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SUMMARY

Simple and higher-order difference methods for the solution for the natural
frequencies of vibration of a uniform beam are compared. The same basic higher-
order method is used throughout for the interior cells, but three different
methods of boundary-condition representation are given.

Tables and graphs of the error in mode freyuencies, as compared with a
continuous beam, are given for the various methods as a function of the number
of cells. It is concluded that higher-order methods improve accuracy for a
given number of cells, with essentially no change in the quantity of com-
puting equipment required.
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I. INTRODUCTION

One of the most commonly encountered problems; of structural dynamics is
that of the lateral vibratlions of beams. With th: advent on a large scale of
analoy, and digital computers of greatly improved speed and computational ef-
ficiency, it is worthwhile to take another look a: the methods available for
performing these computations. This report is principally concerned with im-

provements in analog computer methods of analysis of the beam-vibration prob-

lem. In particular, it is concerned with methods applicable to the electronic
differential analyzer. Nevertheless, it will be seen that the matrix formula-
tion of the problem and most of the results are d.rectly applicable to digital
computation as well.

Until guite recently, all attempts to use anilog computers in the solu-
tion of partial differential equations by difference technigues were re-
stricted to simple methods with accuracies of second order in the cell size
at best. In 1950, Fishert suggested the use of hlgher-order differences in
the solution of these problems on the analog compiter and indicated some of
the advantages to be expected. However, he was n>t concerned in his examples
with the beam eguation and did not study the prob.em of boundary-condition
representation using higher-order methods.

This report considers in detail the adequate representation of boundary
conditions when higher-order methods are used, anl presents the results of
rather extensive computations which enable one to obtain a feel for advantages
and disadvantages of each method. The analysis i1 the main body of the re-
port is concerned with uniform beams. The mode-frequency errors for a tapered
cantilever beam are considered in Appendix B and omparisons are made with
the continuocus beam.

No analysis of mode-shape errors has been in:luded. However, spot checks

have shown these errors to be comparable in magniude with the freuyuency errors.

The author wishes to acknowledge the contribitions and helpful sugges-
tions of R. M. Howe of the Department of Aeronaut.cal and Astronautical Engi-
neering, particularly with respect to the section on errors. Thanks are also
due C. K. Shah, who did most of the numerical comsutation, and J. W. Thatcher,
who aided in the digital computer programming.
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IT. SYMBOLS

mode-amplitude matrix
constant coefficients

-(T]t K]

difference matrices

an element of matrix B
constant coefficients
capacitance, constraint matrix
constants

difference matrix

Young's modulus

constraint force

lateral force pecr unit length
constant

constant

cell size

moment of inertia of cross section, unit matrix

mode number

. -1
system matrix [m] [k ]
stiffness matrix

bending stiffness of a cell

irductance, total length of beam



bending moment

mass, mass matrix

total number of cells

station designation, number of degrees of freedom
resistance

S = 0 is the characteristic equation

—[K][B]_l. Also the time-dependent factor in the beam deflection
time

shear force

position along the beam

deflection amplitude

lateral deflection

eigenvalue for a continuous beam of unit .ength
a small perturbation of the designated quantity
frequency error

dimensionless lateral deflection

the square of a mode frequency

beam slope

eigenvalue for beam of length N

dimensionless position along beam

mass per unit length

dimensionless time

J

oo g
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eigenvalue for difference beam of unit length

indices referring to row and column, respectively

reference value

transpose of the designated matrix

computed in the modal (y) coordinate system

approximately equal to

amplitude of a sinusoidally varying quantity, determinant of a matrix
row matrix, or usual parenthesis notation

rectangular matrix, or usual brackets notation

column matrix, or usual braces notation



IIT. CONTINUOUS BE:MS

A. THE BEAM EQUATION

We will restrict ourselves to the study of the lateral vibrations of a
thin beam where linearity is assumed. The partial differential equaticn des-
cribing the motion is

> Fy Ry
= BI =) + 0 =L = fx,t) 1
ox2 %2 P ot2 ’ (1)
where
X = position along beam
¥ = lateral deflection
t = time
ET = Dbending stiffness
p = mass per unit length
f = lateral force per unit length

It can be seen that Egq. (1) is of fourth orler in x and second order in
t. For our purposes it is often convenient to w-ite four equations of first
order in Xx.

= _a_y 2
°t X (@)
M = 51 9 (3)
ox
oM
Vv = — 4
™ ()
Fy _ oV ;
p -at_g = - —;'*' f(x;") (5)
where
6 = slope of beam
M = bending moments

V = shear force

oo g
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This set of partial differential eguations is equivalent to Ey. (1). We will
see that the analog computer approach to the problem is based upon this latter
set of eyuations rather than the original fourth-order eguation.

B. SOLUTIONS OF THE BEAM EQUATION

1. General Solution.—In general, the parameters p and EI are functions

of x. Initially, however, we will assume that each is constant. Furthermore,
we will assume that units are chosen such that the coefficients are unity.

Our principal interest is in the solution of the homogeneous equation, so let
us set f(x,t) = 0. Then Eg. (1) becomes

Hy , By
3xt  ot2

0 (6)

It may be seen that essentially the same equation can be obtained by trans-
forming Eq. (1) to dimensionless form and again setting f(x,t) = 0. Let

= Y
¢ L
e = =
L
T = .t__ EI
2%¥p

where L is the length of the beam. Then

JE4 o2

= 0 (7)

Equation (6) can be solved by the method of separation of variables.2?”
The solution is of the form
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=
M| = -2C15€-"/EX+§§£‘62—X5"+"> (22)

3
2 2.3 4 3.7 4.8
v| = - 20182<1 + B;f - Bix + p;f JBx ) (23)

3. The Free-Free Beam.—For the case of a free-free beam, the boundary
conditions are

M(O0) = M(1) = © (24)

v(0)

I
=
N
[
]
O
—
N
N

Substituting into Eg. (9), we obtain

Cy+Cs = O (26)
Co +Cy = O (27)
ésh JB - cos JE)cl + Ginh'\/g - sin x/E)ce = 0 (28)
éinh\/E + sin \/écl + éosh\/E - cos ~/f_3>cg = 0 (29)
giving, as before,
Co _ cos B - cosh‘/E (50)

C1 sinh V8 - sin /B
The eigenvalue equation is the same as for the built-in case, namely,

1l - cos Vﬁg cosh ng = 0 (31)

= O\\O Y
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The value B = O has shysical significance in this case but since the mode in-
volves no elastic deformation, it is omitted. The remaining eigenvalues are
identical with those for the built-in case.

The amplitude of the motion is

4.8
Y(x) = 2C.(1 + Eiéi + ng— + ...) + 2Cs (‘JE X + 5
4! !

giving the approximate amplitudes

5 2
9
Y(x) = 2clé-~/Ex+f32X4-52X5+ ;XB_BzX +> (53)
’ 51 ! :

7
3 7 8
lo| = 201\/E<1+B§< BiX4+BjX -5‘;"‘ +> (34)

z
M| = 2C15<%§$ - Bffs + 52?6 - ij7 + ..E> (35)
3 25 ! e
V| 2c152<~/—x-§%2+5:—’f-5—6’f—+-> (26)

If we compare the solution for the free-free beam with that for a beam
built-in at both ends, we note some important similarities. We have seen that
the nonzero eigenvalues are identical. Beyond that, the roles of the deflec-
tion y and the bending moment M are interchanged in the two cases as may be
seen by comparing Egs. (20) and (35) and also Egs. (22) and (33). Similarly,
the roles of the slope © and the shear force V are interchanged. This sim-
ilarity will hold even for the finite difference solution which will be ob-
tained later. Therefore it will not be necessary to carry out separate calcu-
lations for built-in and free-free beams.

L. The Cantilever Beam.—The boundary conditions in this case are

f
OO OO0

37
38
39
40

NN S
(NN

Applying these boundary conditions to the general solution given by Eg. (9),
we obtain

(41)

I
o

Cl+03

(42)

1}
o

Cza + Cq



cos VB + cosh \/_B>Cl + (sin VB + sith \/E)ﬁz

éinh \/E - sin «/E)Cl + [cos \/E + couh \/§>32

0 (45)

0 (4k)

From Eqs. (43) and (44} we obtain the eigen'ralue equation

1+ cos'\/gcosh\/E = 0
and also

Co __cos g + cosh\/-é

Ca sin VB + sinh VB

the ratio being approximately -1 for all mcdes higher than the first.

The first five eigenvalues are

B1 = 3.516015
B, = 22.05449
By = 61.69721
B, = 120.9019
Bs = 19948595

Note that, except for i = 1, the value of B; in this case in approximately

equal to Bfj-; for the bullt-in or free-free case.

The amplitudes are given by the equations

ot 6L 101 C1\ 3. 7!

3 7 11
Y(x) = -2C3 ﬁz_+ B%x° O + oeee ¥ -C-E-’<32}3 + B + le}ﬁl + >]
(&7)

o

= oNnWe g



=3 2
o] = -EClJ{_BE—éx+-@E—Xi+EZ-}—{-9-+ ...+9-2—€—xi+—53£+——-ﬁsxlo+ )
5% 9: Ci\: 6! 10!
(48)
= 8
M| = -2C.B|1 + gt + 'S + ..o+ 2 VB x4 ot Sl [Eabisa coo
L 8: C1 5. :
(49)
g a2 7
6 V] = -2C.p2 xS, BT, L 4 Caf1 - BB B (50)
b 5! 7 Cy 21 8

Each of these expressions contains the same powers of X as was obtained for
the corresponding built-in case in Egs. (20) to (23).

5. The Pinned Beam.—The boundary conditions for a pinned beam are

1l
(@]
—
\N
=
~

y(0) = y(1)

i
o
—
\n
N
~—

M(0) M(1)
Applying these conditions to the solution given in Eq. (9), we obtain
Cp = C3 = C4 = OC (53)
and therefore
Y(x) = Cs sinJJE x (54)

where the eigenvalues are

Bi = i%n® (1 = 1, 2, 3, cee) (55)
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The power series form of the solution 1is

2 3 2 s £
Y(x) = Ca <?_ O i S - S o S ..?)
3 51 Tt

Also

lo| = cavB(1 - B2 . BBX2 _B%xS
21 L €!

2s B
CgB—JEX%——-—-aZX -.B_X,_+ ..>
3 5.

c2ﬁ§<1 ¢ B2t >
21kt

||

Vi

(56)

(57)

(58)

(59)

The eigenvalues in this case are not close tc¢ those calculated in the

previous cases.

In fact, for the higher modes (lsrge i), the eigenvalues tend

toward positions midway between those for the built-in, free-free, or cant-

ilever beams.

oo g
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IV. DIFFERENCES OF ORDER h2

Previously we have obtained solutions for the partial differential equa-
tions describing a continuous uniform beam. Unfortunately, the analog com-
puter cannot solve partial differential equations directly but must solve the
set of ordinary differential equations which are obtained by finite difference
approximations to the spatial derivative. Thus we will obtain solution ampli-
tudes at a discrete set of points rather than continuously as a function of x.
At the given points, however, the finite difference solution should closely
approximate the solution for the continuous beam.

A. FINITE DIFFERENCE EQUATIONS

An analog computer approach to the beam-vibration problem uﬁing finite
difference equations of order h® has been given by Howe and Howe and others.s’
The procedure in each case is based essentially upon Eg. (60).

