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ABSTRACT.

The well-known wave-one pattern seen in tropical total ozone

[Shiotani, 1992; Ziemke et al., 1996, 1998] has been used to

develop a modified-residual (MR) method for retrieving time-

averaged stratospheric ozone and tropospheric ozone column amount

from TOMS (Total Ozone Mapping Spectrometer) over the 14 complete

calendar years of Nimbus 7 observations (1979-1992) and from TOMS

on the Earth-Probe (1996-present) and ADEOS platforms (1996-

1997). Nine- to sixteen-day averaged tropical tropospheric ozone

(TTO) maps, validated with ozonesondes, show a seasonality

expected from dynamical and chemical influences. The maps may be

viewed on a homepage: http://metosrv2.umd.edu/'tropo.

Stratospheric column ozone, which is also derived by the

modified-residual method, compares well with sondes (to within 6-

7 DU) and with stratospheric ozone column derived from other

satellites (within 8-10 DU). Valldation of the TTO time-series

is presently llmlted to ozonesonde comparisons with Atlantlc

stations and sites on the adjacent continents (Ascension Island,

Natal, Brazil; Brazzaville); for the sounding periods, TTO at all

locations agrees with the sonde record to ±7 DU. TTO time-series

and the magnitude of the wave-one pattern show ENSO signals in

the strongest E1 Nino periods from 1979-1998. From 12°N and

12°S, zonally averaged tropospheric ozone shows no significant
trend from 1980-1990. Trends are also not significant during

this period in localized regions, e.g. from Just west of South
America across to southern Africa. This is consistent with the

ozonesonde record at Natal, Brazil (the only tropical ozone data

publicly available for the 1980's), which shows a not

statistically significant increase. The lack of trend in

tropospheric ozone agrees with a statistical analysis based on

another method for deriving TTO from TOMS, the so-called

Convective-Cloud-Differential approach of Ziemke et al. [1998].

1. Introduction

The original concept of deriving tropospheric column ozone

in the tropics by a residual method consists of using total

column ozone from TOMS (the Total Ozone Mapping Spectrometer) and

subtracting stratospheric column ozone from an independent

sensor. The key assumption is that stratospheric ozone is

constant with longitude so that variations in total ozone

detected by TOMS are due only to variability in tropospheric

column ozone.

There are three general limitations of this type of residual

approach. First, there may be a mismatch in orbital and sampling
characteristics between TOMS and the other sensor. This occurs

with SAGE (Stratospheric Aerosol and Gases Experiment), which

typically samples the 10N-10S latitude band 50-60 days per year,

sometimes missing the tropics for several months in a row. Thus,

the original tropospheric ozone residual technique of Fishman and

coworkers [Fishman et al., 1990; 1991; update in Fishman and

Brackett, 1997], which used SAGE, reported climatology based on

2-3 month-averaged tropospheric column ozone. Second, TOMS total



ozone does not detect near-surface ozone over surfaces with low
albedo with 100% efficiency [Hudson et al., 1995; Kim et al.,
1996; Hudson et al., this issue, 1998]. Third, stratospheric
column ozone derived from the independent sensor may have

considerable uncertainty in the lower stratosphere. This is a

particular concern for SBUV (Solar-Back-Scatter Ultraviolet), the

instrument on-board the NOAA operational satellites [Ziemke and

Chandra, 1998; Hudson et al., 1998]. Lower stratospheric

uncertainties also affect stratospheric ozone from the UARS

(Upper Atmosphere Research Satellite) sensors, MLS (Microwave

Limb Sounder) and HALOE (Halogen Occultation Experiment), which

have been differenced with TOMS in a residual approach [Ziemke et

al., 1998].
These factors have motivated the development of two methods

that use TOMS total ozone with physical parameters other than a

separate satellite measurement to distinguish stratospheric ozone

from tropospheric ozone. The two methods, the convective-

cloud-differential (CCD) method [Ziemke et al., 1998] and the

modified-residual approach [Hudson and Thompson, 1998], are

described in detail in the 20 Sept 1998 Journal of Geophysical

Research.

In the CCD method, stratospheric ozone is set equal to the

TOMS total ozone measurement over highly reflecting, high

altitude clouds in the western Pacific Ocean. At cloud-free

pixels, signified by reflectivity < 0.2, tropospheric column

ozone is obtained by subtracting the above-cloud stratospheric

ozone amount from TOMS total ozone. This is referred to as the

CCD tropospheric ozone column. Because there is no cloud height

information in TOMS, a primary assumption in the CCD method is

that the high reflectivity clouds have cloud-top at the

tropopause. Monthly averaged maps between 20N and 20S are shown

in Ziemke et al. [1998]; no correction is made for reduced

detection efficiency near the surface.

In the modified-residual (MR) method, the well-known

wave-one pattern in total ozone [Shiotani, 1992] is used to

normalize total ozone over the entire tropical band to a single

value in the region of the ozone minimum, near 180 longitude.

Tropospheric column ozone taken from ozonesondes over and near

the Atlantic maximum is subtracted from TOMS total ozone to give

the stratospheric column ozone value [_i_!_iiiiiiii{i]. Stratospheric
column ozone subtracted from total ozo_e_ds tropospheric

ozone at all other longitudes; an efficiency correction is

applied because only cloud-free (low reflectivity) TOMS data are

used. Fourier analysis of the wave-one pattern sets the

latitudinal limits of the tropical air mass within which the

modified-residual method is assumed to be valid (Figure 4 in

[Hudson and Thompson, 1998]).

