
NASA-GB-001-94

Software

Engineering
Program

Software Measurement Guidebook

August 1995

NATIONAL AERONAUTICS AND

SPACE ADMINISTRATION

WASHINGTON, DC

Software

Engineering
Program

Software Measurement Guidebook

August 1995

........17,Z_
NATIONAL AERONAUTICS AND

SPACE ADMINISTRATION

WASHINGTON, DC

Foreword

This document is a product of the NASA Software Program, an Agency-wide program to

promote continual improvement of software engineering within NASA. The goals and strategies

for this program are documented in the NASA Software Strategic Plan, July 13, 1995.

Additional information is available from the NASA Software IV&V facility on the World Wide

Web at site http://www.ivv.nasa.gov/.

iii NASA-GB-001-94

Office of the Chief Engineer

Software Measurement Guidebook

Approvals

/original copy signed/

Rose Pajerski

Technical RTOP Manager

/original copy signed/

Donald Sova

Manager, Software Engineering Program

v NASA-GB-001-94

Contents

Foreword .. iii

Chapter 1. Introduction ... 1

1.1 Background ... 1

1.2 Purpose .. 2

1.3 Organization .. 2

Chapter 2. The Role of Measurement in Software Engineering ... 5

2.1 Measurement To Increase Understanding ... 6

2.2 Measurement for Managing Software ... 12

2.2.1 Planning and Estimating ... 13

2.2.2 Tracking .. 15

2.2.3 Validating .. 16

2.3 Measurement for Guiding Improvement ... 16

2.3.1 Understanding ... 18

2.3.2 Assessing ... 19

2.3.3 Packaging .. 20

Chapter 3. Establishing a Measurement Program ... 21

3.1 Goals ... 22

3.2 Scope ... 23

3.3 Roles, Responsibilities, and Structure .. 24
3.3.1 The Source of Data ... 25

3.3.2 Analysis and Packaging .. 26

3.3.3 Technical Support ... 26

3.4 Selecting the Measures .. 28

3.5 Cost of Measurement .. 30

3.5.1 Cost to the Software Projects .. 32

3.5.2 Cost of Technical Support .. 32

3.5.3 Cost of Analysis and Packaging .. 33

Chapter 4. Core Measures ... 35

4.1 Cost ... 36

4.1.1 Description .. 37
4.1.2 Data Definition .. 37

4.2 Errors ... 39

4.2.1 Description .. 39
4.2.2 Data Definition .. 40

4.3 Process Characteristics .. 41

4.3.1 Description .. 41

vii NASA-GB-001-94

4.3.2 DataDefinition..42

4.4 ProjectDynamics..43
4.4.1 Description..43
4.4.2 DataDefinition..43

4.5 ProjectCharacteristics..44
4.5.1 Description..45
4.5.2 DataDefinition..46

Chapter5. Operationof aMeasurementProgram..51
5.1 DevelopmentandMaintenance...53

5.1.1 ProvidingData..53
5.1.2 Participatingin Studies...54

5.2 TechnicalSupport...54
5.2.1 CollectingData...54
5.2.2 StoringandQualityAssuringData...56
5.2.3 Summarizing,Reporting,andExportingData..57

5.3 AnalysisandPackaging..58
5.3.1 DesigningProcessImprovementStudies..59
5.3.2 AnalyzingProjectData...60
5.3.3 PackagingtheResults...61

Chapter6. Analysis,Application,andFeedback..69

6.1 Understanding...70
6.1.1 SoftwareAttributes...71
6.1.2 CostCharacteristics..75
6.1.3 ErrorCharacteristics...80
6.1.4 ProjectDynamics..84

6.2 Managing..85
6.2.1 Planning..86
6.2.2 AssessingProgress..89
6.2.3 EvaluatingProcesses...95

6.3 GuidingImprovement...96

Chapter7. Experience-BasedGuidelines..103

AppendixA. SampleDataCollectionForms...109

AppendixB. SampleProcessStudyPlan..127

AppendixC. List of Rules..129

AbbreviationsandAcronyms...131
References..133

NASA-GB-001-94 viii

Figures

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

3-1

3-2

3-3

4-1

4-2

4-3

4-4

4-5

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

6-1

6-2

6-3

6-4

6-5

6-6

Motivation for Understanding the Software Engineering Process 7

Effort Distribution by Activity ... 9

Error Class Distribution ... 10

Growth Rate of Source Code ... 11

Change Rate of Source Code ... 12

Sample Process Relationships .. 13

Tracking Growth Rate .. 15

The Five Maturity Levels of the CMM .. 17

The Understand/Assess/Package Paradigm ... 18

The Three Components of a Measurement Program ... 25

The SEL as a Sample Structure for Process Improvement .. 28

Cost of Software Measurement .. 31

Cost Data Collection Summary .. 39

Error Data Collection Summary .. 41

Process Characteristics Data Collection Summary .. 43

Project Dynamics Collection Summary ... 44

Project Characteristics Collection Summary ... 49

Three Data Collection Mechanisms ... 52

Project Summary Statistics .. 58

Process Study Plan Outline .. 60

High-Level Development Project Summary Report .. 62

High-Level Maintenance Project Summary Report ... 63

Impact of Ada on Effort Distribution ... 64

Sample Error Rate Model .. 65

SME Architecture and Use .. 67

Language Usage Trend ... 73

Code Reuse Trend .. 74

Derivation of 20 Percent Reuse Cost Factor for FORTRAN ... 76

Derivation of 30 Percent Reuse Cost Factor for Ada ... 77

Effort Distribution Model .. 78

Staffing Profile Model ... 78

ix NASA-GB-001-94

6-7

6-8

6-9

6-10

6-11

6-12

6-13

6-14

6-15

6-16

6-17

6-18

6-19

6-20

6-21

6-22

6-23

6-24

7-1

A-1

A-2

A-3

A-4

A-5

A-6

A-7

A-8

A-9

A-10

A-11

A-12

A-13

TypicalAllocation of Software Project Resources .. 81

Error Detection Rate by Phase ... 82

Comparative Error-Class Distributions .. 83

Cyclomatic Complexity and SLOC as Indicators of Errors (Preliminary Analysis) 84

Growth Rate Model .. 85

Planning Project Dynamics .. 89

Growth Rate Deviation .. 91

Change Rate Deviation .. 91

Staff Effort Deviation .. 92

Tracking Discrepancies .. 93

Projecting Software Quality ... 94

Impact of the Cleanroom Method on Software Growth ... 95

Impact of the Cleanroom Method on Effort Distribution .. 98

Impact of IV&V on Requirements and Design Errors ... 100

Percentage of Errors Found After Starting Acceptance Testing 101

IV&V Error Rates by Phase ... 101

Impact of IV&V on Effort Distribution ... 102

Impact of IV&V on Cost .. 102

Examples of Measures Collected Manually ... 108

Change Report Form .. 110

Component Origination Form .. 112

Development Status Form .. 113

Maintenance Change Report Form .. 114

Personnel Resources Form ... 115

Personnel Resources Form (Cleanroom Version) .. 116

Project Completion Statistics Form ... 117

Project Estimates Form .. 118

Project Startup Form .. 119

Services/Products Form ... 120

Subjective Evaluation Form ... 121

Subsystem Information Form ... 124

Weekly Maintenance Effort Form ... 125

NASA-GB-001-94 x

Tables

2-1

2-2

2-3

4-1

4-2

4-3

4-4

4-5

6-1

6-2

6-3

6-4

6-5

6-6

6-7

6-8

6-9

7-1

A-1

Sample Software Characteristics ... 8

Distribution of Time Schedule and Effort Over Phases ... 14

Impact of the Cleanroom Method on Reliability and Productivity 19

Data Provided Directly by Project Personnel ... 38

Change Data ... 40

Process Characteristics Data .. 42

Project Dynamics Data ... 44

Project Characteristics Data ... 47

Questions Leading to Understanding ... 71

Software Attribute Data ... 72

Analysis of Maintenance Effort Data ... 80

Basis of Maintenance Costs Estimates .. 80

Questions Supporting Management Activities .. 86

Project Planning Estimates .. 88

Indicators of Change Attributable to Cleanroom ... 97

Impact of the Cleanroom Method on Reliability and Productivity 99

Indicators of Change Attributable to IV&V ... 100

Examples of Automated Measurement Support Tools .. 107

SEL Data Collection Forms ... 109

xi NASA-GB-001-94

Chapter 1. Introduction

1.1 Background

T his Software Measurement Guidebook is based on the extensive experience of several
organizations that have each developed and applied significant measurement 1 programs

over a period of at least 10 years. One of these organizations, the Software Engineering

Laboratory (SEL) at the National Aeronautics and Space Administration (NASA) Goddard Space

Flight Center (GSFC), has been studying and applying various techniques for measuring software

since 1976. During that period, the SEL has collected measurement data from more than 100

flight dynamics projects ranging in size from 10,000 to over 1,000,000 source lines of code

(SLOC). These measurement activities have generated over 200,000 data collection forms, are

reflected in an online database, and have resulted in more than 200 reports and papers. More

significantly, they have been used to generate software engineering models and relationships that

have been the basis for the software engineering policies, standards, and procedures used in the

development of flight dynamics software.

Many other organizations in both Government and industry have documented their significant

measurement experiences. (See, for example, References 1 through 7.) The lessons derived from

those experiences reflect not only successes but also failures. By applying those lessons, an

organization can minimize, or at least reduce, the time, effort, and frustration of introducing a

software measurement program.

The Software Measurement Guidebook is aimed at helping organizations to begin or improve a

measurement program. It does not provide guidance for the extensive application of specific

measures (such as how to estimate software cost or analyze software complexity) other than by

providing examples to clarify points. It does contain advice for establishing and using an

effective software measurement program and for understanding some of the key lessons that

other organizations have learned. Some of that advice will appear counterintuitive, but it is all

based on actual experience.

Although all of the information presented in this guidebook is derived from specific experiences

of mature measurement programs, the reader must keep in mind that the characteristics of every

organization are unique. Some degree of measurement is critical for all software development

and maintenance organizations, and most of the key rules captured in this report will be generally

applicable. Nevertheless, each organization must strive to understand its own environment so that

the measurement program can be tailored to suit its characteristics and needs.

Historically, many software organizations have established development and maintenance

processes and standards in an ad hoc manner, on the basis of guidance from outside the

organization, or from senior personnel called upon to establish company standards. Often, this

approach has led to incompatibilities, unconvinced development groups, and, occasionally,

complete confusion. Too often, organizations attempt to generate policies or standards and to

1 Some organizations use the terms metrics and measurement interchangeably.

1 NASA-GB-001-94

adoptparticulartechnologieswithout first understandingtheexistingprocessesandenvironment.
This lack of understandingcan makea bad situation worse.Before establishingpolicies and
defining standards,an organizationmust clearly understandthe environmentand the existing
processes.A commitmentto understandand improve local softwareprocessesrequires the
establishmentof a softwaremeasurementprogram,which is the precursorto continualprocess
improvement.

Thefollowing rule is the singlemostimportantoneregardingsoftwaremeasurement:

Understand thatsoftware measurementis a means to an end,
not an end in itsetf.

A measurement program without a clear purpose will result in frustration, waste, annoyance, and

confusion. To be successful, a measurement program must be viewed as one tool in the quest for

the improved engineering of software.

1.2 Purpose

The purpose of this Software Measurement Guidebook is threefold. First, it presents information

on the purpose and importance of measurement--information that has grown out of successful

measurement applications.

Second, the guidebook presents the specific procedures and activities of a measurement program

and the roles of the people involved. This guidebook discusses the basic set of measures that

constitutes the core of most successful measurement programs. It also provides some guidance

for tailoring measurement activities as a program matures and an organization captures its own

experiences.

Finally, the guidebook clarifies the role that measurement can and must play in the goal of

continual, sustained improvement for all software production and maintenance efforts throughout

NASA. As NASA matures in its understanding and application of software, it is attempting to

apply the most appropriate software technologies and methodologies available. Like any other

software organization, NASA must build a firm foundation for software standards, policies, and

procedures. A carefully established measurement program can provide the rationale for

management decision making, leading to achievement of the goal of sustained improvement.

1.3 Organization

This "Introduction" is followed by six additional chapters and three appendices.

Chapter 2, "The Role of Measurement in Software Engineering," lays the groundwork for

establishing a measurement program. The chapter explains why any software group should have

a well-defined measurement program and provides examples of supporting data that can be

valuable in justifying the costs involved in implementing such a program.

Chapter 3, "Establishing a Measurement Program," describes the essential steps for starting a

measurement program. The chapter includes organization, key measurement data, classes and

NASA-GB-001-94 2

sourcesof data, general cost information, and, most important, goal setting and application of the

measurement program.

Chapter 4, "Core Measures," introduces the recommended core set of measures that can benefit

any software organization.

Chapter 5, "Operation of a Measurement Program," discusses major organizational issues, data

collection and storage, quality assurance (QA) of the data, feedback of data, and cost of

operations.

Chapter 6, "Analysis, Application, and Feedback," presents information on the analysis of

measurement data and the application and feedback of information derived from a measurement

program.

Chapter 7, "Experience-Based Guidelines," offers some precautions for software organizations

that plan to include software measurement among their development and maintenance processes.

Appendices A, B, and C provide sample data collection forms, a sample process study plan, and

a list of rules, respectively.

3 NASA-GB-001-94

Chapter 2. The Role of Measurement in Software

Engineering

Chapter Highlights

THREE KEY REASONS FOR SOFTWARE MEASUREMENT

Understanding Software
• Baseline models and relationships
• Key process characteristics
• Four measurement examples

Managing Software Projects
• Planning and estimating
• Tracking actuals versus estimates
• Validating models

Guiding Process Improvement
• Understanding
• Assessing
• Packaging

5 NASA-GB-001-94

T his chapter clarifies the role that a software measurement program can play in support of
software development and maintenance activities and provides sound motivation for any

organization to initiate or expand its analysis of data and application of results. The

chapter explains the three key reasons for an organization to measure its software engineering

processes and product, providing actual examples from software organizations with mature

measurement programs.

A software organization may want to establish a software measurement program for many

reasons. Those range from having good management information for guiding software

development to carrying out research toward the development of some innovative advanced

technique. However, more than 17 years of experience with software measurement activities

within NASA have shown that the three key reasons for software measurement are to

1. Understand and model software engineering processes and products

2. Aid in the management of software projects

3. Guide improvements in software engineering processes

Any one of these reasons should be enough to motivate an organization to implement a

measurement program. The underlying purpose of any such program, however, must be to

achieve specific results from the use and application of the measures; collecting data is not the

objective. Most failed measurement programs suffer from inadequate or unclear use of data, not

from an inadequate or unclear data collection process. The rule in Chapter 1 implies that the

measurement program must be defined in a way that satisfies specific objectives. Without such

objectives, no benefit will be derived from the measurement effort.

2.1 Measurement To Increase Understanding

The most important reason for establishing a measurement program is to evolve toward an

understanding of software and the software engineering processes in order to derive models of

those processes and examine relationships among the process parameters. Knowing what an

organization does and how it operates is a fundamental requirement for any attempt to plan,

manage, or improve. Measurement provides the only mechanism available for quantifying a set

of characteristics about a specific environment or for software in general.

Increased understanding leads to better management of software projects and improvements in

the software engineering process. A software organization's objective may be to understand the

status of the software engineering process or the implications of introducing a change. General

questions to be addressed might include the following:

* How much are we spending on software development?

* Where do we allocate and use resources throughout the life cycle?

* How much effort do we expend specifically on testing software?

• What types of errors and changes are typical on our projects?

Figure 2-1 illustrates some more specific questions that may be of immediate concern to a

software manager.

NASA-GB-001-94 6

o

Figure 2-1. Motivation for Understanding the Software Engineering Process

To be able to address such issues, an organization must have established a baseline

understanding of its current software product and process characteristics, including attributes

such as software size, cost, and defects corrected. Once an organization has analyzed that basic

information, it can build a software model and examine relationships. For example, the expected

level of effort can be computed as a function of estimated software size. Perhaps even more

important, understanding processes makes it possible to predict cause and effect relationships,

such as the effect on productivity of introducing a particular change into a process.

This guidebook emphasizes the importance of developing models of a local organization's

specific software engineering processes. However, a general understanding of the engineering of

software can also prove beneficial. It provides a foundation for appreciating which types of

models and relationships apply in a specific software development or maintenance environment.

For example, a manager should know that, in any environment, the amount of effort required to

complete a project is related to the size of the software product and that changing the size of the

staff will have an effect on the ability to meet scheduled milestones. The precise effect within the

local environment depends on a complex combination of factors involving staff productivity,

experience, and maturity. The parameter values that tailor the model to the unique characteristics

of the local environment must be derived, over time, under the careful administration of the

measurement program.

Potential objections to establishing a measurement program and developing an understanding of

the current processes are numerous:

• My organization is changing too fast.

* Each project is unique.

7 NASA-GB-001-94

• Technology is changing too fast.

• Project results merely reflect the characteristics of the people on the projects.

• I don't care about future projects; I care only about current results.

Each of these objections may have some merit; nevertheless, it is essential to establish the

baseline before introducing change. Managers who have never collected data to confirm or

challenge basic assumptions about their environments may have inaccurate perceptions about the

software processes in use within their organizations.

Experience derived from many NASA programs shows that an organization establishing a

baseline understanding of its software engineering processes and products should concentrate on

collecting measurement data to reflect certain key software characteristics. Table 2-1 suggests

sample characteristics and refers to four examples that illustrate the points using actual NASA

experience.

Table 2-1. Sample Software Characteristics

Understanding

What are the cost (resource)
characteristics of software in my

organization?

What are the error (reliability)
characteristics of software in my

organization?

How does my organization_ rate

of source code production (or
change) compare to previous
experience?

How does the amount of

software to be developed relate
to the duration of the project and

the effort required? What is the
relationship between estimated

software size and other key
parameters?

Key Characteristics

• Distribution of effort among development
activitiesamount spent on design, code, test,
or other activities

• Typical cost per line of code

• Cost of maintenance

• Hours spent on documentation

• Computer resources required

• Amount of rework expected

• Number and classes of errors found during
development or maintenance

• How and when software defects are found

• Number and classes of errors found in

specifications

• Pass/fail rates for integration and system
testing

• Typical rate of growth of source code during

development

• Typical rate of change of source code during
development or maintenance

• Total number of lines of code produced

• Schedule as a function of software size

• Cost as a function of size

• Total number of pages of documentation
produced

• Average staff size

NASA

Experience

Example

1

Example

2

Example

3

Example

4

NASA-GB-001-94 8

Example 1:

Effort Distribution Characteristics

Knowing the distribution of effort over a

set of software development activities can

contribute significantly to an understanding

of software engineering processes. One

NASA organization analyzed data from

over 25 projects, representing over 200

staff-years of effort on actual mission

software, to build the model shown in

Figure 2-2. The model of effort distribution

over a set of software development

activities, which may occur across various

phases of the software life cycle, is

invaluable for management planning on

new projects. The organization uses data

from ongoing projects to update the model,

which continues to evolve, providing more

accurate information for future project

managers in that environment.

Many software organizations mistakenly

Other
26%

Design
23%

Test

3O%

Code
21%

Figure 2-2. Effort Distribution by Activity

assume that a generic model of distribution across life-cycle activities will apply for any

organization and in any application domain. It is possible to derive a model, or a

hierarchy of models, with more general applicability. For example, useful models can be

derived by analyzing data from all software projects throughout NASA or for all flight

simulator software projects throughout NASA. However, local organizations can apply

such models with varying degrees of confidence and accuracy. Experience has shown that

a model derived from, and updated with, data collected within the specific software

environment is a more accurate tool--a more suitable means to a desired end.

Before local effort distribution was understood, managers had to rely on general

commercial models. 2 There was also no understanding of how much time software

developers spent on activities other than designing, coding, and testing software. In the

model shown, for example, the "other" category includes activities such as training,

meetings, and travel.

Experience has shown that such models are relatively consistent across projects within a

specific environment. This model may not be directly applicable to other software

development environments, however, because of variables such as personnel, application

domain, tools, methods, and languages. Each software organization should produce its

own effort distribution profile.

2 Commercial models of effort distribution have historically recommended allocating 40 percent of project resources

to analysis and design, 20 percent to coding, and 40 percent to testing.

9 NASA-GB-001-94

An organization must also decide which activities and portions of the software or system

life cycle will be included in the model or models. Even managers within the local

organization can use the model shown in Figure 2-2 only for development projects,

because no software maintenance data are included in the model. Any maintenance

organization, however, can develop a similar model. Further, the sample domain is

limited to software engineering concerns. An organization that develops or maintains

complete systems must establish and maintain models that include activities across the

entire system life cycle.

Example 2:
Error Distribution Characteristics

Another important part of understanding the software engineering process is being aware

of the common classes of errors. Software project personnel must understand not only

where errors originate and where they are corrected, but also the relative rates of error

occurrence in different classes. A measurement program provides the means to determine

error profiles. Software project personnel can use profiles of error characteristics to

improve development processes on future projects or on later stages of an ongoing

project.

Figure 2-3 represents a simple model of error characteristics for one NASA environment.

A large sample of NASA projects collected data representing more than 10,000 errors

over a 5-year period. The definitions of the error classes are meaningful to the organi-

zation that collected and analyzed the data but may not be suitable in other environments.

Each organization must characterize the classes of errors that are important in its own
environment.

The distribution percentages shown in the model are specific to the organization that pro-

vided the data. Moreover, in this environment, the general profile of errors does not

change significantly across different projects. Although the error rate has steadily

declined over a period of years, the

profile shown has remained relatively
stable.

An environment-specific model of error

distribution can provide decision support

for the planning and management of new

projects. A manager who notices that one

class of error is becoming more common

can redirect effort to concentrate on that

class during inspections and reviews. An

error class distribution profile serves as a

measurement tool to help both

management and technical personnel
isolate errors earlier in the software life

cycle, reduce life-cycle costs, and

increase software reliability.

Computation
15%

Data

30%

Initialization

15%

Logic/Control
16%

Interfaces

24%

Figure 2-3. Error Class Distribution

NASA-GB-001-94 10

Example 3:

Software Growth and Change Characteristics

Insight into the rates of growth and change of source code also helps to build a better

understanding of software engineering processes. Code growth reflects the rate at which

source code is added to a controlled library; code change reflects modifications to the

controlled, or baselined, library. An understanding of the model for such rates can provide

a basis for determining if a new project is progressing as expected or if it is producing or

changing source code at a rate that differs from the organization's historical profile.

Figure 2-4 depicts the typical rate of growth of source code in a NASA environment. The

data were derived from over 20 software projects that followed a waterfall life cycle. This

information is used only to model typical projects in one particular environment, not to

determine the quality of a given process.

O
_J
co

I--

100

90-

80-

70-

60-

50-

40-

30-

20-

10-

Design

ill I

10 20

I System IAcceptance

Code/Test _,

! !
! !
I I
! !
I I
I I
! !
! !
I I
! !
I I
I I
I I
! !
I I
! !

30 40 50 60 70 80 90 100

% of Schedule

NOTE: SLOC = Source Lines of Code

Figure 2-4. Growth Rate of Source Code

Figure 2-5 shows the accumulated changes to source code during the development phases

in the same environment. Both of the profiles shown here were derived from

measurement data that were inexpensive to collect and analyze, and the resulting models

are quite stable.

11 NASA-GB-001-94

..J

6
.>

E

8

9.00

8.00 --

7.00 --

6.00 --

5.00 --

4.00 --

3.00 --

2.00 --

1.00 --

0.00

Desiqn

10 20 30 40

I System I Acceptance

Code/Test I Test I Test

I

,,

, I , I I I , I , i ,

50 60 70 80 90 100

% of Schedule

NOTE: KSLOC = 1,000 Source Lines of Code

Figure 2-5. Change Rate of Source Code

Example 4:

Software Process Relationships

The functional relationships between product and process parameters provide additional

understanding of an organization's software engineering processes. This understanding

can be applied to the planning and management of subsequent projects in the same

environment.

Figure 2-6 presents examples of a few key relationships that were found useful in several

NASA environments. A SEL report (Reference 8) discusses those and other such

relationships and how they can be applied. The relationship constants are periodically

revised to reflect evolving organizational models. After the historical database has been

created, the additional effort required to develop such relationships has proved to be small

and worthwhile, leading to increased understanding of the software engineering process.

2.2 Measurement for Managing Software

The second key reason for establishing an effective measurement program is to provide improved

management information. Having an understanding of the software environment based on

models of the process and on relationships among the process and product parameters allows for

better prediction of process results and more awareness of deviations from expected results.

Thus, understanding the software engineering process leads to better management decision

making. The understanding comes from analyzing local data; without analysis, any data

NASA-GB-001-94 12

Effort (in staff-months)

Duration (in months)

Pages of Documentation

Annual Maintenance Cost

Average Staff Size

= 1.48" (KSLOC) °.98

= 4.6" (KSLOC) °.26

= 34.7" (KSLOC) °.93

= 0.12" (Development Cost)

= 0.24 * (Effort) 0.73

Figure 2-6. Sample Process Relationships

collection activity is a waste of effort. The next step is to use the understanding that comes from

the engineering models to plan and manage software project activities.