Sy

3% S T n T e (60)

n+s h 2k 0x3|p4d

The interval between stations is designated by h. Subscripts refer to the sta-
tion at which y (or one of its derivatives) is calculated. The last term is
the first error term and is not included in the computer mechanization. It is
given to provide an estimate of the accuracy of the approximation. Equation
(60) can be derived by writing the Taylor expansions about station n+s for y,
and y,,, and solving for 5% after eliminating y, 1.
n+s

Using the approximation of Eq. (60) and again assuming that EI and p are
unity, the beam equations (2), (3), (4), and (5) can be written in difference
form:

-¥n ¥ ¥n+1

N (61)
2
-o__1 + 6 .1
M, = Az nts (62)
'h

-M,, + M

\2 = ——-——n n+i (65)
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V _é - V +-;'—
¥, = —=2——2 (64)
h

Note that displacements and bending moments are calculated at integer
stations whereas the slopes and shear forces are calculated at half-integer
stations. If one calculates all quantities only at integer stations, the re-
sult is to double the effective cell length and thereby to quadruple the first
error term. Therefore we will use "staggered” stations when finite difference
approximations to first derivatives are used.

The analog computer circult representing a Iiypical internal cell is
shown in Fig. 1. It requires five amplifiers pe- cell if one reverses signs
at adjacent cells.

Another approach to the problem is to appro«imate the second spatial
derivative rather than the first derivative. In this case the finite dif-
ference approximation is

-2 + 2
32 vy Yn-1 Yn * ¥Yn+1 _nZ %y (65)
3%2 n h2 12 3x*|n

and the corresponding beam equations solved on tie computer are

M, = Yn-1 - EZn * Yn+1 (66)
h

. “Mp-y +2M, - M
Yy = (67)
h

The analog computer circuit for this case r:quires only 3 amplifiers per
cell and is shown in Fig. 2. This circuit is subsject to exactly the same
finite difference errors as the 5-amplifier circiit and, in fact, can be ob-
tained as a direct reduction of that circuit.

B. PHYSICAL INTERPRETATION

There are two ways in which one can give physical meaning to finite dif-
ference approximations to the beam equations.

+ O\ I
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The first method is to consider a finite difference expression as an
approximation to a spatial derivative in the continuous beam_at a given point.
For example, the right-hand side of Eq. (64) approximates - ai o2 vhich, in
accordance with Egq. (5) for a continuous beam, is proportional to the accelera-
tion ¥y, of a local differential element.

The second method is to think of the set of finite difference equations
as representing exactly a lumped physical system whose response approximates
that of the continuous beam. The calculated values of accelerations, shear
forces, etc., at the various stations have their real counterparts in the
lumped physical system. This approach is helpful in gaining physical insight
into the meaning of the eguations, particularly for simple differences. Two
lumped physical representations of this finite difference approximation to
the beam equations are shown in Fig. 3.

In Fig. 3a the beam is approximated by a series of massless levers con-
nected by pin joints. At each joint a spring produces a moment (corresponding
to the bending moment) which is proportional to the difference in slope angle
@ of the adjacent levers. The mass of the beam is Jumped into point masses
at the joints. The deflection y is measured at the Jjoints while the slope ©
is measured at the midpoint of each lever.

Figure 3%b shows an electrical circult analog of the lumped mechanical
system of Fig. 3a. It also is described by finite difference Egs. (61) to
(64). The displacement velocities are represented by voltages and the shear
forces and bending moments are represented by currents. The lumped bending
stiffnesses are represented by inductors, while the lumped masses are repre-
sented by capacitors. The transformers, each of turns ratio 1 to h, perform
the coordinate transformations relating slopes to deflections, and can be
considered as the analog of the massless levers.

C. BOUNDARY CONDITIONS

We have previously given the equations stating the boundary conditions
on a continuous beam for the various cases under consideration. We must now
write corresponding eguations for the finite difference beam. First, however,
we must decide whether to end the beam at a point where lateral deflection
and bending moment are computed (the "integer" stations), or at a point where
the slope and shear force are computed (the "half-integer” stations).

Experience has shown7 that higher accuracy can be obtained for a given
amount of computation (or degrees of freedom) if the end occurs at a half-
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integer station for built-in or free ends. For the pinned case it is best to
end the beam at an integer station.

1. Built-TIn End.-—Previously we have seen that the displacement y and
slope © are zero at a built-in end of a beam. Cuppose, for example, that the

beam ends at station n+%. We must approximate the deflection at a half-

integer station where it is not usually defined. Using the Taylor expansion
approach and keeping only the first error term, we find that

2y

=

= Lfy 4 B2
In+i > (yn Yn+1 )

O/ 10/

-+

V]

Therefore, since Yn+d and Gn+% are zero, we see from Egs. (61) and (68) that
Yn = Vg4, = O (69)

implying that there is no lateral displacement at the integer station adjacent
to a built-in end.

2. Free End.—At a free end we find that tae bending moment M and shear

force V are zero. Using reasoning similar to that of the previous case, we

find that for a beam ending at staticn n+%

My = My =00 (70)

5. Pinned End.—For a pinned end at statioa n the boundary conditions
are guite straightforward, namely,

Yo = O (71)

My = 0 (12)

In case the pinned end occurs at station n+i, the boundary conditions
are

v

+ OO g
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In T Ine (73)

Mp = =Mpyq (7%)

4. The Use of Symmetry.—For vibration problems of a uniform beam where
the same boundary condition applies at each end, cne can make use of symmetry
to reduce the required amount of computation. All the natural modes can be
classified according to whether the deflection curve has even or odd symmetry
about the midpoint of the beam. Consider, for example, a beam that is built-
in at both ends. If one arranges the modes in order of increasing frequency,
then modes 1, 3%, 5, etc., will have mode shapes with even symmetry about the
midpoint, whereas modes 2, &4, 6, etc., will exhibit odd symmetry about the
midpoint. (See Fig. 4.) In either event, however, one need analyze only one-
half of the beam since the motion of the other half can be deduced from sym-
metry.

For the case of even symmetry of the deflection curve, the bending mo-
ment curve will also show even symmetry, whereas the slope and shear force
curves will have odd symmetry. Conversely, for odd symmetry in y and M,there
will be even symmetry in © and V.

The above symmetry assumptions are exact and therefore the same fre-
quencies and mode shapes result as for the case where the equations are writ-
ten for the complete beam.

D. ANALOG COMPUTER CIRCUITS

1. Cantilever Beam.—The analog computer circuit for the cantilever beam
is useful in illustrating built-in and free end conditions. Two circuits are
shown in Fig. 5. The first circuit requires 3 amplifiers per cell, the sec-
ond, 5 amplifiers per cell. These are nominal values, however, and amplifiers
can be saved in representing the end cells because of the boundary conditions.
Thus it can be seen that the actual numbers of amplifiers required to repre-
sent a four-cell cantilever beam are 9 and 15, respectively. Cells can be
added by adding standard circuits such as those in Fig. 1l or Fig. 2, repre-
senting interior cells.

2, Built-In Beam.—The computer circuits for a six-cell beam that is
built-in at both ends are shown in Fig. 6. Note that only one-half of the
beam is actually represented on the computer; the motion of the other half is
inferred from symmetry. Circuits are shown for even or odd symmetry about the
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center of the span. In each case the center occirs at a half-integer station.
Circuits for the case where the center occurs at an integer station could
have been derived by a similar process. This situation would arise for a
built-in beam with an odd number of cells, assuming, of course, that the ends
occur at half-integer stations.

5. Pinned Beam.—The computer circults representing a six-cell beam
with both ends pinned are shown in Fig. 7. The circuit for the case of odd
symmetry about the center, Fig. T(b), is particularly simple because of the
additional symmetry about the quarter points alorg the span.

The circuits to be used in the higher-order methods that we consider are
guite similar in general form to those of Figs. t(b), 6, and 7. However,
most amplifiers will have four rather than two irputs.

E. MATRIX FORMULATION OF THE DIFFERENCE EQUATIOMS
In the analysis of specific cases of finite difference beams, it is con-
venient to write the equations in matrix form. 1t is particularly important

to use this formulation if digital computations are to be performed.

In this report the beam equations are, in general, written as four first-
order difference equations. Using matrix notaticn, they are as follows:

(e} = [Bi] (v} (15)
M} = [B2] (e} (76)
(v} = [Bs] (M) (17)
(¥} = [Ba] (V) (78)
or
(¥} + [K] (¥} = © (79)
where

L O Ne R )
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Although the B matrices are rectangular in general, the K matrix must be square.
The natural frequencies are obtained from the determinantal equation

Kk - 2®1] = © (81)

where A is the natural frequency in rad/sec and I is the unit matrix. For the
case where the K matrix is n x n, there will be n values of »® (roots) cor-
responding to the n natural frequencies of the system.

As an example, consider the case of a six-cell beam that is built-in at

both ends. We will write the equations for modes with even symmetry at the
center. As before, EI and p are assumed to be unity. The matrix equations

are
©3 e Yz
2= o (82)
S5 = 1 Ja

2

M, 1 O] les

Mep = 211 1 g (83)
Ms 0 -1 P

.

Va . -1 1 of (M

12y = ¢ Mo (84)
Vs, 0 -1 1} (M

\ 2

g 1 -1 Vg

; = 4 2 (85)
.. h V.

y'3 0 l =

- 2

Assuming a unit cell size (h = 1) and performing the matrix multiplica-
tions, we obtain
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According to Eq. (81), the roots are obtained from

(6-22) -3

]
O
@

=

-3 (2-23)

giving the characteristic equation

A o= 8% + 3

|
O

(88)

The roots are

g,z 0.394L49, T.60555

or

0.628052, 2.75732

Av,2

These are the actual frequencies for the moies with even symmetry and
h = 1. For our purposes, however, it is conveni:nt to assume that the total
length of the beam is unity. This implies that 1 = l/N, where N is the number
of cells, and results in multiplying each frequeicy by N2. Denoting this
normalized freguency by w, we obtain

22.6099

(=
v
I

99.2815

¥

OO I
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The same basic matrix formulation will be used in the computations through-
out the report. The use of higher-order differences will add to the numerical
complexity but will not change the form of the eguations.

F. RESULTS

The results of computations of the normalized frequency parameter w using
differences of order h® are summarized in Tables II and III. The computations
are for built-in (or free-free) and cantilever beams for various numbers of
cells. The finite difference error is plotted against the cell number N in
Figs. 1% and 14. These results are essentially the same as those given pre-
viously by Howe and Howe“ and Michie,7 except that the higher mode fre-
quencies are also included.

G. ORTHOGONALITY

We have seen previously that the equations of motion can be put in the
form

(¥} + Kl {y} = O (719)

We can also write

m] (¥} + k] (y) = O (89)

where m and k are the mass and stiffness matrices, respectively. Comparing
Eas. (79) and (89), we see that

K] = [m] [x] (90)

Now, for the case of the first-order difference equations under considera-
tion here, both the m and k matrices are symmetric. 1In fact, the m matrix is
diagonal. It is always possible in these linear bilateral undamped systems
(whose kinetic and potential energies can be written as positive-definite
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quadratic forms) to find a coordinate transformati n which will simultane-
ously diagonalize the m and k matrices. 1In this cise the natural modes of the
system are said to be orthogonal.

The orthogonality of the modes is not surprising since we have already
seen (Fig. 3) that these equations represent exactly a lumped mechanical or
electrical system composed of linear bilateral elements. However, when we
discuss higher-order difference methods, we will find that the k matrix is
not always symmetric, in which case the modes are ot orthogonal.

el \ol w]
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- V. DIFFERENCES OF ORDER h#

We have given a brief review of the calculation of eigenvalues for a uni-
form beam, using simple finite difference approximations to the spatial deriv-
atives. 1In this way we have obtained some physical feeling for the main fea-
tures of this method and perhaps some insight into the more promising approaches
to the use of higher-order differences. In the remainder of the report we
will consider several higher-order methods and indicate some of the advantages
as well as problems in their use.

