NASA-GB-001-94

Software
Engineering
Program

Software Measurement Guidebook

August 1995

% NATIONAL AERONAUTICS AND
WI 2 % SPACE ADMINISTRATION

WASHINGTON, DC

Software
Engineering
Program

Software Measurement Guidebook

August 1995

W%\ NATIONAL AERONAUTICS AND
Wég SPACE ADMINISTRATION

WASHINGTON, DC

Foreword

This document is a product of the NASA Software Program, an Agency-wide program to
promote continual improvement of software engineering within NASA. The goals and strategies
for this program are documented in the NASA4 Software Strategic Plan, July 13, 1995.

Additional information is available from the NASA Software IV&V facility on the World Wide
Web at site http://www.ivv.nasa.gov/.

iii NASA-GB-001-94

Office of the Chief Engineer

Software Measurement Guidebook

Approvals

/original copy signed/

Rose Pajerski
Technical RTOP Manager

/original copy signed/

Donald Sova
Manager, Software Engineering Program

v NASA-GB-001-94

Contents

FOTEWOTE ...ttt ettt ettt ettt e e aae et et e et e et eeessessseanssaenseeessanseaensaessesssesnssansseenssessssesss iii
Chapter 1. INTrOQUCTION .. .eiiuiieiiecie et eeteertteete et ee st eestteeeteeseeesaessseessessssanssaesssesssesseanssassssesssesnseen 1
L1 BACKGIOUNC ...c..viiiiiiiie ittt ettt ete e ee st e sas e ssae s snaessaesssesssassssanssesssesnssansseenssessns 1

L2 PUIPOSE . c.eteieiie ettt ettt ettt ettt e et e et e ee e e saaeeessseeeessaaees s e aeesteaeesaeeessaaeesteeesteeesaeeansaen 2

1.3 OTQANIZAtION. .. .ceciiiieieiireeitieeite et eereesteeetteeaeessreessaesssesssesssaaessassssesssessssenssesssessssensseenssesses 2
Chapter 2. The Role of Measurement in Software Engineering...........cccceeeveeevieenienveeenreeneencnennnne 5
2.1 Measurement To Increase Understanding...........ccceevueerveeeniienieinieenseenieeiesseeeseeesenaensnenns 6
2.2 Measurement for Managing SOftWAre..........ccevveriiiiiiiiriinie et eieseree e eeeesevesanas 12
2.2.1 Planning and ESHMATINGccceiiiirriiiniieieiireesreenieevesrreessaesssesnessseesssesseesssees 13

222 TIACKING c..veeeirieciieeieeeteesteeete et eeeee st e eteeesaessnaesaessesssanssaesssesssesssnanssessssesssessseen 15

223 Valldating....cveeeiiiieiiiieeiiecie et ceteesteeeetesie et aesstessses s aesssesssesssaanssaesssessssesssesnsns 16

2.3 Measurement for Guiding IMProvemMent..........c.ccccueruerrerrrrenieerueerrreentreneesssessnessssensses 16
231 UNerstandingc.ceccveeeueeriueeieenrirenieeuesreensseesseesssesssassssesssesssassssassssesssessssesses 18

2.3.2 ASSESSINZ . ueieuiieeeieeieiireesteeeteeteeeaeestaeesteesae e s aesaesae et et aeasseeste e st aensaeesseesaesnsean 19

2.3.3 PACKA@ING ..ottt sttt st sa e ssae s e e s e e esaeesanessaeennes 20

Chapter 3. Establishing a Measurement Programi...........ccccoecueevviirriienienieenneeniesiesneenseeessseenseenns 21
Bi1 GOAIS ettt s be e te et e et et e e esae et e e st aeese e sa e s eeesseesaeansnannnaens 22

3 S 0P ittt ettt ettt ettt et ettt e st e et e e e et eae ettt ae et te e et teee st ee et seeeasaeaesaeeensaeennsas 23

3.3 Roles, Responsibilities, and STrUCLUIEcccviieriierieriieiieerie e eereereeseeesvessnesssnensees 24
3.3.1 The Source 0f Datacccceiiiiiieniieiiecieeeteestteseteeie e eesreesssessnaessaesssesssessaesseens 25

3.3.2 Analysis and Packa@ingc.ccocveruiiiiiiiiiiniiniecieensreenieesie e ssneseeessvesssneenneens 26

3.3.3 TechniCal SUPPOIL...cc.ciiiiiiiieiieeiiecie et et eesteeereesteessreesseessesssnaessaesssesssesssaessseens 26

3.4 Selecting the IMEASUIES.......ccuiiiiiiriieriieeieerieereeesteesttessaessseessseessessssassseesssesssesssaenssassssnes 28

3.5 CoSt Of MEASUIEIMENLueeiuieiieeeieesiieeieeeueeieeessaesseesssessssenssasssessssensseesssesssessssenssesessens 30
3.5.1 Cost to the SOftWare Projects........oovuiiiiiiriierieniecrierie et crreesreeseee e ssneesneens 32

3.5.2 Cost of Technical SUPPOTLc.veeviiiriiiiiieitieniieeie et ersreesteesreesveesseeessesssesnsaessseens 32

3.5.3 Cost of Analysis and Packaging..........cc.ccccueviirveiniriniiiiieinrennieenie e ssressneenees 33

Chapter 4. Core IMEASUIES.cc.ueeeiieierireerreerereesteeeaeesseesssaesseesssessssesssssssesssseessassssssssessssensssesssesses 35
BT 08t ciitiieiie ettt ettt ettt e st e e et e ettt ee ettt sa st e e st ee e st ee e anaeeataaesaae e seeeesaeaeessaaeeasaaenaes 36
1.1 DESCTIPLION ..c..tveevieeieeereertteeieeeeeeteesseeessesseaessaesssesssenssaesssesssessseesssassssesssessssessns 37

4.1.2 Datad DefiNition......c.cccviieiiirieiieieiiienieeieeeeesreestteeeresseeesssesssessnesssassssesssessssensses 37

4.2 EITOTS .ttt eiteeeiteeeieeeeeeeeteeeiteesseeeeseeesssnassssaeasssseasssseassssesssssesssssssnsseessssessssaeensssesnsseesnns 39
421 DESCTIPLION .c..vieetiieieeereertreeieeiaeeestaesseeessesseaessaesssesssesssaesssesssesssaesssassssesssessssesses 39

422 Datad DefiNition......cccoviieriiirieiieieciienieeie st e steestteseressseesssesssessaesssaesssesssessssenssns 40

4.3 Process CharaCteriSTiCS. .. cuiiiierrreerireeuerieerieeesteesseessaesseanssaesseessassssessseesssesssessssensssesssnes 41
43,1 DESCTIPLIONtieeviieieeereertreeieeeteeestaesseeessesseaessaesssesssesssaesssesssesssasnssessssesssessssesses 41

vii NASA-GB-001-94

432 DAtA DETINITION. ..eeeteeareeeeaeeeeeeeee 42

4.4 ProjeCt DYNAMICS ..ccvieeiiiiieiieeeiiesiieetieeteereeesteesteesstesssessseesssesssessssassssesssssssessseessssenssees 43
A4 1 DESCTIPLIONvveetieeieeereeetteeieereeesteesseeessessseaessaesssesssenssaesssesssessseesssassssesssessssesses 43

4.4.2 Data DefiNition.......cocciiiiiiiiinienierterc ettt et et te et saee e et e e e eaee e 43

4.5 Project CharacCteriStiCSiciiiiirrierreeieeieerieersteesteeesaeesseasssaesseessessssessssesssesssessssensseesssnes 44
451 DESCTIPLION ..c..vveevieeeieiereertteeieeieeesteesseeesaessseaessaesssesssesssaesssesssesssessssessssesssessssesses 45

4.5.2 Data DefINition.......cocciiiiieiiinienice ettt ettt e et st ee e e e e eaae e 46

Chapter 5. Operation of a Measurement Pro@ramccccoeceeveiriiieniereenneenieeiesseeesseessnessseenes 51
5.1 Development and MainteNanCe.cccueereerrreeriieniieereensreenteeeaeseeessseessesssessssessssesseessns 53
51,1 Providing Datal ...c..ccciieciieeiecieceeeteesiteeie st et ee st e eeaesveestaessaesssessnasssaessaessseeans 53

5.1.2 Participating in STUAIESc..eiviiiiieriiecie et eerteesie e et eesteeseaesreesseesssessnassseens 54

5.2 TeChniCal SUPPOTT...ccciiiiiiiiieiieetieeiee et erreesteeetteeaeessaeesaessessssesssaesssesssessssenssasessassssesss 54
52,1 Collecting Dataccoeeiuiieiiiiieieeniteeriie et eereest e etaesveessaessaesssaesnasssaessaesssessns 54

5.2.2 Storing and Quality ASSUring Dataccceeveiririeniiiniieiiieeniienieeieeereeseeessaesnnenns 56

5.2.3 Summarizing, Reporting, and Exporting Data..........ccccecveviiniieinieniienieinrennnnens 57

5.3 Analysis and Packagingcccoviiiiiiiiiiiiiiiieiienie ettt see st e srtesae s e ee s e sssessaesnns 58
5.3.1 Designing Process Improvement Studies........ccceeuerrviierieenienieernnenieeiecnreenneens 59

53.2 AnalyzZing Project Datacccoeviieiiiniiiiieeerieesiecie e eereeseteseaesneesssessaessnanssaens 60

5.3.3 Packaging the RESUILScc.cocviiiiiiiiiiieiicececrcesie ettt seveesr e sesesevessnasneens 61

Chapter 6. Analysis, Application, and Feedbackc.coovviiiiiiiiniiniiiiiiieiece e 69
0.1 UNAerstanding........cc.eevueiiiieriienieeieiireesteestteeteesseessseesssesssessssesssassssesssessseenssesssessseenssaens 70
6.1.1 Software AITDULESoviiriieitireeerie ettt ettt et e eae e saaeseeeees 71

6.1.2 COSt ChAraCteriSHICS ..cc.vertterteertereerierteeitesteest et eraeereertestee st eeee st esaeesesaresneesseenees 75

6.1.3 Error CharaCteriStiCsiuuireerterreererieeitent et e erieeteetteseee st e ee st e esesavesaeessaenees 80

0.1.4 Project DYNAMICS ...cccviiiiiiiiieieeniienieeieeereesteeesaessseessseesseessessssaesssssssssssesssaesssesns 84

0.2 MANAZING ..viiiiieiieeieeieiiteerteestte et esseesseesseeesseasssasssaesssesssessssenssaesssesssessseeessesssesssaenssasns 85
0.2.1 PIANNING ...ooiiiiiiiiiieiieeie ettt ete et et e steeesaessnaesaeesssessseasnaessaeessesssesnsaensaens 86

0.2.2 ASSESSING PrOGIESS.....iiiiiiieieiieiiieeieeieeeteesteeesteeseessreesseesssesssaesssesssssssesssaessseens 89

0.2.3 EVvaluating ProCESSES....cuiiiiieriieniecieeiteestteetesresreeesteesseessvesseessaesssesssessseansens 95

6.3 GUIAING IMPTOVEIMENTuiiiiiiiieieieeriieeieeeteereeesteesttessaessseesssaessessssensseesssesssesssaenssasesses 96
Chapter 7. Experience-Based GUIAEIINES..........ccvevuiiiiiiriiiniienieeieiereeniteeve e esnesseesvesssnessseens 103
Appendix A. Sample Data Collection FOIMScccceerviieriiniieiiiienieniecireesieenteevessneeseeesssesens 109
Appendix B. Sample Process Study Plan...........cccociiiiiiiiiiniieieiiiniienieciecrreesreesessr e e e 127
Appendix C. LiSt OF RUIESciiciiiiiieiieiitieiccet ettt cie et et eesetesvee st e ssaessvesnsnaesssesssesssessssasnnns 129
AbDbreviations and ACTONYIMS.ccverueireeerteenteentreeteeseeesseessaeessessesssaesssesssesssseesssesssssssessssessses 131
RETETEIICES ...ttt ettt et ettt et et et ea b e st e eatess e et et enseeaseeutesseenneens 133

NASA-GB-001-94 viii

Figures

Motivation for Understanding the Software Engineering Process.........cccccovvveveueiivennirennnen. 7
Effort DistribUution DY ACHIVILYieuiiiiieiiieriieeie et eeteesieesetesveeseeesseesssessneessaesssesssessaasssenns 9
Error Class DiSTrTDULIONoeiiriieiiiriiie ittt ettt e st se e st e e e seenvesaseenee 10
Growth Rate 0f SOUICE Codeooiiriiniiiiiiiieiie ettt st seeenees 11
Change Rate 0f SOUICE Codeoccuiiiiiiiiiiiiiiiecie e creeteestte e ssreesressaessnessseesssesssasnsees 12
Sample Process RelationShips........ccciiiciieriiiiiiiiiiiiieiiesie e eesieeseeesneesreeseeessvesnesssaens 13
Tracking Growth RaAte........cooiiiiiiiiiiiieriecciiece ettt sve et seae e s snee s e sssesesessaesnnns 15
The Five Maturity Levels 0f the CMM.......cccooviiiiiiniinieiiienieeiecrreereeseresevessseeesssesseesens 17
The Understand/Assess/Package Paradigmcccoceevieriiiiiinienienieiereenieenee e ssve e 18
The Three Components of a Measurement Programccccceevvervieiieenienieineenseeeneenens 25
The SEL as a Sample Structure for Process Improvementcccceeeveeevveenienveeenveeneeennns 28
Cost of Software Measurementcovueeiererrierienientcerteneeieeteeeeeseeeeesees e e e esesssesseeses 31
Cost Data Collection SUMMATYcccuiiieirieerieenieeieerrensteeeseesaesssessseessessssesssessssesssesssees 39
Error Data ColleCtion SUMMATYcccveriiirieiieeniieeniienieeereestaesseesssessseesssesssesssesesssessesssns 41
Process Characteristics Data Collection SUMmAryc.ccocveevieerieniieirieenieniesreeeseeeneeeeens 43
Project Dynamics Collection SUMMATYc.ccccierviienieniieiiienieeiecrreereesereeeaessseeesseesseessns 44
Project Characteristics Collection SUMMATYcccccvvierierieiieiniienieeieerreenreesseesvesnseesnnns 49
Three Data Collection MeChaniSmS........c..cccuiiiiiriiienienierieeerieeneeseeseeeessaessessseeesseesseessns 52
Project SUMMATY StAtISTICS ..o.uiivuiirriieriieeieeieeerteeesteenteesaeeseeesraesseesssesssaesssesssessseessseessesssns 58
Process Study Plan OULIINecoociieiiiiiiiieieiecet et cie et steeseveer e sssessaesssneessaesssessns 60
High-Level Development Project Summary Reportc.ccoeevvieviiniiiiienienieiireeieeneeeeens 62
High-Level Maintenance Project Summary Reportcccocveeviieriinieiiiennieniesrreeneeeneeeeens 63
Impact of Ada on Effort DistribUtion.........ccciiiierriienienie i cieseeesreesesesseeesssesseesene 64
Sample Error Rate MOdeloooiiiiiiiiiiieiiecteeicerie et seteseessrsesseessvesssnae s aensne s 65
SME Architecture and USEoceerieriererienieneeneeie et stee st e eresabeveeeteseeeseeeseesseesesnnens 67
Language UsSage TreNd........ooviiiiiiiieiieriieesiieeie et ceeeesteesetesveenseessaessvessnasssaesssesssesssesnnns 73
Code ReUSE TTENM.....co.uiiiiiiiiitiieere ettt ettt et et st e st et et sabesete s eeeen 74
Derivation of 20 Percent Reuse Cost Factor for FORTRAN..........ccccecveniiniiinienniieniien 76
Derivation of 30 Percent Reuse Cost Factor for Ada.........cccceeveviiniiiiieniinieiireeniceneeens 77
Effort Distribution MOdelciiiiiiiiriiiriecie ettt ciecereeste e ssnee e e sssesesessnannns 78
Staffing Profile MOdelc..oouiiiiiiiiiiiciiece ettt sevessn e s s e ssaessve s sa e s e aessees 78

ix NASA-GB-001-94

6-7

6-9

6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24

A-1
A-2
A-3
A-4

A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13

Typical Allocation of Software Project ReSOUrcesc.ccoveverieniinennincnncnieenecieneeeees 81

Error Detection Rate DY Phasecccooviiiiiiiiiiiiiiiiicciece sttt cve et e seae e e e e sase e 82
Comparative Error-Class DiStriDULIONS.cccvveriiriieirieieiieieiieeesireseresiessreesseesssesssesssees 83
Cyclomatic Complexity and SLOC as Indicators of Errors (Preliminary Analysis).......... 84
Growth Rate MOdel.......cc.ooiiiiiiiiiiiiiiiicee ettt et e st e e ae e saees 85
Planning Project DYNamiCscc.ccviiiiiiiiiiiiieieeeieenie e seeeereesteesevesraesssesssesssansssesssessns 89
Growth Rate DeVIationcocceiiiiiriinierienieete ettt eeeee st et es e ebesatessee st e eeeeees 91
Change Rate DeVIAtiONcceeiiieiieiiierieeniieenieeieseeeesteesttesssesssnesssesssessssesssassssesssessseesses 91
Staff Effort DevIationc.coiiiiiriiireeeetenee ettt ettt st et eatesate e et e aseeeees 92
Tracking DISCIEPANCIES.cevurerierreieieeniieetreeieerieeesteesseesseessseeasaessaesssessssesssessssesssessseesnses 93
Projecting Software QUAlILYcoociieriiriiiiiieie e cte ettt seve st e sseessbesse e s e sssesene 94
Impact of the Cleanroom Method on Software Growth..........cccoccvevviiiieennniieinvrennieenienn 95
Impact of the Cleanroom Method on Effort Distributioncccecceivvveevieniineeenirennennn 98
Impact of IV&V on Requirements and Design Errors.........coccveevieerieneenieenienieineennnnens 100
Percentage of Errors Found After Starting Acceptance Testing........ccccevvevveeerveeenveennnnn. 101
IV&YV E1ror Rates DY Phase.......ciiviieiiiiiiicie ettt sttt sesen et e sveesssesssnannaens 101
Impact of IV&V on Effort Distributioncccecveeeriieniiiiennienieciecereesieeseee e ssneesneens 102
IMPACt OF IVEV 0N COST ittt ettt et sttesete e et aesese e e s aesssesssesssnanssaesseean 102
Examples of Measures Collected Manually..........c.coocveviiiiiiienriinieiniinnienieeiessneeseeeeeees 108
Change RepOoTt FOM......c..iiiiiiiiieiicie ittt st sn e steeset e e ee st e sssesssesssnasssassssesnssenns 110
Component Origination FOrMi.........cocuiiiiiiiiiiiiieniecie ittt eee e ssreeeresvessnessseesseesene 112
Development Status FOrM.......oooiiiiiiiriiiniiiie ettt seeesr e seesneesraesssessaesssnanssaens 113
Maintenance Change Report FOIMcccviviiiiiiiiiinniieniecieseeesiceneiesvesseeeseesevessnensseens 114
Personnel Resources FOTM........oooiiiiiiiiiiiiiiiiete ettt esae e 115
Personnel Resources Form (Cleanroom Version)..........c.eeceireerrieenienrrenseenuessuessnessneens 116
Project Completion StatiStics FOIMccciiriiiiieiiiieriienie et sreesrceseresvessnee e sevessnensneens 117
Project EStimates FOrM.......cocuiiiiiiiieiiecie ettt sttt saesn e r e saa e ssaesssnee s e ssneen 118
Project Startup FOIrmMi.. ..ottt se e teseae e e s e sss e ssae s snaenaannsees 119
Services/Products FOIMcc.iiiiiiiiiiiiiiiiitet ettt sttt e 120
Subjective Evaluation FOrML.........c.coiiiiiiiiiiiiieiieiecie st cve et seve s e es s e ssseeeee 121
Subsystem INformation FOrMccccciiiiiiiiiiiiiiiieniecie st cie e seesnes s e s eeee 124
Weekly Maintenance Effort FOrmccccooiiiiiiiiiiiiiieccrceesie e sevesneeneens 125

NASA-GB-001-94 X

Tables

2-2
2-3
4-1
4-2

4-4
4-5
6-1
6-2
6-3

6-5
6-6
6-7
6-8

7-1
A-1

Sample Software CharaCteriSTICScieeriiirierieirieeerieerieeieerreesteesseeeaessseessseessessssensseesssssses 8
Distribution of Time Schedule and Effort Over Phases.........ccccoocvvvviiivieeniniieinreerirenien 14
Impact of the Cleanroom Method on Reliability and Productivity........cccceevevierieinnennne. 19
Data Provided Directly by Project Personnel...........cccoooveriiiiiinienienieiireenienie e ceee e 38
Change DAata.........coiiieiiieiiecieiieeerteesie ettt eesteesteessae s s eesaesseesssesssasssaesssesseenssessssesssesssees 40
Process Characteristics Datal........covueriiriiriiniiireie ettt ettt seeenees 42
Project Dynamics Data........ccceeuiiiiiriiieniiieniieeie et eeeeesteesetesveensaessaessaesssassaesssesssesnssesnnns 44
Project Characteristics Data.........cccuieriiiriiiiiieieeereeste ettt seveer et esaessn e s e sseessns 47
Questions Leading to Understanding............cocvevierieineenninenienieiireesieeseeeseessseenssesssesssees 71
Software AtIDULE Data......ccceiiiriiiiritiieitee ettt et et sete st ee st e aeeeeees 72
Analysis of Maintenance Effort Data..........cocceiviieiiiiiieiiiiiiieniiecie e sevese e seee e 80
Basis of Maintenance Costs EStIMALEScccuiiiiiriiienienieiiienieniecreeereesereseaessseeesseesseesnns 80
Questions Supporting Management ACLIVILIESc.ccceeerveerieriieirieenrieeieerreesreessresvessseensens 86
Project P1anning EStIMALESccieviieriiirieiieieiieeeriesiiecie e eestaesteessvessaesssesssesseensssessesssns 88
Indicators of Change Attributable to Cleanroom...........ccceevveeviierieniennieenieeieerreeseeeneeeeens 97
Impact of the Cleanroom Method on Reliability and Productivity........ccccceevveevireniennennne. 99
Indicators of Change Attributable to IV&V.....coooiiiiiiiiiiiieie et 100
Examples of Automated Measurement SUpport TOOISccccveeviieriinieinirenieneeieenireens 107
SEL Data Collection FOTMScoiiiiiiiiriiiiiieiteeeee ettt sete e e se e enee 109

Xi NASA-GB-001-94

Chapter 1. Introduction

1.1 Background

organizations that have each developed and applied significant measurement! programs

over a period of at least 10 years. One of these organizations, the Software Engineering
Laboratory (SEL) at the National Aeronautics and Space Administration (NASA) Goddard Space
Flight Center (GSFC), has been studying and applying various techniques for measuring software
since 1976. During that period, the SEL has collected measurement data from more than 100
flight dynamics projects ranging in size from 10,000 to over 1,000,000 source lines of code
(SLOC). These measurement activities have generated over 200,000 data collection forms, are
reflected in an online database, and have resulted in more than 200 reports and papers. More
significantly, they have been used to generate software engineering models and relationships that
have been the basis for the software engineering policies, standards, and procedures used in the
development of flight dynamics software.

T his Software Measurement Guidebook is based on the extensive experience of several

Many other organizations in both Government and industry have documented their significant
measurement experiences. (See, for example, References 1 through 7.) The lessons derived from
those experiences reflect not only successes but also failures. By applying those lessons, an
organization can minimize, or at least reduce, the time, effort, and frustration of introducing a
software measurement program.

The Software Measurement Guidebook is aimed at helping organizations to begin or improve a
measurement program. It does not provide guidance for the extensive application of specific
measures (such as how to estimate software cost or analyze software complexity) other than by
providing examples to clarify points. It does contain advice for establishing and using an
effective software measurement program and for understanding some of the key lessons that
other organizations have learned. Some of that advice will appear counterintuitive, but it is all
based on actual experience.

Although all of the information presented in this guidebook is derived from specific experiences
of mature measurement programs, the reader must keep in mind that the characteristics of every
organization are unique. Some degree of measurement is critical for all software development
and maintenance organizations, and most of the key rules captured in this report will be generally
applicable. Nevertheless, each organization must strive to understand its own environment so that
the measurement program can be tailored to suit its characteristics and needs.

Historically, many software organizations have established development and maintenance
processes and standards in an ad hoc manner, on the basis of guidance from outside the
organization, or from senior personnel called upon to establish company standards. Often, this
approach has led to incompatibilities, unconvinced development groups, and, occasionally,
complete confusion. Too often, organizations attempt to generate policies or standards and to

1 Some organizations use the terms metrics and measurement interchangeably.

1 NASA-GB-001-94

adopt particular technologies without first understanding the existing processes and environment.
This lack of understanding can make a bad situation worse. Before establishing policies and
defining standards, an organization must clearly understand the environment and the existing
processes. A commitment to understand and improve local software processes requires the
establishment of a software measurement program, which is the precursor to continual process
improvement.

The following rule is the single most important one regarding software measurement:

Understand that software measurement is a means to an end,
not an end in itself.

A measurement program without a clear purpose will result in frustration, waste, annoyance, and
confusion. To be successful, a measurement program must be viewed as one tool in the quest for
the improved engineering of software.

1.2 Purpose

The purpose of this Software Measurement Guidebook is threefold. First, it presents information
on the purpose and importance of measurement—information that has grown out of successful
measurement applications.

Second, the guidebook presents the specific procedures and activities of a measurement program
and the roles of the people involved. This guidebook discusses the basic set of measures that
constitutes the core of most successful measurement programs. It also provides some guidance
for tailoring measurement activities as a program matures and an organization captures its own
experiences.

Finally, the guidebook clarifies the role that measurement can and must play in the goal of
continual, sustained improvement for all software production and maintenance efforts throughout
NASA. As NASA matures in its understanding and application of software, it is attempting to
apply the most appropriate software technologies and methodologies available. Like any other
software organization, NASA must build a firm foundation for software standards, policies, and
procedures. A carefully established measurement program can provide the rationale for
management decision making, leading to achievement of the goal of sustained improvement.

