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HEAT TRANSFER IN THE TJRBU_ INCOMPRKSSIBLE BOUNDARY LAYER

II - STEP WALL-T_MPERATURE DISTRIBUTION

By W. C. Reynolds_ W. M. Kays 3 and S. J. Kline

SUMMARY

Heat-transfer rates and temperature profiles for the turbulent in-

compressible flow of air over a flat plate with a stepwise temperature

distribution (unheated starting length) were measured for a variety of

step positions at Reynolds numbers up to 5.5_106. Comparison of the data

with existing heat-transfer analyses indicates that an improved analysis

is needed. An integral analysis is made that agrees very well with the

data and allows a simple correction for the unheated starting length.

In addition 3 a differential analysis is made that allows prediction of

the temperature profiles from the velocity profiles_ and good agreement

with experimental profiles is obtained.

INTRODUCTION

This report is the second of a series of four covering a three-year

investigation of heat transfer in the turbulent incompressible boundary

layer with arbitrary wall temperature (see ref. i). The first report

describes the experimental apparatus and presents results of experiments

with constant wall temperature (ref. 2). Results of experiments and

analyses for a step temperature distribution are presented herein. In

part III the step-function analysis is used to predict heat-transfer

rates for several cases of variable wall temperature_ and the predic-

tions are compared with experimental data (ref. 3). A simple method for

handling arbitrary wall-temperature problems is presented. Part IV pre-

sents an analysis of the effect of the location of the transition point

on heat transfer in the turbulent boundary layer and compares the re-

suits with experimental data (ref. A).

The problem of heat transfer from a flat plate with a stepwise tem-

perature distribution is of interest for two reasons. The "unheated

starting length" problem is in itself of interest; but more important_

the step temperature distribution provides the basis for analysis of
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problems involving more complex arbitrary wall-temperature distributions

by use of superposition (ref. 5). Accurate _aalyses of the problem of

step temperature distribution and experimenta_ confirmation of these

analyses are therefore of considerable importance. Prior to the present

investigation, the only measurements of local heat-transfer coefficients

with a step temperature distribution were thorpe of Scesa (ref. 5). These

data compare favorably with the analyses of Seban (ref. 5) and Rubesin

(ref. 6) over the range attainable with Scesa's experimental apparatus.

However_ this range was limited by the size of his test plate. The data

presented in the present report agree with the existing analyses in the

range of Scesa's data but depart significant_ from the analyses else-

where. The largest departure occurs close to the discontinuity in the

wall temperature, and this is the most critical region, with respect to

both departure from isothermal performance and use in superposition solu-

tions of more general problems. Thus an improved analysis is very
desirable.

The integral analysis presented in this report represents an im-

provement over the former analyses in that the number of approximations

has been reduced. The analysis involves assumption of the forms of the

velocity and temperature profiles and an assumption about the mechanism

of heat transfer. Use of the energy integral equation then leads to a

differential equation for the thermal boundary-layer thickness which_

upon solution 3 allows calculation of the heat transfer rates. This

analysis is in excellent agreement with both the present data and all

other previous data known.

As just noted, it is necessary in an integral analysis to assume

the shape of both the velocity and temperature profiles. In the present

analysis_ as in most such analyses, the two profiles have been assumed

to be similar in shape. However_ the velocity and temperature profiles

in the boundary layer just downstream of a step in the wall temperature

were carefully measured in the present investigation and were found to

be dissimilar in this region. If the velocity profile alone is assumed,
the differential energy equation of the boundary layer may then be

be solved in detail. This solution yields the temperature profile of

the boundary layer downstream of the step in _Ii temperature. This

analysis is referred to as the differential analysis and is presented in

detail in this report. The results of the differential analysis and the

measured temperature profiles agree well 3 and the heat-transfer predic-

tions are in reasonable agreement with the exyerimental data.

The present integral and differential anElyses are restricted to

fluids having Prandtl numbers of unity 3 but should be adequate for

fluids with Prandtl numbers near unity. Recently Ferrari made a simi-

lar differential analysis in which he included the effect of Prandtl

number and compressibility (ref. 7). This represents a considerable
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extension beyond the present analyses but is extremely complicated•

However, if the flow is incompressible_ Ferrari's result reduces to the

result of the integral analysis for any Prandtl number. It therefore

appears that the assumption of Prandtl number of unity does not seriously

limit the analyses presented herein. It is felt that the present analy-

ses are useful because of their simplicity and that they adequately repre-

sent the heat-transfer rates and temperature profiles.

