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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 12-2-58W

HEAT TRANSFER IN THE TURBULENT INCOMPRESSIBLE BOUNDARY IAYER
1T - STEP WALL-TEMPERATURE DISTRIBUTION

By W. C. Reynolds, W. M. Kays, and S. J. Kline

SUMMARY

Heat-transfer rates and temperature profiles for the turbulent in-
compressible flow of air over a flat plate with a stepwise temperature
distribution (unheated starting length) were measured for a variety of
step positions at Reynolds numbers up to 3.5x106, Comparison of the data
with existing heat-transfer analyses indicates that an improved analysis
is needed. An integral analysis is made that agrees very well with the
data and allows a simple correction for the unheated starting length.

In addition, a differential analysis is made that allows prediction of
the temperature profiles from the velocity profiles, and good agreement
with experimental profiles is obtained.

INTRODUCTION

This report is the second of a series of four covering a three-year
investigation of heat transfer in the turbulent incompressible boundary
layer with arbitrary wall temperature (see ref. 1). The first report
describes the experimental apparatus and presents results of experiments
with comnstant wall temperature (ref. 2). Results of experiments and
analyses for a step temperature distribution are presented herein. In
part III the step-function analysis is used to predict heat-transfer
rates for several cases of variable wall temperature, and the predic-
tions are compared with experimental data (ref. 3). A simple method for
handling arbitrary wall-temperature problems is presented. Part IV pre-
sents an analysis of the effect of the location of the transition point
on heat transfer in the turbulent boundary layer and compares the re-
sults with experimental data (ref. 4).

The problem of heat transfer from a flat plate with a stepwise tem-
perature distribution is of interest for two reasons. The "unheated
starting length" problem is in itself of interest; but more important,
the step temperature distribution provides the basis for analysis of
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problems involving more complex arbitrary wall-temperature distributions
by use of superposition (ref. 3). Accurate analyses of the problem of
step temperature distribution and experimental confirmation of these
analyses are therefore of considerable importance. Prior to the present
investigation, the only measurements of local heat-transfer coefficients
with a step temperature distribution were those of Scesa (ref. 5). These
data compare favorably with the analyses of Szban (ref. 5) and Rubesin
(ref. 6) over the range attainable with Scesa's experimental apparatus.
However, this range was limited by the size of his test plate. The data
presented in the present report agree with the existing analyses in the
range of Scesa's data but depart significantly from the analyses else-
where. The largest departure occurs close to the discontinuity in the
wall temperature, and this is the most critical region, with respect to
both departure from isothermal performance and use in superposition solu-
tions of more general problems. Thus an improved analysis is very
desirable,

The integral analysis presented in this report represents an im-
provement over the former analyses in that the number of approximations
has been reduced. The analysis involves assumption of the forms of the
velocity and temperature profiles and an assumption about the mechanism
of heat transfer. Use of the energy integral equation then leads to a
differential equation for the thermal boundary-layer thickness which,
upon solution, allows calculation of the heat-transfer rates. This
analysis 1s in excellent agreement with both the present data and all
other previous data known.

As just noted, it is necessary in an integral analysis to assume
the shape of both the velocity and temperature profiles. In the present
analysis, as in most such analyses, the two profiles have been assumed
to be similar in shape. However, the velocity and temperature profiles
in the boundary layer just downstream of a step in the wall temperature
were carefully measured in the present investigation and were found to
be dissimilar in this region. If the velocity profile alone is assumed,
the differential energy equation of the boundery layer may then be
be solved in detail. This solution yields the temperature profile of
the boundary layer downstream of the step in wall temperature. This
analysis is referred to as the differential aralysis and is presented in
detail in this report. The results of the differential analysis and the
measured temperature profiles agree well, and the heat-transfer predic-
tions are in reasonable agreement with the experimental data.

The present integral and differential anclyses are restricted to
fluids having Prandtl numbers of unity, but slhould be adequate for
fluids with Prandtl numbers near unity. Recently Ferrari made a simi-
lar differential analysis in which he includeé the effect of Prandtl
number and compressibility (ref. 7). This represents a considerable

S66%



4995

CW-1 back '

extension beyond the present analyses but is extremely complicated.
However, if the flow is incompressible, Ferrari's result reduces to the
result of the integral analysis for any Prandtl number. It therefore
appears that the assumption of Prandtl number of unity does not seriously
limit the analyses presented herein. It is felt that the present analy-
ses are useful because of their simplicity and that they adequately repre-
sent the heat-transfer rates and temperature profiles.

An essential feature of the integral analysis is a unique method of
handling the shear stress and heat flux at the wall. Although profiles
having infinite gradients at the wall are employed, turbulent viscosities
and conductivities are constructed so that the wall shear and heat flux
are finite and have their correct values. The idea of using a velocity
profile with an infinite gradient at the wall is also employed in the
differential analysis. This technigue eliminates the need for separate
consideration of a laminar sublayer and greatly simplifies the analyses.

This investigation was carried out at Stanford University under the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics.