1.3 Organization
This “Introduction” is followed by six additional chapters and three appendices.

Chapter 2, “The Role of Measurement in Software Engineering,” lays the groundwork for
establishing a measurement program. The chapter explains why any software group should have
a well-defined measurement program and provides examples of supporting data that can be
valuable in justifying the costs involved in implementing such a program.

Chapter 3, “Establishing a Measurement Program,” describes the essential steps for starting a
measurement program. The chapter includes organization, key measurement data, classes and

NASA-GB-001-94 2

sources of data, general cost information, and, most important, goal setting and application of the
measurement program.

Chapter 4, “Core Measures,” introduces the recommended core set of measures that can benefit
any software organization.

Chapter 5, “Operation of a Measurement Program,” discusses major organizational issues, data
collection and storage, quality assurance (QA) of the data, feedback of data, and cost of
operations.

Chapter 6, “Analysis, Application, and Feedback,” presents information on the analysis of
measurement data and the application and feedback of information derived from a measurement
program.

Chapter 7, “Experience-Based Guidelines,” offers some precautions for software organizations
that plan to include software measurement among their development and maintenance processes.

Appendices A, B, and C provide sample data collection forms, a sample process study plan, and
a list of rules, respectively.

3 NASA-GB-001-94

Chapter 2. The Role of Measurement in Software
Engineering

Chapter Highlights

THREE KEY REASONS FOR SOFTWARE MEASUREMENT

1. Understanding Software
¢ Baseline models and relationships
o Key process characteristics
¢ Four measurement examples

2. Managing Software Projects
¢ Planning and estimating
e Tracking actuals versus estimates
¢ Validating models

3. Guiding Process Improvement
e Understanding
e Assessing
¢ Packaging

5 NASA-GB-001-94

software development and maintenance activities and provides sound motivation for any

organization to initiate or expand its analysis of data and application of results. The
chapter explains the three key reasons for an organization to measure its software engineering
processes and product, providing actual examples from software organizations with mature
measurement programs.

T his chapter clarifies the role that a software measurement program can play in support of

A software organization may want to establish a software measurement program for many
reasons. Those range from having good management information for guiding software
development to carrying out research toward the development of some innovative advanced
technique. However, more than 17 years of experience with software measurement activities
within NASA have shown that the three key reasons for software measurement are to

1. Understand and model software engineering processes and products
2. Aid in the management of software projects
3. Guide improvements in software engineering processes

Any one of these reasons should be enough to motivate an organization to implement a
measurement program. The underlying purpose of any such program, however, must be to
achieve specific results from the use and application of the measures; collecting data is not the
objective. Most failed measurement programs suffer from inadequate or unclear use of data, not
from an inadequate or unclear data collection process. The rule in Chapter 1 implies that the
measurement program must be defined in a way that satisfies specific objectives. Without such
objectives, no benefit will be derived from the measurement effort.

2.1 Measurement To Increase Understanding

The most important reason for establishing a measurement program is to evolve toward an
understanding of software and the software engineering processes in order to derive models of
those processes and examine relationships among the process parameters. Knowing what an
organization does and how it operates is a fundamental requirement for any attempt to plan,
manage, or improve. Measurement provides the only mechanism available for quantifying a set
of characteristics about a specific environment or for software in general.

Increased understanding leads to better management of software projects and improvements in
the software engineering process. A software organization’s objective may be to understand the
status of the software engineering process or the implications of introducing a change. General
questions to be addressed might include the following:

e How much are we spending on software development?

e Where do we allocate and use resources throughout the life cycle?
e How much effort do we expend specifically on testing software?
e What types of errors and changes are typical on our projects?

Figure 2-1 illustrates some more specific questions that may be of immediate concern to a
software manager.

NASA-GB-001-94 6

If | use Ada, will
| increase
productivity and
reduce cost?

How long will it take
to finish if we add more
functionality?

Is reliability
a function of testing
time?

If | add more staff,
how much can | compress
the schedule?

If | change
the testing standards,
will we find more errors?

Figure 2-1. Motivation for Understanding the Software Engineering Process

To be able to address such issues, an organization must have established a baseline
understanding of its current software product and process characteristics, including attributes
such as software size, cost, and defects corrected. Once an organization has analyzed that basic
information, it can build a software model and examine relationships. For example, the expected
level of effort can be computed as a function of estimated software size. Perhaps even more
important, understanding processes makes it possible to predict cause and effect relationships,
such as the effect on productivity of introducing a particular change into a process.

This guidebook emphasizes the importance of developing models of a local organization’s
specific software engineering processes. However, a general understanding of the engineering of
software can also prove beneficial. It provides a foundation for appreciating which types of
models and relationships apply in a specific software development or maintenance environment.

For example, a manager should know that, in any environment, the amount of effort required to
complete a project is related to the size of the software product and that changing the size of the
staff will have an effect on the ability to meet scheduled milestones. The precise effect within the
local environment depends on a complex combination of factors involving staff productivity,
experience, and maturity. The parameter values that tailor the model to the unique characteristics
of the local environment must be derived, over time, under the careful administration of the
measurement program.

Potential objections to establishing a measurement program and developing an understanding of
the current processes are numerous:

e My organization is changing too fast.

e Each project is unique.

7 NASA-GB-001-94

e Technology is changing too fast.
e Project results merely reflect the characteristics of the people on the projects.
e [don’t care about future projects; I care only about current results.

Each of these objections may have some merit; nevertheless, it is essential to establish the
baseline before introducing change. Managers who have never collected data to confirm or
challenge basic assumptions about their environments may have inaccurate perceptions about the
software processes in use within their organizations.

Experience derived from many NASA programs shows that an organization establishing a
baseline understanding of its software engineering processes and products should concentrate on
collecting measurement data to reflect certain key software characteristics. Table 2-1 suggests
sample characteristics and refers to four examples that illustrate the points using actual NASA
experience.

Table 2-1. Sample Software Characteristics

NASA
Understanding Key Characteristics Experience
What are the cost (resource) o Distribution of effort among development Example

characteristics of software in my
organization?

activitiesamount spent on design, code, test,
or other activities 1

o Typical cost per line of code

e Cost of maintenance

¢ Hours spent on documentation
¢ Computer resources required
¢ Amount of rework expected

What are the error (reliability) e Number and classes of errors found during Example
characteristics of software in my development or maintenance
organization? e How and when software defects are found 2
e Number and classes of errors found in
specifications
e Pass/fail rates for integration and system
testing
How does my organizations rate | ¢ Typical rate of growth of source code during Example
of source code production (or development
change) compare to previous Typical rate of change of source code during 3
experience? development or maintenance
How does the amount of Total number of lines of code produced Example

software to be developed relate
to the duration of the project and
the effort required? What is the
relationship between estimated
software size and other key
parameters?

Schedule as a function of software size
Cost as a function of size

Total number of pages of documentation
produced

Average staff size

4

NASA-GB-001-94

Example 1:
Effort Distribution Characteristics

Knowing the distribution of effort over a
set of software development activities can
contribute significantly to an understanding
of software engineering processes. One Other
NASA organization analyzed data from 26%
over 25 projects, representing over 200
staff-years of effort on actual mission
software, to build the model shown in
Figure 2-2. The model of effort distribution
over a set of software development
activities, which may occur across various

. . Test
phases of the software life cycle, is 30%
invaluable for management planning on
new projects. The organization uses data
from ongoing projects to update the model,
which continues to evolve, providing more
accurate information for future project
managers in that environment.

Design
23%

Code
21%

Figure 2-2. Effort Distribution by Activity

Many software organizations mistakenly

assume that a generic model of distribution across life-cycle activities will apply for any
organization and in any application domain. It is possible to derive a model, or a
hierarchy of models, with more general applicability. For example, useful models can be
derived by analyzing data from all software projects throughout NASA or for all flight
simulator software projects throughout NASA. However, local organizations can apply
such models with varying degrees of confidence and accuracy. Experience has shown that
a model derived from, and updated with, data collected within the specific software
environment is a more accurate tool—a more suitable means to a desired end.

Before local effort distribution was understood, managers had to rely on general
commercial models.?2 There was also no understanding of how much time software
developers spent on activities other than designing, coding, and testing software. In the
model shown, for example, the “other” category includes activities such as training,
meetings, and travel.

Experience has shown that such models are relatively consistent across projects within a
specific environment. This model may not be directly applicable to other software
development environments, however, because of variables such as personnel, application
domain, tools, methods, and languages. Each software organization should produce its
own effort distribution profile.

2 Commercial models of effort distribution have historically recommended allocating 40 percent of project resources
to analysis and design, 20 percent to coding, and 40 percent to testing.

9 NASA-GB-001-94

An organization must also decide which activities and portions of the software or system
life cycle will be included in the model or models. Even managers within the local
organization can use the model shown in Figure 2-2 only for development projects,
because no software maintenance data are included in the model. Any maintenance
organization, however, can develop a similar model. Further, the sample domain is
limited to software engineering concerns. An organization that develops or maintains
complete systems must establish and maintain models that include activities across the
entire system life cycle.

Example 2:
Error Distribution Characteristics

Another important part of understanding the software engineering process is being aware
of the common classes of errors. Software project personnel must understand not only
where errors originate and where they are corrected, but also the relative rates of error
occurrence in different classes. A measurement program provides the means to determine
error profiles. Software project personnel can use profiles of error characteristics to
improve development processes on future projects or on later stages of an ongoing
project.

Figure 2-3 represents a simple model of error characteristics for one NASA environment.
A large sample of NASA projects collected data representing more than 10,000 errors
over a 5-year period. The definitions of the error classes are meaningful to the organi-
zation that collected and analyzed the data but may not be suitable in other environments.
Each organization must characterize the classes of errors that are important in its own
environment.

The distribution percentages shown in the model are specific to the organization that pro-
vided the data. Moreover, in this environment, the general profile of errors does not
change significantly across different projects. Although the error rate has steadily
declined over a period of years, the

profile shown has remained relatively

stable. . Initialization
Computation 15%

15%

An environment-specific model of error
distribution can provide decision support
for the planning and management of new
projects. A manager who notices that one
class of error is becoming more common Data
can redirect effort to concentrate on that | 3q0,
class during inspections and reviews. An
error class distribution profile serves as a
measurement tool to help both
management and technical personnel
isolate errors earlier in the software life
cycle, reduce life-cycle costs, and
increase software reliability.

Logic/Control
16%

Interfaces
24%

Figure 2-3. Error Class Distribution

NASA-GB-001-94 10

Example 3:
Software Growth and Change Characteristics

Insight into the rates of growth and change of source code also helps to build a better
understanding of software engineering processes. Code growth reflects the rate at which
source code is added to a controlled library; code change reflects modifications to the
controlled, or baselined, library. An understanding of the model for such rates can provide
a basis for determining if a new project is progressing as expected or if it is producing or
changing source code at a rate that differs from the organization’s historical profile.

Figure 2-4 depicts the typical rate of growth of source code in a NASA environment. The
data were derived from over 20 software projects that followed a waterfall life cycle. This
information is used only to model typical projects in one particular environment, not to
determine the quality of a given process.

System | Acceptance
Design Code/Test Test Test

100

90 —

80 —

70 —

60 —

50 —

40 —

% of Total SLOC

30

20

10 20 30 40 50 60 70 80 Q0 100
% of Schedule

NOTE: SLOC = Source Lines of Code

Figure 2-4. Growth Rate of Source Code

Figure 2-5 shows the accumulated changes to source code during the development phases
in the same environment. Both of the profiles shown here were derived from
measurement data that were inexpensive to collect and analyze, and the resulting models
are quite stable.

11 NASA-GB-001-94

System | Acceptance
9.00 Design Code/Test Test Test
8.00
Q -
bo 7.00
]
9]
< 600 —
o
o
8 500
o
c
2
S 4.00 —
]
=
® 3.00 -
=]
g
15 2.00 -
1.00 —
0.00 ek L : N N N N N
10 20 30 40 50 60 70 80 90 100
% of Schedule
NOTE: KSLOC = 1,000 Source Lines of Code

Figure 2-5. Change Rate of Source Code

Example 4:
Software Process Relationships

The functional relationships between product and process parameters provide additional
understanding of an organization’s software engineering processes. This understanding
can be applied to the planning and management of subsequent projects in the same
environment.

Figure 2-6 presents examples of a few key relationships that were found useful in several
NASA environments. A SEL report (Reference 8) discusses those and other such
relationships and how they can be applied. The relationship constants are periodically
revised to reflect evolving organizational models. After the historical database has been
created, the additional effort required to develop such relationships has proved to be small
and worthwhile, leading to increased understanding of the software engineering process.

2.2 Measurement for Managing Software

The second key reason for establishing an effective measurement program is to provide improved
management information. Having an understanding of the software environment based on
models of the process and on relationships among the process and product parameters allows for
better prediction of process results and more awareness of deviations from expected results.
Thus, understanding the software engineering process leads to better management decision
making. The understanding comes from analyzing local data; without analysis, any data

NASA-GB-001-94 12

Effort (in staff-months) = 1.48 * (KSLOC)0-98
Duration (in months) = 4.6 * (KSLOC)0-26
Pages of Documentation = 34.7 * (KSLOC)0-93
Annual Maintenance Cost = 0.12 * (Development Cost)

Average Staff Size = 0.24 * (Effort)?-73

Figure 2-6. Sample Process Relationships

collection activity is a waste of effort. The next step is to use the understanding that comes from
the engineering models to plan and manage software project activities.

Focus on applying results rather than collecting data.

A measurement program that focuses on the collection process, or that does not have a clear plan
for applying the acquired understanding, will fail.

Specifically, the knowledge gained about the software engineering process will be used to
e [Estimate project elements such as cost, schedules, and staffing profiles
e Track project results against planning estimates
e Jalidate the organizational models as the basis for improving future estimates

Engineering models and relationships provide a foundation for the software engineering
estimates that form an important part of the project management plan. Without accurate models
based on similar classes of software development and maintenance activities, project
management success is uncertain.

The next three sections address the use of models and relationships in more detail.

2.2.1 Planning and Estimating

One of the most critical responsibilities of a software project manager is developing a software
project management plan, and one of the most important elements of that plan is a set of project
estimates for cost, schedule, staffing requirements, resource requirements, and risks.
Measurement results from similar completed projects are used to derive software engineering
models (providing an understanding of the environment), which, in turn, are used to develop the
estimates. The quality of the information in the historical database directly affects the quality of
the software engineering models and, subsequently, the quality of the planning estimates for new
projects.

13 NASA-GB-001-94

A manager who can produce a product size estimate based on software functionality
requirements can then derive such estimates as cost and schedule using organizational models
and relationships. The standard size estimates within the SEL are currently based on developed
lines of code (DLOC). (For a detailed discussion of DLOC—software size with a weighting
factor applied to reused code—see Reference 9 and Sections 4.5.2 and 6.1.2 of this document.)
Given a product size estimate and the distribution percentages shown in Table 2-2 (Reference
10), a manager can derive project cost (measured as staff effort) and schedule estimates using the
relationships

Effort (in hours) = DLOC / Productivity

where

Productivity = 3.2 DLOC per Hour
for FORTRAN, and

Duration (in months) = 4.9 (Effort [in staff-months])®*

for attitude ground support systems (AGSSs).

For example, assuming an estimated product size of 99,000 DLOC for an AGSS to be developed
in FORTRAN, a total effort of approximately 200 staff-months and a total duration of
approximately 24 calendar months can be estimated.? The table also provides derived project
estimates for the cost and duration of each major life-cycle phase. In this model, the design phase
comprises requirements analysis, preliminary design, and detailed design, and the test phase
encompasses both system and acceptance test. Initial planning estimates may have to be adjusted
for changes in requirements or schedule. It is also important to note that the specific parameters
in the relationships shown here are highly dependent on environmental factors, such as the local
definition of a line of code. Although anyone can use this model as a starting point, each
organization must analyze its data to derive its own distribution model.

Table 2-2. Distribution of Time Schedule and Effort Over Phases

Distribution Model Sample Derived Estimates
(Reference 10) (for 99,000 DLOC)
Completion Staff-
Life- Time Milestones Months
Cycle Schedule Effort (Months by (Allocated
Phases (%) (%) Phase) by Phase)
Design 35 30 8.4 60
Code 30 40 7.2 80
Test 35 30 8.4 60

3 The conversion between staff-months and staff-hours is organization-dependent. In this example, 1 staff-month =

157 staff-hours.

NASA-GB-001-94

14

2.2.2 Tracking

An important responsibility of software project management is tracking the actual size, effort,
budget, and schedule against the estimates in the approved plan. Successful, effective
management requires visibility into the progress and general status of the ongoing project, so that
timely and informed adjustments can be made to schedules, budgets, and processes. Periodic
sampling of project measurement data provides that visibility.

The extent and effectiveness of the project tracking process depends on the availability and
quality of a set of historical models and relationships. If the only available model is related to
cost data, then management tracking will be limited to cost information. However, a more
extensive set of derived models for staff size, software growth rate, software change rate, error
rate, and other parameters will facilitate a broader tracking capability.

Figure 2-7 illustrates the process of tracking the actual software growth rate* against the planning
estimates. In this illustration, the planned growth estimates are based on the model introduced in
Figure 2-4. A deviation of the actual values from the expected curve indicates simply that
something is different from the historical model. Such a deviation does not necessarily signal a
problem; rather, it can provide the program manager with an opportunity to explain the
difference. In particular, the deviation may have resulted from a planned improvement. For
example, a project that is reusing a larger amount of code than the typical past project may show
a sharp jump in growth rate when reused code is moved into the controlled library.

System | Acceptance
Design Code/Test Test Test

|
90 - 1

Expected Range /i

100

Planned
70 - Actual —

60 —

50 —

40 -

% of Total SLOC

30

20

10

10 20 30 40 50 60 70 80 Q0 100
% of Schedule

Figure 2-7. Tracking Growth Rate

4 Software growth rate reflects the rate at which programmers complete the unit testing of source code. In Figure 2-7,
the actual percentage of the total is computed with respect to the estimated size at completion.

15 NASA-GB-001-94

2.2.3 Validating

Once a manager has the ability to track actual project measures against planning estimates, he or
she can begin to use any observed differences to evaluate the status of the project and to support
decisions to take corrective actions. Figure 2-7 also shows an allowable range of deviation
around the planned or expected values on the growth curve. Observing the trend of the actual
growth rate relative to the planned values can provide a management indicator of a healthy
project (as determined by a growth pattern within the expected range) or a potential problem that
requires further evaluation to determine the cause (as is the case in Figure 2-7). With the insight
gained by observing the trend, a manager can adjust staffing or schedule to get the project back
on track.

Although it is obvious that an actual value below the allowable range may indicate a cause for
concern, it is perhaps less obvious that an actual value that falls above the allowable range should
also generate a management investigation. In this example, a software growth rate above the
allowable range may indicate that some other project activities are not being performed or,
perhaps, that the wrong model was used for planning and estimation. Consistent and regular
deviations may also indicate a need to adjust the organization’s models.

Examples within this section have illustrated that a baseline understanding of the software
engineering process derived from historical results provides the essential model, which leads to
the planning estimate, which makes the tracking possible. The process of tracking actual versus
planned growth values provides the insight for model validation, which facilitates adjustments by
project management. The fundamental element of measurement support for project management
is understanding the software engineering process.

2.3 Measurement for Guiding Improvement

The primary focus of any software engineering organization is to produce a high-quality product
within schedule and budget. However, a constant goal, if the organization is to evolve and grow,
must be continual improvement in the quality of its products and services. Product improvement
is typically achieved by improving the processes used to develop the product. Process
improvement, which requires introducing change, may be accomplished by modifying
management or technical processes or by adopting new technologies. Adoption of a new
technology may require changing an existing process. In any case, software measurement is a key
part of any process improvement program; knowing the quality of the product developed using
both the initial and the changed process is necessary to confirm that improvement has occurred.

There are several popular paradigms for software process improvement. For example, the
Capability Maturity Model (CMM) for Software (Reference 11), produced by the Software
Engineering Institute (SEI) at Carnegie Mellon University, is a widely accepted benchmark for
software engineering excellence. It provides a framework for grouping key software practices
into five levels of maturity. A maturity level is an evolutionary plateau on the path toward
becoming a mature software organization. The five-level model, represented in Figure 2-8,
provides a defined sequence of steps for gradual improvement and prioritizes the actions for
improving software practices.

NASA-GB-001-94 16

Optimizing

Continually 5

Improving Process

Predictable Ta"aged
Process

Standard, geﬁ“ed
Consistent Process

Repeatable
Disciplined 2
Process

Initial
1

Figure 2-8. The Five Maturity Levels of the CMM

The SEI provides the following characterization of the five levels:

L.

Initial—The software process is characterized as ad hoc and, occasionally, even chaotic.
Few processes are defined, and success depends on the efforts of individuals.

Repeatable—Basic project management processes are established to track cost, schedule,
and functionality. The necessary process discipline is in place to repeat earlier successes
on projects with similar applications.

Defined—The software process for both management and engineering activities is
documented, standardized, and integrated into an organization-wide software process. All
projects use a documented and approved version of the organization’s process for
developing and maintaining software.

Managed—Detailed measures of the software process and product quality are collected.
Both the software process and products are quantitatively understood and controlled using
detailed measures.

Optimizing—Continuous process improvement is enabled by quantitative feedback from
the process and from testing innovative ideas and technologies.

The CMM is an organization-independent model that emphasizes improving processes to reach a
higher maturity level when compared to a common benchmark. Such a model presupposes that
the application of more mature processes will result in a higher quality product. In contrast, the
SEL has introduced a process improvement paradigm for NASA with specific emphasis on

17 NASA-GB-001-94

producing a better product based on the individual goals of the organization. Figure 2-9
illustrates the SEL’s Understand/Assess/Package paradigm.

In the SEI model, a baseline assessment of an organization’s deficiencies, with respect to the key
processes defined at each of the maturity levels, determines the priority with which the
organization implements process improvements. In the SEL model, the specific experiences and
goals of the organization drive changes. (See Reference 12 for a more detailed comparison of the
two paradigms.)

PACKAGING

Define, redefine, and tailor
processes and models on the basis of
new experiences

Iterate

ASSESSING

¢ Identify changes

¢ Set goals

* Choose processes and experiment
* Execute processes
UNDERSTANDING ¢ Analyze data and determine impact

¢ Establish baselines
¢ Extract and define processes
¢ Build models

Time >

Figure 2-9. The Understand/Assess/Package Paradigm

2.3.1 Understanding

Section 2.1 introduced understanding as the primary reason for establishing a measurement
program; that same understanding provides the foundation for NASA’s process improvement
paradigm. To provide the measurement basis for its software engineering process improvement
program, an organization must begin with a baseline understanding of the current processes and
products by analyzing project data to derive (1) models of the software engineering processes and
(2) relationships among the process and product parameters in the organization’s environment.

As the organization’s personnel use the models and relationships to plan and manage additional
projects, they should observe trends, identify improvement opportunities, and evaluate those
opportunities for potential payback to the organization. As improvements are implemented, new
project measurement results are used to update the organization’s models and relationships.
These updated models and relationships improve estimates for future projects.

NASA-GB-001-94 18

Improvement plans must be made in the context of the organization’s goals. Improvement can be
defined only within the domain of the organization—there are no universal measures of
improvement. An organization may base its process improvement goals on productivity, cost,
reliability, error rate, cycle time, portability, reusability, customer satisfaction, or other relevant
characteristics; however, each organization must determine what is most important in its local
environment. Using measurement as the basis for improvement permits an organization to set
specific quantitative goals. For example, rather than simply striving to reduce the error rate, an
organization can establish a goal of lowering the error rate by 50 percent. Determining the effect
of introducing change requires initial measurement of the baseline.

2.3.2 Assessing

Once an organization understands the current models and relationships reflecting its software
process and product, it may want to assess the impact of introducing a process change. It should
be noted that a change is not necessarily an improvement. Determining that a change is an
improvement requires analysis of measures based on the organization’s goals. For example,
assume that an organization’s goal is to decrease the error rate in delivered software while
maintaining (or possibly improving) the level of productivity; further assume that the
organization has decided to change the process by introducing the Cleanroom method (Reference
13). Cleanroom focuses on achieving higher reliability (i.e., lower error rates) through defect
prevention. Because the organization’s primary goal is to reduce the error rate, there is no
concern that the Cleanroom method does not address reuse, portability, maintainability, or many
other process and product characteristics.

During a recent study (Reference 14), the SEL assessed the impact of introducing the Cleanroom
method. Table 2-3 shows the error rate and productivity measures for the baseline and the first
Cleanroom project. The results of the experiment appear to provide preliminary evidence of the
expected improvement in reliability following introduction of the Cleanroom method and may
also indicate an improvement in productivity. Chapter 6 provides additional details of the SEL
Cleanroom study.

Table 2-3. Impact of the Cleanroom Method on Reliability and Productivity

Error Rate

(Errors per Productivity
Data Source KDLOC) (DLOC per Day)
Baseline 5.3 26
Cleanroom 4.3 40

NOTE: KDLOC = 1,000 Developed Lines of Code

19 NASA-GB-001-94

2.3.3 Packaging

NASA experience has shown that feedback and packaging of measured results must occur soon
after completion of an impact assessment. Packaging typically includes written policies,
procedures, standards, and guidebooks. High-quality training material and training courses are
also essential parts of the packages.

For example, to incorporate the Cleanroom method as an integral part of its software develop-
ment activities, an organization must first prepare the necessary documentation and provide
training to all affected project personnel. Packaging is discussed in more detail in Chapter 5.

NASA-GB-001-94 20

Chapter 3. Establishing a Measurement Program

Chapter Highlights

GoALS

¢ Understanding the organization’s goals

¢ Understanding measurement’s application
¢ Setting expectations

¢ Planning for early success

ScoPE

e Focusing locally
o Starting small

ROLES AND RESPONSIBILITIES

¢ Providing data
¢ Analyzing and packaging
¢ Collecting and storing

SELECTING MEASURES

¢ Ensuring that measures are applicable
¢ Minimizing the number of measures
¢ Avoiding over-reporting

MEASUREMENT COSTS

¢ Project costs—the source of data
¢ Technical support costs
¢ Analysis and packaging costs

21 NASA-GB-001-94

engineering activities, it is ready to establish a measurement program. The effective

application of information derived from measurement entails building models,
identifying the strengths and weaknesses of a particular process, and aiding the management
decision process. A clear, well-defined approach for the application and analysis of measurement
information will minimize the cost and disruption to the software organization. Building on the
advice of the preceding chapter, this chapter addresses the following topics and provides
recommendations for successfully establishing a new measurement program:

! fter an organization understands the roles that measurement can play in software

e Understanding the organization’s goals

e Defining the scope of the measurement program

e Defining roles and responsibilities within the organization
e Selecting the appropriate measures

e Controlling the cost of measurement

3.1 Goals

First, the organization must determine what it wants to accomplish through measurement. This
requirement leads to the next rule:

Understand the goals.

