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BULK-FLOW ANALYSIS OF HYBRID THRUST BEARINGS FOR ADVANCED 
CRYOGENIC TURBOPUMPS 

LUIS SAN ANDRÉS, PRINCIPAL INVESTIGATOR 
 
EXECUTIVE SUMMARY 
A bulk-flow analysis and computer program for prediction of the static load performance 
and dynamic force coefficients of angled injection, orifice-compensated hydrostatic / 
hydrodynamic thrust bearings have been completed. The product of the research is an 
efficient computational tool for the design of high-speed thrust bearings for cryogenic 
fluid turbopumps. The study addresses the needs of a growing technology that requires of 
reliable fluid film bearings to provide the maximum operating life with optimum 
controllable rotordynamic characteristics at the lowest cost. 
 
The motion of a cryogenic fluid on the thin film lands of a thrust bearing is governed by a 
set of bulk-flow mass and momentum conservation and energy transport equations. Mass 
flow conservation and a simple model for momentum transport within the hydrostatic 
bearing recesses are also accounted for. The bulk-flow model includes flow turbulence 
with fluid inertia advection, Coriolis and centrifugal acceleration effects on the bearing 
recesses and film lands. The cryogenic fluid properties are obtained from realistic 
thermophysical equations of state. Turbulent bulk-flow shear parameters are based on 
Hirs’ model with Moody's friction factor equations allowing a simple simulation for 
machined bearing surface roughness. A perturbation analysis leads to zeroth-order 
nonlinear equations governing the fluid flow for the thrust bearing operating at a static 
equilibrium position, and first-order linear equations describing the perturbed fluid flow 
for small amplitude shaft motions in the axial direction. Numerical solution to the zeroth-
order flow field equations renders the bearing flow rate, thrust load, drag torque and 
power dissipation. Solution to the first-order equations determines the axial stiffness, 
damping and inertia force coefficients. The computational method uses well established 
algorithms and generic subprograms available from prior developments.  
 
The Fortran90 computer program hydrothrust runs on a Windows 95/NT personal 
computer. The program, help files and examples are licensed by Texas A&M University 
Technology License Office.  
 
The study of the static and dynamic performance of two hydrostatic/hydrodynamic 
bearings demonstrates the importance of centrifugal and advection fluid inertia effects for 
operation at high rotational speeds. The first example considers a conceptual hydrostatic 
thrust bearing for an advanced liquid hydrogen turbopump operating at 170,000 rpm. The 
large axial stiffness and damping coefficients of the bearing should provide accurate 
control and axial positioning of the turbopump and also allow for unshrouded impellers, 
therefore increasing the overall pump efficiency. The second bearing uses a refrigerant 
R134a, and its application in oil-free air conditioning compressors is of great 
technological importance and commercial value.  
 
The computed predictions reveal that the LH2 bearing load capacity and flow rate 
increase with the recess pressure (i.e. increasing orifice diameters). The bearing axial 
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stiffness has a maximum for a recess pressure ratio ~0.55, while the axial damping 
coefficient decreases as the recess pressure ratio increases. The computer results from 
three flow models are compared. These models are a) inertialess, b) fluid inertia at recess 
edges only, and c) full fluid inertia at both recess edges and film lands. The full inertia 
model shows the lowest flow rates, axial load capacity and stiffness coefficient but on the 
other hand renders the largest damping coefficients and inertia coefficients. The most 
important findings are related to the reduction of the outflow through the inner radius and 
the appearance of subambient pressures. 
 
The performance of the refrigerant hybrid thrust bearing is evaluated at two operating 
speeds and pressure drops. The computed results are presented in dimensionless form to 
evidence consistent trends in the bearing performance characteristics. As the applied axial 
load increases, the bearing film thickness and flow rate decrease while the recess pressure 
increases. The axial stiffness coefficient shows a maximum for a certain intermediate 
load while the damping coefficient steadily increases. The computed results evidence the 
paramount of centrifugal fluid inertia at low recess pressures (i.e. low loads), and where 
there is actually an inflow through the bearing inner diameter, accompanied by 
subambient pressures just downstream of the bearing recess edge. These results are solely 
due to centrifugal fluid inertia and advection transport effects. 
 
Recommendations include the extension of the computer program to handle flexure pivot 
tilting pad hybrid bearings and the ability to calculate moment coefficients for shaft 
angular misalignments. 
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NOMENCLATURE 

Ao     (πdo
2/4).  Effective orifice area [m2]. 

AB     ).RR( 2
in

2
out −π Bearing surface area [m2]. 

AR     ( ) RRR
2
Ri

2
RoR lD

2
1RR

2
1 ΘΘ =− . Recess (pocket) area [m2]. 

2
*RR R/AA =  

bR     recess arc length [m]. *RR R/bb =  

C     H2. Nominal (minimum) film clearance  [m]. 

Cp     Fluid specific heat [J/kg ⋅ °K]. *ppp C/CC =  

Cd     Orifice discharge coefficient.  

CZZ     Damping force coefficient [Ns/m]. ( )[ ]asBZZZZ PPA/CCC −= Ω  

Cd     Orifice discharge coefficient 

Dout    2⋅Rout .  Bearing outer diameter [m]. 

Din     2⋅Rin .  Bearing inner diameter [m]. 

DR     2⋅RR. Recess center diameter [m].  

do     Orifice diameter [m] 

Ec     
*p*

*

CT
U . Eckert heat transfer dimensionless number. 

FZ     Fluid film axial force [N]. ( )[ ]asBZZ PPA/FF −=  

fS,B     
3
1 = eM

4101 = cM;5105 = bM

0.001375 = aM

B,S

MBS,
M

eM

M    ;
Re
b + 

H
r

c + 1a ⋅⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

Turbulent flow Moody’s friction factors at shaft and bearing surfaces. 

H,h     Film thickness [m], H/C* 

H1,2,3,4    Pad film thickness at leading edge, trailing edge, and midplane inner 

and outer radius [m]. 

HB,HS    convection heat flow coefficients on bearing and shaft surfaces 

[watt/m2°K]. *SSS*BBB H/HH;H/HH ==  

HR                Recess depth [m]. C/Hh RR =  
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h1     
C

zΔ . Small perturbation in axial displacement (dimensionless).  

KZZ     Stiffness force coefficient [N/m]. ( )[ ]asBZZZZ PPA/CKK −=  

L            (Rout - Rin). Bearing radial length [m]. 

lR     (RRo - RRi). Recess radial length [m]. 

M     Bearing mass flow rate [kg/s]. 

MRin, MRout   Mass flow rates through inner and outer diameters of bearing [kg/s]. 

MR     Mass flow through recess orifice [kg/s]. ( )***RR RCU/MM ρ=  

MΓ     ∫ ⋅Γ Γηρ dUH rr
. Mass flow from recess boundary into to film lands 

[kg/s]. ( )*** RCU/MM ρΓΓ =  

MZZ     Inertia force coefficient [kg]. ( )[ ]asB
2

ZZZZ PPA/CMM −= Ω  

Nrec    Number of hydrostatic recesses (pockets) on bearing pad. 

Npad    Number of pads on bearing. 

P, P     Fluid pressure [N/m2], (P-Pa)/(Ps-Pa).   

PR, Ps         Recess pressure, supply pressure [N/m2]. 
+−

ReRe P,P    Edge recess pressures [N/m2]. 

PDin , PDout   Fluid pressures at inner and outer bearing diameters [N/m2]. 

Pa     Characteristic pressure, MIN[PDin , PDout] [N/m2]. 

Pdyn    ½ Δ(∀ΣRR)2. Pressure due to centrifugal inertia effect at pocket radius  

QBS     QB + QS. Radial heat flow through bearing, QB= HB(T-TB), and shaft, 

QS=HS(T-TS), surfaces [watt/m2]. 

R,r                         Radial coordinate [m], *R/R .  

*R      Rout. Characteristic bearing radius [m]. 

Re     ( )./CR *** μΩρ  Nominal circumferential flow Reynolds number. 

Rep     ( )./CU *** μρ  Nominal pressure flow Reynolds number. 

*pRe      ( )*p R/CRe . Nominal modified pressure flow Reynolds number. 

ReΦ      ( )*p*
2

* Re/C σμωρ =  . Squeeze film Reynolds number. 

ReB,ReS   (ΔH/:) [UR
2 + U2

2 ]1/2, (ΔH/:) [UR
2 + (U2-ΣR)2 ]1/2 
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Flow Reynolds numbers relative to bearing and shaft surfaces. 

rS, rB    Roughness depths of shaft and bearing surfaces [m]. 

s     R/RR. Local radial coordinate from pocket radius. 

t     Time [s]. 

T,T     Temperature, sT/TT =  

Ts     Fluid supply temperature [°K]. 

TB, TS    bearing and shaft surface temperatures [°K]. 

To     Shear induced torque on bearing surface [Nm]. ( )3
***oo RU/CTT μ=   

*U      ( ) **as
2 R/PPC μ− . Characteristic fluid flow velocity [m/s]. 

Ur,U2    Bulk-flow velocities in radial and circumferential directions [m/s]. 

ur,u2    **r U/U,U/U θ . Dimensionless radial and tangential velocities 

VR     [AR(H+HR)+Vsupply] . Recess volume including supply line volume 

[m3]. CR/VV 2
*RR =  

WZ     External axial load on bearing [N]. ( )[ ]asBZZ PPA/WW −=  

α     Fluid inlet swirl ratio at recess. 

βP     +(1/ρ)(∂ρ/∂P). Liquid compressibility coefficient [m2/N]. 

βT     - (1/ρ)(∂ρ/∂T).  Liquid volumetric expansion coefficient [1/°K]. 

∗2, ∗r    (H1-H2)/C, (H3-H4)/C. Pad circumferential and radial tapers [-]. 

)ϑrZ,)ϑ2Z   ⎟
⎠
⎞

⎜
⎝
⎛ − Rk

2
1Uk

H
;Uk

H Srr Ωμμ
θθ  Wall shear stress differences in radial and 

circumferential directions [N/m2]. 

H
R |θτ     ( ){ }RUU

H4
P

R
H

2
1

S Ωκκμ
θ θθθ −−+

∂
∂ . Turbulent wall shear stress 

at runner surface [N/m2]. 

δRο     
[ ]( )

( )*

2/1
as*od

RCU
PP2AC

ρ
ρ −

. Dimensionless feed orifice coefficient. 

(     First order shear coefficients (Appendix A). 

κr = κ2    ½(κS + κB).  Turbulence shear factors in (r,2) flow directions. 
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κS, κB    fS ⋅ ReS, fB ⋅ ReB .  Turbulent shear parameters at shaft and bearing. 