An essential feature of the integral analysis is a unique method of

handling the shear stress and heat flux at the wall. Although profiles

having infinite gradients at the wall are employed, turbulent viscosities
and conductivities are constructed so that the wall shear and heat flux

are finite and have their correct values. The idea of using a velocity

profile with an infinite gradient at the wall is also employed in the

differential analysis• This technique eliminates the need for separate

consideration of a laminar sublayer and greatly simplifies the analyses.

This investigation was carried out at Stanford University under the

sponsorship and with the financial assistance of the National Advisory

Committee for Aeronautics.
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SYMBOLS

(m + 3)/(m + 2)

friction factor, _w/(Pu_/2)

expansion coefficients

specific heat at constant pressure, Btu/(ib)(°F)

hypergeometric function, i + ab x a(a+l)(b+l) x 2
7 i7 + c(c+l) 2:

r(cF(c-a-b).
hypergeometric function, r(c-a)r(c-b)

free-stre m=ssvelocity, lb/( )(sqft)

convective heat-transfer coefficientj q_/_t m

thermal conductivity of fluid, Btu/(hr)(ft)(°F)

L length of plate, ft



M

m

Nu

Num

Pr

Re_

Re x

Re

St

St T

T

Tw

T o

At

tm

tw

unheated starting length_ ft

m/(re+l) (m+2)

parameter in velocity and temperature profiles_ dimensionless

local Nusselt number, hx/k

mean Nusselt number over heated portion of plate

Prandtl number, _cp/k

heat flux in boundary layer, Btu/(hr)(sq ft)

heat flux at wall, Btu/(hr)(sq ft)

Reynolds number based on unheated starting length; G_/_

flow Reynolds number 3 Gx/_

Reynolds number based on 8, GS/V

local Stanton number, h/GCp

mean Stanton number over heated portion of plate

local Stanton number for isothexmal plate, f(Rex;Pr)

absolute temperature, OR

absolute wall temperature, OR

absolute free-stream temperature, OR

tw - t, oF

temperature in boundary layer, CF

mean temperature of heated stri_ 3 OF

tm - t, OF

wall temperature, OF

<0
<0
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Y
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sr

_t

sr

e H

s N

n

0

k n

Y

free-stres_n temperature_ OF

velocity in x-direction_ ft/sec

free-stream velocity_ ft/sec

velocity in y-direction_ ft/sec

_n _, dimensionless

distance from leading edge_ ft

distance from plate_ ft

U/U

gamma function, _0 e-ZzX-I dz =
(x-l):

thickness of hydrodynamic boundary layer; ft

thickness of thermal boundary layer; ft

fconduction thickness3 (i- O) dy, ft

eddy diffusivity for heat_ sq ft/hr

eddy diffusivity for momentum, sq ft/hr

zm+2

dimensionless temperature_ (tW - tb_)/(t w - t )

ei genvalue

viscosity of fluid, ib/(hr)(ft)

kinematic viscosity3 _/0_ sq ft/hr
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C

_b_

fluid density 3 ib/cu ft

variable of integration

shear stress in boundary layer_ ib/sq ft

shear stress at wall 3 ib/sq ft

ANALYSIS

Summary of Analyses

The problem of turbulent heat transfer from a flat plate with a

step temperature distribution (unheated starting length) has been treated

approximately in a number of ways. The results of the analyses can 3 in

general, be put in the form

St T

where StT represents the local Stanton number for heat transfer from a

plate at constant temperature. The function f(_/x) thus represents a

correction that may be applied to any suitable expression for the heat

transfer from an isothermal surface. Reference 2 shows that the heat-

transfer - momentum-transfer analogy of von K_rm_n (ref. 8) may be com-

bined with the friction analysis of Schultz-Grunow (ref. 9) to give

1.60(_n Rex) -2"G8
St T : (2)

I + 1.26(_n Rex )-1"29 [SPr + 5 _n(SPr + i) - 14]

This expression is felt to be the best available at the present time for

turbulent incompressible flat-plate heat transfer. For air_ having

Prandtl number 0.7, reference 2 shows that equation (2) may be repre-

sented in the range 105 < Re x< 10 7 by

StTPr 0"4 = 0.0296 Rex0"2(Sh -0"_ (3)

Equation (5) represents a modification of the familiar Colburn analogy

(ref. I0). In using equation (5), the fluid properties appearing in the

Stanton, Prandtl, and Reynolds numbers are to be evaluated at the free-

stream static temperature; the factor (Tw/T_) -0"A corrects for the

_c

_q
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effects of temperature-dependent fluid properties. Equation (3) is much

simpler than the von K/rm_n result (2), and therefore is useful for com-

putation purposes.