SYMBOLS
a (m + 3)/(m + 2)
Cp friction factor, Tw/(pus/z)
Cn expansion coefficients
cp specific heat at constant pressure, Btu/(1b)(°F)

2
) X ab x  ala+l)(b+l) x
F(a,bjc;x) hypergeometric function, 1 + = 13 +~—£E(€II7——— STt e e -

F(c)T (c-a-b)

F(a,bjc;1) hypergeometric function, Tlo-a)T(cb)

G free-stream mass velocity, pu_, 1b/(hr)(sq ft)
h convective heat-transfer coefficient, q;[Atm
k thermal conductivity of fluid, Btu/(hr)(ft)(°F)

L length of plate, ft



St

Sty

St

Tw

At

tbhl

Aty

unheated starting length, ft

m/(m+l)(m+2)

parameter in velocity and temperature profiles, dimensionless
local Nusselt number, hx/k

mean Nusselt number over heated portion of plate

Prandtl number, pcp/k

heat flux in boundary layer, Btu/(hr)(sq ft)

heat flux at wall, Btu/(hr)(sq ft)

Reynolds number based on unheated starting length, GZ/u
flow Reynolds number, Gx/u

Reynolds number based on O, GS/p

local Stanton number, h/ch

mean Stanton number over heated portion of plate

local Stanton number for isothermal plate, f(Rey;Pr)

absolute temperature, OR

absolute wall temperature, °R
absolute free-stream temperature, °R
t, - t,, °F

temperature in boundary layer, °F
mean temperature of heated strir, °F

tm = t., OF

wall temperature, °F
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t free-stream temperature, °F

-
u velocity in x-direction, ft/sec
U free-stream velocity, ft/sec
v velocity in y-direction, ft/sec
W in &, dimensionless
X distance from leading edge, ft
Yy distance from plate, ft
Z u/u.
T (x) gamma function, ‘ e~2z%"1 gz = (x-1)1
0
(3] thickness of hydrodynamic boundary layer, ft
Sp thickness of thermal boundary layer, ft
*
S conduction thickness, f (1L - 6) ay, ft
0
€y eddy diffusivity for heat, sq ft/hr
€y eddy diffusivity for momentum, sq ft/hr
4 Zm+2
g y/®
] dimensionless temperature, (tw - tbl)/(tw -
L eigenvalue
" viscosity of fluid, 1b/(hr)(ft)
v kinematic viscosity, p/p, sq ft/hr

£ x/[1

t)



P fluid density, 1b/cu ft
o} variable of integration
b1 shear stress in boundary layer, lb/sq ft
T shear stress at wall, lb/sq 't
ANALYSIS

Summary of Analyses

The problem of turbulent heat transfer from a flat plate with a

step temperature distribution (unheated starting length) has been treated

approximately in a number of ways. The results of the analyses can, in
general, be put in the form

St f(ﬁ) (1)

where O8tT represents the local Stanton number for heat transfer from a

plate at constant temperature. The function f(Z/x) thus represents a
correction that may be applied to any suitable expression for the heat
transfer from an isothermal surface, Reference 2 shows that the heat-
transfer - momentum-transfer analogy of von Kdrmén (ref. 8) may be com-
bined with the friction analysis of Schultz-Grunow (ref. 9) to give

1.60(1n Rex)"z'58
Stp = 1.29 (2)
1+ 1.26(In Rey) "% [5Pr + 5 In(5Pr + 1) - 14]

This expression is felt to be the best available at the present time for
turbulent incompressible flat-plate heat trensfer. For air, having
Prandtl number 0.7, reference 2 shows that equation {(2) may be repre-

sented in the range 10° < Rey < 107 by

T

.,

T \-0.4
0.4 -0.2( "w
StpPr " = 0.0296 Rey (-—) (3)
Equation (3) represents a modification of tke familiar Colburn analogy
(ref. 10). In using equation (3), the fluid properties appearing in the

Stanton, Prandtl, and Reynolds numbers are to be evaluated at the free-

"004:

stream static temperature; the factor (TW/Z') corrects for the

*
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effects of temperature-dependent fluid properties. Equation (3) is much
simpler than the von Kdrmdn result (2), and therefore is useful for com-
putation purposes.

A first approximation to the step temperature distribution problem
can be obtained if the thermal effects are assumed independent of the
hydraulic effects, in which case the heat-transfer rate can be determined
directly from equation (3) by forming the Reynolds number with the dis-
tance x - 1 instead of with x. This results in

A

A second approximation was proposed by Rubesin (ref. 6), who at-
tempted to separate the thermal and hydraulic effects in a semiempirical
manner. Rubesin assumed l/7-power velocity and temperature profiles
and, using the energy integral equation of the boundary layer, arrived
at a differential equation between ©op and x which, strictly speaking,

applies only if the plate is at constant temperature. His differential
equation contained a parameter m with which he proposed to separate
thermal and hydraulic effects. In comparing his result with the limited
data of Scesa (ref. S5), he chose the parameter m to be zero. His
final result may be put in the form

St _ [1 ) (l)39/4o]'7/59 s)

StT X

Seban (ref. 5) used a l/?-power velocity profile and a temperature
profile that was linear near the wall. He "patched" the linear portion
to the l/7-power profile in the outer portion of the boundary layer.
Then, by using the energy integral equation, Seban arrived at the fol-
lowing result:

St _ p.-2/9 [1 i (_2_)9/10]—1/9 ©

StT X

Except for the Prandtl number dependency, this result is identical with
the integral analysis presented in the present work. One would expect
that, well downstream of the step, the effect of the step should die out,
and St/StT should approach unity. Thus the factor Pr'2/9 gives an
improper limiting behavior for x -+ e, This erroneous Prandtl number
dependency in Seban's solution is a result of his "patching" of the tem-
perature profile.