ρ, μ    Fluid density [kg/m3], viscosity [Ns/m2]. 

2     circumferential coordinate [rad].  

ΘP     angular extent of a bearing pad [rad]. 

Θl_pad    Leading edge of a bearing pad [rad]. 

ΘR     angular extent of hydrostatic recess (pocket) [rad]. 

ξxu, ξxd    Empirical recess-edge entrance loss coefficients in circumferential 

(upstream, downstream) direction. 

ξri,  ξro    Empirical recess-edge entrance loss coefficients in radial direction, 

inner and outer radii boundaries.  

ϑ      Τ t. Dimensionless time.  

7,Φ     **** U/R;U/R ωΩ . Circumferential speed and whirl frequency 

numbers 

Ω, ω    shaft rotational speed, excitation or whirl frequency [rad/s] 

 

Subscripts refer to: 

o     recess feed orifice 

s     Refer to pressure supply condition.  

0,1     zeroth and first-order variables. 

R,e     Bearing recesses and edges (entrance). 

u,d     Upstream and downstream of recess.  

B,S     Refer to bearing and shaft (collar) surfaces. 
 

Overbar denotes dimensionless variable 



 vi

 
TABLE OF CONTENTS 

 page 

EXECUTIVE SUMMARY i 

NOMENCLATURE iii 

LIST OF TABLES vii  

LIST OF FIGURES vii 

ACKNOWLEDGEMENTS viii 

  

INTRODUCTION 1 

ANALYSIS 3 

Bulk-flow equations on the film lands of a hydrostatic thrust 
bearing 

3 

Bulk-flow equations at the recess of a hydrostatic thrust bearing 5 

Governing equations in dimensionless form 7 

Film thickness expression and boundary conditions 9 

Perturbation analysis of the flow field 
Zeroth-order bulk-flow equations on the film lands 
First-order bulk-flow equations on the film lands 
Zeroth- and first-order flow equations at a bearing recess 

11 

Fluid film reaction force and axial force coefficients 14 

Numerical method of solution of flow equations on the film lands  15 

The iterative scheme for balance of flow at bearing recesses 17 

Numerical solution of the first-order bulk-flow equations 19 

THE COMPUTER PROGRAM HYDROTHRUST 21 

NUMERICAL RESULTS AND DISCUSSION 21 

Example of a hydrostatic thrust bearing for a cryogenic turbopump 22 
Example of a hydrostatic thrust bearing for a refrigerant compressor  25 

CONCLUSIONS 28 

RECOMMENDATIONS 29 

REFERENCES 31 

FIGURES 4-24 33 -
46 

  
APPENDIX A. FIRST-ORDER WALL SHEAR STRESS COEFFICIENTS  
APPENDIX B. ALGEBRAIC BULK-FLOW EQUATIONS ON THE THIN FILM LANDS OF A 

THRUST BEARING 
 

 
 



 vii

LIST OF TABLES 
  PAGE 

1 Hydrostatic thrust bearing for an advanced cryogenic fluid turbopump 22 
2 Hydrostatic thrust bearing for R134a compressor application 25 

 
LIST OF FIGURES 

  page 
1 Geometry of hydrostatic/hydrodynamic thrust bearing. 3 
2 Description of bearing pad and tapered film thickness. 10 
3 Staggered control volumes for integration of bulk-flow equations in polar coordinates (r,2). 16 
4 Orifice diameter vs. recess pressure ratio for ALH thrust bearing. 

(Effects of fluid inertia at film lands and recess edges). 
33 

5 Fluid film force vs. recess pressure ratio for ALH thrust bearing. 33 
6 Pressure distributions for LH2 thrust bearing. (a) at pocket diameter for varying pressure 

ratios, (b) pressure contours and (c) pressure surfaces for pratio=0.50. 
34 

7 a) Flow rate vs. recess pressure ratio for ALH thrust bearing 
(b) Flow rates through inner and outer radii vs. recess pressure ratio for ALH thrust bearing 

35 

8 Axial stiffness coefficient (Kzz) vs. recess pressure ratio for ALH thrust bearing. 36 
9 Axial damping coefficient (Czz) vs. recess pressure ratio for ALH thrust bearing. 36 

10 Axial inertia coefficient (Mzz) vs. recess pressure ratio for ALH thrust bearing. 37 
11 Drag torque vs. recess pressure ratio for ALH thrust bearing. (Effects of fluid inertia at film 

lands and recess edges). 
37 

12 Maximum and minimum flow Reynolds numbers vs. recess pressure ratio for  
ALH thrust bearing. (Effects of fluid inertia at film lands and recess edges). 

38 

13 Maximum fluid speed flow Reynolds numbers vs. recess pressure ratio for  
ALH thrust bearing. 

39 

14 Film clearance (C) versus thrust load (Wz) for refrigerant thrust bearing. 
(Effects of fluid inertia at film lands and recess edges). 

40 

15 Recess pressure ratio versus dimensionless thrust load (⎯Wz) for refrigerant thrust bearing. 40 
16 (a) Dimensionless bearing mass flow rate versus thrust load (⎯Wz) for refrigerant thrust 

bearing. 
(b)   Mass flow rates (dim.) through inner and outer radii vs. versus thrust load (⎯Wz) for 

refrigerant thrust bearing. 

41 

17 Dimensionless axial stiffness (⎯Kzz) coefficient vs. versus load (⎯Wz) for refrigerant thrust 
bearing. 

42 

18 Dimensionless axial damping (⎯Czz) coefficient versus load (⎯Wz) for refrigerant thrust 
bearing. 

42 

19 Dimensionless axial inertia (⎯Mzz) coefficient versus load (⎯Wz)for refrigerant thrust 
bearing. 

43 

20 Dynamic stiffness coefficient (⎯Kzzd=⎯Kzz -⎯MzzΩ2) versus load (⎯Wz) for refrigerant thrust 
bearing. 

43 

21 Dimensionless drag torque (⎯To**) versus load (⎯Wz) for refrigerant thrust bearing. 44 
22 Maximum Reynolds numbers versus recess pressure ratio for refrigerant thrust bearing. 44 
23 Maximum and minimum film (dimensionless) pressures versus recess pressure ratio for 

refrigerant thrust bearing. 
45 

24 Film Pressures from full inertia model. (a) pressure at recess diameter for pratio=0.93, 0.58, 
0.22, (b) pressure surface and contours for pratio=0.58. 

46 

   
B.1 Staggered control volumes for integration of bulk-flow equations in polar coordinates (r,θ). B.2 
B.2 P-control volume for integration of continuity equation and pressure correction equation. B.3 
B.3 U-control volume for integration of circumferential bulk-flow momentum equation. B.4 
B.4 V-control volume for integration of radial bulk-flow momentum equation B.6 
B.5 T-control volume for integration of energy transport (fluid temperature) equation. B.8 



 viii

ACKNOWLEDGEMENTS 
 
Thanks to Dr. Robert Thom and Mr. Tim Jett from NASA MSFC for their support and 
interest on this work. I am indebted to Mr. Tom Haykin from Pratt & Whitney for his 
valuable help and insightful discussions in regard to the thrust bearings for the ALH 
turbopump. The important advice of Mr. Philip Pelfrey was also critical for the 
completion of the work. The interest of Mr. Richard LeClaire from the AF Research 
Laboratory is also acknowledged.    
 
 



 1

INTRODUCTION 
The importance of hybrid (combination hydrostatic and hydrodynamic) journal and thrust 
bearings and damping seal bearings as radial support elements in cryogenic 
turbomachinery has steadily grown over the past few years. Advanced primary power 
cryogenic turbopumps are compact - low count part units, operate at very high shaft 
speeds, and require of externally pressurized fluid film bearings to support the expected 
large thrust and lateral radial loads (Pelfrey, 1995). Fluid film bearings enable smaller 
and lighter turbopumps through no bearing DN life limitation and no sub-critical rotor 
operation. These mechanical elements have durability, low friction and wear, accuracy of 
positioning, and large direct stiffness and damping force coefficients. These features 
enable the design (and operation) of unshrouded impellers with a significant increase in 
the turbopump mechanical efficiency. 
 
The growth of an "all-fluid-film- bearing" technology for advanced and less costly (per 
launching cost) turbopumps demands the development of analytical models and design 
tools, the testing of components, and the implementation of the technology. San Andrés 
(1990-1996) has performed the thermohydrodynamic analysis and developed computer 
programs for prediction of the static and dynamic force response of radial fluid film 
bearings for cryogenic applications. The research addresses effectively the most 
important theoretical and practical issues related to the operation and dynamic 
performance of cryogenic fluid film bearings, i.e. namely, geometric configuration, 
operating conditions, flow turbulence, fluid inertia, fluid compressibility, thermal effects, 
and two-phase flow phenomena. The computational programs are not restricted in their 
application to cryogenic fluid film bearings and seals. The codes have been validated 
with experimental data from process fluid film bearings with mineral oils, water and air 
in regimes of operation ranging from laminar flow to turbulent flows, and including the 
transition zone to fully developed turbulence.  

 
Further applications of compressible fluid thrust bearings in the Thermal Management 
System of the Space Station Freedom also motivate further the need for advanced models 
and computational tools. Current thrust bearing computational programs are based on the 
Reynolds lubrication of classical lubrication, lack a comprehensive thermohydrodynamic, 
do not include real fluid properties, and neglect fluid inertia (Coriolis and centrifugal) 
effects on the bearing film lands.  
 
Pinkus and Lund (1981) study the effects of centrifugal inertia on the performance of 
hydrodynamic thrust bearings. Hashimoto (1989, 1990) extend the analysis to include 
fluid advection transport effects. These original references have been instrumental to the 
present development. Centrifugal forces, most important in the performance of parallel 
plate bearings and seals, lead to subambient pressures and may induce lubricant 
cavitation. Thus, large areas of the bearing surface could be denuded of fluid with a 
significant reduction in the bearing load capacity. Operation at high rotational speeds will 
also generate large circumferential fluid speeds with a tremendous impact on the inertial 
pressure drop at the edges of the bearing recesses.  
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A bulk-flow analysis for prediction of the static load performance and dynamic force 
coefficients of angled injection, orifice-compensated hydrostatic / hydrodynamic thrust 
bearings follows. The model accounts for the bulk-flow mass, momentum and thermal 
energy transport, includes flow turbulence and fluid inertia (advection and centrifugal) 
effects on film lands and recesses, and incorporates cryogenic fluid properties using a 
NIST data base (McCarty, 1986). The computer program predicts the flow rate, load 
capacity, power loss and axial dynamic force coefficients for rigid surface, tapered land 
hybrid thrust bearings. The static and dynamic forced performance of two hydrostatic 
bearing geometries of interest for advanced cryogenic turbomachinery and oil-free 
compressors are discussed in detail. Recommendations for further research close the 
present development. 
  
