
NASA

SOFTWARE CONFIGURATION

MANAGEMENT GUIDEBOOK

AUGUST 1995

PREFACE

The growth in cost and importance of software to NASA has caused NASA to address the

improvement of software development across the agency. One of the products of this program is

a series of guidebooks that define a NASA concept of the assurance processes which are used in

software development.

The Software Assurance Guidebook, SMAP-GB-A201, issued in September, 1989, provides an

overall picture of the concepts and practices of NASA in software assurance. Lower level

guidebooks focus on specific activities that fall within the software assurance discipline, and

provide more detailed information for the manager and]or practitioner.

This is the Software Configuration Management Guidebook which describes software

configuration management in a way that is compatible with practices in industry and at NASA

Centers. Software configuration management is a key software development process, and is

essential for doing software assurance.

SOFTWARE CONFIGURATION MANAGEMENT GUIDEBOOK

Approvals

Lawrence E. Hyatt

Manager, Software Assurance Technology Center

Kathryn Kemp



DeputyDirector,NASA SoftwareTechnologyDivision

I. GENERAL

This guidebook defines Software Configuration Management (SCM) and describes its

constituent functions, processes, and procedures. The guidebook also describes a generic set of

organizational elements and responsibilities for operation of SCM. It defines the role of SCM, its

interfaces and its functions throughout the software development life cycle. This guidebook also

provides a basis for tailoring SCM for different projects with different life cycles and project

specific requirements.

Proper application of software configuration management is a key component in the

development of quality software. Changes to the software under development are usually a

significant cause of changes to a project's schedule and budget; unmanaged change is very

possibly the largest single cause of failure to deliver systems on time and within budget.

SCM is the process that has been developed to control and manage change. Change is inevitable

during the software development life cycle. Changes to the software come from both external

and internal sources. External changes originate from users, from evolution of operational

environments, and from improvements in technology. Internal changes come from improved

designs and methods, from incremental development, and from correction of errors. A properly

implemented SCM process is the project manager's best friend and potential salvation in coping

with change.

This guidebook is written for software project managers who must plan for SCM for their

project, for SCM practitioners who will implement SCM, and for software developers and

acquirers who will be affected by it. The style of the guidebook is intended to be tutorial rather

than directive. It is hoped that the reader will find the following sections an easily understood

introduction to software configuration management and a useful guide to planning and

implementing SCM in a software development project.

The guidebook describes SCM in terms of the concepts and definitions, implementation,

applicability in relation to the software life cycle phases, organization and interfaces, discussions

of tools, examples of forms, and references to applicable documents.

II. CONCEPTS AND DEFINITIONS

Software configuration management is the process whose objective is the identification of the

configuration of software at discrete points in time and the systematic control of changes to the

identified configuration for the purpose of maintaining software integrity and traceability

throughout the software life cycle.

In order to accomplish the objective given in the above definition, there are four identified SCM

functions: 1) identification of the components that make up the software system and that define

its functional characteristics; 2) control of changes to those components; 3) reporting of status of

the processing of change requests and, for approved requests, their implementation status; and 4)

authentication that the controlled items meet their requirements and are ready for delivery.



The components of a software system that are controlled by the SCM process include project

documentation, product documentation, code, data, and any other items needed to meet a set of

requirements or contractual obligations. All of these items can be controlled by the same SCM

process.

The term "configuration" is used repeatedly in this guidebook. Configuration means the

functional and]or physical characteristics of software as set forth in technical documentation and

realized in a product. Thus "configuration" includes all of the characteristics of the software to be

controlled - its content, the content of documents that describe it, the versions of software and

documents as these contents are changed, data needed for operation of the software, and any
other essential elements or characteristics that make the software what it is.

The software under control is usually divided into "configuration items." Configuration item (CI)

is the term used for each of the logically related components that make up some discrete element

of software. For example, if a system contains several programs, each program and its related

documentation and data might be designated a configuration item. The number of CIs in a

system is a design decision. Guidelines for division of software systems into CIs are given in

Section III, part B 1. Note that if the system being developed has both hardware and software

components, then in a general sense a CI may have both hardware and software components. A

CI that is purely software is often called a Computer Software Configuration Item, or CSCI.

Generally in this guidebook we will use the term CSCI, since we are talking about software

systems and software configuration management. The concepts for software CM are similar to

hardware CM, but the software CM process must be even more rigorous and deeply imbedded in

the engineering process since software is much more flexible and changeable than hardware.

As each software CI goes through its development process, more and more of its components are

developed until the final CSCI is available for use. Generally, the life cycle process will first

result in a set of requirements, then a design, then code for individual elements of the CSCI, then

integrated code with test cases and user manuals, etc. The definition of SCM contains the

concept of identifying the configuration of each CSCI at discrete points in time during the life

cycle process, and then managing changes to those identified configurations. The configuration

of software at a discrete point in time is known as a baseline. Thus, a baseline is the

documentation and software that make up a CSCI at a given point in its life cycle. Each baseline

serves as a point of departure or reference for the next development stage. In the NASA standard

life cycle, baselines are established after each life cycle phase at the completion of the formal

review that ends the phase.

Each baseline is subject to configuration control and must be formally updated to reflect

approved changes to the CSCI as it goes through the next development stage. At the end of a life

cycle phase, the previous baseline plus all approved changes to it becomes the new baseline for

the next development stage. The term "baseline management" is often used to describe this

control process.

Normally, the first baseline consists of an approved software requirements document, and is

known as the requirements baseline. Through the process of establishing a baseline, the

functional and other requirements described in the requirements document become the explicit

point of departure for software development, against which changes can be proposed, evaluated,

implemented, and controlled. The requirements document is also the basis against which the



software is authenticated. Subsequent baselines and their contents are described in Section IV.

SCM requires that processes and procedures be put in place to identify the baselines that are to

be established and their contents, to control the CSCIs and their individual elements to prevent

unauthorized change, to process requests for changes to those baselines and report on status of

changes, and to authenticate that a given configuration contains all of its required components

and that it satisfies the functional and performance requirements given in the requirement

document. That is, SCM consists of four basic processes:

,, Configuration Identification

,, Configuration Control

• Configuration Status Accounting

,, Configuration Authentication

These processes, their relationships and implementation, are described in detail in Section III.

There are some roles that are key to the SCM process. Someone must operate the SCM process;

that is, must establish detailed procedures, must make sure all requests for changes are processed

properly, must provide reports on the status of all CSCIs and proposed changes, and must have

control of all of the baselined items. This role is named Configuration Management Officer or

CMO. The individual designated the CMO is critical to the successful operation of a SCM

system.

