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SUMMARY

Photographs are presented of various models coated with fluorescent

oil to show evidence of surface vortices at a Mach number of 3.03.

Vortex formation was evidently present on models with forward-facing steps;

rearward-facing steps; wires; discrete surface particles, or unswept flat

surfaces with sharp leading edges. Some photographs are also presented

for the models coated with a sublimation material which clearly indicates

the location of boundary-layer transition; however, it does not show the

vortices as clearly as the fluorescent oil. The study was made on the

models at an angle of attack of 0 ° at unit Reynolds numbers of 7.7 and

10.7 million per foot. The spacing of the vortices as indicated by the

flow studies on the umswept model was smaller at the higher Reynolds

number in accordance with G_rtler's theory. The flow studies also indi-

cated that stable surface vortices produced by either steps or surface

roughness persisted over model areas known to have turbulent boundary
layers.

INTRODUCTION

Streamwise vortices in the vicinity of the boundary layer have been

studied with considerable interest recently because of the possible con-

nection between the instability of these vortices and the breakdown of a

laminar boundary layer into a turbulent boundary layer (e.g.; refs. i and

2). Streamwise arrays of vortices have been observed by a number of

investigators and have been placed in three general classifications:

(i) counterrotating arrays predicted by GZrtler for viscous flow on a

concave surface, (2) co-rotating arrays predicted by Stewart for three-

dimensional flow on swept surfaces, and (3) arrays produced by random

surface particles, each particle apparently producing a counterrotating

pair of vortices. Examples of the first type may be seen in the figures

of reference 3 where apparently the necessary concavity of the flow at a

Mach number of 2.05 was produced by the separated flow occurring downstream

from rearward-facing steps. A number of observers have reported on the



occurrence of the second type on rotating dis_s and on swept wings at
both subsonic and supersonic speeds (e.g._ ref. 4) while the third type
has been studied primarily at subsonic speeds (e.g., ref. 5).

The main purpose of this study was to find evidence of surface
vortices by use of the improved visual-flow technique (ref. 6) in which
fluorescent oil is viewed under ultraviolet lights. In several cases
the measuredvortex spacing as indicated by the visual-flow studies is
comparedwith the spacing given by the G_rtlcr theory of reference 7.
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NOTATION

average distance between vortices

height of step or single element roughness

length

Mach number

unit Reynolds number_ O_u per foot

velocity

U

boundary-layer thickness taken betwe,_n_o ° = 0 and 0.9985

viscosity coefficient

density

Sub script

o free-stream conditions

APPARATUS AND MODEL DESCR[PTION

Wind Tunnel

The investigation was conducted in an 8-inch supersonic nozzle, in

which the Mach number in the test section was 3.03. The stagnation

pressure range of the wind tunnel is from 3_ to 103 psia.



The average transition Reynolds number was found to be 3.0 million.
This number is based on local flow conditions and the transition length
at the beginning of transition as determined from tests of a cone with ao
vertex angle of 20 . No change in the transition Reynolds number was
observed throughout a unit Reynolds number range from 7 to 12 million
per foot.

Models and Support
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The step model was sting-supported 3 the attachment being on the

lower surface to minimize sting interference. The plan form was rectan-

gular with a span of 4 inches and a chord length of 3 inches. Steps

located i inch from the model leading edge had heights ranging from 0.i

inch for the rearward-facing step to 0.058 inch for the forward-facing

step. Various step heights were obtained by attaching flat plates of

different thicknesses to the surface immediately downstream of the

rearward-facing step. During most of the investigation, end plates were
attached to the model to prevent possible interference effects from flow

around the tips of the model. However_ the flow conditions in the central

portion of the model were found to be the same with or without end plates.

All parts of the model were ground to a finish of 8 microinches (rms),

the finish normally used on cams. A leading-edge thickness of 0.009 inch

was employed to reduce effects possibly arising from leading-edge nicks

caused by foreign particles in the air stream. A dimensional sketch of

the step model is presented in figure i and a photograph of this model

mounted in the wind tunnel is presented in figure 2.