In using integral methods, there is always a problem as to what to
use for the value of the heat flux at the wall (see eq. (16)). Rubesin
in effect modified the isothermal value, while Seban used the slope of
the temperature profile in his laminar sublayer. The latter approach is
certainly more desirable, but leads to the introduction of an incorrect
dependency on Prandtl number. In the present integral analysis, this
term is evaluated by a limiting procedure as the product of the slope of
a power profile (which is infinite at the wall) with an eddy diffusivity
(which is made zero at the wall in such a manner that the shear stress
and heat flux have their correct values). Then, after assuming l/m—
power velocity and temperature profiles, one obtains

st _ [l _(§)4(m+2)/5(m+1{}-l/(m+2)

StT - (7)

For m = 7 this result is similar to Seban's but does not have the
erroneous Prandtl number dependency. Equation (7) with m =7 1is in
excellent agreement with the present data, aad is recommended as the
best step temperature distribution analysis.

The chief objection to the integral metnods is that the forms of
the velocity and temperature profiles must be assumed to be similar. It
is well known that this is approximately true for a constant-temperature
plate, but it is not true for nonisothermal heat transfer. To avoid this

assumption it is necessary to use the energy equation in differential form
and to solve directly for the temperature profiles. This has been done in

the present differential analysis. The heat-transfer rates may then be
determined from the slope at the wall, and the result may be written as

St - 1 *n
-S—t—"Il =1 + Z Cn(;) (8)
n=1
where C, and kn are expansion coefficients and eigenvalues, re-

spectively. The differential analysis is not in as good agreement with
the experimental data as the integral analysis, but it does allow pre-
diction of the temperature profiles and thus is of interest.

Recently Ferrari (ref. 7) has made a similar differential analysis,
except that he allowed for a sublayer. PFerrari included compressibility
effects, fluid-property variations, and Prandtl number effects, and thus
his is prcbably the most advanced analysis available at the present time.
However, for incompressible flow, Ferrari's result reduces to the result
of the present integral analysis (eq. (7)), which is obtained far more
easily.
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Tn addition to the several analyses, two empirical correction formu-
las have been proposed. Maisel and Sherwood (ref. 11) made mass-transfer
measurements from a flat plate, and Klein and Tribus (ref. 12) examined
their data and proposed the empirical relation

% _ {1 _(3-7;)0.8:]-0.11 o)

Note that this equation is quite similar to the result of the present
integral analysis. Jacob and Dow (ref. 13) made mean heat-transfer meas-
urements on a cylinder in axial flow and found that the correlation of
their mean heat-transfer data implied the local Stanton number could be
given by

2e715 3.75
St - 0.8 + 0.2(1) - 0.78(-7'-) + 1.18(1) (10)
StT X X X

These empirical equations are in fair agreement with the present data.

Integral Analysis

The momentum equation for the incompressible boundary layer on a
flat plate may be written in the following form (see appendix D of ref. 1):

To1(0¥) 4 [P u a u Vo uda Y (u
el g [Cre-D)e g ) @) v-as), ()
(11)

Note that for y = O equation (11) reduces to the more familiar momentum
integral equation

C T o}
_£ — v = jL s (l - ﬁi) dy (lla)

Moreover, if y is set equal to 5 1in equation (ll), the correct result,
Tbl(x,B) = 0, is obtained. Now if it is assumed that the velocity profile

may be represented by an expression of the form

o (%)l/ " (12)

u
]
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the shear-stress distribution in the boundary layer may be determined
from equations (11) and (1lla) as

T3 (%,¥) . (X)(2+m)/m

szix,Oi - )

(13)

The mechanism for momentum diffusion in the turbulent boundary layer may
be described by

bl du (14)

Strictly speaking, equation (14) holds only far away from the wall where
the viscous effects are negligible and all the momentum transfer is by
turbulent eddies. However, the power profile essumed by equation (12)
will have an infinite gradient at the wall, since m >1; if laminar
effects were included near the wall, the shear stress would have to be
infinite. It is therefore necessary to neglect the laminar terms and
construct an eddy diffusivity such that the wall shear stress has its
corr?ct value. This is done simply by combinirg equations (12), (13),
and (14):

SR £ O [

Note that the eddy diffusivity is zero both at the wall and at the outer
edge of the hydraulic boundary layer.

The energy equation for the boundary layer may be written as fol-
lows if dissipation is neglected and the temperature difference ty - q_

is assumed constant in the region of interest:

St = d d/”BT u e
t~§o —u:(l-)dy (16)

The mechanism for turbulent heat diffusion in the boundary layer may be
described by

Sy, T
pe_ = ~*H By (17)

It will now be postulated that the eddy diffusivity for heat is equal to
the eddy diffusivity for momentum, which is the familiar Reynolds analogy.

*Se6v
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But, since equations (14) and (17) are assumed to hold everywhere in the
boundary layer, even near the wall, this postulation implies that the
Prandtl number is 1. This is no serious restriction on the analysis,
since the result will simply be a correction on the isothermal Stanton
number, and the Prandtl number dependence can be later incorporated in
the expression for the isothermal Stanton number (3). The final assump-
tion of this analysis is that the temperature profile is similar to the
velocity profile, based on its own boundary-layer thickness:

o - (gE)l/ " (1)

Note that no other power profile could be used, or the heat flux at the
wall would be infinite. Combining (15) and (18) with (17) gives

apy S [1 ) (Z)(2+m)/31(fﬁj-l/m 19

pcpuw(tw -t ) 2 ) 5

oo

Setting y = O in equation (19) gives

c (83)-l/m
_
5t = = \§ (20)
This expression will now be used as the left side of equation (16).
Then, for the assumed velocity and temperature prefiles,
o (6T>-l/m <5T)(l/m)+l 45 (5T>l/m d(5q/3)

Integration of (21) yields

B(X) 5 /5 Z/m
%é ___IT m+1 (—S—ST) a (%‘) (22)
50) . m l._(%j@ﬁﬂ+l

—

where ©&(1) is the hydraulic boundary-layer thickness at x = 1. The
integrations result in

x (24) fm]~ (m+1) /(m+2)
NG .