Actual storage and physical control of the contents of baselines is done by a librarian in a

location called a program library. The program library must contain the official copies of all

baselined items that make up the various CSCIs. It contains all baselined items, including code

and object modules, which are checked out by the librarian for authorized changes to be made,

and are checked back in after change is complete. The program library is operated by the

librarian and is usually under the control of the CMO. Efficient operation of the library is
enhanced if automated tools are available. See section VIII for a discussion of tools.

Decision making authority, which must determine if a proposed change is to be made, is vested

in a Configuration Change Board (CCB). A CCB is chaired by a senior manager (often the

project manager) who can authorize the expenditure of resources. Other members are chosen

based on their ability to provide advice on the costs and benefits of a change. Usually the CCB

rules of operation are such that the chair unilaterally decides the disposition of the proposed

changes after receiving the advice of the other members. The CCB process is operated by the

CMO, who provides to the CCB the requests for changes and the associated analysis of impact

and who records the decisions of the CCB and provides them to the change requester and the

individuals who will implement the change.

SCM is a key process in managing software development, operation, maintenance, and

enhancement. The remainder of this document explain in detail the component processes and

steps, and the organizational elements needed for the successful implementation of SCM in a

software development project.



III. THE SCM PROCESS

A. Overview

Software configuration management is composed of four functions:

,, Configuration Identification

,, Configuration Control

,, Configuration Status Accounting

• Configuration Authentication

Configuration identification is the process of defining each baseline to be established during

the software life cycle and describing the software configuration items and their documentation

that make up each baseline. First, the software must be grouped into configuration items. Once

the CSCIs and their components have been selected, some way of designating the items must be

developed. This is done by the development of a numbering and naming scheme that correlates

the code and data items with their associated documentation. Finally, the CSCIs must be

described by the documentation of their functional, performance, and physical characteristics.

Configuration control is the process of evaluating, coordinating, and deciding on the

disposition of proposed changes to the configuration items, and for implementing approved

changes to baselined software and associated documentation. The change control process ensures

that changes which have been initiated are classified and evaluated, approved or disapproved,

and that those approved are implemented, documented, and verified.

Configuration status accounting is the process used to trace changes to the software. It ensures

that status is recorded, monitored, and reported on both pending and completed actions affecting

software baselines. This process also defines the current as-built status of the code and associated

documentation.

Configuration authentication is the process of verifying that a deliverable software baseline

contains all of the items which are required for that delivery, and that these items have

themselves been verified, i.e., they satisfy their requirements. The authentication function usually

consists of two "audits": a functional configuration audit (FCA) and a physical configuration

audit (PCA). Functional audits authenticate that the software has been tested to assure that it

performs in accordance with requirements in the baseline documentation. Physical audits

authenticate that the software to be delivered contains all of the required components,

documents, and data.

Each of the above functions is explained in more detail in the following sections.

B. Configuration Identification

Configuration identification is the basis for subsequent control of the software configuration. The

configuration identification process involves the selection, designation, and description of the



software configuration items. Selection involves the grouping of software into configuration

items that are subject to configuration management. Designation is the development of a

numbering and/or naming scheme that correlates the software components and their associated

documentation. Description is the documentation of functional, performance, and physical

characteristics for each of the software components.

1. CSCI Selection

A software system is generally split into a number of CSCIs which are independently developed

and tested, and which are finally put together at the software system integration level. Each

CSCIbecomes essentially an independent entity as far as the CM system is concerned, and the

four processes defined at the beginning of Section III are carried out on each CSCI.

The division of the software into CSCIs may be contractually specified, or may be done during

the requirements analysis or preliminary design phase. As a general rule, a CSCI is established

for a separable piece of the software system that can be designed, implemented, and tested

independently. Other criteria that may go into the decision to separate out a set of software and

manage it as a CSCI are:

• The set of software is critical to the overall performance, or there is a high level of risk

involved, or system safety related tasks are contained in the item.

• The set of software is highly complex, incorporates new technologies, or has stringent

performance requirements.

• The set of software encapsulates interfaces with other software items that currently exist

or are provided by other organizations.

• The set of software is expected to have more than usual change or modification after it

becomes operational.

• The set of software contains all of a specific domain of functionality such as application,

operating system, etc.

• The set of software is installed on a different computer platform from other parts of the

system.

• The set of software is planned to be reused.

2. CSCI Designation

Each software component must be uniquely identified. The unique identifier is used in tracking

and reporting CSCI status. Normally, each CSCI is assigned a CSCI identifier, and pieces of the

CSCI are given the identifier with an attached descriptor. Thus, a CSCI that consists of the flight

software for a spacecraft might be given the designator FS. Components of the flight software,

such as the flight executive might be designated FS-EX, showing that it is a second level

component of the CSCI FS. Parts (subroutines) of the executive might be numbered FS-EX-001,

FS-EX-002, etc. This allows the unique identification of system elements, both code and

documents, as to the CSCI of which they are parts. It facilitates the tracking of changes to the



component, the status of the changes and the component, and the reporting of all the information

relative to the component.

3. CSCI Description

Software components are described in specifications (i.e., software requirements specifications,

software architectural design specifications, software detailed design specifications, interface

control documents, and software product specifications). The description of the component

becomes more detailed as the design and development proceeds through the life cycle The

description forms the basis for configuration control and configuration status accounting. The

description is also the basis for the final authentication that the software is complete and verified.

The documents, or portions of documents, that describe each CSCI must be identified and made

part of the CSCI.

Formats for the documents described above can be found in NASA-STD-2100-91, "NASA

Software Documentation Standard".

C. Configuration Control

Configuration control is the systematic process for evaluating, coordinating, and deciding on the

disposition of proposed changes and for tracking the implementation of those approved changes

to baselined code and associated documentation and data. The change control process ensures

that the changes are

initiated, classified, evaluated, approved or disapproved, documented, implemented, tested, and

incorporated in a new baseline.

An orderly change process is necessary to ensure that only approved changes are implemented

into any baselined document or software. Figure 1 shows a simple overview of the change

process. The steps within the overall process can be grouped into the following categories:

,, Change Initiation

,, Classification

,, Change Evaluation

,, Change Dispositioning

,, Implementation

,, Verification

,, Baseline Change Control

These seven steps in change control are individually discussed below:

1. Change Initiation

Requests for change to software and documents come from many sources. A Change Request



(CR) maybesubmittedby apotentialuser,by thesystemacquirer,by areviewer,or by a
memberof theprovider'sstaff.Eachprojectshouldsetup aCR form for documentingthe
proposedchangeandits disposition.SeetheNASA SoftwareStandards,DID-R005, for basic
informationthat canbeincludedonaCR form,however,the actualform setupmustcorrespond
to theplannedSCMprocess.An exampleform,basedon theDID, is includedasAppendixB.
Notethatelectronicforms,containingthesameinformation,arebeingincreasinglyusedasdirect
interfacesto SCM supporttools (Toolsarediscussedin SectionVIII). Eachprojectshouldalso
nameanindividual (theConfigurationManagementOfficer, or CMO) to receivethechange
form,assignit a trackingnumberandclassification,androuteit for processing.