In the modified-residual method regular ozonesondes in the

vicinity of the ozone maximum were only available for 1991-1992,

during the pre-TRACE-A (T_rransport and Atmospheric Chemistry near

the Equator - Atlantic) and SAFARI (Southern African Fire

Atmospheric Regional !nitiative)/TRACE-A intensive. A seasonal

regularity observed in the ozonesonde data set (Figure 5 in

Hudson and Thompson, 1998) suggests that the method can be

applied in other years. Thus, in early 1997, we initiated use of



the MR method to process real-time Earth Probe (EP) and ADEOS
(Advanced Earth Observing System) data. Daily, 3-day- and 9-day-
averaged images appear on a homepage:
http://metosrv2.umd.edu/~tropo/(Real-time).

In early 1998 the modified-residual method was extended back
in time to cover the remainder of the Nimbus 7 (=N7)/TOMS record
(Section 2, below). For this purpose, TOMS total ozone was

averaged over two 13-16-day periods per month. These images,

referred to as TTO (tropical tropospheric ozone) maps, also

appear on the homepage.

Validation and evaluation of the TTO maps is presently

underway. This paper presents some of the first findings in this

effort. Validation of the Nimbus 7 and EP/TOMS TTO products

focuses on the Atlantic and adjacent continents (Section 3),

where tropical sonde data are available from public archives:

Natal (Brazil, 1979-1992), Ascension Island (1990-1992, 1997-

1998), Brazzaville (1990-1992). Derived stratospheric ozone and

TTO in the Natal region from the MR method are compared to the

same parameters taken from the CCD method [Ziemke et al., 1998;

Chandra et al., 1998a].

Evaluation through analysis with Atlantic and near-Atlantic

regional time-series uses the N7 record (1979-1992) because the

EP/TTO is only two years and is dominated by the unusually

intense 1997-1998 E1 Nino-Southern Oscillation (ENSO) [Chandra et

al., 1998a]. The following questions are addressed in Section 4:

(i) What do seasonal cycles and interannual variability in

TTO look like and how do they compare with those observed in
ozonesondes?

(2) Do TTO and derived stratospheric ozone, 03) Sir, show

signals typical of ENSO influences?

(3) Can trends in tropospheric ozone over eastern South

America and the eastern Pacific be detected for the 1980's,

as reported using indirect approaches with TOMS ozone [Jiang

and Yung, 1996; Kim and Newchurch, 1996]?

Preliminary answers to these questions demonstrate that the MR

method gives TTO maps of sufficient accuracy for tropical

climatological studies and time-series analyses. Furthermore,

with ix2 degree resolution and 2-3 maps/month, TTO maps by the

modified-residual method are more highly resolved spatially and

temporally than tropical tropospheric ozone obtained by other

techniques.

2. Modified-Residual Method

A. Technique and Application to Observations Before and After

1991-1992

_!_iiiiiiiii_ illustrates the major features of the modified-

residual-method. Figure 2 in Hudson and Thompson [1998]

describes the steps in deriving stratospheric column ozone,

excess ozone, background tropospheric ozone and tropospheric

column ozone (TTO). The fundamentals of the method are given

here, for easy reference, and to clarify where the most critical

assumptions are made:



(i) Normalization of total ozone (TOMS version 7, Level 2
data, cloud-free as defined by reflectivity < 0.15)) at or
near 180° longitude, where ozone is a minimum. This permits
the assumption of a single stratospheric ozone value, O3)=t=,
over the latitude range in which the wave-one pattern is
observed in total ozone.
(2) An underlying total ozone amount (the thick smooth
curve in Figure I) follows a wave-one pattern; this is

" 03) in Hudsonreferred to as "background total ozone, total
and Thompson [1998] and Kim et al. [1996].
(3) The wave-one feature also delineates a background

back in Figure i.tropospheric ozone column amount, O3)tr ,
"Excess ozone," 03)"xc'ss, which is the amount of ozone
normally ascribed to pollution [Fishman et al., 1991;
Thompson et al., 1996a] is defined as follows:

excess -- O _ back
03) = 03)total 3;total

= o3)tr - o3)t2ack,
where O3)tota I is total ozone from TOMS Level 2 data.

(4) Total ozone at the minimum (at or near 180 degrees) is

used to derive stratospheric ozone from:

03)st r = 03)total(180) -- 03)trbaCk(180) ,

where the latter parameter is designated "A" in Figure i.

(5) The magnitude of the wave-one is obtained by Fourier

analysis, with the wave optimized to fit along total ozone

minima, as shown in Figure 1. The assumption that the wave

lies in the troposphere is signified by flat stratospheric

ozone in Figure i.

Features (4) and (5) represent a key assumption in the modified-

residual method, namely that the wave-one pattern is in the

troposphere. This appears to be supported by analysis of sondes

and stratospheric ozone derived from SAGE [Fishman et al., 1990;

Shiotani and Hasebe, 1994], MLS and HALOE [Ziemke et al., 1996],

although neither the sampling frequency of the sondes nor the

accuracy of lower tropospheric profiling is definitive.

