we will again use the

central difference approximation

2_h n-l - 27Yn
n+½ + 27Yn+l YI+2) +5h4" 640 _xs_SYIn+} (99)
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using staggered stations such that y and M are c_iculated at integer stations

whereas @ and V are calculated at half-integer s_ ations. The beam ends occur

at half-integer stations.

Let us now consider appropriate symmetry assumptions for a cantilever beam,

chosen to illustrate free and built-in end condilions. (See Fig. i0.) First

we note that the assumption of even symmetry in _ about the built-in end will

give zero slope at that end, using Eq. (99). (_ e assumption of odd symmetry

here would not give the proper result.) Successive differentiation of y with

respect to x gives alternating odd and even funclions, as shown by the dashed

lines where they deviate from the solid lines. !bus the assumed beam shows

a discontinuity in V (and the slope of M). However, one can see from the basic

approximation given in Eq. (99) that the presenc_ of discontinuities will

amount to an increase in the magnitude of the hi_iher derivatives at this point

and thereby increase the error in the approximation.

To avoid these errors due to discontinuities, we will arbitrarily assume

continuous curves at the boundaries even though _hese assumptions are not

physically consistent. We are interested in obt_.ining the best possible

estimates for the derivatives of y within the aclual beam, and therefore we
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make the most promising assumptions concerning the virtual beam.

The symmetry assumptions that we will use can be summarized as follows:

(i) If the derivative of the function approaches zero as the end of the

actual beam is approached, assume even symmetry about the end.

(2) If the derivative of the function does not approach zero as the end

is approached, assume odd symmetry about the end, possibly with an offset to

avoid discontinuities.

The procedure by which these assumptions are incorporated into the equa-

tions of motion is quite straightforward except for the extrapolation of M

at a built-in end or the similar extrapolation of y at a free end. Taking

the case of the built-in end, a functional form must be assumed for M near

the boundary. Referring to the analytical solution near a built-in end_ as

given by E_. (22) or (_9), we find that the magnitude of M varies according

to a linear plus a fourth-order term in x plus other higher-order terms. So

a logical choice of the functional form of M near the boundary might be

M = ao + alx + a4 x4 (i35)

where the last term takes the plus or minus sign depending on whether x is

positive or negative. This assumption results in the equations

Mo _ 1 [50_M_ - _IOM2 + _gMs] (i]6)
292

and

_ i
M-I 212 [735Mi - 542M2 + ]9Ms] (137)

where the built-in end occurs at station ½.

Another possibility is to assume that M is an offset odd function having

a linear plus cubic variation with x. Thus we might assume that

M : b O + blx + bsxS (196 )
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_,_±sassumptionavoids having discontinuous derivar;ives at x = 0 andgives
numerically simpler equations. In this case

Mo : _[7MI - 5M2+ Ms] (139)

M : l[lOMl - 8M2 + Ms] (140)
-i 5

Computations were run for many cases, using either Eq. (135) or (158), and

the results were compared. The differences were fairly small and, if anything,

favored the linear plus cubic assumption. All resllts given in this report_

assuming symmetry at the boundaries, are based upol a linear plus cubic varia-

tion of M near a built-in end, i.e., upon Eqs. (15)) and (140).

The assumptions concerning the form of y near a built-in end are the

same as we used previously for the h4 case. Again we can eliminate Yl by

using the equation

Yz - 2 Y2 i
(Im)

Of course a similar relation exists for the v_lue of M at the station

nearest a free end.
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B. EgaJATIONS FOR A BUILT-IN BEAM

i. General Case.--We have seen how we can us_ symmetry to extrapolate

the variables of the problem beyond the actual limits of the beam. Using these

extrapolated values and the basic central difference approximation of Eq. (99),

we can write general equations for a built-in beam similar to those given by

h 4 approximation in Eqs. (106) to (109). They are

21

'ezl
al

i

5400h

4775

-6025

225

9 0 0

6066 -225 0

-6075 6075 -2_5

m

°io

Y3

' Y4 (i4i)
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o
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24h

-i 27
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0 0

-27 1 0

27 -27 1

-1 27 -27

a°• Vj

V31
21

IV_!
2

(i44)

A comparison of the above equations with those for the h4 approximation

as given by Eqs. (106) to (109) shows considerable similarity. It should be

noted, however, that the use of symmetry at the boundary never requires more

than four inputs per amplifier in the analog computer circuit, whereas the h 4

approximation requires up to five inputs per amplifier.

2. The 6-Cell Case.--As an example of a mode calculation for a specific

case, consider again the modes with even symmetry about the center for a 6-

cell beam built-in at both ends. The equations of motion (using symmetry

assumptions at the boundaries) are
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2

2

i

5400h

4775

6o25

(z45)

_ i 7
24h

IV_ l
!21

Iv l,
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i

72h

m
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-74

3
I

124

76

-81

-2

78
m

>2

r •

Y2

°°

Ys
4

Vi

V_-

V_

Setting h = I and performing the matrix multLplications, one obtains

(8.04779-h

-4.39275

= 0

i46)

i_7)

14_)

149)
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giving the characteristic equation

_4 _ i0.962_3_2 + 4.17146 : 0 (150)
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The roots are

h_ 2 = 0.62828, 9.25078

and the normalized roots are

9
6
4

Recalling that the corresponding normalized frequencies for the con-

tinuous beam are

we see that the above results give a somewhat larger error for the first mode

than does the h 4 approximation, but the error in the higher mode is much smaller.

An alternate method can be used, particularly with the use of a digital

computer, to set up the equations of motion and to solve them. This method,

which indicates more clearly the symmetry assumptions in its formulation, is

given in Appendix A.

9. Results.--The results of calculations for built-in and cantilever beams,

using sy_netry assumptions at the boundaries, are summarized in Tables II and

III and in Figs. 17 and 18.

Comparing these results with those for the h 4 approximation, we note that

for a practical range of N (say 6 to 16) the use of symmetry gives lower ac-

curacy on the low frequency modes but better accuracy on the higher modes. For

example, consider the case of an 8-cell cantilever beam having a total of

seven modes. Using symmetry at the boundaries, the first four modes have a

frequency error well within 19 and even the sixth mode has an error of only 109,

approximately. By contrast, the use of h 4 approximations at the boundaries

gives better accuracy for the first three modes but the fourth mode has an

error of nearly 59 and the sixth mode has an error of approximately 209 •
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C. 0RTHOGONALI TY

It turns out when boundary conditions are imposed using symmetry that

the resulting modes of vibration are nearly, but _ot exactly, orthogonal.

This means that this approach also results in a n)nphysical system in the

sense that a lumped model cannot be built of linear bilateral elements.

To compare the orthogonality properties with those for the h4 approxi-

mation, let us consider again the example of the )-cell, built-in beam.

The mass matrix is again

85 -2

81 225

[m] =

-2 626

225 625

(129)

The stiffness matrix is
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[k ] = [m ] [K ]
= Ii "48426.47L3l

The amplitude ratios are calculated from

(15z)

A2 _ 8.04779-_2

Am 4.3900o
(152)

yielding the modal matrix

[A] = .ooooo i.ooo )o1

•74329 -0.573.)9_J

(153)

In the modal coordinate system the mass matrix is
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= F_.o6e3e o.o367_

[m] = [AjT[m] [A] [._0.03676 1.38957_] (154)

The stiffness matrix is

Thus neither matrix is diagonalized by the transformation, but the result

is considerably closer than was the case for the h 4 approximation, as can be

seen from Eqs. (133) and (134).
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VII. THE PASSIVE CIRCUIT NETHOD

We have seen in the case of the simple approximation of order h 2 that an

electrical circuit exists which the difference ecuations describe exactly.