A. CHOICE OF THE BASIC DIFFERENCE EQUATION

Even before one gets into the questions concerning the representation of
boundary conditions, there are a number of possible choices one can make con-
cerning the basic higher-order difference equation to be used. First is the
question whether the approximation ought to be with respect to the first, sec-
ond, or possibly the fourth spatial derivative. We can immediately reject
the latter possibility on the grounds that it is quite sensitive to component
errors in the analog ~ombuter circuit.8:9 Also there is the disadvantage that
other variables of interest such as 6, M, and V are not directly available
even though three amplifiers are reguired per cell.

The choice between approximating two second-order equations or four first-
order equations is more difficult. Let us consider each possibility in turn.

The most obvious approximation of order h* for the second derivative with
respect to x is given by the central difference equation

- “Yn-z * 16yn_y - 30yy + 16¥n4; - Ynee . n* %

. o 9 3x° (91)

n

Using this approximation, the equations set up on the computer are of the form

M, = 1;;2 (yh-z + 16y, - 30y, + 16ype, - yn+%> (92)
. 1
¥, = oF (Mn_z - 16Mn_l + 30M, - 16Mn+l + Mn+9 (93)
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where unity values are assumed for EI and p. The analog computer circuit re- v
quires three amplifiers per cell and up to five iiputs per amplifier. (See
Fig. 8.)

9y,

X

Consider now some of the higher-order approximations to
central difference approximation of order h% is

The usual

dy ~ 1 o _ h* o5y
'a—x a - E (yn_z dyn_l + 8yn+l an+2> + -5_0- B—Q(Ein (9“)
D
The resulting beam equations are 2
L
1
on = 10 <§n-2 - Byply + Oy - yn+;) (95)
1
My, = E @n_z - 80y, + 86,y - @n+2> (96)
1 -
Vn = E @1—2 - 8Mr1-1 * BMr1+1_ - M‘n+2> (97)
| ‘ )
A (Vn_z + 8V, L -8V Vn+2) (98)

where EI and p are assumed to be of unit value. The analog computer circuit
requires nine amplifiers per cell in this case because each of the four output
variables must be generated with both signs. (Ea:h cell would regquire 2
integrators, .3 summers, and 4 inverters.)

Another possibility is to try a higher-order approximation using stag-
gered stations, i.e., calculate the derivatives a: the midpoints between sta-
tions where the function is defined. A central difference approximation of
this sort is the following:

3y x 1 o7y, + 27 - 4+ bt By (99)
A% n+§ 2hh <%n—1 In Yo+ Tn+z 640 x5 n+%
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This approximation is seen tc have a smaller error term than that for
Eq. (94). Purthermore, it will be seen that less analog computer eguipment
is required to implement it.

Using the approximation of Eg. (99), the beam equations are

- 1 .
gn+§ PR (%n—l - 2Ty + 21Yney - Yn+%> (100)
_ . ]
T TN L 9n+g> (101)

Vn+1 = 2 (%n-l -2y + 2Ty, - Mn+£) (102)

= 24h
e _ 1 [ )
oo T oo Vn-% " 27Vn-é 27Vn% ¥ Vn+% (103)

where, as before, unit values are assumed for EI and p. Note that y and M are
calculated at integer stations whereas © and V are calculated at half-integer
stations.

The analog computer circuit representation of Egs. (100) to (105) re-
quires 5 amplifiers per cell with up to & inputs per amplifier. The circuit
for a typical cell is shown in Fig. 9. The signs of amplifier outputs alter-
nate on successive cells.

In spite of the fact that the circuit of Fig. 9 requires 5 amplifiers per
cell compared to 3 amplifiers per cell for the circuit of Fig. 8, the computa-
tions in this report are based on the beam equations as given by Egs. (100)
to (10%). The reasons for this choice are (1) the greater accuracy of the
basic difference equation, (2) greater ease and flexibility in applying bound-
ary conditions and forcing functions, and (%) less sensitivity to computer
component errors.

B. BOUNDARY CONDITIONS AND RESULTS

Earlier we saw that the representation of boundary conditlons was relatively

straightforward for the case of difference equations of order h2. When one
uses higher-order differences, the problem of applying btoundary conditions be-
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comes more complex. Many approaches are possible and the accuracy of the re-
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(03] 4800 O 0 o ] [y
2

6s -6025 6066 -225 0 ya
2

0,9 = —1 225 6075 6075 -225 {1 Yyaf (106)
< 5400n

~.J i . - | \.l

Thus we find that we can omit y; as a coord:inate in our analysis because
of the constraint expressed in Eq. (105). This was also true when simple ap-
proximations of order h® were used, but in that case y, was equal to zero.

In a similar manner, using the approximatior.s of Table I and Eq. (99),
we can write the remaining beam equations for the¢ case of a built-in end.

7 [ T .9
A 17 9 -5 10 .. | [es
2
Mo 27 27 -1 0 0 6g
= 1 2
< ¢ -un T 7 (107)
My 2dhit a7 27 -1 0 L) ex
. 2
L’/ ) ) =
~ ~ - - N
Vi -93 229 -225 111 -22 ... IM;
2
Va 22 11 9 -5 1 Mo
2| = L (108)
Yvsf 2B |1 27 27 a1 0 ... {Maf
2
~ ’J __' : - K

oo O
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A 127 27 10 (v, ]
2
Vs o -1 27 27 1 Vg
L - 5 ® (209)
154 20 1o o a1 27 27 ) Vsj
2
L.a h. ) - L./

Let us apply Egs. (106) to (109) for the specific case of a 6-cell beam
that is built-in at both ends. Only the modes with even symmetry about the
center will be considered. The equations of motion are

6.) L6800  © Vo
!
2| - (110)
o 5H00h | _go25  s8u1| |y
Z
7 N
Mq] N 17 87 9% 1)
A = £ |27 2 111
M?[ e B
“
v, ) -93 207 -114 fu,
2
1
v = — |22 18 4 |\m (112)
2( 2hh
Vs 1 27 26| |Ms
~2
N
ya Loroer e |
J = Vg (113)
yﬁJ 2th o 1 26 e
.
2
letting h = 1 and applying Eas. (80) and (81), we obtain
(5.22099-32) -2.77553
= 0 (114)

-4.29387 (2.85815-22)
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giving the characteristic equation

A% - B.0T7914A2 + 3.00L62 = 0 (115)

and roots

A2 0.625142, 2.77278

which can be normalized to

22.5051

g
=
"

99.8203%

&

Comparing these results with those for the case where simple differences
were used, one finds that the h* approximation gives somewhat better accuracy
for the first mode and approximately the same re¢sults for the higher mode.
This improvement due tc using an h%* approximaticn seems to be rather slight.
However, if one looks at the accuracy of a giver. mode as the number of cells
is increased, the ht approximation converges tovard the correct result more
rapidly, as it must, of course, in the limit. <fee Table II and Fig. 15 for
a summary of the results.

5. Free Beam.—Previously we have seen that the representation of a free
end is obtained from that for a built-in end by interchanging the roles of y
and M and also those of © and V. Furthermore, ve found for a continucus beam
that the nonzerc mode frequencies are identical for the cases where both ends
are built-in or both ends are free. This is al:co true when finite difference
methods are used. To illustrate this, let us celculate the mode frequencies
(even symmetry only) of a 6-cell beam that is free at both ends.

The equations of motion are

(6, [93 207 124 vy
2
1
) = — |-22 218 i 116)
12r © Zin v2 (
o5 1 27 26| |ys
2 — ~

oo g
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4

¥a

arp
1?3
V4

N

©

1
L 1 =27 27 z
L g
2)-|-h 0 1 _26 92
=3
2
4800 0 Mo
5%00h | _gops 5841 |Ms
N -17 -87 Vg
— |27 -2 v
2hh -1 26 g
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(117)

(118)

(119)

Performing the matrix multiplications for the case where h = 1, we obtain

from Eq. (81) that

-2.16868

1.23959

(0.20619-22)

-0.0003%1
(5.46771-32)

-3.6L453

giving the characteristic equation

-0.20588
-3.29903

(2.40524-3%)

A2(a% - B8.0791422 + 3.00462) = 0

Comparing Egs. (115) and (121), we see that the nonzero roots are identical

even though the K matrices are quite different.

= 0 (120)

(121)

All computations in this report applicable to either a built-in or free
beam were actually set up considering the built-in case, using equations

similar to (110) to (113).

4. Cantilever Beam.—One can use the methods developed for obtaining

h% accuracy in the representation of a built-in end or a free end to write the
equations of motion for a cantilever beam. The minimum number of cells re-

quired for h? accuracy is five.

Other methods to be considered later will be
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applicable with fewer cells.

As an example of a typical calculation, congider a six-cell cantilever
beam. The equations of motion are

(65 ) 4600 0 0 ( 0 -
2 Yz
s 6025 6066  -225 ( 0
2 ¥a
o7 | p25 6075 6075  -i25 0
12( - 2 yaf (122)
s 5400h | o 205  -6075 €075  -225
2 ¥s
011 -225 1125  -2025 -5825 4950
2 Y
015 4950 -24975 50625 -£1525 20925 ~ -
L 2J — _
h - =
(M, 17 9 -5 1 o ol (e
6
Mo 27 27 -1 0 0 © >
o !
2
IMap = 2Tl+i 1 27 27-1 0 O *Qg (123)
011
My 0o 1 =27 27 -1 © 2
O13
Mg o o 1 -27 o1 -af L%,
~ 7 L. -
’Vﬂ 20925 51525 -50625  2L9T75  -4950 ,
2 ‘ M
Vg -4950 3825 2025  -.125 225
2 Mz
Vs 225 -6075 6075 =25 0
12¢-= 2 sl (124)
\3 5400k | o 225 6075  GOT5  -225
e My
Vg 0 0 225 -6066 6025
2 M
V1] | o 0 0 0 4800 ~°
\2) -

OO g
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(i ) B T ¢ 9
Vo -1 27 27 1 0 o [vi
2
. Va
s 0 -1 27 -27 1 0 >
Vs

. 1 { 27

Ya9 = —1 0 0 -1 27 -27 1 (125)

W * 2hn Vz
2
Vs 0 0 o -1 27 =27 Vg
Vi

Ve o o 1 -5 9 1 E
\ / - - ‘

The large numbers in Egs. (122) and (124) result directly from using the
one-sided approximations of order h% as given in part A of Table I.

Note the similarities in the matrices of Egs. (122) and (124). Reading
from left to right, beginning with the first row of (122), one sees the neg-
ative of the numbers obtained in reading from right to left beginning with
the last row of (124). A similar relationship exists between Egs. (123) and
(125), except for sign. This property is common to all finite difference
analyses of the cantilever beam and results from the complementary character
of vy and M and also of & and V.

Setting h = 1, one obtains the characteristic equations for the system:

A0 | 09.017h5R8 + 221.6231L06 - 462.52608xF + 148.71888)° - 1.37737 = O
(126)

giving the normalized frequencies

wy = 3.51687
Wo = 22,1688
wg = 59.336h
wy = 99.8114
ws = 153.687

Ncte that all except the lowest mode frequency are roughly equal to cor-
responding frequencies for the 6-cell built-in case. An even closer agree-
ment occurs in the percentage error for corresponding cases. In fact, for
large N and comparing the higher modes, one finds essentially identical re-
sults for the built-in and cantilever beams. (See Tables II and III.)
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C. ORTHOGONALITY

We have seen that the use of approximations >f order hZ leads to orthog-
onal modes. Also, one can obtain a lumped physical system composed of linear,
bilateral elements that is represented exactly by the equations of motion.
This is no longer true for the n* approximation using one-sided differences
at the boundaries. If one writes the equations of motion, the m matrix is
symmetric but the k matrix is not. [See Eq. (120), for example.] Thus the
system is nonphysical, i.e., a passive system of linear bilateral elements
cannot be obtained for which the equations are an exact mathematical repre-
sentation. Also, the modes are not orthogonal, inplying that one cannot ob-
tain a coordinate transformation that diagonalizes the m and k matrices
simultaneously.