 
 
 



 3

ANALYSIS 
Consider the turbulent flow of a fluid within the film lands of a hybrid 
(hydrostatic/hydrodynamic) thrust fluid film bearing. The bearing geometry and coordinate 
system are depicted in Figure 1. In the following, the bulk-flow equations of motion for the flow 
on the thin film lands are detailed along with a perturbation analysis for description of the 
equilibrium flow (zeroth-order) and perturbed flow (first-order) due to shaft small amplitude 
axial motions.  
 

Ω shaft speed

Rin
inner radius

film land

Uθ
tangential
velocity

θ

R

Rout
outer radius

Ur
radial

velocity

Ω

film land

orifice

hydrostatic
recess

H: film thickness
shaft (collar)

bearing

Figure 1. Geometry of a hydrostatic / hydrodynamic thrust bearing
 

 
Bulk-flow equations on the film lands of a hydrostatic thrust bearing 
Flow turbulence, fluid inertia and compressibility effects are important on the thin film lands of a 
hydrostatic thrust bearing. The model assumes the fully developed turbulent bulk-flow of a fluid 
whose material properties depend on its local thermophysical state of pressure and temperature.  
The equations of mass, radial and circumferential momentum, and energy transport for the 
bulk-flow velocities, pressure and temperature on the bearing film lands are given as (San 
Andrés, 1994, 1995): 
 
continuity: 
 
( ) ( ) ( )
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radial momentum:  
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circumferential momentum:  
 

( ) ( ) ( )
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energy transport: 
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where QBS =QB + QS = HB(T-TB)+HS(T-TS) is the convected heat flow through the bearing and 
runner (shaft) surfaces. P and T are the fluid pressure and temperature, and (Ur ,U2) are the bulk-
flow velocities in the radial and circumferential directions, respectively. Refer to the 
Nomenclature for a description of all other variables.  
 
The wall shear stress parameters are determined as local functions of turbulent friction factors, 
and which depend on the bearing and shaft surface conditions and the flow Reynolds numbers 
relative to the rotating shaft and stationary bearing surfaces (Hirs, 1973):  
  

⎟
⎠
⎞

⎜
⎝
⎛ −== R

2
1U

H
U

H SZrrRZ ΩκκμτΔκμτΔ θθθ      (2) 

 

( ){ }RUU
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∂
∂

=  

 
where the turbulent flow shear factors (κr=κ2, κS) are defined in terms of the friction factors (f) 
and Reynolds numbers (Re) relative to the stationary bearing (B) surface and the shaft (S) 
rotating surface. The functional forms are: 
 

( ) SSSBBBSBr Ref;Ref;
2
1

==+== κκκκκκ θ      (3.a) 

where            
 

( )22
RS

22
RB RUUHRe;UUHRe Ω
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ρ

θθ −+⎟⎟
⎠
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⎝
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The cryogenic liquid properties (Δ,:,Cp) are extracted from the Benedict-Web-Rubin equation of 
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state as given in the standard data base of McCarty (1986). 
 
Bulk-flow equations at the recess of a hydrostatic thrust bearing 
In a hydrostatic bearing, the fluid at pressure (Ps) and temperature (Ts) is supplied through orifice 
restrictors into the bearing pockets or recesses. The continuity equation at a hydrostatic recess 
establishes a balance among the mass flow through the feed orifice (MR), the flow through the 
boundaries of the recess into the film lands (MΓ), and the accumulation of fluid mass within the 
recess volume, VR=[AR (H+HR)+Vsupply]. The conservation of mass flows at a bearing recess is 
given as, 
 

rec
R

TPiRR
R

RiR N,...,1i,
t
T

t
PV

t
V

MM
i

i

i

ii
=

⎭
⎬
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+= ββρρΓ    (4) 

 
where (P,T)R are the averaged pressure and temperature within the recess, and (ρ,βP ,βT )R are the 
fluid density, fluid compressibility coefficient and thermal expansion coefficient,  respectively. 
Recall that the fluid material coefficients are defined as 
 

P
T

T
P T
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⎦
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The mass flow (MR) through the orifice is given in terms of the pressure drop from the feed line 
at supply pressure (Ps) to the recess inlet pressure (PR), i.e. 
 

( )[ ] 2/1

recN,...,1iiRSiRoioidiR PP2ACM
=

−= ρ        (6) 

 

where 2
oo d

4
A π

= is the orifice area and Cd is an empirical discharge (loss) coefficient. The mass 

flow rate leaving the ith-recess through its boundary (Γ) and into the thin film lands is given as 
 

∫ ⋅=
i ii dUHM ΓΓ Γηρ rr

         (7) 
 
with the fluid velocities evaluated from the governing equations on the film lands. 
 
A global flow energy balance is also accounted for at the bearing recesses. The simple model 
includes the mechanical energy dissipated by viscous shear, the heat-carry over (advection) from 
upstream conditions and the thermal mixing effects. The transport of thermal energy equation 
within a bearing recess is written as:  
 

( )
recR N,...,1i

RopsRP
R

Rp Td.UHTCTMC
t

)T(
VC

=

∫ +−=
∂

∂

Γ
ΩΓηρ

ρ rr
   (8) 
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where ToR is the shear viscous drag torque on the recess area. 
 
The analysis also considers the circumferential bulk-flow and pressure rise within the hydrostatic 
recesses as a one-dimensional Rayleigh-step bearing. The simple model also includes the 
momentum transfer due to angled fluid injection against shaft direction. San Andrés and Childs 
(1997) provide full details on this analysis. The edge recess pressure ( )−

eRP  just before the inlet to 
the film lands is given by the approximate relationship (San Andrés, 1995): 
 

( ) R
S2

R

R
RRRe 2

RU
HH2

bPP ⎟
⎠
⎞

⎜
⎝
⎛ −

+
+=− Ωκκμ θθ      (9) 

 
where bR is the circumferential length of a hydrostatic recess1. 
 
High-speed thrust bearings can develop significant centrifugal flow effects. San Andrés (1997) 
presents a simple model for prediction of the radial pressure rise within the recess region due to 
the centrifugal fluid acceleration. The radial pressure within the recess is given by: 
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UHH

RUk2
Us
U

11sPPP

=⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝
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θθ ρ

μ
  (10) 

 
where (s=R/RR), and ( RRRr RU,U Ωαθ = ) are the radial and circumferential bulk-flow velocities 

within the recess, and 2
RdynR U

2
1P θρ= is the dynamic pressure head due to centrifugal fluid 

inertia. The expression above shows the variation of recess pressure due to the following effects: 
a) viscous shear decreasing the pressure as the radius grows, i.e. towards the outer side of the 

bearing. 
b) centrifugal forces due to fluid rotation which raise the pressure towards the outer radius of 

the recess, and 
c) advection of fluid momentum in the radial direction that decreases the pressure as the radius 

within the recess grows.  
 
The viscous and centrifugal fluid inertia effects on the generation of the recess pressure field, 
equations (9) and (10), are superimposed. This assumption is grounded on simplicity rather than 
on a thorough analysis of the complex flow field within the hydrostatic pockets. 
 
The local acceleration of fluid from a deep recess into the thin film lands causes a sudden 
pressure drop. The pressure ( )+

eRP at the entrance to the film lands is modeled from Bernoulli’s 
equation as, 
 
                                                           
1 Note that this length varies in the radial direction. 
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 where { }duoi ,,, θθ ξξξξξ =  are empirical entrance loss coefficients for the edges of a recess at its 
inner radius, outer radius, upstream and downstream circumferential directions, respectively. The 
sudden pressure drop is accounted for only if the fluid flow effectively enters the thin film lands. 
  
Governing equations in dimensionless form 
Let dimensionless coordinates and flow variables be defined as: 
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where the (*) denotes characteristic values, and with 
( )

**

aS*
* R

PPC
U

μ
−

=
2

 as a characteristic 

pressure flow velocity. Dimensionless orifice and recess outflow mass flow rates, recess area and 
volume are defined as 
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The bulk-flow equations of motion on the thin film lands become in dimensionless form: 
 
continuity: 
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radial momentum: 
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circumferential momentum: 
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energy transport: 
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where
*

*

U
RΩ

Λ=  and 
*

*

U
Rω

σ =  are the shaft speed and frequency numbers. 

*

*
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***
*P R

CCURe ⎟⎟
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⎝
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μ
ρ  is a nominal Reynolds Number due to pressure flow, and 
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ωρ

σσ  is a squeeze film Reynolds number. 
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2
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c CT
U

E =  is the Eckert heat 

transfer number, and ( )SB H,H  are dimensionless convection heat transfer coefficients. The 

ratio ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

c

*p

E
Re

may be interpreted as the effect of heat convection relative to shear dissipation. 

 
In dimensionless form, the mass conservation equation at the ith-hydrostatic recess takes the 
form, 
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where ( )[ ] 2/1

iRiRoiRoiR P1M −= ρδ , and ∫ ⋅=
iB ii duhM ΓηρΓ

rr     (14.b) 
 
with an orifice parameter defined as, 
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The energy transport balance within a bearing hydrostatic recess is written as: 
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The circumferential and radial pressure rises within the ith-hydrostatic recess are given in 
dimensionless form as: 
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while the entrance pressures to the film lands bounding the ith-hydrostatic recess are expressed 
as, 
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Film thickness expression and boundary conditions 
The thrust hydrostatic/hydrodynamic bearing maybe composed of: 
a) a single continuous (360Ε) pad with (Nrec) recesses distributed around the bearing area, or  
b) a number of pads (Npad) separated by radial grooves. Each pad may contain one or more 

recesses.  
 
For a bearing pad of angular extent (1pad) and with its leading edge at the angular location 
(1l_pad), the film thickness including circumferential (∗2) and radial (∗r) slopes is given by 
(Pinkus and Lund, 1981): 
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where, referring to the geometry presented in Figure 2, ( ) ( )
C

HH
r;

C
HH 4321 −

=
−

= δδθ , are the 

slopes (taper) in the circumferential and radial directions, respectively. 
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2
11K with C=H2 as the film thickness at the midpoint of the pad trailing 

edge.  
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Figure 2. Description of a bearing pad and tapered film thickness.
 

 
 
The pressures at the inner and outer bearing radii are specified as, 
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outDoutinDin P)r(P;P)r(P ==          (20) 
 
These pressures2 are regarded as uniform or constant, and consequently, their variation under 
dynamic shaft motions is nil.  
 
In a 360Ε bearing, the fluid pressure, temperature and velocities are singled valued in the 
circumferential direction, i.e. 
 

