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EFFECTS OF LARGE WING-TTIP MASSES ON OSCILLATORY
STABILITY OF WING BENDING COUPLED
WITH ATRPLANE PITCH

By Donald T. Higdon

SUMMARY

An examination of oscillatory stability for a straight-winged airplane
with large concentrated wing-tip masses was made using wing-bending and
airplane-pitching degrees of freedom and considering only quasi-steady
aerodynamic forces. It was found that instability caused by coupling of
airplane pitching and wing bending occurred for large ratics of effective
wing-tip mass to total alrplane mass and for coupled wing-bending frequen-
cies near or below the uncoupled pitching frequency. Boundaries for this
instability are given in terms of two quantities: (1) the ratio of effec-
tive tip mass to airplane mass, which can be estimated, and (2) the ratio
of the coupled bending frequency to the uncoupled pitch frequency, which
can be measured in flight. These boundaries are presented for various
values of several airplane parameters.

INTRODUCTION

The placement of fuel or armament in wing-tip pods is a practice which
has been in existence for some time on fighter-type aircraft, and there are
several ways in which large concentrated masses might appear at the wing
tips of future aircraft. There is the possibility that in nuclear powered
aircraft, where the personnel and power plant must be well separated, this
technique will be employed. Long range aircraft with supersonic dash capa-
bility might carry disposable wing-tip sections with large fuel tanks.

Also the mounting of engines at the wing tips is proposed for certain air-
plane types such as vertical take-off airplanes.

The natural wing-bending frequency of an airplane might be lowered by
the presence of large wing-tip masses to the extent that it is near or
even below the natural pitching frequency of the airplane under certain
flight conditions. Under these conditions the effects of coupling between
pitching and wing bending are of concern, since the damping ratios of
structural modes are inherently low and any unfavorable coupling might
cause oscillatory instability in coupled wing bending. It is the purpose
of this study to establish conditions under which such wing-bending
instability is likely to occur.



The analysis is made by means of equaticns of motion with airplane
pitch and fundamental wing-bending degrees of freedom. Unsteady aerody-
namics, that is, the effect of frequency on aerodynamic cecefficients, and
structural damping are neglected.

NOTATION
D derivative with respect to real time, é%
I airplane pitching moment of inertia about the center of gravity,
slug ft2
M total airplane mass, slugs
Mg rate of change of pitching moment with pitch angle, 6,

1
-2 f lgXgcdn, ft-1b/radian
(¢]

M rate of change of pitching moment with pitch velocity, é,
Tt-1b sec/radian
Q4 generalized aercdynamic pitching moment, ft-1b
Qo generalized aerodynamic wing-bending Corce, 1b
S wing area, sq It
v forward velocity of airplane, ft/sec
Yao rate of change with the angle % of the generalized wing-bending

force due to an angle-of-attack disiribution % ao(n),

1
2 f lay20dn, 1b/radian
0]

Y! Z2

aq Zg
Tg rate of change of generalized wing-berding force with pitch

1
angle 6, EL/1 lgaodn, 1b/radian
o]
Yo

1

Ye =

Zg



Zg rate of change with the angle L of the generalized vertical
o]

.

force due to an angle-of-attack distribution % ao(n),

1
eb/\ la dn, 1b/radian
[e]

Z
: 20
aq Zg
Zg rate of change of generalized vertical force or 1lift with pitch

1
angle 6, 2\/P lgdn, lb/radian
o

a(n) spanwise bending deflection as a function of 1 referenced to
node and normalized on cantilever wing-tip deflection ¥y

ao(n) spanwise bending deflection as a function of 1 referenced to
wing root and normalized on cantilever wing-tip deflection Yy,

a(n) -a(0)
a(0) value of a(n) at n = 0 or the wing root
c mean aerodynamic chord
e Naperian base
i R

WaTr

kG reduced pitching frequency parameter, -~

a rate of change with the angle %

load distribution due to an angle-of-attack distribution

of the spanwise aerodynamic

% a(n), 1b/radian

Zao rate of change with the angle % of the spanwise aerodynamic
lcad distribution due to an angle-of-attack distribution
% ag(n), 1b/radian

lg rate of change with 6 of the spanwise aerodynamic load distribu-

tion due to a pitch angle 6, 1b/radian



1
effective wing-tip mass (both tips), 2\]P paodn, slugs
(o]

2B

1
generalized wing-bending mass, 2\]p uazdn, slugs
o]
2g
M

. . . . - . d
derivative with respect to dimensionless time, 3T
T

dynamic pressure, lb/sq ft

pitching radius of gyration J[i ft

M

spanwise distribution of static mass moment about airplane center

of gravity, slug ft

real time, sec

static margin, Zg , It

u
r

longitudinal distance from airplane center of gravity, positive
forward, ft

wing-fuselage local aerodynsmic center relative to airplane
center of gravity, positive forwarc.

wing local aerodynamic center relative tec airplane center of
gravity, positive forward

Xa

r

longitudinal tip mass center of gravity relative to airplane
center of gravity, positive forwarc, ft

I
r



v wing-tip deflection relative to wing root (cantilever), positive
down, ft
CB damping ratio of coupled wing-bending mode
damping ratio of uncoupled, free-free, wing-bending mode
y ) b
Co damping ratio of uncoupled pitching mode
! dimensionless spanwise station
2 pitch coordinate, positive ncse up, radian
Gy component of pitch in phase with bending velocity during undamped
oscillation
u(n) spanwise mass distribution of airplane, slugs
T dimensionless time, wgt
WB
@ To
wp undamped natural frequency of coupled wing-bending mode,
radians/sec
Wy undamped natural frequency of uncoupled, free-free, wing-bending
mode, radians/sec
e Mg
Wy undamped natural frequency of uncoupled pitching mode, -1

radians/sec

Dots over symbols are used to indicate differentiation with respect
to real time.