To illustrate this point, consider again the 6-cell built-in beam for
the case of even symmetry. For each mode, one cai calculate an amplitude
ratio that indicates the relative magnitude of th: motions of y- and ys.

Ay | 5.22099-)2
Ao 2.77555 (127)

The results for this case are given by the matrix

1.00000 1.0000)
[A] = (128)
1.74028 -0.88897

where each column corresponds to a natural mode aid the amplitude of the yso
motion is arbitrarily set equal to unity.

The original mass matrix for this system is

g 2
81 225

(m] = (129)
-2 626

225 625

OO g
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The deviations from a unit matrix in this case are brought about by the elimina-
tion of y; using the constraint eyuation

2
yi = Yo - == V3 (130)
The stiffness matrix for the original system is

5.51698 -2.93800
(k] = [m][K] = (131)
-4.234715  2.88740

Consider now the coordinate transformation

vy} = [Al(F} (132)
The mass matrix in terms of the barred coordinate system is

4.,05185 -0.50770
(m] = [A] m][A] = (133)
-0.50770  1.55671

and the stiffness matrix is

1.58347  -3,903u42
kK] = [A]"[k][A] = (134)
-0.19842  14.27502

Thus we see that neither the mass nor the stiffness matrix is diagonalized
by the transformation to generalized modal coordinates, and therefore the modes
are not orthogonal. Furthermore, the k matrix is not symmetric.

We have defined orthogonality of modes in terms of a simultaneous diagonaliza-
tion of the mass and stiffness matrices by a coordinate transformation. It should
be noted, however, that a nonorthogonality of modes in this sense does not nec-

essarily imply gependence or coupling of modes. In the above case, for example,
the matrix [m]™ " [K] turns out to be diagonal.
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VI. THE USE OF SYMMETRY IN REPRESENTING BOUNDARY CONDITIONS

The use of an h* approximation in a straightforward manner has been shown
to reguire the use of one-sided differences near the ends, whereas central
differences can be used in middle portion. Another approach to the problem
of representing boundary conditions 1s to assume a virtual or image beam ex-
tending beyond the actual beam and to use values of y, 0, M, and V in this
imaginary beam, as necessary, in the standard certral difference equations.
This approach will now be investigated.

A. SYMMETRY ASSUMPTIONS

In establishing the basic approach to the problem, we will again use the
central difference approximation

_a_y ~ 1 Gn_l - 2Tyn + 20yp+y - yI_+2> + plosd El (99)

x|, 1 640 Ax5 |, 1
n+§ n+2

using staggered stations such that y and M are c&lculated at integer stations
whereas © and V are calculated at haif-integer stations. The beam ends occur -
at half-integer stations.

Let us now consider appropriate symmetry assumptions for a cantilever beam,
chosen to illustrate free and built-in end conditions. (See Fig. 10.) First
we note that the assumption of even symmetry in ;- about the built-in end will
give zero slope at that end, using Eq. (99). (Tte assumption of odd symmetry

here would not give the proper result.) Success:ve differentiation of y with
respect to x gives alternating odd and even functions, as shown by the dashed
lines where they deviate from the solid lines. 'hus the assumed beam shows

a discontinuity in V (and the slope of M). However, one can see from the basic
approximation given in Egq. (99) that the presence of discontinuities will
amount to an increase in the magnitude of the higher derivatives at this point
and thereby increase the error in the approximat:on.

To avold these errors due to discontinuitie:, we will arbitrarily assume
contiruous curves at the boundaries even though these assumptions are not
physically consistent. We are interested in obteining the best possible
estimates for the derivatives of y within the actual beam, and therefore we

oo g
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make the most promising assumptions concerning the virtual beam.
The symmetry assumptions that we will use can be summarized as follows:

(1) If the derivative of the function approaches zero as the end of the
actual beam is approached, assume even symmetry about the end.

(2) If the derivative of the function does not approach zero as the end
is approached, assume odd symmetry about the end, possibly with an offset to
avoid discontinuities.

The procedure by which these assumptions are incorporated into the equa-
tions of motion is guite straightforward except for the extrapolation of M
at a built-in end or the similar extrapolation of y at a free end. Taking
the case of the built-in end, a functional form must be assumed for M near
the boundary. Referring to the analytical solution near a built-in end, as
given by By. (22) or (49), we find that the magnitude of M varies according
to a linear plus a fourth-order term in x plus other higher-order terms. So
a logical choice of the functicnal form of M near the boundary might be

M = ay + a;x = agx* (125)

where the last term takes the plus or minus sign depending on whether x 1is
positive or negative. This assumption results in the equations

My = é [503M; - 310Mz + 59Ms] (136)
and
1
M, = 252 [T35Mp - 5h42Mz + 39Mz] (137)

where the built-in end occurs at station %.
Another possibility is to assume that M is an offset odd function having
a linear plus cubic variation with x. Thus we might assume that

M = b, + bix + bgx3 (135)

0]
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.18 assumption avoids having discontinuous derivatives at x = 0 and gives
numerically simpler equations. In this case

M, = 95-[7M1 - 5Mp + Mga] (139)

M, = %[mml - 8Ms + Ms] (140)

Computations were run for many cases, using either Eq. (135) or (138), and
the results were compared. The differences were fairly small and, if anything,
favored the linear plus cubic assumption. All resilts given in this report,
assuming symmetry at the boundaries, are based upoi a linear plus cubic varia-
tion of M near a built-in end, i.e., upon Egs. (13%2) and (140).

= OO U

The assumptions concerning the form of y near a built-in end are the
same as we used previously for the h* case. Again we can eliminate y, by
using the equation

2 1
Y1 = Sy2-=ys (130)
9 25
Of course a similar relation exists for the value of M at the station
nearest a free end. -

B. EQUATIONS FOR A BUILT-IN BEAM

1. General Case.—We have seen how we can us: symmetry to extrapolate
the variables of the problem beyond the actual limits of the beam. Using these
extrapolated values and the basic central differen:e approximation of Eq. (99),
we can write general equations for a built-in beam similar to those given by
h% approximation in Egs. (106) to (109). They are

~ - —
65 LT75 9 0 0 euof fy2
2
65 -6025 6066 -225 0 V3
2
S8z = = 225  -6075 6075 -225 ...|<dyay (181)
2 5400h
L) |- . JU]
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(14,) 26 1 0 0 ...| [eg)
2
Mo 27 27 -1 0 6s
, °t
3 1 1
Mo = = |1 27 27 -1 ...| ¥ 142)
2 obn | i | z (
) ) L
(A o6 124 26 o .. (M)
2
Vgl 1 |- % -2 0 M
{2 = — I (143)
Vgl T7hf 3 81 81 -3 ... M4
2
) . - d
~ r PR
(Yo 127 27 1 0 - vy
2
¥4 S T B Va)
I G zL (144
‘y4r 2o o a1 27 27 ... mvi
2
*) | - S

A comparison of the above equations with those for the h* approximation
as given by Egs. (106) to (109) shows considerable similarity. It should be
noted, however, that the use of symmetry at the boundary never requires more
than four inputs per amplifier in the analog computer circuit, whereas the h*
approximation requires up to five inputs per amplifier.

2. The 6-Cell Case.—As an example of a mode calculation for a specific
case, consider again the modes with even symmetry about the center for a 6-
cell beam built-in at both ends. The equations of motion (using symmetry
assumptions at the boundaries) are
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93_ MYYS 9 2
2] - 1 (145)
65 54000 | _gops5 5841 | /g
2
M, [26 -17] f6q
2
Mog = —— |-27 27 (146)
24h Qg
Mgl |1 26
A -98 124 26]
)
Vah = = |- 16 -2 (147)
2 72h
Vs 3 -8 78
(3 - .
,V;W
Ve 1 [l 27 -23 =
= = Ve (lhtﬁ)
Vs
\21

Setting h = 1 and performing the matrix multiplications, one obtains

(8.04779-32)  -4.39000
= 0 (149)
-4 .39275 (2.9145L-»2)

giving the characteristic equation

A - 10.9623332 + L1716 = O (150)

Lo \NoR w)
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The roots are

A o2 = 0.62828, 3.25078

and the normalized rocts are

22.6182

>
o
"

117.028

&

Recalling that the corresponding normalized freguencies for the con-
tinuous beam are

B1

22.3733

Bo 120.903%

we see that the above results give a somevwhat larger error for the first mode
than does the h? approximation, but the error in the higher mode is much smaller.

An alternate method can be used, particularly with the use of a digital
computer, to set up the equations of motion and to solve them. This method,
which indicates more clearly the symmetry assumptions in its formulation, is
given in Appendix A.

%, Results.—The results of calculations for built-in and cantilever beams,
using symmetry assumptions at the boundaries, are summarized in Tables II and
III and in Figs. 17 and 18.

Comparing these results with those for the h* approximation, we note that
for a practical range of N (say 6 to 10) the use of symmetry gives lower ac-
curacy on the low frequency modes but better accuracy on the higher modes. For
example, consider the case of an 8-cell cantilever beam having a total of
seven modes. Using symmetry at the boundaries, the first four modes have a
frequency error well within 1% and even the sixth mode has an error of only 10%,
approximately. By contrast, the use of h* approximations at the boundaries
gives better accuracy for the first three modes but the fourth mode has an
error of nearly 5% and the sixth mode has an error of approximately 20%.
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C. ORTHOGONALITY

It turns out when boundary conditions are imposed using symmetry that
the resulting modes of vibration are nearly, but not exactly, orthogonal.
This means that this approach also results in a nynphysical system in the
sense that a lumped model cannot be built of linear bilateral elements.

To compare the orthogonality properties with those for the h* approxi-
mation, let us consider again the example of the >-cell, built-in beam.
The mass matrix is again

8 2
81 225
m] = (129)
2 626
225 625j

The stiffness matrix is

8.48k26  -4.62270

(k] = [m][X] = (151)
-h.h7131 2.95823
The amplitude ratios are calculated from
Az B8.04779-32
Ay L4.39000 (152)

yielding the modal matrix

1.00000  1.00000
(A] = (153)
1.74329  -0.57399

In the modal coordinate system the mass matrix is

OO Y
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4.06232  0.03676
(m] = [A]'[m][A] = (154)
0.03676  1.38957

The stiffness matrix is

1.60356 0.38348
k] = [A]l'(k][A] = (155)
0.01451  14.68446

Thus neither matrix is diagonalized by the transformation, but the result
is considerably closer than was the case for the h* approximation, as can be
seen from Egs. (13%3) and (134).
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VII. THE PASSIVE CIRCUIT NETHOD

We have seen in the case of the simple apprcximation of order h? that an
electrical circuit exists which the difference ecuations describe exactly.
However, when one goes to higher-order differences and uses the methods we
have described for establishing the boundary conditions, one finds that the
resulting equations are nonphysical, i.e., no passive linear circuit analogy
exists.

It can be shown that the nonphysical character of the higher-order methods
discussed thus far is due to the boundary-condition representation rather than
the basic difference approximation. In this section a passive circuit analogy
will be obtained for the basic higher-order approximations of Egs. (100) to
(10%3). By imposing boundary conditions on this circuit and writing the cor-
responding equations, one can obtain a set of mutually orthogonal modes.

A. PASSIVE CIRCUIT ANALOGY

We have been using the following finite difierence approximations to the
beam equations.

