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Abstract

Cavity flow resonance can canse numerous problems

in aerospace applications. While our long-term goal
is to understand cavity flows well enough to devise

effective cavity resonance suppression techniques,

this paper describes a fundamental study of resonant
tones produced by jet-cavity interaction at subsonic

and supersonic speeds. Our specific jet-cavity
configuration can also be used as a test bed for

evaluating active and passive flow resonance control
concepts. Two significant findings emerge from this

study.

1) Originally, we expected that tones produced by

jet-cavity interaction would resemble cavity
tones or jet tones or would involve some simple

combinations of each. The experimental data do

not support these expectations: instead, the jet-

cavity interaction produce a unique set of tones.
We propose simple yet and physically insightful

correlations for these tones. Although the
pressure patterns on the cavity floor display very

complex variations with the Mach number for a
length/depth = 8 cavity, the tones correspond to

the acoustic modes of the caviW-Andependent
of flow. For a length/depth = 3 cavity, however,

a surprise emerges: the pressure patterns on the
cavity floor are not so complex but the tones

depend significantly on the flow. Additionally,

we examine the role of external feedback unique

to jet-cavityinteraction.

2) Previous research led us to expect that

traditional classifications (open, transitional, or
dosed) for cavities in an infinite flight stream
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would be insensitive to small changes in Math
number and would depend primarily on cavity

length/depth ratios. Use of the novel high

resolution photoluminescent pressure sensitive

paint shows that the classifications are actually
quite sensitive to jet Mach number for a

length/depth = 8 cavity. However, these
classifications provide no guidance whatsoever
for tone amplitude or frequency.

Detailed experimental data and insights presented
here will assist researchers who are performing

numerical simulations of jet-cavity flows as a first

step toward devising resonance suppression
methods.

1. Introduction

1.1. Motivation

Flows over cavities occur in aircraft weapons bays,

wheel wells, in-flight refueling ports, pressure vents

in the space shuttle's cargo hay, and a host of other
applications. Flows over cavities exhibit significant

changes in the steady and unsteady nearfield
pressure that are critical in both aeronautical and

space applications (McNelis & Hughes (1998),
private communication). Air Force Research Labs
(AFRL), Air Force Office of Scientific Research

(AFOSR), National Aeronautics and Space

Administration (NASA), Naval Air Weapons Center
(NAWC), and Defense Evaluation and Research

Agency (DEltA, UK), have all initiated new

coordinated weapons hay aeroaconstic control
programs to enhance the ability to dispense weapons

over a larger flight envelope without fatigue failure.
A consortium entitled Active Robust ConTrol of

Internal Cavities (ARCTIC) made up of the

government agencies listed above, and including
major airframe contractors, small companies, and
universities, was formed to help focus efforts and
enhance coordination. Although our work was done

to support ARCTIC we focus on fundamental issues
to better understand flows over cavities.

1.2. Background

Edge, cavity and screech tones are all ostensibly
produced by very similar phenomena. These tones

are generally attributed to embryonic disturbances in

the shear layer that grow while convecting

downstream and whose interaction with an edge, or

shock-cell produces impulsive pressures that

propagate upstream to close a resonant loop.
Screech tones and jet-edge interactions have been

studied by Powell (1953, 1961), Howe (1981, 1997),
and Crighton (1992), among others. A review of

advances in understanding screech was provided by
Raman (1998). Despite the global similarity
between edge, cavity and screech tones, there are
intricate differences that make a universal frequency

or amplitude model elusive. The need to study such
fine differences between sub-classes of flow tones

also motivated this work. Our focus is on the

interaction of subsouic and supersonic shock-

containing jets with a cavity where both screech and
cavity tones are theoretically permissible. However,

it is important for us to present our results in the
context of existing cavity resonance models

especially because we wish to contribute to the
design of cavity resonance suppression techniques.
A brief review of the pertinent literature is given
below.

The importance of the cavity problem to the

aerospace sciences is evident from the vast number
of papers written on this subject starting with the

original work of Helmholtz in 1868 (Helmholtz
(1954), Dover reprint). Models for resonant

frequencies produced by flows over cavities were
proposed by Rossiter (1962, 1966), East (1966),
Bilanin & Covert (1973), Block (1976), Tam (1976),

and Tam & Block (1978). Heller et al. (1971, 1973)

and Heiler & Bliss (1975) made very significant
contributions to our understanding of cavity

resonance (and methods for its suppression) by
providing a vivid description of physical

mechanisms occurring during flow.cavity

interaction. Heller's physical insights have been
validated by many researchers and have thus stood
the test of time. For further details the interested

reader is referred to review papers by Rockwell &
Naudascher (1978), Komerath et al. (1987), Chokani