( ) ( )t,2,ru,u,T,Pt,,ru,u,T,P rr πθθ θθ +=        (21) 
 
while for a bearing pad, the pressures at the leading and trailing edges are given as a (known) 
function of the pressures )P,P( outDinD specified at the inner and outer radii, respectively. A ram-
pressure effect due to fluid inertia at the leading edge of a bearing pad is also considered as per 
the analysis of San Andrés (1996). 
   
Note that the momentum and energy equations on the film lands are of hyperbolic character, and 
consequently, no boundary conditions are required for the discharge temperature and fluid 
velocities at the bearing inner and outer radii. The balance of flow leaving the bearing recesses 
and entering the film lands provides the (inner) boundary conditions for the velocity fields on the 
thin film flow region, see equations (18). 
  
Perturbation analysis of the flow field 
Determination of the bearing dynamic force coefficients requires of a perturbation analysis of the 
flow field for infinitesimally small shaft axial motions about an equilibrium position. This 
elegant procedure renders sets of zeroth- and first-order flow equations for evaluation of the 
bearing static load capacity, shear torque, bearing and recess flow rates, and the dynamic force 
coefficients. 
  
Consider small amplitude ()z) axial motions of the thrust collar (shaft or runner) at frequency (Τ) 
about an equilibrium position denoted by (h0). The film thickness is expressed in dimensionless 

form with ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

*
1 C

zh Δ as, 

1i;ehih;ehhh i
1

i
10 −==

∂
∂

+= ττ

τ
  (22) 

All the flow variables, pressure, temperatures and velocities are also expressed as the 
superposition of zeroth-order and first-order flow fields describing the equilibrium and the 
perturbed fields, respectively, i.e., 
 

τφφφ i
10 e+=  ;   { }.etc,,,,,,T,P,u,u Srr κκκμρφ θθ=     (23) 

                                                           
2 The inner and outer radii pressures may be different depending on the closeness of the bearing to the discharge and 
suction zones of a centrifugal impeller in a cryogenic turbopump. 
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Substitution of these definitions into the thin film land equations (13) leads to the zeroth- and 
first-order governing equations for the fluid flow: 
 
Zeroth-order bulk-flow equations on the film lands 
continuity: 
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radial momentum: 
 

( ) ( )
r
P

h-  u
h

  uh
uuh 

 
r 

uhr
  

r
1Re 0

0r00r
0

02
000

0r000
2
r000

*p ∂
∂

=+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

∂
∂

+
∂

∂
κ

μ
ρ

θ
ρρ

θ
θ

  (23.b) 

 
circumferential momentum: 
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energy transport: 
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First-order bulk-flow equations on the film lands 
with h1=1 for pure axial shaft collar motions, i.e. without shaft angulations or dynamic 
misalignments: 
 
continuity: 
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radial momentum:  
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circumferential momentum: 
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energy transport: 
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The first-order wall shear stress coefficients ((‘s) are given in Appendix A. 
 
Zeroth- and first-order flow equations at a bearing recess 
Perturbation of the recess mass flow and energy transport equations proceeds with the following 
linear combination of equilibrium and dynamic fields,  
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to render the zeroth and first-order equations for mass flow conservation at each recess, i.e., 
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and ( )∫ ⋅++= =i rec1 N,..,1ii100010001i

;duhuhuhM ΓΓ Γηρρρ rrrr      (28.b) 
 
are the first-order mass flow rates through the recess boundaries into the film lands.  
 
The first-order energy transport equation at the recess and the pressure rise/drop equations at the 
recess edges are omitted for brevity.  
 
Fluid film reaction force and axial force coefficients 
The fluid film force (FZ) reacting to an applied external load (WZ) is given by integration of the 
hydrodynamic/hydrostatic pressure field on the bearing surface, i.e., 
 

∫ −=−=
BA aZZ ddRR)PP(WF θ         (29) 

 
Substitution of the calculated zeroth- and first-order pressure fields into the equation above leads 
to the determination of the bearing load capacity and the dynamic stiffness (KZZ), damping (CZZ), 
and inertia (MZZ) axial force coefficients, i.e. 
 

∫−=
BA 0BasZ ddrrPA)PP(F θ         (30) 

 

∫−=+−
BA 1BasZZZZ

2
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C
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In general, bearings operating with incompressible fluids lead to force coefficients independent 
of the excitation frequency (Τ). However, compressible fluids and bearings with recesses of large 
volume give rise to force coefficients that are complicated functions of the frequency (Τ). In this 
case, the results from the model should be interpreted as frequency dependent impedance 
functions whose real and imaginary parts render dynamic stiffness and damping coefficients, 
respectively, i.e., 

 ( ) ( ) ∫−=+
BA 1BasZZZZ ddrrPA)PP(

C
1CiK θωωω      (31.b) 

 
San Andrés (1991) discusses the effects of recess volume – fluid compressibility on the dynamic 
force response of hydrostatic bearings operating with compressible fluids (such as LH2) and 
provides criteria to avoid pneumatic hammer (loss of damping) instability. It is important to note 
that the notion of frequency dependent force coefficients does not imply these coefficients are 
nonlinear in terms of the dynamics of a rotor-bearing system, i.e. the force coefficients are not 
functions of the amplitude of motion3.  
 
The shear drag torque (To) on the rotating member is generated by the shear stresses acting on 
the runner surface, and given as 
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Numerical method of solution of flow equations on the film lands  
A control-volume finite difference scheme is implemented to solve the coupled, nonlinear 
PDEs of mass, momentum and energy transport governing the fluid flow in a 
hybrid/hydrostatic thrust bearing. The flow field is represented by a series of discrete nodal 
bulk-flow velocities, fluid pressures and temperatures on staggered grids (Patankar, 1980).  An 
advantage of the staggered grid is that the potential unrealistic wavy pressure solutions arising 
from a single grid are avoided. Algebraic difference equations are obtained by integration of 
the governing equations on finite size control volumes and using the full advection SIMPLEC 
algorithm of Van Doormaal and Raithby (1984). The effectiveness of the numerical algorithm 
has been demonstrated on the turbulent bulk-flow analysis of cryogenic fluid film radial 
bearings and seals (San Andrés, 1990, Yang, 1992, Yang et al., 1994). 
 
Let the dimensionless zeroth- and first-order bulk flow field variables { } 1,0r T,P,u,u θ  be 

represented by the discrete fields { }TPVU ,,,  and { }1111 T,P,V,U , respectively. The continuity 
equation, circumferential and radial momentum transport equations, and the energy transport 
equation are integrated on the P-, U-, V-, T-control volumes depicted in Figure 3 to render sets 
of algebraic difference equations. Appendix B details the steps in the numerical procedure and 
includes all the equations derived and as implemented in the computer program.  

                                                           
3 Of course, this last assertion is only valid for truly small amplitude motions about an equilibrium configuration.     
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Figure 3. Staggered control volumes for integration of bulk-flow equations in
polar coordinates (r,θ)

U: circ. velocity
V: radial velocity
P: pressure
T: temperature

 
 
The governing difference equations on the bearing film lands are solved iteratively.  An 
approximate solution for the flow field variables is used to initiate the calculations4.  The 
velocity components { }** ,VU are first calculated from the circumferential and radial 
momentum transport equation using an estimated pressure field ( )*P . Next, the pressure 
correction equation based on the continuity equation provides a correction pressure ( )p′ and 
velocity fields { }v,u ′′ . Solution to the energy transport equation renders an estimate of the 
temperature field ( )T . Updated pressure and velocity fields, 
{ }pPPvVVuUU ′+=′+=′+= *** ;; , are substituted again into the momentum equations 
resulting in (generally) more accurate velocity and pressure field solutions. The iterative 
procedure above is repeated until the sum of (absolute value) residuals of mass flow on the 
control volumes is below a prescribed tolerance value, typically 0.1% of the global mass flow 
rate on the whole domain of solution. See Appendix B for full details on the numerical 
algorithm.   
 
The numerical method proceeds to balance the flow and momentum equations in the recesses 
of a hydrostatic bearing once a solution to the fluid flow equations on the film lands is 
obtained with appropriate boundary conditions. A Newton-Raphson algorithm provides 
                                                           
4 The approximate analytical model corresponds to a highly idealized geometry and overly simplified flow 
condition. Nonetheless, the approximation provides a reasonable well posed field which allows rapid convergence 
to the final solution.  
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improved estimates of the recess pressures and velocity fields. The procedure is continued 
with the solution of the equations on the film lands until convergence is obtained in both film 
lands and recesses. 
 
The iterative scheme for balance of flow at bearing recesses. 
The recess pressures on each pocket of a hydrostatic bearing are updated after the computation 
of the flow field on the film lands. This procedure is performed iteratively until the set of mass 
flow rates into the film lands is balanced by the mass flow through each of the feed orifices in 
the recesses. Recall that the zeroth-order mass conservation at each recess is given by (the 
subscript “0“ is omitted for brevity): 

 

( )[ ]
rec
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iiiii
N,....,1i

RRRoR P 1   MM
=

−== ρδΓ    (33) 

 
At an intermediate step in the calculation of the flow field a set of “old” values of recess 
pressures and mass flows into the film lands is known, i.e. { } )old(

R
recN,...,1iii

M;P
=

Γ . A Newton-

Raphson scheme allows the determination of “new” or improved recess pressures from the 
balance of the flow out from the orifices with the flows into the film lands. A first-order Taylor 
series expansion of the mass flow equation at each recess gives, 
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as a set of mass flow (from recess to land) influence coefficients calculated with small (finite) 
pressure increments  ( )

recN,..,1kkRP
=

Δ around the (old) values of recess pressure. The fluid density 

is also a function of the flow pressure and temperature; and a Taylor series expansion leads to,  
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where ( )
rec1,..Ni

(old)
R

(new)
RR T    T  T =−=Δ are variations in the recess temperatures. Substitution of 

the expansions into the recess mass flow rate equations for each recess leads to the following 
linear system of equations: 
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ikδ , and from which updated (new) recess pressures are obtained in the 

iterative process until ( )[ ]
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The numerical procedure of the iterative scheme is described briefly as: 
 
a) Given initial recess pressures ( )

recN,...,2,1i 
)old(

iRP
=

 , calculate the discrete flow fields 

[ ( )
recN,..,1i

*
iRT  and  *,T *,P*,V*,U

=
] on the thin film lands of the bearing. 

 
b) Given a pressure increment to the kth recess  ( kRPΔ ) while all the other recess pressures 

remain unchanged, k    i  ,P )old(
iR =/ , recalculate the corresponding thin film land flow fields, 

and determine the mass flow influence coefficients, [ ]
recN,...,1j,iikS =  , and ( )

recN,..,1i
*
iRT

=
Δ  , for 

all recesses in the bearing or pad. 
 
c) Reset the flow fields to the original ones, {U*, V*,  *,T  ,*P and ( )

recN,..,1i
*
iRT

=
}, calculated in 

step (a) and return to step (b) until all the recesses (k = 1, 2,..,Nrec)  are covered. 
 
d)  Solve the system of equations (37) to update the recess pressures to ( )

recN1,2,...,  i 
)new(

iRP
=

.   

e)  Return to step (a) and replace the initial recess pressures  ( )
recN,...,2,1i 

)old(
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=
by the updated 

ones ( )
recN1,2,...,  i 

)new(
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=
 . The iterative process continues until the difference of the orifice 
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mass flow, ( )
recN,...,2,1i iRM

=
, and flow rate into the film lands, ( )

recN,...,2,1i iBM
=

, for each recess 

is within a tolerable value (about 0.6%). 
 