Qn+§ = 2Mh <?n— - 2lyn * el - yn+2) (100)

= L -
Moo= o @n-g 279n_%+ 276, 3 -8, (101)

ey = o= (Mo, - eTM o+ 2T - M ) (102)

= 2hp \ 71

1

yn = = < _S + 27V _1_ 27\114'1 + V (105)

24h

Setting h = 1, and representing generalized velocities by voltages and gen-
eralized forces by currents, one can show that tle passive circuit of Fig. 11
is described by these equations. Note that three¢ transformers, one inductor,
and one capacitor are required per cell.

The rather large transformer requirement of Fig. 11 compared with the h?
approximation of Fig. 3(b) makes it impractical 1o use this passive circuit

= oo o
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directly. Instead we can write the circuit equations and solve them using a
differential analyzer or a digital computer. The equipment reguirements in

this case are almost the same as for the other higher-order methods but are

actually slightly less due to the details of boundary representation.

B. THE BUILT-IN BEAM

1. Symmetry Assumptions.—To obtain a proper representation of a built-
in end, it is convenient to make certain symmetry assumptions consistent
with the given boundary conditions. We will assume that the deflection curve
has even symmetry about the end and zero slope at the boundary. Thus y and
M are even functions of x, while @ and V are odd functions of x, as shown
by the dashed lines of Fig. 10.

The circuit that has been used to represent a built-in end is shown in
Fig. 12. The beam end is at the center of the diagram (station £) with the
virtual beam on the left and the actual beam on the right. The autotrans-
former at the bottom of the figure represents the constraint relating y;
and yo-

2. (onstraint Equation.—It can be shown for a uniform beam that

> 1 h® 3%y
yn% = 1—6<-yn-l + 9y, W, T YHQ 5 5 i (156)

L
=

S0 if we assume that y has even symmetry about the built-in end at station %

5
and also set yp equal to zero, we obtain the approximate equality
2

123

ya (157)

O |+

This is used as the constraint equation in the passive circuit approach.

It can be seen from Fig. 12 that the autotransformer representing the con-
straint equation causes a certain relationship to exist between voltages and
also between currents. In mechanical terms, a constraint equation relating
coordinates alsc implies forces of corstraint to be exerted on the system in
such a way that no work is done. These forces of constraint have been ignored
in the previous two approaches to the problem and this resulted in a lack of
symmetry in the stiffness matrices.
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To calculate the effect of these forces of constraint, consider a beam
described by the matrix equation

m](¥} = [DIV) (158)

Now suppose a constraint is imposed as described by

yi = (C)y) (159)

where the summation is over all y except yi. (Tte parentheses denote a row
matrix.) Let us include the constraint forces in the analysis and also separate
the y; equation from the others. Then we obtain

(D1)(V} + Fy (160)

=
[
<
.

i

DIV} + (F) (161)

El
5
I

where the F are constraint forces acting on the team. Note that Eq. (161) does
not contain ¥; and the D matrix does not contain a D; row.

Now multiply (160) by y) and premultiply (1€1) by [y}T. Adding, we obtain

yim¥r + (NTmIE) = ya0) ) + 3ITDIV) + Fayn + (1) T(F) (162)
Since the constraint does no work, we can write
Fiy: + (y)T(F) = 0 (163)

and the last two terms of (162) drop out. Finally, substituting for y, from
Eq. (159), dividing out (y}T, and rearranging, we obtain

£ OO O
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m () ()T + mlyy = o)t + DI (164)

This gives the equations of motion with y, omitted and constraint forces in-
cluded. For example, in the present case with a simple constraint given by
Eq. (157), the effective mass at yo is 82/81 times its value before the con-
straint was applied. More complicated constraints will result in inertial
coupling, but the effective inertia matrix will always be symmetric.

3. General Case.—The complete equations of motion for a built-in beam
can be written now using the passive circuit method. They are

6] 217 -9 0 0 ...|(¥]

2

o] 242 243 -9 0 Vs
| = G I (265)
6] 216h | 9 ou3 243 -9 ...| |ya

2 . .

L. . . :

)L L

PR - 1

My 26 -1 0 0O ... 'Q;J

2
# > = T < 2> (166)
Mg 2bh |y o7 27 -1 ...| Sz
2

. - . Iy ‘
(A 26 27 -1 0 ... ’Mq

2

Vs BRI Mo
2y = m < 4 (167)
Vi 0 1 27 27 ...| |Ms

2 . . .

- L . 1L
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() P 16

¥z 1953 -2176 8. 0 A

2

s -82 2214 -201h 82 Vs,
i = ‘ 12l sy

Va 1968n | o -8 o1l w221 ... ||VZ

2

~ .d ) ’ N 7

The amount of analog computer equipment ne=ded for the passive circuit
method is slightly less than for either of the other higher-order methods.
There are two reasons for this. First, the valie of V at a built-in end (or
of © at a free end) need not be calculated. Second, the signs are optimum in
that no extra amplifiers are required for inversion at any point.

The equations of motion for stations near i1 free end can be obtained most
easily from the above equations by exchanging tiie roles of y and M and also
© and V. Of course they could also be obtained directly from the passive cir-
cuit, remembering the constraint equation relat .ng the values of M at the last
two stations.

L. The 6-Cell Case.—Again let us conside the even symmetry modes of
a 6-cell beam built-in at both ends. Using the passive circuit approach, the
equations of motion are

QQ 217 ~9 éyg
J2y = L1 (169)
O 216h | ol 2zl yg
{ 2 S
M 26 -1 X
1 %2
Moy = = |27 27 2 (170)
2Lh 95'1
M3 1 =26 2)
A N A
= — Mo (171)
Yvs bty o7 26| g
L2

= O\\O I
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Yo 1953 -2178 |vg
= 1 V2 ( 172 )
Vs 1968h .82 2132 | 2

Setting h = 1, we can solve for the eigenvalues from

(8.47527-22)  -4.54772
= 0 (173)
-4 .60386 (2.99140-»2)

or

A C 114666722 + 4.4158% = 0 (174)

The normalized roots are

22.7395

g
-
[

119.765

&

In this case the first mode frequency is 1.6% high and the second mode fre-
quency is 0.94% low.

C. RESULTS

The results of mode frequency calculations for a uniform beam using the
passive circuit methed are summarized in Tables II and III and in Figs. 19 and
20.

Comparing these results with those obtained previously, using other methods,
we note that the passive circuit method gives very good over-all accuracy for
cases where the number of cells is 9 or more. On the other hand, the symmetry
method appears to give generally better results for smaller values of N. Of
course, the h* method is still best for accuracies of the order of 0.25% or
better.
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One way of comparing the various methods is to obtain an approximate number
of cells required per wavelength to obtain a given accuracy. For l% error,
the ordinary h® approximation requires 12 cells ver wavelength. In contrast,
the h* approximation requires 6-1/2 cells per warelength, the symmetry meth-
od requires 5 cells per wavelength, and the pass:ve circuit method requires
4-1/2 cells per wavelength.

D. ORTHOGONALITY

In contrast with the higher-order methods considered previously, the pas-
sive cirecuit method produces orthogonal modes. [he orthogonality property is
a result of the symmetry of the original m and k matrices.

We can illustrate this point by referring again to the 6-cell case. From

Eq. (173) we see that the amplitude ratios for the two modes can be calculated
using

Ao B.4T7527-22
A, h.5h772 (175)

The modal matrix is

1.00000 1.015000

[A] = (176)
1.77590  -0.5(005
The original mass matrix is
B2
m] = |81 (177)
0 1

The corresponding stiffness matrix is

8.57990  -4.50386
k] = (178)
S4.60386  2.39140

= o0 O
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After the transformation

(v} = [AlN) (132)

the resulting mass and stiffness matrices are

4 ,16616 0
@ = [ATm](A] = (179)
0 1.3%730
1.6622% 0
€] = (a)7x][a] = (180)
0 14.80080

The diagonal nature of these matrices implies orthogonallty of modes, and also
that the motion of each of the modal coordinates is independent of the others.

It should be noted in passing that the matrix

(»2] = [A] [K][A] (181)

is diagonal for all three methods and the numbers along the main diagonal are
the squares of the mode frequencies.lo This does not imply orthogonality,
however, as we have defined it.
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VIII. BSOURCES OF ERRCR

In this section we will consider the principal sources of error in the
methods that have been suggested for the soluticn of beam vibration problems.
These errors are (1) finite difference errors due to the basic difference approx-
imation; (2) finite difference errors in the regresentation of boundary con-
ditions, and (3) component errors. The error curves that have been presented
so far represent a combination of error sources (1) and (2) above for various
specific cases. Now we will consider them with somewhat more generality.

A. TFINITE DIFFERENCE ERRORS

1. The Ei Approximation. We have seen previously for a pinned beam that,
when proper symmetry assumptions are made, there is no additional error due to
the method of representing boundary conditions and so the entire computed
error is due to the basic finite difference approximation. So consider now
a uniform beam pinned at each end at an integer station.

Recall again the basic h? approximation

QX ~ :ZE_:_inL _ h2 éil (60)
oxl_ .1 h 24 dx3
5

Repeated application of Eq. (60) yields

Fy L Ynon Tt Yy _hZ B4yl

- . it (65)
D 3,4
3x? 0 h 12 ax N
Similarly, one can obtain
éil - In-o ~ uYn-l + 6yn - 47n+1 * Yn+s _ Ei of (182)
dx* n* 6 dx° 1
n n

which is the result of applying Eg. (60) four tiies ir sequence.

e NGEe
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We will again consider the eguation for the continuous beam in simplified
form.

Py LBy _ o, (6)
dx* 32

As we have seen previously, the solution for the continuocus pinned beam is of
the form

y = Z7Y; sinVp x (G; cos Bit + Hy sin Byt) (185)
i
where
By = %% (1 =1,2,3, ...) (55)

For the case of the ith mode, we can substitute Egs. (182) and (185) into (6),
obtaining

h® 3 _
(%n-z - Myn_l + 6yn - “yn+1 * yn+2j> * g_ Bivy - Biyn =0

Al

or

1 h2
s @n-g - Myn_l * 6yn - Mynﬂ_ + yn+2> = Bziyn( Tz Bi) (184)

h

Now the left-hand side of Eq. {(184) is of the same form as the approximation
to éﬁl used in the finite difference solution. Therefore, the corresponding

finite difference equation is

A . )
%Z Yp-z = Mpoy * OV - Hypey t ynfé) = ®3¥n (185)
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where w3 is the finite difference eigenvalue corresponding to B; . So the right
sides of Egs. (184) and (185) can be equated if sinusoidal mode shapes are
assumed in each case. Finally, noting that

h = 1{-] (186)

we oObtain

or

o .
© = (i) [} - %E(ﬁ%)z . .i] (187)

where i is the mode number.

2. The h_4 Approximation.—A similar approa:ch can be used to compute the
frequency error for a pinned beam using higher-c:der differences. The basic
approximation is

e

gl %Qn-l - 2Ty + 2Ty, - fn+2> + 22 E‘E (99)
X n+% 24h 6“0 aX n+%_

Using successive repetitions of Egq. (99), we obtiin

Fyl + 1 3h% 38
B—X_g . - (24_—}1)_2 Gn-s- 54yn-2+785yn-1_1u60yn+ 785yt1+1'5L"yn+2+yn+;9+ 52_0 ax_g
(188)
and
4
= =t (PR B - (189)
ax®l (24h) 6/ 160 3x®

+ O o
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Proceeding in a manner similar to that for the h® approximation, we ob-
tain

2 2 3h* 4
EREETT R

or
o = (in)2 |1 - __<5 i_ﬂ)4 ‘... (190)
* 520\N

Thus we see that the basic finite difference approximation tends to give
frequencies that are too low. The first error term in Eq. (190) gives an
accurate estimate of the error only for small i/N ratios and more terms are
needed for most practical cases. The actual error curves are plotted in Fig.
21 for the h* approximation.