A first approximation to the step temperature distribution problem

can be obtained if the thermal effects are assumed independent of the

hydraulic effects_ in which case the heat-transfer rate can be determined

directly from equation (3) by forming the Reynolds number with the dis-

tance x - _ instead of with x. This results in

St = [1 _ (_)1-1/5

A second approximation was proposed by Rubesin (ref. 6)_ who at-

tempted to separate the thermal and hydraulic effects in a semiempirical

manner. Rubesin assumed I/7-power velocity and temperature profiles

and_ using the energy integral equation of the boundary layer_ arrived

at a differential equation between ST and x which 3 strictly speakingj

applies only if the plate is at constant temperature. His differential

equation contained a parameter m with which he proposed to separate

thermal and hydraulic effects. In comparing his result with the limited

data of Scesa (ref. 5), he chose the parameter m to be zero. His

final result may be put in the form

St= 1-
St T

(s)

Seban (ref. 5) used a i/7-power velocity profile and a temperature

profile that was linear near the wall. He "patched" the linear portion

to the i/7-power profile in the outer portion of the boundary layer.

Thenj by using the energy integral equation 3 Seban arrived at the fol-

lowing result:

st
St T

Except for the Prandtl number dependency_ this result is identical with

the integral analysis presented in the present work. One would expect

that_ well downstream of the step_ the effect of the step should die out 3

and St/St T should approach unity. Thus the factor Pr-2/9 gives an

improper limiting behavior for x _ -. This erroneous Prandtl number

dependency in Seban's solution is a result of his "patching" of the tem-

perature profile.



In using integral methods_ there is always a problem as to what to
use for the value of the heat flux at the wall (see eq. (16)). Rubesin
in effect modified the isothermal value_ while Seban used the slope of
the temperature profile in his laminar sublayer. The latter approach is
certainly more desirable_ but leads to the introduction of an incorrect
dependencyon Prandtl number. In the present integral analysis_ this
term is evaluated by a limiting procedure as the product of the slope of
a power profile (which is infinite at the wall) with an eddy diffusivity
(which is madezero at the wall in such a manner that the shear stress
and heat flux have their correct values). Then_ after assuming i/m-
power velocity and temperature profiles, one obtains

St-_tT =I I ____)4(m+2)/5(m+l)]-I/(m+2) (v)

For m = 7 this result is similar to Seban's but does not have the

erroneous Prandtl number dependency. Equation (7) with m = 7 is in

excellent agreement with the present data_ amd is recommended as the

best step temperature distribution analysis.

The chief objection to the integral methods is that the forms of

the velocity and temperature profiles must be assumed to be similar. It

is well known that this is approximately true for a constant-temperature

plate, but it is not true for nonisothermal heat transfer. To avoid this

assumption it is necessary to use the energy equation in differential form

and to solve directly for the temperature profiles. This has been done in

the present differential analysis. The heat-transfer rates may then be

determined from the slope at the wall, and the result may be written as

_o

Lm

(_) knS___t= i + Cn
St T

n=l

(s)

where Cn and k n are expansion coefficienbs and eigenvalues_ re-

spectively. The differential analysis is not in as good agreement with

the experimental data as the integral analysisj but it does allow pre-

diction of the temperature profiles and thus is of interest.

Recently Ferrari (ref. 7) has made a similar differential analysis_

except that he allowed for a sublayer. Ferrari included compressibility

effects_ fluid-property variations_ and Prandtl number effects_ and thus

his is probably the most advanced analysis available at the present time.

However_ for incompressible flow_ Ferrari's result reduces to the result

of the present integral analysis (eq. (7)), which is obtained far more

easily.
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In addition to the several analyses3 two empirical correction formu-
las have been proposed. Maisel and Sherwood (ref. ii) mademass-transfer
measurementsfrom a flat plate_ and Klein and Tribus (ref. 12) examined
their data and proposed the empirical relation

O_
C7_

O3
I

[s_Lt= 1 _
St T

(9)

Note that this equation is quite similar to the result of the present

integral analysis. Jacob and Dow (ref. 13) made mean heat-transfer meas-

urements on a cylinder in axial flow and found that the correlation of

their mean heat-transfer data implied the local Stanton number could be

given by

S___t= 0.8 + 0.2 - 0.78

St T

These empirical equations are in fair agreement with the present data.