DERIVATION OF EQUATIONS OF MOTION

Selection of Degrees of Freedom

A system with two degrees of freedom is considered for the purpose
of studying oscillatory instability caused by coupling of wing bending
with airplane-pitching motion. The selection of the two degrees of free-
dom was based on the results of some four degree of freedom studies on
specific example airplanes, where the degrees of freedom were airplane
pitch, airplane vertical translation, cantilever wing bending, and canti-
lever wing torsion. The examples were similar in character to the type
of airplane considered in the present analysis. The development of the



equations was by the method shown in appendi: C of reference 1. Tn these
studies conditions of undamped oscillation in modes which were primarily
wing bending were found and the modes of oscillation were examined.

Two important facts were noticed:

1. The relation between vertical translation and cantilever
wing bending was nearly the same as would be expected for the
airplane in an uncoupled, free-free, wing fundamental bending
mode (in vacuo).

2. The role of wing torsion in reducing the generalized
coupled mode damping force to zero was found to be small in
comparison with the role of pitch, and instability could be
achieved without the inclusion of the torsion degree of freedom
under conditions not greatly different than with it.

The above observations indicated that the essential mechanism involved
in this oscillatory instability could be preierved in a system of only two
degrees of freedom, alrplane pitch and a win,-bending degree of freedom
based on the uncoupled, free-free, wing firs:-bending mode in the absence
of aerodynamic forces. Such a simplification is of great help in the
examination of the general nature of the instability.

The Generalized Wing-Bending Coordinate

Before the generalized bending coordina.e can be established, a brief
look at the nature of the fundamental, uncouled, free-free, wing-bending
mode (in vacuo) is necessary. Consider an alrplane with large concentrated
wing-tip masses oscillating in such a mode. If the generalized wing-
bending coordinate at any time is celled y, and the corresponding mode
shape is called a(n), the vertical position of the wing relative to the
node at any span station 17 is ya(n) (fig. 1). The mode shape a(n) may
be considered to be made up of two parts

a(n) = ag(n) +2(0)

where ao(n) is simply the mode shape refereiced to the wing rcot rather
than the node (fig. 2). With this definitio: and with ag(n) normalized
to 1.0 at the wing tip, it is evident that .7 1s the cantilever wing-tip
deflection (see fig. 1). The quantity a(0) can be determined from the
equilibrium requirement for the freely oscillating system in the absence
of aerodynamic forces

1 1
f n(n) é—fz [ya(n):Jdn = yf ninla(n)dn = 0
-1 -

1



where u(n) is the spanwise mass distribution including the concentrated
masses. Because the mode is symmetric the integration need only be over
the semispan. Substituting a(n) = a¢(n)+a(0) and dividing the equation

by ¥ yield

1 1 1

ef apdn=2f aoudq+2a(0)f pmdn =0
O @] (0]

or
1
zf aoh dn+a(0)M = 0
(o]

where M 1is the mass of the airplane. Then

a(n) = ao(n) - i (1)
where
1
m = EK/p agk dn
o}

Tt should be noticed that if the distributed mass in the wings were con-
sidered negligible, m would simply be the sum of both concentrated wing-
tip masses. (Note in fig. 2 that ag(0) = 0, excluding the fuselage
mass, and ag(l) = 1.) Now if ag(n) is assumed to remain unchanged,
a(n) changes with m/M only as shown in equation (1), greatly simplify-
ing the use of a free-free mode as a degree of freedom. Fortunately the
present analysis is fairly insensitive to small changes in ao(n), and
this assumption has little effect on the results. The reason for this
will become evident later.

The generalized wing-bending coordinate, then, will be represented
by the cantilever wing-tip deflection Yy, where a value of y implies a
spanwise deflection relative to the node of ¥ (ao(n) - m/M).

Kinetic Energy

The kinetic energy of the two degree of freedom system 1is
(l/2)kjpv2dM where v 1is the local velocity in space at the location

of the differential mass dM and the integration is made over the whole
airplane. Small angles being assumed,the local velocity may be expressed
in terms of the two coordinates and can be expressed as

v = dx-ya(n)



where x 1s the longitudinal distance from the airplane center of gravity,
positive forward. Then

KE

|-

[ézxz_ 2éx&a(n)-+&2a(n)2JdM
airplane

1 . AR . 1
5 621 - 2y0 f sa an+y2 f pa2dn
o o

where I 1is total pitching moment of inert:a about the airplane center
of gravity and s(n) is the spanwise distribution of static mass moment

1 1
about the airplane center of gravity. Note that \jf sa dn =L/ﬂ sagdn
0 o}

1
since \/ﬁ s dn = 0. Thus, letting
o}

1
Jf saqdn

)
Xp =
u/\ pagdn
o]
1
mg = Ek/ﬁ a?p an
o]
1
and remembering that m = 2\/P agh dn
o]

e
J g

ji—

1 . .
KE = 5 621 - yoxpm +

When the distributed mass of the wing 1s coisidered negligible, Xp
simply becomes the longitudinal distance between the center of gravity
of the concentrated wing-tip mass and the airplane center of gravity.