Limited visual-flow tests were also conducted on the flat surface of

a wing model. The wing had a leading-edge sweepback of 48.5 ° and an

aspect ratio of 1.4. The leading-edge thickness was about 0.00_ inch

and the wing span was 4 inches.

For those tests in which boundary-layer trips were used to produce

vortices_ either a piano wire for single-element roughness or silicon-

carbide particles for distributed roughness were cemented to the model

surfaces.

TEST CONDITIONS AND VISUAL-FLOW TECHNIQUES

Wind-Tunnel Test Conditions

All tests were conducted at a Mach number of 3.03 at either a unit

Reynolds number of 7.7 or 10.7 million per foot. Free-stream stagnation

temperatures ranged from 6_ ° to 85 ° F. An angle of attack of 0° was

maintained throughout the investigation.



Fluorescent-Oil TechniT_e

The fluorescent-oil technique employed w_s identical to that
described in reference 6. A mixture of about i part of yellow fluorescent
powder and 40 parts of SAE40 oil wasbrushed on the model and photographed
under ultraviolet light after the flow pattern was established. The
light was provided by a single EH-4 ultraviolet lamp located about 8 inches
from the model. A time exposure of 5 seconds at f/16 was found to give
satisfactory contrast on a panchromatic film _th an ASArating of about
iO0.

Sublimation Technique

The sublimation technique employedwas tme sameas the one described
in reference 8. For the present tests approxhmately 12 coats of a satu-
rated solution of naphthalene and petroleum ether were sprayed on the
model. After the petroleum ether had evaporated_ and before the model
was installed in the wind tunnel_ the naphthalene was rubbed smooth with
a piece of paper to reduce the possibility of slight roughness causing
transition.
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RESULTS AND DISCUSSIOI_

In the photographs presented herein the _bservable striations are

believed to be indicative of surface vortices. Similar striations were

observed by Ginoux in a sublimab!e material b_hind rearward-facing steps

as reported in reference 3. Detailed spanwis_ surveys made by Ginoux, in

and downstream of the reattachment region of the flow_ with total-head

probes indicated strong regularly spaced perturbations in pressure which

could not be explained by irregularities in e_ther the model or the air

flow upstream of the model. Ginoux suggested_ therefore_ that these

measured perturbations could be explained by the presence of regularly

spaced longitudinal vortices.

Figure 3(a) shows striations on the rearward-facing step similar to

those found by Ginoux. In figure 3(b) the sa_e regular patterns are

defined more clearly by the fluorescent oil. Test conditions were

identical and the same spacing of striations is found in both photographs.

Both visual-flow techniques also showed striations near the leading edge.

Figure 4 shows enlarged photos of the le_ding-edge region. The step
was filled in and there was less oil on the surface. A comparison of

figure 4(a) with figure 4(b) indicates that the vortices were closer



A
5
6

7

together at the higher Reynolds number, a result which is compatible :_th

the theory of reference 7. According to reference 7 the spacing between

adjacent G_rtler vortices first to form without decaying is given by the

following equation: I

d : 2.5 6 (1)

where 6 is the boundary-layer thickness. At a distance of 0.29 inch

from the wing leading edge, approximately the distance at which the

striations are first discernible, the vortex spacing was estimated from

(i) above, the boundary-layer thickness for M = 3.03 being estimated by

the method given in reference 9. These estimated and experimental

results for the Reynolds numbers of 7.7 and 10.7 million are given in the
table below:

R/ZXI0 -6

per foot

7.7

10.7

d_ in.

Measured I Estimated

0.021±0.002 0.017

0.016±0.002 0.014

ZAverage distance between striations

on photographs was assumed to be

equal to the average vortex spacing.

The result that the vortices are closer together at the higher Reynolds

number is in accord with theory, but the estimated spacings are smaller

than the measured spacings.