TheCMOreceivestheCR andreviewsit for clarity andcompleteness.If the CMO determines
thatthe CR isnot complete,it is returnedto the originator.Oncecomplete,theCMO assignsthe
CR auniqueidentifier for trackingpurposesandrecordsinformationaboutthe CRin thechange
requesttrackingdatabaseor files.

2. Change Classification

Changes to software and associated documentation are classified according to the impact of the

change and the approval authority needed. The top class is assigned to changes that would affect

the system level requirements, external interfaces, system cost, and/or delivery schedule. These

changes usually can only be approved by the acquirer of the software. A second class of changes

may be established for changes that affect the interfaces between CSCIs and the allocation of

functions to CSCIs, or which affect component level cost and schedule. These changes generally

can only be approved by the project level management of the provider. A third class of changes,

those that affect CSCI internal design and division of functionality, may be approved by CSCI

level management.

Generally, change classes are identified by numbers. For instance, Level I is often assigned to

that class that contains the highest class and has to be routed to the acquirer; Level II to the next;

etc. Class names and classification rules should be spelled out in the agreement (contract)

between the acquirer and provider and the processes for assignment of classes should be in the

provider's SCM procedures. In addition to defining the scope of changes that are allowed to be

made by the provider, the contract often will require that the acquirer be provided copies of at

least the next lower class to allow verification of the classification process.

Classification of changes may be suggested by the individual who proposes the change. The

CMO reviews suggested classes and assigns a working classification. After assessment of the

impact of the CR, the CCB will assign the final class.

3. Change Evaluation

One important aspect of the Configuration Control process is that it provides adequate analysis

of changes in terms of impact to system functionality, interfaces, utility, cost, schedule, and

contractual requirements. Each change should also be analyzed for impact on software safety,

reliability, maintainability, transportability, and efficiency. The project CMO routes the CR to

the software engineering staff for evaluation. In some cases, project procedures require that the

CR be screened by some board before it is analyzed. This approach saves the cost of analysis for

changes that do not have any chance of approval.



Theanalysisproducesdocumentationwhichdescribesthechangesthatwill haveto bemadeto
implementtheCR,the CSCIsanddocumentsthatwill haveto bechanged,andtheresources
neededto do thechange.Thedocumentationbecomespartof thechangepackage,alongwith the
CR.After completionof theanalysis,thechangepackageis sentbackto the CMO.

4. Change Dispositioning

Dispositionsfor changesto baselineditemsaredoneby aConfigurationControlBoard(CCB).
TheCCBevaluatesthedesirabilityof achangeversesthecostof thechange,asdescribedin the
documentationof theanalysis.TheCCBmayapprove,disapprove,or deferachangerequest.It
mayhaveto requestmoreinformationandadditionalanalysis.

Dispositioneditemsaresentto the CMO for action.Rejecteditemsaresentto theoriginator
alongwith the CCB'srationalefor rejection.CRsneedingfurtheranalysisaresentbackto the
analysisgroupwith the CCB'squestionsattached.DeferredCRsarefiled, to besentbackto the
boardat thepropertime.

TheCMO sendsapproveditemsto thedevelopmentorganization,unlessit is of a level that
needsto beprocessedthroughhigherlevelCCBs.If additionallevelsof approvalareneeded,the
CMO submitstheCR packageto thenext levelCCB.

TheCMO,actingasthesecretariatof theCCB,preparesanddistributesthemeetingminutes,
andrecordsthecurrentstatusof theCR.This informationis addedto thetrackingdatabaseor
recordedin files.

5. Change Implementation

Approved CRs are either directly used as a change authorization form or result in a change

directive being prepared by the CMO. In either case, approval results in the issuance of

instructions which authorize and direct the implementation of the change in the software and
associated documentation.

The development organization schedules the resources to make the change. It must get official

copies of the baselined component to be changed from the program library. For code changes,

design has to be developed, code has to be written, and testing has to be done and the correctness

of the change verified. Moreover, the associated documentation has to be revised to reflect the

change. Once the change has been made and local testing completed, the revised component and

documents are returned to the control of the program library. Upon verification, the new version

takes its place in the sequence of baselines.

6. Change Verification

The implemented changes, which have been tested at the unit level, must be verified at the CSCI

level. This may require the rerun of tests specified in the test plan or the development of an

addition to the test plan. Regression testing will usually have to be included in the test to assure

that errors have not been introduced in existing functions by the change. Once the verification is

complete, the development organization submits evidence of it to the program library, which will

then accept the changed items for inclusion in the SCM controlled files that make up the new

version of the baseline. This CSCI or system level of verification may not occur until the next



releaseof thesystemis beingtested.

After thesuccessfulimplementationandtestingof thechangedescribedin theCR,theCMO will
recordtheoccurrenceof this processinto thechangerequesttrackingdatabaseor files.

7. Baseline Change Control

Changes to software are not complete until the code and data changes have been implemented

and tested and the changes to associated documentation have been made and all of the changes

verified. In order to minimize the number of versions and the frequency of delivery of software

components, changes to software are usually grouped into releases. Each release contains

software and documentation that has been tested and controlled as a total software system.

D. Configuration Status Accounting

The objective of software configuration status accounting is to record and report the status of the

evolving software throughout the life cycle. It provides traceability of changes to the baselined

requirements, code and data components, and associated documentation. It documents what is in

each version of software and the changes that lead up to the version. It accounts for all changes

to the baselined items whether they are incorporated in accordance with the change control

process or in accordance with the nonconformance reporting and corrective action process. This

function keeps track of the changes and the contents of versions and releases.

Status accounting begins when the first specification (i.e., software requirements specification) is

baselined and continues throughout the life cycle. The accounting information is a key element

used during the functional configuration audits and physical configuration audits that are done in

the authentication process. Status accounting provides a list of the contents of each delivery of
the software and associated documents.

