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Abstract

This report presents an experimental and numerical investigation of the free vibration of

cantilevered composite plates with and without passive damping. A total of seven composite

material plates are considered. The lay-up sequences for the two plates without damping are

[90/90/0/0]5 and [90/0/90/0]5; the other five plates are the same as the first two with two

embedded layers of passive damping material. The passive damping material is embedded at

different locations in the plate with orientation [90/0/90/0]_, The damping material employed

is a 3M material (S J-2015 ISD 112) with peak damping properties in the ambient temperature

range (32°F to 140°F). The composite material used is a carbon fiber (977-2)/epoxy resin

(IM7). The effect of the passive damping system employed in this study for the composite

plates are discussed. Modal testing is performed on these plates to determine resonant

frequencies, amplitude and mode shape information. Numerical results are obtained using

COSMOS/M software for the plates without damping. The experimental and numerical

results are in very good agreement for different laminated plates without damping layers.
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Introduction

Conventional structural designs are often unacceptable in coping with modern problems

of structural resonance caused by the complex nature of the dynamic environments. Current

interest in large flexible space structures provides new motivation and requirements of

structural damping enhancement for vibration control. The objective of enhancing damping

in structural elements is to control the response of the elements in order to prevent

catastrophic failure due to excessive deformation.

In this work, passive damping is used to enhance the damping of a carbon/epoxy

cantilever plate under free vibration by adding a viscoelastic-damping layer to the plate.

Cantilevered flat plates are convenient simulations for structural components, such as wings,

horizontal and vertical stabilizers, and compressor fan blades for aircraft engines.

A number of papers have appeared which explore the effects of interlaminar damping

of beam and plate structures. Ditaranto and Mcgraw [1 ] investigated the dissipation of

vibratory energy in sandwich plates with a viscoelastic core. Only transverse inertial effects

were included in the analysis. The solution for the damping was given for simply supported

edges, and a relation between modal frequency and loss factor was obtained. Khatua and

Cheung [2] used a finite element technique for the study of elastic multi-layer beams and

plates. Orthotropy was included in the analysis, but rotatory and translatory inertia effects

were neglected. Barrett [3] developed a comprehensive model to predict the damping of

composite laminated plates with a viscoelastic layer. The effect of stress coupling and

compliant layering was examined. Saravanos and Pereira [4] developed a discrete layer

laminate theory for composite laminates with damping layers by incorporating a piecewise

continuous displacement field through the thickness. Nadella and Rao [5] applied the modal

strain energy method proposed by Johnson and Kienholz [6] to estimate the modal parameters

of the multi-damping layer anisotropic laminated composite beams. Gerst, Rao and He [7]

presented experimental results for composite beams with single and double damping layers,

and demonstrated that cocuring is an effective way of fabricating highly damped composite

structural components.



Objective

In a previous joint research interchange between California Polytechnic State University

and NASA-Dryden Research Center entitled, "Hybrid damping system for an electronic

equipment mounting shelf", the ability to detect modes of vibration using surface mounted

piezoelectric ceramics (PZT) as sensors was investigated [8]. Resonant frequencies and

amplitudes of the damped and undamped plates were determined and presented.

The objective of this study was to investigate the effect of passive damping on

composite plates. Five task were included in this study: 1) constructing carbon composite

plates with different lay-up sequences and staging of the embedded viscoelastic layers, 2)

mounting piezoelectric sensors, 3) determining the modal parameters of the plates, 4)

numerical analysis utilizing COSMOS/M, and 5) comparison between experimental and

numerical analysis.



Experimental Procedure

The following is a review of the experimental procedure, equipment and materials used in

the fabrication and dynamic testing of the cantilever composite plates. Fabrication and testing

of these plates were conducted in the Aerospace Composite and Structural Laboratory

(ACSL) at California Polytechnic State University.

Fabrication of Composite Plates

The composite plates were fabricated using carbon fiber/epoxy resin and two layers of

viscoelastic material. The passive damping material provides high damping at room

temperature but low stiffness and strength. The property of materials used are listed in Tables

1 and2.

Table 1. Material properties for 977-2 carbon fiber/IM7 epoxy resin.

P

V

t

2.5e7

1.1e6

1.43e-4

0.36

inches 0.00625

Table 2. Material properties for 3M viscoelastic damping layer, SJ2015 type 1205.

Degrees F 32-140

E psi

p Lb*s^2/in^4

v 0.5

t inches 0.005
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Thedampedcompositeplatesconsistof eight layersof carbon/epoxyandtwo layersof

passivedampingmaterial. Severaldifferentlay-upsof compositematerialwith andwithout

dampingwerefabricated.Theplatedimensionandsequencesarelistedin Table3. An

exampleof a typical lay-upis [90/0/90/0/d]s,whichrepresentsasymmetriclay-upof 90°, 0°,

90°, 0° of compositematerialandadampinglayer,d, symmetricaboutthecenterof theplate

asshownin Figure1.