In Hudson and Thompson [1998], O3)trbaCk(180), which is used

to obtain stratospheric ozone in (4), was derived from the wave

pattern and tropospheric ozone data from sounding stations near

the ozone maximum. The reason is, that for the period used in

developing the MR method, just prior to and during the

SAFARI/TRACE-A campaigns of 1992, no ozonesondes were launched

near the tropical Pacific ozone minimum. However, at Natal,

Ascension, and Brazzaville, there were more than 130 soundings

during 1991-1992 [Diab et al., 1996; Nganga et al., 1996; Olson

et al., 1996; Thompson et al., 1996a]. Values for each two-week

period for O3)trback(N, A, S), where N, A, B represent the

locations at Natal (6S, 35W), Ascension (8S, 15W) and Brazzaville

(4S, 15E), were obtained through the contraint that excess ozone

plus the background tropospheric ozone at each location must

equal integrated tropospheric ozone from the ozone sondes:

03)ex=ess(N, A, B) + O3)trbaCk(N, A, B) = 03)s°nde(N, A, B)

Averaging of 03)tr_=kIw_", A, B) over the three sites was used to

obtain O3)t=back(0) and O3)trback(180) from the longitudinal



dependence of the wave. The relationship in (4) gave
stratospheric ozone, O3)_tr, by subtraction from total ozone.
When averaging over the three sounding sites was carried out, a

back

seasonally varying signal for O3)tr (0) could be fit with a

back(0 t), where "t" refers to timesinusoidal function: 03)tr

(Figure 5 in Hudson and Thompson, 1998). Our best estimate of

O3)t_ at each latitude/longitude point in the 1991-1992 period,

referred to "TTO", was obtained using this function and the above

procedure.

Preliminary extension of the 1991-1992 background

tropospheric ozone signal at the wave maximum, O _ ba=kl0 t) to3Jtr _ • '

TOMS total 03 data from 1990 gave TTO in excellent agreement with

tropospheric ozone measured by ballooon-borne sondes at

Ascension, Natal, and Brazzaville (__iiiiiili_) Hence, it was
decided to use the MR method with th_::_99:I'z1992 O3)trbaCk(0, t)

function during the EP and ADEOS periods (1996-present) and

backward through the Nimbus 7 era to give two time-series of TTO.

For each 13-15-day period over which version 7 total ozone

from Nimbus 7 is averaged• the procedure used is identical to

that described in Hudson and Thompson [1998]. A set of

normalization constants for total ozone prescribes the location

of the ozone minimum and permits derivation of a single O3)st r,

subject to the magnitude and geographical boundaries of the wave-

one pattern. The first set of N7/TTO maps was posted as qif

images on the http://metosrv2.umd.edu/~tropo homepage in April

1998. A sample map, with two panels per month appears in _i_i_

i_iiiii For real-time processing, the averaging procedure has:_:_:_:en

modified to compute running averages of total ozone. Daily, 3-

day and 9-day averaged TTO maps appear on the "real-time" section

of thehomepage

B. Uncertainties in TTO from the Modified-Residual Method

Hudson and Thompson [1998] and Kim et al. [1996] presented a

thorough error analysis of TTO, ascribing imprecisions to

assumptions made in adopting a seasonally varying background

tropospheric ozone column near the ozone maximum: la = 4.8 DU

(Table 1 in Hudson and Thompson, 1998). This is nearly identical

to the l-a deviation (5.3 DU) between individual ozonesondes and

the 2-week averages used in referencing O3)trback(0) to the sondes

(Table 4 in Hudson and Thompson, 1998). Thus, to 2a, an

uncertainty of i0 DU applies. This may be as small as 15% of

tropospheric column during the seasonal Atlantic tropospheric O_

maximum or localized pollution events in other regions. It is a

larger fraction near the Pacific tropospheric ozone minimum,

which averages 20 DU over the course of a year.

• Validation of Derived Stratospheric Ozone and Modified-

Residual TTO (1979-1992; 1997-1998)

A. Stratospheric Ozone

Equatorial stratospheric column ozone, 03)str, derived from

the MR method agrees, to 8 DU, with pre-Mt Pinatubo-eruption SAGE

II measurements recorded between 10N and 10S in 1985-1991 (__



_). A similar level of agreement is found for derived
stratospheric ozone and ozone integrated from 1-100 hPa from the
UARS/MLS launched in September 1991. Discrepancies between the
N7 derived stratospheric ozone from September 1991-December 1992
compared to MLS stratospheric 03 are similar to those from the EP
period shown in _ig_reiiiiii_i. Deviations of 8-11 DU between O3)st_
and observations-fr0m the other satellites are within the
precision of the MR method and SAGE and MLS column ozone; for the
latter two sensors, the profiles are highly uncertain below 20
km. The fact that O3)_t= is lower than the SAGEand MLS
stratospheric column values may reflect systematic differences in
effective tropopause height. Integrated tropospheric ozone from
the sondes at Ascension, Brazzaville and Natal includes balloon
data from the surface to 100-120 hPa. This is where the ozone
gradient changes sharply (see, for example, Figure 5 in Thompson
et al., 1996a) and it also corresponds to the tropopause
typically reported in NCEP analyses.

If stratospheric ozone is set equal to TOMStotal ozone less
the integrated tropospheric ozone column from sondes, a
comparison can be made between derived stratospheric ozone,
O3)_tr, and observations at Natal (1979-1992; _i_!i_iiiiilili_i) and
Ascension (__!iiii!!!_, 1997-1998). Agreement of_a_ospheric
ozone with £:_:e s_ndes is better (mean deviation = 6-7 DU) than
with SAGE and MLS; deviations are more evenly distributed between
positive and negative values.