Integral Analysis

The momentum equation for the incompressible boundary layer on a

flat plate may be written in the following form (see appendix D of ref. i):

(11)

Note that for y = 0 equation (ii) reduces to the more familiar momentum

integral equation

2 pu2 dx u
(lla)

Moreover 3 if y is set equal to 8 in equation (ii)_ the correct result,

•b_(X_B) = % is obtained. Now if it is assumed that the velocity profile

may be represented by an expression of the form

u_u_= (_) i/m (12)
u
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the shear-stress distribution in the boundary layer may be determined

from equations (ll) and (lla) as

_'b'I,(x.,Y) (ZS)(2+m'.)/m.,b (x,O) = 1- (13)

The mechanism for momentum diffusion in the ton'bulent boundary layer may

be described by

_b_!= eM_u (1,_)
p

Strictly speaking, equation (1A) holds only far away from the wall where

the viscous effects are negligible and all the momentum transfer is by

turbulent eddies. However_ the power profile assumed by equation (12)

will have an infinite gradient at the wall_ since m > l; if laminar

effects were included near the wall, the shear stress would have to be

infinite. It is therefore necessary to neglect the laminar terms and

construct an eddy diffusivity such that the wa]l shear stress has its

correct value. This is done simply by combining equations (12) 3 (13)3
and (1A) :

£D
Gq
Q

v -m-_-xRex i- (iS)

Note that the eddy diffusivity is zero both at the wall and at the outer

edge of the hydraulic boundary layer.

The energy equation for the boundary layer may be written as fol-

lows if dissipation is neglected and the temperature difference tw - t

is assumed constant in the region of interest:

fl_ __ (1 - e) @ (16)d

st = _ J0 u.

The mechanism for turbulent heat diffusion in the boundary layer may be

described by

q_ 8tb_

P

It will now be postulated that the eddy diffusivity for heat is equal to

the eddy diffusivity for momentum_ which is the familiar Reynolds analogy.
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But, since equations (IA) and (17) are assumed to hold everywhere in the

boundary layer_ even near the wall_ this postulation implies that the

Prandtl number is I. This is no serious restriction on the analysis_
since the result will simply be a correction on the isothermal Stanton

number_ and the Prandtl number dependence can be later incorporated in

the expression for the isothermal Stanton number (3). The final assump-

tion of this analysis is that the temperature profile is similar to the

velocity profile_ based on its own boundary-layer thickness:

0 = (is)

Note that no other power profile could be used_ or the heat flux at the

wall would be infinite. Combining (15) and (18) with (17) gives

pCpU®(t w - t®) = _- i -
(19)

Setting y = 0 in equation (19) gives

St = _- (2o)

This expression will now be used as the left side of equation (16).

Then_ for the assumed velocity and temperature profiles 3

m i/m
(21)

Integration of (21) yields

=tj 0

where

m+l

m

8(Z) is the hydraulic boundary-layer thickness at x = Z. The

integrations result in

_-_7 _ - (zs)
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which is equivalent to

[5__] (m+2)/(_+l)) .i/(2_ )

It is well known that in the range lO A < Re x < 107 the boundary-layer

thickness 5 varies as x4/53 and thus equation (25a) may be written as

_,[,,_
-k/(e+m)

(24)

Substituting (24) in (20) gives

St = T -

-1/(e_)

Note that_ far away from the discontinuity in wall temperature_ where

_/x _ O, St _ St T = Cf/2. Thus_ the final result may be written as

St [l(_)4(m+g)/S(m+l)] -1/(2+m)g_m = -
(26)

If m is taken as 73 equation (26) reduces to

(2Ga)

The mean Stanton number at the end of a llate of length L

fined as the mean St over the heated portion of the plate_

LI St(x) dx
Stm- L -

is de-

(27a)

From equations (26) and (5) (for m = 7),

St T L- _ , Jl

d_

(D
Ol
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The integral is readily evaluated by setting o9/I0 = z 3 and finally

5 2/Io 9/io

St T L_ i

(28)

Note that_ as L/_ -_

Stm S (28a)m m

StT A

which is the well-known result for the constant-temperature plate (ref.

IA). In equations (27b) to (28a), St T is to be evaluated at L.

