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ABSTRACT

The paper illustrates the use of continuum models in control design for stabilizing
flexible structures. A 6-DOF anisotropic Timoshenko beam with discrete nodes where

lumped masses or actuators are located provides a sufficiently rich model to be of inter-
est for mathematical theory as well as practical application. We develop concepts and

tools to help answer engineering questions without having to resort to ed hoc heuristic

("physical") arguments or faith. In this sense the paper is more mathematically ori-

ented than engineering papers and vice versa at the same time. For instance we make

precise time-domain solutions using the theory of semigroups of operators rather than

formal "inverse Laplace transforms." We show that the modes arise as eigenvalues of

the generator of the semigroup, which are then related to the eigenvalues of the stiff-

ness operator. With the feedback control, the modes are no longer orthogonal and the

question naturally arises as to whether there is still a modal expansion. Here we prove

that the eigenfunctions yield a biorthogonal Riesz basis and indicate the corresponding

expansion. We prove mathematically that the number of eigenvalues is nonfinite, based
on the theory of zeros of entire functions. We make precise the notion of asymptotic

modes and indicate how to calculate them. Although limited by space, we do consider

the root locus problem and show for instance that the damping at first increases as

the control gain increases but starts to decrease at a critical value, and goes to zero as

the gain increases without bound. The undamped oscillatory modes remain oscillatory
and the rigid-body modes go over into deadbeat modes.

The Timoshenko model dynamics are translated into a canonical wave equation in

a Hilbert space. The solution is shown to require the use of an "energy" norm which
is no more than the total energy: potential plus kinetic. We show that, under an

appropriate extension of the notion of controllability, rate feedback with a collocated
sensor can stabilize the structure in the sense that all modes are damped and the energy

decays to zero. An example, non-numeric, is worked out in some detail illustrating the

concepts and theory developed.



1. INTRODUCTION

The purpose of the paper is to illustrate the use of continuum models in

control design for flexible structures: to provide the tools necessary to address relevant

engineering issues. This is admittedly hazardous on two counts: on the one hand the

complicated 3D geometry of realistic structures makes it almost impossible to use

continuum models; while on the other hand the mathematics of continuum models is,

for the most part, of mathematical interest only, and reduction to engineering practice

is seldom undertaken. The alternative, universally the rule now, is to stay with the

finite-dimensional "Finite Element" models. However the latter has the drawback

that any control design is limited to specific numerical values of system parameters,

and the dimensions, can be prohibitively large.

The 6-DOF anisotropic 1-D Timoshenko beam model is a convenient compro-

mise from both sides. As shown in [Noor and Anderson 1979, Noor and Russell 1986,

Wang 1994, and Balakrishnan 1992] it is excellent for modeling lattice trusses. On

the other hand the mathematical theory strikes a good balance between the trivial

and the nontractable.

The purpose of the control is to enhance the stability of the system, and the

main interest in the theory centers on the modes and the damping attainable

the eigenvalue problem. A purely formal Laplace transform analysis can yield an

entire function whose zeros in the complex plane are the eigenvalues. But the main

difficulty is in determining the time-domain solution and the nature of the stability.

Here is where it becomes necessary to use the theory of semigroups of operators and

associated techniques from abstract (functional) analysis. In particular the system

with control is no longer self-adjoint -- the mode-shapes (eigenfunctions) are no longer

orthogonal -- and the problem of modal expansion of the solution must needs draw

substantially on non-self-adjoint operator theory. A standard reference for the latter

is [Gohberg-Krein 1969].

While some background in Hilbert space and linear operator theory is assumed

(and almost all that is needed is covered in [Achieser-Glassman 1966, Riesz-Nagy 1955,

Balakrishnan 1981]) every effort has been made to make the treatment self-contained.



Webegin in Section2 by translating the basicbeamequationsinto a canonical

abstract "vibration" or "wave" equation in a Hilbert space. The main feature of

the choiceof state is the inclusion of the displacementsat the discrete nodes (the

"boundary" points) in it -- aspioneeredby the author for the Bernoulli beam model

of SCOLE in [Balakrishnan 1991a]. Not unlike the FEM version, the "boundary"

conditions for the elasticequationsareso chosen(in particular making the stiffness

operator self-adjoint and nonnegativedefinite) as to yield the correct form for the

potential energy.

Section3 dealswith spectralanalysis.We showthat the undampedstructure

modesarethe zerosof anentirefunction and that the modeshapesyield anorthogonal

basisfor the space.We characterizethe rigid-body modesshowingthat they span a

six-dimensionalspace.We developthe Green'sfunction for the eigenvalueproblem.

We show the relation of the squareroot of the stiffnessoperator to the potential

energyof the beam.

Section4 treats the time domainsolutionsof the structure dynamics,including

"weak" and "strong" solutions.Weintroducethe notion of the "energy" inner product

and show how the theory of semigroups of operators applies and the relation of the

resolvent to the familiar Laplace transform.

In Section 5 we show that, under an appropriate generalization of the con-

trollability condition to infinite dimensions, rate feedback using a collocated sensor

can stabilize the structure in the sense that all modes are damped and the elastic

energy decays to zero. We show that the damping coefficient goes to zero as the

mode number increases without bound.

Section 6 is devoted to calculating the asymptotic modes of the structure with

rate feedback. We construct the 6 × 6 matrix which defines the mode shapes, the

modes being the zeros of the determinant. We show that the latter is an entire

function of exponential type. We show that there are deadbeat modes, equal in

number exactly to the (dimension) number of rigid-body modes. The oscillatory

modes of the undamped structure remain oscillatory regardless of the control gain.

Because of space limitation we do not go into detail on the root locus problem. Making



precisethe notion of "asymptotic modes," we show that the asymptotic modes are

the "clamped" modes where all nodes are clamped -- no displacement is allowed.

Section 7 deals with modal expansion. Since with feedback control the modes

are no longer orthogonal we have to use a "biorthogonal" system. We show that the

eigenfunctions do provide a Riesz basis and develop a "modal" expansion.

Finally, in Section 8, we include a non-numerical example, albeit simple, to

illustrate the concepts and theory developed in the paper.

2. THE ANISOTROPIC TIMOSHENKO BEAM:

DYNAMICS AND STATE SPACE FORMULATION

We begin by describing the dynamics of a 6-DOF-1D Timoshenko beam artic-

ulated with lumped masses, and/or control actuators at a finite number of "nodes"

distributed along the beam, including the end points where the lumped masses may

also be "offset." This is a natural extension of the familiar 1DOF-1D Timoshenko

beam models found in standard texts (e.g., [Wimoshenko 1974], [Meirovich 1967]).

The model does not include the inherent damping since we are concerned only

with the damping attainable with control -- we refer to this as the "undamped"

structure.

Next we choose an appropriate Hilbert space as the state space and define the

mass-inertia operator, the stiffness operator and the control operator -- extending

the notions familiar in finite dimensions. In particular the definition of the stiffness

operator is based on the (elastic) protential energy of the structure. With these

definitions the partial differential equations translate into a "vibration" or "wave"

equation in a Hilbert space which needs to be interpreted appropriately but provides

the canonical model for the rest of the paper.

The anisotroic Timoshenko beam model adopted here appears to have been

introduced by [Noor and Anderson 1979], and refined in [Noor and Russell 1986], to

model the lattice truss strctures used for deployment in space. Later [Wang 1994]

showed how such models could be derived starting from the general elastic solid



equationsusing homogenizationtheory. Details of deriving the beam equations and

the elastic and mass-inertiaparameters therein illustrated by a specific example can

be found in [Balakrishnan 1992], including a comparison with FEM for calculating the

step response. To minimize complexity we only consider the case of a single flexible

beam. An example of a multibeam structure modelled as interconnected Timoshenko

beams is given in [Balakrishnan 1991b].

Let (xl, x2, x3) denote the coordinates of a rectangular coordinate system, and

let the beam axis be the xz-axis. We shall use "s" to denote the position along the

beam: 0 < s < L, where L is the length of the beam. We consider the "uniform"

case where the beam properties do not depend on s. Let si denote discrete points

(referred to as "nodes") along the axis

si<si+l, i=2,...,m-1

sl = 0;

Between nodes, that is to say for si < s < s_+l, we have the basic .aaisotropic

Timoshenko beam equations governing the beam displacements, u (.), v (-), w (.):

axial displacement (or, xl-component)

bending displacement in the xl-x2 plane (or, x2-component)

bending displacement in the xl-x_ plane (or, x_-component)

v(.)

and the torsion angles ¢1('), ¢2('), ¢_('):

¢:(.)
¢3(-)

rotation angle about the xl-axis

rotation angle about the x2-axis

rotation angle about the x_-axis

fl I

mllii - c11u" - c14v" - c15w - c15¢2 + c14¢'3 = 0

m22{)--c44v"--c14u"--c45¢_- _45_w" = 0

IV - ,U If !m33u) -- c55w -- c15 -- c45¢2 -- c45v" = 0

rn ¢l - c66¢ - c:6¢g= 0
I C I h,rr_55¢2 + m56(_3 + clsu + 55w -- c36¢1 + c55¢2 -- c33¢'_ -- c^53q)3_" -- C4s¢3 = 0

..

__ II -- C _.t! v?m66(_3 + m56¢2 C14U' Jr" C44 v' -- C26(_1 23q)2 "Jr- C44(_3 -- C22¢S -- C45¢2 = 0

are given by

(2.1)



where the superdots denote time derivatives and the primes, the space derivatives

(with respect to s). The matrices

J Cll C14 C15 1
el = c14 c44 c45 ;

c15 c45 c55

C3 =

C66 C36 C26

C36 C33 C23

C26 C23 C22

are both strictly positive definite. We shall also use the notation:

C2 =

0 --C15

0 --C45

0 --C55

C14

C44 ;

C45

C4 ---

0 0 0

0 c55 --c45

0 -c_ c44

With f denoting the 6 x 1 (column) vector:

f

?g

to

¢2

I¢3

(2.2)

these equations can be conveniently rewritten in the vector form:

Mof-A2f"+Azf'+Aof =0, si< s<s_+z (2.3)

where Mo is the mass/inertia matrix

M0

_7_11

0

0

0
0

0

0 0 0 0 0

m22 0 0 0 0

0 m_ 0 0 0

0 0 m44 0 0

0 0 0 rn55 m56

0 0 0 m56 m66

where M is also required to be strictly positive definite;

A2= I Cz 0

I 0 C3

0 C2

Az = -C_* 0

and where f stands for

0 0

A0= 0 C4

f(t,s), 0<t, 0<s<L.

6



Here the rnij are the "mass inertia" coefficients and {c/j} the "flexibility" coefficients.

They are constrained by the positive definite requirements of C1 and C3; in particular

cii > 0, mii > 0 for all i.

The nodes {s_} are points where the slope -- spatial derivative f'(.) -- is

discontinuous because of controllers or lumped masses located there. The displace-

ments at the nodes thus have to be included as part of the definition of the state.

Let L2(0, L) 6 denote the L2-space of 6 x 1 vector functions f(.) and let 7-/denote the

Hilbert Space

7"/= L2(0, L) 6 x (R6) TM

where we use the notation (RS) m rather than R e_ to indicate 6 x 1 vectors replicated

rn times. For elements x in T/we shall use the notation

where ] E L2(0, L) 6 and b E (R6) m. To avoid possible confusion let us note explicitly

that the inner product in 7-/is given by

[X, y] = If, gl/._(0,L)" Jr" ___[bi, cilRe_ (2.4)

1

where

X b

bl

b_

bm

y
g °

C
C

C1

C2

c_

(To avoid excessive notation we may often delete the signature under the inner prod-

ucts in the sequel if they are clear from the context.) The elements of 7-/will be our

"states." We begin with the stiffness operator since the mass operator will depend

7



O'A' J

on the control masses, the stiffness operator defined as the "differential" operator A

with domains, denoted _(A), in _ given by:

wheredefiningfi(s) = f(s), si < s < s,+l, i= 1,...,m-1

f,(-), f_(.) and f_'(.) e L2(si, si+l) 6

nm A(s)= ram A+l(s), i= 1,...,m-1]
$Tsi+l s_$i+_ ]

f(sl)

b =

f(8,_)

In other words the functions f(-) in T_(A) are "piecewise smooth"; continuous in

0 < s < L, but the derivative can have a jump discontinuity at each node si. We

refer to b as the "boundary value." The operator A is defined by:

where

g(s) = -A2f"(s)+Axf'(s)+Aof(s), si<s<s,+l, i=l,...,m-1. (2.6)

and c is defined by:

where

-Llf (O+) - A2f'(O+)

ell" s "_\-Az(.f'(s2+) - j _ 2-;)

C

-A2(f'(sm-l+)- f'(sm-1--))

Llf(L-) + A2f'(L-)

0 -C2 [LI= 0 0

We shall find it convenient to use the notation:

(2.7)

C = Abf.