The CCD method also derives stratospheric column ozone
appropriate for the tropics. A comparison of O3)str for the
equator, based on the MR and CCD methods, appears in __iiiiiiii_.
Agreement between the two techniques is within 4 DU, w_ich is
remarkably good, considering how different are the assumptions
used in deriving the stratospheric ozone column. A signature of
the QBO (Quasi-Biennial Oscillation) appears in both records.

The difference between stratospheric ozone derived from the
MR and CCD methods (diamonds for MR stratospheric ozone - CCD
stratospheric ozone in Figure 7) appears to have a seasonality:
positive in December-February, negative in the middle of the
year. Both techniques have assumptions which could contribute to
the pattern. The high clouds used in the CCD method are assumed
to be always at the tropopause. More variable cloud heights,
subject to changes in large-scale circulation or migration of the
ITCZ (Intertropical Convergence Zone) could be signified by the
variation with respect to the MR value for O3)str. The MR method
in turn, is based on a seasonal variation in the O_)trback
parameter near the Atlantic ozone maximum that usually transmits
to a seasonal variation in O3)t=ba_knear 180° longitude ("A" in
Figure i), where the stratospheric ozone column is derived. The

parameter O3)trback(180) maximizes near the middle of the year

(Figure 5c in Hudson and Thompson, 1998), which would give lower

stratospheric column ozone from a given total ozone value.

Unfortunately there is no long-term tropical Pacific ozonesonde

record with which to interpret the seasonal differences in MR-

derived and CCD-derived stratospheric ozone. The Samoan

tropospheric ozone record is ambiguous about ozone seasonality.

[Komhyr et al., 1989; Oltmans et al., 1998]. However, the wave-

one boundaries (Figure 4 in Hudson and Thompson, 1998) show that



Samoa is too far south to be used reliably for comparisons with
equatorial ozone in any case (Figure i0 and discussion below).

B. Tropospheric Ozone

Validation of tropical tropospheric column ozone during the

pre-1991 Nimbus 7 period and during ADEOS and EP is complicated

by a geographically and temporally uneven ozonesonde data base.

For the 1980's, only Natal ozonesonde data are readily available

[Kirchhoff et el., 1991, 1996; Logan, 1994]. For comparison with

the sondes, TTO from the MR method is averaged over the 9 pixels

from 5-7°S and 32-38cW. The mean agreement with the TTO obtained

at Natal, (mean deviation = 6.6 DU, _i_iiiii!iiB_i_iiis excellent,

considering that the sonde record of-l_3--sohdes/month (except

during intensive campaigns [Kirchhoff et el., 1996]) may not

capture accurate half-month averages. The same level of

agreement with Natal sondes was found with the CCD method (__

_, adapted from Figure 7b in Ziemke et el., 1998). As in the ................

_rivation of stratospheric ozone, agreement between the two

methods during the N7 period is strong•

__iiiiiiii_ shows excellent agreement between twice monthly

avera_d_::_6_:_from Nimbus 7/TOMS (1990-1992) and integrated

tropospheric ozone from sondes launched at Ascension Island

before and during the TRACE-A field experiment. Ascension sonde

launches, at two-per-week frequency, were resumed in mid-1997.

Comparing the sonde data with 9-day-averaged TTO from late July

1997 through June 1998 (_i_!ii!i_i) shows slightly better agreement
than for the N7/TTO vali_a_o_n_ .........This may be due to a shorter

averaging period for the sondes: 5.1 DU mean deviation for the

EP/TTO record.

Comparison between TTO and ozonesonde data from American

Samoa (14°S, 171°W; _i_i_i!iii!ii_i_,Komhyr et el., 1989) is performed

by extending the MR:::me_o_::+:_eyond strictly tropical air, as

indicated by Fourier analysis of the wave-one. Accordingly,

agreement between TTO and Samoan ozonesondes during 1986-1990 is

not as good as at Natal or Ascension; the mean deviation is ii

DU.

• Evaluation of Nimbus 7 TTO through Regional Time-Series

Analysis

In this section, the quality of TTO and other parameters

derived in the MR method is evaluated by using time-series to

address questions about climatology and atmospheric processes

that affect tropical ozone. Most of the time-series are based on

N7 data because the EP/ADEOS data records are two years or less.

Furthermore, the dominance of the 1997-1998 ENSO in the EP

tropospheric ozone record [Chandra et el., 1998a] probably

renders the EP time-series atypical. Nimbus 7 TTO data during

the period in which total ozone was suppressed by the Mt Pinatubo

eruption (mid-1991 through June 1992) are also used sparingly.

A, Seasonal Cycles and Interannual Variability at Ozonesonde

Sampling Sites



Time-series of TTO data over given regions are used to

address the question:

What do seasonal cycles and interannual variability in

TTO look like and how do they compare with variations

observed in ozonesondes?

_re_i!i!iiiii_iiiiiii_diiiiiii8show comparisons between ozonesonde data in
the A£:_::_:_{_::::_:_:_:_nd TTO for the 9 pixels surrounding

Ascension, Brazzaville and Natal. The distinctive feature at all

three sites is a regular seasonal variation, with tropospheric

ozone peaking 20-25 DU higher in the latter half of the year than

in the second quarter when ozone is a minimum.