Potential Energy

The only potential energy in the systen is the strain energy in the
wing. Since ao(n) is held constant the strain energy is a function of
y only and can be written

¢

PE =

2

-



where Ky is an effective spring constant. In terms of the uncoupled,
free-free, natural bending frequency wy, Ky can be written as m

The bending shape is very critical in t%e determination of ; but, as
will be seen, this problem is bypassed in the method to be presented.

Lagrange's Equations

The two simultaneous equations of motion are obtained from Lagrange's
equation by substituting the expressions for kinetic and potential energy
with the coordinates y and 6.

a <BKE SPE
4 (OKE) , OFE
at \ 96

= Q
J6 1
(2)
d [ OKE OFE _
C

where OPE/06 happens to be zero. The Q's are the generalized aero-
dynamic forces. Structural damping is neglected. When the indicated
differentiations are performed, the equations become

1.9. -mxps; Q.]_ (38‘)

Qy (3p)

—mxp9-+mgy-+Kyy
Generalized Aerodynamic Forces

A generalized force is the work done per unit displacement when the
system undergoes a virtual displacement of one of the degrees of freedom.
The generalized aerodynamic force is assumed to be composed of terms
which are linearly dependent on y, 8, and their derivatives with respect
to time. TIf unsteady aerodynamics are neglected, the essential components
of the generalized forces for a straight-winged airplane can be written

. 1lg .
Mé6-+M96-<?\/P 52 xacdn>y
o
1 1 la .
<2f aledn>6+ Ef ar dq)y
o] o}

where a term is positive if the force or moment involved is directed in
the positive direction of the appropriate coordinate. The derivatives
Mg and My can be readily written in terms of the conventional airplane
stability derivatives.

Q1

1l

QU
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Mj = aST(Cpy +Cng) , Mg = aSTp

The term Za(n) can be interpreted as the air load distribution resulting
from a spanwise angle-of-attack distribution cefined by a(n) in radians,
and lg(n) can be interpreted as the air load distribution resulting from
a uniform angle-of-attack distribution of 1 rasdian. The generalized bend-
ing force due to 6 and pitching moment due to ¥ (from downwash lag)
were considered negligible.

The air load distribution 1, can be written as the combination of
the loading caused by an angle-of-attack distribution of ao(n) radians
and (m/M)lg or

m
la=2aao'ﬁ16

The advantage of this approach is that the generalized aerodynamic forces
can be written as explicit functions of m/M. If this relation and the

fact that a(n) = ag(n) - (m/M) are used, the expressions of Q; and Qo
may be rewritten

1 1
Mj0 + Mo - % <#a2‘/m la,dn - % 29/\ Zezacdﬁ>&
o (o

1 1
<2f aclgdn - y ef 19dq>e+
o o
1 1 m 1 3 o 2 1 .
7 [2[; aolaodn - ﬁ<2—£ aozedn+2j; laodn>+<ﬁ>2j; Zedn]y

where the constant x5 in Q; results from the fact that la, contains
no tail or fuselage effect and the assumption that xg is uniform over
the span. For convenience all the terms involving spanwise integrations
will be designated as aerodynamic derivatives represented by single
symbols with subscripts.

QU

Qz

Q

o )i (ka)

<Y9 - ¥ ze>9 + 7 [Yao - ¥ <Y9-~Zao>+<%>2Z9]y (4b)

The term Zg is the rate of change of vertical force with 6 and
can be written in terms of the familiar airplane 1ift curve slope as
Zg = -qSCLa; ZaO is the rate of change of vertical force caused by an
angle-of-attack distribution (y/V)ag(n) with y/V; Yg and Ya, are

=I5

My + Mgb - % <XaZao +

Q2
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generalized wing-bending force derivatives whose definitions follow from
the subscripts. Small changes in ag(n) have been found to have little
effect on these derivatives.

Equations of Motion

If equations (3) and (4) are combined a set of homogeneous equations
of motion can be written. With D as the differential operator d/dt,
these equations are

<ID2 - MgD - M9>9+ [-mxpD2 . (ﬁ Mg + vaaO>D]y - 0
(5a)

[-mxpDz -(vg - ﬁzeﬂm {ngZ - %, [Yao - %(Ye +Zao>+<%>2Z9]D+Ky}y =0
(5b)

These equations will be useful in the examination of the wing-bending
mode but, since no independent vertical translation of the alrplane is
allowed, the airplane short-period mode is not well represented. In the
development of the equations the coordinate deflections are held to small
displacements, unsteady aerodynamics are not included, and a constant
bending shape ag(n) is assumed.

DETERMINATION OF STABILITY BOUNDARIES

Dimensionless Form of Equations of Motion

The reduction of the equations of motion to the two degree of freedom
form of equations (5) makes possible an analysis in general algebraic
terms of any alrplane to which the equations are applicable. For a
general study it is convenient to group the variable quantities describ-
ing the airplane characteristics and flight conditions into dimensionless
parameters.

