
NASA/CR- 1998-208735

ICASE Report No. 98-47

A Rigorous Framework for Optimization of Expensive

Functions by Surrogates
Andrew J. Booker

Boeing Shared Services Group, Seattle, Washington

J.E. Dennis, Jr.

Rice University, Houston, Texas

Paul D. Frank

Boeing Shared Services Group, Seattle, Washington

David B. Serafini

E.O. Lawrence Berkeley National Laboratory, Berkeley, California

Virginia Torczon and Michael W. Trosset

The College of William and Mary, Williamsburg, Virginia

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center, Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

November 1998

Prepared for Langley Research Center under
Contracts NAS 1-19480 and NAS 1-97046



Available from the following:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Llformation Service (NTIS)

5285 Port Royal Ro_.d

Springfield, VA 221 il-2171

(703) 487-4650



A RIGOROUS FRAMEWORK FOR OPTIMIZATION

OF EXPENSIVE FUNCTIONS BY SURROGATES

ANDREW J. BOOKER*, J. E. DENNIS, JR.¢, PAUL D. FRANKt, DAVID B. SERAFINI_,

VIRGINIA TORCZON ¶, AND MICHAEL W. TROSSETH

Abstract. The goal of the research reported here is to develop rigorous optimization algorithms to apply

to some engineering design problems for which direct application of traditional optimization approaches is

not practical. This paper presents and analyzes a framework for generating a sequence of approximations

to the objective function and managing the use of these approximations as surrogates for optimization. The

result is to obtain convergence to a minimizer of an expensive objective function subject to simple constraints.

The approach is widely applicable because it does not require, or even explicitly approximate, derivatives of

the objective. Numerical results are presented for a 31-variable helicopter rotor blade design example and

for a standard optimization test example.

Key words, approximation concepts, surrogate optimization, response surfaces, pattern search methods,

derivative-free optimization, design and analysis of computer experiments (DACE), computational engineer-

ing.

Subject classification. Applied & Numerical Mathematics

1. Introduction. The use of computer simulations in engineering decision-making is growing in im-

portance. A prototypical example, described in Section 3, involves designing a low-vibration helicopter rotor

blade. This example poses an optimization problem in which evaluation of the objective function requires

running expensive analysis code(s). Existing methods for such optimization problems are either impractical

or ad hoc. In this paper, we present a rigorous framework for optimizing expensive computer simulations

through the use of inexpensive approximations of expensive analysis codes.

We will set forth, for comment and criticism, a rigorous approach to solving the following mathematical
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problem:

(1) minimize f(x)

subject toxEB--{x la_x<b},

where f : _n __, _U {_}, a,b E _n, and a < b means that each coordinate satisfies ai _< b_. The following

characteristics distinguish the subset of such problems for which our methods are intended:

1. The computation of f(x) is very expensive and the valises obtained may have few correct digits.

2. Even if x is feasible, the routines that evaluate f(x) m_-¥ fail to return a value at the same compu-

tational cost as if a value were returned.

3. It is impractical to accurately approximate derivatives of f.

4. If x is infeasible, then f(x) may not be available.

Typically, f(x) is expensive to cvaluate because there arc large numbers of ancillary or system variables

that must be determined for each choice of x before f(x) can be evaluated. For example, in the helicopter

rotor blade design problem, each x specifies a coupled system of partial differential equations (PDEs) that

must be solved in order to obtain dependent system variables required to evaluate f(x). It may be quite

difficult to obtain accurate solutions of such systems, even after expending substantial computational re-

sources. Furthermore, when a coupled system of PDEs is solved by an iterative method, e.g., the notoriously

unreliable method of successive substitution, the method may fail to converge at all. Thus, one cannot

assume even that one will obtain an objective function value at each feasible point.
Z

The difficulties implied by the first two properties are compounded if the intended optimization algo-

rithm requires derivative information. Actual derivatives are rarely available, although we hope that this

circumstance will change as automatic differentiation technology advances. On the other hand, choosing

an appropriate step size for approximating derivatives by finit4_ differences is itself a difficult undertaking.

Moreover, the difficulties are compounded by the expense of fun_:tion evaluation and the fact that a function

value may not be returned.

The foregoing considerations lead us to dismiss the possibility of using traditional quasi-Newton methods

to solve Problem (1). Indeed, even if actual derivative information were available, quasi-Newton methods

might bc poor choices because they arc adversely affected by fu lction inaccuracies [15]. Instead, we observe

that direct scarch methods [14, 38, 41, 40] do not require derivatives and arc relatively inscnsitive to func-

tion inaccuracies. Their shortcoming, especially when functior evaluation is expensive, is that in practice

they tend to require a great many function values. The essential observation of the present paper is that

inexpensive surrogate objective functions can be used to accele_'ate (certain methods of) direct search for a

solution without sacrificing theoretical guarantees of asymptotic: convergence.