__iiiiii!_i_ shows the variability of TTO at the Natal,
Ascen_:_:_:_:_:_:::::_:_:zaville locations, along with larger regions

between the eastern Pacific just west of South America across the

Atlantic to southern Africa (__iiiii!iiii_ii_i_i. The seasonality of
TTO in the regions shown in F_:gure:::::_:_:::::_:s::::_:eterminedby fitting a

linear regression model [Hollandsworth et al., 1995] to the 14-

year twice-per-month time-series. The model, which has been used

extensively for analysis of trends in total ozone [Stolarski et

al., 1996], includes the assumption of a seasonal cycle and

linear trend (Section 4B). The regression model can be modified

to take into account solar cycle effects, ENSO signals and the

QBO; this has not been done in the current analysis. The reader

is referred to Ziemke et al. [1998] and Thompson et al. [1996b],

respectively, for discussion of QBO effects on derived

stratospheric ozone and total ozone in the Nimbus 7 records.

__iiii!iiii_i_i shows the regression model best-fit for

seasona:I:_£:y:::::_:n the TTO (solid line) and ozonesonde data at each

site (.... ). For Natal (Figure 12A), there are 155 of a maximum

possible 336 data points based on twice-per-month averaging of

the sondes over 14 years; see the density of * in Figure 8A. For

Ascension and Brazzaville, there are only 39 and 42 data points

compared to 72 twice-monthly intervals in the 1990-1992 record.

Discuss...(to be added) - stress agreement of MR-TTO with sondes

and coherence of three locations.//

Time-series over the Nimbus 7 period are also used to

explore the question:

Do the wave amplitude and TTO derived from the MR method

show signals expected from ENSO influences?

The amplitude of the wave-one feature (Figure i) from 1979-

1992 (_i_g_rei_!_i_i_!_,open circles, in DU) is a measure of the

contrast between the Atlantic background tropospheric ozone

maximum, O3)t=b_:k(0), and the Pacific minimum, O3)t=b_:k(180). The

maximum wave amplitude in the March-May period corresponds to

greater convective activity over the Pacific Ocean, which brings

ozone-poor air from surface up through the free troposphere,

reducing the tropospheric ozone column amount. In this respect,

the wave may be thought of as signifying an eastern Pacific ozone

deficit relative to the Atlantic. In the August-October period

the maximum wave amplitude reflects "excess" ozone over the

Atlantic, which is attributed to advection of photochemically

produced ozone from the adjacent continents, followed by

subsidence [Chatfield et al., 1996; Krishnamurti et al., 1996;

Thompson et al., 1996a].



Reqion TTO mean, 1979-1992 TTO mean, 8/96-6/98

0-12S, zonal mean

E. So. Am. (0-12S, 40-70W)

So. Africa (0-12S, 0-30E)

Natal region (4-8S, 32-38W)

26.2 DU 31.8 DU

31.4 DU 37.2 DU

25.4 DU 29.5 DU

34.2 DU 39.7 DU

Note that comparison of EP/TOMS with the ground-based Dobson

network of instruments for measuring total ozone has shown a

possible higher bias of EP/TOMS relative to the N7 record (G.

Labow, R. McPeters and R. Stolarski, personal communication,

1998). However, the MR method should be independent of this

difference (Figure I). Ultimately, determining the relative

strength of the 1982-1983 and 1997-1998 ENSO events on

tropospheric ozone will require a longer time-series with
EP/TOMS. It would also be desirable to fill in the 1993-1994

period with a TTO record derived from METEOR/TOMS; this has not

yet been done due to the different orbital characteristics of

METEOR/TOMS compared to N7, EP and ADEOS.

B. TTO Trends during the Nimbus 7/TOMS Period

In contrast to residual methods [Fishman et al., 1991, 1996;

Ziemke et al., 1998] which are based on multiple sensors, with

mismatches in sampling period, footprint, calibration and

operational lifetime, tropospheric ozone determined from the

TOMS-only MR method is well-suited for analysis of trends.

Because of the brevity of the EP/TOMS TTO and its strong ENSO

signature, only TTO data from the N7 record are used in trends

analysis here.

We note that from mid-1991 through 1992, record low total

ozone, due to the eruption of Mt Pinatubo, introduces a strong

bias in the latter part of the N7 record. For this reason, and

because the first year of Nimbus 7 operation may have had some

startup sampling inconsistencies, only TTO from 1980 through 1990

are used for analysis of trends. The linear regression model

[Hollandsworth et al., 1995] used for determination of

seasonality (Figure 12) is the basis for determination of linear
and seasonal trends with the N7 TTO record. Model results for

Natal appear in _i_i_iii!i!ii_i_i.The model fit (.... ) to the TTO
time-series (solid line_in Figure 14A) is excellent. The

ozonesonde data with model fit appear in Figure 14B. The

straight line represents the linear trend, with the

deseasonalized mean TTO and sonde integrated tropospheric ozone

values in Table I, as the starting point. In _i__iiji_i_iiiiiii_iiiiiiiD

the seasonal trends for the TTO and sonde data _£§ appear, in .......

DU/year, with the dotted line indicating 20.) There is no

significant linear trend at Natal, according to the TTO record:

-0.10Z0.20 DU/yr; the Natal mean TTO over 1980-1990 is 36.3+0.11

DU. The sonde data, which are quite sparse (see also _!_i_iiiiiiiiS_),

give a mean of 2 DU less than TTO (Table i) and a trend_:_:£_:£: _s

insignificant to the 20 level: 0.24Z0.26 DU/yr. Both the TTO and

sonde analyses show that, although the annual trend is

negligible, this could be due to opposing factors operating at

different times of year. Namely, a small but possibly

i0



significant increase in tropospheric ozone in the early part of
the year is followed by a negative trend.