Software configuration status accounting is a record keeping and reporting activity. The records

contain the identification of the initial software and associated documents and their current

status, status of evolving baselines, status of proposed and approved changes, and the

implementation status of approved changes. Reports document the information contained in the

records and are the means for disseminating the information. Examples of routine reports

furnished by the status accounting function are: status of change requests (CRs), specification

change notices (SCNs), and version description documents (VDDs).

E. Configuration Authentication

Configuration authentication is the process of assuring that the baselined configuration has been

tested to demonstrate that it meets its functional requirements and that it contains all deliverable

entities. As the principal means of configuration authentication, audits are scheduled before each

delivery of the software system. Configuration audits ensure that the CSCIs conform to the

specifications that are part of the baseline. A functional configuration audit (FCA) authenticates

that the software performs in accordance with the requirements and as stated in the baselined

documentation. A physical configuration audit (PCA) authenticates that the components to be

delivered actually exist and that they contain all of the required items, such as the proper

versions of source and object code, documentation, installation instructions, etc.



1. Functional Configuration Audit

The functional configuration audit authenticates that the actual performance of the CSCI

complies with the requirements stated in the baselined design documentation. This is

accomplished by evaluating the test methods, procedures, reports, and other engineering and

design documentation. It may not be possible to completely authenticate a CSCI until higher

level integration is accomplished. Audit reports are prepared to document the results of the FCA.

These audit reports are generally used as part of the documentation provided to the acquirer of

the software as part of a phase ending review, such as the Acceptance Test Readiness Review.

2. Physical Configuration Audit

The physical configuration audit is the formal examination of the as-built version of the

component against the baselined technical documentation defining the component. The PCA

assures that changes to be included in the version of software to be delivered are really included,

that all required items of software, data, procedures, and documentation are included. Audit

reports are prepared to document the results of the PCA and are used in the same reviews as the

reports of the FCA.

3. External Audits of the SCM Process

Other types of audits of SCM are also conducted during the development process. These audits

are done by the Quality Assurance (QA) organization to assure that the SCM process is being

conducted according to approved procedures. The role of the CMO and the program librarian

during these audits is to make their records available to QA and to respond to any problems

noted in the audit reports. These types of QA audits are described in the Guidebook "Software

Quality Assurance Audits", SMAP-GB-A301.

IV. SCM DURING THE SOFTWARE LIFE
CYCLE

There are phase-specific SCM activities that should be conducted during the software acquisition

life cycle and specific baselines that are established at the end of each phase. In a complete

waterfall model life cycle, the recommended baselines are (see Figure 2):

* Software Requirements Baseline

* Software Allocated Baseline

* Software Design Baseline

* Software Code Baseline

* Software Product Baseline

* Software Accepted (As-Built) Baseline



Figure2 is anadaptationof theNASA SoftwareAcquisitionLife Cyclechart,version4.0, dated
1988.Thefigurefocuseson therelationshipsbetweenthebaselinesandlife-cyclephases.If the
life cycle to beusedis modifiedby eithertheacquireror theprovider,someof thebaselinesmay
beeliminated.In othersituations,suchaswheredevelopmentbybuilds is done,somebaselines
maybestruckrepeatedlyaspartsof the life cyclearerepeated.Theimportantpoint is that
baselinesneedto beestablishedandchangestheretobedocumentedandauthorized.

In theremainderof this sectionthedevelopmentactivitiesof eachphaseof the life cycleare
briefly described,alongwith the SCMactivitiesduringthephaseandthecontentsof thebaseline
thatis establishedattheendof thephase.

A. Software Concept and Initiation Phase

During the software concept and initiation phase, the software concept is developed and the

feasibility of building the software system is evaluated. The acquirer's software management

plan is then written and approved and an acquisition strategy is developed. If a contract is to be

used to acquire the software, procurement is initiated and a contract is awarded.

The acquirer CMO is responsible for developing the SCM portion of the project software

management plan, and is responsible for developing a compatible set of provider SCM

requirements that are included in the Request for Proposal (RFP).

During the proposal reviews, the CMO provides expertise in the evaluation of the proposed SCM

activities by each potential provider. The provider's SCM activities may be presented in the SCM

portion of their proposal or as an initial draft of the SCM plan or section of a software

management plan provided as part of the proposal. The acquirer CMO assesses whether or not

the potential provider has proposed an adequate plan that meets all of the SCM requirements in
the RFP.

During the Concept and Initiation Phase, the acquirer should place under SCM the project

software management plan, procedures developed to carry out sections of the plan, and the

system level requirements passed to the provider.

B. Software Requirements Phase

During the software requirements phase, the software concept and allocated system requirements

are analyzed and documented as software requirements. Test planning begins, with a method for

verifying each requirement identified and included in a preliminary test plan. Risks are identified

and risk management control mechanisms are established. The size and scope of the remainder

of the project is reevaluated, and changes in resources and schedules are made. Methods,

standards, and procedures are detailed and put in place.

During this phase, the provider CMO should complete the final SCM Plan and submit it to the

acquirer for review. The acquirer CMO will evaluate the provider's SCM Plan to ascertain that

all of the SCM requirements are satisfied, and that the plan is complete and the procedures to be

used are clearly stated. As part of the SCM planning, the staff required to perform SCM will

have been determined and the assignment of the SCM staff will begin in this phase. Upon

agreement between the acquirer and the provider, the Provider SCM Plan is placed under



providerconfigurationmanagement.

Thesoftwarerequirementsbaselineis struckafterthecompletionof this phaseandthe
satisfactoryresolutionof issuesraisedatthephaseendingSoftwareRequirementsReview
(SRR).Themajorcomponentof therequirementsbaselineis theapprovedsoftwarerequirements
specificationandinterfacerequirementsdocuments.However,it shouldalsocontainother
relevantprovidermanagementdocumentationsuchasdevelopmentplans,assuranceandSCM
plans,testplans,etc.Thesemanagementanddevelopmentdocumentsdetailthe approachto
managing,developing,testing,assuring,andcontrollingthesoftware.Theyincludeor refer to
applicablestandardsandproceduresthat will beadheredto duringthedevelopmentof the
software.

Thecontentsof the softwarerequirementsbaselinebecomeapermanentpart of all succeeding
baselinesandarethebasisagainstwhichtheremainingdevelopmenteffort is authenticated.Any
proposedchangeto thisbaselinewill follow thechangecontrolprocessdescribedin theSoftware
ConfigurationControlwithin theSCMProcess,SectionIII.

C. Software Architectural Design Phase

The objective of the software architectural design phase is to develop an overall design for the

software, allocating all of the requirements to software components. The software requirements

are controlled and managed, and the contents of the requirements baseline are changed only by a

formal process. The phase ends with the preliminary design review, during which the acquirer

and provider agree on the architecture of the system that is to be produced. Rework and action

items resulting from the review are tracked and completed.