The use of direct search methods provides a natural way to _ddress the fact that f(x) may be unavailable

for some feasible x. When this occurs, we simply assign f(x) -- 2. This assignment implicitly assumes that

x is suboptimal if f(x) is not available. In fact, the failure of f(x) to evaluate might result from failures

in the analysis code rather than from the physical suboptimalit y of the design x, but we do not attempt to

distinguish these possibilities in the present paper.

If the optimization method causes us to consider an infe_.sible x, then we decline to try to evaluate

f(x). In fact, it is common practice for optimization algorithm, not to evaluate the objective at points that

violate simple bound constraints because such violations are easily detected. In contrast, it is also common

practice to evaluate the objective whenever the bound constr_ints are satisfied, regardless of the possiblc

violation of more complicated (e.g., nonlinear equality) constrai nts. In the present paper, we skirt this issue



by consideringformallyonlyboundconstraints.Of course,wcarekeenlyawarethat mostproblemsalso
includeothertypesof constraints,but therigorousmanagementof suchconstraintsisa topicfor future
research---toconsiderit nowwouldonlycloudtheissuesthatwewishto addressin this forum.Thus,wc
treatthe linearinequalityconstraintsin ourhelicopterrotorbladetestexamplebydecliningto evaluate
f(x) when x is infeasible.

Problems of the type that wc have described arise in disparate ways in engineering design and in man-

ufacturing process control. Furthermore, there is a standard engineering practice [1] for attacking such

problems:

1. Choose a surrogate s for f that is either

(a) a simplified physical model of f; or

(b) an approximation of f obtained by evaluating f at selected design sites, xl,... ,Xd C B, at

which each f(x_) is finite, then interpolating or smoothing the function values thus obtained.

2. Minimize the surrogate s on B to obtain xs.

3. Compute f(xs) to determine if improvement has been made over the best x found to date, which

may be some baseline x or one of the design sites (if that approach is used).

The standard practice violates a fundamental tenet of numerical optimization, that one should not work

too hard until one nears a solution. In fact, the standard practice is a one-shot approach: except for the

final validation of x_, all of the function evaluations are performed at sites selected by experimental design

criteria with no concern for optimization per se. Fhrthermorc, this approach begs a potentially embarrassing

question, viz., what does one do if (as is often the case) x_ is not good enough to use as a solution to Problem

(1).*

A natural modification of the standard practice is to use a sequence of surrogates to identify promising

regions in which to use successively better surrogates, either by adopting models with greater physical

fidelity or by constructing approximations from a greater concentration of design sites. Examples of this

basic strategy include [6, 20, 13].

We present here a general methodology inspired by ideas in [13]. Our methodology is built on top of a

general class of direct search methods for numerical optimization, the pattern search methods. We exploit

in a novel way the convergence analysis for pattern search methods presented in [39, 24, 25]. Key to our

approach is the observation that the convergence analysis allows great flexibility in the heuristics that one can

employ to find the next iterate. Accordingly, we perform a fairly extensive search on the current surrogate

to select new points at which to evaluate the objective. In this paper, we are concerned with surrogates that

are interpolating approximations of the objective and wc use any new values that we obtain to update the

current approximation.

In the next section, we present our surrogate management framework (SMF) and demonstrate that it

works on a standard test problem from the global optimization literature [16]. In subsequent sections, wc

elaborate on the earlier presentation by examining a problem for which the computational cost of evaluating

the objective can be substantial. In Section 3, we describe the helicopter rotor blade design problem. In

Section 4, we describe a family of interpolating approximations that has become popular in the literature

on the design and analysis of computer experiments (DACE). In Section 5, we sketch some ways of using

DACE approximations as optimization surrogates. Finally, in Section 6, we report some numerical results.

Some indications of how this work fits into a larger effort are provided in Sections 2.3 and 7.

2. A Rigorous Framework for Optimization Using Surrogates. In this section we describe SMF,

our framework for managing surrogate objective functions to facilitate the optimization of expensive com-



putersimulations.Theframeworkissufficientlygeneralto accommodatesurrogatesthatare(1)simplified
physicalmodelsoftheexpensivesimulation;(2)approximationsoftheexpensivesimulation,constructedby
interpolatingorsmoothingknownvaluesoftheobjective;or (3)model-approximationhybrids.Forthesake
of clarity,however,wefocuson thecaseof surrogatesof thes_condtype. In Section4 wewill emphasize
interpolatingapproximationsconstructedbykriging,but thesimpleexamplein Section2.3illustratesthat
SMFalsoworkswithpolynomialinterpolants.Anothercxamph_usingpolynomialinterpolantsispresented
in [32].

We begin, in Section 2.1, by describing the family of underl-dng optimization algorithms on which SMF

is based. Ncxt, in Section 2.2, we formally define SMF. We :onclude, in Section 2.3, by using SMF to

minimize a simple algebraic test function.

2.1. Pattern Search Algorithms. Pattern search algoril hms are a class of direct search methods for

numerical optimization. A formal definition of pattern search, w:!fich includes various well-known algorithms,

was proposed in [39]. An elementary introduction to pattern _earch algorithms and a discussion of their

historical antecedents is available in [40].