The goals of an organization may be to increase productivity or quality, reduce costs, improve the
ability to stay on schedule, or improve a manager’s ability to make informed decisions. Typically,
an organization that is implementing a measurement program has all of these goals. Although it
is admirable to want to improve everything immediately, establishing priorities for achieving the
goals incrementally is essential. After clarifying the organizational goals, the organization must
recognize the need to establish a measurement program to achieve its goals.

Understand how to apply measurement.

If the goal is to improve productivity, for example, then the organization must know its current
productivity rate and understand its product and process characteristics. Both prerequisites are
supplied by measurement.

The results of a measurement program will be used in different ways at each level of the
organization. Senior management will be interested primarily in how the program improves the
capabilities and productivity of the organization and in the effect on the bottom line. Project
managers will be concerned with the impact on planning and managing current project efforts.
Software developers will be interested in how the program will make work easier compared with
the impact of data collection requirements. Successful measurement programs begin by involving
all participants in defining the goals.

NASA-GB-001-94 22

Because personnel at different organizational levels will view a new measurement program from
different perspectives, the success of the program demands that those responsible for introducing
measurement follow the next rule:

Set expectations.

The implementation of a measurement program will inevitably introduce change; change will
bring some resistance and some initial problems. To minimize resistance, both management and
technical personnel must be prepared to expect and accept the change and to encourage others to
be persistent and patient. Proper setting of expectations will enhance potential support and
acceptance from all management and technical personnel affected by the changes.

Plan to achieve an early success.

The first project should be selected carefully with the objective of demonstrating evidence of
early benefits. Measurement programs sometimes fail because well-intentioned measurement
coordinators wait too long “for all the results to come in” before reporting progress to senior
management. It is critical to report preliminary results as soon as possible after establishing the
program. The startup investment is significant, so management must see an early return on that
investment, or the program is likely to be canceled before measurement analysts can provide “all
the results.” Equally important, project personnel need to see evidence of the benefits of their
efforts to reduce their inevitable resistance. The early payoff may be, for example, a better
understanding of the typical classes of errors that are detected in the organization’s software
projects or an understanding of the relative amounts of time that personnel spend in coding as
compared with testing.

Although early feedback is essential for success, it is prudent not to promise substantial
improvement during the early phases of the program. Worthwhile analysis, synthesis, and
packaging take time and effort. Development and maintenance teams must be conditioned to
expect gradual, incremental improvements.

3.2 Scope

After the goals of the measurement program are established and understood, measurement
personnel must define the scope of the program, making the following critical decisions:

e Which projects should be included in the organization’s measurement program?
e Which phases of the software life cycle should be included?

e Which elements of the project staff should be included; for example, is it important to
include the effort of secretarial support, publication support, and two or more levels of
management?

23 NASA-GB-001-94

Those responsible for making these decisions must consider both the previously defined goals
and the need to gain acceptance from project personnel who will be affected by the new
measurement program. The next two rules provide help in defining the scope.

Focus locally.

The scope of the measurement program should be limited to the local organization.
Organizational goals should have been based on the need for specific self-improvements, not for
making comparisons with others. When defining processes for data collection and analysis, it is
important to use concepts and terms that are understood locally. Precious effort should not be
expended developing universal or unnecessarily broad-based definitions of measurement
concepts and standards. Similarly, it is important to focus on developing a high-quality local
measurement data center. Combining detailed measurement data into larger information centers
has never proved beneficial and has consumed significant amounts of effort. Consultation with
management and software personnel can ensure proper focus and increase acceptance.

Start small.

When establishing a measurement program, it is always important to start with a small scope.
Limiting the number of projects, restricting the portions of the software life cycle to those with
already well-defined processes within the organization, and limiting staff involvement to
essential personnel will all help to minimize resistance from, and impact on, managers and
development or maintenance personnel. The scope of the program will evolve, but the time to
increase the size of the program is after it has become successful.

3.3 Roles, Responsibilities, and Structure

After the organizational goals are well understood and the scope of the measurement program is
defined, the next step is to define roles and responsibilities. In a successful measurement
program, three distinct roles must be performed by components of the organization:

1. The source of data—yproviding measurement data from ongoing software development
and maintenance activities

2. Analysis and packaging—examining measurement data and deriving process models and
relationships

3. Technical support—collecting, storing, and retrieving project information

Figure 3-1 illustrates the components and the relationships among them. Each component must
perform its distinct role while maintaining a close relationship with the other two components.

NASA-GB-001-94 24

models, relationships,
processes

Develop and Maintain Software

Source of Data

¢ Provide objective information
¢ Provide subjective information
® Attend training e Understand
¢ Produce lessons-learned experience project information e Assess and Refine
* Use provided processes and models e Package
raw data Analysis and Packaging

Analyze experiences

Develop models and relationships
Produce standards and training
Provide feedback

models, relationships,
analysis reports g

update requests

validated data

Maintln the Information eposito:y
S =

Technical Support

Write data collection procedures
Establish database structure
QA and feed back data

Archive data and documents

Figure 3-1. The Three Components of a Measurement Program

The next sections introduce the components’ responsibilities in starting a measurement program
and map the components into the organizational structure. (Chapter 5 briefly describes the
operational responsibilities of the three components.)

3.3.1 The Source of Data

The responsibility of the development and maintenance component is to provide project data.
Providing data is the only responsibility imposed on the development and maintenance
personnel; they are not responsible for analyzing the data. These personnel can reasonably expect
to be provided with training that includes, at a minimum, the following information:

25 NASA-GB-001-94

e C(lear descriptions of all data to be provided

e C(lear and precise definitions of all terms

e Who is responsible for providing which data

e When and to whom the data are to be provided

In exchange, the development and maintenance component of the measurement program receives
tailored processes, refined process models, experience-based policies and standards, and tools.

3.3.2 Analysis and Packaging

The analysis and packaging component is responsible for developing and delivering the training
that will provide the developers and maintainers with the specific information listed in the
previous section. Analysis and packaging personnel must design and develop the data forms and
receive the raw data from the repository. They are responsible for examining project data;
producing tailored development and maintenance processes for the specific project domain;
generating organization-specific policies and standards; and generalizing lessons, information,
and process models. This measurement program component continually receives data from the
developers and maintainers of software and, in return, continually provides organization-specific
experience packages such as local standards, guidebooks, and models.

Organize the analysts separately from the developers.

The analysis and packaging personnel are necessarily separate from the development and
maintenance personnel because their objectives are significantly different. Measurement analysts
are concerned solely with improving the software process. Software developers’ and maintainers’
concerns include product generation, schedules, and costs. It is impractical to expect personnel
who must deliver a high-quality product on schedule and within budget to be responsible for the
activities necessary to sustain continual improvement; hence, those functions must be the
responsibility of a separate component.

3.3.3 Technical Support

The technical support component maintains the information repository, which contains the
organization’s historical database. This component provides essential support services including
implementing the database as specified by the analysis and packaging component. The support
personnel collect data forms from the developers and maintainers on a prescribed schedule,
perform data validation and verification operations to identify and report discrepancies, and add
the project data to the historical database. They are also responsible for operating supplementary
software tools (e.g., code analyzers) and for preparing reports of the analysis results. In addition,
the support personnel archive data and perform all other database management system (DBMS)
maintenance functions.

NASA-GB-001-94 26

Example:
The Software Engineering Laboratory

Although their measurement roles and responsibilities are clearly distinct, the three
components may be organized in different ways within different organizations. A large
organization may benefit by creating separate, structural components to perform the three
distinct roles of the measurement program. A small organization with a small project may
simply assign the roles to individual personnel. In some cases, a single individual may
perform multiple roles as long as the amount of effort allocated to separate roles is clearly
identified.

For example, the SEL is an organization of moderate size with approximately 300
software developers and maintainers. The organization develops and maintains mission
support software for the Flight Dynamics Division at GSFC. Since 1976, the SEL has
collected data from more than 100 software development projects. Typical projects range
in size from 35,000 to 300,000 SLOC and require from 3 to 60 staff-years of effort. The
process and product data have been analyzed to evaluate the impact of introducing
methodologies, tools, and technologies within the local environment. In recent years, the
SEL has expanded the scope of its activities to include the study of software maintenance
(Reference 15). Process improvements have led to documented improvements in the
organization’s products.

Figure 3-2 illustrates the organizational structure of the SEL. In this example, the
technical support personnel who maintain the repository are administratively affiliated
with the analysis and packaging component but physically located with the source of data.
This structure works well in the SEL for two reasons:

1. The technical support personnel receive funding from the same source as the
analysis and packaging personnel. Developers and maintainers are funded by a
different source.

2. The physical environment is structured with the forms processing, database host
computing support, and library facilities collocated with the developers and
maintainers, so the support personnel occupy that same space.

Many alternative structures would be just as functional and successful. The important
feature is that the development and maintenance personnel are not responsible for
analysis and packaging. In addition, SEL models and relationships are affected by the fact
that the measurement program within this sample environment is limited to development
and maintenance of operational mission support software.> Organizations that include
other activities may derive significantly different models. Issues related to the cost
considerations shown in the figure are addressed in Section 3.5. Reference 16 provides
additional examples and details.

5 Although the scope of the measurement program includes no data from prototype development or research
activities, the software personnel do perform such activities as a part of their jobs.

27 NASA-GB-001-94

Source of Data

¢ All operational support software (no prototypes,
no R&D)

¢ Development from design through delivery
and maintenance

® Each project manager responsible for
participation in measurement program

» Effort less than 2 percent additional overhead

- project development histories
- subjective project information

- 200-500 completed forms per week \N’* - models (e.g., cost, schedule)
- requests for project information « - fraining courses (e.g., Principles of Flight Dynamics)

Analysis and Packaging
® Active participation from design through delivery

- development status reports and maintenance
- standard monthly project reports ® Products
- Models - Processes
Technical Support _ Jraling - Standards
* Collocated with developers and maintainers * Funding primarily from NASA
but administratively attached to analysts and (some contractor funding support)
packagers . Eff
ort about 7 percent of development
® Occupies about 500 sq. ft. P P
* Uses Oracle DBMS - ad hoc database queries
* Two data technicians and two programmers - forms design 5
e Effort about 4 percent of development

- annual bibliography and collected papers
- database user's guide
- results of special requests

Figure 3-2. The SEL as a Sample Structure for Process Improvement

3.4 Selecting the Measures

Another important step in establishing a measurement program is selecting the measures to be
used. Selected measures will fall into one or more categories, including objective measures
(direct counts, obtained either manually or with the support of an automated tool), subjective
measures (interpretive assessments about the status of the quality or completion of the product),
and project characteristics (factual descriptions of the type, size, and duration of the project).
Chapter 4 addresses measures in more detail. When selecting measures, the next rule is the most
important:

Make sure the measures apply to the goals.

NASA-GB-001-94 28

Measures should not be selected just because a published author has found them useful; they
should directly relate to the defined goals of the organization. For example, if there is no goal to
reduce processor time, it is a waste of time and effort to collect data on computer usage.

Keep the number of measures to a minimum.

Experiences from successful measurement programs within NASA suggest that a minimal set of
measures is usually adequate for beginning a program and sufficient to fulfill all but the most
ambitious goals. A basic set of measures—which typically consists of data for schedule, staffing,
and software size—is introduced in the next chapter.

This rule—to limit the number of measures and, by implication, the size of the measurement
database—is a corollary of the rule to start small, which suggests limiting the scope of the
measurement program itself. The rule should be taken literally: if a single measure is sufficient to
address the organization’s goal, then collecting data on two or three will provide no added
benefits. For example, if the only goal is to improve quality, only defects should be measured;
cost and schedule data should not be a concern.

Avoid over-reporting measurement data.

Any measurement program can be potentially disruptive to a software project; therefore, analysts
must be cautious when providing feedback to development and maintenance personnel.
Providing too much feedback can be just as serious a mistake as providing not enough. Reporting
the results of analyzing all available measurement data is a waste of time, because much of the
information will provide no additional insight. When presented with unnecessary and excessive
charts, tables, and reports, software staff and managers may become annoyed and disenchanted
with the value of the measurement program.

Collected data constitute only a small part of the overall improvement program and should
always be treated as the means to a larger end. The tendency to assume that each set of data has
some inherent value to the development and maintenance personnel and, therefore, should be
analyzed, packaged, and fed back to them, must be avoided. Feedback must be driven by a need
or directed toward supporting a defined goal. If no focus has been established for the analysis of
code complexity, for example, then there will be no value in—and no appreciation for—the
preparation of a complexity report. Such a report would be disruptive and confusing and could
dilute the effectiveness of the measurement program.

The following common reports and graphs are often packaged and provided to the development
and maintenance organization, not because they are needed, but simply because the data exist:

e Code complexity
e Design complexity
e Number of tests executed

e Plots of computer usage

29 NASA-GB-001-94

e Charts of numbers of requirements changes
e Profiles of program execution
e Charts of the time spent in meetings

Each of those measures may have some value when used in support of an organizational goal.
However, this type of information is too often reported because it is assumed to be inherently
interesting, not because it relates to a particular need or goal.

3.5 Cost of Measurement

Cost is one of the most critical, yet misunderstood, attributes of a software measurement
program. Many organizations assume that the cost of measurement is so excessive that they
cannot justify establishing a measurement program. Others claim that measurement can be a
nonintrusive, no-cost addition to an organization and will have no impact on the organization’s
overhead. The truth lies somewhere in between.

Budget for the cost of the measurement program.

Measurement is not free, but it can be tailored in size and cost to fit the goals and budgets of any
software organization. A measurement program must be undertaken with the expectation that the
return will be worth the investment. If the cost is not planned in the organization’s budget, there
will be frustrations, attempts at shortcuts, and a failed software measurement program. Planning
must incorporate all of the hidden elements of the proposed effort—elements that are often more
expensive during startup than after the measurement program becomes operational. The higher
startup cost is an additional reason to start small.

Planners often incorrectly assume that the highest cost will be to the software development or
maintenance organization. This part of the overhead expense, which includes completing forms,
identifying project characteristics, and meeting with analysts, is actually the least expensive of
the three major cost elements of the measurement program:

1. Cost to the software projects—the source of data
2. Cost of technical support
3. Cost of analyzing and packaging
The cost of the measurement program also depends on the following considerations of scope:
e Size of the organization
e Number of projects included in the measurement program
e Extent of the measurement program (parts of the life cycle, number of measures, etc.)

NASA experience shows that there is a minimum cost associated with establishing and operating
any effective measurement program. The total cost will increase depending on the extent to

NASA-GB-001-94 30

which the organization wants, or can afford, to expand the program to address additional
projects, more comprehensive studies, and broader measurement applications.

The cost information offered in this section is based on 17 years of experience from
organizations ranging in size from approximately 100 to 500 persons. Additional information has
been derived from measurement programs in larger organizations of up to 5,000 persons. The
number of projects active at any one time for this experience base has ranged from a low of 5 or
6 projects to a high of over 20 projects, ranging in size from 5 KSLOC to over one million
SLOC. Because measurement costs depend on a large number of parameters, citing a single
definitive value that represents the cost of any organization’s measurement program is
impossible. However, some general suggestions can be provided, and organizations can interpret
these suggestions in the context of their own goals and environments.

Generally, the cost of measurement to the development or maintenance project will not exceed
2 percent of the total project development cost and is more likely to be less than 1 percent (which
implies that the cost may be too small to be measured). The technical support element may reach
a constant staff level of from one to five full-time personnel for data processing support. The
analysis and packaging element will require several full-time analysts and may cost up to
15 percent of the total development budget. For example, the SEL spends an average of about
7 percent of each project’s total development budget on analysis and packaging.

Figure 3-3 illustrates the costs of the elements of a software measurement program as
percentages of the total organizational cost. Individual costs are discussed in more detail in the
following sections.

201

* Develop models
(processes)

* Analyze results

Mid-Size Organizations * Train staff
(Approximately 100500 Persons) * Define

experiments

154 Large Organizations
(Approximately 500-5,000 Persons)

104 * Archive results

* Maintain
database

* QA

* Fill out forms
* Provide data

6.8 peable
<2

Source Technical Analysis &
of Data Support Packaging

% of Total Organization Size

6-15%

Figure 3-3. Cost of Software Measurement

31 NASA-GB-001-94

3.56.1 Cost to the Software Projects

The cost of measurement should not add more than 2 percent
to the software development or maintenance effort.

The smallest part of the measurement cost is the overhead to the development and maintenance
organization. This overhead comprises the cost of completing forms, participating in interviews,
attending training sessions describing measurement or technology experiments, and helping to
characterize project development. Although startup costs may be as high as 5 percent of the
development budget, the cost of operating an effective program will normally not exceed 1 or 2
percent, regardless of the number of active projects within the organization.

Legitimate costs are associated with introducing the providers of data to a new measurement
program. However, part of the higher initial cost can often be attributed to the inefficiencies in an
inexperienced organization’s program. New programs typically ask developers or maintainers to
complete unnecessary forms or require excruciating detail that is of little value or is not a part of
the stated goal. A well-planned measurement program will never impose a significant cost
impact on the development or maintenance organization.

3.56.2 Cost of Technical Support

The technical support component of the measurement program
may cost from 3 to 7 percent of the total development budget.

Technical support encompasses collecting, validating, and archiving the measurement data.
Included in these activities are database management, library maintenance, execution of support
tools, and high-level reporting of summary measurement data. These essential activities must be
planned, supported, and carefully executed. In addition to the cost of personnel are the costs of
acquiring and maintaining database software, support tools, and other automated processing aids
(e.g., code analyzers).

In an organization of over 50 management, technical, and clerical personnel, any measurement
program will require three to five full-time staff members to handle the necessary support tasks.
A smaller organization, with perhaps only one project and a pilot measurement program, may
wish to combine the support effort with configuration management (CM) or independent QA
activities. Implementation of a separate technical support element may not be cost effective.

Experience within NASA has shown that the cost of the technical support for measurement
programs involving 100 to 200 software developers or maintainers is approximately 7 percent of
the total effort. That cost includes approximately five full-time data technicians and database
support personnel, plus the costs of the DBMS and associated software tools and equipment. For
larger measurement programs with 250 to 600 software personnel, experience indicates that only
one additional full-time support person is required. Thus, for organizations with 50 to 600
developers and maintainers, the overhead cost is approximately 6 percent of the project cost. For
organizations with approximately 500 to 1,000 software personnel, the overhead cost approaches
3 percent of the project cost or about seven full-time personnel added to the cost of tools and
equipment.

The cost estimates are based on the assumption that an organization is actively working on 5 to
15 development or maintenance projects at any one time. The overall cost of the technical

NASA-GB-001-94 32

support component will vary significantly depending on the number of projects participating in
the measurement program. An organization of 200 or 300 people actively working on a single
large project will require much less support than the same organization with 20 active smaller
projects. Limited experience with larger organizations of over 5,000 persons indicates that the
technical support cost is essentially the same as for an organization of 500. As its size increases,
an organization tends to collect measurement data at a less detailed level.

3.5.3 Cost of Analysis and Packaging

The cost of the analysis component of the measurement
program ranges from 5 to 15 percent of the total project
budget.

Analysis and packaging is the most critical part of the measurement program and the most costly
of the three elements of cost overhead. Without a sufficient allocation of effort to this function,
the measurement program cannot be a success. Packaging is the culmination of all measurement
activities and the primary purpose for the measurement program.

Key activities associated with this element are
e Design of process studies (determining what is to be measured)
e Information analysis (e.g., analysis of data and synthesis of models)

e Project interaction (clarifying the purposes of measurement, training developers,
providing feedback to projects)

e Packaging (producing standards, policies, and training programs and capturing
assessments of analyzed processes)

Plan to spend at least three times as much on data analysis and use
as on data collection.

NASA experience shows that the cost of this element in successful measurement programs far
exceeds the combined costs of the other two and is typically about three times the amount that
the software projects spend providing data. A successful measurement program dictates that this
cost be recognized and budgeted. For measurement programs involving 50 to 250 software
developers or maintainers, the cost of this activity has consistently run from approximately 7 to
12 percent of the organization’s total budget. Costs are incurred by the researchers who design
studies and develop new concepts, by the process staff responsible for developing and writing
standards, and by all the personnel required for analyzing, providing feedback, and developing
improvement guidelines. The analysis and packaging portion of the measurement costs depends
on the number of projects active within the organization. The figures provided here assume at
least 10 active projects and an archive of data from at least 15 projects available for analysis.
With fewer active projects, the analysis overhead would be smaller than indicated.

NASA’s historical data indicate that organizations spending between $20 million and $30
million for development and maintenance projects have spent between $1 million and $3 million

33 NASA-GB-001-94

for extensive and mature analysis efforts (in fiscal year 1993 dollars). For efforts on a much
larger scale, the measurement analysis must necessarily be conducted on a comparably higher
level; consequently, the overhead percentage decreases significantly. An expenditure of an
equivalent amount of analysis resources, plus a modest increase due to the size of the
organization, need not exceed the 5 percent level for measurement programs of any size. Because
application of the measurement data is the primary reason for the measurement program,
adequate resources must be allocated for this critical measurement program element.

NASA-GB-001-94 34

Chapter 4. Core Measures

Chapter Highlights

CosT

¢ Reporting period dates
o Total effort
o Effort by development and maintenance activity

ERRORS

e Dates error reported and corrected — Test for double value
o Effort to isolate and correct the error Y ranan f

e Source and class of error end if;

PROCESS CHARACTERISTICS

Identification of programming languages
Indication of the use of significant processes
Description of measurement study goals

PROJECT DYNAMICS

Changes to requirements
Changes to code

Growth of code
Predicted characteristics

PROJECT CHARACTERISTICS

Development dates
Total effort

Product size
Component information
Software classification

35 NASA-GB-001-94

measurement program. There is no universal, generally applicable collection of measures

that will satisfy the needs and characteristics of all organizations. However, on the basis
of the experiences of mature measurement programs throughout NASA, a set of measures in the
following five categories will typically be required by any software development and
maintenance organization:

1. Cost

T his chapter describes a set of core measures that any organization can use to begin a

2. Errors

3. Process characteristics
4. Project dynamics

5. Project characteristics

Although organizations beginning a measurement program may want to use the core set as a
baseline, they will soon find that additional information is required to satisfy their specific goals
and that some of the core measures are not required. Each organization should use those
measures that reflect its own goals. As its measurement program matures, the organization will
recognize which measures support those goals and which provide no added value.

The recommended core measures in each of the categories exhibit the following important
attributes. They

e Address the three key reasons for measurement
1. Understanding
2. Managing
3. Guiding improvement
e Support both software development and software maintenance activities
e Are easy to collect and archive
e Are based on the experience of mature NASA measurement programs

The following sections provide further information on the core measures.

4.1 Cost

Cost is the most universal and commonly accepted measure for understanding and managing
software processes and products. Consequently, cost data represent the most essential part of any
measurement program. Although many development organizations assume that the cost data
must be extensive and detailed to capture the overall cost characteristics of a software project
adequately, the cost data should actually be easy to capture. If a programmer needs more than a
few minutes each week (on the average) to record his or her effort, then the forms require too
much data. As long as the managers are aware of the total amount of effort required for the
software projects, an organization can gain a significant amount of insight by observing the

NASA-GB-001-94 36

trends over time. The simplest, yet most critical, cost measure is the record of the total
expenditures for a project.

4.1.1 Description

Collect effort data at least monthly.

Every project must capture staff effort data on a consistent, periodic basis. A monthly schedule is
recommended, at a minimum; however, many major NASA measurement programs capture
effort data biweekly or even weekly. The higher frequency requires little additional work and
provides more project characterization detail.

Clarify the scope of effort data collection.

The scope of the effort data collection depends on the organization’s goals. Each organization
must determine precisely who will supply effort data, at what point during the software life cycle
measurement will begin, and when data collection will terminate. Typically, effort data must be
collected for all personnel who charge their time to the software project, specifically, technical,
management, secretarial, and publications staff.

For every data reporting period, each individual must minimally report the total number of hours
of effort and a breakout of the number of hours per activity (e.g., design, code, test, or other).

A decision concerning the reporting of unpaid extra hours of effort must be based on whether the
intent is to measure the actual effort expended or the actual effort charged. Some organizations
maintain separate records of unpaid overtime hours.

Within the SEL, every programmer and every first- or second-line manager provide effort data.
Data collection starts when the functional requirements have been completed and the software
life cycle begins with the requirements analysis phase.6 For development projects, data collection
continues until the system is turned over for operational use. For maintenance projects, data
collection starts at the beginning of the operations phase and continues until the analysts
determine that no additional value will be gained from further collection. Each maintenance
project is judged on its own merits. Some may provide data for 1 year only, whereas others
provide data until the software is retired.

4.1.2 Data Definition

When the measurement program is first established, personnel from the analysis component must
define the activities to ensure clarity and internal consistency. Focus should be on using locally

6 For all five categories of measures, the SEL begins to capture data no earlier than the beginning of the software
requirements analysis phase. System requirements definition is normally performed by a different organization
from the one that develops the software.

37 NASA-GB-001-94

developed definitions for the activities. Excessive time should not be spent trying to be consistent
with outside organizations.

All project personnel (e.g., programmers, managers, QA staff, CM staff, and testers) provide the
data listed in Table 4-1. Additional resource data on the documentation effort (total hours by
publications) and the clerical effort (total hours charged by secretarial support) may be extracted
from project management accounting records, as long as there is a definition of scope and
characteristics. The data must be consistent from project to project and should provide an
accurate history of the cost required to produce and to maintain the software product.