This definition is made so that we get the right expression for the potential energy

-- so that

[Ax, z] _ Potential Energ_ (2.8)
2

8



wherethe potential energyof the structure is definedby

L [C 1
vl -- ¢3

w'+ ¢2

, v'- ¢_ ds + C3

w'+ ¢2

¢I
¢_ ,

el
ds. (2.9)

Let us verify (2.8). Integration by parts yields:

s'+l[A2f"(s),f(s)] ds
i

-- -- -- sfis{i+l- [A2f'(si+j-),f(si+a-)} [A2f'(si+),f(si+)] [A2f'(s),f'(s)] ds.

Hence

-/L[A2f"(s), f ( s)]ds

m-1 rn-1 fL ,
= - _[A2f'(s,+x-),f(s,+_-)] + _IA2f'(s,+),f(s,+)] ÷ .1o [A2f (s),f(s)lds.

i=1 i=1

But

And using

m-1 m

- _: [Aj'(s,+l-), / (s,+,-)]
i=l i=2

= _[A_y'(s,-),Y(s,-)].

f(si--)= f(si'q-)=f(si)

(x being in :D(A)), we have that

m-1 m-1

-- E[A2f'(si+l-),f(si+l-)]÷ E[A2f'(si÷),f(si÷)]
i=0 _-1

m-1

[A:f'(L-),f(L-)] + _[A2(f'(s,+)- f'(s,-)),f(s,)][Ad'(O÷),f(O+)].
2

Also, noticing that

A1 = L_- L1,

we can calculate that

L !

[Amf(s),f(s)]ds = -[Llf(L-),f(L-)]+[Llf(O+),f(O+)]

/oL /oL÷ [Llf(s),f'(s)lds + [L;f'(s),f(s)]ds.



But

[Abf, b] [(Llf(L-) + A2f'(L-)),/(L-)]
m--1

+ _'_[A2(f'(si-)- f'(si+)),f(si)]
2

-[Llf(0+) + A2/'(O+),f(O+)].

Hence

lAx, x] fO L[Abf, b]+ [(A0f + All'- A2f"),f(s)] ds

L I

f0 [A::(s),:'(s)]_s+ f0L[L:S(s),:'(_)le_

/0 /;+ [LU'(s),I(s)] ds+ [AoI(s),y(s)l ds.

Hence

where

L[ f,[Ax,x] = H f

C1 0

o c3
H =

0 0

-C2. 0

from which (2.9) readily follows, noting that

f,

0 -C2

0 0

A0

(2.10)

or, equivalently:

C2 = -C1D3

O 0 0
D3 = 0 0 -1

0 1 0

C4 = D_CIDz

Ao = L_A_IL1.

This technique of defining the "boundary conditions" on the "differential" operator

appropriately to make it self-adjoint and nonnegative definite should be compared

with the FEM method where (in the Hamiltonian) the potential energy is specified

and the stiffness matrix derived therefrom.

10



Remark

By our definition, anodeis a point wherethere is a controlleror lumped mass.

There may be neither at the endpoints s = 0, s = L, and if so, they are not included

in the nodes, and additional conditions need to be imposed. Typically, either

f(0) = 0 (clamped at zero) (2.11)

or

Llf(0) + Azf'(O) = 0 (free at zero) (2.12)

and similarly at s = L.

Mass/Inertia Operator

To obtain the mass/inertia operator we have to specify the control mass/

inertia and end masses, possibly offset (modeling antennas). Let us begin with the

interior controllers, force (reaction jets, proof-mass actuators) and moment (crag's).

Then we have for i # 1 or m

Mb,if(t, si) + A2(f'(t,s,-) - f'(t, si+)) + Ui(t) = 0 (2.13)

where
rn i 0

0 mi

0 0
Mb,i = 0 0

0 0

0 0

0 0 0 0

0 0 0 0

rni 0 0 0

0

0 I_

0

and Ui is the 6 × 1 vector of force and moment controls at s = si; mi is the control

mass and Ii the corresponding moment of inertia (matrix). For the ends, allowing for

offset end masses m0 at s = 0 and m L at s = SL and I0 and Ic the moments of inertia

of antennas and controller, each about the center of gravity, and r0 and rL the 3 x 1

position vectors of the centers of gravity respectively of the end masses we have at

S--0:

Mb,of(t,O+)- Llf(t,O+) - A2f'(t,O+) + Uo(t) = 0 (2.14)

11



where

and

M b,o

r 0 =

0

to,2

)'0,3

mo 4- ml 0 0

0 mo4-ml 0

0 0 mo 4-ml

0 rno)'0,2 moro,3

0 0 0

0 0 0

0 0 0

moro,2 0 0

moro,3 0 0

ro22+ ro22 0 o

/o = Io + Ic + (too+ ml) 0 %2,2 -_o,2ro,3

0 -"o,_)'o,_ %_,3
and where ml is the controller mass; and finally U0 is the control vector

moments).

Similarly for the end s = L, we have

Mb,Lf(t,L-) + Llf(t,L-) + A2f'(t,L-) +UL(t) = 0

where

)'L =

L

rL,2

rL,3

(forces and

(2.15)

M b,L

rn L 4- mm 0 0

0 mL 4- mm 0

0 0 rn L 4-ram

0 77_L)'L,2 _TaL)'L,3

0 0 0

0 0 0

0 0 0

rn L)"L,2 0 0

mLr L,3 0 0

I L 4- l c 4- ( rn L 4- ram)

h

_,_ + )'i2 0 0

0 r2L,2 --rL,2rL,3

2
0 --rL,2rL,3 rL, 5

12



and m,n controller mass and UL is the control vector of forces and moments. Again,

(mL q- ram) is the total moving mass.

Let Mb denote the composite matrix of all the control and end masses/inertia:

Mb, o

Mb,2

Mb =

Mb, m- 1

Mb, L

The mass-inertia operator, denoted M, is then defined by

IMx = y; x ; Y = Mbb
(2.16)

and is a linear bounded self-adjoint nonnegative definite opeator 7-I onto 7-/ with a

linear bound inverse:

and we note that

Also

M-ix

Mblb =

Molb

Mblb

Mb,,_bl

M_,,_bi

M_,,_bm

v_bb

M_,0 b

Control Operator

The control operator maps the control inputs into 7-/. We denote it by B. We

note that it is possible that not all nodes may have controllers. Let the number of

13



controllers -- force,moment or proof-mass -- be denoted me,

mc < 6 m.

Then we can regard any control u as an mc × 1 column vector. We define

Buu = b

where

b

Slu

Bmu

where each Bi is a 6 x mc matrix such that B_Bi is nonsingular and further

[" ]Bib, B;b = O, i # j

or

BiB;=O, i # j.

In particular it follows

We shall use the notation

B,,B_b

B1B_bl

B,_B_bm

B_B; = Di

where the D_, which are 6 x 6 each, may be taken to be diagonal with entries 1 or 0.

Finally

Bu= I 0Buu

Note that if

B'x = O,

0

B,,B_,b I .

we must have:

B_b = 0

14



or b must be such that:

or

B_bi = O, i = l, . . . , m,

Dibi = O, i=l,. .,m.

Another equally useful representation for B B* can be obtained in the following

way. Let {ei}, i = 1,..., me, denote the unit coordinate vectors in 7_ 'n'. Then let

B(O = Bet.

Then

and

[Bo),Bo) ] = O, i # j

BB'=
1

where the B0) are orthogonal, and each B(0 is nonzero.

With these definitions we can assemble the canonical "state space" version of

the dynamic equations (2.1), (2.13), (2.14), (2.15):

MS:(O + Ax(O + Bu(t) = 0, t > 0 (2.17)

where, formally, we have taken:

=

We recognize (2.17) as "an abstract wave equation in a Hilbert space"; the precise

relationship between the original space-time dynamic equations and this abstract

version will be clarified later, in stages.

3. SPECTRAL ANALYSIS: MODES/MODAL EXPANSION

Before we proceed to "solve" (2.17) we need to examine the spectrum of the

stiffness operator A. The eigenvalues of A (with respect to the mass operator M)

15



are the modesof the undampedstructure. A crucial result is that the modesare the

zerosof an entire function -- the determinant of the m x rn "condensed dynamic

stiffness matrix." The corresponding "mode shapes," the eigenfunctions, yield an

M-orthogonal basis for the Hilbert space. We also characterize the "rigid body"

modes, the eigenfunctions corresponding to the zero eigenvalue. We also obtain the

"Green's function" for the eigenvalue problem. Finally we define the square root of

the stiffness operator and indicate its relation to the potential energy.

Elementary Properties of the Stiffness Operator

Let us begin cataloging the elementary yet crucial properties of the stiffness

operator A. We have already seen that it is self-adjoint:

and nonnegative definite

[Ax, y] = [x, Ay] for x, y in :D(A)

[Ax, x] >_ O, for x E 7)(A).

The next property is that the domain of A is dense in 7-l. In other words, while not

every element x in 7-I is in the domain of A as the definition of A clearly shows, we

can find elements in the domain of A that approximate z as closely as needed. More

precisely, we can find a sequence {xn} in :D(A) such that

IIx- xnll-" 0.

This is a feature of "differential" operators; but since in our case we also have "bound-

ary values" to contend with, we shall present a formal argument. Thus let

Let

fi(s) = f(s), < < si+L.

It should be noted that b is arbitrary and is not necessa:ily the vector of "boundary"

values of f(.) at s = s_; the latter need not of cour, e be even defined. But for

16



each i, we can find a sequence of functions {fi,_(')} such that f=,_(s) is "infinitely"

differentiable in si < s < si+l, and

*'+' Ilfi(s)- f_,n(s)ll 2 ds ---, 0
i

and

Defining

f,,n(s,) = bi; f,,n(si+l) - b,+l.

fn(s) = f_,n(S), Si < S < S,+I,

fn(si) = fi,n(S),

we see that fn(') is continuous and

belongs to the domain of A, and

IIx- x.ll - 0 as n --, _

as required.

Eigenvalues and Eigenfunetions

If we proceed formally and take the Laplace transform of (2.17), setting

f0 _
¢ = e-Xtx(t) dr, ReA > 0,

we obtain for fixed _:

_2M¢+A¢-¢ = 0 (3.1)

where ¢ is an element of ?-l. The solution of this equation plays an important role in

the theory. We now formulate this more precisely as: find ¢ in :D(A) such that

_2M¢ q- A¢ = ¢, _ E 7-( (3.2)

for given ),. We see that in order for (3.2) to have a unique solution the "homogeneous"

equation

_2M¢+ A¢ = 0 (3.3)

17



canonly have the zerosolution. Rewriting this equationas

A¢ = -_2M¢

we may consider more generally

A¢ = 7M¢, ¢#0. (3.4)

Here 7 is called an eigenvalue of A with respect to the mass matrix M, and ¢ a

corresponding eigenfunction. From

0 < IA¢, ¢] = 7[M¢, ¢1

it follows that

7>0.

If 71, 72 are two distinct eigenvalues with corresponding eigenvectors ¢1, ¢2 respec-

tively, we have

[A¢I, ¢2] = 71[M¢1, ¢2] = [¢1, A¢2] = 72[M¢1, ¢2]

and hence we must have:

[M¢1, ¢2] = 0

or, eigenfunctions corresponding to distinct eigenvalues must be M-orthogonal.

We shall show now that the set of eigenvalues is nonfinite, countable and can

be taken as

{wk2}, wk_<Wk+l, k=O, 1,2,...

and

and

Wk-'* OO as k---* oo

ACk = 0_2kMCk.

First let us consider the eigenvalue zero.

18



Rigid Body Modes

Becausewe are consideringthe casewhereboth s = 0 and s = L are nodes,

we shall show that zero is an eigenvalue. An eigenvector corresponding to the zero

eigenvalue is called a rigid body mode. This is because if

A¢ = 0

we have

[A¢,¢] = o

or, from (2.9) the associated potential energy is zero. Let

¢= Yb '

where b is the boundary vector, ¢ being in/)(A); if the potential energy is zero, we

have from (2.9) that f(.) must be of the form:

_,(_)=_(0)

v(s) = v(0) + s_3(0)

w(s) = w(0) - s¢_(0)
/(s) = (3.5)

¢1(s) =¢1(0)

¢:(_) = ¢5(0)

¢_(s) = ¢8(0)

The derivative f'(s) is continuous in 0 < s < L. Note that the "free-free" boundary

conditions (2.12) are satisfied at both ends, and f(.) is the same regardless of the

number and location of the interior nodes. Also the dimension of the eigenfunction

space is six. In our notation we shall set

0d0 = 0.