d
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which is equivalent to

(23a)

oy { . [s . ](m+2)/(m+l)l -1/(2+n)

dix J

It is well known that in the range 10% < Re, < 107 the boundary-layer
thickness & varies as x4 5, and thus equation (23a) may be written as

4(m+2) /5(m+1)] -1/ (2+m)
% ) [l ) e) } (24)
Substituting (24) in (20) gives
m m: 3 -l/(2+m)
St = 3211 [l i (%)4( +2) /5( +1,] -

Note that, far away from the discontinuity in wall temperature, where
1/x » 0, St » Stp = Cf/2. Thus, the final result may be written as

4(m+2) /5(m+1)] -1/ (24m)
g%; - [} - (%) | (26)

If m is taken as 7, equation (26) reduces to

St e/20]
- [% - (E) ] (268)

The mean Stanton number at the end of a plate of length L is de-
fined as the mean 8t over the heated portion of the plate,

L
1
Sty = T3 ./; St(x) dx (27a)

From equations (26} and (3) (for m = 7),

g_z_m -1 (l)-o.z .];L/Z g=0-2 (l - 0"9/10)—1/9 do (27)

T L-11\L

S66%
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The integral is readily evaluated by setting 09/10 = z, and finally

fropp9/10 %8
w 20710

Sto % 1 - P(%) (28)

Note that, as L/l ==,

Stm 5

_—S't'_[' Z (288.)
which is the well-known result for the constant-temperature plate (ref.
14). In equations (27b) to (28a), Sty is to be evaluated at L.

Differential Analysis

The energy equation for the turbulent incompressible boundary layer
may be written, neglecting dissipation and assuming that t - t°° is
constant in the range of interest, as

d6 d0 o (W1
u&+VFy=6—§(a:—p> (29)

Again it is assumed that the heat-transfer mechanism everywhere in the
boundary layer is given by equation (17). In this analysis it will again
be assumed that the velocity profile may be given by an expression of
the form

LR (%)l/m (m = 5 to 8) (12)

It should be observed that, although the velocity gradient is infinite
at the wall, a reasonable answer will be obtained. The continuity equa-
tion for incompressible flow is

%+%§=o (30)

Combination of equations (12) and (30) gives

(1/m)+1
= 2 () (31)

v
Ug,
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The eddy diffusivity for heat was calculated for the integral analysis
and is, assuming €y = €y,

S L O (O A

Note that the assumption €y = €y everywhere in the boundary layer, in-

cluding the region near the wall, again implies Pr = 1, Now, if new
coordinates

E =x/1
n=y/d

are introduced, equation (29) transforms to

u L, 90 u xdd 30 v x08 [(x\1%Hd% [x\ 136091
—‘55—'___”F+—_—"=_———+"‘6_‘—“
u £ u_ ®dx noou 5 on 518 u_ anz 8/ 8 on on u_
(32)
Substitution of (12) in (1la) results in
c
f m dd _ ad
2 T (o) (mte) a&x M dx (53)

where M = m/(m+1)(m+2). Blasius has proposed that, for turbulent flow
over a flat plate, the friction factor and boundary-layer thickness may
be related by (see ref. 14)

Ce 1,4

— = 0.0228 Reg (34)
which, when combined with (33), leads to
o 4/5 -4/5 -4/5_ -0,2
<= (0.0228) /(0.8) /rv‘ /ReX (35)

and

-Cg: - (0.0228)4/5(0.8)l/le/SRe;co'z (6)

An AT
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Substituting (12), (31), (15), (35), and (36) into (32) gives

T]l/mE %—eé + 0.8M(m-1) [n(l/m)-rl - n‘l/ﬂg% = O.8Mm|:nl'(l/m) - n2+(l/m)]§2_g

on
(37)
With the change of coordinates
w=1n E
_u l/m
Z = L Ul
equation (37) can be reduced to
2
00 _ 0.8M , -m 2y 0 6
= o -z - 38
E o Z ) azz ( )

This linear parabolic differential equation resembles the equation de-
scribing transient heat conduction in a slab, and techniques similar to
those used in such problems will be used in its solution. ZEquation (38)
is to be solved in the region w >0 for 0 <z <1, The boundary
conditions for 6(w,z) are

1]

6(w,0) =0
(39)

6(w,1) =1

In addition, there is the "initial" condition that the boundary-layer
air must be at the free-stream temperature at the start of the heated
section; that is,

0(0,z) =1 (40)

In handling transient conduction problems it is convenient to divide
the solution into "transient" and "steady-state" components. The same
technique is useful here. The '"steady-state' solution is simply the tem-
perature profile far downstream of the temperature discontinuity,

oo = ()7 )

o

Note that 6 = z satisfies equation (38).
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Thus, & 1is divided into
6=z +0¢(w,z) (42)

where ¢(w,z) is to satisfy

P  0.8M ; _.m 2 )
=M ,em 2y OF (43)
ow m dz e
subject to the boundary conditions
®(w,0) =0
(44)
®(w,1) =0
and the "initial" condition
0(0,z) =1 -z (45)

Equation (43) is solved by separation of variables, where it is
assumed that

¢ = W(w)z(z) (46)
which leads to

1 oo 11
W O.BM Z_m Z2) p _ . X (47)

The resulting differential equation for W(w) is

W' = -2W (48)
which has the solution

W= ce M (49)
The differential equation for Z(z) is

z" + =z =~ AZ =0 (50)
0.8M(z"™ - 2z¢)

m+2

The transformation ¢ = z reduces equation (50) to

2 - A
6(1-¢) %c% (B -0 E B s -0 (51)