A measurement program that focuses on the collection process, or that does not have a clear plan

for applying the acquired understanding, will fail.

Specifically, the knowledge gained about the software engineering process will be used to

• Estimate project elements such as cost, schedules, and staffing profiles

• Track project results against planning estimates

• Validate the organizational models as the basis for improving future estimates

Engineering models and relationships provide a foundation for the software engineering

estimates that form an important part of the project management plan. Without accurate models

based on similar classes of software development and maintenance activities, project

management success is uncertain.

The next three sections address the use of models and relationships in more detail.

2.2.1 Planning and Estimating

One of the most critical responsibilities of a software project manager is developing a software

project management plan, and one of the most important elements of that plan is a set of project

estimates for cost, schedule, staffing requirements, resource requirements, and risks.

Measurement results from similar completed projects are used to derive software engineering

models (providing an understanding of the environment), which, in turn, are used to develop the

estimates. The quality of the information in the historical database directly affects the quality of

the software engineering models and, subsequently, the quality of the planning estimates for new

projects.

13 NASA-GB-001-94

A manager who can produce a product size estimate based on software functionality

requirements can then derive such estimates as cost and schedule using organizational models

and relationships. The standard size estimates within the SEL are currently based on developed

lines of code (DLOC). (For a detailed discussion of DLOC--software size with a weighting

factor applied to reused code--see Reference 9 and Sections 4.5.2 and 6.1.2 of this document.)

Given a product size estimate and the distribution percentages shown in Table 2-2 (Reference

10), a manager can derive project cost (measured as staff effort) and schedule estimates using the

relationships

where

for FORTRAN, and

Effort (in hours) = DLOC / Productivity

Productivity = 3.2 DLOC per Hour

Duration (in months) = 4.9 (Effort [in staff-months]) °3

for attitude ground support systems (AGSSs).

For example, assuming an estimated product size of 99,000 DLOC for an AGSS to be developed

in FORTRAN, a total effort of approximately 200 staff-months and a total duration of

approximately 24 calendar months can be estimated. 3 The table also provides derived project

estimates for the cost and duration of each major life-cycle phase. In this model, the design phase

comprises requirements analysis, preliminary design, and detailed design, and the test phase

encompasses both system and acceptance test. Initial planning estimates may have to be adjusted

for changes in requirements or schedule. It is also important to note that the specific parameters

in the relationships shown here are highly dependent on environmental factors, such as the local

definition of a line of code. Although anyone can use this model as a starting point, each

organization must analyze its data to derive its own distribution model.

Table 2-2. Distribution of Time Schedule and Effort Over Phases

Life-
Cycle

Phases

Design

Code

Test

Distribution Model
(Reference 10)

Time
Schedule

(%)

35

30

35

Effort
(%)

30

40

30

Sample Derived Estimates
(for 99,000 DLOC)

Completion
Milestones
(Months by

Phase)

8.4

7.2

8.4

Staff-
Months

(Allocated
by Phase)

60

80

60

3 The conversion between staff-months and staff-hours is organization-dependent. In this example, 1 staff-month =
157 staff-hours.

NASA-GB-001-94 14

2.2.2 Tracking

An important responsibility of software project management is tracking the actual size, effort,

budget, and schedule against the estimates in the approved plan. Successful, effective

management requires visibility into the progress and general status of the ongoing project, so that

timely and informed adjustments can be made to schedules, budgets, and processes. Periodic

sampling of project measurement data provides that visibility.

The extent and effectiveness of the project tracking process depends on the availability and

quality of a set of historical models and relationships. If the only available model is related to

cost data, then management tracking will be limited to cost information. However, a more

extensive set of derived models for staff size, software growth rate, software change rate, error

rate, and other parameters will facilitate a broader tracking capability.

Figure 2-7 illustrates the process of tracking the actual software growth rate 4 against the planning

estimates. In this illustration, the planned growth estimates are based on the model introduced in

Figure 2-4. A deviation of the actual values from the expected curve indicates simply that

something is different from the historical model. Such a deviation does not necessarily signal a

problem; rather, it can provide the program manager with an opportunity to explain the

difference. In particular, the deviation may have resulted from a planned improvement. For

example, a project that is reusing a larger amount of code than the typical past project may show

a sharp jump in growth rate when reused code is moved into the controlled library.

O

o
co

o
p-

_6

100

90

80

70

60

50

40

30

20

10

Design Code/Test

10 20 30 40 50 60

% of Schedule

System Acceptance

Test Test

70 80 90 100

Figure 2-7. Tracking Growth Rate

4 Software growth rate reflects the rate at which programmers complete the unit testing of source code. In Figure 2-7,

the actual percentage of the total is computed with respect to the estimated size at completion.

15 NASA-GB-001-94

2.2.3 Validating

Once a manager has the ability to track actual project measures against planning estimates, he or

she can begin to use any observed differences to evaluate the status of the project and to support

decisions to take corrective actions. Figure 2-7 also shows an allowable range of deviation

around the planned or expected values on the growth curve. Observing the trend of the actual

growth rate relative to the planned values can provide a management indicator of a healthy

project (as determined by a growth pattern within the expected range) or a potential problem that

requires further evaluation to determine the cause (as is the case in Figure 2-7). With the insight

gained by observing the trend, a manager can adjust staffing or schedule to get the project back
on track.

Although it is obvious that an actual value below the allowable range may indicate a cause for

concern, it is perhaps less obvious that an actual value that falls above the allowable range should

also generate a management investigation. In this example, a software growth rate above the

allowable range may indicate that some other project activities are not being performed or,

perhaps, that the wrong model was used for planning and estimation. Consistent and regular

deviations may also indicate a need to adjust the organization's models.

Examples within this section have illustrated that a baseline understanding of the software

engineering process derived from historical results provides the essential model, which leads to

the planning estimate, which makes the tracking possible. The process of tracking actual versus

planned growth values provides the insight for model validation, which facilitates adjustments by

project management. The fundamental element of measurement support for project management

is understanding the software engineering process.

2.3 Measurement for Guiding Improvement

The primary focus of any software engineering organization is to produce a high-quality product

within schedule and budget. However, a constant goal, if the organization is to evolve and grow,

must be continual improvement in the quality of its products and services. Product improvement

is typically achieved by improving the processes used to develop the product. Process

improvement, which requires introducing change, may be accomplished by modifying

management or technical processes or by adopting new technologies. Adoption of a new

technology may require changing an existing process. In any case, software measurement is a key

part of any process improvement program; knowing the quality of the product developed using

both the initial and the changed process is necessary to confirm that improvement has occurred.

There are several popular paradigms for software process improvement. For example, the

Capability Maturity Model (CMM) for Software (Reference 11), produced by the Software

Engineering Institute (SEI) at Carnegie Mellon University, is a widely accepted benchmark for

software engineering excellence. It provides a framework for grouping key software practices

into five levels of maturity. A maturity level is an evolutionary plateau on the path toward

becoming a mature software organization. The five-level model, represented in Figure 2-8,

provides a defined sequence of steps for gradual improvement and prioritizes the actions for

improving software practices.

NASA-GB-001-94 16

Continually _'t

Improving Processf I

Predictable _ Managed

Process f I

Standard, /_ Defined

Consistent Proces___J 3

Repeatable

Disciplined _" I=
Process (

Initial
1

Optimizing
5

Figure 2-8. The Five Maturity Levels of the CMM

The SEI provides the following characterization of the five levels:

1. Initial--The software process is characterized as ad hoc and, occasionally, even chaotic.

Few processes are defined, and success depends on the efforts of individuals.

. Repeatable--Basic project management processes are established to track cost, schedule,

and functionality. The necessary process discipline is in place to repeat earlier successes

on projects with similar applications.

. Defined--The software process for both management and engineering activities is

documented, standardized, and integrated into an organization-wide software process. All

projects use a documented and approved version of the organization's process for

developing and maintaining software.

. Managed--Detailed measures of the software process and product quality are collected.

Both the software process and products are quantitatively understood and controlled using
detailed measures.

5. Optimizing--Continuous process improvement is enabled by quantitative feedback from

the process and from testing innovative ideas and technologies.

The CMM is an organization-independent model that emphasizes improving processes to reach a

higher maturity level when compared to a common benchmark. Such a model presupposes that

the application of more mature processes will result in a higher quality product. In contrast, the

SEL has introduced a process improvement paradigm for NASA with specific emphasis on

17 NASA-GB-001-94

producing a better product based on the individual goals of the organization. Figure 2-9

illustrates the SEL's Understand/Assess/Package paradigm.

In the SE1 model, a baseline assessment of an organization's deficiencies, with respect to the key

processes defined at each of the maturity levels, determines the priority with which the

organization implements process improvements. In the SEL model, the specific experiences and

goals of the organization drive changes. (See Reference 12 for a more detailed comparison of the

two paradigms.)

_ PACKAGING

Iterate/ _ Define, redefine, and tailor

/ / processes and models on the basis of
/ I new experiences

/
/

/ / ,Set goals
[,Choose processes and experiment
' • Execute processes

UNDERSTANDING • Analyze data and determine impact

• Establish baselines
• Extract and define processes
• Build models

Time •

Figure 2-9. The Understand�Assess�Package Paradigm

2.3.1 Understanding

Section 2.1 introduced understanding as the primary reason for establishing a measurement

program; that same understanding provides the foundation for NASA's process improvement

paradigm. To provide the measurement basis for its software engineering process improvement

program, an organization must begin with a baseline understanding of the current processes and

products by analyzing project data to derive (1) models of the software engineering processes and

(2) relationships among the process and product parameters in the organization's environment.

As the organization's personnel use the models and relationships to plan and manage additional

projects, they should observe trends, identify improvement opportunities, and evaluate those

opportunities for potential payback to the organization. As improvements are implemented, new

project measurement results are used to update the organization's models and relationships.

These updated models and relationships improve estimates for future projects.

NASA-GB-001-94 18

Improvement plans must be made in the context of the organization's goals. Improvement can be

defined only within the domain of the organization--there are no universal measures of

improvement. An organization may base its process improvement goals on productivity, cost,

reliability, error rate, cycle time, portability, reusability, customer satisfaction, or other relevant

characteristics; however, each organization must determine what is most important in its local

environment. Using measurement as the basis for improvement permits an organization to set

specific quantitative goals. For example, rather than simply striving to reduce the error rate, an

organization can establish a goal of lowering the error rate by 50 percent. Determining the effect

of introducing change requires initial measurement of the baseline.

2.3.2 Assessing

Once an organization understands the current models and relationships reflecting its software

process and product, it may want to assess the impact of introducing a process change. It should

be noted that a change is not necessarily an improvement. Determining that a change is an

improvement requires analysis of measures based on the organization's goals. For example,

assume that an organization's goal is to decrease the error rate in delivered software while

maintaining (or possibly improving) the level of productivity; further assume that the

organization has decided to change the process by introducing the Cleanroom method (Reference

13). Cleanroom focuses on achieving higher reliability (i.e., lower error rates) through defect

prevention. Because the organization's primary goal is to reduce the error rate, there is no

concern that the Cleanroom method does not address reuse, portability, maintainability, or many

other process and product characteristics.

During a recent study (Reference 14), the SEL assessed the impact of introducing the Cleanroom

method. Table 2-3 shows the error rate and productivity measures for the baseline and the first

Cleanroom project. The results of the experiment appear to provide preliminary evidence of the

expected improvement in reliability following introduction of the Cleanroom method and may

also indicate an improvement in productivity. Chapter 6 provides additional details of the SEL

Cleanroom study.

Table 2-3. Impact of the Cleanroom Method on Reliability and Productivity

Error Rate
(Errors per

KDLOC)Data Source

Baseline 5.3 26

Cleanroom 4.3 40

NOTE: KDLOC = 1,000 Developed Lines of Code

Productivity
(DLOC per Day)

19 NASA-GB-001-94

2.3.3 Packaging

NASA experience has shown that feedback and packaging of measured results must occur soon

after completion of an impact assessment. Packaging typically includes written policies,

procedures, standards, and guidebooks. High-quality training material and training courses are

also essential parts of the packages.

For example, to incorporate the Cleanroom method as an integral part of its software develop-

ment activities, an organization must first prepare the necessary documentation and provide

training to all affected project personnel. Packaging is discussed in more detail in Chapter 5.

NASA-GB-001-94 20

Chapter 3. Establishing a Measurement Program

Chapter Highlights

GOALS

• Understanding the organization's goals
• Understanding measurement's application
• Setting expectations
• Planning for early success

SCOPE

• Focusing locally
• Starting small

ROLES AND RESPONSIBILITIES

• Providing data
• Analyzing and packaging
• Collecting and storing

SELECTING MEASURES

• Ensuring that measures are applicable
• Minimizing the number of measures
• Avoiding over-reporting

MEASUREMENT COSTS

• Project costs--the source of data
• Technical support costs
• Analysis and packaging costs

21 NASA-GB-001-94

A fter an organization understands the roles that measurement can play in software
engineering activities, it is ready to establish a measurement program. The effective

application of information derived from measurement entails building models,

identifying the strengths and weaknesses of a particular process, and aiding the management

decision process. A clear, well-defined approach for the application and analysis of measurement

information will minimize the cost and disruption to the software organization. Building on the

advice of the preceding chapter, this chapter addresses the following topics and provides

recommendations for successfully establishing a new measurement program:

• Understanding the organization's goals

,, Defining the scope of the measurement program

• Defining roles and responsibilities within the organization

,, Selecting the appropriate measures

• Controlling the cost of measurement

3.1 Goals

First, the organization must determine what it wants to accomplish through measurement. This

requirement leads to the next rule:

The goals of an organization may be to increase productivity or quality, reduce costs, improve the

ability to stay on schedule, or improve a manager's ability to make informed decisions. Typically,

an organization that is implementing a measurement program has all of these goals. Although it

is admirable to want to improve everything immediately, establishing priorities for achieving the

goals incrementally is essential. After clarifying the organizational goals, the organization must

recognize the need to establish a measurement program to achieve its goals.

If the goal is to improve productivity, for example, then the organization must know its current

productivity rate and understand its product and process characteristics. Both prerequisites are

supplied by measurement.

The results of a measurement program will be used in different ways at each level of the

organization. Senior management will be interested primarily in how the program improves the

capabilities and productivity of the organization and in the effect on the bottom line. Project

managers will be concerned with the impact on planning and managing current project efforts.

Software developers will be interested in how the program will make work easier compared with

the impact of data collection requirements. Successful measurement programs begin by involving

all participants in defining the goals.

NASA-GB-001-94 22

Becausepersonnelat different organizational levels will view a new measurement program from

different perspectives, the success of the program demands that those responsible for introducing
measurement follow the next rule:

The implementation of a measurement program will inevitably introduce change; change will

bring some resistance and some initial problems. To minimize resistance, both management and

technical personnel must be prepared to expect and accept the change and to encourage others to

be persistent and patient. Proper setting of expectations will enhance potential support and

acceptance from all management and technical personnel affected by the changes.

The first project should be selected carefully with the objective of demonstrating evidence of

early benefits. Measurement programs sometimes fail because well-intentioned measurement

coordinators wait too long "for all the results to come in" before reporting progress to senior

management. It is critical to report preliminary results as soon as possible after establishing the

program. The startup investment is significant, so management must see an early return on that

investment, or the program is likely to be canceled before measurement analysts can provide "all

the results." Equally important, project personnel need to see evidence of the benefits of their

efforts to reduce their inevitable resistance. The early payoff may be, for example, a better

understanding of the typical classes of errors that are detected in the organization's software

projects or an understanding of the relative amounts of time that personnel spend in coding as

compared with testing.

Although early feedback is essential for success, it is prudent not to promise substantial

improvement during the early phases of the program. Worthwhile analysis, synthesis, and

packaging take time and effort. Development and maintenance teams must be conditioned to

expect gradual, incremental improvements.

3.2 Scope

After the goals of the measurement program are established and understood, measurement

personnel must define the scope of the program, making the following critical decisions:

• Which projects should be included in the organization's measurement program?

• Which phases of the software life cycle should be included?

• Which elements of the project staff should be included; for example, is it important to

include the effort of secretarial support, publication support, and two or more levels of

management?

23 NASA-GB-001-94

Thoseresponsiblefor makingthesedecisionsmust considerboth the previouslydefinedgoals
and the need to gain acceptancefrom project personnelwho will be affectedby the new
measurementprogram.Thenext two rulesprovidehelp in definingthescope.

The scope of the measurement program should be limited to the local organization.

Organizational goals should have been based on the need for specific self-improvements, not for

making comparisons with others. When defining processes for data collection and analysis, it is

important to use concepts and terms that are understood locally. Precious effort should not be

expended developing universal or unnecessarily broad-based definitions of measurement

concepts and standards. Similarly, it is important to focus on developing a high-quality local

measurement data center. Combining detailed measurement data into larger information centers

has never proved beneficial and has consumed significant amounts of effort. Consultation with

management and software personnel can ensure proper focus and increase acceptance.

When establishing a measurement program, it is always important to start with a small scope.

Limiting the number of projects, restricting the portions of the software life cycle to those with

already well-defined processes within the organization, and limiting staff involvement to

essential personnel will all help to minimize resistance from, and impact on, managers and

development or maintenance personnel. The scope of the program will evolve, but the time to

increase the size of the program is after it has become successful.

3.3 Roles, Responsibilities, and Structure

After the organizational goals are well understood and the scope of the measurement program is

defined, the next step is to define roles and responsibilities. In a successful measurement

program, three distinct roles must be performed by components of the organization:

1. The source of data--providing measurement data from ongoing software development
and maintenance activities

2. Analys& and packaging--examining measurement data and deriving process models and

relationships

3. Technical support--vollecting, storing, and retrieving project information

Figure 3-1 illustrates the components and the relationships among them. Each component must

perform its distinct role while maintaining a close relationship with the other two components.

NASA-GB-001-94 24

I

Source of Data

• Provide objective information
• Provide subjective information

• Attend training
• Produce lessons-learned experience

• Use provided processes and models

update requests

] Maintain the Information Repository]

Technical Support

• Write data collection procedures
• Establish database structure
• QA and feed back data
• Archive data and documents

models, relationships,
processes

project information

models, relationships,

anal__ •

validated data

Analysis and Packaging

Analyze experiences
Develop models and relationships
Produce standards and training
Provide feedback

Figure 3-1. The Three Components of a Measurement Program

The next sections introduce the components' responsibilities in starting a measurement program

and map the components into the organizational structure. (Chapter 5 briefly describes the

operational responsibilities of the three components.)

3.3.1 The Source of Data

The responsibility of the development and maintenance component is to provide project data.

Providing data is the only responsibility imposed on the development and maintenance

personnel; they are not responsible for analyzing the data. These personnel can reasonably expect

to be provided with training that includes, at a minimum, the following information:

25 NASA-GB-001-94

* Clear descriptions of all data to be provided

* Clear and precise definitions of all terms

* Who is responsible for providing which data

* When and to whom the data are to be provided

In exchange, the development and maintenance component of the measurement program receives

tailored processes, refined process models, experience-based policies and standards, and tools.

3.3.2 Analysis and Packaging

The analysis and packaging component is responsible for developing and delivering the training

that will provide the developers and maintainers with the specific information listed in the

previous section. Analysis and packaging personnel must design and develop the data forms and

receive the raw data from the repository. They are responsible for examining project data;

producing tailored development and maintenance processes for the specific project domain;

generating organization-specific policies and standards; and generalizing lessons, information,

and process models. This measurement program component continually receives data from the

developers and maintainers of software and, in return, continually provides organization-specific

experience packages such as local standards, guidebooks, and models.

The analysis and packaging personnel are necessarily separate from the development and

maintenance personnel because their objectives are significantly different. Measurement analysts

are concerned solely with improving the software process. Software developers' and maintainers'

concerns include product generation, schedules, and costs. It is impractical to expect personnel

who must deliver a high-quality product on schedule and within budget to be responsible for the

activities necessary to sustain continual improvement; hence, those functions must be the

responsibility of a separate component.

3.3.3 Technical Support

The technical support component maintains the information repository, which contains the

organization's historical database. This component provides essential support services including

implementing the database as specified by the analysis and packaging component. The support

personnel collect data forms from the developers and maintainers on a prescribed schedule,

perform data validation and verification operations to identify and report discrepancies, and add

the project data to the historical database. They are also responsible for operating supplementary

software tools (e.g., code analyzers) and for preparing reports of the analysis results. In addition,

the support personnel archive data and perform all other database management system (DBMS)
maintenance functions.

NASA-GB-001-94 26

Example:

The Software Engineering Laboratory

Although their measurement roles and responsibilities are clearly distinct, the three

components may be organized in different ways within different organizations. A large

organization may benefit by creating separate, structural components to perform the three

distinct roles of the measurement program. A small organization with a small project may

simply assign the roles to individual personnel. In some cases, a single individual may

perform multiple roles as long as the amount of effort allocated to separate roles is clearly
identified.

For example, the SEL is an organization of moderate size with approximately 300

software developers and maintainers. The organization develops and maintains mission

support software for the Flight Dynamics Division at GSFC. Since 1976, the SEL has

collected data from more than 100 software development projects. Typical projects range

in size from 35,000 to 300,000 SLOC and require from 3 to 60 staff-years of effort. The

process and product data have been analyzed to evaluate the impact of introducing

methodologies, tools, and technologies within the local environment. In recent years, the

SEL has expanded the scope of its activities to include the study of software maintenance

(Reference 15). Process improvements have led to documented improvements in the

organization's products.

Figure 3-2 illustrates the organizational structure of the SEL. In this example, the

technical support personnel who maintain the repository are administratively affiliated

with the analysis and packaging component but physically located with the source of data.
This structure works well in the SEL for two reasons:

1. The technical support personnel receive funding from the same source as the

analysis and packaging personnel. Developers and maintainers are funded by a

different source.

2. The physical environment is structured with the forms processing, database host

computing support, and library facilities collocated with the developers and

maintainers, so the support personnel occupy that same space.

Many alternative structures would be just as functional and successful. The important

feature is that the development and maintenance personnel are not responsible for

analysis and packaging. In addition, SEL models and relationships are affected by the fact

that the measurement program within this sample environment is limited to development

and maintenance of operational mission support software¢ Organizations that include

other activities may derive significantly different models. Issues related to the cost

considerations shown in the figure are addressed in Section 3.5. Reference 16 provides

additional examples and details.

5 Although the scope of the measurement program includes no data from prototype development or research
activities, the software personnel do perform such activities as a part of their jobs.

27 NASA-GB-001-94

Source of Data

AII operationalsupport software (no prototypes, /

no R&D) __
Development from design through delivery_
and maintenance __
Each project manager responsible for __J

participation in measurement program __

Effort less than 2 percent additional overhead 1 -

- 200-500 completed forms per week
- requests for project information

development status reports
- standard monthly project reports

Technical Support

• Collocated with developers and maintainers
but administratively attached to analysts and
packagers

• Occupies about 500 sq. ft.

• Uses Oracle DBMS

• Two data technicians and two programmers

• Effort about 4 percent of developme_

- project development histories
- subjective project information

courses (e.g., Principles of Flight Dynamics)

Analysis and Packaging /

/• Active participation from design through delivery
and maintenance

• Products

- Models - Processes

- Training - Standards
- Tools

• Funding primarily from NASA
(some contractor funding support)

• Effort about 7 percent of development

- ad hoc database queries

- forms de_

- annual bibliography and collected papers
- database user's guide
- results of special requests

Figure 3-2. The SEL as a Sample Structure for Process Improvement

3.4 Selecting the Measures

Another important step in establishing a measurement program is selecting the measures to be

used. Selected measures will fall into one or more categories, including objective measures

(direct counts, obtained either manually or with the support of an automated tool), subjective

measures (interpretive assessments about the status of the quality or completion of the product),

and project characteristics (factual descriptions of the type, size, and duration of the project).

Chapter 4 addresses measures in more detail. When selecting measures, the next rule is the most

important:

NASA-GB-001-94 28

Measures should not be selected just because a published author has found them useful; they

should directly relate to the defined goals of the organization. For example, if there is no goal to

reduce processor time, it is a waste of time and effort to collect data on computer usage.

Experiences from successful measurement programs within NASA suggest that a minimal set of

measures is usually adequate for beginning a program and sufficient to fulfill all but the most

ambitious goals. A basic set of measures--which typically consists of data for schedule, staffing,

and software size--is introduced in the next chapter.

This rule--to limit the number of measures and, by implication, the size of the measurement

database--is a corollary of the rule to start small, which suggests limiting the scope of the

measurement program itself. The rule should be taken literally: if a single measure is sufficient to

address the organization's goal, then collecting data on two or three will provide no added

benefits. For example, if the only goal is to improve quality, only defects should be measured;

cost and schedule data should not be a concern.