I I

_Passive damping

mid-plane

Figure 1. Composite material plate with embedded damping layer.

The lay-ups consisted of 8" x 9" composite plates. The composite lay-up was placed

in a composite air press in three steps. The first two steps consisted of curing the top and

bottom lay-up of carbon/epoxy with temperature and pressure cycles as recommended by the

manufacturer of the prepreg material, separately. The third step was to bond them together

with the embedded viscoelastic layers, as recommended by the manufacturer of the 3M

material.

Once these plates were fabricated, they were cut into plate samples of 4-in. width and

9-in. length. Two 0.97" x 4" x 0.25" aluminum bars were secured with two bolts sandwiched

clamped on one edge of the plate. A third bolt was placed in the center of the aluminum bars,

in order to secure the test specimen to the shaking table.

Piezoelectric ceramic sensors (0.75" x 0.5") were bonded with the positive poling axis

oriented perpendicular to the top surface. The conductive epoxy allows the surface of the

plate to be used as a common negative pole for the sensor. During the bonding process the

Air Press applied 80 Lbs force at room temperature for 20 minutes.

11
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Figure 2. Cantilever Plate

Table 3. Plate dimensions and sequence with and without damping material.
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Identifying Resonant Node Lines

To identify resonant node lines of the test specimen, the carbon fiber plate was mounted

on the shaking table and a function generator was used to scan through the frequencies

ranging from 0 to 500Hz. Resonant frequencies were identified by sharp rises in audible

amplitudes, visual plate displacements, and the formation of node lines using sugar traces on

the plate surface.

Dynamic Testing

A schematic of the experimental setup for dynamic testing of the cantilever plates is

presented in Figure 3. A list of the equipment and instrumentation used for testing and

fabrication of the plates is given in Table 4.

nput

Electromagnetic Ampl_t_er

Shaker

I
I

Computer

Figure 3. Schematic of Dynamic Testing

Time response and frequency response data was acquired using National Instruments

AT-MIO-16F-5 Data Acquisition (DAQ) card in conjunction with National Instruments

LabVIEW for Windows Network Analyzer Virtual Instrument (VI). A cantilever plate was

mounted on a shaker and excited using a chirp signal from LabVIEW. A power amplifier was

used to boost the signal before entering the shaker. The DAQ card acquires the data signals

directly from the sensor, conditions and digitizes the data, and enters the data into the PC's

bus.

13



Table 4. Equipment and Instrumentation Summary

MB Electronics

Hewlett-
3311A EE-3955

Packard

8" x 9" plate

1 =0.75
Morgan Matroc PZT-5A w =0.5
Inc. t --0.01

d = 1.74"
Thurston H.S.S.

t = 0.06"

Witco AT2000 486-66DX2

National 3.1 DAQ Software:
Instruments NetworkS__

max. input: +10volts
National AT-MIO- 16F- -

max. sample rate:
Instruments 5 51.2K

Tektron 7912 2 Channel

Kistler 5122 4 Channel

Chirp Signal Tests

The chirp signal is an impulsive type of signal that can have excitation over a wide

range of frequencies, and avoids impulse loading problems. The Network Analyzer provided

the chirp signal for the shaking table and sampled the data provided by the sensors. The

following Network analyzer parameters were used for the chirp tests:

1) Sample rate 1,000 samples/sec

2) Frame size 1,024 samples

3) Windowing Hann

4) Averaging 3

14



Eachtestincludedthefollowing steps:

1) initiating chirpnoise,

2) samplingof dataprovidedby sensors,

3) recordingresonantfrequenciesrepresentedby relativemaximums,

4) savingfrequencyandamplitudedataintoa spreadsheetfile for comparisonof with

subsequentresults.

15



Results and Discussion

Experimental Results

Figure 4 and 5 show the free vibration frequency response and time response curves for

plates A and B without damping, [90/90/0/0]s and [90/0/90/0]2, respectively. For the first

mode, these figures show that the change in orientation has no significant effect on the natural

frequencies and amplitudes. For the second and third modes of plates A and B, the

orientations of the plates have a significant effect on amplitude and natural frequencies. The

change in orientation has little effect on the time response. Figures 6 shows the frequency

response curves for plates A and A1, [90/90/0/0]s and [90/90/O/O/d]s, respectively. Plate A1,

[90/90/0/0/d]_, has two damping layers located about the mid-plane of the plate. One can see

that the second and third modes are completely damped out, and the first resonant frequency

and amplitude decreased with the addition of damping layers. Figure 7 presents the free

vibration time response curves for plates A and A1. As can be seen from this figure, the

embedded damping layer has a significant effect on the sensor output voltage of the time

response curves. Plate A reached steady state at about 0.55 sec., whereas by adding the

damping layer, the steady-state time response was reached in 0.15 sec.