Table 4-1. Data Provided Directly by Project Personnel

Data Descriptions
All Effort
Date Date of the end of the reporting period
Total effort Total hours charged to the project during that period
Development Activity Only
Hours by development activity Predesign

Create design

Read and review design
Write code

Read and review code
Test code units
Debugging

Integration test
Acceptance test

Other

Maintenance Only

Hours by maintenance class Correction
Enhancement
Adaptation
Other

Hours by maintenance activity Isolation

Change design

Implementation

Unit test and system test
Acceptance test and benchmark test
Other

The SEL Personnel Resources Forms (see Figures A-5 and A-6 in Appendix A) and the Weekly
Maintenance Effort Form (see Figure A-13) are examples of forms used to capture effort data for
development and maintenance projects, respectively. Programmers and managers typically
complete a form every week. Both forms provide space for recording total hours and the
distribution of hours by activities. To reduce questions and confusion, the definitions of the

NASA-GB-001-94 38

activities are supplied on the forms. Other organizations may use different definitions as long as
they are applied consistently throughout the organization’s measurement program.

Figure 4-1 summarizes the life-cycle phases, sources, and frequency for cost data collection.
Typically, organizations separate the costs of development and maintenance activities.

COST Requirements|Requirements| Preliminary Detailed Coding and System |Acceptance| Operation and
Definition Analysis Design Design Unit Testing Testing Testing Maintenance
Phases: e
Source: Managers, programmers, and accounting records

Frequency: At least monthly; more frequently if needed

Figure 4-1. Cost Data Collection Summary

4.2 Errors

Error data make up the second most important category of core measures. A better understanding
of the characteristics of software defects is necessary to support a goal of higher quality and
greater reliability. Error data may minimally include only counts of defects detected during a
specific life-cycle phase; at the other extreme, error data may include detailed descriptions of the
characteristics of the errors and information on where the errors came from, how they were
found, and how they were corrected. The level of detail must be driven by the goals and needs of
the particular organization. This section recommends core error measures based on those
collected within a successful measurement program in a medium-sized NASA organization.

4.2.1 Description
The core error measures consist of the
e Date the error was found
e Date the error was corrected
e Effort required to isolate and correct the error
e Source of the error
e Error class

When the measurement program is first established, the measurement analysts must define the
scope of the error reporting activity.

Collect error data only for controlled software.

Error data should be captured only after a unit of software has been placed under configuration
management control. This recommendation, which is based on 17 years of experience, may seem
counterintuitive. However, until CM checkout and checkin procedures have been established as

39 NASA-GB-001-94

prerequisites for making changes, consistent error reporting cannot be guaranteed. Within the
SEL, a unit is turned over for configuration control only after it has been coded. Other NASA
organizations (e.g., JPL) have reported significant improvements from collecting and analyzing
data about defects detected and corrected during formal inspections of requirements documents
(see Reference 26).

Do not expect to measure error correction effort precisely.

Programmers focusing on their technical activities may not be able to report the exact amount of
time required for a particular change. Forms should allow them to estimate the approximate time
expended in isolating and correcting an error.

4.2.2 Data Definition

After completing a software change, a programmer submits the appropriate change form with the
data shown in Table 4-2. A change form is required whenever a controlled software component
is modified, whether or not the detection of an error necessitated the change. Experience has
shown that the process of reporting such changes enhances configuration management and that
the information proves useful in modeling the dynamics of the software in an organization. In
addition to the measures already cited, a maintenance change form must include the type of
modification. As always, it is important to focus locally when defining the error classes.

Table 4-2. Change Data

Data Descriptions
All Changes
Date error reported Year, month, and day
Date error corrected Year, month, and day
Source of error Requirements, specification, design, code,

previous change, other

Class of error Initialization, logic/control, interface, data,
computational

Effort to isolate error Approximate number of hours

Effort to implement Approximate number of hours

change

Maintenance Changes Only

Type of modification Correction, enhancement, adaptation

NASA-GB-001-94 40

The SEL Change Report Form and the Maintenance Change Report Form (see Figures A-1 and
A-4 in Appendix A) are examples of forms used to capture error data for development and
maintenance projects, respectively. In either case, a single form is used to report both software
errors detected and software changes to correct the errors. Programmers use only one form to
report one error that requires changes to multiple components.

Figure 4-2 summarizes the life-cycle phases, sources, and frequency for error data collection.

Requirements| Requirements| Preliminary Detailed Coding and System |Acceptance| Operation and
ERRORS Definition Analysis Design Design Unit Testing Testing Testing Maintenance
Phases: e
Source: Programmers and automated tools
Frequency: Whenever a controlled unit is modified

Figure 4-2. Error Data Collection Summary

4.3 Process Characteristics

Do not expect to find generalized, well-defined process measures.

Focusing on the process characteristics category of software measures allows investigation into
the effectiveness of various software engineering methods and techniques. Looking at process
characteristics also provides insight into which projects use related processes and can thus be
grouped together within the measurement program to derive models and relationships or to guide
improvements.

Because few process features are consistently defined and can be objectively measured, few core
measures are recommended in this category. Rather than capturing extensive process
characteristics, it is suggested that some basic information be collected about the development
process used for the project being measured.

4.3.1 Description
The recommended core process measures are limited to the following three:
1. Identification of development language(s)

2. Indication of the use of specific processes or technology [e.g., the Cleanroom method or a
particular computer-aided software engineering (CASE) tool]

3. Description of measurement study goals

Common descriptions of measures do not exist for such fundamental software engineering
process elements as methodology, policies, automation, and management expertise. Therefore,
recommending that such measures be included in the core set is not useful. Measures such as
these must be defined and analyzed locally for consistency with the organization’s goals.

41 NASA-GB-001-94

Do not expect to find a database of process measurements.

Detailed process descriptions cannot be stored in a database. Instead, important process
information is often provided in papers and reports. For example, if an organization is studying
the impact of using different testing strategies, the analysts must capture the detailed information
about the results of applying different techniques and report on the results.

Understand the high-level process characteristics.

Before attempting to capture advanced process measurement data, an organization must have a
clear understanding of the core process measures. Experience within the SEL has shown that the
most important process characteristic is the choice of programming language; the availability of
this information may provide further insight during the analysis of other measurement data.

4.3.2 Data Definition

Table 4-3 summarizes the core process characteristics measures. Figure 4-3 summarizes the life-
cycle phases, sources, and frequency for process characteristics data collection.

Table 4-3. Process Characteristics Data

Data Descriptions

Development language Language name: percentage used
Language name: percentage used

Important process characteristics | One-line textual description (e.g.,
(if any) tised Cleanroom}

Study goals Brief description of the goals and
results of the measurement study
associated with the project

PROCESS Requirements| Requirements| Preliminary | Detailed Coding and System |Acceptance| Operation and
CHARACTERISTICS Definition Analysis Design Design Unit Testing Testing Testing Maintenance
Phases: PiiN
Source: Analysis and packaging personnel
Frequency: At the completion of the development phase

Figure 4-3. Process Characteristics Data Collection Summary

NASA-GB-001-94 42

4.4 Project Dynamics

The next category of core measures—project dynamics—captures changes (to requirements, to
controlled components, and in the estimates for completion) during the software life cycle.
Experience has shown that such information aids management and improves understanding of
the software process and product.

4.4.1 Description

The core measures in this category characterize observed changes in the project requirements and
the product code, as well as updated estimates of the final project characteristics (see Section
4.5). These measures consist of

e Changes to requirements

e Changes to baseline code

e Growth in baseline code

e Predicted project characteristics

Requirements changes represent the overall stability of the software requirements and can be
used effectively to manage the development effort and to improve understanding of the
characteristics of the software problem definition in the local environment.

Records of changes to the code and the growth of the code provide insight into how the various
phases of the life cycle affect the production of software, the most tangible product that a
development process generates. Change measures are useful in managing ongoing configuration
control processes, as well as in building models of the development process itself.

The measures of predicted project characteristics are excellent management aids and are useful
for studying the cause and effect of changes, as well as process and problem complexity. The
characteristics should be captured on a regular basis, at least monthly.

4.4.2 Data Definition

The Project Estimates Form (see Figure A-8 in Appendix A) is an example of a form used to
provide predicted project characteristics at the start of the project and periodically throughout the
life cycle. Table 4-4 summarizes the core project dynamics measures, and Figure 4-4 summarizes
the life-cycle phases, sources, and frequency for project dynamics data collection.

43 NASA-GB-001-94

Table 4-4. Project Dynamics Data

Data Descriptions

Changes to requirements | Count and date of any change
made to the baselined
requirements specifications

Changes to code Weekly count of the number of
software components changed

Growth of code Biweekly count of the total number
of components and total lines of
code in the controlled library

Predicted characteristics | Monthly record of the estimated
completion dates and software
size

Dates End design

End code

End testing
System completed

Size Total components
Total lines of code (new, reused,
modified)

Effort Total staff months (technical,
management, support services)

PROJECT Requirements| Requirements| Preliminary | Detailed Coding and System |Acceptance| Operation and
DYNAMICS Definition Analysis Design Design Unit Testing Testing Testing Maintenance
Phases: B
Source: Automated tools and managers

Frequency: Weekly, biweekly, or monthly (see Table 4-4)

Figure 4-4. Project Dynamics Collection Summary

4.5 Project Characteristics

The core measures that characterize the completed project constitute another essential part of the
measurement program. Organizations derive models and relationships from project
characteristics in the historical database. Without a basic description of the overall software
project effort, it is difficult to apply the other measurement information in a meaningful manner.

4.5.1 Description

The project characteristics can be broken down into five categories of core measures:

NASA-GB-001-94 44

1. Development dates
Total effort
Project size

Component information

A

Software classification

Use simple definitions of life-cycle phases.

The important dates are the beginning and the end of each life-cycle phase and the final project
completion date. If the organization is using a strict waterfall life cycle with nonoverlapping
phases, then the end of a nonterminal phase is defined by the beginning of the subsequent phase.
When a different life-cycle methodology is applied, the organization will have to adjust the
structure of the project characteristics data. Each organization must determine how it wants to
capture details of the key phase dates within the software life cycle. The simplest approach is to
use the classical phase definitions of a standard life-cycle methodology. However, as long as an
organization has its own consistent internal definitions, there is no overwhelming reason to adopt
an external standard. Multiple releases can be treated as multiple projects or as a single project
followed by maintenance enhancements.

The total effort expended on the project should be divided into hours used by programmers,
managers, and support services. At the conclusion of the project, the totals should be determined
from accounting information or another official source. The sum of the effort data collected
during the development or maintenance project should be compared with the value obtained from
the alternative source to cross-check the accuracy.

The core size measures are the total size of the software product and the total number of
components within the product. NASA experience shows that archiving additional details about
the origin of the code (e.g., whether it is new, reused, or modified) can lead to useful models.

Use lines of code to represent size.

NASA programs typically measure software size in terms of lines of code. Some authorities
recommend other size measures [e.g., function points (see Reference 17)]. However, no other
measure is as well understood or as easy to collect as lines of code.

This guidebook also recommends collecting size and origin information for software components
and defines a software component as a separately compilable unit of software for the project
being measured. Some organizations define components as subprograms or subsystems, which is
fine as long as the organization applies that definition consistently and derives useful results. The
SEL captures the basic information for each separately compilable unit of source code and has
found that the overhead required to extract the information using an automated tool is trivial. As

45 NASA-GB-001-94

a result, programmers can be freed from expending additional effort in providing that
information.

The final category of project characteristics core measures is software classification. This
measure is abstract and of limited value. Consequently, most organizations are advised to spend
only limited effort collecting and analyzing classification data. Nevertheless, several NASA
organizations have found a high-level classification scheme to be both adequate and useful.
These organizations use three broadly defined classes:

1. Business or administrative applications
2. Scientific or engineering applications
3. Systems support
Other organizations may want to record more detailed classification data, such as
¢ Embedded versus nonembedded
e Real-time versus nonreal-time

e Secure versus nonsecure

4.5.2 Data Definition

The recording of project characteristics data can often be substantially automated to minimize the
burden on the development and maintenance organization. Dates and effort, for example, are
normally available from management accounting reports; automated tools frequently can be used
to report size and component information, and the time and effort needed to indicate software
classification is minimal. Table 4-5 summarizes the project characteristics data.

No universally accepted definition exists for the start and stop times of various phases, such as
when a project starts or when a design ends. Experience within NASA has led to the use of phase
dates as follows:

o Start of software development—delivery of system requirements documents
o FEnd of requirements analysis—completion of specifications review

e End of design—completion of design review

e FEnd of coding—completion of code and unit test

e FEnd of testing—delivery to acceptance testing

e FEnd of development—delivery to operations

NASA-GB-001-94 46

Table 4-5. Project Characteristics Data

Data

Descriptions

Dates

Phase start dates (year, month, and day)

Requirements analysis
Design

Implementation
System test
Acceptance test
Cleanup

Maintenance

End date Project end

Effort

Total hours Project total
Management personnel
Technical personnel
Support personnel (e.g.,

publications), if applicable
Size

Project size (lines of code)

Other (count)

Delivered
Developed
Executable
Comments

New

Extensively modified
Slightly modified
Reused

Number of components
Pages of documentation

Component information (for each component)

Component size (lines of code)

Component origin

Total
Executable

New

Extensively modified
Slightly modified
Reused

Software classification

Business/administrative
Scientific/engineering
Systems support

47

NASA-GB-001-94

The effort data, compiled at the conclusion of the project, are used as part of the high-level
summary information for the project. The information represents the total cost of the project
broken down among developers, managers, and support services.

Table 4-5 lists several measures for lines of code. Consensus may never be reached on what
constitutes a line of code. Therefore, to facilitate various forms of comparison and analysis, this
guidebook recommends recording multiple values. The core measures include counts of

o Total lines delivered—every logical line, including comments, blanks, executable, and
nonexecutable

e Developed lines—total lines with a reuse factor

e Executable statements—total number of executable statements

o Comment lines—total number of lines containing only comments or blanks
The SEL captures source lines of code in four categories:

1. New—code in new units

2. Extensively modified—code for reused units in which 25 percent or more of the lines
were modified

3. Slightly modified—code for reused units in which fewer than 25 percent of the lines were
modified

4. Reused verbatim—code for units that were reused with no changes

For estimation purposes, lines of code are often classified into two categories that combine newly
written and extensively modified units as new code and slightly modified and verbatim code as
reused code. Consequently, the SEL relationships (see Reference 9) for estimating developed
lines are

FORTRAN developed lines = new lines + 20% of reused lines
Ada developed lines = new lines + 30% of reused lines

(See Sections 2.2.1 and 6.1.2 for more discussion of developed lines of code.)

Specify which software is to be counted.

It is important to be specific about which software is to be included in the size counts. For
example, it is usually appropriate to exclude throw-away prototypes, test harnesses, and
commercial off-the-shelf (COTS) software from the reported totals.

Component information can provide insight into the overall development characteristics.
Although the total amount of information may be extensive, it should be easy to compile at the
conclusion of the project and can be almost completely retrieved via automated software tools
such as code counters, auditors, or analyzers.

NASA-GB-001-94 48

The Project Completion Statistics Form (see Figure A-7 in Appendix A) is an example of a form
used for collecting project characteristics at the completion of a project. Figure 4-5 summarizes
the life-cycle phases, sources, and frequency for project characteristics data collection.

PROJECT Requirements|Requirements| Preliminary Detailed Coding and System |Acceptance| Operation and
CHARACTERISTICS Definition Analysis Design Design Unit Testing Testing | Testing | Maintenance
Phases: N
Source: Automated tools and managers
Frequency: At the completion of the development phase

Figure 4-5. Project Characteristics Collection Summary

49 NASA-GB-001-94

Chapter 5. Operation of a Measurement Program

Chapter Highlights

DEVELOPMENT AND MAINTENANCE

¢ Providing data
e Participating in studies

TECHNICAL SUPPORT

¢ Collecting data
- Interface with data providers

- Definitions

Storing data and assuring data quality
Summarizing, reporting, and exporting data

ANALYSIS AND PACKAGING

Designing studies
Analyzing data
Packaging the results
Policies and standards
Training
Automated tools
Reports
Updates

51

NASA-GB-001-94

operation. Chapter 3 introduced the three organizational components of a measurement

H aving established a measurement program, the organization must shift its emphasis to

program: development and maintenance, technical support, and analysis and packaging.

After briefly describing mechanisms for collecting project data, this chapter expands on the
operational responsibilities of those three components.

Figure 5-1 illustrates that mechanisms for data collection fall into the three primary categories
listed below. Each category provides a particular type of data and requires a specific interface
between pairs of organizational components.

L.

2.

Printed forms—The forms are designed by the analysis and packaging component,
completed by the development and maintenance component, and submitted directly to the
technical support component. All forms require the submitter to provide identifying
information, such as the project name, the team member’s name, and the date. In addition,
each type of form is designed to provide some of the measures that satisfy the goals of the
measurement program. Some forms request both objective data (directly observed) and
subjective data (based on opinion). All require only short answers or the selection of
options from a checklist. Appendix A includes a sample set of data collection forms used
in the SEL and designed to provide the measurement data stored in the SEL’s historical
database. An organization establishing a measurement program can use these forms as a
starting point in designing its own set of organization-specific forms.

Automated tools—Some data can be collected automatically and unobtrusively by
software tools. For example, code analyzers and compilers can count lines of code;
operating system accounting packages can supply data about processor and tool usage;
and organizational accounting systems can typically report hours of effort by interfacing
with the time card system.

Personal interviews—Some information can be captured only during personal interviews.
Interviews are typically used to obtain subjective information about project status and to
verify preliminary results of data analysis.

Measurement Data

Figure 5-1. Three Data Collection Mechanisms

NASA-GB-001-94 52

Occasionally, there may be other process and product information sources that do not fall neatly
into one of the three categories. For example, personnel often have insights during document or
code reviews. Any information that can be useful within the organization’s measurement
program should be exploited.

Figure 3-1 illustrates the operational relationships among the three components of the
measurement program.

5.1 Development and Maintenance

Personnel whose primary responsibility is developing or maintaining software must not be
burdened with heavy measurement program duties.” The measurement program must be designed
so that it is deemed to be a help, not a hindrance, to development and maintenance personnel.
The operational responsibilities of the development and maintenance component are

e Providing data

e Participating in studies

5.1.1 Providing Data

Project personnel are responsible for completing data forms that should have been designed for
simplicity. At project initiation, the project characteristics (discussed in Chapter 4) are provided
to establish a baseline. Throughout the life of the project, measures must be provided on a regular
schedule, as agreed upon by the analysts and management. Possibly the most important data to be
provided by the development team are the accurate final project statistics (see Figure A-7). These
data are often overlooked in an immature measurement program.

The process for submitting completed forms must be equally simple. Developers and maintainers
must be able to deliver forms to a specified, convenient location or hand them to a designated
individual and then forget about them. A representative of the technical support component will
be responsible for collecting the forms and initiating the data entry process.

Occasionally, developers and maintainers are asked to meet with the analysts. Although vitally
important, these meetings must be brief and well planned so that they do not interfere with
development and delivery schedules. Meetings may be feedback sessions for the purpose of
verifying preliminary data analysis, interviews to gather additional project characteristics data or
subjective information, or training sessions to reinforce the proper use of specific processes being
applied by the developers.

7 In most organizations, the managers of the development organization will continue to be responsible for collecting
and applying certain data needed for ongoing program management activities without impact from the analysts.
Some data collected in support of earned value analysis or planned versus actual budget information, for example,
will continue to be collected and analyzed by managers and their project control support personnel. The role of the
measurement analysts is to provide accurate models and relationships to support those management activities.

53 NASA-GB-001-94

5.1.2 Participating in Studies

The analysts may ask the developers and maintainers to participate in the experimental use of
some process, technique, tool, or model that is not part of the organization’s standard practice.
Such studies sometimes necessitate the use of new forms and typically require that development
and maintenance personnel attend briefings or a training session on using the new process.

Most projects experience little, if any, process change driven by the analysts. For these projects,
training is typically limited to discussions of new forms and new data reporting agreements. For
projects that undergo significant process changes, however, training sessions are important to
ensure that development and maintenance personnel thoroughly understand the new process and
fully agree that the study supports the organizational goals. The study must be a cooperative team
effort: analysts must provide regular feedback of interim results, and developers or maintainers
must contribute their insight regarding the value and relevance of those results.

When development and maintenance personnel participate in such studies, they should always
receive feedback from the analysts. At feedback sessions, developers and maintainers also have
an opportunity to report their impressions of the degree of success derived from the innovation
and to discuss any difficulties experienced in applying the new process.

5.2 Technical Support

The primary operational responsibilities of the technical support personnel are
e (ollecting data
e Storing and quality assuring data

e Summarizing and reporting data

5.2.1 Collecting Data

Satisfactory collection of data by the technical support component depends on a clearly
established interface with the development and maintenance component and on clearly defined
terms and concepts provided by the analysis and packaging component.

Although many organizations put a great deal of effort into automating data collection, many
years of experience have led to the following rule:

Do not expect to automate data collection.

Attempts to automate the data collection process should be limited. Because routine, manual data
collection efforts add an overhead of only 1 to 2 percent (see Reference 18), automation may not
result in a cost saving. In practice, extensive efforts to develop automated tools may actually
increase cost to the total organization. It is more important to ensure that the amount of data is
driven by specific organizational goals (which will also minimize the amount required) and that
the data collection process is well defined and operationally smooth.

NASA-GB-001-94 54

Regardless of the size of the automated data collection effort, it is essential that management
communicate with the developers and maintainers about which parts of the process will be
monitored electronically.

Interface With Data Providers

Technical support personnel must ensure that members of the management and technical staffs
within the development and maintenance component understand their responsibilities with
respect to furnishing the selected project measures. Technical support personnel must also
communicate with the providers of the data to ensure that everyone understands the details of the
collection requirements, for example,

e Which personnel are responsible for collecting and furnishing project measures
e How frequently the collection will occur
e Which portions of the software life cycle will be reflected in the data

e What type of personnel (management, technical, or administrative) will be included in
level-of-effort measurements

Make providing data easy.

Personnel within the technical support component must make furnishing data as painless as
possible for development and maintenance personnel to reduce the chances for aggravation and
resentment on the part of those data providers. Publishing a list of technical support contacts can
make it easy for the data providers to ask questions or deal with measurement problems. Making
it obvious where to deposit the data forms and collecting them promptly to emphasize the
importance of providing the forms on schedule are also useful tactics.

Definitions

To ensure that the data provided are based on a consistent understanding of the measurement
terms and concepts, support personnel must supply concise, clear definitions to the development
and maintenance personnel. It is the responsibility of the analysis and packaging component to
write definitions that are consistent with organizational goals and locally understood ideas;
however, the data collectors are responsible for furnishing the definitions to the data providers.
The importance of focusing locally, rather than adhering to arbitrary industry-wide conventions,
cannot be overemphasized.

55 NASA-GB-001-94

5.2.2 Storing and Quality Assuring Data

The second important responsibility of the technical support component is storage of high-quality
data. For project data to be used effectively in support of the goals of a measurement program,
they must be complete and accurate as defined by QA procedures and readily available.

Data Storage

To be readily available, project data must be stored in an online database. This requirement leads
to the next rule:

Use commercially available tools.

Using a COTS DBMS to support the organization’s measurement program is highly
recommended. The time and effort required to develop custom tools will outweigh their benefits.
A relational DBMS will provide the most appropriate support for data retrieval and analysis
using a variety of table combinations and user views. Spreadsheets, indexed sequential files, and
even networked or hierarchical DBMSs are simply inadequate. See Reference 19 for a detailed
description of a mature measurement database using a commercial DBMS.

Data Quality

The quality of the stored data must also be considered. From the perspective of the support
component, data quality assurance is a two-step process:

1. Verification of source data—Discrepancies must be tracked to the source and corrected.
This step includes checking that the

a. Data forms have been submitted and are complete (i.e., all required values are
provided).

b. Values are of the specified type (e.g., numeric fields do not contain non-numeric
values).

c. Values are within specified ranges (e.g., the number of hours of effort per day per
person is never greater than 24).

d. Values are reported on the prescribed schedule.

2. Verification of data in the database—After the values have been entered into the
database, a second check is performed to verify that the entries match the source value.

An organization with a mature measurement program may be able to use automated tools that
allow developers to enter data directly into the database via online forms, thereby eliminating
paper forms and the manual QA process. Although this approach may seem ideal, experience has
shown that it often leads to unreliable data and that the cost of a manual process is relatively
small.

NASA-GB-001-94 56

Despite the quality assurance steps, the next rule still applies:

Expect measurement data to be flawed, inexact, and inconsistent.

The collection and verification processes are fallible, and some data will be incomplete and
imperfect. In addition to the quality assurance activities performed by the technical support
personnel, the analysts will subsequently have to determine the accuracy and usefulness of the
data by cross-checking, back tracking, and general qualitative analysis.

5.2.3 Summarizing, Reporting, and Exporting Data

Technical support personnel are also responsible for producing and distributing reports and data
summaries to data users in all three measurement program components. Occasionally, they are
also responsible for exporting raw data to external organizations. Reports can be tabular or
graphical, printed or displayed. Summary reports are designed to highlight particular trends or
relationships.

Not all reports are generated by the support personnel, however. High-level data analysis reports,
prepared by the analysis and packaging component, are discussed in the next section. Routine
management reports of project control information remain the responsibility of management.

Many of the raw data and summary reports are generated on a regular schedule. These reports
range from single-project summaries focused on a particular data type to multiple-project roll-ups
that provide high-level statistics in a format compact enough to facilitate project-to-project
comparisons. Support personnel distribute those reports to development and maintenance
personnel to provide feedback on project measures. Analysis and packaging personnel also use
the reports to identify projects and data to be used in studies and model generation.

Figure 5-2 provides an example of a regularly scheduled Project Summary Statistics report,
showing actual data for projects in a NASA organization with a mature measurement program.
The report also contains several questionable entries (e.g., 0.0 hours for support where there
probably should be a positive value) and illustrates the rule that data may be flawed, inexact, or
inconsistent.

The technical support component also generates some of the raw data and summary reports on an
ad hoc basis, as requested by users of the data. Requests for specific data on specific projects
come from both the development and maintenance component and the analysis and packaging
component. Such reports also include low-level data dumps used by support personnel during the
data verification process.