Any measurement program can be potentially disruptive to a software project; therefore, analysts

must be cautious when providing feedback to development and maintenance personnel.

Providing too much feedback can be just as serious a mistake as providing not enough. Reporting

the results of analyzing all available measurement data is a waste of time, because much of the

information will provide no additional insight. When presented with unnecessary and excessive

charts, tables, and reports, software staff and managers may become annoyed and disenchanted

with the value of the measurement program.

Collected data constitute only a small part of the overall improvement program and should

always be treated as the means to a larger end. The tendency to assume that each set of data has

some inherent value to the development and maintenance personnel and, therefore, should be

analyzed, packaged, and fed back to them, must be avoided. Feedback must be driven by a need

or directed toward supporting a defined goal. If no focus has been established for the analysis of

code complexity, for example, then there will be no value in--and no appreciation for--the

preparation of a complexity report. Such a report would be disruptive and confusing and could

dilute the effectiveness of the measurement program.

The following common reports and graphs are often packaged and provided to the development

and maintenance organization, not because they are needed, but simply because the data exist:

* Code complexity

* Design complexity

• Number of tests executed

* Plots of computer usage

29 NASA-GB-001-94

* Charts of numbers of requirements changes

* Profiles of program execution

* Charts of the time spent in meetings

Each of those measures may have some value when used in support of an organizational goal.

However, this type of information is too often reported because it is assumed to be inherently

interesting, not because it relates to a particular need or goal.

3.5 Cost of Measurement

Cost is one of the most critical, yet misunderstood, attributes of a software measurement

program. Many organizations assume that the cost of measurement is so excessive that they

cannot justify establishing a measurement program. Others claim that measurement can be a

nonintrusive, no-cost addition to an organization and will have no impact on the organization's
overhead. The truth lies somewhere in between.

Measurement is not free, but it can be tailored in size and cost to fit the goals and budgets of any

software organization. A measurement program must be undertaken with the expectation that the

return will be worth the investment. If the cost is not planned in the organization's budget, there

will be frustrations, attempts at shortcuts, and a failed software measurement program. Planning

must incorporate all of the hidden elements of the proposed effort--elements that are often more

expensive during startup than after the measurement program becomes operational. The higher

startup cost is an additional reason to start small.

Planners often incorrectly assume that the highest cost will be to the software development or

maintenance organization. This part of the overhead expense, which includes completing forms,

identifying project characteristics, and meeting with analysts, is actually the least expensive of

the three major cost elements of the measurement program:

1. Cost to the software projects--the source of data

2. Cost of technical support

3. Cost of analyzing and packaging

The cost of the measurement program also depends on the following considerations of scope:

* Size of the organization

* Number of projects included in the measurement program

* Extent of the measurement program (parts of the life cycle, number of measures, etc.)

NASA experience shows that there is a minimum cost associated with establishing and operating

any effective measurement program. The total cost will increase depending on the extent to

NASA-GB-001-94 30

which the organizationwants, or can afford, to expand the program to addressadditional
projects,morecomprehensivestudies,andbroadermeasurementapplications.

The cost information offered in this section is based on 17 years of experiencefrom
organizationsrangingin sizefrom approximately100to 500persons.Additional informationhas
beenderived from measurementprogramsin larger organizationsof up to 5,000persons.The
numberof projectsactiveat anyonetime for this experiencebasehasrangedfrom a low of 5 or
6 projectsto a high of over 20 projects,ranging in size from 5 KSLOC to over one million
SLOC. Becausemeasurementcosts dependon a large numberof parameters,citing a single
definitive value that representsthe cost of any organization's measurementprogram is
impossible.However,somegeneralsuggestionscanbeprovided,andorganizationscaninterpret
thesesuggestionsin thecontextof their owngoalsandenvironments.

Generally,the costof measurementto the developmentor maintenanceprojectwill not exceed
2percentof thetotalprojectdevelopmentcostandis morelikely to belessthan 1percent(which
impliesthatthe costmaybetoo smallto bemeasured).Thetechnicalsupportelementmayreach
a constantstaff level of from one to five full-time personnelfor dataprocessingsupport.The
analysisand packagingelementwill require several full-time analystsand may cost up to
15percentof the total developmentbudget.For example,the SEL spendsan averageof about
7percentof eachproject'stotaldevelopmentbudgeton analysisandpackaging.

Figure 3-3 illustrates the costs of the elementsof a software measurementprogram as
percentagesof the total organizationalcost.Individual costsarediscussedin moredetail in the
following sections.

0)
N

.N
C

O

"5

"6

2(

1(

Mid-Size Organizations

(Approximately 100-500 Persons)

Large Organizations

(Approximately 500-5,000 Persons)

• Fill out forms

• Provide data

<2% 3-7%

Source

of Data

Technical

Support

Analysis &

Packaging

Figure 3-3. Cost of Software Measurement

31 NASA-GB-001-94

3.5.1 Cost to the Software Projects

The cost of measurement should not add more than 2 percent

to the software development or maintenance effort.

The smallest part of the measurement cost is the overhead to the development and maintenance

organization. This overhead comprises the cost of completing forms, participating in interviews,

attending training sessions describing measurement or technology experiments, and helping to

characterize project development. Although startup costs may be as high as 5 percent of the

development budget, the cost of operating an effective program will normally not exceed 1 or 2

percent, regardless of the number of active projects within the organization.

Legitimate costs are associated with introducing the providers of data to a new measurement

program. However, part of the higher initial cost can often be attributed to the inefficiencies in an

inexperienced organization's program. New programs typically ask developers or maintainers to

complete unnecessary forms or require excruciating detail that is of little value or is not a part of

the stated goal. A well-planned measurement program will never impose a significant cost

impact on the development or maintenance organization.

3.5.2 Cost of Technical Support

The technical support component of the measurement program

may cost from 3 to 7 percent of the total development budget.

Technical support encompasses collecting, validating, and archiving the measurement data.

Included in these activities are database management, library maintenance, execution of support

tools, and high-level reporting of summary measurement data. These essential activities must be

planned, supported, and carefully executed. In addition to the cost of personnel are the costs of

acquiring and maintaining database software, support tools, and other automated processing aids

(e.g., code analyzers).

In an organization of over 50 management, technical, and clerical personnel, any measurement

program will require three to five full-time staff members to handle the necessary support tasks.

A smaller organization, with perhaps only one project and a pilot measurement program, may

wish to combine the support effort with configuration management (CM) or independent QA

activities. Implementation of a separate technical support element may not be cost effective.

Experience within NASA has shown that the cost of the technical support for measurement

programs involving 100 to 200 software developers or maintainers is approximately 7 percent of

the total effort. That cost includes approximately five full-time data technicians and database

support personnel, plus the costs of the DBMS and associated software tools and equipment. For

larger measurement programs with 250 to 600 software personnel, experience indicates that only

one additional full-time support person is required. Thus, for organizations with 50 to 600

developers and maintainers, the overhead cost is approximately 6 percent of the project cost. For

organizations with approximately 500 to 1,000 software personnel, the overhead cost approaches

3 percent of the project cost or about seven full-time personnel added to the cost of tools and

equipment.

The cost estimates are based on the assumption that an organization is actively working on 5 to

15 development or maintenance projects at any one time. The overall cost of the technical

NASA-GB-001-94 32

supportcomponentwill vary significantly dependingon the numberof projectsparticipatingin
themeasurementprogram.An organizationof 200 or 300peopleactively working on a single
largeproject will requiremuch lesssupportthan the sameorganizationwith 20 activesmaller
projects.Limited experiencewith largerorganizationsof over 5,000personsindicatesthat the
technicalsupportcostis essentiallythe sameasfor anorganizationof 500.As its sizeincreases,
anorganizationtendsto collectmeasurementdataata lessdetailedlevel.

3.5.3 Cost of Analysis and Packaging

The cost of the analysis component of the measurement

program ranges from 5 to 15 percent of the total project

budget.

Analysis and packaging is the most critical part of the measurement program and the most costly

of the three elements of cost overhead. Without a sufficient allocation of effort to this function,

the measurement program cannot be a success. Packaging is the culmination of all measurement

activities and the primary purpose for the measurement program.

Key activities associated with this element are

• Design of process studies (determining what is to be measured)

• Information analysis (e.g., analysis of data and synthesis of models)

• Project interaction (clarifying the purposes of measurement, training developers,

providing feedback to projects)

Packaging (producing standards, policies, and training programs and capturing

assessments of analyzed processes)

Plan to spend at least three times as much on data analysis and use

as on data collecti_n

NASA experience shows that the cost of this element in successful measurement programs far

exceeds the combined costs of the other two and is typically about three times the amount that

the software projects spend providing data. A successful measurement program dictates that this

cost be recognized and budgeted. For measurement programs involving 50 to 250 software

developers or maintainers, the cost of this activity has consistently run from approximately 7 to

12 percent of the organization's total budget. Costs are incurred by the researchers who design

studies and develop new concepts, by the process staff responsible for developing and writing

standards, and by all the personnel required for analyzing, providing feedback, and developing

improvement guidelines. The analysis and packaging portion of the measurement costs depends

on the number of projects active within the organization. The figures provided here assume at

least 10 active projects and an archive of data from at least 15 projects available for analysis.

With fewer active projects, the analysis overhead would be smaller than indicated.

NASA's historical data indicate that organizations spending between $20 million and $30

million for development and maintenance projects have spent between $1 million and $3 million

33 NASA-GB-001-94

for extensiveand matureanalysisefforts (in fiscal year 1993dollars). For efforts on a much

larger scale, the measurement analysis must necessarily be conducted on a comparably higher

level; consequently, the overhead percentage decreases significantly. An expenditure of an

equivalent amount of analysis resources, plus a modest increase due to the size of the

organization, need not exceed the 5 percent level for measurement programs of any size. Because

application of the measurement data is the primary reason for the measurement program,

adequate resources must be allocated for this critical measurement program element.

NASA-GB-001-94 34

Chapter 4. Core Measures

Chapter Highlights

COST

• Reporting period dates
• Total effort
• Effort by development and maintenance activity

ERRORS

• Dates error reported and corrected
• Effort to isolate and correct the error
• Source and class of error

PROCESS CHARACTERISTICS

• Identification of programming languages
• Indication of the use of significant processes
• Description of measurement study goals

PROJECT DYNAMICS

• Changes to requirements
• Changes to code
• Growth of code
• Predicted characteristics

PROJECT CHARACTERISTICS

• Development dates
• Total effort
• Product size
• Component information
• Software classification

35 NASA-GB-001-94

T his chapter describes a set of core measures that any organization can use to begin a
measurement program. There is no universal, generally applicable collection of measures

that will satisfy the needs and characteristics of all organizations. However, on the basis

of the experiences of mature measurement programs throughout NASA, a set of measures in the

following five categories will typically be required by any software development and

maintenance organization:

1. Cost

2.

3.

4.

5.

Errors

Process characteristics

Project dynamics

Project characteristics

Although organizations beginning a measurement program may want to use the core set as a

baseline, they will soon find that additional information is required to satisfy their specific goals

and that some of the core measures are not required. Each organization should use those

measures that reflect its own goals. As its measurement program matures, the organization will

recognize which measures support those goals and which provide no added value.

The recommended core measures in each of the categories exhibit the following important

attributes. They

* Address the three key reasons for measurement

1. Understanding

2. Managing

3. Guiding improvement

* Support both software development and software maintenance activities

* Are easy to collect and archive

* Are based on the experience of mature NASA measurement programs

The following sections provide further information on the core measures.

4.1 Cost

Cost is the most universal and commonly accepted measure for understanding and managing

software processes and products. Consequently, cost data represent the most essential part of any

measurement program. Although many development organizations assume that the cost data

must be extensive and detailed to capture the overall cost characteristics of a software project

adequately, the cost data should actually be easy to capture. If a programmer needs more than a

few minutes each week (on the average) to record his or her effort, then the forms require too

much data. As long as the managers are aware of the total amount of effort required for the

software projects, an organization can gain a significant amount of insight by observing the

NASA-GB-001-94 36

trends over time. The simplest, yet most critical, cost measure is the record of the total

expenditures for a project.

4.1.1 Description

Every project must capture staff effort data on a consistent, periodic basis. A monthly schedule is

recommended, at a minimum; however, many major NASA measurement programs capture

effort data biweekly or even weekly. The higher frequency requires little additional work and

provides more project characterization detail.

The scope of the effort data collection depends on the organization's goals. Each organization

must determine precisely who will supply effort data, at what point during the software life cycle

measurement will begin, and when data collection will terminate. Typically, effort data must be

collected for all personnel who charge their time to the software project, specifically, technical,

management, secretarial, and publications staff.

For every data reporting period, each individual must minimally report the total number of hours

of effort and a breakout of the number of hours per activity (e.g., design, code, test, or other).

A decision concerning the reporting of unpaid extra hours of effort must be based on whether the

intent is to measure the actual effort expended or the actual effort charged. Some organizations

maintain separate records of unpaid overtime hours.

Within the SEL, every programmer and every first- or second-line manager provide effort data.

Data collection starts when the functional requirements have been completed and the software

life cycle begins with the requirements analysis phase. 6 For development projects, data collection

continues until the system is turned over for operational use. For maintenance projects, data

collection starts at the beginning of the operations phase and continues until the analysts

determine that no additional value will be gained from further collection. Each maintenance

project is judged on its own merits. Some may provide data for 1 year only, whereas others

provide data until the software is retired.

4.1.2 Data Definition

When the measurement program is first established, personnel from the analysis component must

define the activities to ensure clarity and internal consistency. Focus should be on using locally

6 For all five categories of measures, the SEL begins to capture data no earlier than the beginning of the software
requirements analysis phase. System requirements definition is normally performed by a different organization
from the one that develops the software.

37 NASA-GB-001-94

developed definitions for the activities. Excessive time should not be spent trying to be consistent

with outside organizations.

All project personnel (e.g., programmers, managers, QA staff, CM staff, and testers) provide the

data listed in Table 4-1. Additional resource data on the documentation effort (total hours by

publications) and the clerical effort (total hours charged by secretarial support) may be extracted

from project management accounting records, as long as there is a definition of scope and

characteristics. The data must be consistent from project to project and should provide an

accurate history of the cost required to produce and to maintain the software product.

Table 4-1. Data Provided Directly by Project Personnel

Data I Descriptions

All Effort

Date Date of the end of the reporting period

Total effort Total hours charged to the project during that period

DevelopmentActivi Only

Hours by development activity Predesign
Create design
Read and review design
Write code
Read and review code
Test code units
Debugging
Integration test
Acceptance test
Other

Maintenance Only

Hours by maintenance class

Hours by maintenance activity

Correction
Enhancement
Adaptation
Other

Isolation
Change design
Implementation
Unit test and system test
Acceptance test and benchmark test
Other

The SEL Personnel Resources Forms (see Figures A-5 and A-6 in Appendix A) and the Weekly

Maintenance Effort Form (see Figure A-13) are examples of forms used to capture effort data for

development and maintenance projects, respectively. Programmers and managers typically

complete a form every week. Both forms provide space for recording total hours and the

distribution of hours by activities. To reduce questions and confusion, the definitions of the

NASA-GB-001-94 38

activities are supplied on the forms. Other organizations may use different definitions as long as

they are applied consistently throughout the organization's measurement program.

Figure 4-1 summarizes the life-cycle phases, sources, and frequency for cost data collection.

Typically, organizations separate the costs of development and maintenance activities.

COST

Phases:

Source:

Frequency:

Requirements Requirements I Preliminary I Detailed Coding and System Acceptance Operation and I

Def n t on Ana ys s Des gn Design Unit Testing Test ng Test ng Maintenance I
I I 1

Managers, programmers, and accounting records

At least monthly; more frequently if needed

Figure 4-1. Cost Data Collection Summary

4.2 Errors

Error data make up the second most important category of core measures. A better understanding

of the characteristics of software defects is necessary to support a goal of higher quality and

greater reliability. Error data may minimally include only counts of defects detected during a

specific life-cycle phase; at the other extreme, error data may include detailed descriptions of the

characteristics of the errors and information on where the errors came from, how they were

found, and how they were corrected. The level of detail must be driven by the goals and needs of

the particular organization. This section recommends core error measures based on those

collected within a successful measurement program in a medium-sized NASA organization.

4.2.1 Description

The core error measures consist of the

* Date the error was found

* Date the error was corrected

• Effort required to isolate and correct the error

• Source of the error

• Error class

When the measurement program is first established, the measurement analysts must define the

scope of the error reporting activity.

Error data should be captured only after a unit of software has been placed under configuration

management control. This recommendation, which is based on 17 years of experience, may seem

counterintuitive. However, until CM checkout and checkin procedures have been established as

39 NASA-GB-001-94

prerequisitesfor making changes,consistenterror reportingcannotbe guaranteed.Within the
SEL, a unit is turnedover for configuration control only after it has been coded. Other NASA

organizations (e.g., JPL) have reported significant improvements from collecting and analyzing

data about defects detected and corrected during formal inspections of requirements documents

(see Reference 26).

Programmers focusing on their technical activities may not be able to report the exact amount of

time required for a particular change. Forms should allow them to estimate the approximate time

expended in isolating and correcting an error.

4.2.2 Data Definition

After completing a software change, a programmer submits the appropriate change form with the

data shown in Table 4-2. A change form is required whenever a controlled software component

is modified, whether or not the detection of an error necessitated the change. Experience has

shown that the process of reporting such changes enhances configuration management and that

the information proves useful in modeling the dynamics of the software in an organization. In

addition to the measures already cited, a maintenance change form must include the type of

modification. As always, it is important to focus locally when defining the error classes.

Table 4-2. Change Data

Dat_ [Description_

All Changes

Date error reported Year, month, and day

Date error corrected Year, month, and day

Source of error Requirements, specification, design, code,
previous change, other

Class of error Initialization, logic/control, interface, data,
computational

Effort to isolate error Approximate number of hours

Effort to implement Approximate number of hours
change

Main te nant e C hanges Only

of modification / Correction, enhancement,Type adaptation
I

NASA-GB-001-94 40

The SEL ChangeReportForm andthe MaintenanceChangeReportForm (seeFiguresA-1 and
A-4 in Appendix A) are examplesof forms usedto captureerror data for developmentand
maintenanceprojects,respectively.In either case,a singleform is usedto report bothsoftware
errorsdetectedand softwarechangesto correctthe errors.Programmersuseonly one form to
reportoneerrorthatrequireschangesto multiplecomponents.

Figure4-2summarizesthelife-cyclephases,sources,andfrequencyfor errordatacollection.

ERRORS

Phases:

Source:

Frequency:

I
Requirements Requirements Preliminary Detailed Coding and System Acceptance Operation and I

Def n t on Ana ys s Design Design Unit Testing Test ng Test ng Maintenance I

Programmers and automated tools

Whenever a controlled unit is modified

Figure 4-2. Error Data Collection Summary

4.3 Process Characteristics

Focusing on the process characteristics category of software measures allows investigation into

the effectiveness of various software engineering methods and techniques. Looking at process

characteristics also provides insight into which projects use related processes and can thus be

grouped together within the measurement program to derive models and relationships or to guide

improvements.

Because few process features are consistently defined and can be objectively measured, few core

measures are recommended in this category. Rather than capturing extensive process

characteristics, it is suggested that some basic information be collected about the development

process used for the project being measured.

4.3.1 Description

The recommended core process measures are limited to the following three:

1. Identification of development language(s)

2. Indication of the use of specific processes or technology [e.g., the Cleanroom method or a

particular computer-aided software engineering (CASE) tool]

3. Description of measurement study goals

Common descriptions of measures do not exist for such fundamental software engineering

process elements as methodology, policies, automation, and management expertise. Therefore,

recommending that such measures be included in the core set is not useful. Measures such as

these must be defined and analyzed locally for consistency with the organization's goals.

41 NASA-GB-001-94

Detailed process descriptions cannot be stored in a database. Instead, important process

information is often provided in papers and reports. For example, if an organization is studying

the impact of using different testing strategies, the analysts must capture the detailed information

about the results of applying different techniques and report on the results.

Before attempting to capture advanced process measurement data, an organization must have a

clear understanding of the core process measures. Experience within the SEL has shown that the

most important process characteristic is the choice of programming language; the availability of

this information may provide further insight during the analysis of other measurement data.

4.3.2 Data Definition

Table 4-3 summarizes the core process characteristics measures. Figure 4-3 summarizes the life-

cycle phases, sources, and frequency for process characteristics data collection.

Table 4-3. Process Characteristics Data

Data Descriptions

Development language Language name: percentage used
Language name: percentage used

Important process characteristics One-line textual description (eg,
(if any) fJsed Cleanroom_

Study goals Brief description of the goals and
results of the measurement study
associated with the project

PROCESS
CHARACTERISTICS

Phases:

Source:

Frequency:

Requirements Requirements I Preliminary Detailed Coding and System Acceptance Operation and I

Def n t on Anayss / Design Design Unit Testing Test ng Test ng Maintenance I

Analysis and packaging personnel

At the completion of the development phase

Figure 4-3. Process Characteristics Data Collection Summary

NASA-GB-001-94 42

4.4 Project Dynamics

The next category of core measures--project dynamics---raptures changes (to requirements, to

controlled components, and in the estimates for completion) during the software life cycle.

Experience has shown that such information aids management and improves understanding of

the software process and product.

4.4.1 Description

The core measures in this category characterize observed changes in the project requirements and

the product code, as well as updated estimates of the final project characteristics (see Section

4.5). These measures consist of

* Changes to requirements

* Changes to baseline code

* Growth in baseline code

* Predicted project characteristics

Requirements changes represent the overall stability of the software requirements and can be

used effectively to manage the development effort and to improve understanding of the

characteristics of the software problem definition in the local environment.

Records of changes to the code and the growth of the code provide insight into how the various

phases of the life cycle affect the production of software, the most tangible product that a

development process generates. Change measures are useful in managing ongoing configuration

control processes, as well as in building models of the development process itself.

The measures of predicted project characteristics are excellent management aids and are useful

for studying the cause and effect of changes, as well as process and problem complexity. The

characteristics should be captured on a regular basis, at least monthly.

4.4.2 Data Definition

The Project Estimates Form (see Figure A-8 in Appendix A) is an example of a form used to

provide predicted project characteristics at the start of the project and periodically throughout the

life cycle. Table 4-4 summarizes the core project dynamics measures, and Figure 4-4 summarizes

the life-cycle phases, sources, and frequency for project dynamics data collection.

43 NASA-GB-001-94

Table 4-4. Project Dynamics Data

Data

Changes to requirements

Changes to code

Growth of code

Predicted characteristics

Dates

Size

Effort

Descriptions

Count and date of any change
made to the baselined

requirements specifications

Weekly count of the number of
software components changed

Biweekly count of the total number

of components and total lines of
code in the controlled library

Monthly record of the estimated

completion dates and software
size

End design
End code

End testing

System completed

Total components
Total lines of code (new, reused,

modified)

Total staff months (technical,

management, support services)

PROJECT

DYNAMICS

Phases:

Source:

Frequency:

Requirements Requirements Preliminary Detailed Coding and System Acceptance Operation and

Def n t on Ana ys s Design Design Unit Testing Test ng Test ng Maintenance

E]

Automated tools and managers

Weekly, biweekly, or monthly (see Table 4-4)

Figure 4-4. Project Dynamics Collection Summary

4.5 Project Characteristics

The core measures that characterize the completed project constitute another essential part oft he

measurement program. Organizations derive models and relationships from project

characteristics in the historical database. Without a basic description of the overall software

project effort, it is difficult to apply the other measurement information in a meaningful manner.

4.5.1 Description

The project characteristics can be broken down into five categories of core measures:

NASA-GB-001-94 44

1. Development dates

2. Total effort

3. Project size

4. Component information

5. Software classification

The important dates are the beginning and the end of each life-cycle phase and the final project

completion date. If the organization is using a strict waterfall life cycle with nonoverlapping

phases, then the end of a nonterminal phase is defined by the beginning of the subsequent phase.

When a different life-cycle methodology is applied, the organization will have to adjust the

structure of the project characteristics data. Each organization must determine how it wants to

capture details of the key phase dates within the software life cycle. The simplest approach is to

use the classical phase definitions of a standard life-cycle methodology. However, as long as an

organization has its own consistent internal definitions, there is no overwhelming reason to adopt

an external standard. Multiple releases can be treated as multiple projects or as a single project

followed by maintenance enhancements.

The total effort expended on the project should be divided into hours used by programmers,

managers, and support services. At the conclusion of the project, the totals should be determined

from accounting information or another official source. The sum of the effort data collected

during the development or maintenance project should be compared with the value obtained from

the alternative source to cross-check the accuracy.

The core size measures are the total size of the software product and the total number of

components within the product. NASA experience shows that archiving additional details about

the origin of the code (e.g., whether it is new, reused, or modified) can lead to useful models.

NASA programs typically measure software size in terms of lines of code. Some authorities

recommend other size measures [e.g., function points (see Reference 17)]. However, no other

measure is as well understood or as easy to collect as lines of code.