In the analysis of equations (5) the following dimensionless quantities
were found to be convenient:

T dimensionless time, wgt
m' effective tip mass ratio, %

. . : . Trwg
kg dimensionless frequency in uncoupled pitch, -
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e vatic of airelane I Ld citen, Loty 1M
CB damping ratio of airplane in uncoupled ritch, 2 Mg - 2 gl
b'¢
xﬁ dimensionless effective tip mass center-of-gravity location, ﬁg

3 . . Xa
! dimensionless wing center-of-pressure location, —=

Xg T
u! dimensionless stability margin, ;ZE
1 : g
g generalized wing mass ratio, ™
7.4 220
8o Ze
Yo
1 v
YG Zg
1 Yao
Yao ZE_
In terms of these new quantities equatiors (5) become
p29-+2§9d6-+9-:m'x§p2<§>-k9<é' + %% Zéé)p(%) =0
(6a)
m'xy 5 ( )
- P06 + —— (Y)-m')o+
mg u'mg e
J ke 1 t [} 12 Y :)X z M _
p2<g> + méu' [Yao m Yé—kZaO +m'= pl = ]+ 5g T/ = 0
(6)

where p 1s a new differential operator meaning d/dT.
The Criterion for Neutral Stability

The conventional method of determining thz boundaries of neutral
stability is by the Routhe criterion. However, even with a fairly simple
fourth-order system such as this the computations are quite tedious and
any physical feeling for the mechanism of the instability is lost. The
equation system (6) lends itself very well to another method of determin-
ing stability boundaries which is satisfactory for the present analysis.
It greatly aids in physical interpretaticn of the cause of instability,
and the computations required are very simple.
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The system is assumed to be in a steady undamped oscillation at the
coupled natural wing-bending frequency, and the necessary conditions for
this undamped oscillation to exist are used to define the stability
boundaries. If the coupled natural frequency in wing bending is wpg,
then based on the dimensionless time used in equation (6), the natural
bending frequency is wB/we, which will be called £.

By assuming an undamped solution to equations (6) of the form

y/r = (yo/r)em'T and substituting this solution into the pitching-moment
equation (6a) it is easily shown that

6 = (A+1iB) L2 107

where
1 192(1 QZ) ok 1 X_aZl Q2
m'xp, - +2kg\ W' + - Zg o
A= -
(1 -02)% + (2449)%
and
ko m' 4 =2 7 Q1 - 02) +2m'x1t 03
] gom' + ag + 2m xpge

(1-02)% + (240)7

But since y/r
as

(yo/r)eiQT and p(y/r) = iQ(yo/r)eiQT, @ can be written

WOREC

p°0 = -0%0

and

Using the expression for 6, the generalized bending force equation (6b)
can be written as

y axim'  B(Yh-m') k v
20 Y P 8 8 1 amt 1 1 12 —
Y <?>-+{% ny + u g + g Yao m Y9-+Zao +m Pl /)t

Tt 2
(1)
g g
(1)
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Since this equation is valid only for the case of undamped oscilla-
tions (neutral dynamic stability), the coeff:cient of p(y/r) must vanish.
Thus

Tyt B(Yé-m') ke 1 ' ] ! 12 8
Bogm! + —— =+ = Yao-m Y6+Zao +m'= [ =0 (8a)

This leaves, in equation (7), for sinusoidal motion

xﬁm'AQz A L \2
+ (v -m)+(-2) = g2 (8b)
mé u'mé 8 wg

Equation (8a) defines the stability boundary in terms of Q rather than

/wg. For design use, wy/wg could easily be found in terms of @ from
equation (8b) provided m} is known accurately. Only equation (8a) was
used in this study and it should be noted that neither ml nor Wy appears
in this equation. Hence, Ky does not enter in any fashion and the stiff-
ness problem is bypassed, as mentioned earlier. Such an approach, which
does not employ equation (8b) to determine uy/wg, would be useful if the
analysis were used in conjunction with actual flight test, where the
coupled bending frequency wp (wB = Qwe) would be measured.

Stability Boundaries

Equation (8a) has been used to plot statility boundaries on a plane
of m' versus @ with all other parameters held constant (figs. 3, b,
and 5). Since the number of independent parameters is large, presenta-
tion of boundaries for all possible combinations of these parameters over
a range of values would be prohibitive. For this reason only a few combi-
nations are shown to illustrate the general effects of variations in each
quantity on the boundary.

In figure 3 the quantities varied are x!, ke, and-u'. For computa-
tion of these boundaries the other parameters were held constant at the
following values: ge = 0.35, x{ =0, Y4 = 0.270, Zéo = 0.255, Yéo = 0.108.
All these except x) are values which were calculated for an example air-
plane and thought to be typical of a straight-+ing airplane with large
wing-tip pods. The value of x} was chosen partly because of simplifica-
tions which accompany the value, and partly bzcause it is well within the
range of reasonable values. Effects of variations in these quantities
are dealt with later. The values of kg and 1' were chosen to fall in
what was considered the range of interest for airplanes which are most
likely to encounter this problem.

The boundaries in figures 4 and 5 are calculated with xh = 0,
mainly because of the great simplification afforded by this value. When
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x} 1s zero, the boundaries become independent of kg and u' as is seen
later. The significance of the range of values of xa/u used in fig-
ure 5 will be discussed in the next section.