(1992), Shaw (1979), and a handbook by Lucas et al.
(1997). I_ the interest of brevity the above research

is not discussed in great detail. However, for our

purposes it is important to recognize Rockwell &
Naudascher's (1978) classification of cavity

oscillations into three types: fluid dynamic, fluid-
resonant, end fiuid-elastic. In the first type the cavity

oscillations are driven solely by the instability of the

shear layer, whereas in the second type, cavity

oscillations result from the coupling of the inherent



instability of the shear layer with one or more of the
cavity's resonant acoustic modes. The third type of

oscillation occurs only when the cavity has

compliant walls. Our flow situation is fluid-resonant
where further sub-classifications exist. When flow

over the cavity is supersonic, Stallings & Wilcox
(1987) and Plentovich et al. (1993) classified the

cavity flows to be open, transitional, or closed.
When the shear layer spans the cavity opening the

cavity is considered open, and when the shear layer
attaches to the cavity floor the cavity is considered

closed. Intermediate stages are considered
transitional.

More recently the focus has shifted to active control
of flows over cavities (Cattafesta et al. (1997), Shaw

& McCnath (1996)) because of the potential for

these techniques to suppress resonance over a range
of operating conditions for various cavity

geometries. However, there is very limited
information on the details of subsonic and

supersonic shock-containing flows over cavities and

pressure distributions in the nearfield. This current
work studies in detail the nearfieid pressures (both

steady and unsteady) during jet-cavity interaction

resonance. This paper presents experimental results
aimed at understanding physical mechanisms

responsible for large pressure amplitudes produced
by flow-induced resonance in cavities.

1.3. Objectives

Tones produced by jet-cavity interaction are in some
cases quite different from those produced either by

shock-containing jets or by cavities in flight. Many
details of the jet-cavity interaction problem remain

to be understood. The first objective of this study,

therefore, is to go beyond famifiar polemics and
raise fundamental questions about such complex
resonant flows. The second objective arises from a

more practical motivation: we intend to eventually

use the jet-cavity configuration as a test bed for

evaluating active and passive flow resonance control
concepts. It is thus essential to understand practical

differences (as well as similarities) between a cavity
in an infinite flight stream and jet-cavity interaction.

Included in the second objective is the unclear role
of external feedback and the complex pressure
distribution on the cavity floor. Our third and final

objective is to provide both unsteady and steady

benchmark data for those attempting to simulate

complex cavity flows (e.g., the Cavity Acoustics

Modeling SoRware (CAMS) program at Boeing).

1.4. Organization of paper

In Section 2, we describe the jet-cavity arrangement

and other experimental apparatus. Section 3.1
discusses (1) results from spark-schlieren flow

visualization (2) correlations between microphones
placed internal and external to the cavity, and (3) the
role of external feedback. Section 3.2 covers tones

produced by jet-cavity interaction and provides a

basis to reconcile the frequencies of these tones.

Section 3.3 documents in detail the phase-averaged
acoustic ncarfield of cavities and compares cavity

data to that of jet screech. Finally, section 3.4
discusses the three types of supersonic cavity flows

and documents photoluminescent pressure sensitive
paint (PSI') results over a range of Mach numbers.

2. Experimental details

2.1. Supersonic flow fadlity

Experiments were conducted in a supersonic jet
facility at the NASA Lewis Research Center. An

existing jet nozzle was modified by adding an

adaptor to which we could attach rectangular
cavities of various dimensions. The jet flow thus

formed the flight stream over the cavity. The cavity
dimensions were D (depth) = 1.27 cm, W (width) =

4.445 cart, and L (length) varied from 3.81 can to

10.16 cm to yield L/D ratios between 3 and 8. For a
more detailed study we chose two cavities having

L/D = 3 and 8. Figure 1 shows a sketch of the
nozzle-cavity arrangement. Also shown in Fig. I are
the location of the internal (cavity) and external

microphones and the xy and xz measurement planes
in the acoustic nearfield.

2.2. Measurement techniques

A spark schlieren system was used for flow

visualization. The system included a Palflash light

source, a microscope objective, two spherical
mirrors (15.24cm dia., 91.44cm focal length), and a

vertical knife-edge. The light source consisted of an
electric arc in an inert atmosphere of argon gas, that

could produce a 1 microsecond pulse of high
intensity light (4 Joules). Photographs were taken by

allowing light from the knife-edge to fall directly on
Polaroid film.