Table i. Regional TTO (DU) and Trends (DU/yr) in Tropical
Tropospheric Ozone from MR method, 1980-1990

Natal, sondes
6S, 35W

Natal, TTO
5-7S, 32-38W

Ascension Is. TTO
7-9S, 12-18W

0-12°N, zonal mn
0-12°S, zonal mn
S. America,

0-12°S, 40-70W
E. Pacific

0-12°S, 80-IIOW
S. Africa,

0-12°S, 0-30E
S, Atlantic,

0-12°S, 0-40W

Mean column TTO
(DU, +/- 2 ¢)

33.4 (2.8)

36.3 (i.i)

36.6 (1.2)

27.1 (.82)
27.4 (.82)

34.6 (1.2)

25.5 (.90)

37.1(.47)

37.8 (.45)

Trend (DU/yr)

(+/- 2 a)

+0.33 (0.42)

-0.08 (1.6)

0.010 (0.2O)

-.077 (.i0

-.O75 (.i0

-0.i0 (.18

-0.41 (1.4

-.0222(1.2

0.71 (1.4)

Figure No.

14B, D

14A, C

15A

n/a
n/a

15B

15D

n/a

15C

The linear regression analysis of TTO for other regions

shows that seasonality, interannual variability and trends at

Natal are representative of tropospheric ozone over the entire

south Atlantic Basin. __iiiiiiiii_i_ishows TTO corresponding to

Ascension Island, easte:rn::_:_::::America, the South Atlantic, and

the Eastern Pacific, with the model fit for each case and the

linear trend. As for Natal, there are no significant trends on

an annual basis, but small seasonal trends are marginally

significant in the first part of the year (_i_i_i_!!iiiiiii_i_ii_i!.The South

Atlantic region encompasses both Natal and Ascension island,

whereas South America should typify most of northern Brazil.

Uniformity in seasonality and insignificant or borderline

significant seasonal trends appear in all regions from the

eastern Pacific across the south Atlantic Basin. For

completeness, analysis of the 14-year TTO record in the zonally

averaged band from 0-12S and 0-12N is also given in Table i. No

significant trend is apparent throughout the tropical band.

The regression analysis suggests that tropospheric column

ozone in regions well-known for seasonal burning - Brazil, and

south central Africa, for example - did not change significantly

during the 1980's. Unfortunately, although a number of satellite

sensors for detection of fires were operational in the 1980's, no

single fire count product is available to compare with the N7 TTO

record. Although smoke as a proxy for fires is difficult to

correlate consistently with tropospheric ozone due to different

characteristics of low-altitude detection of ozone and aerosols,

the TOMS absorbing aerosol product (detecting smoke and dust) is

available for the entire N7 period (see, the TOMS homepage:

http://toms.gsfc.nasa.gov to view monthly-averaged absorbing
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aerosol maps). In general, no strong trend in absorbing aerosol
appeared during 1979-1992 [Herman et al., 1997].

The fact that any significant trend in TTO occurs during the
first part of the year, which is out-of-phase with the southern
hemisphere savanna burning season, would be consistent with
little or no aerosol (fire) trend. However, an increase in
background tropospheric ozone could explain the tendency toward
an increase in the early part of the year. Global methane and CO
increases occurred throughout the 1980's (Ref), even though the
increase in tropical CO appears to have leveled off or even

reversed in the 1990's [Novelli et al., 1998]. Such increases

alone would have produced a small ozone increase, which might be

more noticeable when tropospheric ozone is near its annual

minimum.

The finding of no significant trends in tropical

tropospheric ozone agrees with Chandra et al. [1998b], who have

examined the 1979-1992 tropical tropospheric ozone time-series

obtained by the CCD technique. How do our results compare to

trends in lower tropospheric ozone (surface to 6 km) inferred

from TOMS by a terrain-differencing method [Jiang and Yung, 1996;

Kim and Newchurch, 1996; 1998]? These groups have analyzed

several smaller regions from 1979-1992:

Name Trend Ref.

West of New Guinea +0.06DU/yr Kim and Newchurch, 1998

East of New Guinea no trend Kim and Newchurch, 1998

E. Pacific (2-5N) "slightly positive" Kim and Newchurch, 1996

E. Pacific (0-12S) no trend Kim and Newchurch, 1996

E. Pacific (12-23S) +.14DU/yr Jiang and Yung, 1996

East of Andes (0-12S) +l%/yr Kim and Newchurch, 1996

Our inference of no trend for the eastern Pacific between the

equator and 12S concurs with Kim and Newchurch [1996]. However,

the TTO maps show no increases east of the Andes during the

1980's (eastern South America, Figure 15b), whereas Kim and

Newchurch [1998] find a l%/yr increase. There are several

explanations for this. Kim and Newchurch [1996, 1998] use only a

few pixels of TOMS data for their time series. They also used

the gridded TOMS product, which is subject to artifacts due to

clouds and low-altitude ozone detection efficiency [Hudson et

al., 1995; J. R. Ziemke, P. K. Bhartia and R. D. Hudson,

unpublished results, 1998].