3. Maximum Errors.—From the tabulated results of the calculations of
mode frequencies, it is seen that, as the i/N ratio increases, the error also
increases. In the 1limit as i/N approaches unity, the error is independent
of the boundary conditions and depends only on the basic approximation. This
limiting value of the error could be obtained by evaluating the complete
series indicated in Eq. (187) or (190) for i/N = 1. A simpler way to obtain
this result is to note that as i/N approaches unity the motion at adjacent
stations is equal in amplitude but opposite in sign. Knowing this, one can
calculate the frequency directly.

For example, using the n? approximation and assuming h = 1, we find that

¥, + 16y, = O (191)

yielding the freguency
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The corresponding frequency for the continuous beam is the same as for a pinned
beam of unit length vibrating in its fundamental mode, namely, €. So the
maximum error far the h® approximation is

€ = I = 59.472% (192)

Performing a similar calculation for the h* case, we obtain

. 4
yn+(%) Yo = O (193)
or
o= b9
9
giving a maximum error
_ 9x®-49  _ ;
€ . = T Ll .B83€% (154)

B. BOUNDARY-CONDITION ERRORS

We have seen that an analysis of uniform pirned beams with various numbers
of cells gives directly the finite difference err>r due to the basic central
difference approximation. Furthermore, we note taat the eigenvalues of the
pinned case alternate with the eigenvalues of eitaer the cantilever or built-
in case. Consequently, if the method of applying boundary conditions intro-
duced no additional error, one would expect the error curves for the cantilever
or built-in beam to run between and roughly parallel to the error curves for
the pinned beam. Instead, one finds that all the boundary-condition methods
considered here result in raising the natural frejuencies. This causes a gen-
eral improvement in accuracy for i/N values greatzr than about 0.3 for the
symmetry and passive circuit approximations. For the h* method the accuracy
is improved for all i/N.

ISNo\oRw
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For the lower modes and large N, the error for the three built-in or
cantilever cases mentioned above exceeds the error for the correspcending pinned
case because the boundary-condition errors are of lower order in h than the
basic central difference errors, and ultimately must predominate. For example,
in the equations for a built-in beam using the simple "h2" approximation, we
find the expression

[See Eq. (82).] The error in this case is actually of order h, as can be ascer-
tained by the Taylor expansion method.

Similarly, the passive circuit and symmetry methods of approximating a built-
in end use the expression

1
M = = (26065 - 0 (196)
ST Z‘)

which has a first error term of order h. On the other hand, each equation used
in the h* approximation is truly of order h*, and therefore the boundary-
condition errors do not tend to dominate for large N.

A study of the error curves presented in Figs. 16 and 21 lwads one to the
conclusion that the first error term alone does not give a reliable estimate
of the actual errors encountered. The i/N ratic must be the order of 0.1 or
less before the first error term clearly predominates and by this time roundoff
or component errors mask the desired truncation error.

To illustrate this point, it is of interest to calculate the rate at
which the actual truncation errors decrease with increasing N as N approaches
16, i.e., at the right-hand edge of the error diagram. Rough calculations
indicate that the h® and symmetry methods have an error that is decreasing
as hl‘s, while the error for the passive circuit method is decreasing as n+°
and that for the h* method is decreasing as h*-7 for increasing N.

The conclusion from the preceding analysis is that the method of repre-
senting boundary conditions should be chosen on the basis of the require-
ments of the problem and actual error curves, rather than assuming that an
h% approximation is necessarily more accurate than an h® or lower approxima-
tion over the practical range of N. Our results show that so-called higher-
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order methods are generally superior to simpler approximation methods. How-
ever, the choice between the various methods of representing boundary condi-
tions should be made on the basis of the problem at hand.

C. COMPONENT ERRCRS

In this section we will consider the sensitivity of the calculated roots
or frequencies to small shifts or inaccuracies of the component values. This
will be accomplished by perturbing one of the matrix elements and calculating
the resulting frequency shift.

Suppose we write the characteristic equation in the form

S(n, byj) = © (197)

where the eigenvalue, 1 = 22, is the square of the frequency (rad/sec) of one
of the modes and bij is the matrix element that is to be perturbed. For

small deviations about the reference values 15, b we can expand in the

ijo

series

S(b)_s(b)as ¢S 8

N iJ = T]O’ ijo + -a— AT] + —=— Ablj + .. (19 )

o a’tij o
where
n = ﬂo + An
le = bijo + Ale

From Egs. (197) and (198) we obtain an expression for the shift in the root.

oS

abi :
- a—SJ_Q Aby (199)
5n e}

Ay =

To illustrate this method, let us make an error-sensitivity computation
for a 6-cell beam that is built-in at both ends u:sing symmetry assumptions at

e )\eRw)
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the ends and assuming even symmetry about the center. We have seen that the
equations of motion can be written in the form

(§} + Kl(y} = © (79)

where

(K] = - [Bs][Bsl[B=2][Bi] (80)

For the case we are considering, the characteristic equation is of the form

(K11-1) Kio
= 0
Ko (K11-1)
or
S = 172 - (Kiy + Koz)n + (K11Kea - KioKey) = O (200)

Let us suppose that an element in the B; matrix is to be varied. We can write

[K] = - [T][B1] (201)

where

[T] = [Ba][Bzl[Bz2] (202)

Consider now the case at hand where
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LT75 J -

[B1i] =

5400h | gops 53y

and evaluate the sensitivity to a perturbation of bzi. Evaluation of An ac-
cording to Eq. (199), assuming h = 1, gives

AT]]_ 0-157010 Abo)

Ans 4.22168 Absq

for the first and second modes, respectively. Ir this case the actual roots
are

0.3947h1

i

N1

10.5676

Nz

So the fractional changes in the roots are

A1 o _ o.skz7o1 Ab2a,
N1 bzi
Mz | o.pus7a Az
N2 b2

This implies that a 1% increase in the magnitude of bp; will cause a 0.222%
decrease in the first mode frequency and a 0.223% decrease in the second mode
frequency.

It has been pointed out by Clymer,8 Fisher,9 and others that, in general,
the repeated use of finite difference approximations to the first spatial
derivative will result in less component error sensitivity than using approx-
imations to the second or fourth derivatives. Tc¢ check this point, let us
calculate the error sensitivity for the same prollem using approximations to
the second derivative. Splitting the matrix multiplication differently, we

o,

= O\ I
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will let
X] = - [T][B] (203)
where
[T] = [Bs4][Bs] (20k4)
(B] = [Bz][B1] (205)

In this case, for h = 1, we find that

58.1271 -2.5037
[B] = |-130.208%5  70.3125| x 10°>
72.0812 -67.8088

and

-1681 4115 -2134
[T] =
152 -2182 2030

Again we will calculate the error sensitivity for bp;. Performing the numerical
computations as indicated in the equation, we obtain

Ay = -77.6587 Abz;

AT]2 = -MO}?.}& Abgl
corresponding to

1 . g.o56165 Abza

N1 21
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Mz _ o.497460 P21
N2 bz1

So in this case a 1% increase in the magnitude of bzy will cause a 0.128% in-
crease in‘U@g first mode frequency and a O.2M9% increase in the second mode
frequency. %

Comparing these results with those for the spproximation to the first
derivative, we do not have a very significant di:'ference in sensitivity. In
fact, neither case would be particularly trouble:ome from the standpoint of
component error sensitivity. Further calculations of error sensitivities for
other matrix elements show comparable results.

This same case, using approximations to the first derivative, was checked
for error sensitivity on an actual analog comput:r with results in accordance
with the above calculations. Percentage frequen:y shifts were generally less
than half the percentage component change.

As the number of cells N is increased, the lifferences in error sensitivity
between the first derivative and second derivatire approximations should be-
come more apparent. In any case the sensitivity to component errors will in-
crease with N and large sensitivities should be 1oticed first in the second
derivative approximation.

As Fisher has pointed out, certain elements in the matrix will show con-
siderably more error sensitivity than others. In general the large terms are
more sensitive to error. For our basic higher-crder approximation

Sy
ox

~ 1 } . .
= 5o (Ynn 2Ty, *+ €Ty, yn+2> (99)

+1
s

we would expect a larger sensitivity to errors in the coefficients =27 than
in the coefficients *1 or even the coefficient 4, The coefficients #1 act as
correction or trimming terms and do not need to be held to the same percentage
accuracy.

The sbove discussion of error sensitivity npplies to digital computers
when considering roundoff errors. The magnitude of the roundoff error is, of

O\ U
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course, dependent upon the number of digits used in the computations and the
cell number N. It is also dependent upon the differencing scheme used and
the details of the digital program. For the methods used with IBM 704 com-
puter in calculating frequencies for the varicus cases given in this report,
roundoff errcrs of the order of 0.01% were first noticed with i/N ratios of
approximately 0.1 or less on cantilever beam computations. Because the use
of symmetry effectively halved the number of degrees of freedom, the calcula-
tions for the built-in beam did not suffer appreciably from roundoff errors.

For reasons of roundoff error and the general complexity of computation,
N = 16 seems to be a rough upper limit on the number of cells to be used in
analog or digital computations. This detracts somewhat from the utility of
the h?* method of representing boundary conditions because it is at large N
that this method is particularly advantageous from the standpoint of finite
difference or truncation errors. On the other hand, it accentuates the ad-

vantage of higher-order difference methods in general as compared to the simpler

h2 methods, particularly in the computation of the higher frequency modes.
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IX. CONCLUSIONS

The principal conclusions gained from the investigations reported here
are as follows.

1. The use of higher-order differences in tte solution of beam-vibration
problems on the analog computer improves accuracy with essentially the
same amount of equipment as would be required for simpler difference
methods. In the digital formulation of the corresponding eigenvalue
problem, a similar improvement in accuracy is obtained with essentially
the same computer effort, as measured by matrix sizes and numbers of
operations. The improved accuracy is obtained by using more inputs
per amplifier in the analog circuit and riore nonzero elements per matrix
in the digital computations.

2. The principal difficulty in the formulat.on of beam-vibration problems
using higher-order differences lies in te proper representation of
boundary conditions. This difficulty arises from the need for obtain-
ing input data from more stations for ea~h differencing operation to
obtain greater accuracy than in the simpler approximations. As the
boundary is approached, some of these stations needed for the basic
higher-order central difference approximation lie veyond the end of the
beam, and so other approximations or ass mptions must be used. Three
methods are presented for the representation of built-in or free ends,
namely, (1) the use of one-sided differences of order h#, (2) the use
of symmetry assumptions at the boundary, and (3} the passive circuit
method.

Fach method has its areas of speciel utility, as seen from the re-
sults of calculations for uniform beams. The h?* method is best suited
to relatively smali i/N ratios, correspcnding to accuracies of 0.25% or
better. The symmetry method 1s most advantageous in obtaining moderate-
ly good accuracies (the order of 1%) for all but the highest modes with
a minimum of equipment, particularly for a cell number N < 9. The pas-
sive circuit method has quite good accwracy in general, and in particu-~
lar for the higher modes (large i/N rat:os) where N > 9.

3, The discussion of errors centered on (l] truncation errors from the
basic central difference approximation «nd also from the boundary-
condition representation and (2) component and roundoff errors. Error
considerations as well as the ease of representing boundaries were im-
portant in choosing to approximate the irst spatial derivative rather
than the second or higher derivatives and also in the use of staggered
stations in the calculation of successire derivatives.

OO O
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The methods proposed in this report are relatively insensitive
to component or roundoff errors for N < 16. Larger values of N are
not recommended because of the general computational complexity and
also the increasing size of component or roundoff errors.,

4, The h* and symmetry methods are nonphysical in the sense that no system
composed of linear bilateral elements can be found that is represented
exactly by the equations of motion. This is a result of the fact that
the stiffness matrices are not symmetric in these cases. On the other
hand, the h® and the passive circuit methods result in physically
realizable systems. The latter two methods have the further advantage
that the resulting modes are orthogonal, i.e., a transformation to
modal coordinates simultaneously diagonalizes the mass and stiffness
matrices.