Nonzero Eigenvalues

Let us now consider the general case in the form

,_2M¢ + Am = O.
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Let

Then

¢= f
b

)_2Mof + g = 0

where g(-) is defined by (2.6), and

)_2Mbb + Abf = O.

(3.6)

(3.7)

To solve (3.3), let

Then

Let

where

and we set

Then

A(_) =
0 16

A_I(Ao + )_2Mo) A21A1

f(s) eA(A)(s-s')l f(si) [
= , s_ < s < s_+1, i = 1,2,. .. ,m--1.

f'(si+)

f(s) ]f'(s)

Hence we can write

f(Sl)

8f'(Sl)

a : _f'(82)

6f'(sm-1)

6f'(s,) : f'(si'F)- f'(si-')

•f'(o-) = o.

I ' [oe.A(x)s f(O) + _e.AGx)(s_sj )
0 _=1 _:'(sj)

si< s< si+l, i=l,...,m-1.

b=L(),)a

(3.8)

(3.9)

(3.1o)
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where L(A) is a 6m x 6m block lower-triangular matrix:

For/> 1

where

L(,_) = {Cid(_)}

h,j(_)= o, j > i

t,,(_) = P_(_, ,,)

ei, i-l(),) = P12()_, si- si-2)

_i,i('_) = P12('_, si- si-1)

eA(_) s =

0 0

P_(_,s) : N Pl_(a,s), P_2(z,_) : _ P_(a,_).

Note that

detL(_) = detP12(_,s2) ..- detP12(_, s_-s_-l) ... detP12(,k, L-s_n-1). (3.11)

Also, we can express A_f in terms of a, using (3.10). Thus we can write

Abf = g(A)a

where K (,k) is also a 6m x 6rn (block-lower-triangular) matrix and hence (3.3) yields:

(_M_L(_) + K(_)) a = 0 (3.12)

Hence the eigenvalues are the roots of

det()_2MbL(A) + K(A)) = 0. (3.13)

The left side defines an entire function of the complex number 3, and can have at

most a countable number of zeros which must grow without bound in magnitude, if
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nonfinite in number. The correspondingeigenfunctionis determinedby (3.10). Also

(3.12) showsthat the dimensionof eacheigenfunctionspaceis finite, not more than

6rn.

We can now deduce that the set of eigenvalues which is countable is not finite.

For if it were finite, the number of eigenfunctions would be finite. But the eigenfunc-

tions must be complete in the M-inner product. If not, there must be a function ¢

which is M-orthogonal to all the eigenfunctions. The class of such functions form a

Hilbert space and A must map a dense domain of this space into itself. But A being

self-adjoint, we can now recall the fundamental result (see, for example [Riesz-Nagy

1955]) that is must have at least one eigenvalue, which leads to a contradiction. But

the dimension of 7-12 being nonfinite, we see that the set of eigenvalues cannot be

finite. In particular we see that the eigenfunctions are complete, and M-orthogonal.

We can therefore make them an M-orthonormal basis for 7-l. For each eigenvalue w_,

let Pk denote the projection (operator) corresponding to the eigenfunction space:

A(Pk¢) = w2(Pk¢).

Since the dimension of each eigenfunction space is finite it is convenient to continue to

use {¢k} to denote the M-orthonormalized basis in each eigenfunction space, "count-

ing each eigenfunction as many times as the dimension," as is customary. Then we

can write

where

OO

x = _--_akCk (3.14)

ak = [x, MCk]

and

Hence

or,

oo

t kl = [Mx,x].
0

CO

M-ix = _--_[x,¢kl¢k
0

OO

x = :_-_[z,¢k]MCk. (3.14a)
0
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Using (3.14)and (3.14a)wehave

OC

[x, x] = _ Ix, ckl[MCk, x]

conversely

if and only if

and

Since

x

OO

= _akCk E 7-I
1

Oo

_El_l _ <
1

Ix,Mxl = _EI_l_

we have that

it follows that

N

A _ Ix, MCk]¢k =
1

N

E[x, MCklw_MCk
1

x e :D(A)

if and only if

Also for x, y in 7-l:

OO

E I[x, MCkll2w_ <
1

_°

O0

[x, Myl = __,[x, MCkl[MCk, y] (3.15)
0

O0

Ix,y] = ___[x,¢k][M¢k,Y]. (3.15a)
0

What we are exploiting here is the fact that the sequences {¢k}, {M Ck} are "biorthog-

onal" and complete. We shall return to this concept later in Section 6. We refer to

(3.14) as a "modal" expansion. Expanding on (3.14), let

X f ¢k =
b '

fk

bk
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Then (3.14) yields:

Taking

b y:[x, MCk]bk
0

0
2;=

b '

we have

Hence

OO

= _[b, Mbbk] bk.
0

_-_.l[b, Mbbk]l2 <

and hence it follows that

and hence that

In particular therefore

OO

__,l]Mbbk]] 2
0

< OO

OO

_ltbkll _ < _,
0

bk --* 0 as k --, c_.

Returning now to (3.10) we have

i

f(s) = Pll()_,s) f(O) + _P12(A, s- sj) Sf'(sj),
j=l

which we can express as a linear transformation:

8i < $ < 8i+1 (3.16)

f =£(_)a, (3.17)

where £(_) maps (R6) "_ into L2(O,L) 6. Let

fl = £(x)al,

f2 = L(,_)a,2,

Then
£(_,)a_

L(_)al

al • (R6) TM

a_ • (R_)".

_2 =
L;_)a2

24



areelementsin T_(A) and

[A¢I, ¢2] = [Abfl, b:] - A2[M0/I, f:]

= [K(A)al, L(A)a_] - A2[Mofl, f:]

= [¢1, A¢2]

= [n(;_)al, g(_)a_] - _2[M0fl, 12].

Hence for A such that A2 is real

L(A)*K(A)

is self-adjoint and is nonnegative definite if A is real, since

0 < [A_Pl, ¢1].

Also L(A) is an entire function of the complex variable A, and

(equivalently

det IL(A)[= 0

det P12(A; si - si-1) = 0

for some i :> 2, from (3.11)) for at most a countable set of A. And, omitting this

set (which are recognized as "clamped" modes of the structure, where every node is

clamped so that the displacement is zero), we have

a=L(A)-lb

and

(A2MbL(A) + K(A)) a

Hence we can express (3.12) as:

Following [Wittrick-Williams 1971], we shall call

= (A2Mb +K(A)L(A)-I)b.

= O.

A2Mb + K(A)L(A) -1
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the "condenseddynamic stiffnessmatrix." Let

T(A)=K(A)L(A) -_.

Then we have:

[A¢1,¢2] = [Abfl, b2] - A2[M0fl, f2]

= [K(A)L(A)-lbl, b2] - A2[M0]'I, f2l

--'_ [¢1, A¢2]

= [b,, K(A)L(A)-lb2] - 72[Moll, f21"

It follows that for A such that A2 is real, T(A) is self-adjoint; and if A is real, also

nonnegative definite. Also, if

K(),)a = O, a# o,

taking

we have

and hence

f =£(_,)a, b = L(_,)a, ¢ =

Abf = 0

.f

b

[A¢, ¢] = [Abf,b]- A2[Mof,:]

= -A2tMof, f]

which is impossible unless A is pure imaginary. Zero is an eigenvalue of K (0). By the

"zeros of the dynamic stiffness matrix" we mean the roots of

det(A=Mb + T(A)) = 0

which are of course the same as those of

det (A2MbL()_) + K (),)) = _.
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The polesof the condenseddynamicstiffnessmatrix are the zerosof

det L (I),

or the "clamped" modes of the structure. The dimension of the eigenfunction space for

I # 0 is equal to 1 if the condensed dynamic stiffness matrix has distinct eigenvalues.

Green's Function

We are now ready to solve the non-homogeneous equation:

(12M + A)¢ = ¢. (3.1s)

In fact for I such that

or

det (12Mb + T(1)) # 0

12

we can calculate the solution in two ways. First we can obtain a "modal" solution

using the modal expansion (3.14). For this purpose we note first that:

(12M + A)_IMCk = Ck
12 + w_

since

Hence we obtain:

and

(12M+A)¢k = (I 2+w_)MCk.

0

OO

[(12 M + A)_lx ' y] = _ [x, ¢k][¢k, y]
o 12 + wk2

(12M + A) -1

For 12 positive we see that

is self-adjoint and nonnegative definite,

(12M + A)-lCk, M¢k]
1

12 + wk2
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sothat

(A2M+A)-Ick, MCk = _A2+_k2.
0 0

We shall show that the right side is finite. For this purpose we need to derive the

Green's function for the eigenvalue problem (3.18).

For this purpose let

¢ = g
C

Then (3.18) becomes

)_2Mof + h = g

where h(.) is defined by (2.6), and

),2Mbb + Abf = c. (3.20)

With .A(A), as before we see that we can solve (2.38) as

i

+ _ e"_(A)(s-sD
j=l

+ foseA('_)(s-a)

Or, with a, £:(A) as before, we have:

(3.21)

f = L:(_)a + ]V(_)g

where the operator Af(A) mapping L2[0, L] 6 into itself is defined by:

£h----A/'(A)g; h(s) = Pll(A;s-a)g(a)da, 0<s<L.

Also, we have

where

and

b = L(),)a + N(A)g

h(o)

iv( )g = h('L)

Abf = K()_)a+ M(),)g
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where

Hence(3.20) becomes

and hence for

M(_)g

(A2MbL(A) -4- K(A)) a

we have:

Hence finally

where

= Ab(Af(A)g).

= c- N(,k)g- M(A)g

_2+_2 # o,

a = (A2MbL(A)+ K(A)) -1 (c- N(_)g- M(_)g)

f - L:(_)a(_) + J_(_)g

b = L(A)a(A)= (A2Mb+T(A))] -1
%/

a(A) = (A2MbL(A)+ K(A)) -1

From (3.22) we see that we can write

f(s) = G()_,s,a)g(a) da,

(c-N(A)g-M(A)g)

(c- N(A)g- M(,k)g).

O<s<L

(3.22)

(3.23)

b (A2Mb 4- T(_)) -1 _0 L= c + Gb(,k,a)g(a) da = N(A)f

where the kernel G()_, s, a) is continuous in 0 < s, a < L and Gb(A, a) is continuous

in 0 < a < L. It follows from this
m

(A2M + A) -1

is nuclear (see [Balakrishnan 1981] for the definition) and in particular (3.19) is finite

and hence it follows also that

1 a/_ < _'

Of particular interest to us is the solution of (3.1S) when ¢ is of the form

_2= Bu
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and (3.22), (3.23) simplify to:

Hence

f = E.(A)(A2MbL(A)+ K(A))-IBt, u (3.24)

= S,_u. (3.25)

B*(A2M + A)-IB = B_ (A2Mb + T(A))-IB,,. (3.26)

The Square Root of the Stiffness Operator

Finally we note that we can define v/_ as a self-adjoint nonnegative operator.

This is treated in standard texts -- e.g., [Riesz-Nagy 1955]. It is known that

Unfortunately we cannot use the expansion (3.14), since we cannot evaluate

v_ ¢k or v_ M¢k.

However we do know that

[4-_ ¢k, v_ Cj] = [A¢k, ¢i]

= O, k=_j

= _, k=j.

Using this we have

which if x 6 T)(A), is

OO

[_ _, _ _] -- E_glI_,M,_jI_ (3.27)

= [Ax, x] = 2(Potential Ener_).

Hence we see that if
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then we candefine

(Potential Energy) - 2

Thus wecanextend the definition of Potential Energy for all x in 7? (v/A), which is

larger than :D(A).

Since the stiffness operator A has nothing to do with the mass operator M,

we may consider the case

M -- Identity

in which case, our eigenfunctions become

ACk -2 -

Then in terms of these eigenfunctions we can define

]< _ (3.28)

1

and
oo

1

1

which is then also the domain on which the Potential Energy can be defined. However

we need a characterization similar to that for A, which in particular does not invoke

eigenfunction. For more on this see [Balakrishnan 1990].

4. TIME-DOMAIN ANALYSIS

We have tools enough to consider the "time domain" solution of the dynamic

equations: (2.14) and in turn (2.1). Unlike the finite-dimensional case, we can have

more than one kind of solution depending on the interpretation of the equation (2.14)

and the properties demanded of the solution. For the most satisfactory form of

solution, we need to introduce the notion of the "energy norm" space in which the

norm is determined in terms of the total system energy -- kinetic-plus-potential --

and the theory of semigroups of operators applies.
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We begin with the weaker notion first.