Differential Analysis

The energy equation for the turbulent incompressible boundary layer

may be writte% neglecting dissipation and assuming that tw - t is

constant in the range of interest_ as

ao ao a {%_]
(29)

Again it is assumed that the heat-transfer mechanism everywhere in the

boundary layer is given by equation (17). In this analysis it will again

be assumed that the velocity profile may be given by an expression of

the form

(_]i/m (m _ 5 to 8) (12)%-=
Vl

It should be observed that; although the velocity gradient is infinite

at the wall; a reasonable answer will be obtained. The continuity equa-

tion for incompressible flow is

au av (3o)
+_ : o

Combination of equations (12) and (30) gives

(31)
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The eddy diffusivity for heat was calculated for the integral analysis

and is_ assuming Z H = _M_

--v= m -_ _ Rex - (15)

Note that the assumption SH = gM everywhere in the boundary layer_ in-

cluding the region near the wall, again _lies Pr = i. Now 3 if new

coordinates

= x/_

= y/6

are introduced_ eq_tion (29) transfo_ns to

(3_)

Substitution of (12) in (lla) results in

Cf m dO dO t %

= ( )_ +)-m+l"-m-Z" _ ="M--dx _55J

where M : m/(m+l)(m+2). Blasius has propo_ed that, for turbulent flow

over a flat plate_ the friction factor and boundary-layer thickness may

be related by (see ref. i_)

Cf
-_' = 0.0228 Re8 l/_ (54)

which 3 when combined with (55)_ leads to

o _/5 -_ls_.,-_lS_exO.2-: (o.o228) (o.8)
x

(ms)

and

Cf
7- : (o.o2_.8)_/S(o.8)1/5_.l/_e_O'_ (56)
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Substituting (12), (Sl), (iS), (55), and (36) into (52) gives

_o Be SMm[_l_(i/m)+ - = _2

(37)

With the change of coordinates

w=Zn

u 1/mZ _ I _

u
mm

equation (57) can be reduced to

Be _ O.8M (z-m z2) _e
Bw m - _z--7

(38)

This linear parabolic differential equation resembles the equation de-

scribing transient heat conduction in a slab; and techniques similar to

those used in such problems will be used in its solution. Equation (58)

is to be solved in the region w > 0 for 0 < z < i. The boundary

conditions for 8(w;z) are

(39)

In addition; there is the "initial" condition that the boundary-layer

air must be at the free-stream temperature at the start of the heated

section} that is;

e(O,z) = 1 (40)

In handling transient conduction problems it is convenient to divide

the solution into "transient" and "steady-state" components. The same

technique is useful here. The "steady-state" solution is simply the tem-

perature profile far downstream of the temperature discontinuity;

ess= = z (_i)

Note that 8 = z satisfies equation (58).
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Thus, a is divided into

e-- z +_(w,z)

where _(w,z) is to satisfy

7w = m (z-m_zZ)--_

subject to the boundary conditions

•(w,0)= 0

_(w,l)= o

and the "initial" condition

(_2)

(As)

(44)

,(O,z)= 1 - z (As)

Equation (4S) is solved by separation of variables; where it is

assumed that

, = W(w)Z(_.) (46)

W-- = 0.8M (z_ m _ zE ) _Z'__'= _ k (47)
W m Z

W(w) is

which leads to

The resulting differential equation for

w' = -xw (As)

(49)

(so)

which has the solution

(si)

W = Ce -_w

The differential equation for Z(z) is

Z" + m XZ = 0

o.sM(z-m _ z2)

The transformation _ = zm+2 reduces equation (50) to

d_Z (m+l_(1 - _) _ _ _
_(i-_) _ + \m+2/ _ + [m+2) _ Z = 0

c
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which has the solutions (ref. IS; p. 178)

z : ClF(%_;_) + C2_i-_F(_-_+i,_-r+l;2-r_)

where

Now from (44),

and thus

From (44),

_ = _ [i -_I $ Sk(m+l)(m+2)]

1 [i + Vl + 5X('m+l)(m+2)]

m+l
y -

m+8

z(o)--0

Cl=0

z(1) : o --C2_(_-_+i,_-_+l;2-r;1)

But it is well known that (ref. 16)

F(c)F (c-a-b)
F(a,b,o_l) --r(c-a)r(o-b)

and thus_ from (55); since C8 is not zero_

r (m+3_ r (1)
kin+2/O-

F { 23n+S-B _ F { ?_+S+B_
k 2m+2 J \ 8m+2 ]

where

B --gl + SX(m+l)(7+2)

(52)

(ss)

(s4)

(5s)



18

Since the gamma function of a negative integer is infinite, the

eigenvalues are given by

2m+5-B

2m+2
= -n+l (s6)

n = 1,2;...

and thus the eigenvalues are

kn [2(n-l)(m+2) + 2m + 5] 2 - 1
= 5(m+l)(m+2) (57)

The solution for @ may now be reduced to

m

- _nW ,

@ = E Cne zF_n-l+a,-n;a; zm+2)

n=l

(58)

where a = (m+S)/(m+2).