However, when one goes to higher-order differences and uses the methods we

have described for establishing the boundary conditions, one finds that the

resulting equations are nonphysical, i.e., no passive linear circuit analogy

exists.

It can be shown that the nonphysical character of the higher-order methods

discussed thus far is due to the boundary-condition representation rather than

the basic difference approximation. In this section a passive circuit analogy

will be obtained for the basic higher-order approximations of Eqs. (i00) to

(103). By imposing boundary conditions on this circuit and writing the cor-

responding equations, one can obtain a set of mutually orthogonal modes.
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A. PASSIVE CIRCUIT ANALOGY

We have been using the following finite difference approximations to the

beam equations.

@n+_ 24h n-i - 27Yn + 27yi+I - Yn+

Mn 24h n- - 27@n-½ + 27_I +_ - gn+

V _ = i (M - 27Mn + -Mn+ _n+_ 24h n-i 27MI +i

•. _ i <-Vn_ _ + 27Vn_ ½ 27_n+_ + Vn+_Yn 24h

(i00)

(lOl)

(102)

(io3)

Setting h = i, and representing generalized velo(ities by voltages and gen-

eralized forces by currents, one can show that t_e passive circuit of Fig. II

is described by these equations. Note that thre( transformers, one inductor,

and one capacitor are required per cell.

The rather large transformer requirement of Fig. ii compared with the h 2

approximation of Fig. ](b) makes it impractical Io use this passive circuit
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directly. Instead we can write the circuit equations and solve them using a

differential analyzer or a digital computer. The equipment requirements in

this case are almost the same as for the other higher-order methods but are

actually slightly less due to the details of boundary representation.
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B. THE BUILT-IN BEAM

i. Symmetry Assumptions.--To obtain a proper representation of a built-

in end_ it is convenient to make certain symmetry assumptions consistent

with the given boundary conditions. We will assume that the deflection curve

has even symmetry about the end and zero slope at the boundary. Thus y and

M are even functions of x_ while @ and V are odd functions of x_ as shown

by the dashed lines of Fig. i0.

The circuit that has been used to represent a built-in end is shown in

Fig. 12. The beam end is at the center of the diagram (station 3) with the

virtual beam on the left and the actual beam on the right. The autotrans-

former at the bottom of the figure represents the constraint relating Yl

and Y2-

2. Constraint Equation.--It can be shown for a uniform beam that

Yn+½ _ n-l + 9Yn + 9Yn+1 - Yn 512 _x---_In+3

(156)

i
So if we assume that y has even symmetry about the built-in end at station

and also set y_ equal to zero, we obtain the approximate equality
2

y_ _ _ y2 (157)
9

This is used as the constraint equation in the passive circuit approach.

It can be seen from Fig. 12 that the autotransformer representing the con-

straint equation causes a certain relationship to exist between voltages and

also between currents. In mechanical terms_ a constraint equation relating

coordinates also implies forces of constraint to be exerted on the system in

such a way that no work is done. These forces of constraint have been ignored

in the previous two approaches to the problem and this resulted in a lack of

symmetry in the stiffness matrices.
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To calculate the effect of these forces of constraint, consider a beam

described by the matrix equation

[m][y} = [D][V} (158)

Now suppose a constraint is imposed as described by

y_ = (C){y} (159)

where the summation is over all y except YI. (_e parentheses denote a row

matrix.) Let us include the constraint forces in the analysis and also separate

the Yl equation from the others. Then we obtain
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mlyl = (DI)[V] + Fl (i6o)

[m][_} = [D][V} + [F) (161)

where the F are constraint forces acting on the team. Note that Eq. (161) does

not contain Yl and the D matrix does not contain a DI row.

Now multiply (160) by Yl and premultiply (161) by [y}T. Adding, we obtain

ylmlyl + {Y}T[m]{Y} = Yl(D1)[V} + [y]T[D][V} + Flyl + [y]T[F} (162)

Since the constraint does no work, we can write

FlYl + [y}T[F] = 0 (163)

and the last two terms of (162) drop out. Finally, substituting for Yl from

Eq. (159), dividing out [y}T, and rearranging, we obtain
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ml(C){y)(C) T + [m]{y] = (Dz)[V](C) T + [D]{V] (164)
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This gives the equations of motion with Yz omitted and constraint forces in-

cluded. For example, in the present case with a simple constraint given by

Eq. (157), the effective mass at Y2 is 82/.51 times its value before the con-

straint was applied. More complicated constraints will result in inertial

coupling, but the effective inertia matrix will always be symmetric.

3. General Case.--The complete equations of motion for a built-in beam

can be written now using the passive circuit method• They are

r

2

I
_ i

216h

n

217

-242

9

-9 o o

2_ -9 0
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° ••
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-27
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5o

.°

Y2

.°

Ya

°.
Y4

_ i

1968h

195D

-82

-2178 8_ 0

2214 -2214 82

-82 2;-)14 -2214

m

e°•

2

V_
2

VZ
2

(16_)

The amount of analog computer equipment needed for the passive circuit

method is slightly less than for either of the )ther higher-order methods.

There are two reasons for this. First_ the val_e of V at a built-in end (or

of @ at a free end) need not be calculated. Second, the signs are optimum in

that no extra amplifiers are required for inver;i_ion at any point.

The equations of motion for stations near _ free end can be obtained most

easily from the above equations by exchanging ti_e roles of y and M and also

@ and V. Of course they could also be obtained directly from the passive cir-

cuit_ remembering the constraint equation relat.ng the values of M at the last

two stations.

4. The 6-Cell Case.--Again let us considei" the even symmetry modes of

a 6-cell beam built-in at both ends. Using the passive circuit approach, the

equations of motion are
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_ i 7 27 (170)

Ill- (171)
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Setting h = i, we can solve for the eigenvalues from

(172)
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or

(8.47527-_ 2 ) -4.54772

-4.6O586 (2.991_0-_ 2

h4 11.46667h2 + 4.41583

= 0

= 0

z73)

(z7_)

The normalized roots are

el = 22.7995

= 119.765

In this case the first mode frequency is 1.69 high and the second mode fre-

quency is 0.949 low.

C. RESULTS

The results of mode frequency calculations for a uniform beam using the

passive circuit method are summarized in Tables II and III and in Figs. 19 and

20.

Comparing these results with those obtained previously, using other methods,

we note that the passive circuit method gives very good over-all accuracy for

cases where the number of cells is 9 or more. On the other hand, the symmetry

method appears to give generally better results for smaller values of N. Of

course, the h4 method is still best for accuracies of the order of 0.259 or

better.
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Onewayof comparingthe various methodsis to obtain an approximatenumber
of cells required per wavelengthto obtain a giw_naccuracy. For if error,
the ordinary h2 approximationrequires 12 cells !_erwavelength. In contrast,
the h4 approximationrequires 6-1/2 cells per w_relength, the symmetrymeth-
od requires 5 cells per wavelength, andthe passi_.vecircuit methodrequires
4-1/2 cells per wavelength.

D. ORTHOGONALITY

In contrast with the higher-order methodsc_msideredpreviously, the pas-
sive circuit methodproducesorthogonal modes. Weorthogonality property is
a result of the symmetryof the original m andk matrices.