Weak Solution/Modal Solution

With respect to (2.14) we have to specify first how the time-derivative therein

is to be defined and whether the solution x(t), 0 < t, which will depend only on the

initial conditions at t = 0 and the input u(.), is required to be in the domain of A.

Whatever the definition, we must have that for every ¢ in _)(A):

[M_(t), ¢]+[Ax(t),¢]+[Bu(t),¢] = O.

We can rewrite this as

d 2

dt----_ Ix(t), M ¢] + [x(t), A¢] + [Su(t), ¢] = 0. (4.1)

As for the input u(.), we assume that

j_OT lu(t)] 2 dt< c_, for every T, 0 < T < _.

That is, u(-) E L2[0, T] '_° for every T < co. Note that in (4.1) we only need the "weak

derivative" (see [Balakrishnan 1981] for definition) and further we have circumvented

the requirement that x(t) E :D(A). By a '_weak solution" of (2.14) we mean a function

x(t), t >_ 0 such that for every ¢ in _(A):

[x(t),M¢]

and its derivative are absolutely continuous in t > 0, satisfies (4.1) and the initial

conditions:

Ix(t), Me] _ Ix1, Me] as t --, 0+

d

d-_ [x(t),M¢] ---* [x2, M¢] as t ---,0+

where xl, x2 are given elements in 7-/.

Even weaker (and easiest to construct) is the notion of a "modal solution"

where we only require that (4.1) hold for every eigenft nction Ck. In this case (4.1)

becomes

d 2

-_[x(t),MCk] + _,[x(t),MCk] + [u(tI, B*¢k] = O. (4.2)
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Let

a_(t) = [_(t),M¢k]

uk(t) = [_,(t),B'¢3

Then for each k, we have the ordinary differential equation

ak(t) + _ak(t) + ,,_(t) = 0,

with the initial conditions:

ak(0) = Ix1, MCk]

ak(0) = [x2, MCk]

which we can solve, to yield, for Wk _ 0:

eik (0) sin wkt fot_k(t) = _ + _(0)cos_kt +

and for wk = 0:

ak(t)

It is easy to verify that

Hence we can define

Thus defined, we do have

a.e. t >_ 0 (4.3)

1
-- sinwk(t- s) uk(s) ds (4.4)
Wk

t= _k(0) + tak(o) + (t- s),_k(s) as.

OO

_ la,(t)l2< _,
0

O<t< _.

(4.5)

OO

• (t) = _,_k(t)**. (4.6)
0

ak(t) = [x(t),MCk}

and x(.) satisfies (4.2). Hence we have a "modal" solution. However x(.) need not

qualify as a weak solution in general and additional restrictions will need to be placed

on the initial conditions -- on xl, x2. Thus for

we would need to require that

u(t)=O, t>0

x, e /)(A)
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so that

In this case

and hencefor ¢ in :D(A)

OO

I

_--_.lak(t)l2 ÷ _lak(t)l 2
1 1

oQ

d 2

dt--5 [x(t),M¢] = _7_tik(t)[¢k,M¢]
0

OO

0

O0

= - _"_ak(t)[¢k,A¢]
0

= -[x(t), A¢]

as required.

A better technique, avoiding these special considerations, is to go over to "state

space" solution.

State Space Solution: Need for Energy Norm

To proceed further with (2.14), let us cast it in "state-space" form. Thus we

let

r(t) = I x(t)z(t)

and, formally, (2.14) goes over into

?(t) = +

where

Y(t) e 7"l x 7"l,

(4.7)

B

0

_M-1A

0

-M-1B

I

0
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and

7)(A) = [y = l Yl I ylET)(A) ]Y2 Y2 E _

We interpret (4.7) in the weak sense, satisfying also the initial condition:

]Iv(t) - r]l -_ 0 as t -_ 0 +.

In addition we require that for each t, Y(t) is continuous with respect to Y:

IIY(t)ll--' 0 as llYII _ O.

It is shown in [Balakrishnan-Triggiani 1993] that this is impossible unless we change

the space 7"/x 7-/-- change the product-norm, which is physically meaningless, to the

"energy" norm. The total energy

= Potential (Elastic)Energy + Kinetic Energy

[Ayl, Yl] [My2, Y2]
+

2 2

where

Y I= , Yl • 7)(A).
Y2

As we have seen, we can extend the definition of Potential Energy to 7) (q_). Also

the total energy vanishes for

y __

0 ' Yl • Nullspace of A.

Let 7-I1 denote the M-orthogonal complement of the null space of A:

7-ll = Ix I[Mz, ¢] = 0, ¢ • Nullspace of A].

Then

Ck • _'_1 for every k, wk # O.

In other words we consider 7-I under the M-inner product,

[_, v]- = [Mx, y]
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which is equivalent to the original inner product sinceM has a bounded inverse. We

now define the energy space "HE by

with inner product defined by

[Y, Z]E = [v/"A yl, V_ zl] + [My2, z2]

where

Note that

×'H

; Z=
y2 z2

[Y, Y]E = 2[Total Energy]

and hence the name "energy norm" space. We shall show now that "HE is actually

complete. Let

Yn -- Xn
Zn

be a Cauchy sequence in "HE. Then

ll_- _ll_=I_- _I1_+ _- _11_

Since _ has a bounded inverse,

Now

z,_z in 7"/.

Xn • "H1,

and v_ restricted to "H1 has a bounded inverse. Hence

converges, and denoting the limit by x, we have

z= (v_) -1 (lim
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and

Hence 7-/E is complete.

Let ¢0,k, k -- l,..., 6, denote an M-orthonormal basis for the null space of A:

[M ¢0,k, ¢0Z] = _.

Define the projection operator (self-adjoint in the M-inner product) by

and let

so that

Then

6

_[x, M ¢0,k] ¢0,k
1

Pi = I - Po

['Plx, Me] = 0, if P0¢ = ¢.

The operator .A is defined then as follows:

V(A) = = x2 ' z2 e V 4-A

I-M-1AxI '

thus defined .Zt is closed and has a dense domain.

Let ,4* denote the adjoint. Then

A* = [ 0 -T'I

I M-1A 0

y -_ Yl .
Y2 ' Z =

To prove this, let

Y, z e v(A)

(4.8)
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Then

[AY, z]E

= M-1Azll-[ yl, e z:]
= [Y, A'z]_

= -[Y, Az]E.

In what follows we shall omit the subscript E in inner products and norms where

elements of 7"/E are involved. In particular, for Y in the domain of .A:

[AY, Y]4-[Y, AY] = Re[AY, Y] = O.

Hence (see [Balakrishnan 1981]), ,4 generates a strongly continuous semigroup S(t),

t > 0: actually a group:

s(t)'=(s(t))-'=s(-t).

For Y in the domain of ,4, S(t)Y is also in the domain of A, and

Hence the equation

_s(t)Y = As(t)Y.

?(t)=AY(t)

with the derivative interpreted in the strong sense:

has the unique solution:

Y(t)=S(t)Y(O)

such that

asA_0

IJY(t)- Y(0)II--* 0.

Note that for Y in Z)(A), we can exploit strong differe_tiability to yield:

d[S(t)Y,S(t)Y] = [AS(t)Y,S(t)Y] [S(t'Y, AS(t)Y] =
4- O. (4.9)
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Hence

IIS(t)rl[= = Ilrll 2.

The domain of A being dense, we have that

IIs(OYII= IIYII, v e _E.

In particular, the energy stays constant in time.

More generally, for any Y (0) in T/E,

_'(t) = AY(t) + Bu(t)

interpreted in the weak sense

d[r(t), Y] = [r(t),A*rl + [Bu(t), Y]

for every Y in the domain of `4', has the unique solution (see [Balakrishnan 1981]):

/:r(t) = S(t)Y(O) + S(t-a)Bu(a) da, t >_ 0

for

f0 t [2Ilu(a)l do < c_ for every t > 0.

Remark

We can finally relate (2.14) to (2.1). Requiring the initial condition vector Y

to be in :D(A) means in particualr that we can define the necessary partial derivatives

in (2.1) and thus have a solution in the " ordinary" or pointwise sense.

Spectral Properties of A

The spectral properties of ,4 are readily deduced from the spectral properties

of A. Thus the equation

)_X - ,4X = Y

X xl I Yl= ; Y--
x2 ' ] Y2
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yields for X:

Or,

_Xl- _[:)lX2 = Yl,

Ax2 + M-lAx1 = Y2.

A2Mxl +'Plx2AXl == M (y2Axl- +ylAyl - A?0x2) }. (4.10)

The eigenvalues of A are thus given by

A2Mxl + Axl
= ATe°x2 ]>. (4.11)
----- _Xl J

Zero is an eigenvalue of .A, since zero is an eigenvalue of A. In fact

01_0= = 0 I ifA¢=0.A ¢ 0 '

Thus the dimension of the null space of .4 is 6.

For nonzero A, we note that

'kk = iwkCk

is an eigenvector with eigenvalue (iwk). For

[M Ck, 'Pox] = O, or Ck E T)(A) N'H1

_P0¢k=0; -w2MCk + A¢k = O,

and hence (4.11) is satisfied. The dimension of the eigenfunction space is equal to

the dimension of the eigenfunction space of A corresponding to w_. We shall for

simplicity take this dimension to be equal to one. Hence the eigenvalues of .A may be

enumerated as:

{-eil_kl},

= -il kl ck, # o,

w0----0

wk¢0, k>0; _k.l>Wk

since. Ck = Ck
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where

where

Ck

il_klCk

¢0,_, i = 1,...,6 =

¢0,_ = ¢0,_

Note that

iMP0,,, ¢0a] = 6_.

m w

_4"¢k = ilwkl ck

A°¢0,i = 0.

These eigenfunctions are orthogonal:

_- 0,
[¢k, %1 = 0, k # j

[¢k,¢k] = 2Wk2[MCk,¢k]-

To orthonormalize the ¢k, we need only to take

1

[MCk,¢k]- 2w 2

which we shall assume in what follows.

m

Let us show that the {¢_, Ck} are complete. Suppose for some _ in 7-/E

(4.12)

[¢k,¢] = [_k,¢] = 0 for everyk.

Writing

_I _
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we have

0 =

from which it follows that

= w_[MCk, _Pl] + iwk[MCk, _P21,

= w2[MCk, ¢1] -- iwk[MCk, _b2]

0 = [¢0,k,_,] = 0

[MCk, _P2] = 0 for every k

and from the completeness of {¢k} we have that

_2=0.

We also have that

[M¢k,¢l]=0, wk#0

and by definition ¢1 is in "HI. Hence it follows that

¢1=0.

Since

As a consequence we have the modal expansion:

Y

Co Co 6

1 1 1

(4.13)

s(t)¢k = e_"*¢,; S(t)'_k = e-_"t'¢k; S(t)¢0,k = e_"*¢0,k

we have also
CO CO

1 1

6

+ _[Y, (I)0,k] ¢0,k.
1

(4.14)

Resolvent of A

For

x _ _l_I, x#0,
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we shall now showthat

AI -A

hasa boundedinverse.To calculatethis inversewe go back to (4.8), where we let

A_Mzl + Azl

Then

For ), _ :l:ilwk [, A _ 0, we can define

Then

Hence

if we let

or,

Hence we obtain

where

and

= My2 + AMy1 - AMz.

w = (A2M + A)-I(My2 + AMy1).

A2M(Xl-W) 4- A(Xl-W) = -AMz.

A2M(xl - "Plw) 4- A(xl - 'Plw) = A2M"PoW - AMz = 0

z = APow

x2 = A'PlW-yl + APow = Aw- Yl-

Xl

X2

_1 w

AW -- Yl

(4.15)

w = (A2M + A)-I(My2 + _Yl)

We use the notation:

weV(A).

R(A,A) = (hi - _)-1
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and refer to the left sideas the "resolventof ,4." We have also the modal represen-

tation:

oo oo 6 [Y,¢0,k]
R(A,A)Y = _ !Y-'_PkA _Pk + E [Y,'_k] "_k + Z _PO,k. (4.16)

A -- iWk _ '_ iO.)k
1 1 1

It is indeed the Laplace Transform:

f0 °°
R(A,.A)Y = e-_ts(t)Y dr, ReA > 0, (4.17)

but of course is defined and analytic in A except for poles at the eigenvalues as follows

from (4.13) and (4.14). Note in particular that

= vl)

and hence it follows that

B*_(A,A)B = _B*(_2M + A)-IB = _B; (_2Mb + T(_))-IB,_. (4.18)

5. CONTROLLABILITY AND STABILIZABILITY

In this section we show that under a controllability condition, rate feedback

using a collocated sensor can stabilize the system. All modes will decay even though

the damping coefficient will decrease with mode frequency. Whatever the initial

conditions, the elastic energy will eventually dissipate to zero. (This is known as

"strong" stability.) In our model we neglect any inherent damping in the structure.