 
Numerical solution of the first-order bulk-flow equations 
Once the solution to the zeroth-order equations on the bearing film lands and hydrostatic 
recesses has been obtained, the (perturbed) first-order flow fields { }111 1 T  ,P  ,V ,U   are calculated 
for a given frequency  (Τ).   
 
The first-order equations are linear with coefficients fully determined by the zeroth-order flow 
field.  The linearity of the equation enables a solution of the first-order flow field to be found by 
the component (superposition) method introduced by San Andrés (1990). In this procedure, the 
first-order flow field solution is given by the form, 
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The first part in the components field, 0
1φ , is the solution to the non-homogeneous form of the 

first-order equations with the first-order recess pressures, { } 0P
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corresponds to the addition of the component solutions { }
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the homogeneous form of the first-order equations, i.e. with{ } 0h1 = , and a complex unit value 
for each recess pressure, i.e., { } ( ).i1P

recN,..,1ii1R +=
=

 

 
The numerical scheme for the first-order equations on the film lands follows closely the one 
adopted for the zeroth-order equations.  The same steps are followed for the solution of both the 
homogeneous and non-homogeneous first-order flow equations. Once all field components have 
been calculated, the first-order flow field is substituted into the first-order mass flow equations 
for each recess, equation (27), and a linear system of complex algebraic equations is obtained for 
calculation of the first-order recess pressures { }

recN,..,1ii1RP
=

, i.e: 
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  (40) 
( )  ,dn     uhuh      M

ii i00
k
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k
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k ∫ ⋅+= ΓΓ Γρρ rrr   
 
are the 0th- and kth-component first-order flow rates into the film lands at the boundary of the ith-
recess (∋i). 
 
The first-order mass conservation equation (39) at the recesses has the same form as the zeroth-
order equation (27). However, the first-order equation represents a system of algebraic equations 
in the complex number domain, while the zeroth-order equation contains only real numbers and 
variables. Note that the set { k

R1
P }k=1,…Nrec in equation (39) needs to be evaluated only once since 

the first-order equations are linear and the superposition principle applies. On the other hand, 
{ )new(

Rk
P }k=1,…Nrec in the non-linear equations (27) are calculated iteratively until the recess flows 

balance the orifice flows.  
 
Once the zeroth-order and first-order flow field are obtained, the fluid film forces and the 
dynamic force coefficients are calculated by integration of the zeroth- and first-order pressure 
field over the bearing surface, see equations (30) and (31). 
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THE COMPUTER PROGRAM HYDROTHRUST 
The computer program developed in Fortran 90 is named hydrothrust and runs as a 
console application in a personal computer under the MS Windows operating system. 
The software package includes a windows based help file (hthrust.help) and several 
examples featuring the options and capabilities of the program.  
 
hydrothrust calculates the static and dynamic force performance characteristics for the 
following bearing types:  
1. hydrostatic / hydrodynamic thrust bearings with orifice compensation, 
2. annular face seal with a pressure drop from inner diameter to outer diameter, 
3. plain hydrodynamic thrust bearings. 
 
hydrothrust includes the following thermal models: 
- adiabatic surfaces, i.e. insulated shaft and bearing surfaces. 
- isothermal shaft at specified temperature and insulated (adiabatic) bearing. 
- isothermal bearing at specified temperature and insulated (adiabatic) shaft. 
- isothermal shaft and bearing surfaces. 
- isothermal shaft and radial heat flow through bearing (stator). 
- adiabatic  shaft and radial heat flow through bearing (stator). 
 
hydrothrust provides numerical predictions of: 
• bearing flow rate or seal leakage 
• friction torque, power dissipation and temperature rise, 
• load capacity if bearing minimum film clearance is given, or bearing film clearance if 

the external thrust load is given. 
• axial stiffness, damping and inertia force coefficients evaluated at a specified 

excitation frequency. 
 
with the following (single phase) fluids: 
(1) parahydrogen, (2) oxygen, (3) nitrogen, (4) methane, (5) water,   (6) oil,   (7) air,   
(12) barotropic fluid. 
 
A detailed description of the program operation and input/output calculation options is 
given in the help file hthrust.help. 
  
NUMERICAL RESULTS AND DISCUSSION 
The analysis and computational program are applicable to a wide range of thrust bearing 
applications including low speeds and pressures with viscous mineral oils (laminar flow 
bearings). However, the present development constitutes an advanced model for high 
speed hydrostatic / hydrodynamic thrust bearings for implementation in modern compact 
cryogenic liquid turbopumps. Unfortunately, experimental results for this application are 
not (yet) available in the open literature. Yet, undoubtedly, the interest on this novel fluid 
film bearing technology will render shortly important advances and actual applications. 
 
Numerical predictions for thrust bearings operating in the laminar flow regime are given 
as examples in the hydrothrust software bundled package. Comparisons have been 
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performed with numerical results of Hashimoto (1989) and Zirkelback and San Andrés 
(1996) for hydrodynamic thrust bearings. These examples are omitted here for brevity. 
 
Two high speed hydrostatic/hydrodynamic thrust bearing applications are hereby 
discussed at length. The first one corresponds to a thrust bearing geometry for the 
advanced liquid hydrogen (ALH) turbopump at nominal operating conditions, and the 
second example refers to a dual application hydrostatic thrust bearing for implementation 
in commercial (oil free) R134a compressors.  
 
Example of a hydrostatic thrust bearing for a cryogenic turbopump 
Table 1 lists the geometry and operating conditions of a liquid hydrogen, eight recess 
hydrostatic bearing for an advanced cryogenic turbopump. The pump design is uniquely 
compact with a low number of parts, and relies on hydrostatic radial and thrust fluid film 
bearings for accurate positioning of the rotor. Sound design and reliable operation of the 
fluid film bearing elements also allow for unshrouded impellers with a significant 
increase in the pump mechanical efficiency.  
 

Table 1. Hydrostatic thrust bearing for an advanced cryogenic fluid turbopump 
 

Geometry, Nrec=8 SI dimensions English dimensions 
Inner diameter, Din 48.26 mm 1.9 inches 
Outer diameter, Dout 99.06 mm 3.9 inches 
Recess diameter, DR 73.66 mm 2.9 inches 
Recess radial length, LR 10.16 mm 0.4 inches 
Recess arc length, 1R 22 Ε  
Recess depth, HR 0.254 mm 0.0100 inches 
Film clearance 0.038 mm 0.0015 inches 
Recess/Bearing area ratio 0.25  
Orifice diameter Varies  
Empirical parameters   
Orifice discharge coefficient, Cd 0.90  
Entrance loss coefficients,  
>ri, >ro, >2u , >2d 

0.00  

Inlet swirl coefficient, ∀ 0.50  
Reynolds numbers Rec=162,740 ReΦ=125.2 

 
Operating conditions SI units English units 
Speed (Σ) 17,802 r/s 170,000 rpm 
Surface speed, ΣRin , ΣRout 442 – 908 m/s 1450 – 2979 ft/s 
Fluid: liquid hydrogen,    
Supply temperature, Ts 45 ΕK 81 ΕR 
Supply pressure, Ps 393    bar 5,700 psia 
Exit pressure, Pa=PDin=PDout   81.6 bar 2,200 psia 
Fluid properties 
(supply/discharge) 

  

Density, [Δs, Δa ] (81.6, 65.3) kg/m3 (5.09, 4.08) lb/ft3 

Viscosity, [:s, :a ] (0.0173, 0.0095) mPa.s (0.0025, 0.0014) :Reyns 
Sound speed (vs,va) (1793, 1299) m/s (5882, 4262) ft/s 
Fluid bulk modulus (1/∃P) 1,206 bar 17,495 psi 

 
 



 23

The operating conditions are extraordinary in terms of the high rotational speed (170 
krpm) and available supply pressures. Note the large values of the shaft collar surface 
speeds (ΣR), ranging from 442 to 908 m/s for the inner and outer radii, respectively. 
Furthermore, the large magnitude of the circumferential flow Reynolds number, 
Rec=ΔsΣRoutC/:s = 162,740, denotes a highly turbulent flow regime with dominance of 
fluid inertia effects. 
 
The analysis example considers a fixed clearance (C) equal to 38:m and intends to 
determine the orifice diameter necessary to achieve the maximum axial thrust stiffness. 
The numerical computations are carried out for increasing values of the recess pressure 
ratio, pratio=(PR-Pa)/(Ps-Pa), spanning from 0.1 to 0.9. The optimum stiffness condition is 
achieved at a particular recess pressure ratio, typically around 0.50 for laminar flow 
conditions. The example assumes that the turbopump has two thrust bearings acting in 
parallel, both balancing the thrust from the uneven axial pressure distribution in the 
impellers. The author has not been able to find (yet) definite information regarding the 
magnitude of the thrust loads at the operating point.  
 
The numerical computations demonstrate the paramount effect of fluid inertia on the film 
lands of the thrust bearing as well as at the edges of the bearing recesses. The following 
figures depict computed results from three fluid flow models, 
a) full inertia, includes fluid inertia (advection and centrifugal) at the film lands and 

recess edges, 
b) recess edge inertia, accounts only for the sudden pressure drop at the recess 

boundaries as the fluid flow accelerates towards the film lands, 
c) no fluid inertia, i.e., equivalent to the solution of the turbulent flow field within the 

film bearing lands as given by the classical Reynolds equation. 
 
Figure 4 depicts the calculated orifice diameter versus the pratio for the thrust bearing, and 
determined from the balance of flows through the orifices and the flow into the film 
lands. The model without fluid inertia renders the largest orifice diameters denoting 
larger flow rates (see later Figures 7) since fluid inertia acts as an additional flow 
resistance, in particular at the recess edges. Figure 5 shows the axial fluid film bearing 
reaction force versus the recess pressure ratio. The full inertia model renders 
approximately 23% less load capacity than the inertialess fluid flow model. As the pratio 
increases (larger orifice diameter) the load also increases proportionately. However, 
larger loads are also accompanied by larger flow rates and lower stiffness coefficients, as 
will be seen shortly. The bearing reaction force is approximately equal to 31.6 kN (7,100 
lbs) at a pratio=0.55 for the full inertia model. The significant load magnitude is (tough) 
23% of the bearing specific load given by (Ps-Pa)AB. 
 