The acoustic measurements were made using 0.635

cm (1/4 inch) dia. B & K microphones. The

microphone locations and measurement planes in the
ncarfield are shown in Fig. 1. The microphones were

calibrated using a B & K pistonphone calibrator,
with corrections for day-to-day changes in

atmospheric pressure. The sound pressure levels

reported in this paper are in dB (relative to 20 pp,).
Phase-averaged measurements (see Panda (1996)) of

the nearfieid pressures were made using a reference
microphone located at the nozzle exit and a

measurement microphone that traversed the entire
ncarfield. The signal from the reference microphone

was band-pass filtered about the screech frequency

to eliminate phase jitter. Data were ensemble-
averaged over 100 osculation cycles. The data

acquisition rate (200 KHz) was chosen such that we
could compute the phase-averaged distributions for

about 30 (typical) time steps per cycle.

2.3 Photoluminescent pressure sensitive

paint

Pressure sensitive paint (PSP) was used to map the

steady pressures within the cavity for various
operating conditions. The principle of operation for

these paints is well documented in the literature
(Kavandi et al. (1990), McLachlan et ai. (1992),
Morris & Donovan (1994)) and will only be

mentioned briefly here. Certain chemical compounds

when illuminated by light in a certain band of

wavelengths exhibit luminescence. The luminescent
light intensity is inversely proportional to the partial

pressure of oxygen. The PSP used in our research
was obtained from McDonnell Douglas

Aerospace/Boeing (MDA PF2B). We primed the

cavity with a glossy white base coat (MDA WAL-2)

before applying the PSP. The NASA Lewis PSP
system was described by Bencic (1995, 1998) and
will only be briefly discussed here. Figure 2 depicts
the imaging setup used in the current set of

experiments. Two filtered, 75-Watt tungsten

halogen lamps with integral reflectors placed in an
air-cooled housing were used to excite the paint

molecules. The light wavelength required for

excitation (430 to 470nm bandwidths) was obtained

by selective band-pass filtering of the illumination
lamps. Interference filters were used to pass light in

the excitation band and reflecting unwanted light
outside this band. The low-power light sources

rendered the photolytic decomposition of PSP

insignificant. The camera used in these experiments

was a cooled scientific grade imager capable of 14-

bit resolution or approximately 16,000 intensity
graduations. It had a spatial resolution of 512 x 512

pixeis. The camera was optically filtered to allow
only the kuninesced light to be incident on the

imager (detection band pass was from 530 to

650nm). The acquired images were processed using
an intensity-based data reduction technique. This
technique requires the two hnages, a _wind off"
(IreO _ imase, and a "wind on" (]data) data
image to dctme the magnitude of the pressure
measurements. By taking the ratio of Iref and Idata,
we corrected nonuniformities in paint application
and lighting. An "a priori _ or batch PSI) calibration
that depended on the composition of the paint was
applied to the ratio image, and an "in-situ"

calibration using data fi_m static pressure taps on

the cavity floor corrected the initial calibration.

2.4. Temperature correction to minimize
PSP errors

When documenting pressure patterns on the cavity

floor using PSI), one has to consider temperature
variaU'ons caused by the jet flow on the cavity floor.

Oglesby et al. (1996) have emphasized the
importance of correcting PSP for temperature

sensitivity, which is caused by at least three factors:
(a) the luminescence process; fo) the solubility of

oxygen in the paint matrix (especially when the
luminophore is dissolved in a silicone polymer

matrix); (c) the quenching reaction.

The correction was accomplished by first applying

Temperature Sensitive Paint (TSP) to map the
temperature on the cavity floor. The calibration for

TSP included both "apriori" and "insitu" (using

thermocouples on the caviW floor) methods. A
temperature correction image was then generated

using the expression T_=I- oAT, where a = 0.0047

and AT is the change in temperature from the wind

off images. Note that the constant a was determined

by the paint manufacturer (McDonnell Douglas
Aerospace/Boeing) for the paint used in this work.

The PSP measurements were then corrected point-

by-point by multiplying the PSP ratio intensity
(Ireffldata_- by T_.



3. Discussionofresults

3.1. General aspects ofjet-r.avity interaction

Fig. 3 shows spark schlieren photographs for the jet
without the cavity and for cavities with L/D = 3, 6

and 8 at a fully expanded jet Mach number, Mj = 1.1.

At this Mach number the jet without a cavity (Fig.
3(a)) exhibits a weak antisymmetric oscillation

downstream but no screech tones. However, strong

tones were measured for all the cavity cases. Note

that our cavity configuration is quite different from a
cavity in an infinite flight because a shock-

containing jet forms the flight stream in our

experiments. However, the simplicity of this set-up
makes it a feasible test bed for evaluating cavity

resonance suppression techniques. In addition the

outer shear layer lets us visualize vortical events
(shear layer instabilities) when the jet is excited by

the jet-cavity interaction tone. Events occurring in

the upper shear layer of the jet qualitatively
correspond to those in the lower (albeit constrained)

shear layer. For example in Fig. 3(b) highly

energetic vortices are seen in the upper shear layer
near the downstream end of the cavity and a later

case displays the emission of a feedback shock (Fig.
3(d)). A higher Mach number case (Mj = 1.23) is

shown in Fig. 4 (a-d). In this case the jet without a
cavity produced an intense screech tone (f = 2784,
124 dB). Complex shock structures are observed in

all cavity cases. Again large-scale structures are

visible in the upper shear layer of the jet, and
feedback shock emission is seen in Figs. 4(b,c). So
far our discussion has been concerned with cavities

OfL/D = 3, 6 and 8. The rest of this paper will focus
on the L/D = 3 and 8 cascs.