However the controller is robust in the sense it will not destabilize any mode -- it will

only increase the damping. We have always stability enhancement, in other words.

The main results are known -- see [Balakrishnan 1981] and the references

therein. The presentation here tries as far as possible to be self-contained, using the

specific features of the problem at hand rather than merely quoting general results.

In reference to our dynamic equation:

Y(t) = .AY(t) + 13u(t) (5.1)
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we do not include a damping operator; ,4 is not "stable." In fact

IJS(t)YJl E = JlYIJE.

The elastic energy is not dissipated in the absence of control. In finite dimensional

theory, the system is "exponentially" stabilizable, if (`4, B) is "exactly" controllable

m by that we mean given any Yx, ]I2 we can find a control u(-) such that

j_0 tY2 = S(t)Y1 + S(t - a)Bu(a) da

for some t >_ 0. This is impossible in our case because (range of) B is finite-

dimensional. (See [Balakrishnan 1981], for a proof.) The next best thing we can

do is to require just "controllability." Thus we say that (.4, B) is "controllable" if

U (range of S(t)B)

t>o

is dense in 7"/E. This is equivalent to saying that

(/: )[,.J s(t-a)Bu(a) da; u(.)e L2(O,t)
t>_O

is dense in 7"/E. In other words we require that the states "reachable" from the zero

state are dense in "HE.

Theorem 5.1

.4 ,-, B is controllable in "HE if and only if

e'¢#0 (5.2)

for any eigenfunction ¢, defined by:

Equivalently

for any mode (I):

A¢=w2M¢, ¢ # 0.

B*(I) # 0 (5.3)

.4¢=i_¢, ¢#0
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Proof

It is convenient to use a modal expansion for any Y as:

oo oo

r =  Pkr +  P_kr + P0r
1 1

where Pk is the Projector onto the eigenfunction space corresponding to the eigenvalue

iwk, and P-k corresponding to -iwk, and P0 onto the null space of .4. Then

oo oo

S(t)Y = _ei'_*tPkY + _e-_*'e_kY + PoY. (5.4)
1 1

If the set

U s(t)B 
t>_O

where u ranges over all of TdTM is not dense in "HE, we can find a nonzero element Y

in "HE such that

[S(t)Bu, Y] = 0, t>_0, ueT_ '_°.

Hence using (5.4) we must have

oo oo

_e_"_tBlu, B'PkY] + _e-_ktIu, B'P-kYI + [u, B*PoY] = O, t> O.
1 1

But the left side is an almost periodic function in t, and can vanish identically if and

only if for every k:

0 = [u, B*Pky] = [u, B'P-kY] = [u,B'PoY].

Since Y is not zero, there must be at least one k such that

PkY #O

or

PkY = _k,

where

ACk = icok_, eke0

[u, B'¢k] '-- 0.

But u being arbitrary, we must have

B*¢k = 0
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which is a contradiction. Since _k must be of the form:

_k = Ck
i_;kCk

it follows that

B*¢k = 0

which is again impossible by assumption.

Next, suppose .A -,_ B is controllable. Suppose

B*¢= 0

for some mode ¢

Then for

A¢ = w2M¢, ¢#0.

. iw¢

Hence • is orthogonal to

= 0.

for every t and u E 7¢"_'.

hypothesis.

s(t)B, 

Hence (_ ,,, B) is not controllable -- contradicting the

We shall show that (.A - B) is controllable for our system in Section 4 where

we study the eigenvalue problem.

Corollary

Suppose (,4 - B) is controllable. Then the number of controls (the dimension

of the control space) must be at least 6. More generally, the dimension of the control

space must be at least equal to the largest eigenfunction-space dimension.
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Proof

Let ¢0,_, i = 1,..., 6, be a basis for the null space of A.

linearly dependent. Then

6

_'_akB*¢0,k = O, not all ak = 0
1

Suppose B*¢0,i are

or

But

B* ak¢0,k = 0.

6

Y_'_ak¢0,k
1

is a nonzero eigenfunction function of A corresponding to the eigenvalue zero and

controllability is thus violated.

Next we shall prove the fundamental relationship of controllability to stabiliz-

abilty.

Theorem 5.2

Suppose (,4,B) iscontrollable.Then the feedback control

_(t) = -_B'Y(0, _ > 0 (5.5)

is such that

for every Y(0).

llY(t)ll-* 0 as t --, oo

Proof

The closed-loop system dynamic is now

_'(t) = (,4-aBB*)Y(t),

Y(O) given.

Let

Y(t) = zl(t)
x_(t)

(5.6)
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Then we have

xs(t) = -M-1AXl(t) - aM-1BB* x2(t) •

To relate this to (2.17), let the initial conditions for the latter be given as

x(o)

x(0)

For (3.6) let

where

Define

Then

and (5.7), (5.8)yield

Y(°) = I _(°) I_2(o)

j_0 tx(t) = _(t) + _'0_(0) + _'0_2(o)da.

x(t) = xl(t) + _'0:_(t)

:_(t) = x:(t)

:_:(t) = 7:'ix_(t)+ _'ox2(t)

= _(t)

= -M-lAx(t) - aM-1BS*x(t)

or,

M_(t) + Ax(t) + aBB*x(t) = 0

so that the control u(t) is now

u(t) = aB*k(t) = -aB*Y(t).
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In other words we have rate feedback using a collocated sensor -- a feed-

back principle for stabilization that is age-old, but still requires proof in our infinite-

dimensional context.

First we note that for Y in T_(A):

Re[(.4 - aBB*)Y, Y] = -allB'YII _

= Re[(A'-aBB*)Y, Y].

Hence, see [Balakrishnan 1981],

(._ - ,_uu*)

generates a dissipative strongly continuous semigroup. Denoting the latter by

so(t), t>_o

we note that

IIS_.(t)ll< 1.

Eigenvalues

Let us consider next the eigenvalues:

or, then

Here

for if

(A- aSS')Y = AY

(ReA)[Y, Y] = -allS'YIl_.

Ils'Yll cannot be zero

B*Y = 0

(A - aBB*)Y = AY = AY

and we violate the controllability condition. Hence it follows that

ReA = -allS'YII2 < 0.
[Y,Y]

5O
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Hence every eigenvalue has a strictly negative real part. Hence rewriting (5.11) as

(),I- A + aBB*)Y = 0

and multiplying on the left by T_(A, .A), we have

Y + an(_, A) BB'Y = 0.

Hence

B'Y + aB'7_(;_, A) BB*Y = 0

or_

(I + _B'7_(A,,4)B)B'Y = 0

where inside the parentheses on the left side is an m, x me matrix. Hence the eigen-

values are the roots of

where

D(A, a)

But using (4.18), we have

D(A,a) =0 (5.12)

= det(I + aB*7_(A, A)B). (5.13)

D(A,a) = det [I + aAB_,(A2M5 + T(A))-IB_].

Let {,Xk} denote the eigenvalues, where we know that Ak must have the form:

(5.14)

Ak = --lakl + irk, ek, vk real.

The corresponding eigenfunctions, denote them Yk, are then given by

(5.15)

where

where

(I + a.h_l()_k))u(Ak) = O, I]u(Ak)ll = 1

M(_) = _',=(),,.4)B.
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We note that the dimension of the eigenfunction space is the dimension of the eigen-

vector space corresponding to the eigenvalue zero of the mc x mc matrix:

I + aM (_k))

and is thus less than rnc. It is equal to one, if we assume that the matrix has distinct

eigenvalues, which we shall, for simplicity, in what follows.

At this point we leave open whether the sequence {Ak} is finite or not. (We

shall eventually see that it is not.)

The eigenfunctions {Yk} it must be noted are not orthogonal. We shall nor-

malize them so that

Lemma 5.1

llYkll= 1.

O0

_(-ak) <_ aTr BB* = oTr B_B_. (5.16)
1

Proof

We follow essentially [Oohberg-Krein 1969, p. 101]. Let us orthogonalize {Yk}

following the Gram-Schmidt procedure. Then

k-1

zk = Yk - _akjY_, [zk zj] = 0, k # j.
j=l

Recall that the {Yk}, k = 1,..., n, cannot be linearly dependent for any n, since the

{Ak} are distinct. Hence

IIZ_ll# 0.

Now
k-1

j=l

[(A - ._B')Zk, Z_] = _k[Y_,Z_] = A_[Z_,Z_].

Hence

ReAk =
-a[BB* Zk, Zk]

[Zk, Zk]

Hence
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Now BB* is nuclear, B being finite-dimensional. Since

is now an orthonormal sequence, we have:

oo {Bs'zs, zk]
E -< BB'

1

We note that

Tr BB* = Tr B*B = Tr B_B,,.

Hence (3.9) follows. We have an obvious corollary:

Corollary

Ifthe sequence {As} isnot finite,then

lakl --*0 as k -_ oo

I_'sl-_ oo as k -_ oo.

Proof

The first part of the statement follows from (3.16) and the second part from

the fact

det(I + aM(A))

is an analytic function for Re A negative, so that no subsequence of the sequence { As}

can have a finite limit point. Hence

[As[ -"* oc as k -* oc.

This will also follow from the fact that the resolvent

Te(A, A - aBB'), A# As

is compact, as we shall see presently. Nevertheless, we still have to prove that the

sequence {Ak} is not finite, which we shall in Section 7.
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Now

S,_(t)Yk = e-taklteit'ktYk, t >_ 0

and hence each mode is damped with damping coefficient ak. However, the number

of modes is not finite, and the damping coefficient eventually goes to zero, so that we

cannot guarantee a finite gain margin. In particular the fact that each mode decays

is not enough to prove (5.6).

For this purpose we can invoke a general result due to [Benchimol 1978]. We

are assuming that A - B is controllable and we have seen that the resolvent of ,4 is

compact, and that

A+A* =0.

Hence by a theorem of Benchimol -- [Benchimol 1978] m it follows that the semigroup

So (.) is "strongly stable""

llS,,(t)YII-_ 0 as t -_ _.

Since

the theorem is proved.

Section 7.

Y(t) = S,_(t)Y(O),

We shall give an independent and self-contained proof in

Corollary

The solution of (5.9) is such that the total energy -- elastic plus kinetic:

IIv"X x(t)ll = + [M:_(t), :i:(t)]

is monotonic nonincreasing as t increases and decays to zero as t increases without

bound. Moreover

p0(z(t)) -. p0(=(0)- =(0)), as t -_ =. (5.17)
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Proof

and

We have only to note that

y(t)
x(t)

I{Y(t)ll2 = IIv/Ax(t)[[ 2 + [M:r(t), x(t)l.

Thus the elastic energy decays to zero. The rigid-body component is given by

/:_'oz(t) = _ox(_) e_ + _'ox(O)

where we so far only know that

II_'ox(t)ll-_ 0 as t _ oo.

If the initial state is such that

is an eigenfunction, then

so that

and hence

Y(t) = e_t_'k

7='oz(t) = Akd'ktPoz(O)

7:'o(x(t)) = _o(z(O)) + e_kt:po(x(O)) - :Po(x(O))

-- Vo(_(0)) - po(x(0)) as t --+oo.

We shall show in Section 7 that this holds generally, using the modal expansion.

Resolvent

Let us see how the resolvent of (.A - aBB*) can be expressed in terms of the

resolvent of A. We have

_(A, A- aBB*)X = Y

55



or

(AI - ._ + _BB')Y = X.

For A # )_k and A # iwk, O, we can multiply on the left by T_(A, A) and obtain

Y + _TC(A,A)BB'Y -- "R.(A,A)X.

Hence

B'Y + am'_C(A,A)BB'Y = B'IC(A,A)X

(I +a.A4(A))B'Y = B'T_(A,A)X

and the matrix on the left side being nonsingular,

B*Y = (I +a.M(A))-IB*R(A,A)X. (5.18)

Hence it follows that

T_(A, A-aBB*) = T_(A,A) - aT_(A,A)B(I +a.M(A))-IB*T_(A,.A). (5.19)

It follows in particular that the resolvent of (,4- aBB*) has all the properties of

T_(A, ,4) such as being compact, Hilbert-Schmidt, etc., being a perturbation of the

latter by a finite-dimensional operator.