Wecan illustrate this point by referring again to the 6-cell case. From
Eq. (173) wesee that the amplitude ratios for ti_e two modescanbe calculated
using
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A2 = 8.47527-h 2

A_ 4.54772
(175)

The modal matrix is

[A] = Ii.O0000 1.0)00_ (176)

12.7759o-o.5 oo 

The original mass matrix is

The corresponding stiffness matrix is

P

[k] : / 8
° _7990

4.60386

(177)

(17_)
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After the transformation

[y) = [A][_] (1_2)
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the resulting mass and stiffness matrices are

.16616 0 1
[_] = [A]T[m] [A] = (179)

0 1.3373

.6622} 0081
[_] = [A]T[k][A] = (18o)

0 14.8o

The diagonal nature of these matrices implies orthogonality of modes, and also

that the motion of each of the modal coordinates is independent of the others.

It should be noted in passing that the matrix

[_,2] = [A]-_[I<][A] (lSl)

is diagonal for all three methods and the numbers along the main diagonal are

the squares of the mode frequencies. I0 This does not imply orthogonality,

however, as we have defined it.
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Vlll. SOURCES OF ERROR

In this section we will consider the principal sources of error in the

methods that have been suggested for the solution of beam vibration problems.

These errors are (i) finite difference errors due to the basic difference approx-

imation} (2) finite difference errors in the representation of boundary con-

ditions, and (9) component errors. The error curves that have been presented

so far represent a combination of error sources (i) and (2) above for various

specific cases. Now we will consider them with somewhat more generality.

A. FINI_ DIFFERENCE ERRORS

i. The h2 Approximation. We have seen previously for a pinned beam that,

when proper symmetry assumptions are made_ there is no additional error due to

the method of representing boundary conditions and so the entire computed

error is due to the basic finite difference approximation. So consider now

a uniform beam pinned at each end at an integer 3tation.

Recall again the basic h 2 approximation
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Sy] ._ -Yn + Yn+l h a _8y]

Repeated application of Eq. (60) yields

(60)

Say] __ Yn-1 - 2Yn + Yn+l h e _4y I

I$x2 n n

(65)

Similarly, one can obtain

Yn-2 - 4Yn-1 + 6Yn - 4fn+z + Yn+2

h 4
n

(182)

which is the result of applying Eq. (60) four ti:les in sequence.
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We will again consider the equation for the continuous beam in simplified

form.

_4y +--_2Y = o (6)
_x4 _t2
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As we have seen previously, the solution for the continuous pinned beam is of

the form

Y : _ Yi sin_i x (G i cos _i t + H i sin _i t)
i

(18_

where

Bi = i2_2 (i = i, 2, 3, ...) (55)

For the case of the ith mode, we can substitute Eqs. (182) and (18_) into (6

obtaining

2) h23  yn=0i - + - + Yn+ 6h-_ n-2 4Yn-l 6Yn 4Yn+l + -- _iYn

or

! _iYn i -
h 4 n-2 - 4Yn-1 + 6Yn - 4Yn+l + Yn+ = _-

(184

Now the left-hand side of Eq. (184) is of the same form as the approximation

to _4y used in the finite difference solution. Therefore, the corresponding

X4 n

finite difference equation is

h-_ -2 - 4Yn-l + 6Yn - 4Yn+1 + Yn = _iYn
(185)
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where _i is the finite difference eigenvalue corresponding to _i" So the right

sides of Eqs. (184) and (185) can be equated if sinusoidal mode shapes are

assumed in each case. Finally, noting that

: t (1_)
h N

we obtain

or

12\N/ (187)

where i is the mode number.

2. The h 4 Approximation.--A similar approach can be used to compute the

frequency error for a pinned beam using higher-o_der differences. The basic

approximation is
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_y - i 27y n 27Yn+ I rn+ + 3h___4

_x n+½ 24h n-i 640 _x 5 n+½

(99)

Using successive repetitions of Eq. (99), we obtain

and

_4 __ 1 + ... + _ + h_8

n (24h)4 n-6 160 n

(_89)
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Proceeding in a manner similar to that for the h 2 approximation, we ob-

tain

or

2 5h4 __"_ = _i 160

Thus we see that the basic finite difference approximation tends to give

frequencies that are too low. The first error term in Eq. (190) gives an

accurate estimate of the error only for small i/N ratios and more terms are

needed for most practical cases. The actual error curves are plotted in Fig.

21 for the h4 approximation.

3. Maximum Errors.--From the tabulated results of the calculations of

mode frequencies, it is seen that, as the i/N ratio increases, the error also

increases. In the limit as i/N approaches unity, the error is independent

of the boundary conditions and depends only on the basic approximation. This

limiting value of the error could be obtained by evaluating the complete

series indicated in Eq. (187) or (190) for i/N = i. A simpler way to obtain

this result is to note that as i/N approaches unity the motion at adjacent

stations is equal in amplitude but opposite in sign. Knowing this, one can

calculate the frequency directly.

For example, using the he approximation and assuming h = i, we find that

Yn + 16Yn : 0 (191)

yielding the frequency
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The corresponding frequency for the continuous beam is the same as for a pinned

beam of unit length vibrating in its fundamental mode, namely, _2. So the

maximum error for the h2 approximation is

e - _2-4 - 59.472_ (192)

m&x _2

Performing a similar calculation for the h4 case_ we obtain

Or
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_ 49

9

giving a maximum error

e - 9_2-49 - 44.836_ (194)
max 9_2

B. BOUNDARY-CONDITION ERRORS

We have seen that an analysis of uniform pirned beams with various numbers

of cells gives directly the finite difference error due to the basic central

difference approximation. Furthermore 3 we note taat the eigenvalues of the

pinned case alternate with the eigenvalues of eitmer the cantilever or built-

in case. Consequently, if the method of applying boundary conditions intro-

duced no additional error, one would expect the error curves for the cantilever

or built-in beam to run between and roughly parallel to the error curves for

the pinned beam. Instead, one finds that all the boundary-condition methods

considered here result in raising the natural frequencies. This causes a gen-

eral improvement in accuracy for i/N values greater than about 0.3 for the

symmetry and passive circuit approximations. For the h 4 method the accuracy

is improved for all i/N.
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For the lower modes and large N, the error for the three built-in or

cantilever cases mentioned above exceeds the error for the corresponding pinned

case because the boundary-condition errors are of lower order in h than the

basic central difference errors, and ultimately must predominate. For exmnple,

in the equations for a built-in beam using the simple "h2" approximation, we

find the expression
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@_ = Y2 (195)
2 h

[See Eq. (82).] The error in this case is actually of order h, as can be ascer-

tained by the Taylor expansion method.

Similarly, the passive circuit and symmetry methods of approximating a built-

in end use the expression

Hi 24hi _6@_ - @_) (196)

which has a first error term of order h. On the other hand, each equation used

in the h 4 approximation is truly of order h 4, and therefore the boundary-

condition errors do not tend to dominate for large N.

A study of the error curves presented in Figs. 16 and 21 l_ads one to the

conclusion that the first error term alone does not give a reliable estimate

of the actual errors encountered. The i/N ratio must be the order of 0.i or

less before the first error term clearly predominates and by this time roundoff

or component errors mask the desired truncation error.

To illustrate this point, it is of interest to calculate the rate at

"which the actual truncation errors decrease with increasing N as N approaches

16, i.e., at the right-hand edge of the error diagram. Rough calculations

indicate that the h s and symmetry methods have an error that is decreasing

as h 1"9, while the error for the passive circuit method is decreasing as h s'°

and that for the h4 method is decreasing as h4"F for increasing N.