This guidebook also recommends collecting size and origin information for software components

and defines a software component as a separately compilable unit of software for the project

being measured. Some organizations define components as subprograms or subsystems, which is

fine as long as the organization applies that definition consistently and derives useful results. The

SEL captures the basic information for each separately compilable unit of source code and has

found that the overhead required to extract the information using an automated tool is trivial. As

45 NASA-GB-001-94

a result, programmerscan be freed from expending additional effort in providing that
information.

The final categoryof project characteristics core measures is software classification. This

measure is abstract and of limited value. Consequently, most organizations are advised to spend

only limited effort collecting and analyzing classification data. Nevertheless, several NASA

organizations have found a high-level classification scheme to be both adequate and useful.

These organizations use three broadly defined classes:

1. Business or administrative applications

2. Scientific or engineering applications

3. Systems support

Other organizations may want to record more detailed classification data, such as

• Embedded versus nonembedded

,, Real-time versus nonreal-time

,, Secure versus nonsecure

4.5.2 Data Definition

The recording of project characteristics data can often be substantially automated to minimize the

burden on the development and maintenance organization. Dates and effort, for example, are

normally available from management accounting reports; automated tools frequently can be used

to report size and component information, and the time and effort needed to indicate software

classification is minimal. Table 4-5 summarizes the project characteristics data.

No universally accepted definition exists for the start and stop times of various phases, such as

when a project starts or when a design ends. Experience within NASA has led to the use of phase

dates as follows:

Start of software development_elivery of system requirements documents

End of requirements analysis---vompletion of specifications review

End ofdesign---vompletion of design review

End ofcoding---vompletion of code and unit test

End oftesting_delivery to acceptance testing

,, End of development_delivery to operations

NASA-GB-001-94 46

Table 4-5. Project Characteristics Data

Data Descriptions

Dates

Phase start dates (year, month, and day)

End date

Effort

Total hours

Size

Project size (lines of code)

Other (count)

Component information (for each component)

Component size (lines of code)

Component origin

Software classification

Requirements analysis
Design
Implementation
System test
Acceptance test
Cleanup
Maintenance

Project end

Project total
Management personnel
Technical personnel
Support personnel (e.g.,

publications), if applicable

Delivered
Developed
Executable
Comments
New
Extensively modified
Slightly modified
Reused

Number of components
Pages of documentation

Total
Executable

New
Extensively modified
Slightly modified
Reused

Business/administrative
Scientific/engineering
Systems support

47 NASA-GB-001-94

The effort data, compiled at the conclusion of the project, are used as part of the high-level

summary information for the project. The information represents the total cost of the project

broken down among developers, managers, and support services.

Table 4-5 lists several measures for lines of code. Consensus may never be reached on what

constitutes a line of code. Therefore, to facilitate various forms of comparison and analysis, this

guidebook recommends recording multiple values. The core measures include counts of

,, Total lines delivered---every logical line, including comments, blanks, executable, and

nonexecutable

,, Developed lines--total lines with a reuse factor

,, Executable statements--total number of executable statements

,, Comment lines--total number of lines containing only comments or blanks

The SEL captures source lines of code in four categories:

1. New--code in new units

2. Extensively modified---code for reused units in which 25 percent or more of the lines

were modified

3. Slightly modified---code for reused units in which fewer than 25 percent of the lines were
modified

4. Reused verbatim--code for units that were reused with no changes

For estimation purposes, lines of code are often classified into two categories that combine newly

written and extensively modified units as new code and slightly modified and verbatim code as

reused code. Consequently, the SEL relationships (see Reference 9) for estimating developed
lines are

FORTRAN developed lines = new lines + 20% of reused lines

Ada developed lines = new lines + 30% of reused lines

(See Sections 2.2.1 and 6.1.2 for more discussion of developed lines of code.)

It is important to be specific about which software is to be included in the size counts. For

example, it is usually appropriate to exclude throw-away prototypes, test harnesses, and

commercial off-the-shelf (COTS) software from the reported totals.

Component information can provide insight into the overall development characteristics.

Although the total amount of information may be extensive, it should be easy to compile at the

conclusion of the project and can be almost completely retrieved via automated software tools

such as code counters, auditors, or analyzers.

NASA-GB-001-94 48

TheProject Completion Statistics Form (see Figure A-7 in Appendix A) is an example of a form

used for collecting project characteristics at the completion of a project. Figure 4-5 summarizes

the life-cycle phases, sources, and frequency for project characteristics data collection.

PROJECT Requirements Requirements Preliminary Detailed

CHARACTERISTICS Def n t on Ana ys s Design Design

Phases:

Source: Automated tools and managers

Frequency: At the completion of the development phase

Coding and System Acceptance Operation and

Unit Testing Test ng Test ng Maintenance

Figure 4-5. Project Characteristics Collection Summary

49 NASA-GB-001-94

Chapter 5. Operation of a Measurement Program

Chapter Highlights

DEVELOPMENT AND MAINTENANCE

• Providing data
• Participating in studies

TECHNICAL SUPPORT

• Collecting data
Interface with data providers
Definitions

• Storing data and assuring data quality
• Summarizing, reporting, and exporting data

ANALYSIS AND PACKAGING

Designing studies
Analyzing data
Packaging the results
- Policies and standards
- Training
- Automated tools
- Reports
- Updates

51 NASA-GB-001-94

aving established a measurement program, the organization must shift its emphasis to
operation. Chapter 3 introduced the three organizational components of a measurement

program: development and maintenance, technical support, and analysis and packaging.

After briefly describing mechanisms for collecting project data, this chapter expands on the

operational responsibilities of those three components.

Figure 5-1 illustrates that mechanisms for data collection fall into the three primary categories

listed below. Each category provides a particular type of data and requires a specific interface

between pairs of organizational components.

1. Printed forms--The forms are designed by the analysis and packaging component,

completed by the development and maintenance component, and submitted directly to the

technical support component. All forms require the submitter to provide identifying

information, such as the project name, the team member's name, and the date. In addition,

each type of form is designed to provide some of the measures that satisfy the goals of the

measurement program. Some forms request both objective data (directly observed) and

subjective data (based on opinion). All require only short answers or the selection of

options from a checklist. Appendix A includes a sample set of data collection forms used

in the SEL and designed to provide the measurement data stored in the SEL's historical

database. An organization establishing a measurement program can use these forms as a

starting point in designing its own set of organization-specific forms.

2. Automated tools--Some data can be collected automatically and unobtrusively by

software tools. For example, code analyzers and compilers can count lines of code;

operating system accounting packages can supply data about processor and tool usage;

and organizational accounting systems can typically report hours of effort by interfacing

with the time card system.

3. Personal interviews--Some information can be captured only during personal interviews.

Interviews are typically used to obtain subjective information about project status and to

verify preliminary results of data analysis.

Measurement Data

Figure 5-1. Three Data Collection Mechanisms

NASA-GB-001-94 52

Occasionally,theremaybe other process and product information sources that do not fall neatly

into one of the three categories. For example, personnel often have insights during document or

code reviews. Any information that can be useful within the organization's measurement

program should be exploited.

Figure 3-1 illustrates the operational relationships among the three components of the

measurement program.

5.1 Development and Maintenance

Personnel whose primary responsibility is developing or maintaining software must not be

burdened with heavy measurement program duties. 7 The measurement program must be designed

so that it is deemed to be a help, not a hindrance, to development and maintenance personnel.

The operational responsibilities of the development and maintenance component are

,, Providing data

,, Participating in studies

5.1.1 Providing Data

Project personnel are responsible for completing data forms that should have been designed for

simplicity. At project initiation, the project characteristics (discussed in Chapter 4) are provided

to establish a baseline. Throughout the life of the project, measures must be provided on a regular

schedule, as agreed upon by the analysts and management. Possibly the most important data to be

provided by the development team are the accurate final project statistics (see Figure A-7). These

data are often overlooked in an immature measurement program.

The process for submitting completed forms must be equally simple. Developers and maintainers

must be able to deliver forms to a specified, convenient location or hand them to a designated

individual and then forget about them. A representative of the technical support component will

be responsible for collecting the forms and initiating the data entry process.

Occasionally, developers and maintainers are asked to meet with the analysts. Although vitally

important, these meetings must be brief and well planned so that they do not interfere with

development and delivery schedules. Meetings may be feedback sessions for the purpose of

verifying preliminary data analysis, interviews to gather additional project characteristics data or

subjective information, or training sessions to reinforce the proper use of specific processes being

applied by the developers.

7 In most organizations, the managers of the development organization will continue to be responsible for collecting
and applying certain data needed for ongoing program management activities without impact from the analysts.
Some data collected in support of earned value analysis or planned versus actual budget information, for example,
will continue to be collected and analyzed by managers and their project control support personnel. The role of the
measurement analysts is to provide accurate models and relationships to support those management activities.

53 NASA-GB-001-94

5.1.2 Participating in Studies

The analysts may ask the developers and maintainers to participate in the experimental use of

some process, technique, tool, or model that is not part of the organization's standard practice.

Such studies sometimes necessitate the use of new forms and typically require that development

and maintenance personnel attend briefings or a training session on using the new process.

Most projects experience little, if any, process change driven by the analysts. For these projects,

training is typically limited to discussions of new forms and new data reporting agreements. For

projects that undergo significant process changes, however, training sessions are important to

ensure that development and maintenance personnel thoroughly understand the new process and

fully agree that the study supports the organizational goals. The study must be a cooperative team

effort: analysts must provide regular feedback of interim results, and developers or maintainers

must contribute their insight regarding the value and relevance of those results.

When development and maintenance personnel participate in such studies, they should always

receive feedback from the analysts. At feedback sessions, developers and maintainers also have

an opportunity to report their impressions of the degree of success derived from the innovation

and to discuss any difficulties experienced in applying the new process.

5.2 Technical Support

The primary operational responsibilities of the technical support personnel are

* Collecting data

* Storing and quality assuring data

* Summarizing and reporting data

5.2.1 Collecting Data

Satisfactory collection of data by the technical support component depends on a clearly

established interface with the development and maintenance component and on clearly defined

terms and concepts provided by the analysis and packaging component.

Although many organizations put a great deal of effort into automating data collection, many

years of experience have led to the following rule:

Attempts to automate the data collection process should be limited. Because routine, manual data

collection efforts add an overhead of only 1 to 2 percent (see Reference 18), automation may not

result in a cost saving. In practice, extensive efforts to develop automated tools may actually

increase cost to the total organization. It is more important to ensure that the amount of data is

driven by specific organizational goals (which will also minimize the amount required) and that

the data collection process is well defined and operationally smooth.

NASA-GB-001-94 54

Regardlessof the size of the automated data collection effort, it is essential that management

communicate with the developers and maintainers about which parts of the process will be

monitored electronically.

Interface With Data Providers

Technical support personnel must ensure that members of the management and technical staffs

within the development and maintenance component understand their responsibilities with

respect to furnishing the selected project measures. Technical support personnel must also

communicate with the providers of the data to ensure that everyone understands the details of the

collection requirements, for example,

,, Which personnel are responsible for collecting and furnishing project measures

*, How frequently the collection will occur

,, Which portions of the software life cycle will be reflected in the data

,, What type of personnel (management, technical, or administrative) will be included in
level-of-effort measurements

Personnel within the technical support component must make furnishing data as painless as

possible for development and maintenance personnel to reduce the chances for aggravation and

resentment on the part of those data providers. Publishing a list of technical support contacts can

make it easy for the data providers to ask questions or deal with measurement problems. Making

it obvious where to deposit the data forms and collecting them promptly to emphasize the

importance of providing the forms on schedule are also useful tactics.

Definitions

To ensure that the data provided are based on a consistent understanding of the measurement

terms and concepts, support personnel must supply concise, clear definitions to the development

and maintenance personnel. It is the responsibility of the analysis and packaging component to

write definitions that are consistent with organizational goals and locally understood ideas;

however, the data collectors are responsible for furnishing the definitions to the data providers.

The importance of focusing locally, rather than adhering to arbitrary industry-wide conventions,

cannot be overemphasized.

55 NASA-GB-001-94

5.2.2 Storing and Quality Assuring Data

The second important responsibility of the technical support component is storage of high-quality

data. For project data to be used effectively in support of the goals of a measurement program,

they must be complete and accurate as defined by QA procedures and readily available.

Data Storage

To be readily available, project data must be stored in an online database. This requirement leads
to the next rule:

Using a COTS DBMS to support the organization's measurement program is highly

recommended. The time and effort required to develop custom tools will outweigh their benefits.

A relational DBMS will provide the most appropriate support for data retrieval and analysis

using a variety of table combinations and user views. Spreadsheets, indexed sequential files, and

even networked or hierarchical DBMSs are simply inadequate. See Reference 19 for a detailed

description of a mature measurement database using a commercial DBMS.

Data Quality

The quality of the stored data must also be considered. From the perspective of the support

component, data quality assurance is a two-step process:

1. Verification of source data--Discrepancies must be tracked to the source and corrected.

This step includes checking that the

a. Data forms have been submitted and are complete (i.e., all required values are

provided).

b. Values are of the specified type (e.g., numeric fields do not contain non-numeric

values).

c. Values are within specified ranges (e.g., the number of hours of effort per day per

person is never greater than 24).

d. Values are reported on the prescribed schedule.

2. Verification of data in the database--After the values have been entered into the

database, a second check is performed to verify that the entries match the source value.

An organization with a mature measurement program may be able to use automated tools that

allow developers to enter data directly into the database via online forms, thereby eliminating

paper forms and the manual QA process. Although this approach may seem ideal, experience has

shown that it often leads to unreliable data and that the cost of a manual process is relatively
small.

NASA-GB-001-94 56

Despitethequalityassurancesteps,thenextrule still applies:

The collection and verification processesare fallible, and somedatawill be incompleteand
imperfect. In addition to the quality assuranceactivities performedby the technical support
personnel,the analystswill subsequentlyhaveto determinethe accuracyand usefulnessof the
databycross-checking,backtracking,andgeneralqualitativeanalysis.

5.2.3 Summarizing, Reporting, and Exporting Data

Technical support personnel are also responsible for producing and distributing reports and data

summaries to data users in all three measurement program components. Occasionally, they are

also responsible for exporting raw data to external organizations. Reports can be tabular or

graphical, printed or displayed. Summary reports are designed to highlight particular trends or

relationships.

Not all reports are generated by the support personnel, however. High-level data analysis reports,

prepared by the analysis and packaging component, are discussed in the next section. Routine

management reports of project control information remain the responsibility of management.

Many of the raw data and summary reports are generated on a regular schedule. These reports

range from single-project summaries focused on a particular data type to multiple-project roll-ups

that provide high-level statistics in a format compact enough to facilitate project-to-project

comparisons. Support personnel distribute those reports to development and maintenance

personnel to provide feedback on project measures. Analysis and packaging personnel also use

the reports to identify projects and data to be used in studies and model generation.

Figure 5-2 provides an example of a regularly scheduled Project Summary Statistics report,

showing actual data for projects in a NASA organization with a mature measurement program.

The report also contains several questionable entries (e.g., 0.0 hours for support where there

probably should be a positive value) and illustrates the rule that data may be flawed, inexact, or
inconsistent.

The technical support component also generates some of the raw data and summary reports on an

ad hoc basis, as requested by users of the data. Requests for specific data on specific projects

come from both the development and maintenance component and the analysis and packaging

component. Such reports also include low-level data dumps used by support personnel during the

data verification process.

A related responsibility of the support component is preparing measurement data for export to

another organization. Sharing data across domains and interpreting data out of context are

normally not meaningful, as cautioned in the "focus locally" rule. Nevertheless, exporting data to

another organization occasionally makes sense. For example, the organization may intend to use

acquired data to support the establishment of its own measurement program. In addition to

57 NASA-GB-001-94

9/13/93 07:23:39

Project Status

No. of

Sub-

systems

PROJECTA INACTIVE 14

PROJECTB INACTIVE 5

PROJECTC INACTIVE 2

PROJECTD INACTIVE 2

PROJECTE INACTIVE 40

PROJECTF INACTIVE 20

PROJECTG INACTIVE 1

PROJECTH INACTIVE ii

PROJECTI INACTIVE ii

PROJECTJ INACTIVE 14

PROJECTK INACTIVE 4

PROJECTL INACTIVE 6

*PROJECTM INACTIVE 0

PROJECTN ACT DEV 0

PROJECTO DISCONT

PROJECTP INACTIVE

PROJECTQ ACT DEV

PROJECTR INACTIVE

PROJECTS ACT DEV

Project Summary Statistics

* Project data are not final

No. of

Compo- Total New

nents SLOC SLOC

132 15500 11800

224 16000 14100

175 34902 34902

415 41829 40201

292 50911 45345

397 61178 49712

76 8547 8041

494 81434 70951

267 72412 55289

930 178682 141084

322 36905 26986

244 52817 45825

0 0 0

0 0 0

Incomplete data for this project

ii 278 26844 24367

0 0 0 0

34 392 25731 25510

0 0 0 0

Extensively

Modified

SLOC

0

0

0

45O

0

0

0

0

1879

16017

0

1342

0

0

Slightly

Modified

SLOC

0

0

0

1044

4673

10364

446

0

4184

13647

7363

1156

0

0

Old

SLOC

3700

1900

0

134

893

1102

60

10483

11060

7934

2556

4494

0

0

0 2477 0

0 0 0

0 0 221

0 0 0

Project Criteria : ALL

No. of

Changes

2670

213

413

544

1255

221

307

1776

427

1494

412

344

0

0

Technical Support

& Mgmt Services

Hours Hours

17715.0 1774.0

5498.0 ii.0

7965.3 0.0

32083.4 4407.6

12588.0 1109.0

17039.0 3056.0

2285.0 0.0

17057.0 1875.0

13214.6 1365.8

49930.5 4312.9

12005.0 1524.5

6106.3 0.0

19208.9 3612.5

59.0 0.0

1177

0

124

0

10946.0 967.0

24662.2 3739.2

1514.0 0.0

0.0 0.0

Figure 5-2. Project Summary Statistics

issuing a caveat about the danger of misinterpretation, support personnel must sanitize the data

before export to preserve the confidentiality of the data providers. Sanitizing the data requires

eliminating names of individuals and substituting generic project names for the mnemonics used

to identify projects within the local environment.

5.3 Analysis and Packaging

Analysis and packaging responsibilities consist of

• Designing studies

• Analyzing project data

• Packaging results

The analysis and packaging component has the heaviest burden within the measurement

program. The analysts must first design measurement studies to collect and analyze project data

in support of the organization's process improvement goals. Next, they must use the data to

develop and maintain organizational models, such as cost estimation models and error profiles,

NASA-GB-001-94 58

andto determinethe impact of new technologies, such as object-oriented design or code reading,

on the organization. Finally, they must provide the derived information to the project

organization in a useful form, such as guidebooks, tools, and training courses. The analysis and

packaging effort should always be transparent to the development and maintenance projects

providing the data. Developers have a right to understand why they are providing the data.

Moreover, a clear understanding of the connection between the data they provide and the models

and guidelines produced by the analysts leads to higher quality project data and a higher degree

of confidence in the resulting products.

By analyzing and packaging measurement data, these personnel support the three reasons for

establishing a measurement program:

1. Understanding--Analysts use routine data from the core measures to build models and

relationships and to characterize the overall software processes and products.

2. Managing--Although the analysts do not play an active role in managing the software

development and maintenance projects, they provide information and models to the

development and maintenance personnel to improve the quality of project management.

3. Guiding improvement--Each project provides the analysts an opportunity to study the

effect of a change and learn something from it. The goals for collecting specific measures

are clearly defined in process study plans. These studies can range in scope from

straightforward validation of the current organizational models to controlled

investigations of the impact of introducing a new methodology. Data from projects with

similar goals are analyzed and synthesized to produce models and to understand the

impact of process changes. Beneficial new technologies and organizational process and

product models are then packaged for use by the projects.

5.3.1 Designing Process Improvement Studies

On the basis of the overall goals of the organization and the characteristics of the individual

projects, the analysts, working with the project leaders, prepare plans that define specific study

goals and specify the data to be collected. Figure 5-3 provides an outline of a process study plan.

In some cases, analysts prepare detailed plans for projects participating in the measurement

program. In most cases, however, no significant changes will be proposed, and the study goals

will be primarily to refine the understanding of the software process or product; routine

measurement data will be sufficient, and no training will be needed. Many of the study plans

will, therefore, be relatively brief, containing simple descriptions of the data to be collected, the

analysis to be performed, and the study goals (e.g., "gain insight into the classes and origins of

Analysts must also prepare higher level organizational plans to coordinate the studies across

projects and to ensure that all high-priority organizational goals are being addressed. They work

closely with the organization's managers to choose appropriate projects for major studies.

Appendix B includes a sample process study plan. The plan summarizes key characteristics of

the project, specifies study goals, identifies key questions to be answered by analyzing project

data and information, and clearly defines the data to be provided by the project.

59 NASA-GB-001-94

Process Study Plan for

{Project Name}

{Plan Originator Name}

{Date}

1. Project Description

Briefly describe the application and the project team.

2. Key Facts

Briefly state the life-cycle methodology, methods, schedule, project size,
implementation language, and any other important details.

3. Goals of the Study

Explain the goals of this study.

4. Approach

Describe the steps planned to accomplish the goals.

5. Data Collection

Itemize the measurement data and information to be collected during the study.

Figure 5-3. Process Study Plan Outline

A key reason for a study is to assess and guide change. Any change, such as introducing a new

method, tool, or language, may involve an element of risk, so any significant change to a

standard development or maintenance process must be jointly approved by the analysts and the

project manager. When asked by the analysts to introduce evolving technologies on a project, a

manager must consider the risk, use common sense, be cautious, and even refuse the change if

the risk is too great. Nevertheless, process studies are important to every organization, and each

development or maintenance project is expected to add some amount of process information to

the organization's experience base.

Just as the organization's high-level measurement plans must relate to its overall goals, a process

study plan for a project (or for a related set of projects) must show a clear connection between the

data being collected and the goals of the study. The sample plan in Appendix B was developed

for an ongoing project within an organization that already had developed a high-level plan. It

includes a high-level description of the approach for analyzing the project information and

defines a study intended to support new organizational goals.

5.3.2 Analyzing Project Data

The analysts continually synthesize data from many projects to gain an understanding of both the

product and process characteristics of the organization. They look for distinguishing project

characteristics that identify subgroups within the organization--for example, all projects using

the Ada language or all projects applying object-oriented requirements analysis and design

methods. That effort results in a baseline set of process and product models for the organization

and may reveal changes (to models and relationships) that are not the result of explicitly

introducing new processes. Baseline analysis is a major effort, and it is a critical prerequisite for

NASA-GB-001-94 60

anyanalysisor packaging of the results of individual project studies. Experience has shown that

the baseline characteristics change slowly, even with the infusion of new processes. Therefore,

packagers generate new handbooks and guidebooks only every 3 to 5 years.

Analysts also examine individual project data to determine how trends correlate with project

successes and difficulties. They design the content of the high-level analysis reports and work

with technical support personnel to establish the frequency for producing and distributing reports.

These reports generally provide high-level summaries of project characteristics or support

specific study objectives. Figure 5-4 provides an example of a high-level development project

summary report. Figure 5-5 shows a similar report for a maintenance project.

Once the organization's processes and products have been characterized, the analysts shift their

focus to assessing the impact of change. They compare current project measures with the

organization's historical models to measure the impact of evolutionary changes introduced by

either explicit changes to the software processes (such as a new method or tool) or external

influences (such as changing the problem complexity). This analysis results in updated process,

product, or management models.

Analysts also focus on determining the impact of new technologies and approaches introduced in

major experiments. They compare experimental data with the historical baseline models to assess

success or failure. Often the result indicates a guarded success, suggesting that continued study is

needed to refine the technique and confirm success.

Figure 5-6 shows the results of a study designed to determine the impact on the distribution of

effort across software activities and life-cycle phases when the Ada programming language was

introduced into an organization that had previously relied on FORTRAN. After the organization

had gained the experience of using Ada on nine projects, the models stabilized as shown in the

figure (see Reference 10).

Although analysts use objective measurement extensively, they also depend heavily on subjective

information gathered directly from project personnel and recorded in project history reports to

help interpret the data. Each project has a unique set of drivers and circumstances that must be

considered when interpreting the data. Chapter 6 addresses the analysis, application, and
feedback of measurement information in more detail.