DISCUSSION OF STABILITY BOUNDARIES

Mode of Instability

The stability boundaries indicate conditions under which undamped
oscillations of the system will occur. Since the system is regarded as
having two degrees of freedom, it must be determined whether the neutrally
stable mode is what has been called coupled wing bending or a coupled mode
which is predominantly pitching. The nature of the neutrally stable mode
can be determined quite easgily for any particular case by substituting the
appropriate natural frequency back into the equations and determining the
relation between the pitch and wing-bending coordinates.

It was found that the modes of oscillation associated with the
boundaries considered in this study involved a maximum value of the ratio
r|6|/|y| which was on the order of kg or, in this study, O.l. Physi-
cally, this means that a point on the airplane fuselage a longitudinal
distance from the airplane center of gravity equal to the radius of
gyration would have linear oscillation amplitude with respect to the
center of gravity, caused by pitching, usually less than one-tenth the
oscillation amplitude of the wing tip referred to the center of gravity.
From this observation it can be said that the coupled mode associated
with the boundaries is primarily one of wing bending. (The largest pitch-
ing amplitudes occur under conditions of large longitudinal displacements
of the tip mass center of gravity from the airplane center of gravity and
the higher frequency ratios.)

The phasing of pitch with respect to cantilever bending deflecticn
in these neutrally stable modes (except for one boundary discussed later)
is such that 6 leads y by an amount ranging from a fairly small angle
to something greater than 90° (vector plot, sketch (a)). The larger lead
angles are associated with small values
of © and the smaller lead angles with y
values of @ near 1.0. Physically this T
phase relation means that when the wing P T~
tip is traveling downward with maximum ( 9. N
velocity during the undamped oscillation \ y \
(at zero displacement), the pitch angle \ 6 \
is positive. 1In other words, there is a \ -~
positive component of pitch in phase with \ -~
bending veloclty.

Y

It is this in-phase component of
pitch which is the major factor in
reducing the damping to zerc, since the

Sketch (a)
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air loads caused by the in-phase pitch effectively alter those which
normally supply the damping in the uncoupled wing-bending mode. This

fact can be illustrated with the aid of a rather simplified picture of

the air loads which provide the damping. The distribution of vertical
velocity along the span, &a(n), for an airplane with rather large wing-
tip masses might appear as in figure 6(a) during a wing-bending oscilla-
tion. Such a velocity distribution would have associated with it a
spanwise angle-of-attack distribution equal to (y/V)a(n) (fig. 6(b)) during
forward flight and consequently a spanwise Joading (y/V)la which would
resemble that in figure 6(c). In an uncoupled bending oscillation or a
bending oscillation in which there were no pitch in phase with bending
velocity (ey), it is this loading which would tend to damp the oscillation.
It can be seen from the figures that such an oscillation would always be
stable since the air lcads oppose the motion essentially over the entire
span.

In the unstable bending modes mentioned above, however, there is a
component of airplane pitch in phase with bending velocity which is
accompanied, of course, by a spanwise loading similar to that shown in
figure 6(d). The effective span loading in phase with ¥, which deter-
mines the damping, then, becomes the sum of the loadings of figures 6(c)
and 6(d) shown in figure 6(e). It is easil;” seen from a comparison of
figure 6(e) with 6(a) that the air load favors rather than opposes the
direction of motion of the wing over the center part of the span. Integra-
tion of the product of the loading of figure 6(e) with the mode shape
a(n) over the span indicates whether the ne" effect is stable, neutrally
stable, or unstable oscillation. Again by l.ooking at the figures one can
see that the stability of the oscillation as determined from this integra-
tion will depend mostly on the amount of pi.ch in phase with y and the
spanwise location of the nodes. This latte: quantity is determined by the
effective tip mass ratio m' and the bending shape. Movement of the nodes
toward the tips (or increasing m') and inc:easing the component of pitch
in phase with bending velocity are both conributory to instability in
this mode.

A brief look at the stability criterion (eq. (8a)) will help in the
physical interpretation of the effects of tlie various parameters on the
stability boundaries. The third term of thi.s expression is simply the
discriminant or stability criterion for the uncoupled wing-bending mode
(see coefficient of p(y/r) in eq. 6(b)). 'There is no positive value of
m' Dbetween O and 1 for which the bracketed expression becomes 0 with
realistic aerodynamic derivatives, meaning hat the single degree of free-
dom wing-bending system cannot become unstable. This was demonstrated
rhysically above.

The second term of equation (8a) is proportional to the component of
pitch in phase with bending velocity since it was shown that
6 = A(y/r) + (B/Q)p(y/r) and is the only add:tional term which would
appear in the stability criterion of the coupled system if x} were
zero. Also, it was found in the calculation of the stability boundaries
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that the first term, proportional to pitching acceleration in phase with
bending velocity, is not an important contributor for 0 less than 1.0
even when xﬁ is not zero, so that the examination of only the second
and third terms can give much insight into the behavior of the boundaries
at the lower frequency ratios. If the first term is neglected equa-

tion (Ba) can be rewritten in the following manner:

B B 2
YD o+ Yh-m'\ YA+Z) + +m'= =0
ag T Qkg "0 < 6+ % Qk6> (9)

The term B/Rkg can be shown equal to 63/(y/V), where 6y = (B/Q)p(y/r)
is the component of pitch in phase with bending velocity and &/V is
simply the characteristic angle of attack caused by wing-bending velocity.
As Gy goes to zero equation (9) becomes the same as the third term of
equation (Ba). The effect of this term is to alter the aerodynamic
derivatives as they appear in the third term of equation (8a).