The conclusion from the preceding analysis is that the method of repre-

senting boundary conditions should be chosen on the basis of the require-

ments of the problem and actual error curves, rather than assuming that an

h4 approximation is necessarily more accurate than an hs or lower approxima-

tion over the practical range of N. Our results show that so-called higher-
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order methodsare generally superior to simpler a_proximationmethods. How-
ever, the choice betweenthe various methodsof representing boundarycondi-
tions should be madeon the basis of the problemat hand.

C. COMPONENTERRORS

In this section wewill consider the sensitivity of the calculated roots
or frequencies to small shifts or inaccuracies of the componentvalues. This
will be accomplishedby perturbing one of the matrix elementsand calculating
the resulting frequency shift.

Supposewewrite the characteristic equation in the form

S(_, bij) = 0 (197)
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where the eigenvalue, _ = ka, is the square of the frequency (rad/sec) of one

of the modes and bij is the matrix element that is to be perturbed. For

small deviations about the reference values _o' bijo we can expand in the
series

where

!

S(B, bij) = S(_°' bij°) + "_ o] 8_ij

= Bo + A_

bij = bij o + Abij

Abij + ... (198)

O

From Eqs. (197) and (198) we obtain an expression for the shift in the root.

AB = Abij (199)

To illustrate this method, let us make an error-sensitivity computation

for a 6-cell besln that is built-in at both ends u_ing symmetry assumptions at
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the ends and assumingevensymmetryabout the center. Wehave seen that the
equations of motion canbe written in the form

[y] + [K][y] = 0 (79)

where

[K] : - [B4][B3][B2][BI] (80)

For the case we are considering, the characteristic equation is of the form

= 0

or

S = l]2 - (Kzz + Ka2)I] + (KzzKee - KzeKez) = 0 (200)

Let us suppose that an element in the Bz matrix is to be varied. We can write

[K] = [T] [Bz] (201)

where

[T] = [B4 ] [Bs ] [Be ] (202)

Consider now the case at hand where
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[B1 ]
1

5400h 46775 _41

o25 5

and evaluate the sensitivity to a perturbation of b21. Evaluation of A_ ac-

cording to Eq. (199), assuming h = i, gives

_i = 0.157010 Ab21

A_a = 4.22168 Ab21

for the first and second modes, respectively. Ir this case the actual roots

_e

_i = 0-394741

_2 = 10.5676

So the fractional changes in the roots are

A__ = 0.443791 Ab23

_l b21

A__ = - 0.445731 Abel
_2 b2_

This implies that a i_ increase in the magnitude of b21 will cause a 0.222_

decrease in the first mode frequency and a 0.223_. decrease in the second mode

frequency.

8 o
It has been pointed out by Clymer, Fisher,- and others that, in general,

the repeated use of finite difference approximations to the first spatial

derivative will result in less component error s_nsitivity than using approx-

imations to the second or fourth derivatives. _ check this point, let us

calculate the error sensitivity for the same problem using approximations to

the second derivative. Splitting the matrix multiplication differently, we
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will let
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[i] = - [T][B]

where

In this casej for h = i, we find that

[B] =

I 58.1271

130.2083

72. 0812

-2.5037]

7o.3125 ix L0-5
-67.8088J

(203)

(204)

(205)

and

[T] = 1981 4115 -21541

152 -2182 2030j

Again we will calculate the error sensitivity for b2z, Performing the numerical

computations as indicated in the equation_ we obtain

&hz = -77.6587 Ab21

A_2 = -4037.34 Ab21

corresponding to

A__ = 0.256165

_z b21
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= 0.497460 Ab21

_2 b21

So in this case a i_ increase in the magnitude o_ bel will cause a 0.128% in-

crease in _ first mode frequency and a 0.249% increase in the second mode

frequency. _°

Comparing these results with those for the _@proximation to the first

derivative_ we do not have a very significant di:'ference in sensitivity. In

fact, neither case would be particularly troublesome from the standpoint of

component error sensitivity. Further calculatio]_s of error sensitivities for

other matrix elements show comparable results.

_his same case, using approximations to the first derivative, was checked

for error sensitivity on an actual analog computer with results in accordance

with the above calculations. Percentage frequen:y shifts were generally less

than half the percentage component change.

As the number of cells N is increased, the lifferences in error sensitivity

between the first derivative and second derivati[e approximations should be-

come more apparent. In any case the sensitivity to component errors will in-

crease with N and large sensitivities should be noticed first in the second

derivative approximation.

As Fisher has pointed out, certain elements in the matrix will show con-

siderably more error sensitivity than others. In general the large terms are

more sensitive to error. For our basic higher-crder approximation

__ I y _ + 2 - Yn+2)_x] n+½ 2--_ n-1 27Yn 7Yn+l
(99)
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we would expect a larger sensitivity to errors _n the coefficients ±27 than

in the coefficients ±i or even the coefficient _4. _he coefficients ±i act as

correction or trimming terms and do not need to be held to the same percentage

accuracy.

The above discussion of error sensitivity _plies to digital computers

when considering roundoff errors. The magnitud_ of the roundoff error is, of
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course, dependent upon the number of digits used in the computations and the

cell number N. It is also dependent upon the differencing scheme used and

the details of the digital program. For the methods used with IBM 704 com-

puter in calculating frequencies for the various cases given in this report,

roundoff errors of the order of 0.013 were first noticed with i/N ratios of

approximately 0.i or less on cantilever beam computations. Because the use

of symmetry effectively halved the number of degrees of freedom, the calcula-

tions for the built-in beam did not suffer appreciably from roundoff errors.

For reasons of roundoff error and the general complexity of computation,

N = 16 seems to be a rough upper limit on the number of cells to be used in

analog or digital computations. This detracts somewhat from the utility of

the h4 method of representing boundary conditions because it is at large N

that this method is particularly advantageous from the standpoint of finite

difference or truncation errors. On the other hand, it accentuates the ad-

vantage of higher-order difference methods in general as compared to the simpler

h 2 methodsj particularly in the computation of the higher frequency modes.
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IX. CONCLUSIONS

The principal conclusions gained from the investigations reported here

are as follows.

1. The use of higher-order differences in the solution of beam-vibration

problems on the analog computer improves accuracy with essentially the

same amount of equipment as would be required for simpler difference

methods. In the digital formulation of the corresponding eigenvalue

problem, a similar improvement in accuracy is obtained with essentially

the same computer effort, as measured by matrix sizes and numbers of

operations. The improved accuracy is obtained by using more inputs

per amplifier in the analog circuit and rLore nonzero elements per matrix

in the digital computations.

21 The principal difficulty in the formulat:[.on of beam-vibration problems

using higher-order differences lies in tile proper representation of

boundary conditions. This difficulty arises from the need for obtain-

ing input data from more stations for ea2h differencing operation to

obtain greater accuracy than in the simpler approximations. As the

boundary is approached, some of these st_tions needed for the basic

higher-order central difference approxim:_tion lie beyond the end of the

beam, and so other approximations or ass zmptions must be used. Three

methods are presented for the representation of built-in or free ends,

namely, (i) the use of one-sided differences of order h 4, (2) the use

of symmetry assumptions at the boundary, and (9) the passive circuit

method.

9.

Each method has its areas of special utility, as seen from the re-

sults of calculations for uniform beams. The h4 method is best suited

to relatively small i/N ratios, corresponding to accuracies of 0.25_ or

better. The symmetry method is most advantageous in obtaining moderate-

ly good accuracies (the order of i_) for all but the highest modes with

a minimum of equipment, particularly fo_ a cell n'_mber N < 9. The pas-

sive circuit method has quite good accuracy in general, and in particu-

lar for the higher modes (large i/N rat:os) where N > 9.