It is now necessary to expand @ as a se_ies of eigenfunctions in

order to satisfy the initial condition (45). it may be shown that

(ref. 15, p. 225)_ if Zj and Zk are solutions of (50) associated

with the eigenvalues kj and kk_ respectively_ the solutions Zj and

Zk have the following orthogonality property:

_o l zjzk_ =o -:_ j /z (59)
1

z-m _ z2

Thus by multiplying (58) by

2 zF(n-l+a'-n;a; zm+2)

setting w = O_ and integrating from z = 0 t(_ z = i_ the constants

Cn may be evaluated as

C
n

1 i - z zF(n-l+a;-n; a} zm+2 ) dz
z-m _ z 2

/0 Iz2F2(n'l+a'-n}a;zm+2) dz
z-m z2

(60)

(0
£0

ql



19

LO

Ob

0

(,o
!

0

Since the second argument of the hypergeometric function is a negative

integer_ the functions are actually polynomials_ and the coefficients may

be evaluated by expansion and integration term by term. This has been

done for n = i_ 2_ and 3_ resulting in

CI = (a - l)(a + i)

c2= a (a- 1)(a+ 3)

C3 = a2(a - l)(a + l)2(a + 5)
36

Evaluation of the higher order coefficients is tedious and is best

accomplished by numerical methods. This has been done for m = 5.6;

which applies in the Reynolds number range of the present data; and it
was found that

CA = 0.iii0

C5 = 0.O94O

The final solution for o(xl ,Ws)may be written as

8: i+ Gn
n=l

(6l)

where

Gn(_)- F In- l+a, - n.; a._ (_) (m+2) / 1 (62)

The heat-transfer rate may be found by differentiation of (61) and

use of (17) at y = O. This resmlts in

St - i + Cn
StT n=l

(63)

The hypergeometric functions of interest in determining the first

five eigenfunctions for m = 5.6 have been calculated to four decimal

places with an IBM 650 digital computer° These functions are given in

table I and are shown in figure I.
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Comparisonof Analyses with Heat-Transfer Experiments

A heated plate with an active flow lengt_ of about S feet was used
in this investigation. The heated surface corsisted of Z_ individually
heated strips_ thermally insulated from each other. Within control
limitations_ anj desired surface temperature or heat-flux distribution
could be set up and desired heat-transfer measurementsobtained. The
experimental apparatus and techniques are described in detail in refer-
ence 2.

Eighteen runs were madefor which a step wall temperature existed.
Data were obtained at flow Reynolds numbersup to 3.5×i06_ with step
Reynolds numbersranging from 0.5×106 to 3×106. These data are pre-
sented in table ll(a). The discontinuities were quite sharp_ and ex-
cellent "steps" were obtained. In reducing tkese data_ allowance was
madefor conduction between the strips within the plate_ and this cor-
rection was only important for the first heated strip. The experimental
Stanton n_nbers are actually the average Stanton numberover each strip_
since the strips are of finite flow length. An analysis indicated that
the Stanton numberat the center of the strip3 where the Reynolds number
is calculated_ does not differ significantly _rom the average over the
strip_ the largest difference occurring on the first heated strip3 where
the average Stanton numberexceeds the Stanton numberat the strip center
by only about 2 percent. For all other strips_ the difference is less
than 1/2 percent. Analysis indicated that the imperfectness of the dis-
continuity in the surface temperature reduced the heat transfer on the
first heated strip from the abrupt-discontinuity value by about 2 per-
cent and had no appreciable effect on the heat transfer from the strips
farther downstream. Since the error in averaging was approximately
compensatedfor by the error due to the step imperfection_ no correc-
tion wasmadefor either.