Figures 6 depict the calculated pressure profiles for the thrust bearing as determined from 
the full inertial model. The top figure shows the pressure at the radial location 
corresponding to the recess (and orifice) diameter versus the circumferential coordinate 
and for decreasing pressure ratios. The bottom figures display the pressure contours and 
pressure surface over the bearing for a pratio=0.50. Note the large (sharp) drops in fluid 
pressure at the recess edges (downstream and radial). Note that the pressures in the film 
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lands are quite low, thus indicating a dominance of fluid inertia effects. Furthermore, for 
the lowest pressure ratio, pratio=0.1, the minimum pressure within the film lands is lower 
than the discharge pressure (151.7 bar) due to the rapid fluid acceleration as it leaves the 
recess volumes.  
 
Figures 7 display the bearing mass flow rate (M) versus the recess pressure ratio 
(increasing orifice diameters). The bearing flow rate increases steadily as the pratio 
increases, and the full fluid inertia model shows the smallest flow rates. Figure 7(b) 
depicts the mass flow rates leaving the bearing through the outer (MRout) and inner (MRin) 
radii, and where M=MRout+MRin. Note that the flow through the inner diameter is much 
lower than the flow through the outer radius. The difference is most obvious for the full 
inertia model due to the centrifugal fluid inertia effect.  
 
Figures 9 through 11 show the stiffness (KZZ), damping (CZZ), and inertia (MZZ) axial 
force coefficients versus the recess pressure ratio for the three flow models. Note that 
only the full fluid inertia model renders inertia force coefficients.  The stiffness 
coefficient (KZZ) has an optimum value for a pratio~0.5-0.65 depending on the fluid flow 
model. Note that the full inertia model provides the lowest stiffness magnitudes while the 
recess edge inertia model predicts an optimum force coefficient for a larger recess 
pressure ratio. The damping coefficient (CZZ) has a maximum for low values of pratio, and 
the full inertia flow model provides the largest damping values. The predicted results 
show similar trends as in radial hydrostatic bearings operating at high Reynolds numbers 
(San Andrés, 1990). The test measurements of Franchek, et al. (1995) for water 
lubricated hydrostatic radial bearings provide further evidence on the effects of fluid 
inertia reducing the stiffness and increasing the damping coefficients for high rotational 
speed operation. 
 
Figure 10 shows the inertia force coefficient (MZZ) to decrease steadily as the recess 
pressure ratio increases with a minimum value at a pratio~0.5. The negative value is due to 
the fluid compressibility and indicates the frequency dependency of the force 
coefficients. Note that for shaft vibrations with a frequency synchronous with the 
rotational speed, i.e. at 2,833 Hz, the inertia force coefficient although small could 
introduce (in general) a marked de-stiffening effect. 
 
Figure 11 depicts the drag torque versus the recess pressure ratio for the three fluid flow 
models. The largest torque and associated power loss are determined from the no fluid 
inertia model. Note that at a pratio=0.50, the power loss, i.e. the product of the torque 
times the rotational speed, is equal to 97.4 kW (130.5 Hp). This large magnitude is 
essentially due to the smallness of the film clearance (0.038 mm). 
 
Figures 12 and 13 depict the maximum values of the bulk-flow Reynolds number and 
fluid speed within the fluid film flow region. Note that the full inertia model predicts the 
largest fluid speeds and Reynolds numbers, thus explaining the larger damping 
coefficients since the viscous dissipation of energy is the greatest. The most important 
finding is related to the very large bulk-flow fluid speeds (and Reynolds numbers) which 
are as large as the shaft speed at the bearing outer diameter (~900 m/s). Note that the 
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sonic speed for LH2 is just 1,300 m/s at the bearing discharge planes, and consequently, 
the flow Mach numbers are around 0.50 for most pressure ratios. 
  
Example of a hydrostatic thrust bearing for a refrigerant compressor  
Table 2 presents the geometry and operating conditions of a six recess hydrostatic thrust 
bearings with R134a refrigerant for a commercial compressor application. The bearing 
design demonstrates the successful extension (dual use) of the cryogenic fluid film 
bearing technology to a process fluid film bearing application. In this example, the 
bearing geometry is specified including the orifice diameter1. The operating film 
clearances, between 12.7 μm to 101.6 μm, are calculated for a range of thrust loads at 
two operating speeds, 10 and 16 krpm, and pressure drops equal to 5.17 and 10.34 bars 
(75 and 150 psi), respectively. The predictions include the full fluid inertia and recess 
edge inertia models to demonstrate the paramount effect of land fluid inertia on the 
performance characteristics of the thrust bearing. 
 

Table 2. Hydrostatic thrust bearing for R134a compressor application 
 

Geometry, Nrec=6 SI dimensions English 
dimensions 

Inner diameter, Din 89.13 mm 3.51 inches 
Outer diameter, Dout 126.8 mm 4.99 inches 
Recess diameter, DR 108.6 mm 4.28 inches 
Recess radial length, LR 11.68 mm 0.46 inches 
Recess arc length, 1R 24 Ε  
Recess depth, HR 0.508 mm 0.0200 inches 
Film clearance 0.012 – 0.101 mm  0.0005-0.004 inches 
Recess/Bearing area ratio 0.25  
Orifice diameter 1.70 mm 0.067 inches 
Empirical parameters   
Orifice discharge coefficient, Cd 0.80  
Entrance loss coefficients,  
>ri, >ro, >2u , >2d 

0.0, 0.0, 0.0, -0.5   

Inlet swirl coefficient, ∀ 0.50  
 

Operating conditions SI units English units 
Speed 1047.2 – 1,675 r/s 10,000 – 16,000 rpm 
Fluid: R134a refrigerant    
Supply temperature, Ts 311 ΕK 560 ΕR (100 ΕF) 
Supply pressure, Ps 18.96 - 24.10 bar 275 - 350 psia 
Exit pressure, Pa=PDin=PDout 13.80 bar 200 psia 
Saturation pressure,    9.63 bar 139 psia 
Fluid properties    
Density, Δa 1210 kg/m3 75.54 lb/ft3 

Viscosity, :a 0.000198 Pa.s 0.0288 :Reyns 
Fluid bulk modulus (1/∃P) 1,820 bar 26,667  psi 

 
Figure 14 shows the equilibrium film clearance (C) versus the thrust load for the two 
operating conditions at 10 krpm and 16 krpm. The full fluid inertia model predicts 
smaller film thickness than the recess edge fluid inertia model, and the bearing with the 

                                                           
1 The orifice discharge coefficient selected is based on prior experiences with hydrostatic radial bearings. 
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larger pressure drop, i.e. Ps=24.1 bars, shows a larger load capacity. In the following, the 
calculated results are presented in dimensionless form in an attempt to identify unique 
trends independent of the individual physical parameters. 
 
Figure 15 depicts the equilibrium recess pressure ratio, pratio=(PR-Pa)/(Ps-Pa), versus the 
dimensionless load capacity,⎯Wz=Wz/AB(Ps-Pa), for the two operating conditions. The 
recess pressure ratio increases as the thrust load increases (decreasing film clearance), 
and the fluid inertia model predicts larger recess pressures since it acts as an additional 
flow resistance at the film lands. Figure 16a shows the bearing mass flow rate (⎯M) to 
decrease steadily as the load⎯Wz increases (smaller film thickness and larger pratio). The 
mass flow rate is made dimensionless with respect to NrecCdAo(½ρs[Ps-Pa ])1/2 
representing the orifice flows from supply to ambient conditions. The full fluid inertia 
model shows slightly smaller flow rates. Figure 16(b) depicts the mass flow rates leaving 
the bearing through the outer and inner radii, with ⎯M=⎯MRout+⎯MRin. The recess edge 
inertia model predicts an inner radius flow slightly smaller than the outer radius flow 
since the flow area is smaller. However, the full inertia model which includes the effects 
of centrifugal fluid inertia shows an outer radius flow much larger than the inner radius 
flow, in particular at low loads (small recess pressures and large clearance). In fact, the 
flow through the inner radius could be negative, i.e. the fluid is actually drag into the 
bearing due to a local suction (less than ambient) pressure at the film lands. The opposite 
effect occurs at the bearing outer diameter where more fluid is thrown away due to the 
large centrifugal inertia force. This force is proportional to the circumferential flow 
Reynolds number, Rec=(ρRoutC/μ), which increases as the clearance also increases (see 
Figure 22 later for the magnitudes of the maximum flow Reynolds numbers in the 
bearing). The calculated results thus indicate that operation with large clearances may 
cause fluid starvation (not a full fluid film) in certain regions of the film lands. 
 
Figure 17 shows the dimensionless stiffness coefficient,⎯Kzz=KzzC/AB(Ps-Pa), versus the 
dimensionless load⎯Wz at the two operating speeds and pressure supplies. The 
magnitudes of the stiffness coefficients are similar for both flow models, although the 
optimum stiffness occurs at a lower load (pratio~0.6) for the full inertia model. Figure 18 
shows the dimensionless damping coefficient,⎯Czz=CzzCΩ/AB(Ps-Pa) to increase steadily 
for small to moderate values of the dimensionless load⎯Wz. However, a large increase in 
damping is apparent at the largest loads and due essentially to the smallness of the film 
clearance (see Figure 14). Note that the full fluid inertia model predicts much larger 
damping coefficients for the entire range of thrust loads.  
 
Figure 19 shows the dimensionless inertia coefficient,⎯Mzz=MzzCΩ2/AB(Ps-Pa) decreases 
as the dimensionless load⎯Wz increases. The physical values of the inertia coefficient 
range between 1.8 to 5.2 kg and could affect substantially the dynamic stiffness of the 
bearing, Kzzd=Kzz-MzzΩ2 as shown in Figure 20. A comparison with the results given in 
Figure 17 shows that the bearing dynamic stiffness⎯ Kzzd  is approximately 20% lower 
than the value predicted by the recess edge inertia model. This reduction is a direct effect 
of the fluid inertia (centrifugal and advection) at the film lands. 
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Figure 21 shows the torque⎯To** versus the dimensionless load⎯Wz. The drag torque is 
made dimensionless with respect to the reference formulae 

[ ]
C

RA
Re4.0024.01T

2
outBs65.0

c
2

oT
Ωμ

⎟
⎠
⎞⎜

⎝
⎛ += , obtained using the turbulent shear friction 

factor from Constantinescu (1962). Note that a reference drag torque value based on 
laminar flow conditions would render dimensionless torque values one to two orders of 
magnitude larger than the ones depicted in the figure. The calculated results show a 
similar drag torque for the two operating conditions and decreasing as the dimensionless 
load increases. Of course, the physical magnitude of the drag torque increases as the load 
magnitude increases since the film clearance is smaller. 
 