6. ASYMPTOTIC MODES

In this section we examine in more detail the modes, both open-loop system

-- the undamped structure, and closed-loop -- with rate feedback, in particular

obtaining asymptotic estimates.

As we have seen in Section 2, the open-loop mode frequencies are the roots of

det[-w2Mb + T(iw)] = 0 (6.1)

where T(A) is self-adjoint, and T(iw) being a functioa of w 2.

determined by

E(iwk) L(iwk)-lb(iwk)

The mode shape is

(6.2)
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where

(--W_Mb + T(iwk)) b(iwk) = O. (6.3)

Our first step is to show how the dimension of the matrix that determines the

eigenvalues can be reduced. In (6.1) this dimension is 6m × 6m. We shall show that

it can be reduced to 6 x 6, regardless of how large rn is.

We shall consider actually the dosed loop system, with the corresponding

eigenvalue problem:

(A- aBB*)Y = AY

proceeding in a slightly different way than before. Let

Y = Yl I'Y2

Then we have

Hence

Ayl = :PLY2, A ¢ 0

)_Y2 + M-lAy2 + aM-1B B* y2 = O.

Ay2 + ½M-lAy2 + aM-1BB*y2 = 0

or, we need to find Y2 satisfying

A2My2 + Ay2 + aBB*y2 = 0 (6.4)

and then

_1y2 (6.5)yl --
A

We shall call y2 the mode shape even though it is not purged of rigid-body modes,

as (6.5) is. The advantage in going to (6.4) is that we get the undamped mode

frequencies by setting a = 0, which we cannot do with (5.13).

To proceed with (6.4), let
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We have

-A2Y"(s) + Aly'(s) + Aof(s) + A2Mof = O, s, < s < si+l (6.6)

A_Mbb + aAB_,B_b + Abf = 0. (6.7)

As we have seen in Section 2:

B,B_b = Db

where D is the "diagonal" in the sense that

Dlbl

Db = " , Di, 6 × 6, self-adjoint, nonnegative definite, diagonal.

Dmbm

I f(s) I = e.a(x)(s-s_)l f(s*) [f'(s) /'(si+) ' S, < s < si+l

where

o '1
A_I(Ao + A2Mo) A_IA1

The boundary conditions (2.7) relate f'(si +) to f(s_) and f'(si-):

(6.8)

f'(0+) = A_ I(-LI + aADx + A2Mb,0) f(O)

f'(si+) = if(s,-) + A_ -1 (aADi+A2Mb,,) f(si)

2<i<m-1

and for i = m:

if(L) = -A_ x (L1 + A(_Dm + A2Mb,L) f(L). (6.9)

Hence it follows that we can calculate f(L) and f'(L) in terms of f(0) and then invoke

(6.9) to obtain

= o
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where

I A_I(L1 + a_Drn + )_2Mb,L) I I

• eA(_)(L-s,,-1)
I I

A_I(a_Drn_I + _2Mb,,n_l)

... eA(_)(8,+l-s_)

where I is the 6 × 6 Identity matrix.

Let us use the notation

0

I

0

I

(6.10)

/x_ = s_+l - s_, i = 1,..., m- 1

so that

A1 ---- 82-- 81 = 82

Am_ 1 = L- sin-l,

Let

t,(A,a) = A_ I (A2Mb,i+aAD,), l < i < m

T_(_,_)
I

t,(x,_)
i = 2,3,...,m-1

TI(A;a) = [A_lLl+t,n(A,a) I

T_(_;_)

Then we can write h(A, a) as:

(6.11)

(6.12)

h(x,_) = T_(_;o)Q(_,o)TI(A;.) (6.13)

where

Q(X, a) = e_(_)a_-'T,,__(_;a) ... e'_(_)a_T2(),, a) • e"_(J')A_.
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We note that the ti(,k; c_) as well as T,(,k; a) are polynomials in ,k while

eA(A),%

involve transcendental functions of ,k.

The coefficients of the terms of the highest degree in A as well as cr are contained

in the term

A21(vt)_Dm + A2Mb, L)P12(A; Am-i) " A21(aADm-1 + )_2Mb,m-1) ....

P12(A; A2) A21(a.XD2 + A2Mb,2) P12()'; A1) A21(aAD1 + A2Mb,0) • (6.14)

In particular, the term containing highest powers of ,_ that occurs is:

A2mA_IMb, L P12(A; Am-I) A21Mb,,,-1 "'" P12(,/; A1) A_IMb,o. (6.15)

The term containing the highest powers of a that occurs is

a"n(A"aA_lD,nP12(A;A,n_l)A_lDm_l "" P12(A;A1)AfflD 0 . (6.16)

From (4.13) we have that

IIh(,X;_)ll < IITl(,_;_)ll "'" IIT,,,(,_;_)II" Ile_(_)"*ll "'" Ile'W')""-'ll (6.17)

where l] " II denote matrix norm.

The corresponding mode shape function f (-) (corresponding to Y2) is given by:

f(s) = I I 0 le'A(_')(s-s')Ti(A;a) • e'aP')zx'-XTi-l(A;o_)

eA(X) A_ f(o),

s_ _<s < s,+l. (6.18)

Let

d(A;a) = deth(A;a)

Then d(A; a) is an entire function of A and the eigenva[ues {,_k} of (.,4 - aBB*) are

the nonzero roots of

d(A;c_) - 0.
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Behavior at A = 0

Let us first consider

We have:

_----0.

h(o,.) = h(o,o) = ]A_IL1 I I__(°)_

= O.

Moreover we have the power series expansion about zero:

A2

h(A; a) = Ah'(0, a) + -_ h"(0, a) + terms of higher order in

and correspondingly

d(A;a) = A6a6d6(a) + terms of higher order in k (6.19)

where

46(0)# 0.

Thus d(A; a) for nonzero a has a zero of order 6 at A = 0, while d(A, 0) has a zero of

order 12 at A = 0.

Relation of d(A; a) to D(A; a)

Let us examine next the relation of d(A; a) to D(),, a), the latter defined in

(5.13). Now

k B*PkB _ B*P_kB B*PoB, _ -i.,_ + _7_ + _
1

with Pk as in Section 3 (see also (4.16)) and hence as A goes to zero

D(A, a) -,_ det(I + o_B}PoB)

-_ det - + B*PoB .

(6.20)
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Now the range space of B*PoB is of dimension 6 and hence the null space is of

dimension

Tnc_ 6

(which is nonnegative by virtue of the controllability assumption!). Hence

+
Hence it follows that

(nonzero constant).

(nonzero constant), as A --_ 0.

In a similar way we see from (6.20) that the nonzero poles of'D(A, a) are the zeros of

d(A, 0) to the same order. The dimension of the eigenfunction space of A for A _ 0

may be taken to be unity, since we see from (6.18) that the dimension is equal to the

dimension of the eigenvector space of h(A, 0) corresponding to the zero eigenvalue,

and if h(A, 0) has distinct eigenvalues, the dimension is equal to one. We can make a

similar statement for the eigenfunction spaces corresponding to the eigenvalues with

nonzero imaginary parts of

A - aBB*.

Hence it follows that

d(A;O)D(A;a)

is an entire function with zeros coinciding with that of d(A; a). Hence we know that

we must have:

d(),;a) = eq(_)d(A;O)D(A;a) (6.21)

where q(A) is an entire function.

Order of d(A;a)

Next we shallshow that the order of the entire_mction d(A;a) islessthan or

equal to one. Let

m(r;a) = maxld(A,c_)l.
P_l--r
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Now, the determinant of a matrix being the product of the eigenvalues, we have

[d(A;a)[ _< (spectral radius of h(A;a))6

< (Ih(_;_)ll6

From (6.17) we see that

m m-1

logllh(_;_llL < _logllT4(_;_)ll + Z loglle_¢_'ll.
4=I 4=i

Since the Ti(_; a) are polynomials in _, we need only to consider the order of

For this purpose, we proceed to evaluate the eigenvalues of A(_).

An eigenvector of A(),), corresponding to the eigenvalue 7(_), must be of the

form

where

7(,k)2y(_) = A_I(_2Mo+ Ao)y(,k) + "t(_)A_lAly(.k). (6.22)

Hence

7(A)2A2y(A) = A2Moy(A) + Aoy(A) + 7(A)Aly(A). (6.23)

Let

a2(A) = [A2y(A), y(A)]; a_(A) = [A_y(_X), y(,X)]

_o(_) = [Mov(_,),v(_)].

Then solving the quadratic equation

7(_)2a2(_) = m(_) + 7(_)_(_)

we have

_(_)- 2a2(_)
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From (6.22) wehave

Since

a:(_)

and

it follows from (6.24) that

= A_IMo + --_Ao + -- _A1 y(X).

(smallest eigenvalue of A2)JJy(_.)lJ_

lal(X)] is bounded,

t ll
Hence

A-_IMo + _ Ao + "'7-

Hence "normalizing" the eigenvectors so that

Ily(:_)ll= 1,

every sequence {Y(Xn)} has a subsequence which converges to one of the eigenvectors

of

A'_I Mo

as IXnl --* C_. We assume (for simplicity) that the eigenvalues of this matrix are

distinct, which are of course strictly positive. Let #-i, i = 1,...,6 denote these

eigenvalues and ei the corresponding eigenvector of unit norm. Then for IX[ large

enough we can arrange so that the eigenvalues of A(X) are

_;-(_),_?(_), i= 1,...,_

(_)): ,,

64



with correspondingeigenvectors:

y,(_)

lly_(_)ll= 1,

In particular

i = 1,...,67 y,(_) _ e_.

[Alyi(_), yi()_)] _ [Alei, ei].

But the ei being real-valued and

we have that

And as a result, in (6.24)

_±(_)

and hence

Hence we have

Hence

A1 = -L1 + L_,

[Aly,(_), y,(_)] -_ 0.

4-1
x/al(_)_+ 4m(_)a_(_) -_ 0

2a2(_)
as I_l-_ oo

'_(),) - 4-_,v"_ _ 0 as I_1_ _. (6.25)

as I_l-" oo.

sparta1radiusofe* "A= '
k

for I_[ sufficiently large. Again, since y_()_) ---, ei we can find a constant M such that

for all [)_[ sufficiently large. Hence it follows that

maxlleA(X)_ I < er_maXv_
IN="

and hence
m-1

I_l=," i=1
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Hencewehavethat d(A; a) is of order less than or equal to one -- or is of "exponential

type" in the terminology of [Levin 1980].

Since

1 as

we note that

d(A, O) D(A, oL)

is also of exponential type and hence [Levin 1980, p. 24] we can sharpen (6.21) to:

d(A, v_) = eP'P')d(A, O)D()_, ve) (6.27)

where pl(A) is a polynomial of degree one at most.

Deadbeat Modes

An eigenvalue which isrealisoften referredto as a "deadbeat" mode. They

occur in closed loop only ifthere are rigid-body modes (zero eigenvaluesin the open

loop). In fact we have:

Theorem 6.1

For each c_ > 0, the number of deadbeat modes is equal to the number of

(linearlyindependent) rigid-body modes (= dimension of the nullspace of A).

Proof

Let Hk denote the M-orthogonal projection operator projecting 7-/ into the

eigenfunction space corresponding to the eigenvalue w_ of A. Then we have

aB*IIoB oo AB*HkB (6.28)
H(A,a) = I -t- A 4-a_"_ A2+w _

1

We are only ineterestedin A < 0. Hence we can write

oo _2

[A[H(A,a) = IAt- aB*HoB - c__ ;2+w_ B*HkB (6.29)
1 '

where we note

oo A2

_-" A: + _ B*IIkB
1

o as o.
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Hence

Let

[A[H(A,a) _ -aB'HoB

7k(A,a), k=l,...,mc

denote the eigenvalues of H (A, 5). Then

as IAI-_ 0.

IAITk(,k,a) _ (-a) eigenvalues of B*IIoB, as 1_1-* 0.

Now B*HoB has exactly 6 nonzero eigenvalues. For, since B is one-to-one, the range

space of B*HoB is the same

{B*¢}, CE null space of A

and the latter, as we have seen, has dimension 6, by controllability. Hence

IAI_,(_,_) -_ -}_kl, k = 1,...,6, as I_1-_ 0.

Hence

On the other hand

and hence

Hence it follows that

-c_, k = 1,...,6, as IXl-_ 0.

H(A,a) -.-* I as I),I--*

7k(A,a) > 0 for[Al>Ao.

7k(A,5) = 0 for someA, --[Ao[ < A< O.

Hence it follows that

D(Ak, a) = O, Ak < O, k= l,...,6.