Figure 5(a) and 6(a) show spectra measured internal
and external to the cavity. A microphone flush
mounted on the cavity floor (x/D=0.7, y/D=0)

documented unsteady pressure levels occurring
during cavity resonance. A second microphone

outside the flow simultaneously recorded external

signals in the near acoustic field (see Fig. 1 for
microphone locations). From the internal and

external microphone measurements, two
observations can be made. First, the frequencies

measured internal and external to the cavity are the
same. Second, the amplitudes arc about 30 dB higher

inside the cavity. However, the relative dominance

of the tones depends on the location of
measurement.

The following notation is necessary to introduce the

cross-spectrum and coherence functions. For two
time-dependent signals, A(t) and B(t), autospectra

GAA and Gee, can be represented respectively as

A(f). _,*(f)and 13(f).l_*(f), where ,_(f) and

(f) are the Fourier transforms of A(t) and B(t).

Note that T denotes the frequency domain, the

overbar denotes an average value, and the asterisk
the complex conjugate. The cross-spectrum G_ can

be represented as A* (t) * B(f). The linear

spectral coherence y2(0, is defined to be

GAB[ 2/GAA SGBB. Note that 0 < y2(0 < 1.

The utility ofy2(f) lies in the fact that it expresses the

degree of linear correlation between A(f) and B(f).

Figures 5(b) and 6(b) provide sample cross-
correlations for the two cavities at two Mach

numbers. The data in Fig. 5 are for the L/D ffi 3

cavity at Mj = 1.19. Note the presence of two----tones
a high cross-spectrum magnitude and a sharply
peaked coherence. In contrast, for the data of Fig. 6

for an L/D = 8 cavity at Mj = 0.6, the coherence is
high not only at the tone frequency but over the

entire range from 0 to 3 KI-lz. This indicates the

presence of broadband components of cavity noise
that are correlated to the radiated noise. The above

results suggest that external feedback does influence

the cavity tone. It is important to note that the
external feedback mechanism does not exist when a

cavity is exposed to a supersonic stream of infinite

transverse extent. We explored the role of external
feedback further by moving a reflector outside the
nozzle exit to block external feedback. The reflector

having dimensions of 28(y) by 22(z) cm was parallel
to the plane from which the jet emerged and could

be moved downstream by remote control. The
results of this experiment arc summarized in Table I.

Note that although the blockage of external feedback
can significantly alter the relative amplitudes of both

tones, their frequencies are essentially unaltered.

In this connection it should also be noted that several

researchers have shown (see review by Raman

(1998)) that screech can be completely eliminated by

an appropriately positioned external reflector since
all feedback to the nozzle exit is blocked. By way of

contrast the present experiment includes both
internal (within the cavity) and external (outside the

jet) feedback. Blocking only external feedback does
not eliminate the tones but it does alter their



ampfitudes.

3.2. Tones produced by jet-cavity interaction

Figures 7 and 8 show the frequency and amplitude,
respectively, of various tones that occur when jets

interact with cavities having L/D ffi 3 and 8. Note

the presence of discrete frequency modes or stages
of resonance (labelled l-m). On careful examination

of the data of Umeda & Ishii (1998), it is apparent

that the fiequency variations that we obtained were
present in their data too. However, they did not

highlight this point. An encouraging fact is that the

frequency jumps could be reproduced in two
independent and vastly different experimental
facilities. Thus, the possibility of the results being

facility dependent is highly improbable. It should be
noted that the s_ging behavior is similar to that

observed in screeching circular jets. In the absence
of the cavity, the jet produces a flow resonance only

when there are shocks (i.e., in the underexpanded
regime). The frequency of this flow resonance

(screech) ranged from 7616 Hz at Mj -- 1.1 to 2400

Hz at Mj = 1.32. A peak screech amplitude of 135
dB was recorded during the experiments. The

frequency versus Mj curve for jet screech shown in
Fig. 7(a,b) can be easily predicted using

relationships proposed by Powell (1953), and Tam
(1988).