[gfayag .1
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which has the solutions (ref. 15, p. 178)

1-
7, = ClF(a,B;Y;C) + ng YF(@—Y+1,B—Y+1;2-Y;§)

where

a = §Ti%§Y [1 VT F 5X(m+l)(m+2)]

B = - 515%57 [1 +vV1 + 5X(m+l)(m+2)]
= Il
m+2
Now from (44),
7z(0) =0
and thus
C, =0
From (44),

7(1) = O = CoF{a-v+1,B-y+1;2-v;1)
But it is well known that (ref. 16)

_ I(e) (c-a-b)
[ (c-a)Tl(c-b)

F(a,b,c;1)

and thus, from (53), since Cy 1is not zero,

PGEQ)F(U

m+2

0 =
r 2m+o5-B I 2m+o+B
2m+2 2m+2

where

B =y/1 + S5A{m+1) (m+2)

17

(52)

(53)

(54)

(55)
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Since the gamma function of a negative integer is infinite, the
elgenvalues are given by

2m + 5 - B
Tz - Rl (s6)
n = 1)2,000
and thus the eigenvalues are
A _ f2(n-1) (m+2) + 2m + 512 . 1 (57)
n = 5(m+1) (m+2)

The solution for ¢ may now be reduced to

-
-\
® = :E; Cpe nwzF(n-l+a,-n;a;zm+2) (58)
n=

where a = (m+3)/(m+2).

It is now necessary to expand @ as a series of eigenfunctions in
order to satisfy the initial condition (45). It may be shown that
(ref. 15, p. 225), if Z; and Zg are solutions of (50) associated

with the eigenvalues XJ and lk, respectively, the solutions Z; and

Zy have the following orthogonality property:

1
1 .
./E 8 LT 2 = 0 f O J#k (59)

Thus by multiplying (58) by

— zF(n-1+a,-n;a;zit2)

Z -z
setting w = 0, and integrating from 2z =Q to gz = 1, the constants
Ch may be evaluated as

_m_zz
C_ = (60)

n ]
f zzFZ(n-lﬂL-n;a;zn’*'Z) dz
0

1
f Loz zF(n—lm,—n;a;zm+2) dz
0 Z

z™M - 2

Se6Y -
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Since the second argument of the hypergeometric function is a negative
integer, the functions are actually polynomials, and the coefficients may
be evaluated by expansion and integration term by term. This has been
done for n =1, 2, and 3, resulting in

C, = (a - 1)(a + 1)

c, = a’(a - i)(a + 3)

oL = az(a - 1)(a + 1)2(a + 5)
S 36

Bvaluation of the higher order coefficients is tedious and is best
accomplished by numerical methods. This has been done for m = 5.6,
which applies in the Reynolds number range of the present data, and it
was found that

0.1110

i

Cq

C5 = 0.0940

The final solution for 9(x/l,y/6) may be written as

nGn<%)] (61)

- ()" [+ Zelt)

n=1

where

Gn<%) = F[%—l+a,—n;a;6%)(m+2)/hﬂ (62)

The heat-transfer rate may be found by differentiation of (61) and
use of (17) at y = O. This results in

- A

St 1\

St m14). ¢ <_> (63)
Stop ~ "\

The hypergeometric functions of interest in determining the first
five eigenfunctions for m = 5.6 have been calculated to four decimal
places with an IBM 650 digital computer. These functions are given in
table I and are shown in figure 1.



RESULTS AND DISCUSSION
Comparison of Analyses with Heat-Transfer Experiments

A heated plate with an active flow lengtl of about 5 feet was used
in this investigation. The heated surface corsisted of Z4 individually
heated strips, thermally insulated from each c¢ther. Within control
limitations, any desired surface temperature cr heat-flux distribution
could be set up and desired heat-transfer measurements obtained. The
experimental apparatus and techniques are described in detail in refer-
ence 2.

S66T -
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Eighteen runs were made for which a step wall temperature existed.
Data were obtained at flow Reynolds numbers up to 3.5x106, with step
Reynolds numbers ranging from 0.5%106 to 3%10€. These data are pre-
sented in table II{a). The discontinuities were quite sharp, and ex-
cellent "steps" were obtained. In reducing tkese data, allowance was
made for conduction between the strips within the plate, and this cor-
rection was only important for the first heated strip. The experimental
Stanton numbers are actually the average Stanton number over each strip,
since the strips are of finite flow length. An analysis indicated that
the Stanton number at the center of the strip, where the Reynolds number
is calculated, does not differ significantly from the average over the
strip, the largest difference occurring on the first heated strip, where
the average Stanton number exceeds the Stanton number at the strip center
by only about 2 percent. For all other strips, the difference is less
than 1/2 percent. Analysis indicated that the imperfectness of the dis-
continuity in the surface temperature reduced the heat transfer on the
first heated strip from the abrupt-discontinuity value by about 2 per- .
cent and had no appreciable effect on the heat transfer from the strips
farther downstream. OSince the error in averaging was approximately
compensated for by the error due to the step imperfection, no correc-
tion was made for either.