A related responsibility of the support component is preparing measurement data for export to
another organization. Sharing data across domains and interpreting data out of context are
normally not meaningful, as cautioned in the “focus locally” rule. Nevertheless, exporting data to
another organization occasionally makes sense. For example, the organization may intend to use
acquired data to support the establishment of its own measurement program. In addition to

57 NASA-GB-001-94

Project Summary Statistics

9/13/93 07:23:39 Project Criteria : ALL

No. of No. of Extensively Slightly Technical Support

Sub- Compo- Total New Modified Modified 0ld No. of & Mgmt Services
Project Status systems nents SLOC SLOC SLOC SLOC SLOC Changes Hours Hours
PROJECTA INACTIVE 14 132 15500 11800 0 0 3700 2670 17715.0 1774.0
PROJECTB INACTIVE 5 224 16000 14100 0 0 1900 213 5498.0 11.0
PROJECTC INACTIVE 2 175 34902 34902 0 0 0 413 7965.3 0.0
PROJECTD INACTIVE 2 415 41829 40201 450 1044 134 544 32083.4 4407.6
PROJECTE INACTIVE 40 292 50911 45345 0 4673 893 1255 12588.0 1109.0
PROJECTF INACTIVE 20 397 61178 49712 0 10364 1102 221 17039.0 3056.0
PROJECTG INACTIVE 1 76 8547 8041 0 446 60 307 2285.0 0.0
PROJECTH INACTIVE 11 494 81434 70951 0 0 10483 1776 17057.0 1875.0
PROJECTI INACTIVE 11 267 72412 55289 1879 4184 11060 427 13214.6 1365.8
PROJECT.J INACTIVE 14 930 178682 141084 16017 13647 7934 1494 49930.5 4312.9
PROJECTK INACTIVE 4 322 36905 26986 0 7363 2556 412 12005.0 1524.5
PROJECTL INACTIVE 6 244 52817 45825 1342 1156 4494 344 6106.3 0.0
*PROJECTM INACTIVE 0 0 0 0 0 0 0 0 19208.9 3612.5
PROJECTN ACT_DEV 0 0 0 0 0 0 0 0 59.0 0.0
PROJECTO DISCONT Incomplete data for this project
PROJECTP INACTIVE 11 278 26844 24367 0 2477 0 1177 10946.0 967.0
PROJECTQ ACT_DEV 0 0 0 0 0 0 0 0 24662,2 3739.2
PROJECTR INACTIVE 34 392 25731 25510 0 0 221 124 1514.0 0.0
PROJECTS ACT_DEV 0 0 0 0 0 0 0 0 0.0 0.0
* Project data are not final

Figure 5-2. Project Summary Statistics

issuing a caveat about the danger of misinterpretation, support personnel must sanitize the data
before export to preserve the confidentiality of the data providers. Sanitizing the data requires
eliminating names of individuals and substituting generic project names for the mnemonics used
to identify projects within the local environment.

5.3 Analysis and Packaging

Analysis and packaging responsibilities consist of
e Designing studies
e Analyzing project data
e Packaging results

The analysis and packaging component has the heaviest burden within the measurement
program. The analysts must first design measurement studies to collect and analyze project data
in support of the organization’s process improvement goals. Next, they must use the data to
develop and maintain organizational models, such as cost estimation models and error profiles,

NASA-GB-001-94 58

and to determine the impact of new technologies, such as object-oriented design or code reading,
on the organization. Finally, they must provide the derived information to the project
organization in a useful form, such as guidebooks, tools, and training courses. The analysis and
packaging effort should always be transparent to the development and maintenance projects
providing the data. Developers have a right to understand why they are providing the data.
Moreover, a clear understanding of the connection between the data they provide and the models
and guidelines produced by the analysts leads to higher quality project data and a higher degree
of confidence in the resulting products.

By analyzing and packaging measurement data, these personnel support the three reasons for
establishing a measurement program:

1. Understanding—Analysts use routine data from the core measures to build models and
relationships and to characterize the overall software processes and products.

2. Managing—Although the analysts do not play an active role in managing the software
development and maintenance projects, they provide information and models to the
development and maintenance personnel to improve the quality of project management.

3. Guiding improvement—Each project provides the analysts an opportunity to study the
effect of a change and learn something from it. The goals for collecting specific measures
are clearly defined in process study plans. These studies can range in scope from
straightforward validation of the current organizational models to controlled
investigations of the impact of introducing a new methodology. Data from projects with
similar goals are analyzed and synthesized to produce models and to understand the
impact of process changes. Beneficial new technologies and organizational process and
product models are then packaged for use by the projects.

5.3.1 Designing Process Improvement Studies

On the basis of the overall goals of the organization and the characteristics of the individual
projects, the analysts, working with the project leaders, prepare plans that define specific study
goals and specify the data to be collected. Figure 5-3 provides an outline of a process study plan.
In some cases, analysts prepare detailed plans for projects participating in the measurement
program. In most cases, however, no significant changes will be proposed, and the study goals
will be primarily to refine the understanding of the software process or product; routine
measurement data will be sufficient, and no training will be needed. Many of the study plans
will, therefore, be relatively brief, containing simple descriptions of the data to be collected, the
analysis to be performed, and the study goals (e.g., “gain insight into the classes and origins of

Analysts must also prepare higher level organizational plans to coordinate the studies across
projects and to ensure that all high-priority organizational goals are being addressed. They work
closely with the organization’s managers to choose appropriate projects for major studies.

Appendix B includes a sample process study plan. The plan summarizes key characteristics of
the project, specifies study goals, identifies key questions to be answered by analyzing project
data and information, and clearly defines the data to be provided by the project.

59 NASA-GB-001-94

Process Study Plan for
{Project Name}
{Plan Originator Name}
{Date}
1. Project Description
Briefly describe the application and the project team.
2. Key Facts

Briefly state the life-cycle methodology, methods, schedule, project size,
implementation language, and any other important details.

3. Goals of the Study

Explain the goals of this study.

4. Approach

Describe the steps planned to accomplish the goals.
5. Data Collection

Itemize the measurement data and information to be collected during the study.

Figure 5-3. Process Study Plan Outline

A key reason for a study is to assess and guide change. Any change, such as introducing a new
method, tool, or language, may involve an element of risk, so any significant change to a
standard development or maintenance process must be jointly approved by the analysts and the
project manager. When asked by the analysts to introduce evolving technologies on a project, a
manager must consider the risk, use common sense, be cautious, and even refuse the change if
the risk is too great. Nevertheless, process studies are important to every organization, and each
development or maintenance project is expected to add some amount of process information to
the organization’s experience base.

Just as the organization’s high-level measurement plans must relate to its overall goals, a process
study plan for a project (or for a related set of projects) must show a clear connection between the
data being collected and the goals of the study. The sample plan in Appendix B was developed
for an ongoing project within an organization that already had developed a high-level plan. It
includes a high-level description of the approach for analyzing the project information and
defines a study intended to support new organizational goals.

5.3.2 Analyzing Project Data

The analysts continually synthesize data from many projects to gain an understanding of both the
product and process characteristics of the organization. They look for distinguishing project
characteristics that identify subgroups within the organization—for example, all projects using
the Ada language or all projects applying object-oriented requirements analysis and design
methods. That effort results in a baseline set of process and product models for the organization
and may reveal changes (to models and relationships) that are not the result of explicitly
introducing new processes. Baseline analysis is a major effort, and it is a critical prerequisite for

NASA-GB-001-94 60

any analysis or packaging of the results of individual project studies. Experience has shown that
the baseline characteristics change slowly, even with the infusion of new processes. Therefore,
packagers generate new handbooks and guidebooks only every 3 to 5 years.

Analysts also examine individual project data to determine how trends correlate with project
successes and difficulties. They design the content of the high-level analysis reports and work
with technical support personnel to establish the frequency for producing and distributing reports.
These reports generally provide high-level summaries of project characteristics or support
specific study objectives. Figure 5-4 provides an example of a high-level development project
summary report. Figure 5-5 shows a similar report for a maintenance project.

Once the organization’s processes and products have been characterized, the analysts shift their
focus to assessing the impact of change. They compare current project measures with the
organization’s historical models to measure the impact of evolutionary changes introduced by
either explicit changes to the software processes (such as a new method or tool) or external
influences (such as changing the problem complexity). This analysis results in updated process,
product, or management models.

Analysts also focus on determining the impact of new technologies and approaches introduced in
major experiments. They compare experimental data with the historical baseline models to assess
success or failure. Often the result indicates a guarded success, suggesting that continued study is
needed to refine the technique and confirm success.

Figure 5-6 shows the results of a study designed to determine the impact on the distribution of
effort across software activities and life-cycle phases when the Ada programming language was
introduced into an organization that had previously relied on FORTRAN. After the organization
had gained the experience of using Ada on nine projects, the models stabilized as shown in the
figure (see Reference 10).

Although analysts use objective measurement extensively, they also depend heavily on subjective
information gathered directly from project personnel and recorded in project history reports to
help interpret the data. Each project has a unique set of drivers and circumstances that must be
considered when interpreting the data. Chapter 6 addresses the analysis, application, and
feedback of measurement information in more detail.

5.3.3 Packaging the Results

As analysts gain greater insight into the characteristics of the current software development and
maintenance environment and the impacts of specific software methodologies on that
environment, they must infuse that understanding back into the development organization,
packaging the appropriate software practices for the problem domain in well-founded standards
and policies so that they can be applied on ensuing projects. Packaging entails generating the
following items:

e Software management policies and guidelines

e Software development and maintenance standards

61 NASA-GB-001-94

Data Summary for Project X
CHARACTERISTICS PHASE DATES LINES OF CODE DERIVED MEASURES
Project name: X Requirements: no date Developed: 73,047 Productivity (SLOC/hour): 4.283
Primary language: Ada Design: 10/26/87 Delivered: 81,434 Productivity (DLOC/hour): 4.774
Current phase: Inactive Implementation: 01/27/88 New: 70,951 Reliability (errors/KDLOC): 4.642
Development computer: VAX System test: 01/05/89 Reused: 10,483 Change rate (changes/KDLOC): 8.277
Components: 494 Acceptance test: 10/03/89 Modified: 0 CPU run rate (runs/KDLOC): 218.4
Changes: 674 Maintenance: 12/15/89 CPU use rate (CPU hours/KDLOC): 0.768
Errors: 378
Total effort: 17,057 hours
Staffing Profile Effort by Calendar Phase
H105II’$
Acceptance
Test
6%
Design
System Test 29%
24%
5/1/87 10/1/87 3/1/88 8/1/88 1/1/89 6/1/89 11/1/89 Code/Test
‘ech/Mgmt Services 41%
Change History Effort by Activity
1,000
800+ p
i s Other Design
5001 T 25% 27%
4004
i \:
200 // \\\\\
T T T T T TT /)ﬁ/ﬁ;T’llllllllllll| Test k\ Code
5/1/87 10/1/87 3/1/88 8/1/88 1/1'/89 6/1/89 1111189 28% . 20%
Number of Changes
Number of Versions in Controlled Library
Number of Errors
Error Source Error Class
) Computation PRT—.
Previous Requirements 13% Imtla:%?/tlon
Change g, 3% Functional °
Specifications
N 9%
D1<-:‘5s.°|/gn Data Logic/C?ntroI
° 32% 23%

Code
65%

Internal Interface
External Interface 13%

6%

NASA-GB-001-94

Figure 5-4. High-Level Development Project Summary Report

62

- —

99999
888888

//////
333333
SAN9O9
000000
111111

......
5 BHad
SHEge

7]
S.w.mmmpm

.....
44444

.

.

.......
A\ © © < o
N
~ I

NASA-GB-001-94

Acceptance
Test 20%

Design
23%

21%

Desig n Other
30% 26%

12 FORTRAN
Projects Over

TVears | Sysem ogjf/[est 30%

oth Design
Design 350? 19%
32%

Code
16%

System

29% 35%
Effort Distribution by Phase Effort Distribution by Activity
(Determined by Date) (Determined by Programmer Reports)

Figure 5-6. Impact of Ada on Effort Distribution

e Software training
e Tools and automated aids
e Reports of process studies

e Updates of packaged materials

Software Management Policies and Guidelines

Much of the information that has been collected and synthesized by the analysis component is fed
back into the organization in the form of models, planning aids, and guidelines. When packaged
into well-designed policies and guidebooks, this information can improve a manager’s ability to
plan a software project, monitor its progress, and ensure the quality of its products.

Management policies and guidelines provide the local scheduling, staffing, and cost estimation
models that are needed for initial project planning as well as for re-estimation during the life of
the project. NASA’s Manager’s Handbook for Software Development (Reference 10) contains
guidelines and examples for using numerous models, such as

e Relationships relating effort to system size
e Effort and schedule distributions by phase
e Staffing profiles

e Productivity relationships

The key models used for gauging project progress and quality are organized and packaged
together, preferably with the planning models, in a single reference source. Typical progress

NASA-GB-001-94 64

models include local profiles of software growth, computer use, and test completion. Quality
models include error rates, reported and corrected software discrepancies, and software change
rates. Figure 5-7 shows an example of an error rate model used to predict and track errors
throughout the life cycle. The model was calibrated by measuring the error characteristics of over
25 projects with more than 5,000 errors reported. It depicts the typical rate of finding errors in
code (four errors per KSLOC), during the system test phase (two errors per KSLOC), and during
acceptance testing (one error per KSLOC), a reduction of 50 percent in each subsequent phase.
Because no data were collected during the design phase, the error rate is zero. The variation was
also computed, as shown in the figure. An actual error rate above the bounds of the model may
be the result of misinterpreted requirements or may be caused by highly unreliable or complex
software. An actual rate below the bounds may be the result of particularly well-built software, a
relatively simple problem, or inadequate testing.

Every organization can and should produce a document containing the complete set of models,
relationships, and management guidelines used within the organization. (See Reference 8 for an
example of such a document.)

System Acceptance
Design Code/Test Test Test

|
Expected Range

6 — Historical Norm ==

Cumulative Errors per KSLOC
N

Schedule

Figure 5-7. Sample Error Rate Model

Software Development and Maintenance Standards

In a mature measurement program, standards for software development and maintenance address
each phase of the software life cycle, covering the entire range of technical activities. These
standards define the products, methods, tools, data collection procedures, and certification
criteria that have been identified as beneficial to the organization. Separate, detailed standards
characterize programming practices unique to the local environment or to a specific development

65 NASA-GB-001-94

language; they also address specialized techniques, such as the Cleanroom method or object-
oriented design.

The most useful, high-quality software engineering standards are derived from the practices of
the organization for which they are intended; that is, they are measurement driven. A standard
requiring the use of processes that are incompatible with the organization’s development and
maintenance methodology cannot be successful.

Software Training

The organization’s goals, environment, and measured experiences must drive the planning and
execution of the training curriculum. Courses reflect the understanding of the characteristics of
the local environment, and each course must respond to a specific need.

Training becomes essential when new technologies, standards, tools, or processes are infused
into the software engineering environment. Personnel are more likely to accept a new approach
when it has been introduced in well-organized stages within the interactive setting of a training
course.

Training must be provided first to those who are participating in an experiment with a new
technology and then to a wider audience as soon as the technology has been adopted for general
use within the organization. A training program should also include courses that introduce new
personnel to the software development and maintenance environment.

Tools and Automated Aids

Packaging personnel also build tools and other automated aids to facilitate software management,
development, maintenance, or data collection processes. Such tools include

e Cost estimation aids based on local models
e Management aids that compare actual measured values with baseline estimates

e Design aids that are driven by experimental results indicating beneficial design
approaches

In addition, more sophisticated tools may use the organization’s extensive historical information
for managing and for analysis. An example of such a tool is the Software Management
Environment (SME) (Reference 20). It encapsulates experience (i.e., data, research results, and
management knowledge) gained from past development projects in a practical tool designed to
assist current software development managers in their day-to-day management and planning
activities. The SME provides integrated graphical features that enable a manager to predict
characteristics such as milestones, cost, and reliability; track software project parameters;
compare the values of the parameters to past projects; analyze the differences between current
and expected development patterns within the environment; and assess the overall quality of the
project’s development progress. Figure 5-8 illustrates the architecture and typical uses of such a
tool.

NASA-GB-001-94 66

—

SEL Database

® Past project data [
® Product estimates

 e—

Current Data ’
* Project charac- —> SME
teristics
* Project error data >
Models and
Measures
® Profiles of past || Rule Base
performance * Rules of software
¢ Definitions of key development
parameters ® Problem and
¢ Models and rela- project charac-
tionships teristics
* Rules for eval-
uating quality
_—/

System Size

Errors per KSLOC

?

Estimated Final
System Size

Current_Size

1 1 1 |
Code/Test

System Test Acceptance Test

Estimated Final
\ Error Rate

Current Error
7 ,Rate |

CodefTest System Test
Time

|
Acceptance Test

ANALYZE .
= Current Project .

Y Model

" Errors below normal
because of
® Insufficient testing
® Experienced team
® Problem less difficult
than expected

End Estimated

Number of Errors

Code/Test

ASSESS project Assessment

Above \\
Normal , \
Below \ % %

Reliability Maintainability ~ Quality

Figure 5-8. SME Architecture and Use

Reports of Process Studies

For each process study, analysts prepare one or more reports that address the goal, the methods
employed, the results measured, and the conclusions drawn. Interim reports document partial
results during lengthy or ongoing studies, and final reports are prepared immediately after the

study is completed.

NASA-GB-001-94

Final reports are vital sources of information when the time comes to integrate study
recommendations with other standard practices before packaging them as policies, guidebooks,
courses, or tools. An organization may, therefore, find it helpful to collect all study reports
produced within a year into a single annual reference volume.

Some organizations repackage study reports for distribution outside the local environment as
conference papers and presentations, thus gaining valuable feedback by subjecting the results to
peer review. Such scrutiny can offer comparisons, suggest other interpretations or conclusions,
and help improve the data collection procedures and analytical methods employed by the
organization.

Updates of Packaged Materials

All packaged materials—policies, standards, course materials, tools, and study reports—must be
maintained in an organizational repository. Together with the information in the measurement
database, the repository of packaged materials functions as the memory of the organization. It is
essential that the contents of the library be catalogued and that the catalog be kept up-to-date as
new material is added. In the SEL, for example, a bibliography containing abstracts of all SEL
documents is revised and republished annually.

The analysis and packaging component also updates guidebooks, training courses, policies, and
tools on a regular basis to keep the organization abreast of current software engineering practices.

NASA-GB-001-94 68

Chapter 6. Analysis, Application, and Feedback

Chapter Highlights

UNDERSTANDING

Software attributes
Cost characteristics
Error characteristics
Project dynamics

t3serryeed

MANAGING

e Planning
o Assessing progress
e Evaluating processes

o
P
Pl
w4
o
P
A
Py
»
»

GUIDING IMPROVEMENT

— e Measuring process impact
. e Adapting process to local environment
¢ Eliminating processes with little value

processes and models on the basis of
now experiences

ASSESSING

* Establish baselines
+ Extract and dofine processes
* Buld motels

69 NASA-GB-001-94

Software measurement programs must focus on the use of data rather than on their

collection. Thus, the approach to using measurement data must be clearly defined, and
the data must be analyzed and packaged in a suitable form. The effective use of measurement
data is an outgrowth of the planning exercise that establishes the organization’s goals, which
drive the measurement activities.

T his chapter describes specific approaches for using measurement information effectively.

The following sections address the analysis, application, and feedback of measurement
information in the context of the three key reasons for establishing a measurement program, as
discussed in Chapter 2:

1. Understanding
2. Managing
3. Guiding improvement

Examples drawn from experiences within NASA illustrate the important points. Because each
organization’s measurement goals may differ, the examples presented here may not relate
directly to the needs of other organizations.

6.1 Understanding

The first reason for measurement—understanding—includes generating models of software
engineering processes and the relationships among the process parameters. As an organization
builds more models and relationships and refines them to improve their accuracy and reliability,
its personnel develop more insight into the characteristics of the software processes and products.

True understanding requires qualitative analysis of objective and subjective measurement
information, including examination for accuracy and checks for flawed, missing, or inconsistent
data values. If used properly, subjective information is as valuable as objective counts. Unlike
objective data, which are used in statistical analysis, subjective information reflects the
experience of managers and developers within the organization’s local environment. The
resulting models and relationships, whether derived from objective or subjective information, are
relevant only within the local environment.

The understanding process includes the following major measurement applications:
e Software attributes
e Cost characteristics
e FError characteristics
e Project dynamics

Increased understanding provides the foundation for building models and relationships and for
developing the key information required for managing subsequent software development efforts.

The examples in this section depict various measurement applications that have proven beneficial
to experienced measurement organizations. All of the models can be developed from the core
measures described in Chapter 4. The example descriptions are by no means exhaustive. Finding
the answers to the questions posed in Table 6-1 is an essential activity in applying measurement.

NASA-GB-001-94 70

Basili’s Goal/Question/Metric paradigm (References 23 and 24) provides the framework to relate
the questions in Table 6-1 (and Table 6-5) to the goals and measures addressed in the examples
that appear throughout the rest of the chapter. Any software organization will benefit from
analyzing the fundamental information shown in these examples.

Table 6-1. Questions Leading to Understanding

Measurement
Application Understanding Examples
Software What languages are used, and how is the use evolving? 1
Attributes What are the system sizes, reuse levels, and module profiles? 2
Cost What is the typical cost to develop my software? 3
Characteristics | what percentages of my software resources are consumed in the 4

various life-cycle phases and activities?

How much is spent on maintenance, QA, CM, management, and 5
documentation?
Error What are the error rates during development and maintenance? 6
Characteristics | what types of errors are most prevalent? 7
How do size and complexity affect error rates? 8
Project What is the expected rate of requirements changes during 9

How fast does code grow during development, and how fast does it
change?

6.1.1 Software Attributes

Information about software attributes is easy to record and use but is too often overlooked. At a
minimum, organizations should record the sizes, dates, and languages used on every project.
Those basic characteristics are necessary for developing cost models, planning aids, and general
management principles. Table 6-2 shows a subset of the actual data used in calculating the
information shown in the examples that follow. For a more complete listing of the data, see
Reference 9.

Example 1:
Language Evolution

Goal: Determine the language usage trend.

Measures needed: Project dates, sizes, and languages.
(See Sections 4.3 and 4.5.)

71 NASA-GB-001-94

Table 6-2. Software Attribute Data

Development New Reused Effort

Project Language Period SLOC SLOC (Hours)
ISEEB FORTRAN 10/76-09/77 43,955 11,282 15,262
SEASAT FORTRAN 04/77-04/78 49,316 26,077 14,508
DEA FORTRAN 09/79-086/81 45,004 22,321 19,475
ERBS FORTRAN 05/82-04/84 137,739 21,402 49,476
GROAGSS FORTRAN 08/85-03/89 204,151 32,242 54,755
GROSIM FORTRAN 08/85-08/87 31,775 7,175 1,146
COBSIM FORTRAN 01/86-08/87 47,167 5,650 49,931
GOADA Ada 06/87-04/90 122,303 48,799 28,056
GOFOR FORTRAN 06/87-09/89 25,042 12,001 12,804
GOESAGGS FORTRAN 08/87-11/89 113,211 15,648 37,806
GOESIM Ada 09/87-07/89 65,567 26,528 13,658
UARSAGSS FORTRAN 11/87-09/90 269,722 33,404 89,514
ACME FORTRAN 01/88-09/90 34,902 0 7,965
UARSTELS Ada 02/88-12/89 44,441 23,707 11,526
EUVEAGSS FORTRAN 10/88-09/90 55,149 193,860 21,658
EUVETELS Ada 10/88-05/90 2,532 64,164 4,727
EUVEDSIM Ada 10/88-09/90 57,107 126,910 20,775
SAMPEXTS Ada 03/90-03/91 3,301 58,146 2,516
SAMPEX FORTRAN 03/90-11/91 12,221 142,288 4,598
SAMPEXTP FORTRAN 03/90-11/91 17,819 1,813 6,772
POWITS Ada 03/90-05/92 20,954 47,153 11,695
TOMSTELS Ada 04/92-09/93 1,768 50,527 6,915
FASTELS Ada 08/92-10/93 5,306 59,417 7,874
FASTAGSS FORTRAN 08/92-04/94 21,750 125,405 7,550
TOMSEP FORTRAN 05/93-04/94 24,000 180,300 12,850

NASA-GB-001-94 72

Language Usage Trend

Data recorded at NASA to track language usage on projects have provided insight into the
trends within the organization and have led to better planning for programmer training.
Figure 6-1 compares the language usage on projects completed before 1992 (and currently
in maintenance) with those in development after 1992 (see Reference 21).8

GSFC Software

C/IC++ Other
11% >10%
Ada
10%

Other
26%

C/C++

0,
Ada 45%

<1%
FORTRAN \
<35%

Currently Under Maintenance Currently in Development

Figure 6-1. Language Usage Trend

Example 2:
Product Profiles

Goal: Determine the levels and trends of code reuse in projects.

Measures needed: Project dates, sizes, and percentages of reuse.
Total effort on each project.
(See Section 4.5.)

The characteristics of the source code itself can provide useful information about
software projects. Too often this basic information, which is required to develop effective
cost and planning models, is neither archived nor used effectively. Relatively simple
historical models can be useful for managing and guiding improvements on projects. The
information includes the typical size of projects and components; profiles of source code
distributions among commentary, data definitions, and executable code; and resultant
code reuse models.

8 The percentages shown in the figure are derived from data collected from over 75 projects covering a span of 10
years. Table 6-2 represents only a small sample of those data.

73 NASA-GB-001-94

Code Reuse Trend

Figure 6-2 shows trends derived from 11 FORTRAN and 8 Ada projects. The models
were initially produced in 1989 for the early projects; more recent projects reflect a
significantly higher percentage of reuse.

The basic source code information is needed not only for tracking changes in the code
reuse level over time but, more importantly, for determining essential cost models for the
local environment. The following section discusses how to derive cost-impact models of
reuse.