The discussion of errors centered on (i] truncation errors from the

basic central difference approximation _d also from the boundary-

condition representation and (2) compon_:nt and roundoff errors. Error

considerations as well as the ease of r,:presenting boundaries were im-

portant in choosing to approximate the :'irst spatial derivative rather

than the second or higher derivatives al_d also in the use of staggered

staZions in the calculation of successire derivatives.
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The methods proposed in this report are relatively insensitive

to component or roundoff errors for N < 16. Larger values of N are

not recommended because of the general computational complexity and

also the increasing size of component or roundoff errors.

The h4 and symmetry methods are nonphysical in the sense that no system

composed of linear bilateral elements can be found that is represented

exactly by the equations of motion. This is a result of the fact that

the stiffness matrices are not symmetric in these cases. On the other

hand, the h 2 and the passive circuit methods result in physically

realizable systems. The latter two methods have the further advantage

that the resulting modes are orthogonal, i.e., a transformation to

modal coordinates simultaneously diagonalizes the mass and stiffness

matrices.

University of Michigan,

Ann Arbor, Mich., October 1961.
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APPENDIX A

ALTERNATE MATRIX FOEMULA_ ION

The matrix formulation of the difference equations that we have used thus

far involves the solution of Eq. (81) for its ei_;envalues, the matrix K being

obtained after three matrix multiplications. An U assumptions with regard to

boundary conditions or constraints are put into the individual matrices before

the matrix multiplications are performed. An al-,ernate scheme, particularly

adapted to digital computers, enables one to obt_,in the same K matrix without

losing sight of the subsidiary assumptions.

As an example of the alternate method, consider again the problem of the

6-cell, built-in beam using symmetry assumptions at the ends. Equations (145)

to (148) could be obtained from the following eight equations:

Irl[i2727liii f2

_r@--5r = _ i -27 27 - fa

(_)
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, 50 -9lYl _ i 25

Y21 225

_y_ 225j
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24h
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These equations explicitly separate the basic difference equations and the

boundary conditions.
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APPENDIXB

TAPEREDCANTILEVERBEAM

The analysis that hasbeenmadein the mainbcdy of the report hasbeen
concernedwith the lateral vibrations of uniform b_ams. In this appendixwe
will indicate the sort of results to be expected_ken higher-order methodsare
applied to nonuniformbeams.

ANALYTICALSOLUTION

Thecaseof a beamof unit width andwith uniYormmassper unit volumeand
a linearly decreasingdepth hasbeenanalyzedby Siddall and Isakson.II Theoret-
ical eigenvalueswere obtained for the casewhereJhedepth at the free end is
one-fifth that at the built-in end. (SeeFig. 22.] For a beamof unit length,
the linear density is

D
9
6
4

p = 2(i - o.8x) (m)

and the bending stiffness is

El = _(i - 0.Sx)3 (B2)

The cantilever beam is built-in at x = O.

Theoretical frequencies (rad/sec) for this ca3e are

61 = 2.47829

62 : 9.O89O2

83 : 21.2953

FINITE DIFFERENCE FORMULATION

The same tapered beam was studied using the linite difference approach.

In a manner similar to that for the uniform beam, the natural frequencies were
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calculated using various boundary-conditionassumptions.

For a nonuniformbeam,newassumptionsmust be madeconcerningthe method
of lumpingthe massand stiffness. Againweassumeuniform cell size (h=l) and
end the beamat half-integer stations. Thetotal massof eachcell is lumped
at its center. Similarly_ the total effective bendingstiffness of eachcell
(i.e., betweenconsecutivehalf-stations) is lumpedat its center.

Specifically, the masslumpedat the nth station is (see Fig. 22)

mn = /p(x)dx (B3)

n-i
2

Using higher-order differences_ we obtain the acceleration at the nth station

from

l ( 2?Vn_! 27Vn÷! + Vn+__)
2 2 2

The lumped bending stiffness is

(EI) n

n_
2

_ / dx
EI(x)

n_l
2

(BS)

resulting in the bending moment equation

Mn _ (EI) n(@n__ s _ 27@n_A + 27@n÷A _ @n÷_ ) (B6)
24h 2 2 2 2

The slope and shear force equations remain unaltered from the case of a uniform

beam.
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In general, the boundaryconditions are impos:din the samemanneras for
a uniform beam. Anexceptionoccurs in the passiv._circuit casewherethe ef-
fective massm2near the built-in endincludes the reflected value (as seen
from station 2) of the actual mass ml. A similar "eflection of bending stiff-

ness occurs near a free end.

Also, it should be noted that the constraint .:quation

2 I

yl = _y2 - F_y3 (130)

is of order h 4 for the case of a nonuniform beam i_Lstead of order h6 as was the

case for the uniform beam.

RESULTS

Error curves for the tapered beam are shown i_ Figs. 23-26. Comparing

these results with those for the uniform beam, one finds the various methods

retain many of their characteristics in spite of a general reduction of accura-

cy. The h2 method shows good accuracy for the func!amental mode while the higher-

order methods (the symmetry and passive circuit melhods, in particular) have

better accuracy on the higher modes. The h4 methoc suffers the largest loss

of accuracy due the nonuniform mass and stiffness Cistributions.

The general lowering of mode frequencies compared to the uniform beam is

probably due primarily to the mass lumping method _hich results in a slight

positive shift in the center of mass location compared to the continuous beam.

This is because the mass is lumped at the center o_ the cell whereas the actual

center of mass for the cell is located slightly inboard of the center, i.e._

toward the built-in end. Similarly, the complianc_ (inverse stiffness) for a

cell is lumped at the center and is thus somewhat inboard of its compliance

centroid. This also results in a lowering of the r atural frequencies.

D

9
6
4
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TABLE I

ONE-SIDED APPROXIMATIONS OF ORDER h4

A. General Case

_y ~ 563h 4 _5y,
= i[_ 93Yz + 229Y2 - 225y3 + ll_.y4 - 22Y5] +_ _x 5iz_xi A 24h

2 2

___Y ~= i [_ 22y I + 17Y2 + 9Ys - 5Y4 + Y5] 71 h 4 ___5Y

_x_ 24h 1920 _x 5 3

2 2

D

9
6

4

_l___i _ i [_ 22@i + 17@3 + 9@5 - 5@7 + @e]
1 24h _ _ _ _dxl

Bo For YA = 0
2

_y_

3x i_I
2

i
_- -- [3675Y1

840h 1225y2 + 441y 3 - _5Y4 ] + 7 h4 ___SYI
128 _x5 1

2

3x !_3
2

i [- i055Yl + i015Y2 - 65Yz + 5Y4] +
840h

i .h4 _Sy

192o 7x_I__
2

C, For yi = O, @i = 0
2 2

Y_ = _Y_- _ _i__ ____-_Y3 + h5 _5y

2

+ _ _ _y
28t_0 _ _1

2

By[ __ I
_x ;3 225h

2

[- 225y1 + 250y2 - 9Y3] +-_l--h4 85--_yI

240 _x5i!
2
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TABLE I (Continued)