A qualitative plot of m' required for neutral stability versus
ey/(y/v) based on the simplified criterion, equation (9), is shown in
figure 7. Since all the boundaries in figures 3, L, and 5 except one
are associated with modes of oscillation involving pitch in phase with
bending velocity the right-hand boundary will be of most interest. It
can be seen that as the in-phase component of pitch is increased from
zero, a value is reached where neutral stability can exist for 0<m'<1.0.
As ey/(y/v) increases beyond this value, the value of m' required for
neutral stability decreases. This figure will be referred to as the
effects of the various parameters are discussed.

The general effect of the first term of equation (8a) is to raise
the boundaries in figure 3 with positive values of xp above what would
be found with equation (9) in the region of Q = 1.0 and above.

Relation of Boundaries to Existing Airplanes

Now that stability boundaries have been established in terms of
several dimensionless quantities, it is of interest to know where exist-
ing airplane types stand relative to these boundaries. First, orienta-
tion on the m' - plane will be considered. For airplanes with no mass
concentrations at the tips, the effective wing-tip mass is quite small
compared with the total airplane mass (m' probably less than 0.1), and
the fundamental wing-bending frequency is high in comparison with the
uncoupled pitching frequency of the airplane. Such airplanes would be
below and to the right of the portion of the m'-Q plane shown in fig-
ures 3 and 4. One possible exception to this might be a flying wing
configuration where the total mass is distributed along the wing. 1In
this case m' might be fairly large. (The value of m' for a uniform
beam, an extreme example, is about 0.38.)
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The addition of concentrated masses to thz wing tips tends to move
a given airplane upward and to the left on the plot of m!' versus €, and,
as the concentrated wing-tip mass is increased, the trend continues in
the same direction toward the unstable regions. However, even airplanes
which are now considered to have very large wing-tip pods have insuffi-
cient values of effective tip mass ratio m' to reach any of the bounda-
ries shown in figures 3 and 4. To cite a specific example, a fully loaded
F-89D, which represents nearly the upper limit in wing-tip mass ratios for
current airplanes, could be shown as a point slightly above m' equal to
0.25 and near § = 1.0 for a condition of high speed and low altitude.

The location of the boundary itself on the m'-Q plane is a func-
tion of some quantities which should be related to existing airplanes.
The quantities x{, and u' are fairly straightforward. They are dimen-
sionless on the radius of gyration instead of the more familiar mean aero-
dynamic chord, but these two characteristic lengths are of similar size.
Again using the F-89D as an example, the approximate range of x! is
from 0.25 to -0.4, and of u' is from nearly J to 0.45. The large value
of wu' 1is the result of a center-of-pressure shift in the transonic
range, and similar values can be expected for airplanes flying
supersonically.

The term kg 1is comparable in value to tie familiar reduced fre-
quency encountered in the study of classical flutter, the only difference
being the use of radius of gyration instead of semichord as the charac-
teristic length. A value of kg equal to 0.1 represents almost the
upper limit for present-day fighter-type airplines. The highest values
of kg would be encountered at low supersonic speeds and low altitudes.

The term x4 1s the distance of the wing aerodynamic center from
the airplane center of gravity in fraction of She radius of gyration r.
This quantity may be either positive or negatire but will usually be less
in absolute magnitude than u' for conventionil airplanes.

Effects of Tip Mass Center-of-Grarity Movement

Figure 3 indicates the effect of tip mass center-of-gravity movement
on the location of the boundary. As the tip mass center of gravity is
moved forward of the airplane center of gravit;r from x! = 0 to x! = 0.5,
the unstable region expands downward and to the right on the m'-§
plane. This is a destabilizing effect in the tense that an airplane on
the stable side of the boundary could become unstable with forward move-
ment of the tip mass. Movement of the tip mas: center of gravity in a
negative, or aft, direction from the airplane center of gravity has the
opposite effect. However, the danger of reach:ng the boundary for nega-
tive x}, with an actual airplane would be very small, so it is not con-
sidered. The marked effectiveness of xﬁ in noving the boundary suggests
that movement of the tip mass center of gravity would be a useful tool for
eliminating any problem involving this type of instability.
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The effect of forward displacement of the tip mass on the mode of
oscillation is to increase the amplitude and lead angle of 6 with
respect to y Dby imposing a pitching moment in phase with bending
acceleration. This also means that over most of the frequency range
forward movement of the tip mass increases the amount of pitch in phase
with bending velocity. By referring to figure 7 it can be seen that an
increase in ey ‘tends to lower the value of m' required for neutral
stability. This effect is also evident from the physical argument of
figure 6 in that a larger loading near the midspan permits the node lines
to be farther from the tips for neutral stability.

Effects of ke and u'

Unfortunately, the physical significance of independently varying
kg and u' is not obvious. The term kg is one which arises in the non-
dimensionalization of time and of forces and moments caused by wing-bending
velocity. It is the key quantity in determining the local angle of attack
at a point on the wing resulting from a given vertical velocity of that
point. When the definition of kg 1s rewritten it acquires an interest-
ing meaning which, although somewhat removed from its origin, helps in
obtaining a physical feeling for the term.