SAMPEX

100
90 4
80
70
60 +
50
40 1
30
20 1
10

92%

TOMSAGSS

EUVEAGSS
FASTAGSS
83%

76%

67% average
78%

32%
GOFOR

16% average

14%

GROAGSS
18%
GROSIM

11%
COBSIM
12%
GOESAGSS
11%
UARSAGSS
SAMPEXTP

9%

Percentage of Code Reuse

J‘
£l

Early FORTRAN FORTRAN Projects
Baseline (1986-1988) Since 1989

EUVETELS
95%
SAMPEXTS

97%
TOMSTELS
92%
FASTELS

100 -
90
80
70
60
50
40

86% average
96%

6%%
EUVEDSIM
6%%
POWITS

32% average
UARSTELS

35%

Percentage of Code Reuse

Early Ada Ada Projects
Baseline (1986-1988) Since 1989

Figure 6-2. Code Reuse Trend

NASA-GB-001-94 74

6.1.2 Cost Characteristics

Software cost characteristics are probably the most important set of attributes that contribute to
an understanding of software. Cost characteristics include productivity, cost of phases, cost of
activities, cost of changes, and many other attributes required for managing, planning, and
monitoring software development and maintenance.

Example 3:
Cost Versus Size

Goals: Evaluate the cost of reusing code.

Determine the cost of producing code in the organization.

Measures needed: Project size, dates, reuse, and effort data.
(See Section 4.5.)

Cost of Reusing Code

Simple measures can be used to derive a local model for the cost of producing software.
One major factor that must be analyzed is the impact of code reuse on cost. Borrowing
code written for an earlier software project and adapting it for the current project usually
requires less effort than writing entirely new code. Testing reused code also typically
requires less effort, because most software errors in reused code have already been
eliminated. Software projects using a significant amount of reused code usually require
less overall effort than do projects with all code written from scratch.

Chapter 2 introduced the following relationship among the values of effort (cost of
personnel), DLOC, and productivity:

Effort (in hours) = DLOC / Productivity

where

DLOC = New SLOC + Reuse Cost Factor x Reused SLOC

The reuse cost factor is a weighting factor applied to reused source code. Several
simplifying assumptions can be made to compute an approximate value for this factor.
The most significant assumption is that all similar projects reflect approximately the same
productivity; hence, the only variable is the cost of reuse. In this case, the similarity of the
projects comes from their having been developed within the same environment and in the
same language (FORTRAN). Although numerous other factors affect the cost of
development, it is best to apply simple measures to arrive at an approximation before
attempting detailed analysis of more complex factors.

75 NASA-GB-001-94

Points derived from values in Table 6-2 can be plotted to illustrate the relationship
between lines of code per hour and the reuse percentage as shown in Figure 6-3.
Assuming that productivity (DLOC/Effort) is constant, the straight line fit to the DLOC
points indicates that 20 percent is a reasonable approximation for the reuse cost factor for
FORTRAN.

20

15 O Total Source Lines o

¢ Developed Source Lines

104 (20% Reuse Cost Factor)

Productivity (Lines per Hour)

0 20 40 60 80 100

% Reuse

Figure 6-3. Derivation of 20 Percent Reuse Cost Factor for FORTRAN

Figure 6-4 shows a slightly different approach for Ada language projects. Analysts within
the same environment studied size, effort, and reuse data from five projects developed
between 1987 and 1990 to derive the Ada reuse cost factor. Attempting to produce a
constant productivity value, they computed the productivity as DLOC per hour for each of
the five projects while varying the reuse cost factors. In this case, the 30 percent factor
resulted in the lowest standard deviation for the computed productivity values and was
adopted for this organization.

Every organization can develop its own reuse cost factor with the simple measures listed
in Table 6-2.

Cost of Producing Code

One of the most basic aspects of software engineering understanding is the ability to
model the cost of a system on the basis of size or functionality. Section 2.2 discussed the
basic estimation models, relating cost to software size, which have proven useful in one
environment. Those models were derived by analyzing data from over 100 projects
spanning many years and by making careful decisions about which projects to include in
the baseline model and which to exclude. Organizations just starting to apply
measurement should begin to establish cost models with their own data.

NASA-GB-001-94 76

Reuse Cost Factor (Standard Deviation)

6 020% (0.655)
E25% (0.474)
5 W 30% (0.348)

DLOC per Hour
w

GOADA GOESIM UARSTELS EUVETELS EUVEDSIM

Figure 6-4. Derivation of 30 Percent Reuse Cost Factor for Ada

Example 4:
Effort Distribution

Goals: Determine the relative cost of each life-cycle phase.

Determine the characteristics of staffing profiles.

Measures needed: Project phase dates, effort data, and developer activity data.
(See Sections 4.1 and 4.5.)

Cost of Life-Cycle Phases
An effort distribution can be modeled in two ways:

1. By phase, to determine which phases of the life cycle consume what portion of the
total effort

2. By activity, to determine what portion of effort is spent performing each defined
software engineering activity

Figure 6-5 shows those two distributions of effort for the same set of development
projects. The model of effort by life-cycle phase represents hours charged to a particular
project during each phase as determined by the beginning and ending dates of the phases.
The model of effort by activity represents all hours attributed to a particular activity,
regardless of when in the life cycle it occurred. The four activities (design, code, test, and
other) are determined by local process definitions. The “other” category includes

717 NASA-GB-001-94

supporting efforts such as managing, training, attending

meetings, and preparing

documentation.
FORTRAN Projects
Acceptance . Other Design
Test 20% D" 26% 23%

System
Test 16% Test
] 30%
Code/UnitTest

34%

Effort Distribution by Phase
(Date Dependent)

Effort Distribution by Activity
(Not Date Dependent)

Figure 6-5. Effort Distribution Model

Staffing Profiles

Another use of effort data is to model the baseline staffing profile that reflects the
development environment and the type of problem. In the SEL environment, where a
substantial portion of the detailed requirements is not known until mid-implementation,

the expected model resembles a doubly convex curve instead

of the traditional, widely

used Rayleigh curve (see Figure 6-6). The cause of this trend is not well understood, but it
occurs repeatedly on flight dynamics projects in that environment. It is valuable for each
software organization to produce its own staffing profile rather than to rely on a generic
model that may have no relevance to the actual processes used at the local level.

System
Test

Acceptance

Code/Test Test

Design

Rayleigh Curve

Effort

Expected SEL Profile

Time

Figure 6-6. Staffing Profile Model

NASA-GB-001-94 78

Example 5:
Cost of Major Activities

Goual: Build models of the cost of maintenance and other major
activities, such as documentation and quality assurance.

Measures needed: Developer activity data, effort, and software size.
(See Sections 4.1 and 4.5.)

Cost of Maintenance

Software maintenance includes three types of activities occurring after the system is
delivered:

1. Correcting defects found during operational use
2. Making enhancements that improve or increase functionality

3. Adapting the software to changes in the operational environment, such as a new
operating system or compiler

The SEL environment has two major types of systems under maintenance: multiple-
mission systems, which support many spacecraft and have a software lifetime of from 10
to 30 years, and single-mission support systems, which run as long as the spacecraft are
operational, typically from 2 to 7 years. Both types of systems are written primarily in
FORTRAN on mainframes and are roughly the same magnitude in size (100-250
KSLOC). A large percentage of the maintenance effort is spent enhancing the system by
modifying and recertifying existing components. SEL. maintenance personnel add few
new components and produce little new documentation. Average annual maintenance cost
ranges from 1 to 23 percent of the total development cost of the original system.
Table 6-3 includes analysis of representative data from several SEL systems under
maintenance for at least 3 years. Some of the values are not available and some are
questionable; nevertheless, analysis provides useful insights into the cost of maintenance.

On the basis of the above analysis, and in consideration of the high variation among
systems, the SEL uses the conservative approach shown in Table 6-4 when estimating
maintenance costs.

A general model of the overall cost of the development and maintenance of software can
be of significant value for identifying more detailed breakdowns of cost by key activities.
The data from projects depicted in Table 6-2 are used to determine the cost of several key
activities.

79 NASA-GB-001-94

Table 6-3. Analysis of Maintenance Effort Data

Yearly Maintenance Effort

Size Development History (Hours) % Effort
System Type | (SLOC) | Effort (Hours) 1st 2nd 3rd | Average per Year
COBEAGSS S 178,682 49,931 57 0 0 19 0.04
GROAGSS S 236,393 54,755 496 370 370 412 1
GOESAGSS S 128,859 13,658 607 159 950 572 4
EUVEAGSS S 249,009 21,658 757 358 410 508 2
DCDR M 75,894 28,419 n/a | 4,000 | 4,000 4,000 5
ADG M 113,455 45,890 n/a | 6,000 | 6,000 6,000 13
CFE M 98,021 30,452 n/a | 2,000 | 2,000 2,000 2

NOTE: S = single mission system.
M = multiple mission system.

Table 6-4. Basis of Maintenance Costs Estimates

Estimated Annual Maintenance
Cost as a Percentage of Total

Project Type System Development Cost
Single-mission systems 5%
Multiple-mission systems 15%

Costs of Documentation, Quality Assurance, and Configuration Management

The costs of support activities such as documentation, QA, and CM are determined from
the development activity measures combined with the basic time reporting from the
support organizations. These data are easy to collect in most software organizations.
Figure 6-7 shows the data collected from one large NASA organization. A basic
understanding of the cost of these activities is essential so that any change or attempt to
plan for these efforts can be based on a solid foundation.

6.1.3 Error Characteristics

Understanding the characteristics of errors in the software products is just as important as
understanding the cost of producing and maintaining software. The nature of software errors
includes the error frequency, the cost of locating and removing errors, the severity of the errors,
the most common causes of errors, and the processes most effective in identifying or preventing
errors.

NASA-GB-001-94 80

QA
4%

CM
5%

Documentation
11%

Management
10%

Requirements

Analysis, Design,

Code, Test
70%

Figure 6-7. Typical Allocation of Software Project Resources

Example 6:
Error Rates

Goals: Determine the average rate of uncovering errors.
Determine which life-cycle phases yield the most errors.

Compute the error rate in delivered software.

Measures needed: Project size, phase dates, and reported errors.
(See Sections 4.2 and 4.5.)

Error Rates by Phase

Figure 6-8 illustrates a model of the number of reported errors (normalized by the product
size) over the various phases of the life cycle. This model combines product and process
data and provides two types of information.

The first type is the absolute error rate expected in each phase. The rates shown here are
based on SEL development projects from the mid-1980s. The model predicts about four
errors per KSLOC during implementation, two during system testing, one during
acceptance testing, and one-half during operation and maintenance. Those error rates by
phase yield an overall average rate of seven errors per KSLOC during development. An
analysis of more recent projects indicates that error rates are declining as improvements
are made in the software process and technology.

81 NASA-GB-001-94

6
X

54 X
Q
o 41T—x X
7
< X X
& 3+
o
4
< 9=
ey A
i} X X

x X X
i X
1 X X I X X X
A A
1 1 1
Code/Test System Test Acceptance Test Operations

Figure 6-8. Error Detection Rate by Phase

The second piece of information is that error detection rates are halved in each
subsequent phase. In the SEL, this trend seems to be independent of the actual rate
values, because the 50 percent reduction by phase is holding true even as recent error
rates have declined.

Example 7:
Error Classes

Goal: Determine what types of errors occur most often.

Measures needed: Reported error information.
(See Section 4.2.)

Types of Errors

Figure 6-9 depicts two models of error class distribution. The model on the left shows the
distribution of errors among five classes for a sample of projects implemented in
FORTRAN. A manager can use such a model (introduced in Section 2.2.1) to help focus
attention where it is most needed during reviews and inspections. In addition, this type of
baseline can show which profiles seem to be consistent across differing project
characteristics, such as in the choice of development language.

The model on the right shows the distribution across the same classes of errors for Ada
projects in the same environment. Contrary to expectation, there is little difference in the
error class profiles between the FORTRAN and Ada development efforts. One possible
interpretation of this result is that the organization’s overall life-cycle methodology and
the experience of the people in that environment are stronger influences on process
profiles than any one specific technology.

NASA-GB-001-94 82

8 FORTRAN Projects 5 Ada Projects

Computational Initialization Computational Initialization
15% 15%

15% 15%

Logic/Control ™
16% N Logic/Control

22%
Data

31%

Interfaces Interfaces
24% 17%

Figure 6-9. Comparative Error Class Distributions

Example 8:
Errors Versus Size and Complexity

Goals: Determine if error rates increase as module size increases.

Determine if error rates increase as module complexity
increases.

Measures needed: Error reports by module, module size, and module
complexity.

(See Sections 4.2 and 4.5.)

Many measures proposed in the literature attempt to model errors or effort as some
function of program or design complexity. Two of the most prevalent sets are Halstead’s
software science measures and McCabe’s cyclomatic complexity number. A 1983 SEL
study (see Reference 22) examined the relative effectiveness of those measures and
simpler software size measures (SLOC) in identifying error-prone modules. A linear
analysis of various scatter plots using 412 modules failed to support the commonly held
belief that larger or more complex systems have higher error rates.

Figure 6-10 shows that error rates actually decreased as both size and complexity
increased for the large sample set in this environment.? However, more extensive analysis
revealed that this unexpected trend occurred for only the limited set of modules used in
the earlier study. When the sample size was increased, the trend reversed, suggesting that
it is wise to be cautious of drawing conclusions from limited analysis.

9 Module complexity can be derived from an analysis of completed software.

83 NASA-GB-001-94

0.0600 0.0600

0.0525 — 0.0525 -
QO 0.0450 — O 0.0450
o] o]
— —
M 0.0375 M 0.0375
S S
[[
2 0.0300 - 2 0.0300 —
2 2
2 0.0225 2 0.0225 -
L L

0.0150 — 0.0150 —

0.0075 — e T 0.0075 —

T T T T T T T | | | |
15 45 75 105 135 165 195 100 300 500 700 900 1100 1300
McCabe Complexity SLOC

Figure 6-10. Cyclomatic Complexity and SLOC as Indicators of Errors (Preliminary Analysis)

6.1.4 Project Dynamics
An analysis of project dynamics data can give managers useful insight into changes to

requirements, to controlled components, and in the estimates to completion.

Example 9:
Growth Rate Dynamics

Goal: Derive a model that characterizes the local rate of code
production.

Measures needed: Phase dates and weekly count of completed code.

(See Section 4.4.)

The growth rate of the source code in the configuration-controlled library closely reflects
the completeness of the requirements product and some aspects of the software process.
In the SEL environment, periods of sharp growth in SLOC are separated by periods of
more moderate growth, as shown in Figure 6-11. This phenomenon reflects the SEL
approach of implementing systems in multiple builds. The model also shows that, in
response to requirements changes, 10 percent of the code is typically produced after the
start of system testing. The uncertainty band highlights the typical variation expected with
this model.

NASA-GB-001-94 84

System | Acceptance
Design Code/Test Test Test

100

90

80—

70+

60—

50—

% of Total LOC

40

30+

20—

104

o o — — ——— —— — — — —— ——

T < I L
10 20 30 40 50 60 70

% of Schedule

OO0 b e e e e —— ——— — —— ————

Figure 6-11. Growth Rate Model

6.2 Managing

The management activities of planning, estimating, tracking, and validating models, introduced
in Section 2.2, all require insight into the characteristics of the organization’s software
engineering environment and processes. Measurement data extracted during the development and
maintenance phases will provide quantitative insight into whether a project is progressing as
expected.

An analysis of the following types of measurement information can lead to better management
decision making:

Planned versus actual values. Tracking ongoing progress requires not only the actual data
but also planning data based on estimates from local models. Candidates for such analysis
include effort, errors, software changes, software size, and software growth.

Convergence of estimates. A manager should expect to revise estimates periodically. The
frequency of revisions can be based on the pattern of the data being tracked. If the actuals
are deviating from the current plan, more frequent updates are needed. The successive
estimates themselves should eventually converge and not vary wildly from one estimate
to another.

Error history and classes of errors. An analysis of error data can pinpoint problems in the
quality of development or maintenance processes. Possible focus areas include design or
code inspections, training, and requirements management. Data from relatively few
projects can be effectively used in this manner.

85 NASA-GB-001-94

An effective measurement program enhances management activities:

e Planning. Historical information, along with estimates of the current project, enable the

manager to prepare schedules, budgets, and implementation strategies.

e Assessing progress. Measures indicate whether projected schedules, cost, and quality will

be met and also show whether changes are required.

e Evaluating processes. The manager needs insight into whether a selected software
engineering process is being applied correctly and how it is manifested in the final

product.

Using the information gained from tracking software measures, managers have numerous options
for addressing possible progress or quality problems. Those options include adjusting staff,
adding resources, changing processes, replanning, and enforcing a process, among others. Table
6-5 lists the examples presented in this section, which are derived from actual data on NASA

software projects.

Table 6-5. Questions Supporting Management Activities

Measurement]
Application Managing Examples

Planning What is my basis for estimating cost, schedule, and effort? 10
What is my basis for projecting code growth and change? What is 11
my organizations model of expected error rate?

Assessing Is my project development proceeding as expected? 12

Progress How stable are the requirements and design? 13
Is my original staffing estimate on track? 14
Are we correcting defects faster than they are detected? When will 15
testing be complete?
Are we producing high-quality and reliable software? 16

Evaluating Are our standard processes being applied properly? Are they having 17

Processes the expected effects?

6.2.1 Planning

A software manager’s major responsibilities include effective planning at the start of a project.
The manager must estimate cost, schedules, and effort; define the processes; and initiate a
mechanism for tracking against the plan. The major application of measurement information for
the planning phase is to make use of the derived models, relationships, and insights gained from

measurement understanding efforts.

NASA-GB-001-94 86

Example 10:
Projected Cost, Scheduling, and Phases

Goal: Estimate cost, schedule, effort, and errors.

Measures needed: Project size estimate, models, and relationships.
(See Sections 2.2, 6.1.2, and 6.1.3.)

Although estimating the size of a new project is not easy, most organizations have an
approach for producing a reasonable size estimate in SLOC. Once that size estimate has
been calculated, the derived models for cost, schedule, effort, and other project
characteristics can be used in the planning phase. The models described in Section 6.1 are
used to derive more detailed estimates of a project based on the size estimate. The
following example depicts the planning for an AGSS project whose initial size estimate is
150 KSLOC of FORTRAN code, of which 90 KSLOC is estimated to be new and 60
KSLOC is estimated to be reused from other systems.

The manager computes DLOC as

DLOC = New SLOC+ (Reuse Cost Factor x Reused SLOC)
= 90K + (0.2 x 60K)
=102K
Using a productivity rate of 3.2 DLOC per hour (see Chapter 2)
Effort = DLOC / Productivity
=102 KDLOC / (3.2 DLOC per hour)
= 31,875 hours
=206 months
The manager next distributes the effort across the life-cycle phases (see Table 6-6) using
the percentages shown in Figure 6-5 and estimates the duration of the development using
the relationship introduced in Chapter 2:
Duration = 4.9(Effort)"’
=4.9(206 months)®”
=24.2 months
Figure 6-8 tells the manager to estimate 7 errors per KSLOC during development; for 150

KSLOC, the estimate is 1,050 errors distributed as shown in Table 6-6, with 75 additional
errors estimated to be detected in the operational system.

87 NASA-GB-001-94

Table 6-6. Project Planning Estimates

Activity Estimate
Development Effort
Design (30%) 62 staff-months
Codelunit test (34%) 70 staff-months
System test (16%) 33 staff-months
Acceptance test (20%) 41 staff-months
Total 206 staff-months
Duration 24.2 months
Errors
Codelunit test 600 errors
System test 300 errors
Acceptance test 150 errors
Total development 1,050 errors
Errors
Operations 75 errors
Annual maintenance effort 31 staff-months
Documentation effort 23 staff-months

Assuming that the system is intended to support multiple missions, the estimated annual
maintenance effort (derived from Table 6-4) is 31 staff-months.

Finally, the cost of support activities can be derived from Figure 6-7. Table 6-6 shows the
estimated cost of the documentation effort.

Example 11:
Project Dynamics

Goal: Determine the expected growth rate, change rate, and error
rate of source code.

Measures needed: Project size estimate, models, and relationships.
(See Sections 2.1 and 6.1.)

The project manager introduced in the previous example can use models derived from
historical data to project the expected rate of source code growth, as well as the expected
change rate and error rates of the software. Each new project will always strive to attain
lower error rates; however, until those lower rates are packaged into new organizational

NASA-GB-001-94 88

models, the manager should use the current historical models. Figure 6-12 illustrates the
planning charts derived from the models discussed in Sections 2.1 and 6.1.

Growth Rate Change Rate

Acceptance) System |Acceptance
Test Design Code/Test Test Test

System
Design Code/Test Test

150

135 1,200

120 — 1,050 -

105 — 900 —

90 — 750

KSLOC
Changes

75 < 600 —

60 450

45 300

30 —

150

e o PR I M
P N okl IR N | 1 T 10 20 30 40 50 60 70 80 90 100
10 20 30 40 50 60 70 80 90 100 % of Schedule
% of Schedule

Error Detection Rate

900

750

600

Errors

450 4

300
150 4 —‘—‘7
]

Code/Test ' System Test IAcceptance TestI Operations

Figure 6-12. Planning Project Dynamics

Estimating the final software size is the most understood and useful basis for project
planning, and the basic historical models derived during the understanding stage of a
measurement program are the most important planning aids. As an organization
completes more detailed analyses of the local environment, additional models will
provide even more accurate planning data. Such parameters as problem complexity, team
experience, maturity of the development environment, schedule constraints, and many
others are all valid considerations during the planning activity. Until the measurement
program provides some guidance on the effect of such parameters, project planning
should rely primarily on lines of code estimates, along with the basic historical models.

6.2.2 Assessing Progress

A second important management responsibility is to assess the progress of the development and
maintenance activity. Project managers must track the activities and interpret any deviations from
the historical models. Although experience is the best asset for carrying out this responsibility,

89 NASA-GB-001-94

several measures are helpful. The standard earned-value systems, which aid in analyzing the rate
of resources consumed compared to planned completed products, are effective for supporting
progress tracking. Along with earned-value techniques, other software measures can provide
additional insights into development progress.

Example 12:
Tracking Code Production

Goal: Determine whether development is progressing as expected.

Measures needed: Biweekly count of source library size, manager’s updated
at-completion estimates.

(See Section 4.4.)

An analysis of historical data enables the derivation of such profiles as the expected rate
of code growth in the controlled library (see Figure 6-11). Using such a model, a project
manager can determine whether code production is proceeding normally or is deviating
from the expected range of values. As with other models, a project’s deviation from the
growth-rate model simply means that the project is doing something differently. For
example, a project reusing a large amount of existing code may show an unexpectedly
sharp jump early in the code phase when reused code is placed in the configured library.
Figure 6-13 shows an example in which code growth made several jumps resulting from
reuse but then followed the model derived for the local environment.

Example 13:
Tracking Software Changes

Goal: Determine whether requirements and design are stable.

Measures needed: Changes to source code and manager’s project estimates.
(See Section 4.4.)

By tracking the changes made to the controlled source library, a manager can identify
unstable requirements or design. Plotting the behavior of a current project’s change rate
against the organization’s predictive model indicates whether the project is on track or is
deviating. Exaggerated flat spots (periods without changes) or large jumps (many changes
made at the same time) in the data should raise flags for further investigation. Some
deviations may be readily explained; for example, during testing, changes are often
grouped and incorporated into the configured software at the same time, thus causing a
large jump in the weekly change rate.

NASA-GB-001-94 90

System | Acceptance
Design Code/Test Test Test

100

90 H

80 H

70

60 o

50

% of Total LOC

40

10

% of Schedule

Figure 6-13. Growth Rate Deviation

Figure 6-14 presents an example from actual data for a project that experienced a higher
than normal change rate. The requirements for this 130-KSLOC system were highly
unstable, resulting in a deviation from the existing model (introduced in Figure 6-12). By
recognizing the change rate early, managers could compensate by tightening CM
procedures to maintain the quality and the schedule.

System | Acceptance

Design Code/Test Test Test

10.00
9.00

8.00

7.00

5.00

4.00

3.00

Cumulative Changes per KSLOC

2.00

|
|
|
|
6.00 - |
|
|
|
|

1.00 +

0.00 s s O i

Figure 6-14. Change Rate Deviation

91 NASA-GB-001-94

Full-Time- Equivalent (40-Hour Work Weeks) of Staff

26

22

Reqmts Prelim Detailed Build Build | Build | System [Acceptancel System
| Analysis Design Design 2 3 | Testing Testing Delivery
[J []
| LX I
Second Replan — = LA Actual Data
First Replan

—_—

50 60 70 80 90 100

Figure 6-15. Staff Effort Deviation

The original staffing plan was based on an underestimation of the system size. Toward
the end of the design phase, 40 percent more effort than planned was regularly required,
indicating that the system had grown and that replanning was necessary. Although the
manager’s estimates of size did not reflect the significant increase, the staffing profile
indicated that the system was probably much larger than anticipated. The required effort
continued to grow, however, in spite of the new plan that projected a leveling off and then
a decline. A subsequent audit revealed that an unusually high number of requirements
were still unresolved or changing, resulting in excessive rework. As a part of the
corrective action, a second replanning activity was needed.

Example 15:
Tracking Test Progress

Goal: Determine whether the testing phase is progressing as
expected.

Measures needed: Failure report data and change data.
(See Section 4.2.)

By consistently tracking reported versus fixed discrepancies, a manager gains insight into
software reliability, testing progress, and staffing problems. The open failure reports
should decline as testing progresses unless the project is understaffed or the software has
many defects.

When the “open” curve falls ;

below the “fixed” curve, defects

are being corrected faster than |

new ones are reported. At that 087 o

time, a manager can more con- | § T \

fidently predict the completion | €3 os-

of the testing phase. Figure 6-16 % g /

shows an example of discrep- gi s Open

ancy tracking that gave the [£

manager an early indication of | = \\
poor software quality (at Week 027 Fixed
15). Staff members were added -

to increase the error-correction o | ! ! ! !
rate (during Weeks 20 through ° s 10 t’VSSKS ofziesnng ®oo0 s
35), and the system attained

stability (at Week 35).

Figure 6-16. Tracking Discrepancies

93 NASA-GB-001-94

Example 16:
Tracking Software Errors

Goal: Determine the quality of the software.

Measures needed: Error report data, historical models, and size estimates.
(See Sections 4.2, 4.4, 5.3.3, and 6.1.3.)