5. Summary

A time-series of maps based on TOMS ozone data, two per

month with a 1° latitude by 2 ° longitude grid, have been produced

for tropical tropospheric column ozone between 20N and 20S.
Periods include the 1979-1992 Nimbus 7 record and ADEOS and

EP-TOMS, the latter from 1996 to the present. The technique

used, the modified-residual method, is based on high density,

cloud-free TOMS ozone in combination with ozonesonde data to

separate stratospheric and tropospheric ozone. In this

validation and evaluation study, the focus is on the tropical
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Atlantic and near-Atlantic stations. The major findings are:
(i) Comparison with sonde data shows excellent agreement

within the uncertainty of the MR method (la = 5 DU) at

Natal, Brazil (1979-1992), Brazzaville (1990-1992) and

Ascension Island (1990-1992; 1997-1998).

(2) Analysis of time-series from the 1979-92 TTO data set

show seasonality consistent with the ozonesondes; highest

ozone occurs in the second half of the year.

(3) The wave-one pattern in equatorial tropospheric ozone

is a persistent feature, with seasonally varying amplitude

and correlation with markers of dynamical variability, eg

SST, prominent during ENSO events. Regional signatures of

the 1982 ENSO appeared as localized TTO maxima in eastern

South America and as minima in the eastern Pacific and

southern Africa.

(4) From II0°W to 30°E, TTO shows insignificant trends

from 0-12°S during 1980-1990, which agrees with the findings

of Kim and Newchurch [1996] for the eastern Pacific but not

for eastern South America. The Natal ozonesondes, the only

operational site in the tropics throughout the 1980's, shows

a positive, but barely significant, trend in the first half

of the year.

Comparisons between the MR method and the CCD method [Ziemke

et al., 1998], which is another TOMS-only approach to retrieval

of tropospheric column ozone, show excellent agreement between

derived stratospheric ozone and tropospheric column ozone, with

the latter performed using the Natal data set as a standard. The

assumptions of the two methods, as well as the selection of TOMS

high-density (Level 2) data, allow extraction of stratospheric

ozone from total ozone by very different approaches.

Validation, evaluation and intercomparison of the MR TTO

data is continuing, with expansion to regions beyond the Atlantic

as more tropical ozone data become available. An appealing

feature of the MR method is the time-averaging (2-3 maps/month)

and spatial resolution, which should render them useful for

process studies and field campaigns, as well as for

climatological investigations of the type presented here.

Readers are encouraged to use the maps on the homepage and to

correspond with us about correlative ozone data.
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Captions.
17 Oct 98

Fig. 1 Schematic of the modified-residual (MR) method for deriving
tropical tropospheric ozone and stratospheric ozone, given total
ozone from TOMS, O3)total, a wave-one pattern (with amplitude I)

and excess ozone, O3) e×ces_ The basis of distinguishing

stratospheric and tropospheric ozone is a 2-year climatology of

ozonesondes at three sites near the wave maximum (0 ° longitude).

These imply a fixed, seasonally varying O3)_rbaCk(0) which is

assumed to apply over the duration of Nimbus 7 (1979-1992),

Earth-Probe (Aug. 1996-present) and ADEOS (Sept. 1996 - April

1997) TOMS and from which A and O3) sir are derived. A corresponds

to O3)trbac_(180), which refers to the location of the total ozone

minimum, at or near 180 ° longitude.

Fig. 2 Comparison of tropical tropospheric ozone (TTO) derived from
the modified-residual method for 1990-1992 at (A) Ascension

Island (8°S, 15°W); (B) Brazzaville, Congo (4°S, 15°E) (C) Natal,

Brazil (6°S, 35°W). Line denotes twice-per-month averaged TTO

from Nimbus 7/TOMS and * symbol is integrated ozone from the

sounding, surface to I00 hPa. The precision of the MR method is

± 5 DU (Dobson Units, 1 DU = 2.69 x 10(16) cm-2), owing to

averaging tropospheric ozone over l-2-week periods.

Plate I. (A) Typical Nimbus 7 period map as it appears on the TTO

website. UKL = http://metosrv2.umd.edu/ Ntropo. Each month's

record consists of two maps. The first is based on averaging

Days 1-15 Level 2, low-reflectivity TOMS total ozone; the second

image is based averaging TOMS from Day 16 to the end of the

month. Processing with the MR method is carried out from 20N to

30S but values are shown only within the range of the wave-one

pattern. (B) same as (A) except for an ADEOS map during the

southern hemisphere 1996 burning season. Real-time maps show

10°S-10°N, for easy reference during field campaigns.

Fig. 3 Comparison of derived stratospheric ozone, O3) _trat, with SAGE

II ozone, averaged over 10S-10N, and recorded from 1985-1991.

From June 1991-1993, stratospheric aerosols from the Mt Pinatubo

volcanic eruption made reliable SAGE ozone retrievals

impractical. Nimbus 7/TOMS derived stratospheric ozone record is

compared with the UARS/MLS after September 1991 (Figure 6 in

Hudson and Thompson, 1998).

Fig. 4 Comparison of derived stratospheric ozone, O3) sir, with UARS

MLS stratospheric column ozone, averaged over 10°S-10°N, 1996-

1998. Integration of ozone is from I-i00 hPA; below 46 hPa, MLS

ozone precision is 50%.