. wgr [ _MQ
6_ V - Mvz

The ratio under the radical in the right-hand expression may be thought

of as a ratio of energies. Except for a factor of 2, the denominator is
simply the kinetic energy of the airplane due to forward motion, and the
numerator can be interpreted as the potential energy resulting from a

unit deflection in pitch or the energy contained in an uncoupled, undamped
pitching oscillation of unit amplitude. Thus the term becomes a measure
of the energy contained in the uncoupled pitching mode as compared to the
kinetic energy of the airplane in forward motion.

The definition of wu' is very simple but the way in which it enters
the problem independent of kg 1s not at all obvious. Just as kg, u'
can be rewritten to have a physical interpretation quite apart from that
of a dimensionless static stability margin. The term u' can be written

The numerator might be called a characteristics inertia force which would
occur during an undamped, uncoupled pitching oscillation of unit amplitude,
and the denominator is the corresponding characteristic aerodynamic force
on which all aerodynamic forces have been nondimensionalized. With this
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interpretation wu' becomes a measure of the relative importance of inertia
and aerodynamic forces. For example, an independent decrease in u' indi-
cates an increase in the significance of aerodynamic forces in the system.
(This can also be seen in eqs. (6).)

The first point of interest is that when xp = 0, the boundary of
figure 3 is independent of kg and u'. The reason is that under this con-
dition the coupling between pitch and wing bending is purely aerodynamic.
In the more general case when xﬁ is not zero, both inertial and aero-
dynamic coupling occur.

In the range of values considered for }ﬁ and u', kg appeared to
have only small effect on the location of the boundaries. The small
change that was noticed indicates that an independent increase in kg
(u' constant) tends to move the boundary upward and to the left on the
m' -Q plane for positive values of x}, a favorable direction. It
should be remembered that this observation is based only on small values
of kg. For a given airplane kg can be changed significantly only
through Mach number effects or change of altitude (or automatic controls).

The effect of changes in u' on the boundaries is seen to be par-
ticularly noticeable for values of § above 1.0. An independent increase
in u' tends to shrink the boundary to the left for positive x!. For a
given airplane u' can be varied significantly only through Mach number
effects (or automatic controls).

Both kg and u' are quantities which are determined by considera-
tions other than wing-bending stability, and for this reason could not
generally be altered for the purpose of imprcving the wing-bending
characteristics.

Effects of Pitch Damying

It should be remembered that the boundaries in figure 3 were
calculated with {4 and xa/u, and with the aerodynamic derivatives held
constant. At this point some of the effects sn the boundaries of devia-
tions of {4 and x5 from their assigned valuss will be examined. These
effects will be observed quantitatively only for the condition when
xp = 0, since under this condition the boundaries become independent of
kg and u', and the stability criterion becomes exactly that of equation (9).
These results can be extended qualitatively t> other conditions.

The effect on the boundary of changes in pitch damping is illustrated
in figure 4. The boundary for ge = 0.35 1s the same as that for xp =0
in figure 3, and the second boundary differs only in that Qe has been
lowered to 0.2. The effect of lowering €g is to extend the unstable
region slightly as Q approaches 1.0. Physi:ally the effect of lowering
g 1is to increase the magnitude of pitch in the coupled mode near
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§ = 1.0 through the phencmenon of resonance. This in turn increases the
component of pitch in phase with bending velocity and hence the boundary
is lowered. This general effect is also present where xb is not equal
to zero.

Effects of Wing Aerodynamic Center Location

The longitudinal position of the wing aerodynamic center x5 enters
into the stability criterion (eq. (8a)) as a ratio Xg/u. Aerodynamically
the static stability term Mg 1s composed of two major parts, the contri-
bution of the horizontal tail and the contribution of the wing. The wing
contribution can be either stabilizing or destabilizing depending on
whether the wing aerodynamic center is aft or forward of the ailrplane
center of gravity. The ratio xa/u is a measure of the contribution of
the wing to the total longitudinal static stability Mg. A positive
value indicates a destabilizing wing contribution; a negative value indi-
cates a stabilizing wing contribution; and a value of -1.0 indicates that
all the stability is contributed by the wing and none by the tail.

The effect of changing the ratio xa/u on the boundary for x4 = 0O
is shown in figure 5. Except for the changes in xa/u, all conditions
are the same as for the x! = O boundary in figure 3. The boundaries
for xg/u = 0.5, 0, and -0.5 give an indication of the effect of this
parameter for conventional airplanes. If the wing gives a destabilizing
contribution to the longitudinal static stability, the boundaries of fig-
ure 3 are generally lowered, and the reverse is true for a stabilizing
wing contributicn. This effect is more pronounced for low values of &
than for high values, and, in fact, this is the only parameter discussed
so far that has varied the location of the boundary at Q = O. This will
be discussed in the next section.

The actual mechanics of this effect are based on the fact that the
tail contribution to static longitudinal stability is most important in
producing a pitching moment proportional to and in phase with bending
velocity, since the wing contribution tends to be canceled out in the
wing-bending oscillation. The increase in 9& caused by an increase in
pitching moment in phase with v, then, lowers the boundary in accordance
with the effect shown in figure T.

As a matter of interest a boundary was computed for xg/u = -2.0.
This is a case where twice the total amount of static stability is con-
tributed by the wing, or, in other words, the "tail" has a negative
contribution as in a canard configuration. The result of this computa-
tion was the lower boundary in figure 5. The mode of oscillation in
this case was primarily wing bending as with the other cases, but the
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pitching motion lagged wing bending,
y producing a pitch component in
? antiphase with bending velocity
(sketch {(b)).