Or, we have exactly 6 deadbeat modes.
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Remark

For c_ = 0, the eigenvalues are the zeros of d(£, 0). We want to consider now

the limiting case _ = oc. For this purpose we consider now

and note that the zeros of

det (/ + M ()_)) (6.30)

are the same as those of D(_, a). However the form (6.30) allows us to consider the

case for large c_, or a = infinity. The matrix

I
-- + .A4(A) --_ .M(A) as a --*_ (6.31)

for each A _ iwk, and hence (6.30)

--* re(A) = detJk4(A).

Hence we define the eigenvalues corresponding to a = +c_ as the roots of

re(A) =0. (6.32)

We shall show now that the roots axe pure-imaginary. For suppose

Then

Let

Then

Hence

= 0.

[_(A)Bu, Bu] = [Y, AI - AY] = A[Y, Y] - [Y, AY].

Re[A(A)Bu, Bu] = Re (_')[Y, Y]

(B*TZ()QB is a "positive-real" matrix)
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and hence

or A is pure-imaginary.

 o(x) :0

Let us examine the eigenvalue further. We have:

_B* )_2Mb + T(,_) B,,u = O.

We assume that no zero of re(A) is a zero of L(A). In that case we can write

AB;L(A) A2MbL(A) + K(A) Bt, u = O.

Since

T(A)' = T(A)

Hence

: (A2MbL(A) * + K(A)*)-IL(1) *

= L(A) (A2MbL(A) + K(1)) -1.

AB_ (A2MbL(A) * + K(.h)')-IL(A)'B,_u : O.

In the special case where

mc = 6m, B,, = Identity

we have that the eigenvalues corresponding to a = o_ are the "clamped" modes. This

is not true in general, as in fact the example in Section 8 shows.

where

Then letting

The mode "shape" associated with these eigenvalues is given by

¢ : I£(_)a(_) I
n(),)a(A)

= (12Mb + K(A))-IB=u.

f = L()_)a(A)
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we see that

where g is defined by (2.6), and

A2Mof + g = 0, (6.33)

B:,L()_)a(A) = O, (6.34)

or, these are modes in which the control nodes are clamped.

these modes more precisely below.

We shall characterize

Root Locus

From Theorem 6.1, it follows that oscillatory modes of the undamped structure

remain oscillatory for a/l values of a, however large. The behavior of the set of

eigenvalues is such that as a increases from zero they migrate from the imaginary

axis to the left hag-plane and then back to the imaginary axis. It is possible to define

the eigenvalues each as a function of a and show that the real part decreases first

and then at a critical value of a starts to increase as a increases, going to zero as a

increases to infinity. We can also show that the critical value increases as the mode

number increases. The loci describe differential arcs in the complex plane. Thus let

where iwk is a zero of d(A, 0). Then we define Ak(a) using the derivatives at a = 0.

Thus

d)_....._k]' = -da(iwk, O) (6.35)
da la=o d_(iwk, O)

where the subscripts denote partial derivatives, and c_culate similarly higher order

derivatives using the identity:

d(Ak(-), = 0.

We can show that it is real and negative, and in particular leading to an approximation

for ak, the real part, via the Newton formula:

da(iwk, O)
ak -,_ --a for small a. (6.36)

d (ia k, O)
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Owing to space limitations we must stop here; and refer to the example in Section 8

for more.

Asymptotic Modes

The modes are the roots of the equation:

d(_; _) =0.

Our interest is not evaluating the roots -- which in a given case will be a problem in

numerical analysis m but rather in their asymptotic behavior as the mode number

increases without bound.

Let { _k} denote a sequence of modes, where we note that

I,Xkl-' oo as k --, oo.

We shall say that the sequence {_k} is asymptotically equivalent if the sequence

is bounded. In our case we shall show that it actually goes to zero. We call {_k}

"asymptotic" modes. Note that the "percent error"

I_k - ,Xkl -, 0 as k --, oo.

Since all mode determination is approximate only, this is clearly the best we can do.

The zeros of d(;_, a) for each a >_ 0 are confined to the strip

- la[ < Re _ < 0, a = sup lail < e_ (6.37)

and from (6.26) we have the important result that in this strip

is bounded. Now we can express h()_; a) as:

2m

0
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where the coefficient matrices hk(-,-) are bounded in the strip (6.37). The coefficient

of A2"_ is given by (from (6.14)):

h2m(A;a) = A_lMb,LP12(A, A,__l) ..... P12(A, A1)A21Mb,o (6.39)

and does not depend on a. The zeros of d(A, a) are those of

det (h(A-_a))

and hence are "asymptotically" those of

det h2m(A; a)

as [A[ --, _. Since A2 and Mb,i are nonsingular we have that

m-1

deth2m(A;a) = l'I detP12(A;Ai).
1

Next we shall show that:

(6.40)

Lemma 6.1

where

6 (sinh aTk(,_))det P_2(,_; A) = H (6.41)

Proof

Using

we have

P12(A; A) yk(A)

:1
[I 0 l e A(A)''

sinh 7k(A)A
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Hence

where by (6.25),

6 sinh.yk ()_) A

detP12(A;A) = I-[ 7k(_)A
k=l

as required.

Next, let

Let

] 0 '1_t_(_) =
_2A_'IMo 0

As = _r'_lMo

where the eigenvalues of As are

v_, k = 1,...,6.

Then

Now

e_(X) _ =

cosh(,_AsA)

()_As&) sinh(AAs A)

()_A,/X) -1 sinh(AA,A)

cosh(AA,A)

IIPI=(A;A)II

is bounded in the strip (6.37) and hence it follows that for every k

and hence

(AA sA )-1 sinh(A As&)) e k II "* 0

] P12(A;&) - (AAsA) -lsinh(AAsA) I -- 0

as I_1-_ _ in the strip (6.37).

The zeros of

are given by

sinh "yk(_)A

(6.42)
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Let

being one sequence of zeros of

_'v_ = i_

det ((AAsA) -1 sinh(AAsA))

corresponding to the eigenvalue

A'V_ and eigenvector ek.

Then

{(-yk(_,,)- :,,,v_) AI = {(_,,- _3),/_ AI --' O, as n --, oo

and hence

We say in this case { A,t) is asymptotically equivalent to { A'} -- or that the asymptotic

-zeros of det PI2(A;A) axe given by

4-inTr
A,_,k = _ , k = 1,...,6. (6.43)

A

Thus the asymptotic zeros of (6.40) axe given by

-t-inTr

A,,,kj = _Aj ' k=l,...,6, j=l,...,m-1. (6.44)

Let us turn now to the asymptotic zeros of d(A; a). Let

Q21(_;A) : _P21()_;A); Q12(_; A) = )kP12(_;A)

and

where, using (6.14),

r(A;a)) (6.45)

qm(A; o_) = + aD
A21(Mb,L _ m) Q12(A;Am-1)

"'" Q12(A;A1 A21 (Mb, o + _D1) (6.46)
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and

IIr(_;_)ll

is bounded in the strip (6.37). Hence we can write

6 1

d(),;a) = detq._(),;a) + "Y'_-'_-gdk(_;a)

where

dk(A; a) are bounded in the strip.

For large IAI we can use the approximation (6.42) and hence

det qm(.k; o_) k____I]I1 det [A_-I (Mb, L+ _Dk)l

which for all [A[ sufficiently large can be expressed:

(6.47)

m-1

1-I det [(AsAk)-i sinh AAsAk]
k=l

ml( ( )(constant) l'I fl sinh_i___k._ 1 61
__1 __-1 v_a_ ] + _ ul(_;_) + _ak(_;_) . (6.48)

Given e > 0, we can make I,_[ large enough so that the second term is less than E.

Hence taking

7k(_)_k = m_r + 0,

where

[sinh O[ < e

or, approximately

in_ + 0
=

Akv_-;
We see that there is a value of 0 such that (6.48) is zero. Since we know that the real

part of the eigenvalue must be negative, we have that

Re0 < O.

We see however that the zeros are again asymptotically the same as that given by

(6.35). In summary asymptotically the zeros of d(A, a) for any a are given by the

zeros of

rn--1 )det (kII=l l A,A, )-l sinh AA,Ai
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Mode Shape

The (unpurged!)

y:

asymptotic mode shapes are determined by the eigenvector

h2m(A;a)y = 0

where y can be determined as follows. Fix j, and let

in?[
An -

Am-lv 

and assuming for simplicity that the Ai are distinct, we see that P12(An; Ai) are

nonsingular for i not equal to rn - 1, and hence we can take

Y (A;1Mb,,,,-2Px_(A,;A,r,-2) " P12(A,;A1)A_lMb, o) -1'' ej

so that

P12(A,; Am-1)ej = 0.

We can repeat this procedure for A,,_2,..., A1. The corresponding mode shape is

then determined by (6.18) where f(0) is now denoted y.

7. MODAL EXPANSION

For the undamped structure (a = 0), we have _een that we have a "modal

expansion" in terms of the eigenfunctions of ,4 given b:_ (4.16). The eigenfunctions

are orthogonal and complete. The question arises as to what extent this property

holds in the closed-loop case -- for the eigenfunctions of

A-aBB*, a > O.

We have seen that these functions are not orthogonal and hence we need to examine

what happens to the modal expansion.

We have seen (cf. (5.15)) that the eigenfunctiom¢ are of the form

Yk = ze( k, (7.1)
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where {Ak} are the eigenvalues.For simplicity weshall assumethat the dimensionof

the eigenfunction space is unity. Let Zk denote the eigenfunction of

(A - aBB*)* = A* - aBZ_*

corresponding to the eigenvalue _k. Then the pertinent properties of,4* being similar

to those of ,4, we have:

_ -- _(v_')_'_(_), _(/_ _
-- -_ (-_,_)_'_(_) (_._/

The main feature of these eigenfunctions is that they are "biorthogonal"

[Y_,Z_] = 0, k#j

[vk, z_] # o.

Riesz Basis

Recall now that a sequence { _k} of elements in a Hilbert space 7-/is called a

"basis" if every element Y in the space can be expressed as

Y = _a_k
1

where

and

implies

(3O

1

C_

OO

0 = _akCk

ak = 0 for every k.

A biorthogonal sequence {¢k, Ck} is called a Riesz basis if there is a linear bounded

operator T on ?-I into 7-/with bounded inverse such that {TCk} is an orthonormal

basis. This implies in particular that we have the expansion:

OO CO

r = Y_[r,¢k]_k = _[r,¢,]_k (7.3)
1 1
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where
O0 O0

y'_l[Y, Odl2 < _; _-_.l[Y,a,k]l2
1 1

TCk = T*-l_k.

Also: For Y, Z in 7"/
Oo

[Y, Z] = _-'_[Y, g'k][¢k, Z]. (7.4)
1

The main result in this section is that {Yk, Zk} upon "normalization" so that

[Y_, Zk] = 1

("norma_.ing".(_), v(X_)appropriately,whichwe.h_ ass.mefromnowon/form
a Riesz basis. This will follow from [BalMirishnasl 1996] upon verifying the conditions

i)

l  +x,l_> forkCj

ii)
O0

1

iii) (algebraic) multiplicity of each eigenvalue is equal to unity.

The condition (i) follows readily from the asymptotic estimate (5.35). Condition (ii)

is verified in Section 5, (5.16). Condition (iii) is automatic since we are assuming the

dimension of the eigenfunction space for each a > 0 is unity.

We can now proceed to exploit the modal expansion (7.3). First we note that

if Ak is an eigenvaiue so is Ak if

Im),k ¢ 0

and there are exactly six real-valued Ak. Let

(A - aBB*)Yk = AkYk.

Then

(A - aBB')Yk = XJ,Yk

(A - aBB')'-Zk = A[Zk.
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where{Ak} are the eigenvalues.For simplicity weshall assumethat the dimensionof

the eigenfunctionspaceis unity. Let Zk denote the eigenfunction of

(A - c_BB*)* = A* - abe"

corresponding to the eigenvalue _k. Then the pertinent properties of A* being similar

to those of A, we have:

The main feature of these eigenfunctions is that they are "biorthogonal"

[vk,z_] = 0, k#j

Riesz Basis

Recall now that a sequence {¢k} of elements in a Hilbert space 7-/is called a

"basis" if every element Y in the space can be expressed as

Y = _akCk
1

where

and

implies

OO

Zlakl IlCkll <
1

0 = _--_akCk
1

OO

ak = 0 for every k.