Although the screech modes appear to be

independent of cavity tones, they may still influence
mode IB for the L/D = 3 cavity and modes RIB and

liB for the L/D = 8 cavity. For the most part the

cavity tone frequencies appear to increase with Mj,
whereas the screech tone frequency decreases with

Mj. This may initially come as a surprise since the
mechanisms for tone production are remarkably

similar. However, one should recognize that in the

screech problem the shock-cell length increases with

Mj and that its increase with Mj is more than twice
the increase in convective velocity, and thus the

decrease in frequency with increase in Mj. In
contrast, for jet-cavity interaction, the location of the

downstream edge is fixed and the travel time for
disturbances to reach the edge decreases with

increasing Mj leading to the increase in frequency
with Mj.

The data of Fig. 8 show that the tone's amplitude is

both mode- and Mach-number dependent. Tone

amplitudes generally increase with Mj, and multiple

6

modes are present at mode transitions. From Figures
7, 8 it is also dear that multi-modes are present for

both cavities and that the cavity tone amplitude
increases with L/D.

Correlations for tones produced by both cavities are

shown in Pig. 9. One unique feature of our jet-cavity
configuration is that, theoretically, both screech and

cavity tones are permissible. Which, if any, of these
tones appear is a point of curiosity that is quite

easily checked. If screech tones were present, then

one would expect them to at least qualitatively be
predicted by Powelrs (1953) formula given by

f = Uc (1)
S(I+M¢)

where f is the screech frequency, Uc is the
convective speed of the hydrodynamic disturbance,
S is the shock spacing, M, is the convective Mach

number (UJa), and a is the speed of sound in the
ambient medium.

On the other hand, if classical cavity tones dominate

the spectrum, then they would be predicted by the
Rossiter equation, which can be represented as

ft. m -_ (2)
U_ M+l/k v

where

kv = U_U® = Ratio of disturbance convection

velocity to free stream velocity
(value of 0.57 suggested by Rossiter)

m = 1,2,3 = (Integers representing mode

numbers)

= 0.25 (Empirical constant)

L = Cavity length

M = Free stream Mach number

Our results are predicted neither by Powell's

equation nor by Rossiter's. However, our results do

exhibit cl_mr trends. The tA)=3 cavity frequencies
are well correlated by

fL/Uj = 0.3nM_l/2(n = 1,2,3) (3)



and the LA)=8 results correlate with

tL / Uj - _ (n = 1,2,3) (4)

In both Eqns. (3) and (4) f represents the frequency

of the tone, L the cavity length, Uj and Mj the
fully expanded jet velocity and Ma_ number,

respectively, and n is the mode index.

The latter relationship for the IdD=8 cavity can

easily be reconciled with Tam's (1976) calculated
normal mode frequencies for rectangular cavities as

follows. Tam & Block (1978) calculated the
acoustic modes of rectangular cavities with no flow

and showed that considerable insight can be
obtained by examining these solutions. If we

consider Tam's (1976) calculated frequency (the real

part of ¢0L/a where ¢a=2xf and a=speed of sound in
the ambient medium.) plotted versus D/L for the
lowest normal mode (cavity mode 1,1), then the

frequency corresponding to L/D=8 is coL/a=3. On
fl. 0.48

rewriting this it becomes - which
Uj Mj

corresponds to the lowest mode of our correlation. It

is indeed surprising that despite the complexity of
the source region and the flow within the cavity, the

frequencies are predicted using the acoustic modes
of the cavity (calculated without flow). Thus, for the

L/D = 8 cavity the flow does not appear to influence
the cavity's acoustic modes.

In contrast, for the L/D=3 cavity, the tones produced

do not match the cavity's acoustic modes. Note that

Eqns. (3) and (4) can be re-written as tL/ao = 0.3n

1/2 and fldao = (n+l)/4, respectively, where ao =Mj

speed of sound in the ambient medium. Thus, the
non-dimensional fiv,quency (fL/a,) depends on Mi
for the L/D=-3 cavity but not for the L/D=8 cavity.

k appears that at least three factors influence

frequency selection in fluid-resonant cavities: (i)
amplification of instabilities by the shear layer; (ii)

cavity's the presence of a feedback mechanism; (iii)
the natural acoustic modes. The eigenvalues and

eigenfunotions from the linearized stability

equations for realistic mean velocity profiles provide

an envelope of possible frequencies. Since the linear
theory deals with small perturbations, it can only

predict the _ growth (locally) of a small
perturbation. However, some insight can be
obtained by examining the amplification envelope

(c_ versus to turves, where o.i is the amplification

rate and to a non-dimensional frequency). The

amplification envelope for 2D jets (see Cain &
Bower (1996) and Raman (1997)) is generally so

wide that it covers ¢_ = 0.02 to 0.5 when _ is

defined to be (2x'ITUj) (/i,,/2) and the vorticity

thickness /i./2 = 2(yo.s- Y0.n) where y is the

transverse co-ordinate of the jet and the subscripts
refer to fractions of jet centerline velocity. In the

above example the amplification envelope

encompassed all screech and cavity frequencies
observed in our experiments. Thus the frequency

selection occurs primarily through (ii) and (iii) with

(i) providing the requisite mechanism.