The data are shown graphically in figure 2. It can be shown (ref.
17) that an adequate method for considering the influence of temperature-
dependent fluid properties for gas flow in both external and internal
boundary layers is to evaluate all fluid properties at the free-streanm
static temperature and then to include all temperature-dependent property

effects in a factor (T,/T )™, where the exponent m is a function of
L _J

geometry alone., Examination of the recent results of an analysis of

Deissler and Loeffler (ref, 18) indicates that, for the turbulent in-

compressible boundary layer, the Stanton number varies as (TW/T )'0'4,

other things being equal. Thus the results are presented in ch form
st(T,/T )04 against Rey.
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Reference 2 shows that heat transfer to alr from isothermal plates
may be represented by

—Oo4=

T
0.4 . -0.2 {~w
StpPr " = 0.0296 Rey <T_> (3)

Equation (3) is plotted in figure 2. The effect of the unheated start-
ing length is considerable (especially near the step, where the data
show a correction as large as 50 percent of StT), and the data gradually

approach the isothermal correlation downstream of the wall-temperature
discontinuity.

The data are compared with the various analyses in figure 3. The
ratio of the local Stanton number to the isothermal Stanton number as
given by equation (3) is plotted against the factor 1 - (1/x)9 lO,
which alloys equation (26a) to be plotted as a straight line with a —1/9
slope. The simple analysis that neglects the dependence of heat transfer
on the hydraulic boundary layer (4) is high near the step, as is the
semiempirical analysis of Rubesin (eq. (5)). The Seban result (eq. (6))
lies parallel to the data but is displaced by the Pr=2/9 factor. The
integral analysis employing l/7—power profiles (eq. (26&)) is in excel-
lent agreement with the data over the entire range. However, in the
Reynolds number range of these tests, the velocity profile is actually
closer to a 1/5.6—power profile (see fig. 7). The differential analysis
for m = 5.6 is slightly high near the step because, near the step,
most of the thermal effects are confined to the region near the wall,
where the assumed velocity profile is least accurate (see fig. 9(a))‘
Downstream, where the power profile is a good approximation, the differ-
ential analysis for m = 5.6 1is in good agreement with the data. The
success of the integral analysis for m = 7 probably lies in the fact
that the temperature profiles just downstream of:the step are consider-
ably "fatter" than the velocity profiles, and thus are actually closer
to l/7-power profiles (see figs. 8 and 95.

Since the agreement of the present integral result (eq. (26a)) with
the experimental data is so good, equation (26a) is recommended as the
best correlation available at the present time for a step temperature
distribution in turbulent incompressible flow. The data are shown as
correlated by this equation in figure 4. The correlation is excellent
over the entire test range.

The data of Scesa (ref. 5) have been correlated in a similar manner,
and this correlation is shown in figure 5. Most of Scesa's data were
obtained for a double step in the wall temperature, and thus a more com-
plicated correction was necessary. For this reason the "corrected



Nusselt number" is plotted against Rey, the correction method following

the double-step example of reference 3. These data were obtained over a
rather limited range, as is indicated by figure 5, and there is con-
siderable scatter in the data. The accuracy of data obtained from the
present apparatus is believed to be considerably better than that ob-
tained with Scesa's small plate. This view is substantiated by the
presence of less scatter in the present data.

The mean heat-transfer measurements of Jacob and Dow (ref. 13) are
compared with the présent analysis (eq. (28)) in figure 6. These data
were obtained from tests on a cylinder in axial flow, and the Reynolds
number was low so that transition effects may have been of some importance.
In consideration of these facts, the agreement of these data with equa-
tion (28) is believed to be very satisfactory. These data are also pre-
sented on the basis of a corrected mean Nusselt number against Rey.

Comparison of Survey Data with Theoretical Results

Figures 7 and 8 show velocity and temperature profiles obtained for
constant wall temperature, as reported in reference 2. The profiles are
similar and may be represented very well by a l/5.6-power formula. The
apparatus used to obtain these data and the survey data presented here-
in is described in detail in reference 2.

Temperature surveys with a step wall-temperature distribution were
obtained at three points on the plate and at two different velocities
for each point. In these tests the first 11 strips were unheated, and
the remaining strips were held at constant temperature. The data from
these surveys are shown in table II(b) and are compared with the pro-
files predicted by the differential analysis (m = 5.6) in figure 9. In
these comparisons the tHermal boundary-layer thicknesses were determined
in the manner described in reference Z; the conduction thickness 65

was determined by numerical integration of the temperature profile, and
the "best power fit" to the data was determined by plotting 6 against
Yy on log-log paper. The conduction thickness is related to the

thermal boundary-layer thickness for a power profile of the form
6 = (Y/5T)l/m by the equation

*

Op = (1 + m)6T

The values of &7 determined in this manner were quite close to the
99-percent thicknesses (ref. 2). In determining the thermal boundary-
layer thickness from the differential solution, the same techniques
were applied.

RN e YV R 2
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The surveys closest to the step (x/l = 1.20) show why the heat-
transfer rates predicted from the differential analysis are not too good
near the step. Near the step, most of the thermal effects are confined
to the innermost portions of the boundary layer, where the velocity
profile assumed for the analysis is least accurate. The predicted and
experimental profiles near the step are not in agreement, as is shown
by figure 9(a). Farther downstream the predictions are remarkably ac-
curate, as shown by figures 9(b) and (c). These survey data also show
why the integral analysis employing l/7-power profiles works so welly
the temperature profiles downstream of the temperature discontinuity are
much fatter than the velocity profile, and in fact are quite close to
being l/7—power profiles. This is probably responsible for the success
of the integral analysis with m = 7.

CONCLUDING REMARKS

An integral analysis has been obtained that allows calculation of
heat transfer from a flat plate with a step wall-temperature distribution
(eq. (26a)). The analysis is in excellent agreement with experimental
heat-transfer data of the present and earlier investigations. A differ-
ential analysis was obtained that allows the prediction of the tempera-
ture profiles in the boundary layer downstream of the temperature dis-
continuity. The predicted profiles are in good agreement with experi-
mental profiles, but the heat-transfer rates predicted by this analysis
are slightly high near the temperature step.