5.3.3 Packaging the Results

As analysts gain greater insight into the characteristics of the current software development and

maintenance environment and the impacts of specific software methodologies on that

environment, they must infuse that understanding back into the development organization,

packaging the appropriate software practices for the problem domain in well-founded standards

and policies so that they can be applied on ensuing projects. Packaging entails generating the

following items:

• Software management policies and guidelines

• Software development and maintenance standards

61 NASA-GB-001-94

CHARACTERISTICS

Project name: X
Primary language: Ada
Current phase: Inactive
Development computer: VAX
Components: 494
Changes: 674
Errors: 378

Total effort: 17,057 hours

Data Summary for Project X

PHASE DATES LINES OF CODE

Requirements: no date Developed: 73,047
Design: 10/26/87 Delivered: 81,434
Implementation: 01/27/88 New: 70,951
System test: 01/05/89 Reused: 10,483
Acceptance test: 10/03/89 Modified: 0
Maintenance: 12/15/89

DERIVED MEASURES

Productivity (SLOC/hour): 4.283
Productivity (DLOC/hour): 4.774
Reliability (errors/KDLOC): 4.642
Change rate (changes/KDLOC): 8.277
CPU run rate (runs/KDLOC): 218.4
CPU use rate (CPU hours/KDLOC): 0.768

Hours
12

10

8

6

4

2

0

5/1/87

Staffing Profile

I _ Tech/Mgmt _ Services I

1 /89

Effort by Calendar Phase

Acceptance

Test

6%

es_gn
System Tes 29%

24%

Code/Test

41%

1,000-

800-

600-

400-

Change History

///?"
//

///

200- _

''''l'''' (''''1' '''
5/1/87 10/1/87 3/1/88 8/1/88 1/ , 39 6/1/89 1"

Number of Changes
Number of Versions in Controlled Library

-- Number of Errors

/89

Effort by Activity

Other Design

25% 27%

Test Code

28% 20%

Error Source

Previous

Change 8%

Requirements

3% Functional

Specifications
9%

Design

15%

65%

Error Class

Computation Initialization

13% 13%

Data _
32%

External Interface

6%

Logic/Control

23%

Internallnterface

13%

Figure 5-4. High-Level Development Project Summary Report

NASA-GB-001-94 62

Data Summary for Maintenance Project X

CHARACTERISTICS PHASE DATES

Project name: X Requirements:
Primary language: Ada Design:
Current phase: Maintenance Implementation:
Development computer: VAX System test:
Components: 494 Acceptance test:
Changes: 674 Maintenance:
Errors: 378

Total effort: 17,057 hours

no date

10/26/87
01/27/88
01/05/89
10/03/89
12/15/89

Effort by Activity Number of Changes

Other2_7%Correction

Adaptation__
7%

Enhancement

37%

Adaptation

4%

E nha;;o:m en t_

_ C°r5;co/_i°n

Lines of Code Modules

120,

100,

80,

60,

40,

20,

0,

114

Added Changed

4-

3-

2-

1

8

0

Deleted

3

i i 0

Added Changed Deleted

Figure 5-5. High-Level Maintenance Project Summary Report

63 NASA-GB-001-94

12 FORTRAN

Projects Over
7 Years

9 Ada

Projects Over

6 Years

Acceptance

Test 20 30%esign

System _

Test 16%

Code/Test

34%

Acceptance "_

TestSystem20O__ Design32%

Test 19% _ Code/Test
29%

Other
26%

Test

30%

Other
30%

Test
35%

Design
23%

Cede
21%

Design
19%

Cede
16%

Effort Distribution by Phase Effort Distribution by Activity

(Determined by Date) (Determined by Programmer Reports)

Figure 5-6. Impact of Ada on Effort Distribution

* Software training

* Tools and automated aids

* Reports of process studies

• Updates of packaged materials

Software Management Policies and Guidelines

Much of the information that has been collected and synthesized by the analysis component is fed

back into the organization in the form of models, planning aids, and guidelines. When packaged

into well-designed policies and guidebooks, this information can improve a manager's ability to

plan a software project, monitor its progress, and ensure the quality of its products.

Management policies and guidelines provide the local scheduling, staffing, and cost estimation

models that are needed for initial project planning as well as for re-estimation during the life of

the project. NASA's Manager's Handbook for Software Development (Reference 10) contains

guidelines and examples for using numerous models, such as

• Relationships relating effort to system size

• Effort and schedule distributions by phase

• Staffing profiles

• Productivity relationships

The key models used for gauging project progress and quality are organized and packaged

together, preferably with the planning models, in a single reference source. Typical progress

NASA-GB-001-94 64

models include local profiles of software growth, computer use, and test completion. Quality

models include error rates, reported and corrected software discrepancies, and software change

rates. Figure 5-7 shows an example of an error rate model used to predict and track errors

throughout the life cycle. The model was calibrated by measuring the error characteristics of over

25 projects with more than 5,000 errors reported. It depicts the typical rate of finding errors in

code (four errors per KSLOC), during the system test phase (two errors per KSLOC), and during

acceptance testing (one error per KSLOC), a reduction of 50 percent in each subsequent phase.

Because no data were collected during the design phase, the error rate is zero. The variation was

also computed, as shown in the figure. An actual error rate above the bounds of the model may

be the result of misinterpreted requirements or may be caused by highly unreliable or complex

software. An actual rate below the bounds may be the result of particularly well-built software, a

relatively simple problem, or inadequate testing.

Every organization can and should produce a document containing the complete set of models,

relationships, and management guidelines used within the organization. (See Reference 8 for an

example of such a document.)

7 i

86--
_J

_9

_5--
Q_

04 --
LU

(1)
>

3 I

E
_2-

1 i

System AcceptanceDes ign Cod e/Test Test Test
I I
I I I_!_!_i_
"- I I iii

Expected Range _]iiiiiiiii_::_][i]ii]ii__ I]iiii]iiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_i_]]i]iiiiiiiiiiiiiiiiiiiii]ii

HistoricalNormi I_ii;iiiiiiiiiiiii

t ! iiiiiiiiiiiii
I ,_iiiiiii
I ,_iiiiiiiiiiii_%iiiiiiiiiiiiiiiiiiiiiiiii?_.... I

I ._iiiiiiiiiiii_::iiiiiiiiiiiiiiiiiiiiiiiiiiii_.... 11

I ,:i

I // : I I
I /// I I
i i i
I// I I
i/ I i
I/ I I
If I I

Schedule

Figure 5-7. Sample Error Rate Model

Software Development and Maintenance Standards

In a mature measurement program, standards for software development and maintenance address

each phase of the software life cycle, covering the entire range of technical activities. These

standards define the products, methods, tools, data collection procedures, and certification

criteria that have been identified as beneficial to the organization. Separate, detailed standards

characterize programming practices unique to the local environment or to a specific development

65 NASA-GB-001-94

language; they also address specialized techniques, such as the Cleanroom method or object-

oriented design.

The most useful, high-quality software engineering standards are derived from the practices of

the organization for which they are intended; that is, they are measurement driven. A standard

requiring the use of processes that are incompatible with the organization's development and

maintenance methodology cannot be successful.

Software Training

The organization's goals, environment, and measured experiences must drive the planning and

execution of the training curriculum. Courses reflect the understanding of the characteristics of

the local environment, and each course must respond to a specific need.

Training becomes essential when new technologies, standards, tools, or processes are infused

into the software engineering environment. Personnel are more likely to accept a new approach

when it has been introduced in well-organized stages within the interactive setting of a training

course.

Training must be provided first to those who are participating in an experiment with a new

technology and then to a wider audience as soon as the technology has been adopted for general

use within the organization. A training program should also include courses that introduce new

personnel to the software development and maintenance environment.

Tools and Automated Aids

Packaging personnel also build tools and other automated aids to facilitate software management,

development, maintenance, or data collection processes. Such tools include

• Cost estimation aids based on local models

• Management aids that compare actual measured values with baseline estimates

• Design aids that are driven by experimental results indicating beneficial design

approaches

In addition, more sophisticated tools may use the organization's extensive historical information

for managing and for analysis. An example of such a tool is the Software Management

Environment (SME) (Reference 20). It encapsulates experience (i.e., data, research results, and

management knowledge) gained from past development projects in a practical tool designed to

assist current software development managers in their day-to-day management and planning

activities. The SME provides integrated graphical features that enable a manager to predict

characteristics such as milestones, cost, and reliability; track software project parameters;

compare the values of the parameters to past projects; analyze the differences between current

and expected development patterns within the environment; and assess the overall quality of the

project's development progress. Figure 5-8 illustrates the architecture and typical uses of such a
tool.

NASA-GB-001-94 66

SEL Database

Past project data

Product estimates

Current Data

Project charac-
teristics

Project error data

Models and
Measures

Profiles of past
performance

Definitions of key
parameters

Models and rela-
tionships

SME

Rule Base

• Rules of software

development

• Problem and
project charac-
teristics

• Rules for eval-
uating quality

-.....

_iiiiiiiiiiiiiiii i i i i
:iiiiiiiiiiiiiiiiiii Code/Test System Test Acceptance Test

..................... n

:::::::::::::::::::::

iiiiiiiiiiiiiiiiiiiiiii?
iiiiiiiiiiiiiiiiiiiiiiiiii a,
:_iiiiiiiiiiiiiiiiiiiiiiiiiiiii_

:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii._
_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii.o

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii Code/Test System Test Acceptance Test
iii Time
:_ii_m
iiiANALYZE_:_i_i_iii_?_....

:: :_:_ :ii-- Co eot oieot
::

ii',iiii: Model _iiiiiiiiiii?:'

ii_iiiiiiiii?
ii_iiiiiiiiiiii_:;Errersbe_ewnerma_
ii ._iiiiiiiiiiiiiii:" because of

_iii :iiiiiiiiiiiiiI; • Insufficient testing
_iii _iiiiiiiiii?_ • Experienced team
ii !:i:i:i:i:i:i:i::' eProblemlessdifficult

:_iii thanexpected

:::

:iii i Code/Test EndEstimated

iii Time

iii:_
:_ii ASSESS ProjectAssessment

:iiiNorma,Be,owiiiiiiiiiiiiii_iiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii__ _iiiiiiiiiiii

Reliability Maintainability Quality

Figure 5-8. SME Architecture and Use

Reports of Process Studies

For each process study, analysts prepare one or more reports that address the goal, the methods

employed, the results measured, and the conclusions drawn. Interim reports document partial

results during lengthy or ongoing studies, and final reports are prepared immediately after the

study is completed.

67 NASA-GB-001-94

Final reports are vital sourcesof information when the time comes to integrate study
recommendationswith other standardpracticesbeforepackagingthemaspolicies,guidebooks,
courses,or tools. An organizationmay, therefore,find it helpful to collect all study reports
producedwithin ayearintoa singleannualreferencevolume.

Someorganizationsrepackagestudyreports for distribution outsidethe local environmentas
conferencepapersandpresentations,thusgainingvaluablefeedbackby subjectingthe resultsto
peerreview. Suchscrutinycanoffer comparisons,suggestother interpretationsor conclusions,
and help improve the data collection proceduresand analytical methodsemployed by the
organization.

Updates of Packaged Materials

All packaged materials--policies, standards, course materials, tools, and study reports--must be

maintained in an organizational repository. Together with the information in the measurement

database, the repository of packaged materials functions as the memory of the organization. It is

essential that the contents of the library be catalogued and that the catalog be kept up-to-date as

new material is added. In the SEL, for example, a bibliography containing abstracts of all SEL

documents is revised and republished annually.

The analysis and packaging component also updates guidebooks, training courses, policies, and

tools on a regular basis to keep the organization abreast of current software engineering practices.

NASA-GB-001-94 68

Chapter 6 Analysis, Application, and Feedback

Chapter Highlights

I I
L L

UNDERSTANDING

• Software attributes
• Cost characteristics
• Error characteristics
• Project dynamics

MANAGING

• Planning
• Assessing progress
• Evaluating processes

GUIDING iMPROVEMENT

• Measuring process impact
• Adapting process to local environment
• Eliminating processes with little value

69 NASA-GB-001-94

T his chapter describes specific approaches for using measurement information effectively.
Software measurement programs must focus on the use of data rather than on their

collection. Thus, the approach to using measurement data must be clearly defined, and

the data must be analyzed and packaged in a suitable form. The effective use of measurement

data is an outgrowth of the planning exercise that establishes the organization's goals, which

drive the measurement activities.

The following sections address the analysis, application, and feedback of measurement

information in the context of the three key reasons for establishing a measurement program, as

discussed in Chapter 2:

.

2.

3.

Understanding

Managing

Guiding improvement

Examples drawn from experiences within NASA illustrate the important points. Because each

organization's measurement goals may differ, the examples presented here may not relate

directly to the needs of other organizations.

6.1 Understanding

The first reason for measurement--understanding--includes generating models of software

engineering processes and the relationships among the process parameters. As an organization

builds more models and relationships and refines them to improve their accuracy and reliability,

its personnel develop more insight into the characteristics of the software processes and products.

True understanding requires qualitative analysis of objective and subjective measurement

information, including examination for accuracy and checks for flawed, missing, or inconsistent

data values. If used properly, subjective information is as valuable as objective counts. Unlike

objective data, which are used in statistical analysis, subjective information reflects the

experience of managers and developers within the organization's local environment. The

resulting models and relationships, whether derived from objective or subjective information, are

relevant only within the local environment.

The understanding process includes the following major measurement applications:

,, Software attributes

,, Cost characteristics

,, Error characteristics

,, Project dynamics

Increased understanding provides the foundation for building models and relationships and for

developing the key information required for managing subsequent software development efforts.

The examples in this section depict various measurement applications that have proven beneficial

to experienced measurement organizations. All of the models can be developed from the core

measures described in Chapter 4. The example descriptions are by no means exhaustive. Finding

the answers to the questions posed in Table 6-1 is an essential activity in applying measurement.

NASA-GB-001-94 70

Basili's Goal/Question/Metric paradigm (References 23 and 24) provides the framework to relate

the questions in Table 6-1 (and Table 6-5) to the goals and measures addressed in the examples

that appear throughout the rest of the chapter. Any software organization will benefit from

analyzing the fundamental information shown in these examples.

Table 6-1. Questions Leading to Understanding

Measurement
Application

Software
Attributes

Cost
Characteristics

Error
Characteristics

Project
Dynamics

Understanding

What languages are used, and how is the use evolving?

What are the system sizes, reuse levels, and module profiles?

What is the typical cost to develop my software?

What percentages of my software resources are consumed in the
various life-cycle phases and activities?

How much is spent on maintenance, QA, CM, management, and
documentation?

What are the error rates during development and maintenance?

What types of errors are most prevalent?

How do size and complexity affect error rates?

What is the expected rate of requirements changes during
development?

How fast does code grow during development, and how fast does it
change?

Examples

1

2

3

4

5

6

7

8

9

6.1.1 Software Attributes

Information about software attributes is easy to record and use but is too often overlooked. At a

minimum, organizations should record the sizes, dates, and languages used on every project.

Those basic characteristics are necessary for developing cost models, planning aids, and general

management principles. Table 6-2 shows a subset of the actual data used in calculating the

information shown in the examples that follow. For a more complete listing of the data, see
Reference 9.

Example 1:

Language Evolution

Goal i Determine the language usage trend.

Measures needed: Project dates, sizes, and lang

(See Sections 4.3 and 4.5.)

71 NASA-GB-001-94

Table 6-2. Software Attribute Data

Development New Reused Effort
Project Language Period SLOC SLOC (Hours)

ISEEB FORTRAN 10176-09177 43,955 11,282 15,262

SEASAT FORTRAN 04/77-04/78 49,316 26,077 14,508

DEA FORTRAN 09179-06181 45,004 22,321 19,475

ERBS FORTRAN 05182-04184 137,739 21,402 49,476

GROAGSS FORTRAN 08185-03189 204,151 32,242 54,755

GROSIM FORTRAN 08185-08187 31,775 7,175 1,146

COBSIM FORTRAN 01186-08187 47,167 5,650 49,931

GOADA Ada 06187-04190 122,303 48,799 28,056

GOFOR FORTRAN 06187-09189 25,042 12,001 12,804

GOESAGGS FORTRAN 08187-11189 113,211 15,648 37,806

GOES IM Ada 09187-07189 65,567 26,528 13,658

UARSAGSS FORTRAN 11187-09190 269,722 33,404 89,514

ACME FORTRAN 01188-09190 34,902 0 7,965

UARSTE LS Ada 02188-12189 44,441 23,707 11,526

EUVEAGSS FORTRAN 10188-09190 55,149 193,860 21,658

EUVETE LS Ada 10188-05190 2,532 64,164 4,727

EUVEDSIM Ada 10188-09190 57,107 126,910 20,775

SAMPEXTS Ada 03190-03191 3,301 58,146 2,516

SAMPEX FORTRAN 03190-11191 12,221 142,288 4,598

SAMPEXTP FORTRAN 03190-11191 17,819 1,813 6,772

POWITS Ada 03190-05192 20,954 47,153 11,695

TOM STELS Ada 04192-09193 1,768 50,527 6,915

FASTELS Ada 08192-10193 5,306 59,417 7,874

FASTAGSS FORTRAN 08192-04194 21,750 125,405 7,550

TOMSEP FORTRAN 05193-04194 24,000 180,300 12,850

NASA-GB-001-94 72

Language Usage Trend

Data recorded at NASA to track language usage on projects have provided insight into the

trends within the organization and have led to better planning for programmer training.

Figure 6-1 compares the language usage on projects completed before 1992 (and currently

in maintenance) with those in development after 1992 (see Reference 21).8

Other
26%

GSFC Software

C/C++ Other
11% >10%

Ada
10%

Ada
<1%

FORTRAN
62%

Currently Under Maintenance

C/C++
45%

FORTRAN
<35%

Currently in Development

Figure 6-1. Language Usage Trend

Example 2:

Product Profiles

Go aliiD e term in e thele vels a nd trends of co de re us e in p r ojec ts.

Measuresn eeded:Projectdates, sizes, an d percentages of reuse.

(See Section 4.5.)

The characteristics of the source code itself can provide useful information about

software projects. Too often this basic information, which is required to develop effective

cost and planning models, is neither archived nor used effectively. Relatively simple

historical models can be useful for managing and guiding improvements on projects. The

information includes the typical size of projects and components; profiles of source code

distributions among commentary, data definitions, and executable code; and resultant

code reuse models.

8 The percentages shown in the figure are derived from data collected from over 75 projects covering a span of 10

years. Table 6-2 represents only a small sample of those data.

73 NASA-GB-001-94

Code Reuse Trend

Figure 6-2 shows trends derived from 11 FORTRAN and 8 Ada projects. The models

were initially produced in 1989 for the early projects; more recent projects reflect a

significantly higher percentage of reuse.

The basic source code information is needed not only for tracking changes in the code

reuse level over time but, more importantly, for determining essential cost models for the

local environment. The following section discusses how to derive cost-impact models of

reuse.

100 -

90-

g 80- "
r_ 70-

60- iiiiiiiiiiiiiiiiiii_

50- .. iiiiiiiiiiiiiiiiiiiii

(.9 (.9 __ (.9

30 > _ _
_ co LU CO :::::::::::::::::::::
_ E _ o _ m _ _ E :::::::::::::::::::::

,o TiTiTiTiTi
0

Early FORTRAN
Baseline (1986-1988)

x

(D o_co

LU

_-.._____ _lm

LU

FORTRAN Projects
Since 1989

100

90

80
(D

rv 70

-_ 6O
0
,,- 50
0

40
O)

a0
o 20

a. 10

0

g
LU

m

Early Ada
Baseline (1986-1988)

:::::::::::::::::::5 _ _ _

iiiiiiiiiiiiiiiiiiiii_..........................._-
iiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiii
:::::::::::::::::::::

i i

Ada Projects
Since 1989

Figure 6-2. Code Reuse Trend

NASA-GB-001-94 74

6.1.2 Cost Characteristics

Software cost characteristics are probably the most important set of attributes that contribute to

an understanding of software. Cost characteristics include productivity, cost of phases, cost of

activities, cost of changes, and many other attributes required for managing, planning, and

monitoring software development and maintenance.

Example 3:

Cost Versus Size

iiiiiiiii iiiE a a iiii ieiiiie tiiii iiiie ;ii

Determin e thecostofpeoducingcodein the organ izationi

Measuresneeded:Project size, datesi reuse, an d effort data!

(See Section 4.5.)

Cost of Reusing Code

Simple measures can be used to derive a local model for the cost of producing software.

One major factor that must be analyzed is the impact of code reuse on cost. Borrowing

code written for an earlier software project and adapting it for the current project usually

requires less effort than writing entirely new code. Testing reused code also typically

requires less effort, because most software errors in reused code have already been

eliminated. Software projects using a significant amount of reused code usually require

less overall effort than do projects with all code written from scratch.

Chapter 2 introduced the following relationship among the values of effort (cost of

personnel), DLOC, and productivity:

Effort (in hours) = DLOC / Productivity

where

DLOC = New SLOC + Reuse Cost Factor × Reused SLOC

The reuse cost factor is a weighting factor applied to reused source code. Several

simplifying assumptions can be made to compute an approximate value for this factor.

The most significant assumption is that all similar projects reflect approximately the same

productivity; hence, the only variable is the cost of reuse. In this case, the similarity of the

projects comes from their having been developed within the same environment and in the

same language (FORTRAN). Although numerous other factors affect the cost of

development, it is best to apply simple measures to arrive at an approximation before

attempting detailed analysis of more complex factors.

75 NASA-GB-001-94

Points derived from values in Table 6-2 can be plotted to illustrate the relationship

between lines of code per hour and the reuse percentage as shown in Figure 6-3.

Assuming that productivity (DLOC/Effort) is constant, the straight line fit to the DLOC

points indicates that 20 percent is a reasonable approximation for the reuse cost factor for

FORTRAN.

-m

o
"1-

$

_0
0)

._q
__1
v

>

*6
-m

X3
£

O_

20-

15-

10-

[] Total Source Lines []

• Developed Source Lines

_{2O°/o []

I I I I I

0 20 40 60 80 100

% Reuse

Figure 6-3. Derivation of 20 Percent Reuse Cost Factor for FORTRAN

Figure 6-4 shows a slightly different approach for Ada language projects. Analysts within

the same environment studied size, effort, and reuse data from five projects developed

between 1987 and 1990 to derive the Ada reuse cost factor. Attempting to produce a

constant productivity value, they computed the productivity as DLOC per hour for each of

the five projects while varying the reuse cost factors. In this case, the 30 percent factor

resulted in the lowest standard deviation for the computed productivity values and was

adopted for this organization.

Every organization can develop its own reuse cost factor with the simple measures listed
in Table 6-2.

Cost of Producing Code

One of the most basic aspects of software engineering understanding is the ability to

model the cost of a system on the basis of size or functionality. Section 2.2 discussed the

basic estimation models, relating cost to software size, which have proven useful in one

environment. Those models were derived by analyzing data from over 100 projects

spanning many years and by making careful decisions about which projects to include in

the baseline model and which to exclude. Organizations just starting to apply

measurement should begin to establish cost models with their own data.

NASA-GB-001-94 76

4

3

2

1

0

GOADA

Reuse Cost Factor (Standard Deviation)

1-120% (0.655) [

e25% (0.474) I

m30% (0.348)J'

GOESIM UARSTELS EUVETELS EUVEDSIM

Figure 6-4. Derivation of 30 Percent Reuse Cost Factor for Ada

Example 4:

Effort Distribution

iiiiiiiii iiiDete eiiii ieiiir a iiii tiiii i i hiiii iiph iii

Measures needed: Projectphase dates, effort data_ and developer activity data.

(See Sections 4.1 and 4.5.)

Cost of Life-Cycle Phases

An effort distribution can be modeled in two ways:

1. By phase, to determine which phases of the life cycle consume what portion of the
total effort

2. By activity, to determine what portion of effort is spent performing each defined

software engineering activity

Figure 6-5 shows those two distributions of effort for the same set of development

projects. The model of effort by life-cycle phase represents hours charged to a particular

project during each phase as determined by the beginning and ending dates of the phases.

The model of effort by activity represents all hours attributed to a particular activity,

regardless of when in the life cycle it occurred. The four activities (design, code, test, and

other) are determined by local process definitions. The "other" category includes

77 NASA-GB-001-94

supporting efforts such as managing, training, attending meetings, and preparing
documentation.

FORTRAN Projects

Acceptance Design Other Design
Test 20% 30% 26%

System (

Test 16%

Code/UnitTest
34%

Effort Distribution by Phase
(Date Dependent)

Test
30%

Effort Distribution by Activity
(Not Date Dependent)

Figure 6-5. Effort Distribution Model

Staffing Profiles

Another use of effort data is to model the baseline staffing profile that reflects the

development environment and the type of problem. In the SEL environment, where a

substantial portion of the detailed requirements is not known until mid-implementation,

the expected model resembles a doubly convex curve instead of the traditional, widely

used Rayleigh curve (see Figure 6-6). The cause of this trend is not well understood, but it

occurs repeatedly on flight dynamics projects in that environment. It is valuable for each

software organization to produce its own staffing profile rather than to rely on a generic

model that may have no relevance to the actual processes used at the local level.

LIJ

Design

System Acceptance

Code/Test Test Test

Rayleigh Curv_

Time

Figure 6-6. Staffing Profile Model

NASA-GB-001-94 78

Example 5:

Cost of Major Activities

Goal-Build models of the cost of maintenance and other majo_

activmesi such as documentation and quality assurance.