The data are showngraphically in figure 2. It can be shown (ref.
17) that an adequate method for considering the influence of temperature-
dependent fluid properties for gas flow in both external and internal
boundary layers is to evaluate all fluid properties at the free-stream
static temperature and then to include all temperature-dependent property
effects in a factor (Tw/T) m, where the exponent m is a function of
ge_rletry alone. Examination of the recent results of an analysis of
Deissler and Loeffler (ref. i_) indicates that_ for the turbulent in-
compressible boundary layer_ the Stanton n_nber varies as --(Tw/T)-0"4• #

other things being equal. Thus the results are presented in the form

St(Tw/T) 0"A against Re x .

cO
cO
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Reference 2 shows that heat transfer to air from isothermal plates

may be represented by

StTPr0"4 = 0.0296 Rex0"2 (TT--_w)-0"4

Equation (5) is plotted in figure 2. The effect of the unheated start-

ing length is considerable (especially near the step; where the data

show a correction as large as 50 percent of StT) ; and the data gradually

approach the isothermal correlation downstream of the wall-temperature

discontinuity.

The data are compared with the various analyses in figure S. The

ratio of the local Stanton number to the isothermal Stanton number as

given by equation (3) is plotted against the factor i - (_/x)9/iO;

which alloys equation (26a) to be plotted as a straight line with a -1/9

slope. The simple analysis that neglects the dependence of heat transfer

on the hydraulic boundary layer (4) is high near the step; as is the

semiempirical analysis of Rubesin (eq. (5)). The Seba_ result (eq. (6))

lies parallel to the data but is displaced by the Pr-2/9 factor. The

integral analysis employing i/7-power profiles (eq. (26a)) is in excel-

lent agreement with the data over the entire range. However; in the

Reynolds number range of these tests; the velocity profile is actually

closer to a i/5.6-power profile (see fig. 7). The differential analysis

for m = 5.6 is slightly high near the step because; near the step;

most of the thermal effects are confined to the region near the wall;

where the assumed velocity profile is least accurate (see fig. 9(a)).

Downstream; where the power profile is a good approximation; the differ-

ential analysis for m = 5.6 is in good agreement with the data. The

success of the integral analysis for m = 7 probably lies in the fact

that the temperature profiles just downstream o£_the step are consider-

ably "fatter" than the velocity profiles{ and thus are actually closer

to I/7-power profiles (see figs. 8 and 9).

Since the agreement of the present integral result (eq. (26a)) with

the experimental data is so good; equation (26a) is recommended as the

best correlation available at the present time for a step temperature

distribution in turbulent incompressible flow. The data are shown as

correlated by this equation in figure 4. The correlation is excellent

over the entire test range.

_le data of Scesa (ref. 5) have been correlated in a similar manner;

and this correlation is shown in figure 5. Most of Scesa's data were

obtained for a double step in the wall temperature; and thus a more com-

plicated correction was necessary. For this reason the "corrected
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Nusselt number" is plotted against Rex3 the correction method following
the double-step example of reference S. These data were obtained over a
rather limited range_ as is indicated by figure 5_ and there is con-
siderable scatter in the data. The accuracy of data obtained from the
present apparatus is believed to be conside:rably better than that ob-
tained with Scesa's small plate. This view is substantiated by the
presence of less scatter in the present data.

The meanheat-transfer measurementsof Jacob and Dow(ref. 15) are
comparedwith the present analysis (eq. (28)) in figure 6. These data
were obtained from tests on a cylinder in axial flow 3 and the Reynolds
numberwas low so that transition effects may have been of someimportance.
In consideration of these facts_ the agreement of these data with equa-
tion (28) is believed to be very satisfactory. These data are also pre-
sented on the basis of a corrected meanNusselt number against Rex .

Comparisonof Survey Data with _eoretical Results

Figures 7 and 8 show velocity and temperature profiles obtained for
constant wall temperature_ as reported in reference 2. The profiles are
similar and maybe represented very well by a i/5.6-power formula. The
apparatus used to obtain these data and the survey data presented here-
in is described in detail in reference 2.

Temperature surveys with a step wall-t_mperature distribution were
obtained at three points on the plate and at two different velocities
for each point. In these tests the first ll strips were unheated, and
the remaining strips were held at constant temperature. The data from
these surveys are shownin table ll(b) and are comparedwith the pro-
files predicted by the differential analysis (m = 5.6) in figure 9. In