One commonly used measure of software quality is the software error rate. Tracking the
project’s error rate against an organization’s historical model can provide a simple
estimate of the predicted quality of the delivered software. A consistent understanding of
what to count as an error enables the organization to make reasonable predictions of the
number of errors to be uncovered, as well as when they will be found.

The model in Figure 6-8 indicates that detected errors were reduced by half in subsequent
phases following coding and unit testing. By estimating the total size of the software and
by tracking the errors detected during the coding and unit testing phase, the project
manager can both observe the quality of the existing system relative to the model and also
project the quality of the delivered software.

Figure 6-17 is another view of the same model showing the cumulative errors detected
throughout the life cycle (see also Figure 5-7). The model compares error rates reported
during the coding and early test phases of an actual NASA project. The error rate can
deviate from the model for many reasons, including the possibility that the development
team is not reporting
errors. However, it is

. . System Acceptance
still worthwhile to track Design Code/Test Test Test
the errors and to assume
that the information is 7

reasonably reliable. The
example indicates that
the projected quality or
reliability (based on the
predicted error rate) is
an improvement over the
average local project;
indeed, in this case the
project turned out to be
an exceptionally reliable T
system.

Cumulative Errors per KSLOC
N
]

O o o — ——————————————

Schedule

Figure 6-17. Projecting Software Quality

NASA-GB-001-94 94

6.2.3 Evaluating Processes

A third responsibility of the software manager is to determine whether the project’s standard
software processes are, in fact, being used, and if there is any impact on the product. Project
personnel may fail to apply a standard process because of inadequate training, team inexperience,
misunderstandings, or lack of enforcement. Whatever the reasons, the manager must try to
determine whether the defined process is being used.

Example 17:
Source Code Growth

Goal: Determine whether the Cleanroom method is being applied.
Measures needed: Project phase date estimates, completed source code, and
historical models.
(See Section 4.4.)

One characteristic of the Cleanroom method is an increased emphasis on source code
reading before the code is released for system integration. This emphasis can be
confirmed by tracking the source code growth and observing two phenomena:

1. A delay in the phasing of the code completion profile

2. A significant step function profile of the code completion rate caused by the strict
incremental development of Cleanroom

The sample plot in Figure 6-18 is based on actual data from an organization’s first use of
the Cleanroom method. The data exhibited both expected phenomena, suggesting that the
Cleanroom method was indeed part of

the project process. Such measurement 00 Design CoderTest S‘%ﬁ? » T
analysis is useful only to identify ‘
occasions when expected differences
do not occur, so that the manager can
try to determine the cause.

90
80
704
60 —
By tracking the wvalues of process 50|
parameters, the manager can determine 40|
whether the process is helping to attain 30
the organization’s goals. If not, the 20
manager should consider changing the _
process. The following section w4
discusses using measurement to guide P wsedte
process improvement.

% of Total LOC

. gy g M = <= =

T Figure 6-18. Impact of the Cleanroom Method
6.3 Guiding Improvement on Software Growth

95 NASA-GB-001-94

One key reason for software measurement is to guide continual improvement in the
organization’s products and services. The same measurement activities that support
understanding and managing can provide a basis for improvement.

To be able to assess how a process change affects a product, the manager must measure both the
processes applied and the products developed. Two key analyses must be performed:

1. Verify that the process under study shows the expected measured behavior (either
changed or similar to other processes).

2. Compare ongoing activities with the baseline measures developed to establish an
understanding.

A specific innovation may result in many changes to process elements, some helpful and others
not. Experience on subsequent projects is needed to adapt the process change to an environment.
The types of adaptations include the following:

¢ Eliminate processes that provide little or no value.
e Accentuate processes that help.

e Determine the impact of specific techniques.

e Write new policies, standards, and procedures.

e Tailor processes for specific needs.

The two examples in this section illustrate the application of measurement for guiding
improvement. Additional examples are provided in NASA’s Software Process Improvement
Guidebook (Reference 25).

Example 18:
Cleanroom

Assume that an organization’s goal is to decrease the error rate in delivered software
while maintaining (or possibly improving) the level of productivity. The organization
must understand the current software engineering process, using historical data to
establish a baseline for its error rate and productivity measures.

In this example, the organization has decided to change the process by introducing the
Cleanroom method (see Reference 13). Cleanroom focuses on achieving higher reliability
by preventing defects. Because the organization’s primary goal is to reduce the error rate,
there is no concern that the Cleanroom method does not address reuse, portability,
maintainability, or many other process and product characteristics.

As the organization develops new products using the modified process, which
incorporates the Cleanroom method, it must continue to collect data for both process and
product measures and look for possible changes. Keep in mind that a change is not
always an improvement; it must be possible to measure two things: (1) that a difference
exists between the original and the changed product and (2) that the new product is better
than the original. Table 6-7 lists the measures that are important indicators for this
example and summarizes their usage. Other software process and product characteristics,

NASA-GB-001-94 96

such as schedule, maintainability, and amount of reuse, may also reveal deviations
beyond the expected baseline ranges. Such deviations must be investigated to determine
whether the effect is related to the introduction of the Cleanroom method.

Table 6-7. Indicators of Change Attributable to Cleanroom

Measure Type Indicator
Cost
Effort Product Expectation: Cleanroom should not

decrease productivity.

Effort Process Expectation: Cleanroom may show
distribution increased design time.

Size

Software Product Expectation: Cleanroom should have no
size impact.

Size growth | Process Expectation: Cleanroom may affect
measured profile.

Number of Product Expectation: Cleanroom should increase
Errors reliability.

To observe changes, the organization must analyze the measurement data at regular
intervals during the Cleanroom development period and compare the results with the
baseline. For example, Figure 6-19a compares the results of measuring development
activities on several SEL projects that used the Cleanroom method against the current
baseline activity profile in the same organization. The slight changes in the effort
distribution profiles suggest that the new method may have affected the development
process, but the difference in percentages is not conclusive. A closer look (see Figure
6-19b) at the subactivities within the “code” category reveals more substantial differences
and provides clear evidence of an impact on the relative percentages of the code writing
and code reading processes.

During the Cleanroom experiment (see Reference 14), the SEL also compared another
measure, software size growth, with the baseline. Figure 6-18 illustrates the marked
differences between the profiles. The Cleanroom profile exhibits a more pronounced
stepwise growth pattern, which results from the higher number of software builds
required by the Cleanroom method. Whereas developers typically used two or three
builds on projects that made up the baseline, they used from five to eight builds during
the Cleanroom experiment.

97 NASA-GB-001-94

Baseline Cleanroom Projects

Other
Other Design 1o

27%

Design
33%

Test
27%
Code
19%
a. All Activities
Baseline Cleanroom Projects
Code Reading Code

20%

Writing
48%

Code

Readin
Code Writing 529 g

80%

b. Code Activities Only

Figure 6-19. Impact of the Cleanroom Method on Effort Distribution

Both of the measures discussed above—effort by activity and software growth—are
strong initial indicators that the Cleanroom method has indeed changed the process.
Those process measures alone cannot, however, prove that the change has benefited the
product. To determine that the change is an improvement requires an analysis of measures
based on the project goals, specifically, higher product reliability (that is, lower error
rates) and stable productivity. Table 6-8 shows the error rate and productivity measures
for the baseline and experimental projects using the Cleanroom method. (The Cleanroom
experiment includes data through the system testing phase and excludes acceptance
testing; baseline values shown in the table have been adjusted to represent the same
portions of the life cycle.)

The results of the experiment appear to provide preliminary evidence of the expected
improvement in reliability after introducing the Cleanroom method and may also indicate
an improvement in productivity. Two conclusions can be drawn:

1. Process measures can verify that adopting a new technology has affected the
baseline process.

NASA-GB-001-94 98

Table 6-8. Impact of the Cleanroom Method on Reliability and Productivity

Data Source

Error Rate
(Errors per KDLOC)

Productivity
(DLOC per Day)

Baseline 5.3 26
Cleanroom 1 4.3 40
Cleanroom 2 3.1 28
Cleanroom 3 6.0 20

2. Product measures can quantify the impact (positive, negative, or none) of a new
technology on the product.

Both types of measures can then be used to model the new process and expand the

experience baseline.

Example 19:

Independent Verification and Validation

Not all process changes result in measured product benefits. In 1981, the SEL studied a
testing approach using an independent verification and validation (IV&V) process. IV&V
promised to improve error detection and correction by finding errors earlier in the
development cycle, thus reducing cost and increasing overall reliability with no negative
impact on productivity. Determining the effect of this testing process on reliability and
cost were two major study goals. Table 6-9 lists the measures that are important
indicators for this example and summarizes the use of each.

Measurement analysts selected two projects for IV&V study and two similar ones for use
as baseline comparison efforts. For this study, the activities performed by the IV&V team

included the following:

e Verifying requirements and design

e Performing independent system testing

e Ensuring consistency from requirements to testing

e Reporting all findings

The next series of figures shows the measured results of the study.

99

NASA-GB-001-94

Table 6-9. Indicators of Change Attributable to IV&V

Measure Type Indicator

Cost

Effort Product Expectation: Cost of IV&V effort would be offset by
reductions in error correction effort and decreases in
system and acceptance test effort.

Effort Process Expectation: IV&V process would show increased

distribution effort in early phases.

Staffing Process Expectation: Greater startup staffing for IV&V would

profile affect profile model.

Errors

Number Product Expectation: IV&V process would increase reliability.

Source Process Expectation: The number of requirements and
design errors found in later phases would decrease.

Figure 6-20 illustrates the effect of IV&V on requirements and design errors.
Requirements ambiguities and misinterpretations were reduced by 87 percent. The results
show relatively little effect on design errors, however, especially on complex design

CITorsS.
Baseline V&V
Requirements— Requirements— Functional
8% Functional 1% Specs
Specs
8%
Design Design
84% 92%
Simple: 66% Simple: 70%
Complex: 18% Complex: 22%

Figure 6-20. Impact of IV&V on Requirements and Design Errors

Figure 6-21 depicts the percentage of errors found after the start of acceptance testing.
The IV&V projects exhibited a slight decrease in such errors but showed no significant

increase in the early detection of errors.

NASA-GB-001-94

100

20%
20

18
16
14
12
10

% of Errors

o N A O

Baseline V&V

Figure 6-21. Percentage of Errors Found After Starting Acceptance Testing

Figure 6-22 shows the error rates by phase; the rates in the operations phase are the key
indicators of IV&V effectiveness. The baseline error rate during operations is 0.5 errors
per KSLOC; however, the error rate for the IV&V projects was slightly higher.

12 4

4 x(10 X IV&V Project 1

10 0 IV&V Project 2

9 —

8 - 0(8.2)
S
g 7
N4
g 6
4
g 5
w

4

3 -

0(2.4) X(2.4)
2 -
X(1.3 0(1.4
17 43 {.4) 077 o(0.89)
f f f
Code/Unit Test System Test Acceptance Test Operations

Figure 6-22. IV&V Error Rates by Phase

The final indicators for this experiment were effort distribution and overall cost. Figure
6-23 shows that process change in the effort distribution by phase did occur with the
IV&V projects. According to expectation, developers’ design effort slightly decreased;
however, the substantial increase in coding and unit testing was somewhat surprising.

101 NASA-GB-001-94

Baseline V&V

Design Design

31% System and 23%
System and ﬁ_?;ptzagr;:e
Acceptance o
Test 41%

Code and Unit
Test 48%

Code and Unit
Test 28%

NOTE: This comparison ignores the "other" category.

Figure 6-23. Impact of IV&V on Effort Distribution

Figure 6-24 shows the impact of the IV&V process in two areas: the overhead of the
IV&V team itself and the increased cost to the development team because of their
interactions with a new group. Together, the overall cost increased by 85 percent, an
unacceptably high cost to pay for no measurable increase in overall product quality.

251

0.41

O Iv&V Overhead
[0 Managers
B Developers

Staff-Months per KDLOC

V&V

Figure 6-24. Impact of IV&V on Cost

This example is not intended to indicate that IV&V technology is never beneficial. On
projects requiring extremely high levels of safety and reliability, the benefits of IV&V can
often outweigh the added cost. The cited software project was a ground-based, non-life-
critical system for which the extra safety was not worth the added overhead. Every
organization must judge the appropriateness of a potential software process change within
the context of the local environment and the organization’s goals.

NASA-GB-001-94 102

Chapter 7. Experience-Based Guidelines

Chapter Highlights

MEASUREMENT GUIDELINES

v The goal is application of results, not data collection.

v The focus should be on self-improvement, not external
comparison.

v Measurement data are inexact.
v Interpretation is limited by analysts’ abilities.
v Measurement should not threaten personnel.

< Automation of measurement has limits.

103 NASA-GB-001-94

to include software measurement as part of its development process. Some of these

guidelines have been repeated several times throughout this document. Although some
may seem counterintuitive, each has been derived from the experiences of extensive, mature
measurement programs.

Guideline 1:
Data collection should not be the dominant element of process
improvement; application of measures is the goal.

T he following guidelines are precautionary notes for any software organization that plans

Focusing on collecting data rather than on analyzing and applying the data wastes time, effort,
and energy. Although many organizations are convinced that measurement is a useful addition to
their software development and maintenance activities, they do not fully plan for the use,
benefits, and applications of the collected measures. As a result, the measurement program
focuses on defining the list of measures to be collected and the forms that will be used to collect
the data, rather than on the specific goals of the measurement efforts.

Having specific and clearly defined goals facilitates the task of determining which data are
required. For example, if a goal is to determine error class distribution characteristics for each
phase of the software life cycle, then data must be gathered on what classes of errors occur in
what phases.

Experience in major mature measurement programs has shown that at least three times as much
effort should be spent on analyzing and using collected data as on the data collection process
itself. Focusing on data collection is a common mistake, similar to that of focusing on the
development of “lessons learned” from software efforts rather than on applying previous lessons
learned. More software lessons-learned reports are written than are ever read or used.

Software developers who are asked to collect data have the right to know how the data will be
used and how that use will benefit their organization. Plans for analysis and application of the
data must be well developed before the collection process is initiated. A measurement program
that focuses on the collection, as opposed to the application, of the measurement data will fail.

Guideline 2:
The focus of a measurement program must be self improvement, not
external comparison.

Because the primary reasons for measurement are to guide, manage, and improve within specific
software domains, the analysis and use of any measurement information must logically focus on
local improvement. Little emphasis should be placed on comparing local results and information
with that from other domains, because combining data across dissimilar domains rarely produces
meaningful results. In fact, organizations rarely define specific goals requiring external
comparison.

NASA-GB-001-94 104

There are two significant corollaries to this guideline:

1. Define standard terminology locally instead of generating widely accepted standard
definitions. For example, provide a standard local definition of a line of code, because
there is no universally accepted definition.

2. Use measurement data locally. Combining measurement data into larger, broader
information centers has never proved beneficial and consumes unnecessary effort. Focus,
instead, on producing higher quality, local data centers.

Guideline 3:
Measurement data are fallible, inconsistent, and incomplete.

Measurement programs that rely significantly on the high accuracy of raw software measurement
data are probably doomed to failure. Because of the nature of the measurement process and the
vast number of uncertainties that are part of it, the measurement data will always be inexact.

Relying primarily on the statistical analysis of the data collected for software development is a
serious mistake. Collection of measurement data is one small component of the overall set of
factors required to analyze software and software technologies effectively. The following
additional factors must be considered:

e Subjective information—The general observations and assessments of developers,
managers, and analysts are as vital as the objective data collected via forms and tools.

o (Context of the information—Each set of data must be analyzed within a well-understood
and defined context. Attempting to analyze larger and larger sets of measurement data
adds to the confusion and difficulty of putting each set of data in its appropriate class of
interpretation.

e Qualitative analysis—Because of the ever present danger that measures are erroneous,
biased, or missing, each analysis and application of measurement data must include an
analysis of the quality of the information. The measurement data characteristics must first
be determined by analyzing patterns, inconsistencies, gaps, and accuracy. Any
interpretation of measurement data results must include compensation for the quality of
the data.

e Defined goals—Successful analysis of available data requires that the analyst first
understand the goals that motivated the data collection. By understanding the goals of the
measurement efforts, an analyst can interpret data gaps, biases, definitions, and even
levels of accuracy. The goals will significantly influence the quality, consistency, and
level of detail of the data analysis.

Because of the limited accuracy of measurement data, overdependence on statistical analysis of
these data can lead to erroneous conclusions and wasted efforts. Although statistical analysis is a
powerful mechanism for determining the strengths and weaknesses of collected measures and
providing insight into the meaning of the data, it must be used as only one limited tool toward the
goal of meaningful application of measurement data.

105 NASA-GB-001-94

Another potential pitfall exists in the use of subjective data to characterize software development.
Many measurement programs attempt to characterize the processes of each development project
by recording a rating factor for several process elements such as “degree of use of modern
programming practices,” “experience of the team,” “complexity of the problem,” or “quality of
the environment.” Although successful analysis of measurement data must consider the context,
problem, domain, and other factors, extensive studies within NASA measurement programs have
repeatedly failed to show any value in analyzing such rating information. Because there are many
inconsistencies in the definition and interpretation of terms such as “problem complexity” or
“modern programming practices” and because of the inconsistencies in the value judgments of
the people doing the ratings, the use of measurement data should be limited to providing a
general understanding of the project—nothing more.

Guideline 4:
The capability to qualify a process or product with measurement data is
limited by the abilities of the analysts.

2% 46

Measurement data must be interpreted properly to provide meaningful results. For example, if an
analyst cannot clearly and precisely define “software complexity,” then no tool or measure can
determine if software is too complex. There is a danger in expecting that a large amount of data
combined with some software tool will provide a manager or analyst with a clear representation
of software quality. The data and tool can represent only what the manager or analyst interprets
as quality.

Inexperienced measurement programs occasionally assume the existence of a generally accepted
threshold defining the boundary between acceptable and unacceptable values for some measures.
For example, a program unit that is larger than some predetermined code size might be deemed
undesirable. Similar thresholds are sometimes assumed for complexity, error rate, change rate,
test failure rate, and many other measures. Establishing control limits for comparing
measurement values is important, but the limits must be computed on the basis of local
experience. It should not be assumed that there is some predefined threshold that defines an
absolute boundary of acceptable values for local measures.

Guideline 5:
Personnel treat measurement as an annoyance, not a significant threat.

One of the most obvious and important guidelines for any measurement program is to emphasize
consideration for the concerns of development and maintenance personnel. Measurement
programs should not be used to qualify or characterize differences between individuals providing
measurement data. If confidentiality is assured, project personnel will provide requested
measurement information as freely as they provide other documentation or reports.

Experience has shown that, as long as managers ensure that measurements will never be used to
evaluate performance or rate programmers, the development and maintenance teams will treat
measurement responsibilities as just one additional task that is a part of their job.

NASA-GB-001-94 106

Guideline 6:
Automation of measurement has limits.

Nearly every measurement program starts with two well-intentioned goals:
1. Measurement will be nonintrusive.
2. Measurement will be automated.

The process of measurement, however, cannot be totally automated. Essential human processes
cannot be replaced by automated tools unless the measurement program is limited to a high-level
survey activity, because the opinions, insight, and focus of individual programmers and managers
are necessary to carry out effective measurement programs.

Tools can automate a limited set of routine processes for counting such measures as code size,
code growth, errors, and computer usage; however, insight into the reasons for errors, changes,
and problems requires human intervention. Without that insight and the verification of
measurement information, collected data are of limited value.

One NASA organization with a mature measurement program uses the automated tools listed in
Table 7-1.

Table 7-1. Examples of Automated Measurement Support Tools

Tool Use
Code analyzers Record code characteristics at project
completion
DBMS tools Store, validate, and retrieve information
CM tools Provide counts of changes to source code
Operating system Provide computer usage data
accounting tools

This same organization has found that many other measures must be compiled manually; some
examples are listed in Figure 7-1.

Even a well-defined and focused measurement program requires manual intervention. Because
the team provides only the limited amount of information needed to satisfy the organizational
goals, however, the measurement program will have a correspondingly limited intrusive impact
on the development and maintenance organization.

107 NASA-GB-001-94

Compile without tools

Error characteristics

Change characteristics of

designs and code

Processes applied

Code origin (newly built,

reused verbatim, or
moedified)
Weekly hours of each
individual by activity
Testing strategy and results

Post-development analysis

Planned versus actual dates,

schedules, and cost.

Figure 7-1. Examples of Measures Collected Manually

NASA-GB-001-94 108

Appendix A. Sample Data Collection Forms

his appendix contains many of the data collection forms that are used within the NASA

GSFC SEL measurement program. Reference 19 provides a detailed guide to using all of

the SEL forms. An organization establishing a new measurement program may want to
base its own set of forms on the samples. Table A-1 summarizes the purpose of the forms, which
appear in alphabetical order on the following pages.

Table A-1. SEL Data Collection Forms

Name

Purpose

Change Report Form

Records information on changed units; is filled out each time a
configured unit is modified

Component Origination
Form

Provides information on software units as they are entered into the
project's configured library

Development Status Form

Provides a record of the current status of the project parameters; is filled
out by the project manager on a regular basis

Maintenance Change
Report Form

Characterizes the maintenance performed in response to a change
request

Personnel Resources Form

Provides information on hours spent on a project and how the effort was
distributed,; is filled out weekly by software developers or maintainers

Project Completion
Statistics Form

Records final project statistics

Project Estimates Form

Records the completion estimates for project parameters; is filled out by
project managers

Project Startup Form

Records general project information collected at the project startup
meeting

Services/Products Form

Records use of computer resources, growth history, and services effort;
is completed weekly

Subjective Evaluation Form

Records opinions that characterize project problems, processes,
environment, resources, and products

Subsystem Information
Form

Provides subsystem information at preliminary design review and
whenever a new subsystem is created

Weekly Maintenance Effort
Form

Records hours expended on maintenance activities

109 NASA-GB-001-94

Name:

Project:

CHANGE REPORT FORM

Approved by:

Date:

Section A - Identification

Describe the change: (What, why, how)

Effect: What components are changed?

Prefix Name Version

Effort: What additional components
were examined in determining
what change was needed?

(Attach list if more space is needed)

Location of developer's source files:

month day year

Need for change determined on:

Check here if change involves
Ada components. (If so, complete

Change completed (incorporated into system):

questions on reverse side.)

|:| Error correction |:| Optimization of time/space/

[Planned enhancement accuracy
[Implementation of requirements O éﬁ:ﬁéaet'on to environment

change
[Improvement of clarity,
maintainability, or documentation

O Improvement of user services
[insertion/deletion of debug code

[Other (Describe below)

1hriless 1hriMiday 1/3days > 3days
Effort in person time to isolate the change (or error):
Effort in person time to implement the change (or correction):
Section B - All Changes
Type of Change (Check one) Effects of Change

Y N
[[Jwas the change or correction to one and only one
component? (Must match Effect in Section A)

[[Did you look at any other component? (Must
match Effort in Section A)

[[pid you have to be aware of parameters passed
explicitly or implicitly (e.g., COMMON blocks) to or
from the changed components?

Section C - For Error Corrections Only

Class of Error
(Check most applicable)*

Source of Error
(Check one)

Characteristics
{(Check Y or N for all)

[Initialization
[Logic/control structure
(e.g., flow of control incorrect)
[Interface (internal)
(module-to-module communication)
[Interface (external)
(module to external communication)
[Dpata (value or structure)
(e.g., wrong variable used)
O computational
(e.g., error in math expression)

|:| Requirements

[Functional specifications
O Design

O code

[Previous change

*If two are equally applicable, check the
one higher on the list.

Y N
[O Omission error (e.g., something was left out)

O O commission error (e.g., something incorrect
was included)

[[Error was created by transcription (clerical)

For Librarian's Use Only

Number:

Date:

Entered by:

Checked by:

JANUARY 1994

Figure A-1. Change Report Form (1 of 2)

NASA-GB-001-94 110

CHANGE REPORT FORM

Ada Project Additional Information

1. Check which Ada feature(s) was involved in this change (Check all that apply)

[0 Data typing [0 Program structure and packaging
[0 Subprograms [0 Tasking

[0 Exceptions [0 system-dependent features

O Generics [0 Other, please specify

(e.g., /0, Ada statements)

2. For an error involving Ada components:

a. Does the compiler documentation or the language (YIN)

reference manual explain the feature clearly?

b. Which of the following is most true? (Check one)
[0 Understood features separately but not interaction
O Understood features, but did not apply correctly
[0 Did not understand features fully

[Confused feature with feature in another language

¢. Which of the following resources provided the information

needed to correct the error? (Check all that apply)

[Class notes [0 Own memory
[0 Ada reference manual [0 Someone not on team
[0 Own project team member [Other

d. Which tools, if any, aided in the detection or correction of this error? (Check all that apply)

O compiler [0 Source Code Analyzer

[0 symbolic debugger [0 P&CA (Performance and Coverage Analyzer)
[0 Language-sensitive editor [DEC test manager

O cms [Other, specify

3. Provide any other information about the interaction of Ada and this change
that you feel might aid in evaluating the change and using Ada

6201G(13)-13

NOVEMBER 1991
Figure A-1. Change Report Form (2 of 2)

111 NASA-GB-001-94

COMPONENT ORIGINATION FORM

Identification

Name:

Project:

Subsystem Prefix:

Component Name:

Date:

Configuration Management Information

Date entered into controlled library (supplied by configuration manager):

Library or directory containing developer's source file:

Member hame:

Relative Difficulty of Developing Component

Please indicate your judgment by circling one of the numbers below.

Easy Medium Hard
1 2 3 4 5
Origin

If the component was maodified or derived from a different project, please indicate the
approximate amount of change and from where it was acquired; if it was coded new (from

detailed design) indicate NEW.

NEW

Extensively modified (more than 25% of
statements changed)

Slightly modified

Old (unchanged)

If not new, what project or library is it from?

For Librarian's Use Only

Number:

Date:

Entered by:

Checked by:

Component or member name:

Type of Component (Check one only)

INCLUDE file (e.g., COMMON)

Control language (e.g., JCL, DCL, CLIST)
ALC (assembler code)

FORTRAN source

Pascal source

C source

NAMELIST or parameter list

Display identification (e.g., GESS, FDAF)
Menu definition or help

Reference data files

BLOCK DATA file

Ada subprogram specification
Ada subprogram body

Ada package specification
Ada package body

Ada task body

Ada generic instantiation

Ada generic specification
Ada generic body

Other

Purpose of Executable Component

For executable code, please identify the major purpose or purposes of this component.