Figures 8 and 9 present the free vibration frequency response curves and the time

response curves for plates B and B 1, [90/0/90/0]s and [90/0/90/0/d]_, respectively. The

decrease in frequency and the increase in damping can be seen in both figures. To reduce the

frequency response, the damping material is more effective at higher modes rather than the

lower modes.

Figures 10 and 11 show the effects of adding two damping layers about the mid-plane

to plates with different orientations, [90/90/0/0/d]_ and [90/0/90/0/d]s. The resonant

frequencies for the [90/0/90/0/d] _ plate appear to be much higher than the [90/90/0/0/d]_ plate.

This is due to the change in the orientation of the lay up, making the [90/0/90/0/d] s plate

stiffer than the [90/90/0/0/d]_ plate. Also, there is a significant change in amplitude and time

response curve for the [90/0/90/0/d] _plate.

Figures 12 and 13 present the frequency response and time response curves for plates

with and without damping for sequence [90/0/90/0]2. The damping layers are embedded at

different locations. The closer the embedded layer is to the surface, the

16
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higher the damping of the plate. The plate with the embedded viscoelastic layer at the mid-

plane, plate B1, is the least effective for damping. Regardless of location, the embedded

viscoelastic layers significantly enhances the damping of the plates.

Whenever the plate is subjected to cyclic bending, the composite constraining layers

will constrain the viscoelastic material and force it to deform in shear, which is how the

vibrational energy is dissipated. This is why the plates with embedded viscoelastic layers

show an increase in damping. The obvious decrease in natural frequencies of the plates with

damping is caused by the decrease in stiffness introduced with the addition of the damping

layers.

Figure 14 shows the time response curves for plates with damping for orientation

[90/0/90/0]s, plates B1 through B4; the damping layers are embedded at different locations.

Plate B1 is the least effective for damping. One can see that the shear damping is clearly a

function of constraining layer thickness. The variation of the damping amplitude is due to the

change in location of the embedded damping layer within the plates.

Table 5 lists the natural frequencies obtained from the chirp tests for the ftrst three

bending modes for all plates.

Table 5. Frequency modes for different orientations with and without embedded layers.

[90/90/0/0]s 22.46 140.62 388.67

[90/90/O/O/d]s 19.53 98.63

[90/0/90/0]s 30.27 186.52

[90/O/90/O/d]s 25.39 142.57

[90/O/90/d/O]s 20.51

[90/O/d/90/O]s 23.44

[90/d/O/90/O]s 23.44

22
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Fig. (14) Voltage of sensor output Vs time through transtion from undamped to

damped system for laminate [90/0/90/0]s with damping layer at different stages.
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Numerical Results

COSMOS/M version 1.75 finite element analysis software was used to verify the

experimental results for plates A and B. The finite element model (FEM) and the mode

shapes for plates A and B are shown in Figures 15 and 16. The FEM consists of a total of 200

elements. The element stiffness matrix was formulated using QUAD4 technique. Small

deflections and linear elastic properties were assumed. The subspace iteration method was

used for the frequency analysis.

Table 6 presents the numerical and experimental resonant frequencies for plates A and

B, without damping. The In'st and second modes are in good agreement for both plates.

Because the higher modes are dependent on the lower modes for the numerical analysis, the

third mode significantly differs from the experimental values obtained for both plates.

Table 6. Numerical and experimental resonant frequencies for plates without damping.

Num. Exp. Num. Exp. Num. Exp.

21.39 22.46 133.87 140.62 375.49 237.30

30.95 30.27 193.84 186.52 543.37 375

24
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CONCLUSION

This study has shown an effective way of damping composite structure components

and different laminated structures, which have wide applications where vibration and noise

reduction are of main concern. The addition of the damping layer (3M) material increased the

damping ratio and decreased the stiflhess/mass ratio. Careful selection of embedded damping

layer location and laminate orientation are necessary to optimize the damping benefits

desirable and stiffness reductions that can be tolerated. The addition of viscoelastic material in

plate B 1, [90/0/90/0]s, further reduces the amplitude of vibration in all the fundamental

bending mode frequencies more effectively than plate A1, [90/90/0/0/d]s. This is because the

stiffness/mass ratio for the first plate is greater than that for the second plate. Excellent

agreement between numerical and experimental results for plates without damping was

obtained for the natural frequencies of the system.
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