University of Michigan,
Ann Arbor, Mich., October 1961.
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APPENDIX A

ALTERNATE MATRIX FORMULAIION

The matrix formuletion of the difference equations that we have used thus
far involves the solution of Eq. (81) for its eigenvalues, the matrix K being
obtained after three matrix multiplications. Any assumptions with regard to
boundary conditions or constraints are put into 1he individual matrices before
the matrix multiplications are performed. An al .ernate scheme, particularly
adapted to digital computers, enables one to obtnin the same K matrix without
losing sight of the subsidiary assumptions.

As an example of the alternate method, consider again the problem of the
6-cell, built-in beam using symmetry assumptions at the ends. Equations (145)
to (148) could be obtained from the following el sht equations:

‘o
63 e o7 -1 01 |n
2
= 72 (Al)
os ebh g 1 -7 27 -1) |va
2 y
Yo 50 -9
Y1 50 -9
vaf = == s o {yi} (22)
¥a 251 o 25| W
Yy 0 225
[ 1
9_1
2
C
My 1 27 27 -1 0 O gg
Mo =2_i.ﬁo 1 21 21 -1 of {2 | (A3)
Mg o o 1 -27 27 - %s
o7
&
o %
6, ] 2
o2 -1 0] -
% 0 o0
3 R e B (8
1 o5 r o 1 o5
2 0 0 2
o
z L0 -1]
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M.
1 Ly er e a0 o ﬁo
Vg i 1 -27 27 -1 0 Ml (A5)
Ve 0 0 1 -27 27 -1 2
2 M
) 3
M
M_ 3 10 -8 1]
N
1y _ 13 Mo ( A6)
Ms 0 0 3
My L O 0 BJ
v, )
Vz
Vo N -1 27 -27 1 0 2
= oIh Viy (A7)
Vs 0 -1 27 -27 14 |2
V'é
<]
E.J
(v,
£ 10 o
Vg o1 of %
4\/5} = 0 0 1 Vs ( A8)
2 =2
v 0O 0 0 v
> 0 0 -1 2
Vo
Lgd

These equations explicitly separate the basic difference equations and the
boundary conditions.
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APPENDIX B

TAPERED CANTILEVER BEAM

The analysis that has been made in the main bcdy of the report has been
concerned. with the lateral vibrations of uniform beams. In this appendix we
will indicate the sort of results to be expected wken higher-order methods are
applied to nonuniform beams.

ANALYTICAL SOLUTION

The case of a beam of unit width and with unii'orm mass per unit volume and
a linearly decreasing depth has been analyzed by S:ddall and Isa.kson.ll Theoret -
ical eigenvalues were obtained for the case where the depth at the free end is

one-fifth that at the built-in end. (See Fig. 22., For a beam of unit length,
the linear density is

o = 2(1 - 0.8x) (B1)

and the bending stiffness is

EI = _2.(1 - 0.8x)° (B2)

The cantilever beam is built-in at x = O.

Theoretical frequencies {rad/sec) for this case are

8, = 2.47829
B> = 9.08902
Bs = 21.2953

FINITE DIFFERENCE FORMULATION

The same tapered beam was studied using the finite difference approach,
Tn & manner similar to that for the uniform beam, the natural frequencies were

Lo OAN ol w ]
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calculated using various boundary-condition assumptions.

For a nonuniform beam, new assumptions must be made concerning the method
of lumping the mass and stiffness. Again we assume uniform cell size (h=1) and
end the beam at half-integer stations. The total mass of each cell is lumped
at its center. Similarly, the total effective bending stiffness of each cell
(i.e., between consecutive half-stations) is lumped at its center.

Specifically, the mass lumped at the nth station is (see Fig. 22)

n+i

2
m, = fp(X)dx (B3)

n-i

2

Using higher-order differences, we obtain the acceleration at the nth station
from

= -V + 27V - 27V + V. BY
In 5ﬂ5;ﬁ( n-2 7 n-1 T n+d n+§> (BY)

The lumped bending stiffness is

1
s
1 f dx (55)
(ED), EI(x)
n-1
2
resulting in the bending moment eguation
E
M, = £ﬁ(gn-g - 276,_3 + 276p41 - Opig) (B6)
2hh 2 2 2 >

The slope and shear force equations remain unaltered from the case of & uniform
beam.
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In general, the boundary conditions are impos:d in the same manner as for
a uniform beam. An exception occurs in the passiv: circuit case where the ef-
fective mass mp near the built-in end includes the reflected value (as seen
from station 2) of the actual mass my. A similar -eflection of bending stiff-
ness occurs near a free end.

Also, it should be noted that the constraint .quation

- 2y .1
Y1 = §Y2 25Y3 (130)

is of order h* for the case of & nonuniform beam i1stead of order h€ as was the
case for the uniform beam.

RESULTS

Error curves for the tapered beam are shown in Figs, 23-26. Comparing
these results with those for the uniform beam, one finds the various methods
retain many of their characteristics in spite of a general reduction of accura-
cy. The h® method shows good accuracy for the funcamental mode while the higher-
order methods (the symmetry and passive circuit methods, in particular) have
better accuracy on the higher modes. The h% metho¢ suffers the largest loss
of accuracy due the nonuniform mass and stiffness c¢istributions.

The general lowering of mocde frequencies compsred to the uniform beam is
probably due primarily to the mass lumping method which results in a slight
positive shift in the center of mass location compsred to the continuous beeam.
This is because the mass is lumped at the center of the cell whereas the actual
center of mass for the cell is located slightly intoard of the center, i.e.,
toward the built-in end. Similarly, the compliance (inverse stiffness) for a
cell is lumped at the center and is thus somewhat inboard of its compliance
centroid. This also results in a lowering of the ratural frequencies.

O\ O
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TABLE I

ONE-STIDED APPROXIMATIONS O+ ORDER h*

A, General Case
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TABLE I (Continued)
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TABLE II

MODE FREQUENCIES OF A BUILT-IN OR FREE U /IFORM BEAM*

Approxime ;ion Method

OO

N Mode Continuous P2 " Symnetry g?iii\:
N Sl
N S
R EX- iy
SR = R S
B T G
B * L ol
=
N s -
I % SN v i
- G

*The percentages refer to the error in frequency as compared to the continuous
beam.
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TABLE II (Continued)

T

Approximation Method

Mode Corntinuous Passive
h2 h# tr]
Symmetry Circuit
0.858% 0.340% 0.912% 1.064%
1 2e.315 22,565 22,449 22.577 22.611
- 3.707% - 0.751% 0.460% 2.006%
2 61.675 59,387 61.210 61.957 62.910
-12.333%% - 9.992% - 1.472% 0.711%
5 120.90 105.99 108,82 119.12 121.76
-24.307% -19.494% - 6.915% - 5.4249
* 199.86 151.28 160.90 186.04 189,02
5 268.56 -38.354% -23.617% -18.412% -18.000%
) 184,05 228.05 243,59 ohiy, 82
0.697% 0.192% 0.764% 0.729%%
1 22.315 22.529 22,416 22.544 22,536
- 2.627% 0.091% 0.522% 1.493%
2 61.673 60.053 £1.729 61.995 62.594
- 8.983% - L.806% - 0.695% 1.092%
5 120.90 110.04 115.09 120.06 122,22
-18.06%% -14.140% - 3.823%% - 2.086%
+ 199.86 163.76 171.60 192.22 195.69
5 298.56 -29.163% -20.117% -10.480% - 9.489%
: 211.49 238.50 267.27 270.23
-41.411% -24.933% -21.823% -21.569%
6 416.99 oLk .31 313,02 325.99 327.05
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TABLE II (Continued )

Approx:mation Method

N Mode Continuous Passive
h? h# Symmetry Circuit
0.572% 0.10°% 0.653%% 0.523%%
9 1 22.373 22.501 22.397 22.519 22.490
- 1.959% 0.247% 0.537% 1.129%
9 2 61.673 60.465 61.82° 62. 004 62.369
- 6.832% - 2.02t% - 0.281% 1.092%
9 3 120.90 112.64 118.45 120.56 122,22
. -13.905% - 9.031% - 2.272% - 0.620%
9 b 199.86 172.07 181.81 195.32 198.62
-22.77%% -16.3429 - 6.391% - 5.078%
9 5 298.56 230.57 249,77 279.48 28%.40
-32.907% -20.665% -13.669% -12.996%
9 6 416.99 279.77 330.82 359.99 362,80
-43.707% -26.L471% -24,504% -24.337%
9 7 555.17 312.52 408,21 419.13 420.06
0.474% 0.063% 0.550% 0. 38u%
10 1 22.373 22,479 22,387 22.4G6 22.459
- 1.518% 0.217%6 0.525% 0.866%
10 2 61.673 60.737 61.807 61.997 62.207
- 5.368% - 0.75%% - 0.033% 0.976%
10 3 120.90 114.41 119.99 120.86 122.08
) -11.018% - 5.2444 - 1.401% 0.0%0%
10 L 199.86 177.84 189.38 197.06 199.92
-18.214% -12.165% - 4,123% - 2.726%
10 5 298.56 244,18 262.24 286.25 290.42
-26.629% -17.506% - 8.947% - 7.959%
10 6 416.99 305.95 343,99 379.68 383,80
-35.865% -21.478¢ -16.449% -15.972%
10 7 555.17 356.06 435,9% 46%,85 L66.50
-45,49%% -27.95%. -26.649% -26.534%
10 8 713.08 %88.68 513.71 523,05 523,87

OO -
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TABLE II (Continued)
Approximation Method

N Mode Continuous ne e Symmetry gii:i‘l{i
1L 1 22.375 28:322% egzggi% 2g:igg% eg:igg%
noooe 61.673 oy e e e
1 5 120.50 ilgizgu% ieg:zzg% 122:éi6% 122:S:u%
Y
1L 2 298.56 é;ﬁ:?gl% ;7§:;;7% £9§:;§7% égi::QO%
- BT S o
noor st et SR B e
S R e i R e
o e e gz g o
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TABLE II (Continued)

Approximation Method

N Mode Continuous 2 na Symmetry g?iiizi
R Tt (e e
w8 LT aal ems ase s
R S i
2w s P St SRR e
T Pt
. L S A A
TR & -G A
L
R A
N A

oo g
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TABIE II (Continued)

81

Approximation Method

N Mode Continuous h2 ne Symmetry l;&lxiiixlri
O - -
S A G
13 5 120.50 il?f ggu% 128: ggl% 122 358% 12& Zgu%
I R U A L
B eess gd® ST Wt
R L B o
b war P RER s ow
B mses  FRA% SRR Mgt Lug?
poe wem BER R S ma
T Rty A e
I T A L G
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TABLE II (Continuec)

Approrximation Method

N Mode Continuous Lo » Symmetry giiiizi
L 1 22.313 2g:izg% 22:222% 2g:ii§% eg:igg%
14 2 61.673 62;?2% 6?2822% 62:32273% 62:259;%
w5 mmso  EEM e o o
wowassss 22 0T e o
R T S s G
S I VA L S
R = LR
w8 omes S PP LR W
T R i S e
w0 oaoea Zodh R IR ey
woom o mes S mbm s o
w2 asea ot G RSt G
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TABLE II (Continued)