The maximum bulk-flow Reynolds numbers and half the magnitude of the nominal 
circumferential Reynolds number, ½ Rec=(ρRoutC/2μ), are shown versus the recess 
pressure ratio in Figure 22. The bulk-flow Reynolds number is based on the maximum 
calculated fluid speed in the bearing flow region. Larger Reynolds numbers are a direct 
result of the shaft speed and larger film clearance as the recess pressure ratio decreases 
(smaller loads). The calculated results show that the flow-Reynolds numbers are very 
similar to the nominal circumferential Reynolds number, and thus demonstrate the 
dominance of hydrodynamic effects. The full inertia model predicts larger Reynolds 
numbers, i.e. larger fluid speeds, due to the centrifugal inertial effects and the rapid 
acceleration as the fluid leaves a recess a flows into the film lands.  
  
Figure 23 shows the predicted maximum and minimum dimensionless pressures, 
(Pmax,min-Pa)/(Ps-Pa), in the bearing flow region versus the recess pressure ratio, 
pratio=(PR-Pa)/(Ps-Pa). The predicted results are of importance since they reveal 
significant features about the full fluid inertia model. First, the maximum film pressures 
are larger than the recess pressure at the orifice discharge plane since due to viscous and 
centrifugal fluid inertia effects there is a marked raise in the pressure at the recess corner 
facing the downstream edge and outer diameter. Note that for a pratio=1 the peak film 
pressure is 40% above the supply value. Second, the minimum film pressures are lower 
than the discharge pressure (⎯P=0) and the lowest magnitudes are achieved at the lowest 
recess pressure ratios. The appearance of the subambient film pressures, nearly 40% 
below discharge value (recall Pa=12.8 bar, 200 psia), is a direct result of the fluid (inertia) 
acceleration just downstream of a recess edge. The recess edge inertia model does not 
predict any subambient pressures. 
 
At the operating conditions, the refrigerant saturation pressure is 9.63 bar (139 psia), and 
in dimensionless form (Psaturation-Pa)/(Ps-Pa) equals –0.81 and –0.405 for the cases with 
pressure drops (Ps-Pa)=5.17 and 10.34 bars (75 and 150 psi) at 10 and 16 krpm, 
respectively. Thus, the thrust bearing operating at the largest rotational speed is likely to 
show fluid vaporization at the downstream edge of a hydrostatic recess! The current 
model is not (yet) able to model properly two-phase flow conditions, although Arauz and 
San Andrés (1998) have advanced some relevant analytical work. Nonetheless, the 
predicted results caution the operation of the thrust bearing under such stringent fluid 
flow conditions. 
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Figure 24 displays the calculated pressure fields from the full fluid inertia model. The top 
plots show the pressure field at the pocket (orifice) diameter versus the angular 
coordinate for various recess pressure ratios. Note the sharp pressure drops at the 
downstream side of a bearing recess. The bottom figure depicts the pressure surface and 
contours for a pratio=0.5 at 16 krpm. Note the pressure raise towards the downstream edge 
of a recess, and immediately the large pressure drop causing a rapid acceleration of the 
fluid. 
 
As a note aside the present discussion, it is worth mentioning that the procedure 
implemented to render dimensionless bearing performance variables (load, flow, 
stiffness, etc) gives meaningful results which could aid to a fast (and reliable) design of 
turbulent flow hydrostatic/hydrodynamic thrust bearings.  
  
CONCLUSIONS 
A bulk-flow analysis and computer program for prediction of the static load performance 
and dynamic force coefficients of angled injection, orifice-compensated hydrostatic / 
hydrodynamic thrust bearings have been completed. Advanced cryogenic fluid 
turbopumps are very compact, operate at extremely high shaft speeds, and require of 
hybrid (hydrostatic / hydrodynamic) radial and thrust fluid film bearings for accurate 
rotor positioning. Sound design and reliable operation of the fluid film bearing elements 
also allows for unshrouded impellers with a significant increase in the turbopump 
mechanical efficiency. 
  
The analysis accounts for the bulk-flow mass, momentum and thermal energy transport, 
includes flow turbulence and fluid inertia (advection and centrifugal) effects on film 
lands and recesses, and incorporates cryogenic fluid properties using a NIST data base. 
The computer program predicts the flow rate, load capacity, power loss and axial 
dynamic force coefficients for rigid surface, tapered land hybrid thrust bearings.  
 
Two high-speed hydrostatic/hydrodynamic thrust bearing applications are analyzed. The 
first one corresponds to a thrust bearing geometry for the advanced liquid hydrogen 
(ALH) turbopump at nominal operating conditions, and the second example refers to a 
dual application hydrostatic thrust bearing for implementation in commercial (oil free) 
R134a compressors.  
 
The computed predictions reveal that the ALH bearing load capacity and flow rate 
increase with the recess pressure (i.e. increasing orifice diameters) at the nominal 
operating condition. The bearing axial stiffness has a maximum for a recess pressure ratio 
~0.55, while the axial damping coefficient decreases as the recess pressure ratio 
increases. The computer results from three flow models are compared. These models are 
a) inertialess, b) fluid inertia at recess edges only, and c) full fluid inertia at both recess 
edges and film lands. The full inertia model predicts the lowest flow rate, axial load 
capacity and stiffness coefficient, yet it renders the largest damping and inertia force 
coefficients. Some fluid compressibility effects are apparent in the application. The most 
important findings are related to the reduction of the outflow through the inner radius and 
the appearance of subambient pressures on the bearing film lands. 
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The performance of the refrigerant hybrid thrust bearing is evaluated at two operating 
speeds and pressure drops. The computed results are presented in dimensionless form to 
evidence consistent trends in the bearing performance characteristics. As the applied axial 
load increases, the bearing film thickness and flow rate decrease while the recess 
pressures increase. The axial stiffness coefficient shows a maximum for a certain 
intermediate load (recess pressure ratio) while the damping coefficient steadily increases. 
The computed results evidence the paramount of centrifugal fluid inertia at low recess 
pressures (i.e. low loads), and where there is actually an inflow through the bearing inner 
diameter along with subambient pressures just downstream of the bearing recess edges. 
These results are solely due to centrifugal fluid inertia and advection transport effects. 
 
RECOMMENDATIONS 
Further research is recommended to extend the analysis and continue the software 
development to include bearing geometries and operating conditions more representative 
of actual practice. In addition, the enhanced computer program should aim to satisfy the 
needs of commercial turbomachinery applications and to render a design tool of a broad 
engineering use. The flow model is currently restricted to axial shaft (collar) motions 
without angular misalignment. Thus, the analysis of the bulk-flow for shaft dynamic tilts 
in two planes is of importance to determine restoring torques and moment force 
coefficients.  
 
Many hydrodynamic thrust bearings are composed of rigid pads with machined tapered 
lands. However, this low-cost bearing configuration can only be optimized for a narrow 
range of operating load and (low) speed conditions. High performance turbomachinery 
requires of tilting pad hydrodynamic thrust bearings able to adapt and configure to wide 
ranges of loads and speed conditions. In these bearings the pads rotate about spherical 
pivots to form the (wedge) hydrodynamic film able to support an axial load and without 
the need of a machined tapered surface. Some particular tilting pad thrust bearings are 
also supported on complex structural (springs) elements allowing the control of axial 
angular rotor misalignments. The major disadvantages of tilting pad bearings are their 
cost, complexity in manufacturing and stack up of tolerances on assembly.  Furthermore, 
conventional tilting pad bearings are not easily modified to allow for a hydrostatic feed 
and external pressurization.  
 
Submerged water pumps integrate a particular type of hydrodynamic thrust bearing 
where each sector pad is attached to a bearing support with a structural (elastic) radial 
web designed to provide a low stiffness restraint to pad angular motions, thus forming the 
hydrodynamic film wedge which generates the load support. Furthermore, the flexural 
webs also offer a feasible path for a hydrostatic fluid feeding port, thus allowing for an 
increased bearing load capacity and immediate application in a cryogenic fluid 
environment. The structural pad supports could also be engineered for the bearing to 
control dynamic angular rotor misalignments.  
 
The fluid mechanics of highly compressible fluid media operating at near sonic 
conditions and with two-phase flow generation and transition from liquid to gaseous 
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states are also regarded as important in the near future. The analyses of thrust foil 
bearings and spiral grooved thrust bearings are also noted as important for future work.  
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LH2 HTB: design operation, 175 krpm , Ps=293 bar, P i=Po=152 bar, T=45 K , C=38 um
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Figure 4. Orifice diameter vs. recess pressure ratio for ALH thrust bearing. 

(Effects of fluid inertia at film lands and recess edges) 
 
 
 

LH2 HTB: design operation, 175 krpm , Ps=293 bar, Pi=Po=152 bar, T=45 K, C=38 um
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Figure 5. Fluid film force vs. recess pressure ratio for ALH thrust bearing. 

(Effects of fluid inertia at film lands and recess edges) 
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Figure 6. Pressure distributions for LH2 thrust bearing. (a) at pocket diameter for varying 
pressure ratios, (b) pressure contours and (c) pressure surfaces for pratio=0.50 
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Figure 7(a). Flow rate vs. recess pressure ratio for ALH thrust bearing 

(Effects of fluid inertia at film lands and recess edges) 
 
 

LH2 HTB: design operation, 175 krpm, Ps=293 bar, Pi=Po=152 bar, T=45 K, C=38 um
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Figure 7(b). Flow rates through inner and outer radii vs. recess pressure ratio for ALH 

thrust bearing. (Effects of fluid inertia at film lands and recess edges) 
 



 36

LH2 HTB: design operation, 175 krpm, Ps=293 bar, Pi=Po=152 bar, T=45 K, C=38 um
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Figure 8. Axial stiffness coefficient (Kzz) vs. recess pressure ratio for ALH thrust bearing 

(Effects of fluid inertia at film lands and recess edges) 
 
 

LH2 HTB: design operation, 175 krpm, Ps=293 bar, Pi=Po=152 bar, T=45 K, C=38 um
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Figure 9. Axial damping coefficient (Czz) vs. recess pressure ratio for ALH thrust bearing. 
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LH2 HTB: design operation, 175 krpm , Ps=293 bar, Pi=Po=152 bar, T=45 K, C=38 um
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Figure 10. Axial inertia coefficient (Mzz) vs. recess pressure ratio for ALH thrust bearing 
 

LH2 HTB: design operation, 175 krpm, Ps=293 bar, Pi=Po=152 bar, T=45 K, C=38 um
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Figure 11. Drag torque vs. recess pressure ratio for ALH thrust bearing. 
(Effects of fluid inertia at film lands and recess edges)
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LH2 HTB: design operation, 175 krpm, Ps=293 bar, Pi=Po=152 bar, T=45 K, C=38 um
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LH2 HTB: design operation, 175 krpm, Ps=293 bar, Pi=Po=152 bar, T=45 K, C=38 um
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Figure 12. Maximum and minimum flow Reynolds numbers vs. recess pressure ratio for  
ALH thrust bearing. 