Fig. 5 Comparison of derived stratospheric ozone, O3)_t _, solid line,
from the modified-residual method for 1979-1992 at Natal, Brazil

(6°S, 35°W). Natal is the only tropical sounding station with

regular sondes since 1978 [ Kirchhoff et al., 1991; 1996] . *

denotes stratospheric ozone computed by subtracting twice-per-

month averaged tropospheric ozone from Natal sondes from TOMS

total ozone).

Fig. 6 Same as Fig. 5 except that derived stratospheric ozone,

O3)s_, is obtained from the twice-weekly ozonesonde launches at

Ascension Island during mid-1997-mid-1998.
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Fig. 7 Comparison of derived stratospheric ozone from the modified-
residual method and from the CCD method. CCD method gives

monthly values. For comparison a monthly value from MR method
has been obtained by averaging two values for O3) sir each month.

Fig. 8 (A) Comparison of integrated tropospheric ozone from
ozonesondes with TTO from the modified-residual method for 1979-

1990 at Natal, Brazil (6°S, 35°W). Natal is the only tropical

sounding station with regular sondes since 1978 [ Kirchhoff et

al., 1991; 1996] . Line denotes twice-per-month averaged TTO from

4-6S and 32-38W; * symbol is integrated ozone from the sounding,
surface to 100 hPa. Deviation of TTO from sonde value appears at

bottom of figure. (B) Same for monthly averaged ozonesondes and
derived TTO from CCD method; in the latter a single 5x5 ° pixel is

used.

Fig. 9 Comparison of TTO from Earth-Probe/TOMS for late July 1997-

May 1998 at Ascension (8°S, 15°W). Ascension soundings were re-
activated in 1997 after a hiatus of nearly 5 years; launch

frequency in 1997-1998 is twice per week. Line denotes twice-

weekly averaged TTO and * symbol is integrated ozone from the

sounding, surface to i00 hPa. Deviation of TTO from sonde is 0.

Fig. i0 Same as Figs. 8 and 9 except that comparison is between

integrated tropospheric ozone from Samoan sondes (14°S, 171°W) and

N7/TTO obtained by extending processing to 14S, which is usually

south of the wave-one pattern denoting tropical air masses.

Fig. ii TTO derived from the MR method over the Nimbus 7 period at

three ozone sounding sites, for which latitude-longitude given in

caption for Figure 2 (A = Natal; B = Ascension; C = Brazzaville).
Latitude is 0-12°S for the other regions, with longitudes as

follows: D = Eastern Pacific, 80-100°W; E = eastern So. America,

40-70°W; F = south Atlantic, 0-40°W; southern Africa, 0-30°E.

Deseasonalized mean, determined by linear-regression model,

appears in each frame.

Fig. 12 Model determined seasonality for Natal (A), Ascension (B) and

Brazzaville (C) where solid line signifies analysis of 14-year

TTO corresponding to each site and dashed line refers to

seasonality based on integrated tropospheric ozone from the sonde

record: 1979-1992 at Natal, 1990-1992 for Ascension and
Brazzaville.

Fig. 13 Amplitude of tropospheric wave, in Dobson Units (DU, outer

scale, open circles), over 14-year Nimbus 7/TOMS record [ cf
Ziemke et al., 1998] . Pattern of minima twice per year

(typically in May-June and December-January) represents N-S

transition in Intertropical Convergence Zone, ITCZ. Stable ITCZ

in either hemisphere is associated with convective transport

causing dilution of the tropospheric ozone column over the

Pacific relative to the Atlantic [ Piotrowicz et al., 1991] .

Effect of the 1982-83 and 1987 ENSO events on wave amplitude is

illustrated by positive correlation of wave amplitude with the

sea-surface temperature (filled circles, ASST, deg K) anomaly.

Positive anomaly signifies more convection over the Pacific, a

greater Atlantic-Pacific ozone contrast, ie larger wave

amplitude.
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Fig. 14 (A) Time-series of TTO (solid line) at Natal (6°S, 35°W),
with best-fit (.... ) from a linear regression model with seasonal
cycle and trends assumed over 1980-1990. Linear, deseasonalized
trend is indicated with straight line. (B) Seasonal cycle from
the model fit (_/yr), with the 2_ significance indicated by the
dotted line. C, D. Sameexcept that the Natal ozonesonde
record, with sondes averaged to twice-per-month frequency, are
the basis for the model analysis.

Fig. 15 (A) Ascension Island TTO for the whole calendar years of the
Nimbus 7 period, 1980-1990. As in Fig. 14, model best-fit
(dashed line) and deseasonalized trend (straight line) are given.
B, C, D. Sameas A for eastern South America (0-12S, 40-70W);
southern Atlantic (0-12S, 0-30E); east southern Pacific (0-12S,
80-110°W). Southern African TTO (0-12S, 0-30E), not shown, is
similar to the south Atlantic.

Fig. 16 Seasonal cycle from the model fit (%/yr), with the 2a
significance indicated by the dotted line. Same analyses as Fig.
15. A = Ascension; B = eastern South America; C = south

Atlantic; D = eastern south Pacific.
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1979-92 Tropical Tropospheric Ozone(q-TO), Nimbus
7/TOMS
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Tropical Tropospheric Ozone from ADEOS/TOMS

Daily based 3 days average 9 days average

Year Month Day
1996 Sep 19

°000

f ,_OE f SOE 1,80 f SOP t2011 r

0 10 20 30 40 50 _0 70 DU
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