The method of handling the heat-transfer rate at the wall used in
the integral analysis is unique in that it allows a power profile having
an infinite gradient at the wall to be used everywhere in the boundary
layer, while still yielding good results. This eliminates cumbersome
"patching" of profiles to obtain a finite slope at the wall. The same
technique was used in the differential analysis, wherein the energy
equation was solved in spite of the infinite velocity and temperature
gradients at the wall., It is believed that this method may also be use-
ful in the treatment of more complex problems, such as flows with pres-
sure gradients, since it provides both analytical simplicity and accurate
prediction in the cases thus far explored.

The recommended correlation for heat transfer in the case of a step
wall temperature is the result of the integral analysis,

St _ [ 3 (1)9/10]-1/9 (26a)

X
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The isothermal Stanton number Stp for incompressible flow may be com-
puted from the relation

T

-0.4
_ . ~0.25,-0.4( ¥
Sty = 0.0296 Re ~*“Pr (T ) (3)

In this relation the fluid properties are to be evaluated at the free-
stream static temperature.

Stanford University,
Stanford, Caiif., October 22, 1857.

REFERENCES

1. Reynolds, W. C.: Heat Transfer in the Turbulent Incompressible
Boundary Iayer with Constant and Varianle Wall Temperature. Ph.D.
Thesis, Stanford Univ., 1957,

2. Reynolds, W. C., Kays, W. M., and Kline, S. J.: Heat Transfer in the
Turbulent Incompressible Boundary layer. I - Constant Wall Temper-
ature. NASA MEMO 12-1-58W, 1958.

3. Reynolds, W. C., Kays, W. M., and Kline, S. J.: Heat Transfer in the
Turbulent Incompressible Boundary lLayer. III - Arbitrary Wall Tem-
perature and Heat Flux. NASA MEMO 12-3-58W, 1258,

4. Reynolds, W. C., Kays, W. M., and Kline, S. J.: Heat Transfer in the
Turbulent Incompressible Boundary layers. IV - Effect of Location
of Transition and Prediction of Heat Transfer in a Known Transition
Region. NASA MEMO 12-4-58W, 1958,

5. Scesa, S.: Experimental Investigation o Convective Heat Transfer to
Air from a Flat Plate with a Stepwise DJiscontinuous Surface Temper-
ature. M.3. Thesis, Univ. of Calif., Ll901l.

b. Rubesin, Morris W.: The Effect of an Aroitrary Surface-Temperature
Variation Along a Flat Plate on the Convective Heat Transfer in an
Incompressible Turbulent Boundary layer. NACA TN 2345, 1951.

1. Ferrari, Carlo: Determination of the Heit Transfer Properties of a
Turbulent Boundary Layer in the Case of Supersonic Flow When the
Temperature Distribution Along the Constraining Wall is Arbitrorily
Assigned. Rep. No. CAL/CM—BO?, Cornell Aero. lab., Inc., Mar. 1054.
(Contract NOrd-14523.)



4995

Cw-4 .

25

¢, von Kdrmén, Th.: The Analogy Between Fluid Friction and Heat Transfer.
ASME Trans., vol. 61, no. 8, Nov. 1939, pp. 705-710.,

Y. Schultz-Grunow, F.: New Frictional Resistance Iaw for Smooth Plates.
NACA TM 986, 1vdl.

10. Colburn, Allan P.: A Method of Correlating Forced Convection Heat
Transfer Data and a Comparison with Fluid Friction. Trans. Am.
Inst. Chem. Eng., vol. XXIX, 1933, pp. 174-206.

1l. Maisel, D. 5., and Sherwood, T. K.: Evaporation of ILiquids into
Turbulent Gas Streams. Chem. Eng. Prog., vol. 46, no. 3, Mar.
1950, pp. 151-138.

12. Klein, dJochn, and Tribus, Myron: Forced Convection fron Nonisothermal
Surfaces. Eng. Res. Inst., Unlv. Michigan, Aug. 1952. (Contract
AP 18(500)-51.)

13. Jacob, Max, and Dow, W. M.: Heat Transier from a Cylindrical Sur-
face to Air in Parallel PFlow with and without Unheated Starting
Sections. Trans. ASME, vol. 68, no. 2, Feb. 1946, pp. 123-134.

14. Eckert, E. R. G.: Introduction to the Transfer of Heat and Mass.
MeGraw~Hill Book Co., Inc., LUdG, p. 75.

15. Hildebrand, F. B.: Advanced Calculus for Engineers. Prentice-Hall,
1949,

16. Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G.:
Higher Transcendental Functions. Vol. l. MeGraw-Hill Book Co.,
Inc., 1953, p. 61.

17. Kays, W. M.: A Summary of Experiments and Analyses for Gas Flow
Heat Transfer and Friction in Circular Tubes. TR-22, Dept. Mech.
Eng., Stanford Univ., June 30, 13854. (Contract Néonr 251.)

18. Deissler, R. G., and Loeffler, A. L.: Turbulent Flow and Heat
Transfer on a Flat Plate ag/High Mach Number with Variable Fluild
Properties. Paper No. 55-A-133, ASME, 1955.



26

TABLE I.

STEP-FUNCTION ANALYSIS

- HYPERGEOMETRIC FUNCTIONS FOR

(Fo(z) = F(n-1+a,-nja;z); a = (m+3)/(m+2);
m = 5.6.]