The software allocated baseline contains the architectural design of the system and documents

showing how the requirements are allocated to the design. This baseline is struck after the

completion of this phase and the resolution of any problems raised at the Software Preliminary

(Architectural) Design Review (PDR). The baseline contains all the updated documents from the

Requirements baseline, along with the architectural design specification. The baseline may also

contain a software build (or release) plan and test plans. If present, these plans are usually still at

a high level, with general functions assigned to the proposed builds or releases.

The contents of the software allocated baseline become a permanent part of all later baselines

and a part of the basis against which the remaining development effort is authenticated. Any

proposed change to this baseline will follow the change control process described in the Software

Configuration Control within the SSCM Process, Section III.

D. Software Detailed Design Phase

During the software detailed design phase, the architectural design is expanded to the unit level.

Interface control documents are completed and test plans revised. Constraints and object system

resource limits are re-estimated and analyzed, and staffing and test resources are validated. The

phase ends with the Critical Design Review. During this phase, both the requirements and the

architectural design are under configuration management control of the provider CMO as part of

the allocated baseline, and can only be changed by a formal process.



Thesoftwaredesignbaselineis struckafterthecompletionof thisphaseandtheresolutionof
problemsraisedatthephaseendingSoftwareCriticalDesignReview(CDR).Thesoftware
designbaselinecontainsthedetailed(codeto) designfor the software.Themajornewadditionin
thisbaselineis thesoftwaredetaileddesignspecification.It detailsthedesignof theCSCIsthat
will provideall thecapabilitiesandmeetthedeignconstraintsspecifiedin thesoftwareallocated
baseline.Softwarespecificationsincludedesignsat a levelandin aform suchthatunit design,
coding,andtestingcanbeperformed.Thisspecificationidentifiesthemodulesthatmakeup the
CSCIs,thearchitectureof eachmoduleto theunit level,themoduleandunit interfaces,thedata
files to beusedduringtheexecutionof the software,andtheuserinterface.Theupdatedcontents
of the allocatedbaselinearepart of this baseline,in additionto morecompletetestandbuild
plans.

Thecontentof the softwaredetaileddesignspecificationbecomesapermanentpartof following
baselines.Manyof thecomponentsof thisbaselinewill bedeliverableproducts.Any proposed
changeto thisbaselinewill follow thechangecontrolprocessdescribedin theSoftware
ConfigurationControlwithin theSCMProcess,SectionIII.

E. Software Implementation Phase

During the software implementation phase, the software is coded and unit tested. All

documentation is produced in quasi-final form, including internal code documentation. At the

end of the phase, all required products should be ready for delivery, subject to modification

during integration and testing.

After the software components (units) have been coded and successfully passed unit test, they

are transferred from the developers control to the provider CMO control and placed under

configuration management in a program library.

At the end of this phase, the Code Baseline is struck. This is the first time that the code itself

becomes part of a baseline. This baseline is normally an internal baseline, without delivery and

review of products by the acquirer. This baseline is not created at a single event, but rather the

code baselining occurs repeatedly throughout the coding process as each unit of code is inspected

and unit tested. As each unit successfully passes its unit tests, it is placed under configuration

control. When implementation of all units is complete, the baselined unit code is the basis for

CSCI and system integration testing in the next phase.

F. Software Integration and Test Phase

The objectives of the software integration and test phase are to integrate the software units into a

completed system, discover and correct any nonconformances, and prepare for the formal

acceptance of the system. The phase ending review is the test readiness review, during which the

developer provides to the acquirer evidence that the software system is ready for acceptance

testing. During this phase, the test plan is executed, the documentation is updated and completed,

and the products are finalized for delivery. The provider CMO will begin to prepare the Version

Description Document (VDD).

The provider's testing organization uses the code baseline, which should include baselined test

plans, to test and integrate the CSCIs and then to integrate them into a deliverable system.



After thecontrolledsoftwarecomponentshavebeenintegratedandtested,the integrated
softwareis placedunderconfigurationmanagementcontrolin theprogramlibrary. Onceunder
control,thetestedsoftwarecanonlybechangedby anapprovedCR or astheresultof a
nonconformance(discrepancy)reportthatrequirescorrectiveaction.

After thesystemtestinghasbeencompletedandputunderformalcontrol, anFCA is performed
to authenticatethattheactualperformanceof theCSCIscomplieswith therequirementsstatedin
thebaselinedsoftwarerequirementsdocument.This is accomplishedby evaluatingthetest
methods,procedures,reports,andotherengineeringanddesigndocumentation.

After theFCA hasbeensuccessfullycompleted,aPCAis conductedto examinetheas-built
CSCIsagainstrequireddeliverables,usuallyasdefinedin acontractdeliverablesrequirements
list (CDRL). TheproviderperformsthePCA to ensurethat all deliverableitemsarepresentand
complete,andthesystemis readyto beturnedoverfor acceptancetestingby theacquireror
designatedrepresentative.

Thephaseendswith theTestReadinessReview(TRR).After resolutionof anyproblemsfound
duringtheTRR,thesoftwareproduct(or integrated)baselineis struck.Thisbaselinecontainsthe
deliverablesoftwareanddocuments,updatedto showas-builtdesign.Along with thesoftware,
all otherdeliverableitems,suchaspopulateddatabasesandtables,computerinstallation
procedures,andtestbedsarepartof this baseline.Thesoftwareis readyfor systemlevel
integrationtestingandacceptancetesting.

G. Software Acceptance and Delivery Phase

During the software acceptance and delivery phase, the formal acceptance procedures are carried

out. As a minimum, there is a requirements-driven demonstration of the software to show that it

meets those requirements. The process also may include acquirer tests, field usage, or other

arrangements that are intended to assure that the software will function correctly in its intended

environment. At the end of the phase, an FCA and PCA are completed and a software acceptance

review is conducted. Their successful completion results in the establishment of the accepted or

as-built baseline. Now the software is ready to be used for the purpose for which it was acquired.

During this phase, the software is still under configuration management control of the provider.

The software and all documents that have been placed under configuration management can only

be changed by the change request process and an approved CR.

At the successful completion of the acceptance process, the software and all associated data and

documentation are turned over to the acquirer and are placed under acquirer's CM control.

The software that is delivered is known as the accepted or as-built baseline.