D, For _--_kl=o
_x IA

2

_@I _- i [_ 9181 + 99@s - 9@s + @l]
_xx 11 72h "_ _ "_ 2

7 h4 _5@ I

1920 8x s 11

D

9
6
4
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TABLE II

MODE FREQUENCIES OF A BUILT-IN OR FREE D_IFORM BEAM*

Approxima;ion Method

N Mode Continuous Passive

h2 h4 Symmetry Circuit

- 1.4669 3.8319 13.5659
3 I 22.373

22.045 2).230 25.40_

1.1359 1.8509 _.8639
4 I 22.373

22.627 22.757 23.461

4 2
-17.9619 - 1.5169 1.5279

61.673
50.596 60.738 62.615

D

9
6
4

1.2569 0.7969 1.3459 2.7009

5 i 22.373 22.654 22.551 22.674 22.977

5 2 61.673 - 9.3579 -11.0529 0.0289 3.259_
55.902 54.857 61.690 63.683

-27.8339 -24.6079 - 8.3139 6.9079

5 3 120.90 87.246 91.155 110.85 112.55

1.059_ 0.5909 1.0959 1.6369

6 i 22.373 22.610 22.505 22.618 22.739

5.6o9_ - 3.7559 0.3289 2.6799
6 2 61.673 58.214 59.357 61.875 63.325

-17.8839 -17-4369 - 3-2019 - 0.9359

6 3 120.90 99.281 99.820 117.03 119.77

-34.099_ -23.1319 -14.0009 -13.2749

6 4 199"86 131.71 153.63 171.88 173-33

*The percentages refer to the error in frequency as compared to the continuous

beam.
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TABLE II (Continued)

N Mode Continuous
h 2

Approximation Method

h 4 Symmetry
Passive

Circuit

7

7

7

7

7

0.858% 0.340_ 0.912_ i. O64_
1 22.373

22.565 22.449 22.577 22.611

3.707_ - 0.751} 0.460} 2.006_

2 61.673 59.387 61.210 61.957 62.910

-12.333_ - 9.992_ - 1.472_ 0.711_
3 _o.9o

105.99 108.82 119.12 121.76

4 199.86 -24.307_ -19.494% - 6.915% - 5.424_
151.28 160.90 186.O4 189.02

-38.354_ -23.617_ -18.412_ -18.000_

5 298"56 184.05 228.05 243.59 244.$2

8

8

8

8

8

8

0.697_ 0.192_ 0.764_ 0.729_
i 22.373

22.529 22.416 22.544 22.536

- 2.627_ 0.091_ 0.522_ 1.493_

2 61.673 60.053 61.729 61.995 62.594

- 8.983_ - 4.806_ - 0.695} 1.092}

3 120.90 110.04 115.09 120.06 122.22

4 199.86 -18.063_ -14.140_ - 3.823_ - 2.086_
163.76 171.60 192.22 195.69

-29.163_ -20.117_ -10.480_ - 9.489_

5 298"56 211.49 238.50 267.27 270.23

-41.411_ -24.933_ -21.823_ -21.569_

6 416.99 244.31 313.02 325-99 327.05
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TABLE II (Continued._

N

9

9

Mode

i0

i0

i0

lO

i0

i0

lO

i0

7

Continuous

22.973

61.673

120.90

199.66

298.56

416.99

555.17

22. 379

61.673

120.90

199.66

298.56

6 416.99

"" " d
_:mation Metho ^,_,,_Approx:[mation Me_nu_ Passive

h2 h4 symmetry Circuit

--7.572} 0.10"} 0.525}
22.501 22.99 r 22.519 22.490

- 1.959_ 0.2419 0.597} 1.129_
60.465 61.82_ 62.004 62"369

- 6.892} . 2.02(} _ 0.2819 1"0929

112.64 118.45 120.56 122.22

- 2.272} _ 0.620}
198.62-19.9059 - 9"09]}

172.o7 16z.81 195'52
5.o7 

-22.779} -16"9429 - 6.3919279.48 289 .40
230.57 249.77

-92.907} _20.6659 -19"669_ -12"9969

279.77 550.82 359.99 362"60

-24.5379

-45.707} .26.471_ -24.5049
512.52 408.21 419.13 420.06

0.474} o.o63_ 0.550} 0"564}

22.479 22"387 22.496 22.459

_ 1.5189 0.2i7_ 0.525} 0.866}

60.737 61.607 61,997 62.207

_ 5.96_} - 0,759'{ - 0.0399 0.976}

114.41 119.99 120.86 122.08

.11.o189 _ 5.244'_ . 1.4ol} o.o9o_

177.84 189"96 197.o6 199.92

.18.2149 -12.1651_ - 4.1299 . 2.726}

24 .18 262.24 216.25 29o, 2
7.959 

-26.629} -17.5o61% - 8.947}

305.95 949.99 979"68 389"80

__5.8659 _21.47b_i, _16.44_ -15.9729

956.06 b55.95 469.85 466.50

.45.495} -27.955_ -26.649_ -26"5349

388.68 513.71 525"05 523"67

D

9
6
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TABLE II (Continued)

N Mode Continuous
h 2

Approximation Method

h4 Symmetry
Passive

Circuit

D

9
6

4

ii

ii

ii

ii

Ii

ii

ii

ii

ii

i

2

3

4

5

6

7

8

9

22.373

61.673

12o.9o

199.86

298.56

416.99

555.17

713.o8

89o.73

o.4o2 
22.463

1.213_

60.925

- 4.3>_

I15.66

- 8.936_

182.00

-14.871}

254.16

-21.919_

325.59

-29.812_

389.66

-38:248_

44O.34

-46.918 _

472.82

o.o35} o.478_ o.295_
22.381 22.480 22.439

0.162_ 0.499_ 0.678_

61.773 61.981 62.091

- 0.232 _ 0.116_ 0.844_

120.62 121.04 121.92

- 2.867} - 0.866_ 0.314_

194.13 196.13 200.49

- 8.377_ 2.767_ - 1.440_

273.55 290.30 294.26

-14.185_ - 6.098_ - 4.959_

357.84 391.56 396.31

-18.328 } -Ii.366_ -i0.620_

453.42 492.07 496.21

-22.501_ -18.844_ -i8.499_

552.63 478.71 581.17

-29.311_ -28.398_ -28.317_

629.65 637.78 638.5o
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TABLE II (Continued)

N Mode Continuous
h 2

Approximation Method

h4 Symmetry
Passive

Circuit

12

12

12

12

12

12

12

12

12

12

0.>0_ 0.02_ 0.416_ 0.228_
i 22.373 22.449 22.375 22.466 22.424

- 0.992_ 0.ii_% 0.467_ 0.538_

2 61.673 61.061 61.745 61.961 62.005

- 3.573_ 0.O23_ 0.199_ O.720_

3 120.90 116.58 120.87 121.14 121.77

7.395_ - 1.516_ - 0.520_ 0.430%

4 199.86 185.08 196.83 198.82 200.72

-12.363_ - 5.446_ - 1.906_ - 0.717_

5 298.56 261.65 282.3C 292.87 296.42

-18.322 _ -10.856_ - 4.295_ 3.132_

6 416.99 340.59 371.7_ 399.08 403.93

-25.097_ -15.4_4_ - 8.086_ 7.171_

7 555.17 415.84 469.15 510.28 515.36

-32.4685 -19.i_43 -13.59o} -13.o_i_
8 713.08 481.56 576.7] 616.17 620.23

-40.206_ -23.619_ -2o.91o_ -20.653_
9 890.73 532.60 680.35 704.48 706.77

-48.084_ -30.508_ -29.850_ -29.786_

iO 1088.1 564.93 756.1_ 763.32 763.98
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TABLE II (Continued)