Phy:sically, the canard surface
produces a pitching moment in anti-
phase wi:h bending velocity as opposed
to the in-phase pitching moment pro-
duced by the conventional tail. As
a result of this, a component of pitch

. in antiphase with wing bending is
!__y 8 produced which is large enough to
- = reach the left-hand boundary of fig-
ure 7. Also, by reversing the sign
of the span loading caused by pitch
in phase with ¥ in figures 6(d)
and 6(e), it is evident that zero damping can be achieved if the nodes
are moved inward toward the fuselage (or m' reduced). The possibility
of reaching this boundary with an actual airplane is remote because of
the unlikely combination of low tip mass ratics m' and low frequency
ratios Q.

V<

Sketch (b)

Location of Boundaries for Small §

For all the boundaries in figures 3 and 4 the value of m' associated
with neutral stability was independent of the varying parameters when

was very near zero. Letting Q approach zero in equation (8a) gives the
value

v x_aZl Y
a.o+u a. "1}

(o}
Xa
7 é‘o<l + T)

Setting xa/u equal to zero, as was done for figures 3 and L4, reduces the
expression to

oY Ya
m =ZT=Z—
e 8o

The location of the boundary for small Q, tiien, is dependent only on the
aerodynamic derivatives and the ratio x5/u. For negative values of
xa/u(> -1) the boundary near Q = O is above m' = YéO/ZéO and for
positive values it is below, as illustrated n figure 5.
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When xa/u = O the portion of the boundary near & = O corresponds
to the point (Yao/zao’ Yao/Zao) on the boundary of figure 7. Under this
condition calculations indicate that the component of pitch in phase with
bending velocity exactly cancels the angle of attack at the fuselage sta-
tion (n = 0) resulting from the vertical velocity -m'y/V. Changes in
Xxg/u move this point as described earlier.

Knowledge of the behavior of the boundary near Q = O allows qualita-
tive prediction of the effect of changes in Yao/Zao in this region, a
variable not yet considered.

Minimum Value of m' Necessary for Undamped Oscillation

All the boundaries of figures 3, 4, and 5, except the one for the
canard configuration in figure 5, were found to correspond to locatiocns
on the right-hand boundary in figure 7. It was also mentioned earlier
that the combination of parameters necessary to reach the boundary for
the canard configuration in figure 5 was a very likely one, and further
examination of the stability criterion indicates that almost any combina-
tion of parameters necessary to achieve neutral stability on the left-
hand boundary of figure 7 is in the same category. For airplanes of more
or less conventional configuration then, the right-hand boundary of fig-
ure 7 will almost certainly be the critical one.

If only the right-hand boundary is considered, figure 7 shows that
undamped oscillations cannot be achieved for values of m' less than Y5,
since the boundary approaches this value asymptotically as Qy increases
indefinitely. It should be remembered that this was derived with a
stability criterion which was useful only for <1.0, but the minimums
of the various boundaries calculated always occurred at values of § less
than 1.0, so this minimum value of m' 1s a useful quantity. If m' 1is
below this value, instability by the mechanism considered in this study
is very unlikely. Probable values of Yj for a conventional type airplane
lie between 0.25 and 0,30.

CONCLUDING REMARKS

An oscillatory instability in wing bending coupled with airplane
pitching was examined by means of a simple two degree of freedom repre-
sentation of a straight-winged airplane. Although many effects were not
accounted for, it is felt that the basic mechanism of the instability
was well represented in the system. The results should be considered a
guide to more detailed analyses for particular cases because of the sac-
rifice of detail in this study in the interest of generalization. The
effects of changes in several quantities describing the airplane and its
flight condition on wing-bending stability are shown in the form of
stability boundaries.
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It was shown that for practical purposes there is a minimum value of
the ratio of effective wing-tip mass to total airplane mass below which
wing-bending instability cannot occur by this mechanism. It was also
found that this instability is most likely to occur under conditions of
high ratios of effective tip mass to total airplane mass, ratios of
natural coupled wing-bending frequency to natural uncoupled pitching
frequency near or below 1.0, and tip mass center-of-gravity locations
ahead of the total alrplane center of gravity. Movement of the tip mass
center-of-gravity location appeared to be the most effective method of
avoiding a region of instability for an airplane which is critical in
this regard.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Sept. 17, 1958
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Figure 1l.- Pitch and wing-bending coordinates deflected in a
positive direction.
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(a) Spanwise vertical velocity distribution, va(n).
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(v) Spanwise angle-of-attack distribution, % a(n).
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due to angle-of-attack distribution, % a(n).

(c) Spanvise air load
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(4) Spanwise air load due to pitch in phase with bending velocity, 6&29.
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(e) Effective spanwise air load in phase with Ve

Figure 6.- Contributions of wing-bending velocity and airplane pitch to
the generalized damping force in the coupled wing-bending mode.



32

(+)

Unstable

| )

Za,  Za,

Anti-phase In-phase
(=) )
AV ° 85
/ /w,ﬁ'L .~ Yoo Y
1 y/v Yg
8y . o
8y Lox o yv o
y/v ¢t

* Roots of p?+ 2(Zgy—Yg)p +(Yp+2q,  -4Yg=0

Figure T.- Qualitative stability boundary slowing the importance of the
component of piltch 1n phase with bending velocity in determination
of wing-bending stability.

NASA - Langley Field, Va.