The sublimation photograph presented in figure 5 does not show

clearly the fine striations found near the wing leading edge in the

fluorescent-oil photograph but does indicate that laminar flow existed

to the wing trailing edge at a Reynolds number of 10.7 million.

Both the forward-facing steps and the rearward-facing step produced

vortices which evidently persisted at least to the trailing edge as shown

in figures 3 and 6. The equations of reference 9 gave an approximate

value for the flow curvature necessary to produce streamwise vortices in

the separated region. Computations of flow curvatures based on pressure

measurements made on models described in reference i0_ geometrically

similar to the model of the present investigation, showed that the

curvature existing at the separated region on both forward-facing and

rearward-facing steps was two orders of magnitude greater than the minimum

value required. Thus the curvature required to produce vortices was so

slight that this degree of curvature might even exist at the leading edge.

lit is recognized that this equation was derived from a theory for

incompressible flow and is not strictly applicable to the present

investigation.
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A wire attached to the smooth step modeJ (h = O) ! inch behind the

leading edge produced longitudinal vortices &s evidenced by figure 7.

In this case the concave curvature of flow r_quired for vortex formation

would be present both ahead of and behind thc_ wire.

A typical example of the flow pattern produced in fluorescent oil

by discrete surface particles attached to a flat wing surface is presented

in figure 8(a). To show that the surface vortices produced by the parti-

cles persisted over the areas where the boun(iary layer was turbulent 3 a

sublimation photograph for the same flow conditions as for the fluorescent

oil photograph is presented in figure 8(b). To indicate the effect of

these surface particles on natural transitio1_ a sublimation photograph

is also presented for the model with natural transition in figure 9.

CONCLUDING REMARKS
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Fluorescent-oil photographs presented s]_ow evidence of streamwise

vortices being produced at a Mach number of ]!_.03on a flat plate with no

steps or protuberances, behind a rearward-fa(:ing step_ behind a forward-

facing step, and behind a wire roughness. _idence is given that for a

flat-plate wing with distributed roughness, _.he vortices persisted over

areas known to have a turbulent boundary layer. Moreover, the photographs

showed that the vortices were closer together" at the higher Reynolds

number_ a result in accord with G_rtler's th_ory.

Ames Research Center

National Aeronautics and Space Administ_'ation

Moffett Field, Calif., May Ii, 1961)
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thickness = 0.009
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End plates

Top view
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t
--.21 _

--h =.036 forward

facing step

h =.058 forward

facing step

h =.lO rearward

facing step

h =0 flat plate

%
Side view

All dimensions in inches

Figure i.- Dimensional sketch of step model.
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(a) Naphthalene. (b) Fluorescent oil.

Figure 3.- Rearward-facing step model; h = 0.i0 inch_ R/Z = 7.7xi0 6 per foot.
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(a) R/Z = 7.7Xi0 6 per foot. (b) {/_ = lO.7xlO6 per foot.

Figure 4.- Smooth-step model (h = O) coated with fluorescent oil.
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Figure _.- Smooth-step model (h = 0) coated with napthalene;

R/Z = lO.7xlO 6 per foot.
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(c) R/Z = 7.7XI0 e per foot; h = 0.036 inch.

Figure 6.- Continue_.
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(d) R/Z = lO.TXlO 6 per foot; h = 0.036 inch.

Figure 6.- Concluded.
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Figure 7.- Smooth-step model (h = O) _£ith iluorescent-oil coating a_,id

wire; h : 0.051 inch_ R/Z - 7.]XlO 6 De±" foot.
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(a) Fluorescent oil.

(b) Sublimation.

FiLu_re $.- Flat-plate _rin_ with distributed roughness particles located

i/4-inch from the leading edse; R/Z = 7._i_'xl06 per foot_ sweepback =

-.._._ , :_spect ratio -- 1.4.
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Figure 9.- Flat-plate wing with natural tran_ ition indicated by naphtha-
lene; R/Z = 7.7×10 6 per foot_ sweepback = :8.5° aspect ratio 1.4.

NASA- La.gley Field, Va A-367
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