H. Software Sustaining Engineering and Operations Phase

During this phase of the software life cycle, the software is used to achieve the intended

objectives for which it was acquired. Corrections and modifications are made to the software to

sustain its operational capabilities and to upgrade its capacity to support its users. Software

changes may range in scope from simple corrective action up to major modifications that require



afull life cycleprocess.

Duringthis phase,thebaselinedoperationalsoftwareandall baselineddocumentsareunder
strict configurationmanagementcontrolof the acquirerCMO.No baselinedsoftwareand
applicabledocumentscanbechangedwithout following thechangerequestprocess,including
CCBapproval.

In theeventthat amajormodificationusingthefull life cycleprocessisnecessaryto implement
anapprovedchange,thesameconfigurationmanagementcontrolprocessesasareapplicableto a
newdevelopmentareappliedbytheacquirerandproviderCMOsthroughoutthe life cycleof the
modification.

V. SCM IN OTHER LIFE CYCLES

In the previous parts of this guidebook, we have defined Software Configuration Management,

defined the processes that make up SCM, and defined the baselines that are produced in the

standard waterfall life cycle. In the real world, few software systems are produced by going once

through the waterfall. Most systems are large enough that they have to be done piece by piece,

with each piece being integrated and tested and then used as a basis for the next development

phase. This is called phased development. There are a number of phased development variations

on the basic waterfall life cycle. For example, development by builds usually involves

completing the requirements analysis and the architectural design phases of the waterfall and the

completing the PDR. The software is then divided into sections that contain groups of functions

or sections of the architecture (usually the former). The detailed design, implementation, and

integration and test of each functional section is then built sequentially. Development by builds

allows each tested build to be used as a basis and test bed for the next set of builds. Development

by builds is probably the most frequently used development life cycle. Please note that builds

may be delivered to the acquirer for acceptance and use. If so, the process is termed "phased

delivery", but differs in no fundamental way from the process where the builds are retained by

the provider until the system is complete.

If less is known about the real world requirements for the delivered system, other phased

development life cycles may be used. For example, an evolutionary model can be used when

only a portion of the requirements can be defined well enough to justify developing software to

meet them. In this case, it is known that other requirements exist, and work in gathering and

understanding them may be ongoing, for example by development of prototypes. The inability to

define the total set of requirements means that the total development life cycle must be repeated

several times, with each pass through involving an additional set of requirements that have been

defined sufficiently well that development can take place. In each requirements analysis phase

and review, the new and changed requirements must be addressed and baselined. The subsequent

phases of the development process must accommodate both the development of new designs and

code and the modification of (potentially) significant parts of the existing code. The spiral model

is an example of an evolutionary development process.

Once a software system enters operation, the SCM problem becomes much like the one

described above. That is, there will be in existence a current version of the software that is being

used for operations, previous versions that were used to produce products that may have been



distributed,andversionsunderdevelopmentthatfix problemsand/orincorporatenew
capabilities.

Fromthe SCMpoint of view, theuseof thesemultiplepassdevelopmentlife cyclesdoesnot
changethefundamentalSCMprocessesasdiscussedin thisguidebook.Thefour functionsof
configurationidentification,configurationcontrol,configurationstatusaccounting,and
configurationauthenticationstill mustbedone.However,theactualapplicationof SCM
becomesbothmoreimportantandmoredifficult. Manyversionsof designandcode,for
example,mayexistatthe sametime andbeusedin differentbuildsor versionsof the software
system.Eachversionof the systemandthechangesincorporatedin it will haveto becontrolled
andits configurationclearlyknown.

At eachdeliveryof thesystemit is especiallyimportantto doaPCA,to ensurethatthecontents
of thedeliveredcode,data,anddocumentationis thecorrectsetthat includesall of the itemsthat
areintended.It is likely thatrevisionof thecontentsof aversionof thesoftwaresystemwill be
madelatein thedevelopmentcycle,aslowerpriority functions(or thosethat havebeendifficult
to add)arepostponedto laterreleasesor builds,andchangesor fixesthathaverisenin priority
arerushedinto therelease.

SCMona largeprojectwith multiple releasesdoesnot changein nature,butbecomesmore
difficult to docorrectlyandconsumesmoreresources.Therushto deliveraversionmustnot
causeConfigurationManagementControlto be lost,or theconfusionthatwill resultwill costa
lot moreto rectify that it wouldhavecostto do it right.

VI. SCM ORGANIZATION AND

RELATIONSHIPS

A. SCM Structure

A software project's configuration management structure has three major components.

First, there is a Configuration Management Officer (CMO), who is responsible for the operation

of the configuration management process and the maintenance of configuration control over the

evolving products. Second, there is a program library and librarian, who has control and custody

of all of the software products, both electronic and hard copy. Third, there is a Configuration

Control Board (CCB), which decides which suggested changes will actually be made.

The roles and responsibilities of each of these components of the CM system are discussed
below.

B. The Role and Responsibilities of the CMO

The Configuration Management Officer is the key individual in a project's SCM system. The

CMO's role begins with the development of a SCM plan for the project and the establishment of

a procedure that details each step in the SCM process. The CMO has to set up the program

library in a manner compatible with the project's size and resources and establish the project's



ChangeRequest(CR)trackingdatabase.After theseproceduresandresourcesareinplace,the
CMO managesandoperatestheCM system.

EachCR initiatedis sentto the CMO asthefirst stepin theSCMprocess.TheCMO receivesthe
CR andreviewsit for clarity andcompleteness.If theCMO determinesthattheCR is not
complete,it is returnedto theoriginator.TheCMOreviewsthesuggestedclassof thechange
andassignsaworkingclassification.TheCMO thenassignsthe CR auniqueidentifier for
trackingpurposesandrecordsinformationaboutthe CR into thechangerequestdatabase.

At this point, anofficial, completeCR existsandbeginsits processthroughtheSCM system
accordingto theproceduresestablishedbythe CMO.After eachstepin theprocess,the CR is
returnedto theCMO,who ensuresthatthe actionshavebeencompletedandrecordsitsnew
statusin thedatabase.For example,the CRhasto beroutedto theproperindividualsfor
assessmentof its impact.After theassessmentiscomplete,theCR is routedbackto the CMO
with theassessmentreportattached.TheCMO will thenchangethestatusin thedatabaseto
assessmentcomplete,andaddthe CRto the agendafor aCCBmeeting.