83

Approximation Method

N  Mode  Continuous e ” Symmetry i?iiizi
15 1 22.373 o2 igg% o2 ??2% o5 i?i% o, ;gg%
15 2 61.673 P AP e - ot
15 3 120.90 Py 8?78% 121, 229% 121, 328%
15 b 199.86 i932318% 198:i%5% iggzggo% 203:255%
55 mess DM GRER 8% oo
15 6 416.99 ;éé:géo% ioiZ?gl% io;:giB% ng:ggh%
15 7 555.17 iégiggl% 51;1226% 5523;7% ;ﬁ:ggg%
e omaes Pt GREY P e
15 9 890.73 g??:éSS% %é$ igl% éog:i§8% é1§:2§9%
o0 aoma A PR e oo
15 11 1305.3 égfi %ZS% roaeo 1536, o 16%8 : SOO%
15 2 e gt PRESP mmlnd gt
15 13 1798.7 égg:i?h% 11331396% bl 158§:§79%

1205.0
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TABLE II (Concluded)

Approximation Method

N Mode Continucus = nt Symmetry §§i§i¥:
16 1 22.373 28'i3$% 2g:g$§% 2g:igg% eg:ggg%
16 2 61.673 '6?'222% 62:22?% 6?23%2% 632222%
16 3 120.90 ilg gél% 1zg:ggl% l2g:g§9% 1221220%
16 b 199.86 193:223% 198:éia% 198:820% 208:230%
16 5 298.56 5722326% 5922257% é9$:229% 29gféil%
66 umem et kT e e
16 7 555,17 ;#3:820% 5221225% ;u§:%$6% éhéiggO%
16 8 713.08 ot e 32“% PR, %2%
16 9 890. T3 8221325% %éi:ggl% é2$:igl% é}?iggg%
16 10 1088.1 o S L o A
6 w05 A S ST
16 12 1542,1 ;33:%80% 11§§'§CO% 152?:356% 1&282229%
16 13 1798.7 ;Qi:ﬂéS% l;§§j§69% 15?2:225% 15?2:525%
16 14 2075.1 16%: éﬁ% 1322( > o 1532 586% 13"35 ;(62%
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TABLE IIT

MODE FREQUENCIES OF A UNIFORM CANTILEVER BEAM

85

Approximation Method

Mode Continuous ) 4 Passive
h h Symmetry Circuit
13, 766% 3.851% h.209%
! 3.5160 4. 0000 3,651k 3.6640
6.030% 1.812% 1.257%
1 .5160
2+ 3.728 3.5797 3,5602
- 1.3%89% 3.980% 10.674%
2 22. 034 21.728 22,911 24,386
1 3.5160 3.356% 1.135% 0.549%
3. 634 3.5559 3.5353
1.035% 1.938% 5.328%
2 .
22. 034 22,262 22,461 23,208
-17.941% - 1.520% 1.483%
> 51. 691 50. 628 60.759 62.612
1 3.5160 2.14k2% 0.060% 0.TT4% 0.284%
’ 3.5913 3.5181 3,54%2 3,5260
5 o3 1.153% 0.880% 1.L02% 2.927%
22.03 22,288 22,228 22,343 22.679
61.6 - 9.333% -11.665% 0.023% 3,232%
) ot 55.939 54,500 61.711 63,691
L 120. 90 -27.841% -23.956% - 8.313% - 6.898%
) 87.2L2 91.937 110.85 112.56
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TABLE III (Continued)

Approximation Method

N Mode Continuous 2 - Symmetry zzi:iZ:
T = U S SR
o (R L i
s s el Tghe SRR SET ahe
T I O A
T A S
A . S S R
-~ O
f 2 8L.697 B e e e 233% o 325%
R T A S o
A S
7 6 298.56 -38.354% -23. 520% -18.412% ;iﬁ:ggo%

184.05 228, 243,59
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TABLE III (Continued)
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Approximation Method

Mode  Continuous = ” Symmetey Pasaive
v oswe SER ORE SRR SR
2 22.03h zg:§$g% 2g:é$é% eg:ggg% 222;23%
3 61.697 "o o 3?5% Ay 6 léf?%
b 120.90 hg%?% Léjg% ﬁ&g?% m;g?%
L e P et e oo
s DI RES B i
Toowmes st BB S e’
L sme 5% SRE SRE 9F
2 22. 03k 222?21% eg:ég$% zg:igz% 2SZ§§$%
3 61.697 "o ?f;? 8 o028 6. %353%
e oo LEEF LERY R =T
T LT s
s owese  ael?t ASHT el ed”
Cwe B ORE BP ET
8 555.17 -43,707% -26.471% -24,504% -24.338%

312.52 408,21 419,13 420,05
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TABLE IIT (Continued)

Approrimation Method

N Mode Cont inuous o2 o4 symmety §éssiYe

ircuit
TR T G s
oo o P 20T 25 S
N T - L
s R T R o St L (s
o s wees et 2R et e
o6 eess Rt 2 wnt el
o 1 omes ol ST ea W
w8 mar BT NS s s
Y S L
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TABLE IIT {Concluded)

89

Approximation Method

N Mode Continuous 2 L4 symmetry P?s S iYe

Circuit
T - S S o
s me O 2R a0 S
H ’ 61697 -6é:§§i% 62:%'27% 62122% Paii
T M L
T R A ST
woosomes gt T SET Wi
T Rt
R At e o
woos o owme RETORET R i
R PR OO S oo st A g g




TABLE

v

PINNED BEAM, BASIC h¢ APPROXIMATION MODE

FREQUENCIES

Number of Cells N

Mode Continuous = 3 L 5 3 7 8 G 10 11 12 12 1k 15 16

1 5.8696 - -k 671% - 1.054% - C.343% - 0.1L% - 0.069% - 0.037% - 0.022% - 0.014¢ - 0.00% - 0.006% - 0.00l$ - 0.00% - 0.002% - 0.002% - 0.001%

9.388¢  9.7656  9.8357 9.8555 9.8628 9.8659 9.867L 9.8682 9.8687 9.86%0 9.8692 9.8693 9.8654 9.8654 9.8695

s 9LTE - e e . -15.440% - 4.869% - 2.115% - 1.054% - 0.578% - 0.342% - 0.21% - 0.142% - 0.0966 - 0.068% - 0.051% - 0.03% - 0.0%% - 0.020%

3172 37.5% 38.643 39.062 39.250 39.343 39.393 39,422 39.4L0 39.451 39.458 39, 46k 39.466 39.470

3 88.606 - - -+ v e e e e -19.759% - 9.363% - L.870% - 2.747% - 1.6566 - 1.05% - 0.700% - 0.483 - 0.34% - 0.251% - 0.187% - 0.14% - 0.110%

7L1.275 80.509 8. 500 86.386 87.355 87.891 88.204 88.297 88.521 88.603 88.660 88.699 88.728

L STOL e e e e e -2k ANTE -13.L38% - 7.884% - 4.870% - 3.14T$ - 2.135% - 2.469% - 1.051% - 0.77% - 0.5764 - 0.443% - 0.342%
15.78 136.69 14546 150,22 152.9%  154.57  155.59  156.25  156.69 157.00 157.21 157.37

5 BEELE e e e -27.296F -16.892% -10.789% - T.13%% - L.872% - 3.h25% - 24726 - 1.824% - 1.37h% - 1.oSM$ - 0.B19%
179.39  205.06  220.12  229.1k  234.72 238,29  2L0.64  2up ok 243,35 2bh 14 2k4 T2

6 BES.BL s et e e e -29.6L2p -19.760% -13.L42% - 9.36Mp - 6.679% - 4.8 - 3.62%% - 2.750% - 2,119% - 1.658%
245.99 285.10 307.55 322,04 331.58 338.00 342,43 345 54 347,78 35942

T S -31.543% -22.1b6F -15.810% -11.478% - 8.482% - 6.37% - 4.B70% - 3.TI6 - 2.965%
331.55  376.51  407.15  L2B.10 k2,59 L5278 L60.,06 465.35 469.25

B 63165  c v et e e e et e e e e -32.869% -2L.149% -17.905% -13.441% -10.226% - 7.88u% - 6.158% - L.870%
424 .03 479,11 518.55 5L6.75 567.06 581.85 592.7 600.85

G TGHEE v e e e e e e e e e -3h.028% -25.847F -19.759% -15.2M4% -11.885% - §.364% - T.L56h
527.41 592.81 641.L8 677.57 TOk 43 724,58 739.83

- e T T T T T -34.981% -27.297% -21.398% -16.890% -13.441% -10.7904
6k1.71  T7.55  TT5.77 820.26 854.30 880.47

R O B < T S -35.761% -28.548% -22.852¢  -18.389% -14.897%
: 766.90  853.28 921.31 974.59 1016.3

D - - T T -36.562%  -29.637% -2k.1ko%  -19.758%
902.98 999.97 1078.0 1140.4

v IR IEEE YL S IRCIPE
10%0.0 1157.6 1245.8

................................................................. -37.562%  -31.L41%
14 193hL.4 12075 13963

15 2R20.T v e e e et e e e e e e e e e e e e e e e e e e e e e, 15732-21-15
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Vn-172
R
'Vn+|/2 “Vnei/2
-yn+l Mna
Fig. . The analog computer circuit for «a typical beam cell using

approximations of order h® to four first-order differential equations.
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Fig. 2. The analog computer circuit for a typical

beam cell

using approximaotions of order h® to two second-order differential

equations.
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a. Mechanical representation of the simple finite

difference approximation to a uniform beam.

9n-|/2 9n+|/2
< ’m\h < f%_r 411 -
L= El :

SRR =‘Iﬁ S’n 000/ + ).'nﬂ \R0Q/
—7 o0 ' —~5 ’ oo+ * 750
L v 1. |
1 1771

b. Electrical representation of the simple finite

difference approximation to a uniform beom.

Fig. 3.
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o. Even symmetry about center (symmetric mode),
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b. Odd symmetry about center (antisymmetric mode),

Fig. 4.
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Anolog computer circuit for a four-cell

cantilever beam using differences of order h?

and second-order equations.

Fig. S.
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b. Analog computer circuit for o

beam using differences of order

order equations. The built-in end occurs at

station 172 aond the free end ot station 9/2.

Fig. 5.

four-cell cantilever

h® and first-
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Fiq. 6.
ends.
beam

a. Even symmetry

b. Odd symmetry

Analog computer circuit for o six-celi beom built-in at both
Differences of order h% are used. Only the left half of the

is represented.
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0. Even symmetry

b. Odd symmetry

Fig. 7. Analog computer circuit for a six-cell beam thot is pinned ot both
ends, using differences of order h2, In (a) the left half is represented,
while in (b) only the left quarter is represented, due to symmetry.
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Fig. 8. Analog computer circuit for a typical cell

using the central difference approximation of order

h* to the second derivative in x.
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Fig. 9. Analog computer circuit for o typical cell using staggered stations
and a central difference approximation of order h%
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Fig. 10. Symmetry assumptions for a cantilever beam. Solid
lines show assumptions used in computations. Dashed lines

indicate deviations giving a physically consistent set of
ossumptions.
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Fig. {1.

Possive circuit analogy for the basic h* opproximation.
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Fig. 12. Passive circuit analogy for a built-in end at station 1/2.
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Fig. 14. Caontilever, h2 gpproximation.
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Fig. I6. Contilever, h* approximotion.
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Fig. I7. Built-in, using symmetry.
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Fig. 18. Caontilever, using symmetry.
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Fig. 19. Built-in, possive circuit.
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Fig. 20. Contilever, possive circuit.
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Fig. 22.

Tapered

cantilever beam.
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Fig 23 Tapered cantilever, h? gpproximation.
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Fig. 24. Tapered cantilever, h* approximation.

115



116

|
(3]

ERROR IN PERCENT
]
ES

1
(&)

N
2 4 |\ 6 8 IC 12 14
[
&RD Ist

Fig. 25. Topered cantilever, using symmetry.
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Fig. 26. Tapered cantilever, passive circuit.

NASA-Langley, 1961