(Check all that apply).

I/0 processing
Algorithmic/computational
Data transfer
Logic/decision

Control module

Interface to operating system
Process abstraction

Data abstraction

NOVEMBER 1991
Figure A-2. Component Origination Form

NASA-GB-001-94 112

DEVELOPMENT STATUS FORM

Name:

Project: Date:

Please complete the section(s) that is appropriate for the current status of the project.

Design Status

Planned total number of components to be designed
(New, modified, and reused)

Number of components designed
(Prolog and PDL have been completed)

Code Status

Planned total number of components to be coded
(New, modified, and reused)

Number of components completed
(Added to controlled library)

Testing Status System Test Acceptance Test

Total number of separate tests planned

Number of tests executed at least one time

Number of tests passed

Discrepancy Tracking Status (from beginning of system testing)

Total number of discrepancies reported

Total number of discrepancies resolved

Specification Modification Status (from beginning of requirements analysis)

Total number of specification modifications received

Total number of specification modifications completed (implemented)

Requirements Questions Status (from beginning of requirements analysis)

Total number of questions submitted to analysts

Total number of questions answered by analysts

Check here if there For Librarian's Use Only
are no changes
Number:
Date: %
Entered by: %
Checked by: é

NOVEMBER 1991
Figure A-3. Development Status Form

113 NASA-GB-001-94

NASA-GB-001-94

MAINTENANCE CHANGE REPORT FORM

For Librarian's Use Only

SECTION A: Change Request Information

Number:
Name: OSMR Number: Date:

Entered by:
Project: Date: Checked by:

Functional Description of Change:

What was the type of modification?

—— Correction
—— Enhancement
— Adaptation

Components Added/Changed/Deleted:

SECTION B: Change Implementation Information

What caused the change?
Requirements/specifications

Software design
Code

Previous change
Other

Estimate effort spent isolating/determining the change:

Estimate effort to design, implement, and test the change:

1 hrto
1 day

1dayto 1weekto

<1hr 1week 1month >1month

Check all changed objects:

Requirements/Specifications Document
Design Document

Code

System Description

User's Guide

Other

If code changed, characterize the change {(check most
applicable):

— Initialization
—— Logic/control structure
(e.g., changed flow of control)
— Interface (internal)
{module to module communication)
—— Interface (external)
{module-to-external communication)
— Data (value or structure)
(e.g., variable or value changed)

—— Computational
(e.g., change of math expression)
—— Other (none of the above apply)

Estimate the humber of lines of code (including comments):

added changed deleted
Enter the number of components:
added changed deleted
Enter the number of the added components that are: totally new _totally reused reused with
modifications
NOVEMBER 1991
Figure A-4. Maintenance Change Report Form

114

6201G(39)-12

Personnel Resources Form

Name:

Project: Date (Friday):

SECTION A: Total Hours Spent on Project for the Week:
SECTION B: Hours By Activity (Total of hours in Section B should equal total hours in Section A)

Activity Activity Definitions Hours

Predesign Understanding the concepts of the system. Any work prior to the actual design (such
as requirements analysis).

Create Design Development of the system, subsystem, or components design. Includes development
of PDL, design diagrams, etc.

Read/Review Design | Hours spent reading or reviewing design. Includes design meetings, formal and informal
reviews, or walkthroughs.

Write Code Actually coding system components. Includes both desk and terminal code development.

Read/Review Code Code reading for any purpose other than isolation of errors.

Test Code Units Testing individual components of the system. Includes writing test drivers.

Debugging Hours spent finding a known error in the system and developing a solution. Includes gen-
eration and execution of tests associated with finding the error.

Integration Test Writing and executing tests that integrate system components, including system tests.

Acceptance Test Running/supporting acceptance testing.

Other Other hours spent on the project not covered above. Includes management, meetings,

training hours, notebooks, system descriptions, user's guides, etc.

SECTION C: Effort On Specific Activities (Need not add to A)
{Some hours may be counted in more than one area; view each activity separately)

Rework: Estimate of total hours spent that were caused by unplanned changes or errors. Includes |:|
effort caused by unplanned changes to specifications, erroneous or changed design, errors or
unplanned changes to code, changes to documents. (This includes all hours spent debugging.)

Enhancing/Refining/Optimizing: Estimate of total hours spent improving the efficiency or clarity of design, or |:|
code, or documentation. These are not caused by required changes or errors in the system.

Documenting: Hours spent on any documentation of the system. Includes development of design documents, |:|
prologs, in-line commentary, test plans, system descriptions, user's guides, or any other system

documentation.
Reuse: Hours spent in an effort to reuse components of the system. Includes effort in looking at other |:|
system(s) design, code, or documentation. Count total hours in searching, applying, and testing.
For Librarian's Use Only
Number:
Date:
Entered by:
Checked by:

NOVEMBER 1991
Figure A-5. Personnel Resources Form

115 NASA-GB-001-94

Name:

Personnel Resources Form

(CLEANROOM VERSION)

Project:

Date (Friday):

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: Hours By Activity (Total of hours in Section B should equal total hours in Section A)

generating JCL, compiling components, building libraries, and defining inputs and
probabilities.

Activity Activity Definitions Hours
Predesign Understanding the concepts of the system. Any work prior to the actual design (such
as requirements analysis).
Pretest Developing a test plan and building the test environment. Includes generating test cases,

Create Design

Development of the system, subsystem, or components design. Includes box structure
decomposition, stepwise refinement, development of PDL, design diagrams, etc.

Verify/Review Design | Includes design meetings, formal and informal reviews, and walkthroughs.

Write Code Actually coding system components. Includes both desk and terminal code development.

Read/Review Code Code reading for any purpose other than isolation of errors. Includes verifying and
reviewing code for correctness.

Independent Test Executing and evaluating tests of system components.

Response to SFR Isolating a tester-reported problem and developing a solution. Includes writing and
reviewing design or code to isolate and correct a tester-reported problem.

Acceptance Test Running/supporting acceptance testing.

Other Other hours spent on the project not covered above. Includes management, meetings,

training hours, notebooks, system descriptions, user's guides, efc.

SECTION C: Effort On Specific Activities

Methodology Understanding/Discussion: Estimate the total hours spent learning, discussing, reviewing or
attempting to understand cleanroom-related methods and techniques. Includes all time spent in training.

[]

For Librarian's Use Only

Number:

Date:

Entered by:

Checked by:

NOVEMBER 1991

Figure A-6. Personnel Resources Form (Cleanroom Version)

NASA-GB-001-94

116

PROJECT COMPLETION STATISTICS FORM

Name:
Project: Date:
Phase Dates (Saturdays) Staff Resource Statistics
Phase Start Date Technical and
Requirements Definition Management Hours
Design Services Hours
Implementation ..
System Test Computer Resource Statistics
Acceptance Test Computer CPU hours No. of runs
Cleanup
Maintenance
Project End
Project Size Statistics
General Parameters Source Lines of Code
Number of subsystems Total
Number of components New
Number of changes Slightly Modified
Pages of documentation Extensively Modified
old
Comments
Executable Modules Executable Statements Statements

Total Total Total
New New New
Slightly Modified Slightly Modified Slightly Modified
Extensively Modified Extensively Modified Extensively Modified
old old old

Note: All of the values on this form are to be actual values at
the completion of the project. The values entered by
hand by SEL personnel reflect the data collected by
the SEL during the course of the project. Update
these according to project records and supply values

for all blank fields.

For Librarian's Use Only

Entered by:
Checked by:

Number:

Date:

6201G(39)- 11

NOVEMBER 1991

Figure A-7. Project Completion Statistics Form

117

NASA-GB-001-94

PROJECT ESTIMAT

Name:

Project: Date:

ES FORM

Phase Dates (Saturdays)

Staff Resource Estimates

Phase Start Date Programmer Hours
Requirements Definition Management Hours
Design Services Hours

Implementation

System Test

Acceptance Test

Cleanup

Project End

Project Size Est

imates

Number of subsystems

Number of components

Source Lines of Code

Total

New

Modified

Oid

Note: All of the values on this form are to be
estimates of projected values at completion
of the project. This form should be
submitted with updated estimates every 6 to
8 weeks during the course of the project.

For Librarian's Use Only

Number:

Date:

Entered by:

Checked by:

NOVEMBER 1991

Figure A-8. Project Estimates Form

NASA-GB-001-94 118

6201G(13)-16

PROJECT STARTUP FORM

Name:

Project: Date:

PLEASE PROVIDE ALL AVAILABLE INFORMATION

Project Full Name:

Project Type:

Contacts:

Language:

Computer System:

Account:

Task Number:

Forms To Be Collected: (Circle forms that apply)
PEF PRF CLPRF DSF SPF SIF COF CCF CRF SEF PCSF WMEF MCRF

General Notes:

Personnel Names (indicate with *if not in database):

6201G(13)-36

NOVEMBER 1991
Figure A-9. Project Startup Form

119 NASA-GB-001-94

Project:
Date (Friday):

SERVICES/PRODUCTS FORM

COMPUTER RESOURCES

Computer

CPU Hours

No. of Runs

GROWTH HISTORY

Components

Changes

Lines of Code

SERVICES EFFORT

For Librarian's Use Only

Service Hours

Tech Pubs

Secretary

Proj Mgmt

Other Number:
Date:
Entered by:
Checked by:

NOVEMBER 1991

NASA-GB-001-94

Figure A-10. Services/Products Form

120

6201G(13)-08

SUBJECTIVE EVALUATION FORM

Name:

Project: Date:

Indicate response by circling the corresponding numeric ranking.

. PROBLEM CHARACTERISTICS

1 2 3 4 5
Easy Average Difficult

2. How tight were schedule constraints on project?

1 2 3 4 5
Loose Average Tight

3. How stable were requirements over development period?

1 2 3 4 5
Loose Average High

consistency, and completeness.

1 2 3 4 5
Low Average High

5. How extensive were documentation requirements?

1 2 3 4 5
Low Average High

6. How rigorous were formal review requirements?
1 2 3 4 5
Low Average High
Il. PERSONNEL CHARACTERISTICS: TECHNICAL STAFF

7. Assess overall quality and ability of development team.

1 2 3 4 5
Low Average High

the project?
1 2 3 4 5
Low Average High

and support software).

1 2 3 4 5
Low Average High
10. How stable was the composition of the development team over the duration of the project?
1 2 3 4 5
Loose Average High

1. Assess the intrinsic difficulty or complexity of the problem that was addressed by the software development.

4. Assess the overall quality of the requirements specification documents, including their clarity, accuracy,

8. How would you characterize the development team's experience and familiarity with the application area of

9. Assess the development team's experience and familiarity with the development environment (hardware

FOR LIBRARIAN'S USE ONLY

Number: Entered by:

Date: Checked by:

6201G(13)-29

NOVEMBER 1991

Figure A-11. Subjective Evaluation Form (1 of 3)

121

NASA-GB-001-94

SUBJECTIVE EVALUATION FORM

lll. PERSONNEL CHARACTERISTICS: TECHNICAL MANAGEMENT
11. Assess the overall performance of project management.

1 2 3 4 5
Low Average High

12. Assess project management's experience and familiarity with the application.

1 2 3 4 5
Low Average High
13. How stable was project management during the project?
1 2 3 4 5
Low Average High
14. What degree of disciplined project planning was used?
1 2 3 4 5
Low Average High
15. To what degree were project plans followed?
1 2 3 4 5
Low Average High

IV. PROCESS CHARACTERISTICS
16. To what extent did the development team use modern programming practices (PDL, top-down
development, structured programming, and code reading)?
1 2 3 4 5
Low Average High

17. To what extent did the development team use well-defined or disciplined procedures to record
specification modifications, requirements questions and answers, and interface agreements?

1 2 3 4 5
Low Average High
18. To what extent did the development team use a well-defined or disciplined requirements analysis
methodology?
1 2 3 4 5
Low Average High
19. To what extent did the development team use a well-defined or disciplined design methodology?
1 2 3 4 5
Low Average High
20. To what extent did the development team use a well-defined or disciplined testing methodology?
1 2 3 4 5
Low Average High

IV. PROCESS CHARACTERISTICS

21. What software tools were used by the development team? Check all that apply from the list that follows
and identify any other tools that were used but are not listed.

[Compiler [cAT
O Linker O PANVALET
[Editor [Test coverage tool
[Graphic display builder [Interface checker (RXVP80, etc.)
[Requirements language processor [Language-sensitive editor
[0 Structured analysis support tool [Symbolic debugger
[] PDL processor [Configuration Management Tool (CMS, etc.)
[1sPF [] Others (identify by name and function)
[sAP
22. To what extent did the development team prepare and follow test plans?
1 2 3 4 5
Low Average High

6201G(13)-30

Figure A-11. Subjective Evaluation Form (2 of 3)

NASA-GB-001-94 122

SUBJECTIVE EVALUATION FORM

IV. PROCESS CHARACTERISTICS (CONT'D)

23. To what extent did the development team use well-defined and disciplined quality assurance procedures
(reviews, inspections, and walkthroughs)?

2 3 4 5
Low Average High
24. To what extent did development team use well-defined or disciplined configuration management
procedures?
1 2 3 4 5
Low Average High

V. ENVIRONMENT CHARACTERISTICS
25. How would you characterize the development team's degree of access to the development system?
1 2 3 4 5

Low Average High
26. What was the ratio of programmers to terminals?
1 2 3 4 5
8:1 4:1 2:1 1:1 1:2

27. To what degree was the development team constrained by the size of main memory or direct-access
storage available on the development system?
1 2 3 4 5
Low Average High

28. Assess the system response time: were the turnaround times experienced by the team satisfactory in
light of the size and nature of the jobs?

4 5
Poor Average Very Good
29. How stable was the hardware and system support software (including language processors) during the
project?
1 2 3 4 5
Low Average High
30. Assess the effectiveness of the software tools.
1 2 3 4 5
Low Average High
V1. PRODUCT CHARACTERISTICS
31. To what degree does the delivered software provide the capabilities specified in the requirements?
1 2 3 4 5
Low Average High
32. Assess the quality of the delivered software product.
1 2 3 4 5
Low Average High
33. Assess the quality of the design that is present in the software product.
1 2 3 4 5
Low Average High
34. Assess the quality and completeness of the delivered system documentation.
2 3 4 5
Low Average High
35. To what degree were software products delivered on time?
1 2 3 4 5
Low Average High
36. Assess smoothness or relative ease of acceptance testing. %
1 2 3 4 5 &
Low Average High 2
©

Figure A-11. Subjective Evaluation Form (3 of 3)

123 NASA-GB-001-94

SUBSYSTEM INFORMATION FORM

Name:
Project: Date:
Add New Subsystems
Subsystem Subsystem Subsystem
Prefix Name Function
Action
New Subsystem Prefix
(Must exist in the database) D - Delete)

used when a subsystem

is renamed or deleted.

USERINT:
DPDC:

For Librarian's Use Only

Date:

MATHCOMP:
GRAPH:

Entered by:

SYSSERV:

This form is to be completed by the time of the Preliminary Design Review (PDR). An update
must be submitted each time a new subsystem is defined thereafter. This form is also to be

Subsystem Prefix: A prefix of 2 to 5 characters used to identify the subsystem when naming
components

Subsystem Name: A descriptive name of up to 40 characters

Subsystem Function: Enter the most appropriate function code from the list of functions below:

User Interface

Data Processing/Data Conversion
Real-time Control
Mathematical/Computational
Graphics and Special Device Support
Control Processing/Executive
System Services

NOVEMBER 1991

NASA-GB-001-94

Figure A-12. Subsystem Information Form

124

5201G(13)-39

Name:

For Librarian's Use Only

Number:

Date:

Date (Friday): Entered by:

Checked by:

Section A — Total Hours Spent on Maintenance

activities for the project excluding writing specification modifications)

(Includes time spent on all maintenance

(Total of hours in Section B should equal total hours in
Section A)

Class

Definition

Hours

Correction

Hours spent on all maintenance associated with a system failure.

Enhancement

Hours spent on all maintenance associated with modifying the system due
to a requirements change. Includes adding, deleting, or modifying system
features as a result of a requirements change.

Adaptation

Hours spent on all maintenance associated with modifying a system to
adapt to a change in hardware, system software, or environmental
characteristics.

Other

Other hours spent on the project (related to maintenance) not covered
above. Includes management, meetings, etc.

Section C — Hours By Maintenance Activity

(Total of hours in Section C should equal total hours in

Section A)
Activity Activity Definitions Hours
Isolation Hours spent understanding the failure or request for enhancement or
adaptation.
Change Hours spent actually redesigning the system based on an understanding
Design of the necessary change.

Implementation

Hours spent changing the system to complete the necessary change.
This includes changing not only the code, but the associated
documentation.

Unit Test/
System Test

Hours spent testing the changed or added components. Includes hours
spent testing the integration of the components.

Acceptance/
Benchmark Test

Hours spent acceptance testing or benchmark testing the modified
system.

Other

Other hours spent on the project (related to maintenance) not covered
above. Includes management, meetings, etc.

6201G(39)-10

NOVEMBER 1991

Figure A-13. Weekly Maintenance Effort Form

125

NASA-GB-001-94

SEL Representative Study Plan for

October 11, 1993

Project Description

development project will provide simulated telemetry and engineering data for use in testing
team of four GSFC personnel in Ada on the STL VAX 8820. The project is reusing design,

and Magnetospheric Particle Explorer Telemetry Simulator (SAMPEXTS).

review (CDR) in April 1993. In their detailed design document, the SOHOTELS team stated

SOHOTELS is being implemented in three builds so that it can be used to generate data for
independent acceptance testing are being conducted in parallel. At present, the test team has

deliver it to the independent test team by the end of the week.

components was 435, of which 396 (91 percent) have currently been completed. Total SLOC

verbatim and 15.7K SLOC to be reused with modifications. As of September 13, 1993, there

The SOHOTELS task leader is currently re-estimating the size of the system because

also include SLOC for the schema files that are being developed.

September 9, 1992
October 3, 1992
May 1, 1993

127 NASA-GB-001-94

June 26, 1993 Acceptance Test
May 7, 1993 Cleanup
3. Goals of the Study
The study goals for SOHOTELS are

e To validate the SEL’s recommended tailoring of the development life cycle for high-
reuse Ada projects

e To refine SEL models for high-reuse software development projects in Ada,
specifically

- Effort (per DLOC, by phase and by activity)

- Schedule (duration for telemetry simulators and by phase)
- Errors (number per KSLOC/DLOC)

- Classes of errors (e.g., initialization errors, data errors)

- Growth in schedule estimates and size estimates (from initial estimates to
completion and from PDR/CDR to completion)

4. Approach
The following steps will be taken to accomplish the study goals:

e Understand which of the standard development processes are being followed (per
Reference 10) and which have been tailored for the SOHOTELS project. Ensure that
information is entered into the SEL database that will allow SOHOTELS data to be
correctly interpreted in light of this tailoring.

e Analyze project/build characteristics, effort and schedule estimates, effort and
schedule actuals, and error data on a monthly basis while development is ongoing.

e At project completion, plot the effort, schedule, error rate, and estimate data.
Compare these plots with current SEL models and with plots from other high-reuse
projects in Ada. Compare and contrast the error-class data with data from FORTRAN
projects, from Ada projects with low reuse, and from other high-reuse Ada projects.

5. Data Collection

To address these study goals, the following standard set of SEL data for Ada projects will be
collected:

e Size, effort, and schedule estimates (Project Estimates Forms)

e Weekly development effort (Personnel Resources Forms)

e Growth data (Component Origination Forms and SEL librarians)
e Change and error data (Change Report Forms and SEL librarians)

NASA-GB-001-94 128

Rule

Understand that software measurement is a means to an end, not an end in itself. 2
Understand the goals. e e,
Understand how to apply measurement. e 22
.. 23
.. 23
Start small. e e 24
Make sure the measures apply to the goals. L 28
Avoid over-reporting measurement data. . 29
Plan to spend at least three times as much on data analysis and use as on data collection. 33
Clarify the scope of effort data collection. e 37
Do not expect to measure error correction effort precisely.
Do not expect to find generalized, well-defined process measures. ...
Do not expect to find a database of process measurements. .
Understand the high-level process characteristics. e, 42
Use lines of code to represent size. e 45
Do not expect to automate data collection. e 54
.. 55
.. 56
................................ 57

NASA-GB-001-94

Abbreviations and Acronyms

AGSS attitude ground support system

CASE computer-aided software engineering

CDR critical design review

CM configuration management

CMM Capability Maturity Model

Code Q Office of Safety and Mission Assurance (NASA)

COTS commercial off-the-shelf

CPU central processing unit

DBMS database management system

DLOC developed lines of code

GSFC Goddard Space Flight Center

IV&V independent verification and validation

JSC Johnson Space Center

KDLOC 1,000 developed lines of code

KSLOC 1,000 source lines of code

NASA National Aeronautics and Space Administration

PDR preliminary design review

QA quality assurance

R&D research and development

SAMPEXTS Solar, Anomalous, and Magnetospheric Particle Explorer Telemetry
Simulator

SEI Software Engineering Institute

SEL Software Engineering Laboratory

SLOC source lines of code

SME Software Management Environment

SOHOTELS Solar and Heliospheric Observatory Telemetry Simulator

131 NASA-GB-001-94

References

10.

11.

12.

13.

14.

Grady, R. B., and Caswell, D. L., Software Metrics: Establishing a Company-Wide Program.
Prentice-Hall Inc., Englewood Cliffs, NJ, 1989.

NASA, DA3 Software Development Metrics Handbook, Version 2.1, JSC-25519, Office of
the Assistant Director for Program Support, Mission Operations Directorate, Johnson Space
Center, Houston, April 1992.

, DA3 Software Sustaining Engineering Metrics Handbook, Version 2.0, JSC-26010,
Office of the Assistant Director for Program Support, Mission Operations Directorate,
Johnson Space Center, Houston, December 1992.

, DA3 Development Project Metrics Handbook, Version 5.0, JSC-36112, Office of
the Assistant Director for Program Support, Mission Operations Directorate, Johnson Space
Center, Houston, March 1993,

Musa, J. D., Iannino, A., and Okumuto, K., Software Reliability: Measurement, Prediction,
Application, McGraw-Hill, New York, 1987.

Rifkin, S., and Cox, C., Measurement in Practice, CMU/SEI-91-TR-16, Software
Engineering Institute, Carnegie Mellon University, August 1991.

Daskalantonakis, M. K., “A Practical View of Software Measurement and Implementation
Experiences With Motorola,” IEEE Transactions on Software Engineering, Volume SE-18,
November 1992.

Decker, W., Hendrick, R., and Valett, J., Software Engineering Laboratory Relationships,
Models, and Management Rules, SEL-91-001, Software Engineering Laboratory,
NASA/GSFC, February 1991.

Condon, S., Regardie, M., Stark, M., and Waligora, S., Cost and Schedule Estimation Study
Report, SEL-93-002, Software Engineering Laboratory, NASA/GSFC, November 1993.

Landis, L., McGarry, F., Waligora, S., et al., Manager’s Handbook for Software Development
(Revision 1), SEL-84-101, Software Engineering Laboratory, NASA/GSFC, November 1990.

Paulk, M. C., Curtis, B., Chrissis, M. B., and Weber, C. V., Capability Maturity Model for
Software, Version 1.1, CMU/SEI-93-TR-24, Software Engineering Institute, Carnegie
Mellon University, February 1993.

McGarry, F., and Jeletic, K., “Process Improvement as an Investment: Measuring Its Worth,”
Proceedings of the Eighteenth Annual Software Engineering Workshop, SEL-93-003,
NASA/GSFC, December 1993.

Currit, P. A., Dyer, M., and Mills, H. D., “Certifying the Reliability of Software,” 1IEEE
Transactions on Software Engineering, Vol. SE-12, No. 1, January 1986, pp. 3—11.

Basili, V. R., and Green, S., “Software Process Evolution at the SEL,” IEEE Software, Vol.

133 NASA-GB-001-94

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Rombach, H. D., Ulery, B. T., and Valett, J. D., “Toward Full Life Cycle Control: Adding
Maintenance Measurement to the SEL,” Journal of Systems and Software, Vol. 18, 1992,

Caldiera, G., McGarry, F., Waligora, S., Jeletic, K., and Basili, V. R., Software Process
Improvement Guidebook, NASA-GB-002-94, Software Engineering Program, 1994.

International Function Point Users Group, Function Point Counting Practices Manual,
Release 3.2, Westerville, Ohio, 1991.

McGarry, F., “Experimental Software Engineering: Seventeen Years of Lessons in the SEL,”
Proceedings of the Seventeenth Annual Software Engineering Workshop, SEL-92-004,
NASA/GSFC, December 1992.

Heller, G., Valett, J., and Wild, M., Data Collection Procedures for the Software Engineering
Laboratory Database, SEL-92-002, Software Engineering Laboratory, NASA/GSFC, March
1992.

Decker, W. and Valett, J.,, Software Management Environment (SME) Concepts and
Architecture, SEL-89-003, Software Engineering Laboratory, NASA/GSFC, August 1989.

Hall, D., Sinclair, C., and McGarry, F., Profile of Software at the Goddard Space Flight
Center, NASA-RPT-002-94, Software Engineering Program, April 1994.

Basili, V. R., and Perricone, B. T. “Software Errors and Complexity: An Empirical
Investigation,” Communications of the ACM, January 1984, Vol. 27, No. 1.

Basili, V. R., and Weiss, D. M. “A Methodology for Collecting Valid Software Engineering
Data,” IEEE Transactions on Software Engineering, November 1984.

Basili, V. R., and Rombach, H. D. “The TAME Project: Towards Improvement-Oriented
Software Environments,” IEEE Transactions on Software Engineering, June 1988.

Caldiera, G., Jeletic, K., McGarry, F., Pajerski, R., et al., Software Process Improvement
Guidebook, NASA-GB-001-95, Software Engineering Program, 1995.

Kelly, J. C., Sherif, J. S., and Hops, J., “An Analysis of Defect Densities Found During
Software Inspections,” Journal of Systems and Software, Vol. 17, No. 2, February 1992.

NASA-GB-001-94 134