TheCMO isthe secretaryfor theproject'sCCB,andisresponsiblefor preparinganddistributing
its agendasandminutesandrecordingstatusof CRsthathavebeendispositionedby theCCB.
Thedispositioneditemsareacteduponby theCMO.TheCMO sendsrejecteditemsbackto the
originatoralongwith theCCBrationalefor rejection.If the CCBfeelsthata CRneedsfurther
analysis,thentheCMO sendsit backto theanalystswith theCCB'squestionsattached.If the
CCBdeferredaCR, it mustbefiled, to besentbackto theboardatthepropertime.If an
approvedCRneedsto beprocessedthroughhigherlevelCCBs,the CMO isresponsiblefor
submittingtheCRpackageto thenext levelCCB.Eachof theseactionsrequirestheCMO to
updatethetrackingdatabase.

TheCMO sendsapprovedCRsto thedevelopmentorganizationfor action.After thechangehas
beenimplemented(andtested,if thechangewasto code),theCMO updatesthetrackingdata
baseto showthestatusof theCR asclosed.

TheCMO isresponsiblefor producinganddistributingperiodicCR databaseandindividual
productCR statusreports.Thesereportskeepeveryoneconcernedinformedasto thestatusof
theproposedchanges.TheCMO is alsoresponsiblefor managementof theSCMlibrary andfor
conductingfunctionalandphysicalconfigurationaudits.

C. The Role of the Program Librarian

The program librarian operates the program library to manage the baseline software, data, and

documents. The librarian accepts documents, code, data files, and other components of baselines

and puts them in secure storage. The librarian issues working copies to developers for authorized

changes, and keeps records and historical copies of all versions of the components of baselines.

He or she makes copies of baselined software for testing and distribution, and prepares version

description documents.

The role of the program library and librarian includes the storage and control of both software

and associated documentation. The program library must control hard copy documents, computer

files, and the physical media on which the latter is stored. It will have to have a procedure for



archiving old versions of the system, of controlling the current version, and of accepting from

developers potential new versions which have to be verified. In addition, the program librarian

often supports the CMO in the maintenance of records and the production of reports.

D. Role of the Configuration Control Board

The CCB provides a forum for the review and disposition of the proposed changes to baselined

requirements, documentation, and software. The CCB is responsible for discussion of proposed

changes and for voting or otherwise recommending to the CCB chair the disposition of those

changes.

The CCB is a working group consisting of representatives from the various disciplines and

organizations of the developing project. The exact number, skills, and level of management of

the CCB participants will vary, depending upon the change request to be reviewed. The project

manager or the senior manager of the organization is usually the CCB chairperson. The CMO

prepares a review package for each CR, containing the change proposal, relevant documents, and

the analysis by the developers, and sends it to the CCB members. The CMO, who is normally the

CCB Secretary, prepares the meeting agendas and records the meeting minutes.

At a CCB meeting, each CR on the agenda is covered in turn. Each member discusses the pros

and cons of accepting the CR from her/his point of view and within his/her area of expertise.

However, the CCB chairperson is responsible for making the final decision. CCB members do

not have "voting rights" and CCB decisions are not made by majority rule. CCB decisions are

management decisions that include the expenditure of resources, and the decisions must be made

by the responsible manager. However, the CCB chairperson should carefully weigh the advice of

each member before making the decision.

E. SCM Relationships

The SCM structure has to interface with all of the other entities that make up the development

project and with potential users of the system under development.

The SCM organization interfaces with project management to provide information and reports on

the number and status of changes proposed to the software. The CMO will provide both routine

reports and answer special requests for data. The CMO acts as the secretary for the CCB, which

is made up of senior project managers. Most importantly, the CMO and the program librarian

develop the Version Description Document (VDD) and the deliverable system, and certify to

management, via the results of FCAs and PCAs, that the system is ready for delivery to the
customer.

The SCM organization interfaces with the development organization both to accept CSCI

components to become part of a new baseline or version and to provide to the developers

authorized copies of existing products for updating in accordance with approved changes.

The testing organization is dependent on the SCM organization to provide copies of the proper

version of all code and documents for the development of test plans and procedures and to use in

executing tests.



The SCM organization interacts with QA both as an entity that is audited by QA, and as a

participant with QA in the conduct of FCAs and PCAs. In many organizations, QA must be the

final signoff before a product can be accepted from the development organization and included

in the program library.

VII. GUIDANCE IN ADAPTING SCM TO A

PROJECT

Plans for software configuration management and the structure and size of the organization

needed to implement it should be influenced by the complexity of the software to be developed,

the size of the project, and on the specific responsibilities assigned to the SCM organization.

Resource needs will be influenced by the tools and computer resources available.

A. Project Size

A small project with a reasonable tool environment may well be able to assign all of the duties of

the CMO and the program library to one individual. It may be able to use less formal procedures

than a large project. The program library may be a series of files - a set of individual developer

controlled files for writing and documenting software, a set of files that contains developed code

that has been unit tested but is not yet integrated or baselined, the current baseline, and archive

versions. The last three sets should not be able to be written to by anyone other than the program
librarian.

Larger projects must have more formal procedures, especially for the CCB. There will be many

changes suggested, and the burden of tracking all of them can be quite heavy. Large projects may

set up a screening board, which recommends to the CCB the disposition of certain types of

proposed changes. For example, a screening board might be set up to handle all user interface

changes. For the type of changes delegated to the screening board, the procedure could be that

the CCB will automatically accept the disposition of the screening board unless some CCB
member wants a full discussion.

Another approach used by large projects is to set up sub-boards for a subset of the total project,

for example, for one or more CSCIs. The CSCI board may have authority to accept changes,

within certain resource limits, that do not affect the interfaces between CSCIs controlled by other

sub-boards. The full CCB should review the dispositions of the sub-boards only if a CCB
member feels the review is warranted.

B. Informal Controls

As the CM system is set up and operated, care needs to be taken not to impede development and

testing while changes to the software system are being proposed, processed, and implemented. It

is especially important that managers have an informal adaptation of the CM process to control

changes to interim products while they are in development and use, but before they are part of a

formal baseline. During this period, software developers can use the same types of baseline

management to manage the new or changed products. For example, as the design at each level is

documented, each informally proposed expansion, enhancement, or other change should be



examined for its impact. Working documents are modified to reflect all approved changes and

the current status of approved design is made available to all participants. Informal records are

kept to provide an audit trail as the design evolves. This sequence is likely to occur on an active

and continuing basis as the design of the software is developed incrementally through more

detailed levels. No formal paperwork is used, but adequate management control is exerted.

As another example, as units of code are unit tested, the development manager may need to

control the changes made to those units that have completed unit testing so that related modules

can use the tested modules in their own testing. No formal paperwork is needed at this stage, but

lack of control will yield confusion and duplication of effort. Many managers put in place a

multi-file program library system like that described above, with units progressing through the

sets of files as testing progresses.