Measures needed: DePeloner activitvdata, effoPt, and software size i

(See Sections 4.1 and 4. 5.)

Cost of Maintenance

Software maintenance includes three types of activities occurring after the system is

delivered:

1. Correcting defects found during operational use

2. Making enhancements that improve or increase functionality

3. Adapting the software to changes in the operational environment, such as a new

operating system or compiler

The SEL environment has two major types of systems under maintenance: multiple-

mission systems, which support many spacecraft and have a software lifetime of from 10

to 30 years, and single-mission support systems, which run as long as the spacecraft are

operational, typically from 2 to 7 years. Both types of systems are written primarily in

FORTRAN on mainframes and are roughly the same magnitude in size (100-250

KSLOC). A large percentage of the maintenance effort is spent enhancing the system by

modifying and recertifying existing components. SEL maintenance personnel add few

new components and produce little new documentation. Average annual maintenance cost

ranges from 1 to 23 percent of the total development cost of the original system.

Table 6-3 includes analysis of representative data from several SEL systems under

maintenance for at least 3 years. Some of the values are not available and some are

questionable; nevertheless, analysis provides useful insights into the cost of maintenance.

On the basis of the above analysis, and in consideration of the high variation among

systems, the SEL uses the conservative approach shown in Table 6-4 when estimating

maintenance costs.

A general model of the overall cost of the development and maintenance of software can

be of significant value for identifying more detailed breakdowns of cost by key activities.

The data from projects depicted in Table 6-2 are used to determine the cost of several key
activities.

79 NASA-GB-001-94

System

COBEAGSS

GROAGSS

GOESAGSS

EUVEAGSS

DCDR

ADG

CFE

NOTE:

Table 6-3. Analysis of Maintenance Effort Data

Type

S

S

S

S

M

M

M

Size

(SLOC)
Development

Effort (Hours)

178,682 49,931

236,393 54,755

128,859 13,658

249,009 21,658

75,894 28,419

113,455 45,890

98,021 30,452

S = single mission system.
M = multiple mission system.

Yearly Maintenance Effort

History (Hours)

1st 2nd 3rd

57 0 0

496 370 370

607 159 950

757 358 410

n/a 4,000 4,000

n/a 6,000 6,000

n/a 2,000 2,000

%Effort

Average per Year

19 0.04

412 1

572 4

508 2

4,000 5

6,000 13

2,000 2

Table 6-4. Basis of Maintenance Costs Estimates

Estimated Annual Maintenance

Cost as a Percentage of Total

Project Type System Development Cost

Single-mission systems 5%

Multiple-mission systems 15%

Costs of Documentation, Quality Assurance, and Configuration Management

The costs of support activities such as documentation, QA, and CM are determined from

the development activity measures combined with the basic time reporting from the

support organizations. These data are easy to collect in most software organizations.

Figure 6-7 shows the data collected from one large NASA organization. A basic

understanding of the cost of these activities is essential so that any change or attempt to

plan for these efforts can be based on a solid foundation.

6.1.3 Error Characteristics

Understanding the characteristics of errors in the software products is just as important as

understanding the cost of producing and maintaining software. The nature of software errors

includes the error frequency, the cost of locating and removing errors, the severity of the errors,

the most common causes of errors, and the processes most effective in identifying or preventing

errors.

NASA-GB-001-94 80

QA
4%

CM
5%

Documentation
11%

Management
10%

Requirements

Analysis, Design,
Code, Test

7O%

Figure 6-7. Typical Allocation of Software Project Resources

Example 6:
Error Rates

iiiiiiiii_ai_ii__eiii_eiiiiaver_iiiir_teiiii_ii_ie_iw_iiie_ii

D inewhichlife phasesyieldthemosterrors.

Compute the rate in delivered software.

Measuresneeded: Projectsize,phase dates, andreportederrors!

(See Sections4.2 and4.S.)

Error Rates by Phase

Figure 6-8 illustrates a model of the number of reported errors (normalized by the product

size) over the various phases of the life cycle. This model combines product and process

data and provides two types of information.

The first type is the absolute error rate expected in each phase. The rates shown here are

based on SEL development projects from the mid-1980s. The model predicts about four

errors per KSLOC during implementation, two during system testing, one during

acceptance testing, and one-half during operation and maintenance. Those error rates by

phase yield an overall average rate of seven errors per KSLOC during development. An

analysis of more recent projects indicates that error rates are declining as improvements

are made in the software process and technology.

81 NASA-GB-001-94

¢D
O
_A

co
,.t

£)..

O

x

x

A

x x

^ IX X X X X

X
A x

X I X X
A A

I I I

Code/Test System Test Acceptance Test Operations

Figure 6-8. Error Detection Rate by Phase

The second piece of information is that error detection rates are halved in each

subsequent phase. In the SEL, this trend seems to be independent of the actual rate

values, because the 50 percent reduction by phase is holding true even as recent error
rates have declined.

Example 7:
Error Classes

Goalii D ine what types of occur most ofteni

Measures needed: Reported error ation i

(See Seeao. 4.2.)

Types of Errors

Figure 6-9 depicts two models of error class distribution. The model on the left shows the

distribution of errors among five classes for a sample of projects implemented in

FORTRAN. A manager can use such a model (introduced in Section 2.2.1) to help focus

attention where it is most needed during reviews and inspections. In addition, this type of

baseline can show which profiles seem to be consistent across differing project

characteristics, such as in the choice of development language.

The model on the right shows the distribution across the same classes of errors for Ada

projects in the same environment. Contrary to expectation, there is little difference in the

error class profiles between the FORTRAN and Ada development efforts. One possible

interpretation of this result is that the organization's overall life-cycle methodology and

the experience of the people in that environment are stronger influences on process

profiles than any one specific technology.

NASA-GB-001-94 82

8 FORTRAN Projects

Computational Initialization
15% 15%

Logic/Control
16%

Data Data

30% 31%

5 Ada Projects

Computational
15%

Initialization

15%

Logic/Control

22%

Interfaces Interfaces

24% 17%

Figure 6-9. Comparative Error Class Distributions

Example 8:

Errors Versus Size and Complexity

GoalsiD ineiferrorratesin easmodulesizeincreases;

Determine if error rates increase as module complexi_
increases.

Measures needed: Err oPrep oets by module, m o dulesiz e. an d module

(See Sections 4.2 and 4. 50

Many measures proposed in the literature attempt to model errors or effort as some

function of program or design complexity. Two of the most prevalent sets are Halstead's

software science measures and McCabe's cyclomatic complexity number. A 1983 SEL

study (see Reference 22) examined the relative effectiveness of those measures and

simpler software size measures (SLOC) in identifying error-prone modules. A linear

analysis of various scatter plots using 412 modules failed to support the commonly held

belief that larger or more complex systems have higher error rates.

Figure 6-10 shows that error rates actually decreased as both size and complexity

increased for the large sample set in this environment. 9 However, more extensive analysis

revealed that this unexpected trend occurred for only the limited set of modules used in

the earlier study. When the sample size was increased, the trend reversed, suggesting that

it is wise to be cautious of drawing conclusions from limited analysis.

9 Module complexity can be derived from an analysis of completed software.

83 NASA-GB-001-94

0.0600

0.0525 -

) 0.0450 -
d
(,9 0.0375 -

o. 0.0300 -

2 0.0225 -
LU

0.0150 --

0.0075 -

. . ***

. . . **

**

. . ** ***_* * * * * ** * * . *

• ** ***** ******* * * *** ** ** *

I I I I I I
15 45 75 105 135 165

McCabe Complexity

195

0.0600

0.0525 --

0 0.0450 --
0
.--I

(,9 0.0375 --

o. 0.0300 --

2 0.0225 --
LU

0.0150 --

0.0075 --

Figure 6-10. Cyclomatic Complexity and SL OC as Indicators of Errors (Preliminary Analysis)

6.1.4 Project Dynamics

An analysis of project dynamics data can give managers useful insight into changes to

requirements, to controlled components, and in the estimates to completion.

Example 9:

Growth Rate Dynamics

Goalii Derive a model that characterizes the local rate of code

oroductio

Measures needed: Phase dates an dweekly countofcompletedcode.

(See Section 4.4.)

The growth rate of the source code in the configuration-controlled library closely reflects

the completeness of the requirements product and some aspects of the software process.

In the SEL environment, periods of sharp growth in SLOC are separated by periods of

more moderate growth, as shown in Figure 6-11. This phenomenon reflects the SEL

approach of implementing systems in multiple builds. The model also shows that, in

response to requirements changes, 10 percent of the code is typically produced after the

start of system testing. The uncertainty band highlights the typical variation expected with

this model.

NASA-GB-001-94 84

o
O
..A

"6

100

90-

80-

70-

60-

50-

40-

30-

20-

10-

Design Code/Test

I i

10

Acceptance
Test

I | I , I , I ,
60 70 80 90 100

% of Schedule

Figure 6-11. Growth Rate Model

6.2 Managing

The management activities of planning, estimating, tracking, and validating models, introduced

in Section 2.2, all require insight into the characteristics of the organization's software

engineering environment and processes. Measurement data extracted during the development and

maintenance phases will provide quantitative insight into whether a project is progressing as

expected.

An analysis of the following types of measurement information can lead to better management

decision making:

• Planned versus actual values. Tracking ongoing progress requires not only the actual data

but also planning data based on estimates from local models. Candidates for such analysis

include effort, errors, software changes, software size, and software growth.

• Convergence of estimates. A manager should expect to revise estimates periodically. The

frequency of revisions can be based on the pattern of the data being tracked. If the actuals

are deviating from the current plan, more frequent updates are needed. The successive

estimates themselves should eventually converge and not vary wildly from one estimate
to another.

• Error history and classes of errors. An analysis of error data can pinpoint problems in the

quality of development or maintenance processes. Possible focus areas include design or

code inspections, training, and requirements management. Data from relatively few

projects can be effectively used in this manner.

85 NASA-GB-001-94

An effective measurement program enhances management activities:

,, Planning,. Historical information, along with estimates of the current project, enable the

manager to prepare schedules, budgets, and implementation strategies.

,, Assessing,,prog,ress. Measures indicate whether projected schedules, cost, and quality will

be met and also show whether changes are required.

,, Evaluating, processes. The manager needs insight into whether a selected software

engineering process is being applied correctly and how it is manifested in the final

product.

Using the information gained from tracking software measures, managers have numerous options

for addressing possible progress or quality problems. Those options include adjusting staff,

adding resources, changing processes, replanning, and enforcing a process, among others. Table

6-5 lists the examples presented in this section, which are derived from actual data on NASA

software projects.

Table 6-5. Questions Supporting Management Activities

Measurement
Application

Planning

Assessing
Progress

Evaluating
Processes

Managing

What is my basis for estimating cost, schedule, and effort?

What is my basis for projecting code growth and change? What is
my organization_ model of expected error rate?

Is my project development proceeding as expected?

How stable are the requirements and design?

Is my original staffing estimate on track?

Are we correcting defects faster than they are detected? When will
testing be complete?

Are we producing high-quality and reliable software?

Are our standard processes being applied properly? Are they having
the expected effects?

Examples

10

11

12

13

14

15

16

17

6.2.1 Planning

A software manager's major responsibilities include effective planning at the start of a project.

The manager must estimate cost, schedules, and effort; define the processes; and initiate a

mechanism for tracking against the plan. The major application of measurement information for

the planning phase is to make use of the derived models, relationships, and insights gained from

measurement understanding efforts.

NASA-GB-001-94 86

Example 10:

Projected Cost, Scheduling, and Phases

Goal i Estimate cost, schedule, effort, and errors.

Measures needed:Projectsize estimate_ modelsiand eelationships.

(See Sections 2i2i 6.1;2, and 6.1;30

Although estimating the size of a new project is not easy, most organizations have an

approach for producing a reasonable size estimate in SLOC. Once that size estimate has

been calculated, the derived models for cost, schedule, effort, and other project

characteristics can be used in the planning phase. The models described in Section 6.1 are

used to derive more detailed estimates of a project based on the size estimate. The

following example depicts the planning for an AGSS project whose initial size estimate is

150 KSLOC of FORTRAN code, of which 90 KSLOC is estimated to be new and 60

KSLOC is estimated to be reused from other systems.

The manager computes DLOC as

DLOC = New SLOC + (Reuse Cost Factor × Reused SLOC)

= 90K + (0.2 × 60K)

= 102K

Using a productivity rate of 3.2 DLOC per hour (see Chapter 2)

Effort = DLOC / Productivity

= 102 KDLOC / (3.2 DLOC per hour)

= 31,875 hours

= 206 months

The manager next distributes the effort across the life-cycle phases (see Table 6-6) using

the percentages shown in Figure 6-5 and estimates the duration of the development using

the relationship introduced in Chapter 2:

Duration = 4.9(Effort) °'3

= 4.9(206 months) °3

= 24.2 months

Figure 6-8 tells the manager to estimate 7 errors per KSLOC during development; for 150

KSLOC, the estimate is 1,050 errors distributed as shown in Table 6-6, with 75 additional

errors estimated to be detected in the operational system.

87 NASA-GB-001-94

Table 6-6. Project Planning Estimates

Activity Estimate

Development Effort
Design (30%)
Code/unit test (34%)
System test (16%)
Acceptance test (20%)

62 staff-months
70 staff-months
33 staff-months
41 staff-months

Total 206 staff-months

Duration 24.2 months

Errors
Code/u nit test
System test
Acceptance test

600 errors
300 errors
150 errors

Total development 1,050 errors

Errors
Operations 75 errors

Annual maintenance effort 31 staff-months

Documentation effort 23 staff-months

Assuming that the system is intended to support multiple missions, the estimated annual

maintenance effort (derived from Table 6-4) is 31 staff-months.

Finally, the cost of support activities can be derived from Figure 6-7. Table 6-6 shows the
estimated cost of the documentation effort.

Example 11:

Project Dynamics

Goal-Determine the expectedg_owth _ate, change rate, anderror

rate o[source code.

Measuresneeded: ctsizeestimateimodels,andrelationships.
(SeeSections and6.1.)

The project manager introduced in the previous example can use models derived from

historical data to project the expected rate of source code growth, as well as the expected

change rate and error rates of the software. Each new project will always strive to attain

lower error rates; however, until those lower rates are packaged into new organizational

NASA-GB-001-94 88

models, the manager should use the current historical models. Figure 6-12 illustrates the

planning charts derived from the models discussed in Sections 2.1 and 6.1.

Growth Rate Change Rate

System Acceptance System Acceptance
Design Code/Test Test Test Design Code/Test Test Test

O

i ' _ 10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100 % of Schedule
% of Schedule

9oo

75o

G9 600
0

LU 450

300

150

0

Error Detection Rate

I
1

I I
Code/Test System Test Acceptance Test Operations

Figure 6-12. Planning Project Dynamics

Estimating the final software size is the most understood and useful basis for project

planning, and the basic historical models derived during the understanding stage of a

measurement program are the most important planning aids. As an organization

completes more detailed analyses of the local environment, additional models will

provide even more accurate planning data. Such parameters as problem complexity, team

experience, maturity of the development environment, schedule constraints, and many

others are all valid considerations during the planning activity. Until the measurement

program provides some guidance on the effect of such parameters, project planning

should rely primarily on lines of code estimates, along with the basic historical models.

6.2.2 Assessing Progress

A second important management responsibility is to assess the progress of the development and

maintenance activity. Project managers must track the activities and interpret any deviations from

the historical models. Although experience is the best asset for carrying out this responsibility,

89 NASA-GB-001-94

severalmeasuresarehelpful. Thestandardearned-valuesystems,which aid in analyzingtherate
of resourcesconsumedcomparedto plannedcompletedproducts,are effective for supporting
progresstracking.Along with earned-valuetechniques,other softwaremeasurescan provide
additionalinsightsinto developmentprogress.

Example 12:

Tracking Code Production

iiiiiiiii at iiD ieiiiiwhi eriii ve m itiiii ii s giiii iiii ec iiiiiiiiiiiiiiiiiiiii

Measuresneeded: Biweeklycount ofsource libra size,manager'supdated
at-completionestimates

(See Section4.4.)

An analysis of historical data enables the derivation of such profiles as the expected rate

of code growth in the controlled library (see Figure 6-11). Using such a model, a project

manager can determine whether code production is proceeding normally or is deviating

from the expected range of values. As with other models, a project's deviation from the

growth-rate model simply means that the project is doing something differently. For

example, a project reusing a large amount of existing code may show an unexpectedly

sharp jump early in the code phase when reused code is placed in the configured library.

Figure 6-13 shows an example in which code growth made several jumps resulting from
reuse but then followed the model derived for the local environment.

Example 13:

Tracking Software Changes

Goal i Determine whetherrequirements and design are stable i

Measures needed:Changes to source code and manager_project estimates.

(SeeSection4.4.)

By tracking the changes made to the controlled source library, a manager can identify

unstable requirements or design. Plotting the behavior of a current project's change rate

against the organization's predictive model indicates whether the project is on track or is

deviating. Exaggerated flat spots (periods without changes) or large jumps (many changes

made at the same time) in the data should raise flags for further investigation. Some

deviations may be readily explained; for example, during testing, changes are often

grouped and incorporated into the configured software at the same time, thus causing a

large jump in the weekly change rate.

NASA-GB-001-94 90

o
g

i
F-
"6

lOO Design Code/Test

Build 2

Build 1

Acceptance
Test

10 20 30 40 50 60 70 80 90 100

%ofSchedule

Figure 6-13. Growth Rate Deviation

Figure 6-14 presents an example from actual data for a project that experienced a higher

than normal change rate. The requirements for this 130-KSLOC system were highly

unstable, resulting in a deviation from the existing model (introduced in Figure 6-12). By

recognizing the change rate early, managers could compensate by tightening CM

procedures to maintain the quality and the schedule.

!

i
8
==

o

!
o

10.00

9.00

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00

Design Code/Test

I
I

I I

Figure 6-14. Change Rate Deviation

91 NASA-GB-001-94

I Reqmts I Prelim I Detailed Build Build Build System IAcceptancel System

26 I--Analysis I Design I Design I 1 I 2 I 3 I TesSng I TesSng I Delivery

t . %_ Second Replan _ _o Actual Data

0°' ./..-'
/ FirstReplan :o _ -_1 •

._ 10 •

._ lan

2 r,_v P DR C DR Audit kX

i/" i i i i i v l i i i \C iN
0 10 20 30 40 50 60 70 80 90 100 110 120

Figure 6-15. Staff Effort Deviation

The original staffing plan was based on an underestimation of the system size. Toward

the end of the design phase, 40 percent more effort than planned was regularly required,

indicating that the system had grown and that replanning was necessary. Although the

manager's estimates of size did not reflect the significant increase, the staffing profile

indicated that the system was probably much larger than anticipated. The required effort

continued to grow, however, in spite of the new plan that projected a leveling off and then

a decline. A subsequent audit revealed that an unusually high number of requirements

were still unresolved or changing, resulting in excessive rework. As a part of the

corrective action, a second replanning activity was needed.

Example 15:

Tracking Test Progress

GoaliiDeterminewhetherthetesting haseis rogr as
iii ii

Me as u res ne ede d:Failu r e rep ort da ta a n dcha ng e data.

(See Section 4. 2.)

By consistently tracking reported versus fixed discrepancies, a manager gains insight into

software reliability, testing progress, and staffing problems. The open failure reports

should decline as testing progresses unless the project is understaffed or the software has

many defects.

When the "open" curve falls

below the "fixed" curve, defects

are being corrected faster than

new ones are reported. At that

time, a manager can more con-

fidently predict the completion

of the testing phase. Figure 6-16

shows an example of discrep-

ancy tracking that gave the

manager an early indication of

poor software quality (at Week

15). Staff members were added
to increase the error-correction

rate (during Weeks 20 through

35), and the system attained

stability (at Week 35).

0.8

&
_" 0.6

I.L 0

_.__

._ 0.4

0.2

0

J _ Fixe,._ I I.-----------r I I I i

0 5 10 15 20 25 30 35 40

Weeks of Testing

Figure 6-16. Tracking Discrepancies

93 NASA-GB-001-94

Example 16:

Tracking Software Errors

Measuresneeded:Errorreportdata, historicalmodels andsizeestimates.

(See Sections 4.2; 4.4, 5.3.3i and 6.1i3.)

One commonly used measure of software quality is the software error rate. Tracking the

project's error rate against an organization's historical model can provide a simple

estimate of the predicted quality of the delivered software. A consistent understanding of

what to count as an error enables the organization to make reasonable predictions of the

number of errors to be uncovered, as well as when they will be found.

The model in Figure 6-8 indicates that detected errors were reduced by half in subsequent

phases following coding and unit testing. By estimating the total size of the software and

by tracking the errors detected during the coding and unit testing phase, the project

manager can both observe the quality of the existing system relative to the model and also

project the quality of the delivered software.

Figure 6-17 is another view of the same model showing the cumulative errors detected

throughout the life cycle (see also Figure 5-7). The model compares error rates reported

during the coding and early test phases of an actual NASA project. The error rate can

deviate from the model for many reasons, including the possibility that the development

team is not reporting

errors. However, it is
still worthwhile to track

the errors and to assume

that the information is

reasonably reliable. The

example indicates that

the projected quality or

reliability (based on the

predicted error rate) is

an improvement over the

average local project;

indeed, in this case the

project turned out to be

an exceptionally reliable

system.

,.A
if)
v

O3

O

U3

>

E

7 m

6-

5 -

4-

3-

2-

1 -

0

System
Design Code/Test Test

......_i_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

....._iiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Schedule

Figure 6-17. Projecting Software Quality

NASA-GB-001-94 94

6.2.3 Evaluating Processes

A third responsibility of the software manager is to determine whether the project's standard

software processes are, in fact, being used, and if there is any impact on the product. Project

personnel may fail to apply a standard process because of inadequate training, team inexperience,

misunderstandings, or lack of enforcement. Whatever the reasons, the manager must try to

determine whether the defined process is being used.

Example 17:
Source Code Growth

iiiiiiiiiG_aliiDineiwhetheriiitheiiCleani_oomimethodiiisiiiibeingapplied.iiiiiiiiiiiiiiiiiiiii

Measures needed: Project phase date estimatesicompleted sourcecode, and
historical modelsi

 SeeSection4.4.)

One characteristic of the Cleanroom method is an increased emphasis on source code

reading before the code is released for system integration. This emphasis can be

confirmed by tracking the source code growth and observing two phenomena:

1. A delay in the phasing of the code completion profile

2. A significant step function profile of the code completion rate caused by the strict

incremental development of Cleanroom

The sample plot in Figure 6-18 is based on actual data from an organization's first use of

the Cleanroom method. The data exhibited both expected phenomena, suggesting that the

Cleanroom method was indeed part of

the project process. Such measurement

analysis is useful only to identify

occasions when expected differences

do not occur, so that the manager can

try to determine the cause.

By tracking the values of process

parameters, the manager can determine

whether the process is helping to attain

the organization's goals. If not, the

manager should consider changing the

process. The following section

discusses using measurement to guide

process improvement.

1 Design

I
I
I
I
I
I
I
I
I
I
I
I
I
I

' iiiiI _;ii
/_iiiiiiiiiiiiiiiiiiiii

10 20 30 40 50 60
% of Schedule

70 80 90 100

6.3 Guiding Improvement
Figure 6-18. Impact of the Cleanroom Method

on Software Growth

95 NASA-GB-001-94

One key reason for software measurementis to guide continual improvement in the
organization's products and services. The same measurementactivities that support
understandingandmanagingcanprovidea basisfor improvement.

To beableto assesshow aprocesschangeaffectsaproduct,themanagermustmeasureboththe
processesappliedandtheproductsdeveloped.Two keyanalysesmustbeperformed:

1. Verify that the processunder study shows the expectedmeasuredbehavior (either
changedor similar to otherprocesses).

2. Compareongoing activities with the baseline measuresdeveloped to establishan
understanding.

A specificinnovationmayresult in manychangesto processelements,somehelpful andothers
not.Experienceonsubsequentprojectsis neededto adapttheprocesschangeto anenvironment.
Thetypesof adaptationsincludethefollowing:

* Eliminateprocessesthatprovidelittle ornovalue.

* Accentuateprocessesthathelp.

* Determinetheimpactof specifictechniques.

* Write newpolicies,standards,andprocedures.

* Tailor processesfor specificneeds.

The two examplesin this section illustrate the application of measurementfor guiding
improvement.Additional examplesare provided in NASA's Software Process Improvement

Guidebook (Reference 25).

Example 18:

Cleanroom

Assume that an organization's goal is to decrease the error rate in delivered software

while maintaining (or possibly improving) the level of productivity. The organization

must understand the current software engineering process, using historical data to

establish a baseline for its error rate and productivity measures.

In this example, the organization has decided to change the process by introducing the

Cleanroom method (see Reference 13). Cleanroom focuses on achieving higher reliability

by preventing defects. Because the organization's primary goal is to reduce the error rate,

there is no concern that the Cleanroom method does not address reuse, portability,

maintainability, or many other process and product characteristics.