A biorthogonal sequence {¢k, Ck} is called a Riesz basis if there is a linear bounded

operator T on 7-/ into 7-/ with bounded inverse such that {TCk} is an orthonormal

basis. This implies in particular that we have the expansion:

Oo

Y = _IY, Ok]¢k = EIY,¢,IOk (7.3)
1 1
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where
oo oo

_l[Y,¢k]l 2 < oo; _l[Y, Ok]l2
1 1

TCk : T*-l_k •

Also: For Y, Z in 7-/
OO

[Y, Z] = _[Y, Ok][¢k, Z]. (7.4)
I

The main result in this section is that {Y_, Zk} upon "normalization" so that

[Y,, zk] = 1

u(Ak), v (_k) appropriately, which we shall assume from now("normalizing" on) form

a Riesz basis. This will follow from [Balakrishnan 1996] upon verifying the conditions

i)

[Ak+'A_ _> _>0, for k_j

ii)
OO

1

iii) (algebraic) multiplicity of each eigenvalue is equal to unity.

The condition (i) follows readily from the asymptotic estimate (5.35). Condition (ii)

is verified in Section 5, (5.16). Condition (iii) is automatic since we are assuming the

dimension of the eigenfunction space for each a > 0 is unity.

We can now proceed to exploit the modal expansion (7.3). First we note that

if Ak is an eigenvalue so is Ak if

Im_k _ 0

and there are exactly six real-valued )_k. Let

(A - a B13*)Yk = ,XkYk.

Then

(A - aSB*)Yk = AkYk

(A- a1313")* Zk = AkZk,
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Hencenumbering so that A1,..., )_6 are real, and the Ak are in increasing order in

IAkl, we can express the modal expansion as:

6 oo

1 ?

Correspondingly the solution of the closed-loop system:

}'(t) = (A- aBB')Y(t); Y(O) = Y

If Y is real-valued, we note that

and hence

can be expressed

+

Since we know that we must have:

yk ; Zk = z_
Yk = AkYk "Akzk

we can proceed to develop expansions for xl(t), x2(t) where

r(t)= x_(t)
z2(t)

[Y,_k]_k] sin wkt.

(7.7)
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can be expressed:

6 oo

1 7

We can easily deduce strong stability of the semigroup Sa(.) from (7.6), or

equivalently from the fact that the eigenfunetions {Yk} are complete in T/E, exploiting

the dissipativity:

IIS,.(t)ll _< 1.



going back to (5.7), (5.8). We omit the details. From (7.6) we can readily deduce

(5.17).

8. ILLUSTRATIVE EXAMPLE

To illustrate the foregoing theory and concepts, we consider now an example

-- simplified in the extreme to reduce notational complexity and wholly non-numeric

to avoid computer calculation. Thus we consider beam torsion about a single axis

with a control at one end and a lumped mass at the other, and no interior nodes.

Retaining the nomenclature of Section 2 as much as possible but using O(t, s)

in place of ¢(t, s), the dynamics can be described by:

rn4a_-cs69"=0; 0< s<L; 0< t (8.1)

yielding in the notation of Section 2:

M0 = rn_; A2 = cc_.

The abstract version becomes:

7_ = L2(0, L) × E 2

f f(-) • L2(0, L) b•E 2,
x = b '

The stiffness operator A is then given by:

D°main °f A = Ix=If Ib, f , f', f" E L2(O, L );

b

bo

bL

b I/°/I]f(L) '

Ax = y; y = g
c

g(s) = o < s <

-c66/'(0)
C

c66f'(L)
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Thus defined,

[Ax, x] = _c66 joLf,,(s)._r ds + c66f(L)f"(L)

= _86 I/'(_)J__

- c66/(0)/'(0)

yielding the potential energy, as required. There is a rigid-body mode:

where x is of the form

Ax _ O_

where

2;

a

f(s)=a, 0<:s < L.

Placing the control at s = 0, the control operator B is given by

Bu = ; B_,u =
B,,u 0

For x in T_(A),

we see that

/
X

b '

B'x = f(0).

(S.2)

(8.3)

Since there is a control at one end, we see that all modes are controllable and that

(A ,,_ B) is controllable.

Finally, the mass operator M is given by

m0 0

0 rnL
J m4 4M x = y; Y = M_,b

; Mb -_

(8.1a)

Correspondingly we have the boundary equations:

_o_(t, o) - c66e'(t,o) + _(t) = 0 ]

mLO(t,L) + c660'(t,L) = 0 _"
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The space7-I1 (M-orthogonal to the null spaceof A) consists of elements of

the form

where

fO Lm44 f(s) ds + mobo + mLbL = O. (8.4)

The domain of v/'A, by [Balakrishnan 1990] is characterized by elements of the form

f(-)

= f(o)
f(L)

where f(-) is absolutely continuous and ft(.) E L2(O, L) and in particular

is the potential energy given by (8.2). Thus

f
---- f(0) ,

f(L)

Also

f is absolutely continuous with fr

in L2(0, L), and (8.4) holds

_- o
with energy inner product, as in Section 2.

The feedback control is:

×TJ

u(t) = aB*gc(t) = V_8(t,O), o > O.

Closed-Loop Modes

We proceed directly to characterize the closed-loop modes. In the notation of

Section 6:

,4(x) =
1

0
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where

yielding

and

eA(;9 s =

T/_ 44
/]2 __

C66

cosh )_v s

_v sinh _vs

h(A,a) = _8 1 I e'_(_)L

,_ (al(_) sinh )_vL

sinh Avs

1

aA+A2rn0

c_

+ a_(_) cosh)_vL) (s.5)

where

I ,_2mornL )al(A) -- vc_6 (v2& + _a'_I, +

a + ,_(rnL + rno)
=

C66

We see that

is an entire function of order one. It has a zero of order one at _ = 0, for nonzero a,

and of order two for a = 0. It is of "completely regular growth" in the terminology

of [Levin 1980]:

lim l°g[d(rei°' a)l = vLlcos0l

and hence [Levin 1980, p. 169]:

limN(r) 1 fo_VL[cosOl dO > 0
r--*0 r 27r

where N(r) is the number of zeros in the circle of radius r. Hence the number of

zeros is not finite. For large [A[:

d(A;a) ,-_ A3momL sinh AvL

and hence the asymptotic modes are the roots of

sinh)_vL = O,
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or

for all a > O.

4-in _
_n = (8.6)

vL

Thus theHere however we can make a more exact calculation.

eigenvalues {Ak} are the roots of

tanh)_vL + b(A;a) = 0 (8.7)

where

and

We can rewrite (8.4) as

m44
b(_;(2) -

(2 + A(mz + m0)

v m44c66 + A(2mL + )_2momL

AvL + tanh -lb(A;(2) = 0

{8.8)

where

and since

_{_)
b(_;(2) =

_(_)

tanh x = tanh(x 4- 2inTr), n integer

we have

1 + b(_; (2)

)_vL = :l=inTr + ½log 1- b(),;(2) = 0, (8.7a)

using the principal value of log x, real when x is positive. For I_l large, (8.7a) becomes

m4a (mL + mo_ 1AvL = 4-in_ + ..... (8.9)
v k mLmo / A

yielding a slightly better approximation than (8.6), for large n. For nonzero a, we

can see that (8.4) has exactly one real root, approxima_,ely:

--(2
= (8.10)

m_L + m L + rn 0
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Clamped Modes

We can calculatethat

L(£)

1

cosh Av L

0

sinh AvL
Ay

and the clamped modes are the zeros of sinh kvL or,

::t=i k Tr
_k - , k = 1,2, ....

vL
(8.11)

Dynamic Stiffness Matrix

We can calculate that

K(A) = c66

0 -1

Av sinh AvL cosh AvL

and hence that

)_YC66

T(A) = sinh ),vL

cosh _vL - 1

- 1 cosh ,_vL

which is clearly nonnegative definite for A real, and nonsingular except for A = 0.

Also the inverse of the dynamic stiffness matrix:

(_m_ + T(_)) -1

1
A2mL sinh AvL + c66AY cosh AvL

-- _ Y C66
-- AVC66 i"

A2mo sinh AvL + C66AV cosh AvL

Hence

£B:(A2Mb+T(A))-IBu _ 1 ,[A2mL sinh AvL
h(£;0) \

+ c66Av cosh AvL)

= ,_(),). (8.12)

Hence we can verify that for this example

h(k;0) = h(A,O)D(),;a).

In other words in (6.27)

p_(_) = 0
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which wemay conjectureholds in general.

Root Locus

Beginning first with the limiting eigenvaluesasa goes to infinity, given by the

roots of

m(_) = o;

we have from (8.9)

PC66

tanhAuL + ArnL 0 (8.13)

or directly from (8.7) by taking the limit as a goes to infinity in (8.8). The roots are

of course pure imaginary:

1. = i/_n, j3.real,

_.vL = +in_ + i6.,16.1< _.

These are the modes which satisfy

mLO(t,L) + cssO'(t,L) = O;

m,.4_(t,_)- _s6o"(t,_)= o,

o(t,o) =o

0<s<L.

These are not the clamped modes, although they are, asymptotically.

Since we are only interested in the nonzero eigenvalues, let

F(A; _) = (v2c2 e + A(_m L + A2momz) sinh AvL + vce6(a + A(mL +m0)) cosh AvL

whose zeros are the nonzero eigenvalues. Let {iwk} der_ote the zeros for c_ = 0. Fix

k. Now

F(A(a); a) -- 0

defines an implicit function Xk(a), with

and we define all derivatives at a = 0 using (8.14). In particular

o-_0--I

(8.14)
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wherethe subscriptsdenotepartial derivatives,and the main point is that it is real,

and it is negative. In particular this showsthat the real part is decreasing.Sincewe

know that the real part goesto zeroasa goes to infinity, we see that there is a value

of a at which its derivative must change sign.

Closed-Loop Mode Shapes

Following Section 7, the (unpurged) closed-loop mode shape corresponding to

the eigenvalue Ak is given by

= 11 o
1

aAk 4.-_ triO

c66

= (cosh Akvs
+ (a +VC66_km0)sinh Akvs) f(O).

Since arbitrary multiplicative constants can be used, we may define the mode shape

as:

fk(s) = Aksinh(Akvs+Ok), 0<s<L

where

VC66
tanh Ok -

a + Akin0

For Ak _ 0, the purged version would be in the notation of Section 7,

where (new notation, not to be confused with Section 2):

h(L)

(/o )fk(s) = fk(s) -- rn44 fk(s) ds + rnofk(O) + rnLfk(L) •

The constant Ak can be determined to normalize the biorthogonal system as in Sec-

tion 7 and thus obtain a Riesz basis for "HE.
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Limiting Case: mL = oo

We illustratefinallyhow to handle the case when one end isclamped. We set

mL = +oo. This resultsin the boundary condition

0(t,t)=0

replacing the condition at L in (8.1a). We may take

7"( = L2(0, L) × E 1

and

-c66:"(-) /(')1Ax=y; Y = -csof'(O) ' x = f(O) "

There are no rigid body modes and the eigenvalues are roots of

(a+Amo) sinhAvL + vc66coshAuL = 0 (8.15)

or

AnvL = rl:inTr - tanh -1 b(A_)

VC66=
a + Am0

The eigenfunctions are

okj
f_(s) = Aksinh Aku(L - s).

The root-locus problem becomes much simpler than before.

details. For a = ec, the modes are the zeros of sinh AvL or

-4-inTr
A n =

uL

From (8.15) we see that

dA,_
m =

da

-1

1- (_c----_---__
\ a+A_mo ]

Again, we omit the
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and is real negativeat a = 0 and goes to (-1) as a goes to infinity.

have the approximation:

and

implies

d,_,_ 1

d--2~ (4 + 2

d,_n
Re -0

dc_

and shows that the critical value of a increases with mode number.

For large n we
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NOMENCLATURE

A

B

$

(xl, x2,x3)
U

V

W

¢1

¢2

¢3
M

M0

Mb

7"ll

L2(O, L) 6

R 8, E 6

TI'_ c

[,]
T_(A)

Io, Ic, IL

_(t)
Ak

O"k

_k

Tr

Re z

Im z

det M

I_1
Ilfll

A*

SCOLE

stiffness operator

control operator

position along beam

rectangular coordinates

axial displacement (xl-component)

displacement (x2-component)

displacement (x3-component)

torsion angle about xl-axis

torsion angle about x2-axis

torsion angle about x3-axis

mass/inertia operator

mass/inertia matrix

composite matrix of mass/inertia at nodes

Hilbert space

space M-orthogonal to null space of A

L2-space of 6 x 1 vector functions over (0, L)

Euclidean 6-space

number of control inputs

inner product

domain of operator A

moments of inertia

control input

eigenvalues

Real part of ),k

angular mode frequencies

trace

real part of z

imaginary part of z

determinant of M

absolute value of z

norm of vector F; operator norm of matrix F

conjugate of z

adjoint of A

Spacecraft COntrol Laboratory Experiment

91