Use of the term "configuration management" to describe techniques for this type of informal

control during development is common. This is often a source of confusion to software managers

involved in a system development effort, since they may not distinguish between their need to

control the changes made to products they are developing and the formal SCM that responds

only to the official CCB. However, this type of informal control cannot substitute for the formal

process needed to manage approved or completed products. It is a recommended augmentation to

the more formal process.

C. SCM Resources

The level of SCM resource support required by the development project will vary dependent

upon the life cycle phase. The Software Concept and Initiation Phase is usually the function of

the acquirer, and begins with minimal SCM resources whose role is to develop an acquirer SCM

plan and to develop provider SCM requirements. After selection of a provider, the provider's

resource needs will increase in successive life cycle phases as the requirement for SCM activities

increases with the greatest needs occurring during system integration and test. The acquirer's

needs will also grow in order to process level one changes and to review level two changes, but

will be much less than that of the provider. The acquirer's greatest SCM resource needs will

occur after acceptance of the software system.

The maximum need for provider and acquirer SCM resources will occur in a project that is using

a phased delivery process (See section V). During delivery, there will be some versions of the

software delivered and being maintained, some being tested, and others in development. These

resource needs are critical - lack of adequate resources will result in an unacceptable situation.

Either the project will relax its rules and allow changes to be made with no change control, or

progress will be slowed by an inability to process changes in a timely manner. Adequacy of the

SCM resources commensurate with the size and phasing of the development process is essential

to the development of quality software and its delivery.

VIII. TOOLS AND TECHNIQUES

Many of the processes in SCM are labor intensive and involve considerable paperwork. Tools

can be used to help alleviate some of the paperwork and to reduce the cost of SCM. Many tools

are available from commercial and shareware developers, and some tools can be easily



developed using software normally available on personal computers or as part of the

development environment.

A set of tools that is simple to implement are those the program library uses as part of the

configuration management function to stage the sets of products. Baselined products can be kept

in a library (set of disk files) that only the librarian can write into. This allows the developers and

testers to get a copy of baselined documents, data, and code for modification and testing, but

does not allow them to change the baselined products. Often the library will be set up with

several stages of each product under control. There will be the current delivered version, the

version under test for the next delivery, a development version that includes tested units of the

version two steps away from delivery, and developer libraries of components not yet unit tested.

The version staging diagram, Figure 3, shows these libraries and the flow among them.

Another set of tools that are readily available or easily developed support the configuration status

accounting function. A simple data base will allow the entry of change requests (or at least

change request summary data), and the updating of the status of the change request as it flows

through the system. Informational reports can be generated from the data base to allow

submittors and project staff to know the status of a report at any time. The data base can be used

to record the version of the system to which a change is assigned and this information will

support the PCA/FCA activity.

High end tools are available that will record each version of each product, using a transaction

based scheme to note exactly what part of each product was changed by a CR. These tools record

the reason for each change, and may automatically generate CM reports and other such features.

It is important to provide a set of tools to support the SCM function on a project. Because SCM

must keep track of very detailed information, it is easy to make errors that can cause the project

rework and time lost due to confusion. The tool set chosen should be appropriate to the size and

structure of the development project. The same CM tools that are used by the provider should be

considered for use by the acquirer for the purpose of continuity and consistency throughout the

sustaining engineering and operations phase.

APPENDIX A

SUMMARY OF BASELINE CONTENTS

This appendix briefly lists the contents of each baseline established during the standard waterfall

life cycle. It summarizes information found in Section IV. In using this section it must be

remembered that the development of baselines is cumulative, that is, all of the contents of each

baseline are part of the next baseline, with updates as needed. Generally this appendix only lists

the additions to the baseline at the end of each phase.

Initial Acquirer Baseline

At the end of the software Concept and Initiation Phase, the Acquirer should establish an Initial

Acquirer's Baseline that contains:

* The project Software Management Plan (SMP)



* Procedures developed to carry out the SMP

* System level requirements passed to the provider

After a software provider is selected, selected provider plans may be added to this baseline

(provider SCM plan, for example). Alternately, these plans may be under provider control.

Software Requirements Baseline

This baseline is established after the completion of the requirements analysis phase and the

satisfactory resolution of issues raised at the phase ending Software Requirements Review

(SRR). It should contain:

• The software requirements specification

• Interface requirements documents

In addition the following should be baselined at this time if not done at the time of agreement

between the acquirer and provider:

• Software development plan

• Software assurance plan

• Software SCM plan

Software Allocated Baseline

This baseline is struck after the completion of this phase and the resolution of any problems

raised at the Software Preliminary (Architectural) Design Review (PDR). The baseline contains

all the updated documents from the Requirements baseline, along with the following:

• The architectural design specification

• Documents showing how the requirements are allocated to the design

• Also baselined at this time should be:

• Software build (or release) plan

• Software test plan (high level)

Software Design Baseline

This baseline is established at the completion of the CDR. It must contain all updated documents

from the previous baselines and the software detailed design specification. In addition, the build

and test plans begun during the requirements phase and included (at a high level) in the previous

baseline should be completed and baselined at this time.

Software Code Baseline



This baseline is established at the end of the software implementation phase. It should include, in

addition to the updated contents of the previous baseline, the following:

• The code itself

• Code level documentation

• Users Manuals

• Test Procedures for the I&T Phase

• Data needed for operation of the software

Software Product Baseline

This baseline is established at the completion of the Integration and Test Phase. The software is

to be ready for acquirer acceptance testing and delivery. It should include, in addition to the

updated contents of the previous baseline, the following:

• The tested code

• Final versions of all products and documents

Software Accepted (As-Built) Baseline

This baseline is established after the software has been accepted by the acquirer. It should

contain updated versions of the items in the product baseline, with corrections for

nonconformances found during the acceptance process.APPENDIX B

EXAMPLE CHANGE REQUEST FORM

APPENDIX C

ACRONYM AND ABBREVIATIONS

CCB Configuration Control Board

CDR Critical Design Review

CDRL Contract Documentation Requirements List

CI Configuration Item

CM Configuration Management

CMO Configuration Management Officer

CR Change Request

CSCI Computer Software Configuration item

DID Data Item Description



FCA Functional Configuration Audit

NASA National Aeronautics and Space Administration

PCA Physical Configuration Audit

PDR Preliminary Design Review

QA Quality Assurance

RFP Request For Proposal

SCM Software Configuration Management

SCN Software Change Notice

SRR Software Requirements Review

TRR Test Readiness Review

VDD Version Description Document

Last revised: July 16, 1997