As the organization develops new products using the modified process, which

incorporates the Cleanroom method, it must continue to collect data for both process and

product measures and look for possible changes. Keep in mind that a change is not

always an improvement; it must be possible to measure two things: (1) that a difference

exists between the original and the changed product and (2) that the new product is better

than the original. Table 6-7 lists the measures that are important indicators for this

example and summarizes their usage. Other software process and product characteristics,

NASA-GB-001-94 96

such as schedule, maintainability, and amount of reuse, may also reveal deviations

beyond the expected baseline ranges. Such deviations must be investigated to determine
whether the effect is related to the introduction of the Cleanroom method.

Table 6-7. Indicators of Change Attributable to Cleanroom

Measure

Cost

Effort

Effort
distribution

Size

Software
size

Size growth

Number of
Errors

Type

Product

Process

Product

Process

Product

Indicator

Expectation: Cleanroom should not
decrease productivity.

Expectation: Cleanroom may show
increased design time.

Expectation: Cleanroom should have no
impact.

Expectation: Cleanroom may affect
measured profile.

Expectation: Cleanroom should increase
reliability.

To observe changes, the organization must analyze the measurement data at regular

intervals during the Cleanroom development period and compare the results with the

baseline. For example, Figure 6-19a compares the results of measuring development

activities on several SEL projects that used the Cleanroom method against the current

baseline activity profile in the same organization. The slight changes in the effort

distribution profiles suggest that the new method may have affected the development

process, but the difference in percentages is not conclusive. A closer look (see Figure

6-19b) at the subactivities within the "code" category reveals more substantial differences

and provides clear evidence of an impact on the relative percentages of the code writing

and code reading processes.

During the Cleanroom experiment (see Reference 14), the SEL also compared another

measure, software size growth, with the baseline. Figure 6-18 illustrates the marked

differences between the profiles. The Cleanroom profile exhibits a more pronounced

stepwise growth pattern, which results from the higher number of software builds

required by the Cleanroom method. Whereas developers typically used two or three

builds on projects that made up the baseline, they used from five to eight builds during

the Cleanroom experiment.

97 NASA-GB-001-94

Baseline Cleanroom Projects

Other
2O% Design

27%

Other
%

Design
33%

28% 27%

25%

a. All Activities

Code
19%

Code Reading
20%

Baseline Cleanroom Projects

Code
Writing

48%

Code
Readin

Code Writing 52%
80%

b. Code Activities Only

Figure 6-19. Impact of the Cleanroom Method on Effort Distribution

Both of the measures discussed above---effort by activity and software growth--are

strong initial indicators that the Cleanroom method has indeed changed the process.

Those process measures alone cannot, however, prove that the change has benefited the

product. To determine that the change is an improvement requires an analysis of measures

based on the project goals, specifically, higher product reliability (that is, lower error

rates) and stable productivity. Table 6-8 shows the error rate and productivity measures

for the baseline and experimental projects using the Cleanroom method. (The Cleanroom

experiment includes data through the system testing phase and excludes acceptance

testing; baseline values shown in the table have been adjusted to represent the same

portions of the life cycle.)

The results of the experiment appear to provide preliminary evidence of the expected

improvement in reliability after introducing the Cleanroom method and may also indicate

an improvement in productivity. Two conclusions can be drawn:

1. Process measures can verify that adopting a new technology has affected the

baseline process.

NASA-GB-001-94 98

Table 6-8. Impact of the Cleanroom Method on Reliability and Productivity

Error Rate Productivity
Data Source (Errors per KDLOC) (DLOC per Day)

Baseline 53 26

Cleanroom 1 43 40

Cleanroom 2 3 1 28

Cleanroom 3 60 20

2. Product measures can quantify the impact (positive, negative, or none) of a new

technology on the product.

Both types of measures can then be used to model the new process and expand the

experience baseline.

Example 19:

Independent Verification and Validation

Not all process changes result in measured product benefits. In 1981, the SEL studied a

testing approach using an independent verification and validation (IV&V) process. IV&V

promised to improve error detection and correction by finding errors earlier in the

development cycle, thus reducing cost and increasing overall reliability with no negative

impact on productivity. Determining the effect of this testing process on reliability and

cost were two major study goals. Table 6-9 lists the measures that are important

indicators for this example and summarizes the use of each.

Measurement analysts selected two projects for IV&V study and two similar ones for use

as baseline comparison efforts. For this study, the activities performed by the IV&V team

included the following:

,, Verifying requirements and design

,, Performing independent system testing

,, Ensuring consistency from requirements to testing

,, Reporting all findings

The next series of figures shows the measured results of the study.

99 NASA-GB-001-94

Table 6-9. Indicators of Change Attributable to IV&V

Measure Type Indicator

Cost

Effort P rod uct Expectation: Cost of IV&V effort would be offset by
reductions in error correction effort and decreases in

system and acceptance test effort.

Effort Process Expectation: IV&V process would show increased

distribution effort in early phases.

Staffing Process Expectation: Greater startup staffing for IV&V would

profile affect profile model.

Errors

Number Product Expectation: IV&V process would increase reliability.

Source Process Expectation: The number of requirements and

design errors found in later phases would decrease.

Figure 6-20 illustrates the effect of IV&V on requirements and design errors.

Requirements ambiguities and misinterpretations were reduced by 87 percent. The results

show relatively little effect on design errors, however, especially on complex design

errors.

Baseline

Requirements------_
8%_Functional

Specs

Design84%_8%

Simple: 66°/o -_

Complex: 18%

IV&V

Requirements_ Functional
1% _ _ Specs

::::::::::::::::::::::::::::::: 7 0

Design _iiiiiiii_

92%_%_iiiii_i_i_ii_....

Simple: 70%

Complex: 22%

Figure 6-20. Impact of IV&V on Requirements and Design Errors

Figure 6-21 depicts the percentage of errors found after the start of acceptance testing.

The IV&V projects exhibited a slight decrease in such errors but showed no significant

increase in the early detection of errors.

NASA-GB-001-94 100

20 -

18 -

16 -

14 -

12 -

10 -

8 -

6 -

4 -

2 -

0

20%

16%

Baseline IV&V

Figure 6-21. Percentage of Errors Found After Starting Acceptance Testing

Figure 6-22 shows the error rates by phase; the rates in the operations phase are the key

indicators of 1V&V effectiveness. The baseline error rate during operations is 0.5 errors

per KSLOC; however, the error rate for the 1V&V projects was slightly higher.

O

q
b9
v

o

LU

12

11

10

9

8

7

6

5

4

3

2

1

0

x (11.0)
x IV&V Project 1

O IV&V Project 2

O (8.2)

O (2.4) x (2.4)

x(1.3) [O(1.4)

I (0.77) 0 (0.89)

I I I
Code/Unit Test System Test Acceptance Test Operations

Figure 6-22. IV&V Error Rates by Phase

The final indicators for this experiment were effort distribution and overall cost. Figure

6-23 shows that process change in the effort distribution by phase did occur with the

IV&V projects. According to expectation, developers' design effort slightly decreased;

however, the substantial increase in coding and unit testing was somewhat surprising.

101 NASA-GB-001-94

Baseline IV&V

System and

Acceptance

Test 41%

Design Design

31% System and 23%

Acceptance
Test 29%

Code and Unit Code and Unit

Test 28% Test 48%

NOTE: This comparison ignores the "other" category.

Figure 6-23. Impact of IV& V on Effort Distribution

Figure 6-24 shows the impact of the IV&V process in two areas: the overhead of the

1V&V team itself and the increased cost to the development team because of their

interactions with a new group. Together, the overall cost increased by 85 percent, an

unacceptably high cost to pay for no measurable increase in overall product quality.

o
o
_A
rn

o_

P,

_O

2.5

2

1.5

0.5

0 =

Baseline

0.41

0i69

IV&V

I_1_ IV&V Overhead

Managers

Developers

Figure 6-24. Impact of IV&V on Cost

This example is not intended to indicate that IV&V technology is never beneficial. On

projects requiring extremely high levels of safety and reliability, the benefits of lV&V can

often outweigh the added cost. The cited software project was a ground-based, non-life-

critical system for which the extra safety was not worth the added overhead. Every

organization must judge the appropriateness of a potential software process change within

the context of the local environment and the organization's goals.

NASA-GB-001-94 102

Chapter 7. Experience-Based Guidelines

Chapter Highlights

MEASUREMENT GUIDELINES

4' The goal is application of results, not data collection.

4' The focus should be on self-improvement, not external
comparison.

4' Measurement data are inexact.

4' Interpretation is limited by analysts' abilities.

4' Measurement should not threaten personnel.

4' Automation of measurement has limits.

103 NASA-GB-001-94

T he following guidelines are precautionary notes for any software organization that plans
to include software measurement as part of its development process. Some of these

guidelines have been repeated several times throughout this document. Although some

may seem counterintuitive, each has been derived from the experiences of extensive, mature

measurement programs.

Guideline 1:Data collection should not be the dominant element of process

improvement; application of measures is the goal.

Focusing on collecting data rather than on analyzing and applying the data wastes time, effort,

and energy. Although many organizations are convinced that measurement is a useful addition to

their software development and maintenance activities, they do not fully plan for the use,

benefits, and applications of the collected measures. As a result, the measurement program

focuses on defining the list of measures to be collected and the forms that will be used to collect

the data, rather than on the specific goals of the measurement efforts.

Having specific and clearly defined goals facilitates the task of determining which data are

required. For example, if a goal is to determine error class distribution characteristics for each

phase of the software life cycle, then data must be gathered on what classes of errors occur in

what phases.

Experience in major mature measurement programs has shown that at least three times as much

effort should be spent on analyzing and using collected data as on the data collection process

itself. Focusing on data collection is a common mistake, similar to that of focusing on the

development of "lessons learned" from software efforts rather than on applying previous lessons

learned. More software lessons-learned reports are written than are ever read or used.

Software developers who are asked to collect data have the fight to know how the data will be

used and how that use will benefit their organization. Plans for analysis and application of the

data must be well developed before the collection process is initiated. A measurement program

that focuses on the collection, as opposed to the application, of the measurement data will fail.

Guideline 2:The focus of a measurement program must be self improvement, not

external comparison.

Because the primary reasons for measurement are to guide, manage, and improve within specific

software domains, the analysis and use of any measurement information must logically focus on

local improvement. Little emphasis should be placed on comparing local results and information

with that from other domains, because combining data across dissimilar domains rarely produces

meaningful results. In fact, organizations rarely define specific goals requiring external

comparison.

NASA-GB-001-94 104

Therearetwo significantcorollariesto this guideline:

1. Define standardterminology locally insteadof generatingwidely acceptedstandard
definitions.For example,provide a standardlocal definition of a line of code,because
thereisno universallyaccepteddefinition.

2. Use measurementdata locally. Combining measurementdata into larger, broader
informationcentershasneverprovedbeneficialandconsumesunnecessaryeffort. Focus,
instead,onproducinghigherquality,localdatacenters.

Guideline 3:
Measurement data are fallible, inconsistent, and incomplete.

Measurement programs that rely significantly on the high accuracy of raw software measurement

data are probably doomed to failure. Because of the nature of the measurement process and the

vast number of uncertainties that are part of it, the measurement data will always be inexact.

Relying primarily on the statistical analysis of the data collected for software development is a

serious mistake. Collection of measurement data is one small component of the overall set of

factors required to analyze software and software technologies effectively. The following

additional factors must be considered:

,, Subjective information--The general observations and assessments of developers,

managers, and analysts are as vital as the objective data collected via forms and tools.

,, Context of the information--Each set of data must be analyzed within a well-understood

and defined context. Attempting to analyze larger and larger sets of measurement data

adds to the confusion and difficulty of putting each set of data in its appropriate class of

interpretation.

,, Qualitative analysis--Because of the ever present danger that measures are erroneous,

biased, or missing, each analysis and application of measurement data must include an

analysis of the quality of the information. The measurement data characteristics must first

be determined by analyzing patterns, inconsistencies, gaps, and accuracy. Any

interpretation of measurement data results must include compensation for the quality of

the data.

,, Defined goals--Successful analysis of available data requires that the analyst first

understand the goals that motivated the data collection. By understanding the goals of the

measurement efforts, an analyst can interpret data gaps, biases, definitions, and even

levels of accuracy. The goals will significantly influence the quality, consistency, and

level of detail of the data analysis.

Because of the limited accuracy of measurement data, overdependence on statistical analysis of

these data can lead to erroneous conclusions and wasted efforts. Although statistical analysis is a

powerful mechanism for determining the strengths and weaknesses of collected measures and

providing insight into the meaning of the data, it must be used as only one limited tool toward the

goal of meaningful application of measurement data.

105 NASA-GB-001-94

Anotherpotentialpitfall existsin theuseof subjectivedatato characterizesoftwaredevelopment.
Manymeasurementprogramsattemptto characterizetheprocessesof eachdevelopmentproject
by recordinga rating factor for severalprocesselementssuchas "degreeof useof modern
programmingpractices,""experienceof theteam," "complexity of theproblem," or "quality of
theenvironment."Although successfulanalysisof measurementdatamustconsiderthe context,
problem,domain,andother factors,extensivestudieswithin NASA measurementprogramshave
repeatedlyfailedto showanyvaluein analyzingsuchratinginformation.Becausetherearemany
inconsistenciesin the definition and interpretationof terms suchas "problem complexity" or
"modernprogrammingpractices"and becauseof the inconsistenciesin thevalue judgmentsof
the peopledoing the ratings, the use of measurementdata shouldbe limited to providing a
generalunderstandingof theproject--nothingmore.

Guideline 4:The capability to qualify a process or product with measurement data is

limited by the abilities of the analysts.

Measurement data must be interpreted properly to provide meaningful results. For example, if an

analyst cannot clearly and precisely define "software complexity," then no tool or measure can

determine if software is too complex. There is a danger in expecting that a large amount of data

combined with some software tool will provide a manager or analyst with a clear representation

of software quality. The data and tool can represent only what the manager or analyst interprets

as quality.

Inexperienced measurement programs occasionally assume the existence of a generally accepted

threshold defining the boundary between acceptable and unacceptable values for some measures.

For example, a program unit that is larger than some predetermined code size might be deemed

undesirable. Similar thresholds are sometimes assumed for complexity, error rate, change rate,

test failure rate, and many other measures. Establishing control limits for comparing

measurement values is important, but the limits must be computed on the basis of local

experience. It should not be assumed that there is some predefined threshold that defines an

absolute boundary of acceptable values for local measures.

Guideline 5:
Personnel treat measurement as an annoyance, not a significant threat.

One of the most obvious and important guidelines for any measurement program is to emphasize

consideration for the concerns of development and maintenance personnel. Measurement

programs should not be used to qualify or characterize differences between individuals providing

measurement data. If confidentiality is assured, project personnel will provide requested

measurement information as freely as they provide other documentation or reports.

Experience has shown that, as long as managers ensure that measurements will never be used to

evaluate performance or rate programmers, the development and maintenance teams will treat

measurement responsibilities as just one additional task that is a part of their job.

NASA-GB-001-94 106

Guideline 6:

Automation of measurement has limits.

Nearly every measurement program starts with two well-intentioned goals:

1. Measurement will be nonintrusive.

2. Measurement will be automated.

The process of measurement, however, cannot be totally automated. Essential human processes

cannot be replaced by automated tools unless the measurement program is limited to a high-level

survey activity, because the opinions, insight, and focus of individual programmers and managers

are necessary to carry out effective measurement programs.

Tools can automate a limited set of routine processes for counting such measures as code size,

code growth, errors, and computer usage; however, insight into the reasons for errors, changes,

and problems requires human intervention. Without that insight and the verification of

measurement information, collected data are of limited value.

One NASA organization with a mature measurement program uses the automated tools listed in
Table 7-1.

Table 7-1. Examples of Automated Measurement Support Tools

Tool Use

Code analyzers Record code characteristics at project
completion

DBMS tools Store, validate, and retrieve information

CM tools Provide counts of changes to source code

Operating system Provide computer usage data
accounting tools

This same organization has found that many other measures must be compiled manually; some

examples are listed in Figure 7-1.

Even a well-defined and focused measurement program requires manual intervention. Because

the team provides only the limited amount of information needed to satisfy the organizational

goals, however, the measurement program will have a correspondingly limited intrusive impact

on the development and maintenance organization.

107 NASA-GB-001-94

Compile without tools

Error characteristics

Change characteristics of

designs and code

Processes applied

Code origin (newly built,

reused verbatim, or

modified)

Weekly hours of each

individual by activity

Testing strategy and results

Post-development analysis

Planned versus actual dates,

schedules, and cost.

Figure 7-1. Examples of Measures Collected Manually

NASA-GB-001-94 108

Appendix A. Sample Data Collection Forms

T his appendix contains many of the data collection forms that are used within the NASA
GSFC SEL measurement program. Reference 19 provides a detailed guide to using all of

the SEL forms. An organization establishing a new measurement program may want to

base its own set of forms on the samples. Table A-l summarizes the purpose of the forms, which

appear in alphabetical order on the following pages.

Table A-1. SEL Data Collection Forms

Name Purpose

Change Report Form Records information on changed units; is filled out each time a
configured unit is modified

Component Origination Provides information on software units as they are entered into the
Form project's configured library

Development Status Form Provides a record of the current status of the project parameters; is filled
out by the project manager on a regular basis

Maintenance Change Characterizes the maintenance performed in response to a change
Report Form request

Personnel Resources Form Provides information on hours spent on a project and how the effort was
distributed; is filled out weekly by software developers or maintainers

Project Completion Records final project statistics
Statistics Form

Project Estimates Form Records the completion estimates for project parameters; is filled out by
project managers

Project Startup Form Records general project information collected at the project startup
meeting

Services/Products Form Records use of computer resources, growth history, and services effort;
is completed weekly

Subjective Evaluation Form Records opinions that characterize project problems, processes,
environment, resources, and products

Subsystem Information Provides subsystem information at preliminary design review and
Form whenever a new subsystem is created

Weekly Maintenance Effort Records hours expended on maintenance activities
Form

109 NASA-GB-001-94

Name:

Project:

CHANGE REPORT FORM

Approved by:

Date:

Section A - Identification

Describe the change: (What, why, how)

Effect: What components are changed?

Prefix Name Version

Effort: What additional components

were examined in determining

what change was needed?

(Attach list if more space is needed)

Location of developer's source files:

Need for change determined on:

Change completed (incorporated into system):

month day year

Check here if change involves

Ada components. (If so, complete

questions on reverse side.)

Effort in person time to isolate the change (or error):

Effort in person time to implement the change (or correction):

[]

1 hr/less 1 hr/1 day 1/3 days > 3 days

Section B -All Chanties
Type of Change (Check one)

-I Error correction

[] Planned enhancement

[] Implementation of requirements

change
[] Improvement of clarity,

maintainability, or documentation

[] Improvement of user services

[] Insertion/deletion of debug code

[] Optimization of time/space/

accuracy

[] Adaptation to environment
change

[] Other (Describe below)

Effects of Change
Y N

[] []Was the change or correction to one and only one

component? (Must match Effect in Section A)

[] [] Did you look at any other component? (Must

match Effort in Section A)

[] [] Did you have to be aware of parameters passed

explicitly or implicitly (e.g., COMMON blocks) to or

from the changed components?

[] Requirements

[] Functional specifications

[] Design

[] Code

[] Previous change

Section C - For Error Corrections Only
Source of Error Class of Error

(Check one) (Check most applicable)*

[] Initialization

[] Logic/control structure

(e,g,, flow of control incorrect)

[] Interface (internal)

(module-to-module communication)

[] Interface (external)

(module to external communication)

[] Data (value or structure)

(e,g,, wrong variable used)

[] Computational

(e,g,, error in math expression)

*If two are equally applicable, check the
one higher on the list,

Characteristics

(Check Y or N for all)

Y N

[] [] .Omission error (e.g., something was left out)

[] [] .Commission error (e.g., something incorrect

was included)

[] [] Error was created by transcription (clerical)

For Librarian's Use Only

Number:

Date:

Entered by:
Checked by:

JANUARY 1994

Figure A-1. Change Report Form (1 of 2)

NASA-GB-001-94 l l 0

CHANGE REPORT FORM
Ada Project Additional Information

1. Check which Ada feature(s) was involved in this change (Check all that apply)

[] Data typing [] Program structure and packaging

[] Subprograms [] Tasking

[] Exceptions [] System-dependent features

[] Generics [] Other, please specify

(e.g., I/O, Ada statements)

2. For an error involving Ada components:

a. Does the compiler documentation or the language (Y/N)
reference manual explain the feature clearly?

b. Which of the following is most true? (Check one)

[] Understood features separately but not interaction

[] Understood features, but did not apply correctly

[] Did not understand features fully

[] Confused feature with feature in another language

c. Which of the following resources provided the information

needed to correct the error? (Check all that apply)

[] Class notes [] Own memory

[] Ada reference manual [] Someone not on team

[] Own project team member [] Other

d. Which tools, if any, aided in the detection or correction of this error? (Check all that apply)

[] Compiler

[] Symbolic debugger

[] Language-sensitive editor

[] CMS

[] Source Code Analyzer

[] P&CA (Performance and Coverage Analyzer)

[] DEC test manager

[] Other, specify.

3. Provide any other information about the interaction of Ada and this change

that you feel might aid in evaluating the change and using Ada

co

*T

NOVEMBER1991

Figure A-1. Change Report Form (2 of 2)

111 NASA-GB-001-94

COMPONENT ORIGINATION FORM

Identification

Name:

Project:

Subsystem Prefix:

Component Name:

Date:

Configuration Management Information

Date entered into controlled library (supplied by configuration manager):

Library or directory containing developer's source file:

Member name:

Relative Difficulty of Developing Component

Please indicate your judgment by circling one of the numbers below.

Easy Medium Hard
1 2 3 4 5

Origin

If the component was modified or derived from a different project, please indicate the
approximate amount of change and from where it was acquired; if it was coded new (from
detailed design) indicate NEW.

NEW

Extensively modified (more than 25% of Number:
statements changed) Date:
Slightly modified Enteredby:

Old (unchanged) Checkedby:

If not new, what project or library is it from?
Component or member name:

For Librarian's Use Only

Type of Component (Check one only)

INCLUDE file (e.g., COMMON)
Control language (e.g., JCL, DCL, CLIST)
ALC (assembler code)
FORTRAN source

Pascal source
C source

NAMELIST or parameter list
Display identification (e.g., GESS, FDAF)
Menu definition or help
Reference data files

BLOCK DATA file

Ada subprogram specification
Ada subprogram body
Ada package specification
Ada package body
Ada task body
Ada generic instantiation
Ada generic specification
Ada generic body
Other

Purpose of Executable Component

For executable code, please identify the major purpose or purposes of this component.
(Check all that apply).

I/O processing Control module
Algorithmic/computational Interface to operating system
Data transfer Process abstraction

Logic/decision Data abstraction

NOVEMBER 1991

Figure A-2. Component Origination Form

NASA-GB-001-94 112

DEVELOPMENT STATUS FORM

Name:

Project:
Date:

Please complete the section(s) that is appropriate for the current status of the project.

Design Status

Planned total number of components to be designed

(New, modified, and reused)

Number of components designed

(Prolog and PDL have been completed)

Code Status

Planned total number of components to be coded

(New, modified, and reused)

Number of components completed

(Added to controlled library)

Testing Status

Total number of separate tests planned

Number of tests executed at least one time

Number of tests passed

System Test Acceptance Test

Discrepancy Tracking Status (from beginning of system testing)

Total number of discrepancies reported

Total number of discrepancies resolved

Specification Modification Status (from beginning of requirements analysis)

Total number of specification modifications received

Total number of specification modifications completed (implemented)

Requirements Questions Status (from beginning of requirements analysis)

Total number of questions submitted to analysts

Total number of questions answered by analysts

Check here if there

are no changes

D
For Librarian's Use Only

Number:

Date:

Entered by:

Checked by:

09,

(o

NOVEMBER 1991

Figure A-3. Development Status Form

113 NASA-GB-001-94

MAINTENANCE CHANGE REPORT FORM ForLibrarian'sUse Only

Number:

Name: OSMR Number: Date:

Entered by:

Project: Date: Checked by:

SECTION A: Change Request Information

Functional Description of Change:

What was the type of modification?

-- Correction

Enhancement

-- Adaptation

What caused the change?