Mode Continuous
h _

Approximation Method

h4 Symmetry
Passive

Circuit

13

13

13

13

13

13

13

13

13

13

13

0.295_ 0.013_ 0.362_ 0.179_

i 22"373 22.439 22.376 22.454 22.413

- 0.8279 0.078_ 0.431_ 0.435_
2 61.673 61.163 61.72Z 61.939 61.941

- 2.994_ 0.041_ 0.248_ 0.604_

3 120.90 117.28 120.95 121.20 121.63

- 6.219_ - 0.791_ 0.285_ 0.460_
4 199.86 187.43 198.28 199.29 200.78

5 298.56 -i0.430_ 3.423_ 1.3309 - 0.301_
267.42 288.34 294.59 297.66

-15.526_ 7.897_ - 3.103_ - 1.990_
6 416.99

352.25 384.06 404.05 408.69

-21.379_ -12.656_ 5.904_ 4.914_

7 555.17 436.48 484.91 522.39 527.89

-27.830_ -16.455_ -i0.014_ 9.278_
8 713.08 514.63 595.74 641.67 646.92

-34.710_ -19.988_ -15.612_ -15.170_
9 890.73 581.56 712.69 751.67 755.61

i0 1088.1 -41.841_ -24.740_ -22.700_ -22.498_
632.83 818.86 841.13 843.26

-49.0549 -31.564_ -31.073_ -31.027_

11 1305.3 665.02 893.32 899.71 900.30
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TABLEII (Continued)

N Mode Continuous
h 2

Approzimation Method

h_ Symmetry
Passive

Circuit

14

14

14

14

14

14

14

14

14

14

14

14

i

2

3

4

5

6

7

8

9

i0

ii

12

22.373

61.673

120.9O

199.86

298.56

416.99

555.17

713.08

890.73

1088.1

1305.3

1542.1

0.255_ 0.(09_ 0.322_

22.430 22._75 22.445

0.700_ 0.052_ 0.397_

61.241 61.r_05 61.918

- 2.548_ o.(,58_ 0.281_

i17.82 120.97 121.24

- 5.3093 0._i0_ - 0.130_

189.25 199.(_4 199.60

- 8.919_ 2.Z24_ - 0.931_

271.93 292._2 295.79

-13.314_ 5._37_ - 2.281_

361.47 399.!_0 407.48

-18.407_ 9.!_36_ - 4.408_

452.98 500.(_i 530.70

-24.0743 -13.7553 - 7.551_

541.41 613.!7 659.38

-30.191_ -17._194_ -ii.844_

621.81 736.1i9 785.23

-36.623_ -20.!I08_ -17.434 _

689.63 860.Iil 898.40

-43.231_ -25.1_37_ -24.263_

741.04 968.(16 988.64

-49.867_ -32.L82_ -32.112_

773.10 i041._! 1046.9

0.147_

22.406

o.355_

61.892

o.521}

12z.53

o.44o_

2oo.76

- o.o6o_

298.38

- 1. 266_

411.71

- 3.412_

536.23

- 6.696_

665.33

-11.249_

79o.53

-17.o85_

9o2.19

-24.107_

990.63

-32.o73_

1047.5

D

9
6

4
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TABLE II (Continued)

Mode Continuous
h 2

Approximation Method

h 4 Symmetry
Passive

Circuit

D

9
6

4

15

15

15

15

15

15

15

15

15

15

15

15

15

1 22.373

2 61.673

3 120.90

4 199.86

5 298.56

6 416.99

7 555.17

8 713.08

9 890.73

lO 1088.1

ii 1305.3

12 1542.1

13 1798.7

0.223%

22.423

- 0.602%
61.302

- 2.200%
118.24

4.578%
190.71

7.714%

275.53

-11.54o%
368.87

-16.001%
466.34

-21.005%
563.30

-26.455%
655.09

-32.249%

737.24

-38.275%
805.74

-44.413%

857.23

-50.564%

889.17

0.000% 0.282% 0.116%

22.373 22.436 22.399

0.034% 0.365% 0.293%

61.694 61.898 61.854

0.058% 0.289% 0.438%

120.97 121.25 121.43

- 0.215% - 0.020% 0.425%

199.43 199.82 200.71

- 1.320% - 0.646% 0.077%

294.62 296.63 298.79

- 3.801% - 1.698% - 0.794%

401.14 409.91 413.68

- 7.536% - 3.347% 2.392¢

513.33 536.59 541.89

-11.526¢ - 5.765% 4.891%

63o.89 671.97 678.2o

-14.961¢ - 9.128% 8.429%
757.47 809.42 815.65

-18.114% -13.556% -13.069%

891.04 940.62 945.89

-21.857% -19.084% -18.800%

1020.0 ±056.2 1059.9

-26.859% -25.621% -25.498%

1127.9 1147.0 1148.9

-33.296% -33-007% -32.979%

1199.8 1205.0 1205.5

I
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TABLE II (Concluded)

16

16

16

16

16

i6

Mode

1

2

16

16

16

i6

16

16

16

16

Continuous

22.373

61.673

120.9O

199.86

298.56

6 _16.99

7 555.17

8 713.o8

9

io

89o. 73

i088.i

ii 13o5.3

12 1542"I

13 1798.7

i_ 2075.1

.......[marion Method
Approx .......... Pas sive

h2 h_ Symmetry Circuit

0.197_ 0.00)9 0"2509 0.098_

22.417 22.375 22.429 22.395

0.52_9 0.025_ 0.3349 0.2_59

61.350 61.687 61.879 61.824

. 1.911_ O.OBt9 0.2899 0"380_

118.59 120.95 121.25 121"36

- 3.9939 . 0.1199 0.050_ 0.3909

191.88 199.64 199.96 200.64

- 6.7369 - 0.8279 . 0.4399 0.1519

278.45 296"09 297.25 299"01

-10.0969 - 2.586_ - 1.2739 _ 0.48_{

37_.89 4o6.2c _11.68 414.97

-14.050_ - 5.515_ - 2.5769 - 1.6909

477.28 524.22 54o.87 545"79

-18.471_ _ 9.2549 . 4.4839 3"612_

581.37 647.09 681.11 687.52

-25.343_ _12.7_1_ 7.1419 _ 6.5829
682.81 777.0_ 827,12 833"88

.28.562_ _15.8179 -10.67i9 _10.082_

777.52 915.9( 971.99 978.59

_34.046_ -18.9h69 -15.1_69 -14.7489

860,86 1058.0 1107,6 1112.8

-39.700_ _22.8C09 -20.5569 "20"3299

929 .88 1190.5 1225.1 1228.6

_45.4389 -27.8(99 -26.825_ -26.725_

981.40 i298.5 1316.2 1518.0

-51.173_ -34.018_ -33.7869 -33.7629

1013 .2 1369.2 1574.0 1374.5

D

9
6

4
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TABLE III

MODE FREQUENCIES OF A UNIFORM CANTILEVER BEAM

N Mode Continuous

Approximation Method

h2 h4 Symmetry
Passive

Circuit

D

9
6

4

3.5160 13.766%
4.0000

3.851%
3.6514

4.209%

3.6640

3.5160 6.030%
3.728

22.o34 - 1.389%
21.728

1.812%
3.5797

3.980%

22.911

1.257%
3.5602

10.674%

24.386

4

4

4

I 3.516o 3.356%
3.634

2 22.034 1.o35%
22.262

3 61.697 -17.941%
50.628

1.135%
3.5559

1.938%
22.461

1.520%

60.759

0.549%

3.5353

5.328%

23.208

1.483%
62.612

2

3.5160 2.142% 0.060%
3.5913 3.5181

22.034 1.153% 0.880%
22.288 22.228

61.697 - 9.333% -11.665%
55.939 54.500

120,90 -27.841% -23.956%
87.242 91.937

0.774%

3.5432

1.4o2%
22.343

0.023%

61.711

0.284%

3.5260

2.927%

22.679

3.232%

63.691
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TABLE III (Continued)