Appropriate closure of the feedback loop to satisfy

the phase criterion (the arrival of an acoustic wave
from the downstream edge matching the creation of

an embryonic instability at the upstream edge) is
thus critical in determining the screech frequency.

Further, a super-resonance can be produced if these

frequencies also match the acoustic modes of the
cavity. Such a super-resonance does indeed appear

to be present for our L/D=8 cavity. Direct evidence
is provided by the frequencies matching the acoustic

modes of the cavity and the tone amplitudes being 5
to 10 dB higher for this cavity than the L/D=3 cavity
(for which the frequencies do not agree with the

cavity's acoustic modes).

3.3. Unsteady pressures in the nearfield of
the cavity

Phase-averaged pressure distributions in the

ncarfieid on the xz and xy planesare shown in

Figures 10 and 11 (for a description of the planes see
Figure 1). In Figure 10 the vertical lines at the
bottom denote the axial extent of the cavity. The

arrows at the bottom of each flame are used to tag a

region of the feedback wave and follow its progress
upstream. The solid and dashed lines represent

regions of the wave that are 180 ° apart in phase.
Note that the emission of the feedback wave occurs

slightly ahead of the downstream edge of the cavity.

In Figure 11 additional horizontal lines on the y-axis
denote the spanwise extent of the cavity. The

purpose of including Figure I 1 is to emphasize the

lack of spanwise variations. Table II further



substantiatesthis assertion. The data in Table II

were obtained by moving a microphone in the y
direction at the nozzle exit plane (x = 0, y = 3

inches) and recording the _ and relative

phase with respect to a microphone located at x = 0,

y= 0, z = 3 inches. The phase varlatiom in the y-
direction are insignificant indicming that the tones

are spanwise uniform; and the coherence function
indicates that all tones have a high degree of

spanwise coherence.

Figure 12 compares the phase-averaged data (at one

phase of the reference signal) in the acoustic
neariield for a shock-containing screeching jet to

that of a cavity tone. The difference in the character
of the nearfield is perhaps due to a difference in the
character of the source. One can think of two

differences between screech and a cavity tone.

Screech tones are produced by the interaction of the
shear layer with shocks, whereas the cavity tone is

produced by the interaction of the shear layer with
the downstream edge of the cavity. The screech tone

is amplified by the constructive interference of
multiple shock-cell sources, whereas in the cavity

tone a single source located close to the downstream
edge dominates. However, a striking similarity
between these two distinctly different physical

situations is the presence of a feedback loop and the

amplification of the tone through feedback. In Fig.
12 the solid and dashed lines represent phases of the

acoustic feedback wave that are 180 ° apart. The

source configuration does appear to be quite
different for the two cases, but in both cases the

waves propagate upstream to close the resonant

loop.

3.4. Pressure variations on the cavity floor

exact definitions. For example, Rossiter (1966)

defined deep cavities as having L/D < 4 and shallow
cavities having IdD > 4. In contrast, Holler et al.

(1971) and Shaw _ McCnath (1996) defined L/D =

1 as the dividing line to define deep and shallow
cavities. The same is true of open, transitional, and

closed cavity flows. Stallings & Wilcox (1987),
Plentovich et al. (1993), and Shaw & McC_nath

(1996) use very wide and differing bands to define
these cavity types. Such startling discrepancies

provided us the impetus for conducting a detailed
study of the pressure distribution on the floor of the

cavity for cavities with L/D = 3 and 8 over a range

of Mach numbers. We chose the pressure sensitive

paint (PSP) technique because of the high spatial
resolution it provides (equivalent to about 250,000

pressure taps) and because of our extensive previous
experience with this technique in studying ejector

wall pressures (Taghavi et al. (1997)).

When comparing the pressure distributions used by

Stallings & Wilcox (1987) to define open,
transitionaJ, and closed cavity flows with results of

the present work, we should note two points. First,

Stallings & Wilcox (1987) defined C_ as (p-p®)/q®

where p is the cavity floor pressure, p® is the free

stream static pressure and q_ the free stream

dynamic pressure. Our definition differs because we
use Cp=_o-p,)/po, where p is the cavity floor pressure
and po is the ambient pressure. Second, the St_illngs

& Wilcox (1987) diagrams (Figure 13) are valid

only for a supersonic flight stream. In comparison
our flow is comprised of subsonic, sonic, and

supersonic shock-containing jets interacting with a
cavity. However, we can still make useful qualitative

comparisons with the Stanings & Wilcox (1987)
classifications.