0 1.0000|1.0000|1.0000;1.0000(1.0000
.05 .9500] .8250] .6240| .3932( .1571
.10 .9000| .6509| .3219( .00l1|-.2318
.15 .8500| .4972} .0871|-.2214|-.3286
.20 .8000} .3572}{-.0876|-.3146|-.2591
.25 L7500 .2311}-.2072|-.3146(-.1170
.30 .7000| .1188|-.27971-,2529| .0322
.35 .6500] .0204|-.3114|-..569] .1474
.40 6000} -.0642)-.3087|-.0490( .2079
.45 .9500(-,1349|-,2784| .0526| .2095
.50 .5000|~-.1919|-.2269| .1339] .1609
.90 .4500|-.2349]-.1608| .1853f .0791
.60 .4000|-.2642]|-.0868| .2035{~.0137
.65 .3500|-.2796|-.0115| ..865|-.0946
.70 .3000|-,.2812] .0586| ..389|-.1435
. 15 .25001-.2689| .11691 .)692|-.1472
.80 .2000|~-.2428| .1567|-.0)095}-.1033
.85 .1500|-.2028( .1716|-.0780{-.0242
.90 .1000|~-.1491| .1548(-..202] .0594
.95 .0500|-.0745| .0134(-.0138] .0123

1.00 10 0 0 0 0

G667
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TABLE II. - EXPERIMENTAL DATA SUMMARY

(a) Heat-transfer data

Sbr"(p‘r 3, Atpy, G H T 0.4 G, Btm, Qs : n,
SN (N - SV N PO o(7) 1 R |_ ota | _Bla
(nrl{sq rt) (i) fog 710 (hr)(sq 111)(OF) "g (br){sg rt) {rrdlog £1) (nr)(esq rt)(9F)
K10t o oxao? =10-3
1ATe kw1 L 0.807x105%; 1 = 82.4° B; p_
b 25. ! 53,8 o -
3 25. 3400 .2 -
4 25 3.9 21.y 24.4
B 25, 33.9 22.5 ov.e
£ 25 33.7 22.4 18,90
ki 25 7 c2.2 3
25 .5 c2.3 ;
2 25 5 22.% :
1 z 5 3 |
11 z 5 0
12 z 5 A
15 z . i
14 z
15 ; Y
I 2 .5
L7 .5
14 5 !
T S :
20 H .4
21 2 .4
22 25 ) 5
23 25. ) 220 .5 |
LI BREAEIS LS o= Re, = 84.20
3

TLERCE®OC D

2 Q. 1.

Z.f 2, 1.

2. @ 1

2 o, 1.

2. o l1.

A 2. 2 i

.8 2. 2. .

.8 2 2 2.

R 1. 2. 2

B 1. 2. 2.

B 1. 1 2.

.6 1. i 2.

0 .6 1. 1 2.
L.t 5 1. Touy 2.
1.»54‘ 1.834 L7 1 1.71 N
.t 1. 1.7 |2

1.55{ 1.14

Rey = 1.00x10%; £ ; = 0.07 1v/cu ft Re, = 1.01x10% t_ = 84.4% F; p_ = 0.07 TR
o 23. L
n 24,
1 5
i . Pl -
19.1 5 -
18.17
.9 x 14.47
3 23, 14.00 z
5 23 15,35 1,448
8 25, 12,78 1 494‘
9, 24 12.33 1,508 |
i 23 12.16 1,711
e 25. 11.84 1.835
1 25 11.731 i1.930
1 23 11.02 l2.03
0 s 11.17 2.14
2 23 11.00 2.25
3 2 9.87 2.36
19.2 18.5 25, 10,06 2.47
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II.

- Continued.

La) et e

EXPERTMENTAL DATA SUMMARY
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TABLE II. - Continued. EXPERTMENTAL DATA SUMMARY
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Figure 1. - Hypergeometric functions for step-function analysis.

F,(z) = F(n-1+a, -n; aj z); a = (m+3)/(m+2); m = 5.6.
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Figure 5. - Comparison of Scesa's data with integral step-function
analysis. Prandtl number, O.71.
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Figure 6. - Comparison of Jacob and Dow's mean heat-transfer data

with integral step-function analysis. Prandtl number, O.71.

S66¥



37

*(2 *3ox) sanjexadwol TTBA

1UB4suU0d I0J saTTJoxd aamiysiadus], -~ °*g NIt *(2 *39x) soTryoad A3To0Ta9p = *, 9m3T4

g ‘IHNLYY¥I4W3L SSITINOISNIWIA ®n/n ‘OILvY ALIDOT3A

S66¥

0 ) g8 9 14 A O 0’| 8 9 v 4 0]
T 1"
Lo/A)=
/ _ A 2
1Q/Ay=
oo/l ¥/M=6
v’ b
ig
8L'2 e
le2 > A (672 a
gl s 79 wine |
6240 N QNJ o
o
8 o0IX %y |
o)




4995

*UoTINQTIYSTP aanjesadwsy-~-TTeM dois 107 saTTJoxd samjeaadusl, - 6 SINSTJd

¥6°T = 1/x (9) 09°T = 1/x (a) 02T = 1/% (e)
& ‘3¥NLIVYILNIL SSITINOISNINIC
g Y v 2 o g 9 a 2z o 0! g g 5 T e
Q310103ud 03100350 ~, _ T ETCTET — v 0

v

\\

/ / ‘

\ e‘
3714084 TYWYIHLO0S! 371408d TWWYHIHLOS! N\rufoma IYWYH3H10S! N
Q

[}

18220 ogz 9 2Ll o 9 A
€021 ¢C 900!t O 5S40 v
9-01 ¢ %8y .01 % ¥oy 5-01X Y2y

38

o1

NASA - Langley Field, Va.