(Effects of fluid inertia at film lands and recess edges) 
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LH2 HTB: design operation, 175 krpm, Ps=293 bar, Pi=Po=152 bar, T=45 K, C=38 um
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Figure 13. Maximum fluid speed flow Reynolds numbers vs. recess pressure ratio for  
ALH thrust bearing. 

(Effects of fluid inertia at film lands and recess edges) 
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Dual Use 6-pocket HTB for R134a compressor, Ts=38 C 
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Figure 14. Film clearance (C) versus thrust load (Wz) for refrigerant thrust bearing. 
(Effects of fluid inertia at film lands and recess edges) 
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Figure 15. Recess pressure ratio versus dimensionless thrust load (⎯Wz) for refrigerant 

thrust bearing. 
(Effects of fluid inertia at film lands and recess edges) 
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Dual Use 6-pocket HTB for R134a com pressor, Ts=38 C 
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Figure 16(a). Dimensionless bearing mass flow rate versus thrust load (⎯Wz) for refrigerant 

thrust bearing.  
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Figure 16(b).  Mass flow rates (dim.) through inner and outer radii vs. versus thrust load 

(⎯Wz) for refrigerant thrust bearing. 
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Dual Use 6-pocket HTB for R134a compressor, Ts=38 C 
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Figure 17. Dimensionless axial stiffness (⎯Kzz) coefficient vs. versus load (⎯Wz) for 

refrigerant thrust bearing. 
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Figure 18. Dimensionless axial damping (⎯Czz) coefficient versus load (⎯Wz) for refrigerant 

thrust bearing. 
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Dual Use 6-pocket HTB for R134a compressor, Ts=38 C 
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Figure 19. Dimensionless axial inertia (⎯Mzz) coefficient versus load (⎯Wz)for refrigerant 
thrust bearing. 
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Figure 20. Dynamic stiffness coefficient (⎯Kzzd=⎯Kzz-⎯MzzΩ

2) versus load (⎯Wz)for 
refrigerant thrust bearing. 
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Dual Use 6-pocket HTB for R134a compressor, Ts=38 C 
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Figure 21. Dimensionless drag torque(⎯To**). versus load (⎯Wz) for refrigerant thrust 

bearing. 
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Figure 22. Maximum Reynolds numbers versus recess pressure ratio for refrigerant thrust 

bearing. 
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Dual Use 6-pocket HTB for R134a compressor, Ts=38 C 
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Figure 23. Maximum and minimum film (dimensionless) pressures versus recess pressure 

ratio for refrigerant thrust bearing. 
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Figure 24. Film Pressures from full inertia model. (a) pressure at recess diameter for 

pratio=0.93, 0.58, 0.22, (b) pressure surface and contours for pratio=0.58 
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APPENDIX A 
FIRST-ORDER WALL SHEAR STRESS COEFFICIENTS 

The perturbed wall shear stress coefficients ((‘s) for the first-order equations of radial and 
circumferential momentum and energy transport are given by the following expressions. 
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ENERGY TRANSPORT EQUATION 
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APPENDIX B
Revised January 7, 2005
ALGEBRAIC BULK-FLOW EQUATIONS ON THE THIN FILM LANDS OF A THRUST BEARING

The flow field is represented by a series of discrete nodal bulk-flow velocities, fluid pressures and
temperatures on staggered grids (Patankar, 1980).  The dimensionless zeroth- and first-order bulk
flow field variables { } 1,0r T,P,u,u θ  are represented by the discrete (algebraic) fields

{ } { }1111 T,P,V,Uand,T,P,V,U , respectively. Figure B.1 shows the arrangement of staggered
control-volumes for discretization of the thin film flow equations in a polar coordinate system (r,θ).

The continuity equation, circumferential and radial momentum transport equations, and the energy
transport equation are integrated on the P-, U-, V-, T-control volumes depicted in Figure B.1, in
order to obtain a set of algebraic difference equations for the discrete flow variables.

ADDITIONAL NOMENCLATURE
A coefficients of discrete algebraic equations
D coefficients relating velocity to differences of pressure corrections
h dimensionless film thickness
m mass flow rates across faces of control-volumes
S source terms in algebraic equations
(r,θ) radial and angular polar coordinates
{ }T,P,V,U discrete zeroth-order circumferential and radial velocities, pressure and temperature

{ }1T,P,V,U discrete first-order circumferential and radial velocities, pressure and temperature

{ }p,v,u ′′′ correction velocities and pressures
δr, rδθ sizes of control volume in radial and circumferential directions

Superscripts
u refers to U-control volume (circumferential direction)
v refers to V-control volume (radial direction)
P refers to P-control volume (continuity and pressure correction equations)
T refers to T-control volume (energy transport equation)
* estimated flow variable.
‘ correction flow variable

Subscripts
p refers to nodal value of variable at center of control volume
E,W, refers to values of variables at East, West, South and North nodes relative to p-value
S,N
e,w, refers to values of variables on east, west, south and north (face) sides of control volume.
s,n
1 first-order (perturbed) flow variable

Operators
)a,0max(||a,o|| = ;   10011 babab,a +=
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δθP
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δrP
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U-control volume

P,T-control volume

V-control volume

Figure B.1. Staggered control volumes for integration of bulk-flow equations
in polar coordinates (r,θ)

U: circ. velocity
V: radial velocity
P: pressure
T: temperature
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Continuity (mass conservation) algebraic equations:

zeroth-order equation:
0mmmm P

s
P
n
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w

P
e =−+− (B.1)

first-order equation:
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Figure B.2. P-control volume for integration of continuity equation and
pressure correction equation
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Circumferential momentum transport algebraic equation:

zeroth-order equation:
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with the zeroth- and first-order source terms,

Figure  B.3. U-control volume for integration of circumferential bulk-flow
momentum equation
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with the fluid flow advection coefficients,
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where the operator )a,0max(||a,0|| =
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Radial momentum transport algebraic equation:

zeroth-order equation:
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first-order equation:
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with the zeroth- and first-order source terms,

Figure B.4. V-control volume for integration of radial bulk-flow momentum
equation
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with the fluid flow advection coefficients,
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Energy transport algebraic equation:

zeroth-order equation:
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first-order equation:
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with the zeroth- and first-order source terms,

Figure  B.5. T-control volume for integration of energy transport (fluid
temperature) equation
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with the fluid flow advection coefficients,
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Pressure correction equations
Let the flow variables be given as

pPP;vVV;uUU *** ′+=′+=′+= ;   (B.30)
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where the (*) fields are assumed to satisfy the momentum equations but not the continuity equation.
The (‘) fields are corrections to be determined from satisfaction of the mass flow continuity
equation(s), zeroth and first-order. The fields above are substituted into the momentum transport
equations, and implementing the SIMPLEC method (Van Doormal and Raithby, 1984), the following
relationships between the correction velocities and pressure are obtained:
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Substitution of the assumed flow fields into the continuity equation leads to the following pressure
correction equations:

zeroth-order equation:
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and the mass flow source terms are:
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are evaluated with the (*) fields.

THE NUMERICAL SOLUTION PROCEDURE
The governing difference equations on the bearing film lands are solved iteratively.  The steps in the
numerical solution are summarized as follows:
a) Initial guesses for the recess pressures and the film fields for pressure ( P *), velocities (U*, V*)

and temperature (T ) are calculated.
b) The coefficients for the circumferential momentum transport equation (B.5) along the first row of

U-control volumes (off the bearing recess middle plane) in the film lands between recesses are
calculated, and the transport equation is solved using the tridiagonal matrix algorithm (TDMA).
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c) The treatment under step b) is repeated for the radial momentum transport equation along the
second row of V-control volumes, equation (B.13). Note that the line-by-line solution procedure
sweeps in the radial direction from the recesses towards the bearing outer (and inner) planes.

d) The coefficients of the pressure correction equation (B.33) on the first row (coinciding with the
first U-control volume row but between the first and the second V-control volume rows) are
calculated and the pressure correction equation is solved by the TDMA procedure.

e) The velocities and pressures upstream and along the current row are corrected by adding the
correction fields to the estimated flow fields (U*, V*, P *).

f) The coefficients of the energy equation (B.21) are calculated, and the equation is solved using the
TDMA to render the temperature field in the T-control volume row.  The fluid properties, functions
of the local pressure and temperature, are immediately updated at this stage.

g) Steps  b)  to  f)  are repeated for all subsequent rows until the bearing exit boundaries (inner and
outer) are reached.  The inlet velocities at the recess boundaries and entering the film lands are
obtained by satisfying the local flow continuity constraint at the control volumes facing the recess
boundaries.

h) The iterative procedure above is repeated until the sum of (absolute value) residuals of mass flows

on the control volumes ⎥⎦
⎤

⎢⎣
⎡

∑∑
domain

P
p1

domain

P
p S,S is below a prescribed tolerance value, typically 0.1%

of the global mass flow rate.
i) Once a solution to the flow field in the film lands has been obtained, the recess temperatures are

calculated through the global energy balance equation at the bearing recesses.
j) The zeroth-order flow rates from recess into the film lands are evaluated and compared with the

orifice flow rates.  In general, a difference exists between these two flow rates, and a Newton-
Raphson scheme is implemented to update the recess pressures and to satisfy the flow continuity
requirement at each recess. A thorough discussion on this step is given in the main text of the
report.

Steps  (b) through  (j)  are successively repeated until the difference of the orifice inlet and exit flow
rate for each recess is below a tolerable value (about 0.6%).

The governing difference equations on the bearing film lands are solved iteratively.  An approximate
solution for the flow field variables is used to initiate the calculations.  The velocity components are
first calculated from the circumferential and radial momentum transport equation using an estimated
pressure field, and then a pressure correction equation based on the continuity equation provides
corrected pressure and velocity fields. Solution to the energy transport equation also renders an
estimate of the temperature field. The updated pressure and velocity fields are substituted again into
the momentum and pressure correction equations resulting in (generally) more accurate velocity and
pressure field solutions.