6

6

6

6

7

Mode

1

2

Continuous

3.516o

22.034

61.697

120,90

199.86

3.5160

22.034

61.697

k 120,90

5 199"86

6 298.56

App___r9ximat ion Method

h2 h,_ symmetry

i._81_ o.(,289 0.5559

3.5681 3,',17o 3.5355

0,9769 0.6139 1,1359

22.2_9 22. L69 22.284

5- 5891[ - 3. 8279 O. 3249

58.249 59. :)36 61,897

-17.8859 -17.: 4_ . 3.2ozI_
99.217 99._11 i17.03

-3h.0999 -23. i[,019 -14,0009

131.71 153.69 17]-.88

I.0869 o.,)17_ o.klS_

3.55_2 3,';166 3,5307

o.79_ o.2459 o.9_49

22.209 22. _0 22.2_2

- 3.6919 - O, (72'_ 0.h599

59.420 61. 221 61.980

-12. 333_' - 9. )929 - 1.472_'

1o5.99 ]_08.:_2 i19.12

-24.3079 -19. _79_ - 6"915_

Z51.28 ].60. )3 Z86. O_

_38.35&_ -23. 520_, _18.412_

18h. 05 228. )4 243.59

passive

Circuit

o.].68_

3.52]-9

]-.71o_

22,424

2.663_

63.340

- 0.9359

1]-9.77

-].3.2749

].73.33

0,1029

3.5196

L1_8_
22.287

]..997_

62.929

o,7].i_

]_21.76

- 5._2_9
189.02

__&.ooo_

244.82

D

9
6
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TABLE III (Continued)

N Mode Continuous
h 2

Approximation Method

h 4 Symmetry
Passive

Circuit

8

8

8

8

8

8

8

0.828% 0.009% 0.319% 0.063%

i 3.5160 3.5451 3.5163 3.5272 3.5182

0.644% 0.191% 0.790% 0.785%

2 22.034 22.176 22.076 22.208 22.207

- 2.614_ 0.086% 0.520% 1.488%

3 61.697 60.084 61.750 62.018 62.615

- 8.991% - 4.797% 0.695% 1.092¢

4 120.90 110.03 115.10 120.06 122.22

-18.063% -14.140% - 3.823_ - 2.086%

5 199.86 163.76 171.60 192.22 195.69

-29.163% -20.117% -10.480% 9.489%

6 298.56 211.49 238.50 267.27 270.23

-41.411% -24.931% -21.823_ -21.569%

7 416.99 244.31 313.03 325.99 327.05

9

9

9

9

9

9

9

9

0.648% 0.006% 0.236%

1 3.5160 3.5388 3.5162 3.5243

0.531% 0.104% 0.667%

2 22.034 22.151 22.057 22.181

- 1.948 0.242% 0.534%

3 61.697 60.495 61.846 62.028

- 6.832% - 2.026% 0.281%
4 120.90 112.64 118.45 120.56

-13.905% - 9.031¢ - 2.272%
5 199.86 172.07 181.81 195.32

-22.773% -16.342% - 6.391%

6 298.56 230.57 249.77 279.48

-32.907% -20.665% -13.669%

7 416.99 279.77 330.82 359.99

-43.707% -26.471% -24.504%

555.17 312.52 408.21 419.13

o.o43¢
3.5175

o.558%
22.157

1.13o¢
62.394

1.o92%
122.22

- 0.620¢

198.62

- 5.o%¢
283.41

-12.996%

362.80

-24.338%
420.05
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TABLE III (Continued)

N Mode Continuous

iO

i0

lO

iO

I0

i0

i0

i0

i0

6

7

3.5160

22.034

61.697

120.90

199.86

298.56

h16.99

555.17

7z3.o8

Appro> imation Method. Passive

h2 h4 Symmetry Circuit

o.5o9_ 0.0c3_ o.1_8_ 0.028_
3.5339 3"5161 3"5212 3"5170

O. bhO¢ 0.0(8_ 0.567¢ 0.4095

22.131 22.0h9 22.159 22.124

- 1.5095 0.2175 0.5255 0.864_

60.766 61.831 62.021 62.230

- 5.368_ - 0.7535 - 0.033_ 0.976_

llk._l 119.95 120.86 122.o8

_11.018_ - 5.24_ - 1._015 0.030_

177.84 189.3_ 197.06 199"92

_18.2145 -12.165_ - 4.1235 - 2.7265

244.18 262.24 286.25 290. k2

-26.6275 -17"5t6_ - 8.947_ 7.959_

305.96 3h3"99 379.68 383"80

_35.865_ -21.473_ -16.447_ "15"9725

356.06 _35.93 463"86 466.50

__5.h91_ -27.95_ -26.649_ -26"534_

388.69 513.71 523"05 523"87

D

9
6
4
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TABLE III (Concluded)

N Mode Continuous
h 2

App roximat i on Met hod

h 4 Symmetry
Passive

Circuit

ii

ii

ii

ii

ii

ii

ii

ii

ii

ii

i 3.5160

2 22.034

3 61.697

4 12o. 90

5 199.86

6 298.56

7 416.99

8 555.17

9 713.08

i0 890.73

0.395¢

3.5299

O.368%

22.115

1.204%

60.954

4.334%
115.66

8.936%
182.00

-14.87i%

254.i6

-21.919%

325.59

-29.811%

389.67

-38.250%

440.33

-46.918%

472.82

o.oo3% o.o54¢
3.5161 3.5179

o.o5o% 0.486%

22.045 22.141

0.162% 0.499%

61.797 62.005

- 0.232% 0.116¢

120.62 i21.04

- 2.867% - 0.866%

194.13 198.13

- 8.377% - 2.767%

273.55 290.30

-14.185% - 6.096%
357.84 391.57

-18.328% -11.366%

453.42 492.07

-22.501% -18.844¢

552.63 578.71

-29.311% -28.398%

629.65 637.78

0.023¢

3.5168

0.309¢

22. 102

0.6769

62.114

0.835¢
121,91

o.315¢
200.49

- 1.444%
294.25

- 4.959%

396.31

-i0.618%

496.22

-18.4979

581.18

-28.3169

638.5i
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--4-

I

Oo Mechanical

difference

h_

Im-ph ] I I !

representation of

approximation to

the s_mple finite

o uniform beam.

h
L= E--I"

8n-t/2

V

Yn

Tic

en÷l/2

k.
=ph

Yn ÷I

2

b. Electrical

difference

representation of the

approximation to a

simple

uniform

finite

beam.

Fig, 3.
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b. Odd symmetry about center (anti_._ymmetric mode).
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R I r,.,. IMI R R

V312

V 2

t:J
!
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b. Analog computer circuit for a tour-cell cantilever

beam using differences of order he and first-

order equations. The built-in end occurs at

station I/2 and the free end at station 9/2.

Fig. 5.
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Flq. 6. Analog computer circuit for o six-cell beam built-in at both

ends. Differences of order h2 ore used. Only the left half of the
beam is represented.
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o. Even symmetry

U
I

',0
O_
4"

b. Odd symmetry

Fig. 7. Analog computer circuit for o six-cell be(_m that is pinned at both

ends, using differences of order h2, in (a.) the left half is represented,

while in (b.)only the left quarter is represented, due to symmetry.
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NASA-Langley, 1961