these comparisons the _ermal boundary-layel thicknesses were determined

in the manner described in reference E_ the conduction thickness _

was determined by numerical integration of the temperature profile_ and

the "best power fit" to the data was determined by plotting @ against

y on log-log paper. The conduction thickness is related to the

thermal boundary-layer thickness for a power profile of the form

@ = (y/_T)I/m by the equation

--(i+

The values of ST determined in this manner were quite close to the

99-percent thicknesses (ref. 2). In determining the thermal boundary-

layer thickness from the differential solution_ the same techniques
were applied.
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The surveys closest to the step (x/_ = 1.20) showwhy the heat-
transfer rates predicted from the differential analysis are not too good
near the step. Near the step_ most of the thermal effects are confined
to the innermost portions of the boundary layer 3 where the velocity
profile assumedfor the analysis is least accurate. The predicted and
experimental profiles near the step are not in agreement3 as is shown
by figure 9(a). Farther downstreamthe predictions are remarkably ac-
curate, as shownby figures 9(b) and (c). These survey data also show
why the integral analysis employing i/7-power profiles works so well_
the temperature profiles downstreamof the temperature discontinuity are
muchfatter than the velocity profile_ and in fact are quite close to
being i/7-power profiles. This is probably responsible for the success
of the integral analysis with m = 7.

CONCLUDINGREMARKS

An integral analysis has been obtained that allows calculation of
heat transfer from a flat plate with a step wall-temperature distribution
(eq. (26a)). The analysis is in excellent agreement with experimental
heat-transfer data of the present and earlier investigations. A differ-
ential analysis was obtained that allows the prediction of the tempera-
ture profiles in the boundary layer downstreamof the temperature dis-
continuity. The predicted profiles are in good agreement with experi-
mental profiles_ but the heat-transfer rates predicted by this analysis
are slightly high near the temperature step.

The method of handling the heat-transfer rate at the wall used in
the integral analysis is unique in that it allows a power profile having
an infinite gradient at the wall to be used everywhere in the boundary
layer_ while still yielding good results. This eliminates cumbersome
"patching" of profiles to obtain a finite slope at the wall. The same
technique was used in the differential analysis_ wherein the energy
equation was solved in spite of the infinite velocity and temperature
gradients at the wall. It is believed that this method mayalso be use-
ful in the treatment of more complex problems_ such as flows with pres-
sure gradients_ since it provides both analytical simplicity and accurate
prediction in the cases thus far explored.

The recommendedcorrelation for heat transfer in the case of a step
wall temperature is the result of the integral analysis_

StT - _ (__)9/i 1/9 (26a)
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The isothermal Stanton number StT for incompressible flow maybe com-
puted from the relation

-0.4

0.0296 RexO'2pr-O'A{_w] (5)StT=
\®/

In this relation the fluid properties are to be evaluated at the free-

stream static temperature.

Stanford University;

Stanford; Calif.; October ES; 1987.
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TABLE I. - HYPERGEOMETRIC FUNCTIONS FOR

[Fn(z)

STEP-FUNCTIONANALYSIS

= F(n-l+a,-n;a;z); a : (m+3)/(m+2);

m = 5.6.]

FI(Z ) F_(z) F3(z) F4(z) F5(z)

0

.05

.i0

.15

.20

.25

.50

.35

.40

.45

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95

1.00

1.0000 1.0000 1.0000 1.0000 1.0000

.9500 .8250 .6240 .5932 .1571

.9000 .6509 .5219! .O011 -.2518

.8500 .4972 .0871 -.E21A -.5286

.8000 .5572 -.0876 -.5146 -.2591

.7500 .2511 -.2072 -.5146 -.1170

.7000 .1188 -.2797 -._529 .0522

.6500 .0204 -.3114 -._569 .1474

.6000 -.0642 -.5087-.0490 .2079

.5500 -.1549 -.2784 .0526 .2095

.5000 -.1919 -.2269 ./359 .1609

.4500 -.2549 -.1608 .1859 .0791

.4000 -.2642 -.0868 .:_055 -.0137

.5500 -.2796 -.0115 .i865 -.0946

.3000 -.2812 .0586 .L589 -.1435

.2500 -.2689 .1169 ._)692 -.1472

.2000 -.2428 .1567 -.()095 -.1055

.1500 -.2028 .1716 -.0780 -.0242

.i000 -.1491 .1548 -._202 .0594

.0500 -.0745 .0154 -.{)158 .0123

0 0 0 0 0
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TABLE II. - EXPERIMENTAL DATA SUMMARY
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TABLE II. - Continued. EXPEIRIMENTAI DATA SUMMARY
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Figure i. - Hypergeometric functions for step-function analysis.

Fn(Z ) = F(n-l+a, -n; a; z); a = (m+3)/(m+2); m = 5.8.
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