-- Requirements/specifications

-- Software design

__ Code

-- Previous change

-- Other

SECTION B: Change Implementation Information

Components Added/Changed/Deleted:

Estimate effort spent isolating/determining the change:

Estimate effort to design, implement, and test the change:

lhrto ldayto lweekto
< lhr 1 day 1 week 1 month > 1 month

Check all changed objects:

-- Requirements/Specifications Document

-- Design Document

-- Code

__ System Description

__ User's Guide

-- Other

If code changed, characterize the change (check most

applicable):

-- Initialization

-- Logic/control structure

(e.g., changed flow of control)

-- Interface (internal)

(module to module communication)

-- Interface (external)

(module-to-external communication)

-- Data (value or structure)

(e.g., variable or value changed)

-- Computational

(e.g., change of math expression)

-- Other (none of the above apply)

Estimate the number of lines of code (including comments):.__

added changed

Enter the number of components:__

added changed deleted

Enter the number of the added components that are:
totally new totally reused

deleted

reused with

modifications

C_

_T

_O

NOVEMBER 1991

Figure A-4. Maintenance Change Report Form

NASA-GB-001-94 l 14

Name:

Project:

Personnel Resources Form

Date (Friday):

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: Hours By Activity (Total of hours in Section B should equal total hours in Section A)

Activity Activity Definitions Hours

Predesign Understandingthe conceptsof the system. Any work priorto the actualdesign (such
as requirementsanalysis).

CreateDesign Developmentofthe system, subsystem,or componentsdesign. Includesdevelopment
of PDL, designdiagrams,etc.

Read/ReviewDesign Hoursspentreadingor reviewingdesign. Includesdesignmeetings,formaland informal
reviews,or walkthroughs.

Write Code Actuallycodingsystemcomponents. Includesboth deskand terminalcodedevelopment.

Read/ReviewCode Codereadingfor anypurposeotherthan isolationof errors.

Test CodeUnits Testingindividualcomponentsofthe system. Includeswritingtest drivers.

Debugging Hoursspentfindinga knownerror in the systemand developinga solution. Includesgen-
erationandexecutionof testsassociatedwithfindingthe error.

IntegrationTest Writingand executingtests that integratesystemcomponents,includingsystemtests.

AcceptanceTest Running/supportingacceptancetesting.

Other Otherhoursspent on the projectnotcoveredabove. Includesmanagement,meetings,
training hours,notebooks,systemdescriptions,user'sguides, etc.

SECTION C: Effort On Specific Activities (Need not add to A)
(Some hours may be counted in more than one area; view each activity separately)

Rework: Estimateof total hoursspentthatwere causedby unplannedchangesor errors. Includes
effortcaused by unplannedchangesto specifications,erroneousor changeddesign,errorsor
unplannedchangesto code,changesto documents. (This includesall hoursspentdebugging.)

Enhancing�Refining�Optimizing:Estimateof totalhoursspentimprovingthe efficiencyor clarityof design,or
code, ordocumentation. Theseare notcausedby requiredchangesor errorsin thesystem.

Documenting:Hoursspenton anydocumentationof thesystem. Includesdevelopmentof designdocuments,
prologs,in-linecommentary,test plans,systemdescriptions,useCsguides,or anyothersystem
documentation.

Reuse: Hoursspentin aneffort to reusecomponentsof the system. Includeseffort in lookingat other
system(s)design,code, ordocumentation. Counttotal hoursin searching,applying,andtesting.

For Librarian's Use Only

Number:

Date:

Entered by:

Checked by:

D

D

NOVEMBER 1991

Figure A-5. Personnel Resources Form

115 NASA-GB-001-94

Name:

Project:

Personnel Resources Form

(CLEANROOM VERSION)

Date(Friday):

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: Hours By Activity (Total of hours in Section B should equal total hours in Section A)

Activity ActivityDefinitions Hours

Predesign Understandingthe conceptsof thesystem. Any workpriorto theactualdesign(such
as requirementsanalysis).

Pretest Developinga test planand buildingthe testenvironment. Includesgeneratingtest cases,
generatingJCL,compilingcomponents,buildinglibraries,and defininginputsand
probabilities.

CreateDesign Developmentof thesystem,subsystem,or componentsdesign. Includesboxstructure
decomposition,stepwiserefinement,developmentof PDL, designdiagrams,etc.

Verify/ReviewDesign Includesdesignmeetings,formalandinformalreviews,andwalkthroughs.

Write Code Actuallycodingsystemcomponents. Includesbothdeskandterminalcodedevelopment.

Read/ReviewCode Codereadingfor anypurposeotherthan isolationof errors. Includesverifyingand
reviewingcodefor correctness.

IndependentTest Executingandevaluatingtestsof systemcomponents.

Responseto SFR Isolatinga tester-reportedproblemanddevelopinga solution. Includeswritingand
reviewingdesignor codeto isolateandcorrecta tester-reportedproblem.

AcceptanceTest Running/supportingacceptancetesting.

Other Otherhoursspenton the projectnotcoveredabove. Includesmanagement,meetings,
traininghours,notebooks,systemdescriptions,useCsguides,etc.

SECTION C: Effort On Specific Activities

MethodologyUnderstanding�Discussion:Estimatethetotal hoursspentlearning,discussing,reviewingor
attemptingto understandcleanroom-relatedmethodsandtechniques. Includesall timespentintraining.

For Librarian's Use Only

Number:

Date:

Entered by:

Checked by:

NOVEMBER 1991

Figure A-6. Personnel Resources Form (Cleanroom Version)

NASA-GB-001-94 116

Name:

Project:

PROJECT COMPLETION STATISTICS FORM

Date:

Phase Dates (Saturdays)

Phase Start Date

Requirements Definition

Design

Implementation

System Test

Acceptance Test

Cleanup

Maintenance

Project End

Staff Resource Statistics

Technical and

Management Hours

Services Hours

Computer Resource Statistics

Computer CPU hours No. of runs

Project Size Statistics

General Parameters Source Lines of Code

Number of subsystems Total

Number of components New

Number of changes Slightly Modified

Pages of documentation Extensively Modified

Old

Comments

Executable Modules Executable Statements Statements

Total Total Total

New New New

Slightly Modified Slightly Modified Slightly Modified

Extensively Modified Extensively Modified Extensively Modified

Old Old Old

Note: All of the values on this form are to be actual values at
the completion of the project. The values entered by
hand by SEL personnel reflect the data collected by
the SEL during the course of the project. Update
these according to project records and supply values
for all blank fields.

For Librarian's Use Only

Number:

Date:

Entered by:.

Checked by:

NOVEMBER 1991

Figure A-7. Project Completion Statistics Form

117 NASA-GB-001-94

PROJECT ESTIMATES FORM

Name:

Project:

Phase Dates (Saturdays)

Phase Start Date

Requirements Definitior

Design

Implementation

System Test

Acceptance Test

Cleanup

Project End

Date:

Staff Resource Estimates

Programmer Hours

Management Hours

Services Hours

Project Size Estimates

Number of subsystems

Number of components

Source Lines of Code

Total

New

Modified

Old

Note: All of the values on this form are to be

estimates of projected values at completion
of the project, This form should be
submitted with updated estimates every 6 to
8 weeks during the course of the project,

For Librarian's Use Only

Number:

Date:

Entered by:.

Checked by:

(3

NOVEMBER 1991

Figure A-8. Project Estimates Form

NASA-GB-001-94 118

Name:

Project:

PROJECT STARTUP FORM

Date:

PLEASE PROVIDE ALL AVAILABLE INFORMATION

Project Full Name:

Project Type:

Contacts:

Language:

Computer System:

Account:

Task Number:

Forms To Be Collected: (Circle forms that apply)

PEF PRF CLPRF DSF SPF SIF COF

General Notes:

CCF CRF SEF PCSF WMEF

Personnel Names (indicate with if not in database):

MCRF

(.9

s
NOVEMBER 1991

Figure A-9. Project Startup Form

119 NASA-GB-001-94

SERVICES/PRODUCTS FORM

Project:

Date (Friday):,

COMPUTER RESOURCES

Computer CPU Hours No. of Runs

GROWTH HISTORY

Components

Changes

Lines of Code

SERVICES EFFORT

Service Hours

Tech Pubs

Secretary

Proj Mgmt

Other

For Librarian's Use Only

Number:

Date:

Entered by:

Checked by:.

oo
o

co

(3

o
oq
c.o

NOVEMBER 1991

Figure A-IO. Services�Products Form

NASA-GB-001-94 120

S U B3 ECTIVEEVA L UATI ON FORM

Name:

Project: Date:

Indicate response by circling the corresponding numeric ranking.

I. PROBLEM CHARACTERISTICS

1. Assess the intrinsic difficulty or complexity of the problem that was addressed by the software development.

1 2 3 4 5

Easy Average Difficult

2. How tight were schedule constraints on project?

1 2 3 4 5

Loose Average Tight

3. How stable were requirements over development period?

1 2 3 4 5

Loose Average High

4. Assess the overall quality of the requirements specification documents, including their clarity, accuracy,

consistency, and completeness.

1 2 3 4 5

Low Average High

5. How extensive were documentation requirements?

1 2 3 4

Low Average

5

High

6. How rigorous were formal review requirements?

1 2 3 4 5

Low Average High

I1. PERSONNEL CHARACTERISTICS: TECHNICAL STAFF

7. Assess overall quality and ability of development team.

1 2 3 4 5

Low Average High

8. How would you characterize the development team's experience and familiarity with the application area of

the project?

1 2 3 4 5

Low Average High

9. Assess the development team's experience and familiarity with the development environment (hardware

and support software).

1 2 3 4 5

Low Average High

10. How stable was the composition of the development team over the duration of the project?

1 2 3 4 5

Loose Average High

FOR LIBRARIAN'S USE ONLY

Number: Entered by:

Date: Checked by:

NOVEMBER 1991

Figure A-11. Subjective Evaluation Form (1 of 3)

121 NASA-GB-001-94

SUB JEt T IV E EVA L UA T ION FORM

II1. PERSONNEL CHARACTERISTICS: TECHNICAL MANAGEMENT

11. Assess the overall performance of project management.
1 2 3 4 5

Low Average High

12. Assess project management's experience and familiarity with the application.

1 2 3 4 5

Low Average High

13. How stable was project management during the project?

1 2 3 4 5

Low Average High

14. What degree of disciplined project planning was used?

1 2 3 4 5

Low Average High

15. To what degree were project plans followed?

1 2 3 4 5

Low Average High

IV. PROCESS CHARACTERISTICS

16. To what extent did the development team use modern programming practices (PDL, top-clown

development, structured programming, and code reading)?

1 2 3 4 5

Low Average High

17. To what extent did the development team use well-defined or disciplined procedures to record

specification modifications, requirements questions and answers, and interface agreements?
1 2 3 4 5

Low Average High

18. To what extent did the development team use a well-defined or disciplined requirements analysis

methodology?

1 2 3 4 5

Low Average High

19. To what extent did the development team use a well-defined or disciplined design methodology?

1 2 3 4 5

Low Average High

20. To what extent did the development team use a well-defined or disciplined testing methodology?

1 2 3 4 5

Low Average High

IV. PROCESS CHARACTERISTICS

21. What software tools were used by the development team? Check all that apply from the list that follows
and identify any other tools that were used but are not listed.

[] Compiler

[] Linker

[] Editor

[] Graphic display builder

[] Requirements language processor

[] Structured analysis support tool

[] PDL processor

[] ISPF

[] SAP

[] CAT

[] PANVALET

[] Test coverage tool

[] Interface checker (RXVP80, etc.)

[] Language-sensitive editor

[] Symbolic debugger

[] Configuration Management Tool (CMS, etc.)

[] Others (identify by name and function)

22. To what extent did the development team prepare and follow test plans?

1 2 3 4 5

Low Average High
s
¢0

Figure A-11. Subjective Evaluation Form (2 of 3)

NASA-GB-001-94 122

SUBJECTIVEEVAEUATION FORM

IV. PROCESS CHARACTERISTICS (CONT'D)

23. To what extent did the development team use well-defined and disciplined quality assurance procedures
(reviews, inspections, and walkthroughs)?

1 2 3 4 5

Low Average H igh

24. To what extent did development team use well-defined or disciplined configuration management

procedures?
1 2 3 4 5

Low Average Hig h

V. ENVIRONMENT CHARACTERISTICS

25. How would you characterize the development team's degree of access to the development system?
1 2 3 4 5

Low Average Hig h

26. What was the ratio of programmers to terminals?
1 2 3 4 5

8:1 4:1 2:1 1:1 1:2

27. To what degree was the development team constrained by the size of main memory or direct-access
storage available on the development system?

1 2 3 4 5

Low Average Hig h

28. Assess the system response time: were the turnaround times experienced by the team satisfactory in

light of the size and nature of the jobs?
1 2 3 4 5

Poor Average Very Good

29. How stable was the hardware and system support software (including
project?

1 2 3 4 5

Low Average Hig h

language processors) during the

30. Assess the effectiveness of the software tools.

1 2 3 4 5

Low Average Hig h

VI. PRODUCT CHARACTERISTICS

31. To what degree does the delivered software provide the capabilities specified in the requirements?
1 2 3 4 5

Low Average Hig h

32. Assess the quality of the delivered software product.

1 2 3 4 5

Low Average Hig h

33. Assess the quality of the design that is present in the software product.

1 2 3 4 5

Low Average Hig h

34. Assess the quality and completeness of the delivered system documentation.
1 2 3 4 5

Low Average Hig h

35. To what degree were software products delivered on time?
1 2 3 4 5

Low Average Hig h

36. Assess smoothness or relative ease of acceptance testing.
1 2 3 4 5

Low Average Hig h
(o

Figure A-11. Subjective Evaluation Form (3 of 3)

123 NASA-GB-001-94

Name:

Project:

SUBSYSTEM INFORMATION FORM

Date:

Add New Subsystems

Subsystem Subsystem Subsystem
Prefix Name Function

Action

New Subsystem Prefix
(Must exist in the database) D - Delete)

This form is to be completed by the time of the Preliminary Design Review (PDR). An update

must be submitted each time a new subsystem is defined thereafter. This form is also to be

used when a subsystem is renamed or deleted.

Subsystem Prefix: A prefix of 2 to 5 characters used to identify the subsystem when naming

components
Subsystem Name: A descriptive name of up to 40 characters

Subsystem Function: Enter the most appropriate function code from the list of functions below:

For Librarian's Use Only

Date:

Entered by:

USERINT:
DPDC:

MATHCOMP:
GRAPH:

SYSSERV:

User Interface

Data Processing/Data Conversion
Real-time Control

Mathematical/Computational

Graphics and Special Device Support

Control Processing/Executive
System Services

NOVEMBER 1991

Figure A-12. Subsystem Information Form

NASA-GB-001-94 124

Name:

Date (Friday):

I For. Librarian's Use Only

Number: _

Date: __

Entered by:

Checked by:

Section A - Total Hours Spent on Maintenance (Includes time spentonall maintenance

activities for the project excluding writing specification modifications)

(Total of hours in Section B should equal total hours in

Section A)

CI ass ! D_i ni_i_n ! Hou_

Correction Hours spent on all maintenance associated with a system failure.

Enhancement Hours spent on all maintenance associated with modifying the system due

to a requirements change. Includes adding, deleting, or modifying system

features as a result of a requirements change.

Adaptation Hours spent on all maintenance associated with modifying a system to

adapt to a change in hardware, system software, or environmental

characteristics.

Other Other hours spent on the project (related to maintenance) not covered

above. Includes management, meetings, etc.

Section C - Hours By Maintenance Activity (Total of hours in Section C should equal total hours in
Section A)

A c t iv it c t iv i_D efi nit ion S ! H

Isolation Hours spent understanding the failure or request for enhancement or

adaptation.

Change Hours spent actually redesigning the system based on an understanding

Design of the necessary change.

Implementation Hours spent changing the system to complete the necessary change.

This includes changing not only the code, but the associated

documentation.

Unit Test/ Hours spent testing the changed or added components. Includes hours

System Test spent testing the integration of the components.

Acceptance/ Hours spent acceptance testing or benchmark testing the modified

Benchmark Test system.

Other Other hours spent on the project (related to maintenance) not covered

above. Includes management, meetings, etc.

NOVEMBER 1991

O

03

eq
CO

Figure A-13. Weekly Maintenance Effort Form

125 NASA-GB-001-94

o

SEL Representative Study Plan for

October 11, 1993

Project Description

development project will provide simulated telemetry and engineering data for use in testing

team of four GSFC personnel in Ada on the STL VAX 8820. The project is reusing design,

and Magnetospheric Particle Explorer Telemetry Simulator (SAMPEXTS).

review (CDR) in April 1993. In their detailed design document, the SOHOTELS team stated

Q

Q

Q

SOHOTELS is being implemented in three builds so that it can be used to generate data for

independent acceptance testing are being conducted in parallel. At present, the test team has

deliver it to the independent test team by the end of the week.

components was 435, of which 396 (91 percent) have currently been completed. Total SLOC

verbatim and 15.7K SLOC to be reused with modifications. As of September 13, 1993, there

The SOHOTELS task leader is currently re-estimating the size of the system because

also include SLOC for the schema files that are being developed.

September 9, 1992

October 3, 1992

May 1, 1993

127 NASA-GB-001-94

e

e

e

June 26, 1993

May 7, 1993

Goals of the Study

The study goals for SOHOTELS are

Acceptance Test

Cleanup

• To validate the SEL's recommended tailoring of the development life cycle for high-

reuse Ada projects

• To refine SEL models for high-reuse software development projects in Ada,

specifically

- Effort (per DLOC, by phase and by activity)

- Schedule (duration for telemetry simulators and by phase)

- Errors (number per KSLOC/DLOC)

- Classes of errors (e.g., initialization errors, data errors)

- Growth in schedule estimates and size estimates (from initial estimates to

completion and from PDR/CDR to completion)

Approach

The following steps will be taken to accomplish the study goals:

• Understand which of the standard development processes are being followed (per

Reference 10) and which have been tailored for the SOHOTELS project. Ensure that
information is entered into the SEL database that will allow SOHOTELS data to be

correctly interpreted in light of this tailoring.

• Analyze project/build characteristics, effort and schedule estimates, effort and

schedule actuals, and error data on a monthly basis while development is ongoing.

• At project completion, plot the effort, schedule, error rate, and estimate data.

Compare these plots with current SEL models and with plots from other high-reuse

projects in Ada. Compare and contrast the error-class data with data from FORTRAN

projects, from Ada projects with low reuse, and from other high-reuse Ada projects.

Data Collection

To address these study goals, the following standard set of SEL data for Ada projects will be
collected:

• Size, effort, and schedule estimates (Project Estimates Forms)

• Weekly development effort (Personnel Resources Forms)

• Growth data (Component Origination Forms and SEL librarians)

• Change and error data (Change Report Forms and SEL librarians)

NASA-GB-001-94 128

Rule

Understand that software measurement is a means to an end, not an end in itself.

Understand the goals

Understand how to apply measurement.

Start small.

Make sure the measures apply to the goals.

2

................................ 22

................................ 23

................................ 23

................................ 24

Avoid over-reporting measurement data.

Plan to spend at least three times as much on data analysis and use as on data collection.

28

29

33

Clarify the scope of effort data collection.

Do not expect to measure error correction effort precisely.

Do not expect to find generalized, well-defined process measures.

Do not expect to find a database of process measurements.

Understand the high-level process characteristics.

Use lines of code to represent size

Do not expect to automate data collection.

................................ 37

................................ 42

45

................................ 54

................................ 55

................................ 56

................................ 57

NASA-GB-001-94

Abbreviations and Acronyms

AGSS

CASE

CDR

CM

CMM

Code Q

COTS

CPU

DBMS

DLOC

GSFC

IV&V

JSC

KDLOC

KSLOC

NASA

PDR

QA

R&D

SAMPEXTS

SEI

SEL

SLOC

SME

SOHOTELS

attitude ground support system

computer-aided software engineering

critical design review

configuration management

Capability Maturity Model

Office of Safety and Mission Assurance (NASA)

commercial off-the-shelf

central processing unit

database management system

developed lines of code

Goddard Space Flight Center

independent verification and validation

Johnson Space Center

1,000 developed lines of code

1,000 source lines of code

National Aeronautics and Space Administration

preliminary design review

quality assurance

research and development

Solar, Anomalous, and Magnetospheric Particle Explorer
Simulator

Software Engineering Institute

Software Engineering Laboratory

source lines of code

Software Management Environment

Solar and Heliospheric Observatory Telemetry Simulator

Telemetry

131 NASA-GB-001-94

References

1. Grady, R. B., and Caswell, D. L., Software Metrics: Establishing a Company-Wide Program.

Prentice-Hall Inc., Englewood Cliffs, N J, 1989.

NASA, DA3 Software Development Metrics Handbook, Version 2.1, JSC-25519, Office of

the Assistant Director for Program Support, Mission Operations Directorate, Johnson Space

Center, Houston, April 1992.

, DA3 Software Sustaining Engineering Metrics Handbook, Version 2.0, JSC-26010,

Office of the Assistant Director for Program Support, Mission Operations Directorate,

Johnson Space Center, Houston, December 1992.

, DA3 Development Project Metrics Handbook, Version 5.0, JSC-36112, Office of

the Assistant Director for Program Support, Mission Operations Directorate, Johnson Space

Center, Houston, March 1993.

Musa, J. D., Iannino, A., and Okumuto, K., Software Reliability: Measurement, Prediction,

Application, McGraw-Hill, New York, 1987.

Rifkin, S., and Cox, C., Measurement in Practice, CMU/SEI-91-TR-16, Software

Engineering Institute, Carnegie Mellon University, August 1991.

Daskalantonakis, M. K., "A Practical View of Software Measurement and Implementation

Experiences With Motorola," IEEE Transactions on Software Engineering, Volume SE-18,
November 1992.

Decker, W., Hendrick, R., and Valett, J., Software Engineering Laboratory Relationships,

Models, and Management Rules, SEL-91-001, Software Engineering Laboratory,

NASA/GSFC, February 1991.

Condon, S., Regardie, M., Stark, M., and Waligora, S., Cost and Schedule Estimation Study

Report, SEL-93-002, Software Engineering Laboratory, NASA/GSFC, November 1993.

10. Landis, L., McGarry, F., Waligora, S., et al., Manager's Handbook for Software Development

(Revision 1), SEL-84-101, Software Engineering Laboratory, NASA/GSFC, November 1990.

11. Paulk, M. C., Curtis, B., Chrissis, M. B., and Weber, C. V., Capability Maturity Model for

Software, Version 1.1, CMU/SEI-93-TR-24, Software Engineering Institute, Carnegie

Mellon University, February 1993.

12. McGarry, F., and Jeletic, K., "Process Improvement as an Investment: Measuring Its Worth,"

Proceedings of the Eighteenth Annual Software Engineering Workshop, SEL-93-003,

NASA/GSFC, December 1993.

13. Currit, P. A., Dyer, M., and Mills, H. D., "Certifying the Reliability of Software," IEEE

Transactions on Software Engineering, Vol. SE-12, No. 1, January 1986, pp. 3-11.

14. Basili, V. R., and Green, S., "Software Process Evolution at the SEL," IEEE Software, Vol.

.

.

.

.

.

.

.

.

133 NASA-GB-001-94

15.Rombach,H. D., Ulery, B. T., and Valett, J. D., "Toward Full Life Cycle Control:Adding
MaintenanceMeasurementto the SEL," Journalof Systemsand Software,Vol. 18, 1992,

16.Caldiera,G., McGarry, F., Waligora, S., Jeletic,K., and Basili, V. R., SoftwareProcess
ImprovementGuidebook,NASA-GB-002-94,SoftwareEngineeringProgram,1994.

17.International Function Point Users Group, Function Point Counting Practices Manual,

Release 3.2, Westerville, Ohio, 1991.

18. McGarry, F., "Experimental Software Engineering: Seventeen Years of Lessons in the SEL,"

Proceedings of the Seventeenth Annual Software Engineering Workshop, SEL-92-004,

NASA/GSFC, December 1992.

19. Heller, G., Valett, J., and Wild, M., Data Collection Procedures for the Software Engineering

Laboratory Database, SEL-92-002, Software Engineering Laboratory, NASA/GSFC, March

1992.

20. Decker, W. and Valett, J., Software Management Environment (SME) Concepts and

Architecture, SEL-89-003, Software Engineering Laboratory, NASA/GSFC, August 1989.

21. Hall, D., Sinclair, C., and McGarry, F., Profile of Software at the Goddard Space Flight

Center, NASA-RPT-002-94, Software Engineering Program, April 1994.

22. Basili, V. R., and Perricone, B. T. "Software Errors and Complexity: An Empirical

Investigation," Communications of the ACM, January 1984, Vol. 27, No. 1.

23. Basili, V. R., and Weiss, D. M. "A Methodology for Collecting Valid Software Engineering

Data," IEEE Transactions on Software Engineering, November 1984.

24. Basili, V. R., and Rombach, H. D. "The TAME Project: Towards Improvement-Oriented

Software Environments," IEEE Transactions on Software Engineering, June 1988.

25. Caldiera, G., Jeletic, K., McGarry, F., Pajerski, R., et al., Software Process Improvement

Guidebook, NASA-GB-001-95, Software Engineering Program, 1995.

26. Kelly, J. C., Sherif, J. S., and Hops, J., "An Analysis of Defect Densities Found During

Software Inspections," Journal of Systems and Software, Vol. 17, No. 2, February 1992.

NASA-GB-001-94 134