In a recent paper StaUings & Wilcox (1987)
reviewed the various classifications of cavity flows.

In addition to classifying cavities as being deep

(small L/D) or shallow (large L/D), we can also

classify cavity flows as being open, closed, or
transitional. When the shear layer spans the cavity

opening, the cavity is considered open, and when the

shear layer attaches to the cavity floor, the cavity is
considered closed. Intermediate stages are

transitional. Figure 13 (reproduced from Stallings &
Wilcox (1987)) depicts the three types of cavity

flows and the associated pressure distribution on the

cavity floor. Though much is known about the types

of cavity flows, researchers still cannot agree on

PSP results are presented for the L/D = 3 cavity in
Fig. 14, a_ the centerline pressures from the PSP

results are plotted in Fig. 15. From the PSP results
we can deduce that the L/D = 3 cavity is open. In the

flow direction the Cp = ((p-p.)/p,) values first
decrease and then increase towards the downstream

end of the cavity. In addition, spanwise variations

appear to be insignificant on the cavity floor.

Similar results for the L/D = 8 cavity shown in Figs.

16 and 17 provide an interesting contrast. Since all
three types (open, closed, transitional) of cavity

flows wer_ possible here. In addition we note a very

intriguing trend as the Mach number increases.



Careful scrutiny of the color pressure maps reveals

that the presence of (1) a mbatnmspheric pressure
region immediately after the upstream edge of the

cavity and (2) a high-pressure region closer to the

downstream edge of the cavity. Note the spanwise
variation in the pressure near the downstream edge

of the cavity. As the Mach number increases from

0.615 to 0.97, the pressure values and axial extent of
the low-pressure region decrease while the pressures

and the extent of the downstream high-pressure
region increase. However, at supersonic Mach

numbers (Mj = 1.02 to 1.32) the trend reverses itself.
A point of great interest here is not only the reversal

of trend but the fact that Mj = 1 demarcates the

reversal in trend. Judging from the Ca, profiles in
Fig. 17, it appears that for Mj = 0.615 to 0.865 the

cavity is transitional. At Mj = 0.97 and 1.02 it
becomes closed and finally it becomes open at

higher Mach numbers. Thus our results emphasize
the point that the open/closed classification of

cavities distinctly depends on the Math number.

Thus, a cavity that is transitional at Mj = 0.865 could
become closed at Mj = 0.97 and then suddenly

become open at Mj = 1.13! These scenarios suggest
that the lack of clear definitions perhaps arise due to
the sensitivity of the shear layer to initial conditions,

Mach number, and the presence and location of
shocks.

Based on the vivid display (Figure 16 and Figure 17)

of several distinct flow regimes over a small Mj
range for the L/D=8 cavity, one would expect that it

would be very difficult to predict the tones produced
by this cavity. Contrary to our expectations a simple

relationship from section 3.2 (Eqn. 4) that depends
only on the cavity's acoustic modes (and not on flow

within the cavity) successfully correlates all tones. In
contrast, the L/D=3 cavity that displays a relatively

uniform pressure distribution on the cavity floor
(Figure 14 and Figure 15) is not correlated by the

cavity's acoustic modes but by Eqn. (3) that includes
the effect of flow Mach number. It follows from our

discussion that the pressure distribution on the cavity

floor provides very little insight about the resonant

tones. However, the various flow regimes are
important considerations because the resonance
suppression technique (active or passive) chosen for

practical appfications should work for all possible

flow regimes.

4. Conclusions

Our study of jet-cavity interaction was motivated by
the need to understand cavity flows well enough to

devise effective cavity resonance suppression
techniques. A series of experiments were performed

on subsonic, seaic and supersonic jets interacting

with cavities having length/depth ratios of 3 and 8.
In addition to spark-schlieren flow visualization and

documentation of the tone frequencies and
amplitudes of jets interacting with cavities, we also

provided detailed maps of nearfield unsteady
pressures. Additionally, we explored the role of
external feedback that is absent with cavities in a

supersonic flight stream but is present in our case.

Time-averaged pressures on the cavity floor were

studied using the novel photoluminescent pressure
sensitive paint technique that had high spatial

resolution and revealed complex pressure
distributions on the cavity floor.

The following important results emerged from this

study. (1) Jet-cavity interaction produced tones that
were different from either jet screech or cavity tones.

We proposed simple yet physically insightful
correlations for these tones. Although the pressure

patterns on the cavity floor displayed very complex
variations with the Mach number for a length/depth

= 8 cavity, the tones corresponded to the acoustic

modes of the cavity---4ndependent of flow. For a
length/depth = 3 cavity, however, a surprise

emerged: the pressure patterns on the cavity floor

were not so complex but the tones depended
significantly on the flow. (2) We showed that the
traditional classifications (open, transitional, or

closed) for cavities in an infinite flight stream

depended primarily not on length/depth ratios as
previously believed but also on the Math number.

Use of pressure sensitive paint showed that the
classifications were actually quite sensitive to jet

Mach number for a length/depth = 8 cavity.
However, these classifications provide no guidance

whatsoever for tone amplitude or frequency. It is

hoped that the detailed experimental data and
insights presented here will be useful to those

devising cavity resonance suppression techniques for
use in practical applications and to those performing

numerical simulations of jet-cavity flows.
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Reflector
X

D

Amplitude of
f =1664Hz
(SPL, dB)

Amplitude of
f2=3328I-Iz

(SPL, dB)

Coherence between
internal and external

microphones at ft

 2(f2)
Coherencebetween

intemal and extemal

microphones at f2

0 167.3 151.0 0.983 0.888

0.5 168.2 151.4 0.984 0.900

1.0 168.8 151.3 0.989 0.892

1.5 169.3 150.5 0.992 0.886

2.0 169.1 149.8 0.986 0.894

2.5 169.1 150.4 0.987 0.927

3.0 168.7 152.0 0.987 0.929

3.5 167.2 146.9 0.991 0.866

4.0 167.6 146.3 0.989 0.854

4.5 166.1 153.7 0.980 0.774

5.0 162.0 159.9 0.938 0.979

5.5 164.6 159.0 0.914 0.959

6.0 164.3 161.4 0.625 0.989

6.5 162.5 163.8 0.712 0.974

Table I: Role of external feedback on jet-cavity resonance illustrated by the axial movement of a reflector
outside the flow.
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Mj- 1.06 Mj = 1.23
F = 1632Hz F = 2400Hz

Relative Phase Coherence Relative Phase Coherence
y
D at / 2x _ (0 at / 2x _ (0

-2.0 -0.00305 0.997 0.00833 0.992

-1.6 -0.00167 0.997 0.01111 0.992

-1.2 0.00 0.996 0.0108 0.993

-0.8 -0.00194 0.997 0.00278 0.993

43.4 -0.00056 0.996 0.00445 0.994

0.0 0.00 0.996 0.00 0.993

0.4 0.00167 0.997 -0.00305 0.993

0.8 -0.00223 0.997 -0.00556 0.995

1.2 -0.00500 0.996 -0.00638 0.993

1.6 -0.00528 0.997 -0.0100 0.994

2.0 -0.0119 0.996 -0.0130 0.995

Table II: Spanwise phase and coherence
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/--x-z plane
/

/ Measurement
planes

/-- x-y plane
/

External
microphone-- 1

/
/
/

20.32

3.77

7.62
or 3.81

/
/.

Support plate _"
/

/

Cavity microphone _

/---Test cavity

/

/

/

/

4.45

Note: All dimensions are in cm.

Figure 1 ._chematic showing jet-cavity configuration, micr_)phones and measurement planes.
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Filterwith
detection
bandof
530to
650nm--_

\
\

\

-- Camera (cooled
scientific grade imager
512 x 512 pixels
14 bit resolution)

\
\

\
\

\ \
\ \ \

_--Cavity floor coated with \ \
McDonnell Douglas/Boeing \ \\\
pressure sensitive paint \ \
(MDA PF2B) \\

\\
\\

_--Blue light (430-470 nm)
from two air-cooled,
halogen tungsten lamps
with integral reflectom

J

Digitizer/computer --/
O

Figure 2.pPhotoluminescent pressure sensitive paint apparatus.
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Figure3.BSpark-schlierenphotographsofjet-cavityinteractionatMj=1.11.Viewshowsnarrowdimensionofjet.
(a)Jetwithoutcavity. (b-d) Jet with cavity. L/D (b) 3, (c) 6, (d) 8. White arrows mark upstream and downstream
edges of cavity.
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Figure4.--Spark-schlierenphotographsofjet-cavity interaction at Mj = 1.23. View shows narrow dimension of jet.
(a) Jet without cavity. (b-d) Jet with cavity. L/D (b) 3, (c) 6, (d) 8. White arrows mark upstream and downstream

edges of cavity.
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Figure 12.--Phase-locked acoustic near field of jet screech compared to that for jet-cavity interaction
(L/D =8), both at Mj = 1.23. (a) Screech, xz plane. (b) Screech, xy plane. (c) Jet-cavity interaction,

xz plane. (d) Jet-cavity interaction, xy plane.
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Figure 13.--Characterization of supe-sonic
flow over cavities and associated _;ressure
distribution on the cavity floor (frorl Stallings
& Wilcox (1987)). (a) Open-cavity flow. (b) Tran-
sitional-cavity flow. (c) Closed-cavity flow.
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