Pattern search algorithms are characterized by two crucial notions, a sequence of meshes and a list of

polling conditions. A mesh is a lattice to which the search fcr an iterate is restricted. As optimization

progresses, the polling conditions govern when the current mesh can be refined, ensuring that the algorithm

will satisfy the demands of the convergence theory for pattern _,_arch methods.

For our purposes, the primary polling condition that must be enforced to ensure convergence is that the

set of vectors formed by taking the differences between the set oi_trial points at which the objective function

is to be evaluated (the pattern) and the current iteratc xk must contain a positive basis for gtn. A positive

basis [11] is a set of vectors whose nonnegativc linear combinations span _R", but for which no proper subset

has that property. For our purposes, the relevance of a positive basis is that it ensures that if the gradient

of f at xk is not zero, then at least one vector in the positive ba _is defines a descent direction for f from xk.

This can be guaranteed without any knowledge of the gradient. Any positive basis has at least n 4- 1 and at

most 2n vectors; we call these minimal and maximal positive b_:.ses, respectively.

For unconstrained problems, a minimal positive basis is sufficient to guarantee convergence [25]. However,

for problems with rectangular feasible regions, e.g., Problem (1), we use a maximal positive basis that

comprises all of the coordinate directions, both positive and net;ative. This guarantees that it is possible to

move along the boundary of the feasible region and thus prew.nts premature convergence to a point that

is not a constrained stationary point ]24]. Recent work [26] t as revealed that it is possible to construct

adaptive pattern search algorithms that identify only those con _traints that are either binding or "almost"

binding at the current iterate so that the number of vectors nee led at any given iteration can vary between

n 4- 1 and 2n, inclusively.

The following formulation of Generalized Pattern Search (('PS) differs from the formulation of pattern

search in [39, 24, 25, 26], but it is especially well-suited to our presentation. We remind the reader that if

f(x) either is infeasible or cannot be evaluated successfully, the _ wc set f(x) = oc.

GPS: Let M0 denote a mesh on B - {x I a < x < b} and supp¢ se that x0 E M0 has been given. (In typical

practice, x0 _ x*, where x* is a preliminary baseline solution, Jut any choice of xo c M0 is possiblc.) Let

X0 C M0 contain x0 and any 2n points adjacent to x0 for which the differences between those points and x0

form a maximal positive basis (composed of multiples of the c¢:ordinate vectors) for _n As the algorithm

generates xk c Mk, let Xk C Mk be defined in the same way. F_r k = 0, 1,..., do:



1. Search:Employsomefinitestrategyto try to choosexk+l E Mk such that f(xk+l) < f(xk). If

such an xk+l is found, declare the Search successful, set Mk+l ----Mk, and increment k;

2. else Poll:

if xk minimizes f(x) for x C Xk, then declare the Poll unsuccessful, set xk+l = xk, and refine M k

to obtain _lk+l by halving the mesh size (write this as Mk+l = Mk/2);

else declare the Poll successful, set xk+l to a point in Xk at which f(xk+l) < f(xk), and set

Mk+l = Mk.

Increment k.

Step 2 provides the safeguard that guarantccs convcrgcncc, as in the following result [24].

Theorem 2.1.1. If f is continuously differentiable on the feasible region B, then some limit point of the

sequence {xk } produced by a generalized pattern search (GPS) method for bound constrained minimization

is a constrained stationary point for problem (1).

Notice that this result guarantees that GPS will convcrgc no matter how naive thc search stratcgy in Step 1.

In practicc, of course, the sophistication of the search strategy matters a great deal. We now turn to SMF,

which uses surrogate objective functions to try to Search with greater parsimony and thereby reduce the

total number of objective function evaluations.

2.2. The Surrogate Management Framework. The description of SMF that wc present here is a

set of strategies for using approximations in both the Search and Poll steps of a GPS algorithm. For greater

clarity, we have also identified a separate Evaluate/Calibrate step. In what follows, we assume that a

family of approximating functions has been specified, that an initial approximation has been constructed,

and that an algorithm to recalibrate the approximation is available.

SMF: Given So, an initial approximation of f on B, and x0 c M0, let X0 C M0 contain x0 and any 2n

points adjacent to x0 for which the differences between those points and x0 form a maximal positive basis

(composed of multiples of the coordinate vectors) for _Rn. As the algorithm generates Xk E Mk, let Xk C Mk

be defined in the same way. For k = 0, 1,..., do:

1. Search: Use any method to choose a trial set Tk C Mk. If Tk 7_ fJ is chosen, then it is required to

contain at least one point at which f(x) is not known. If Tk ----0, then go to Poll.

2. Evaluate/Calibrate: Evaluate f on elements in Tk until either it is found that xk minimizes f on

Tk or until xk+l E Tk is identified for which f(xk+l) < f(xk). If such an Xk+l is found, then declare

the Search successful. Recalibrate sk with the new values of f computed at points in Tk.

3. If Search was successful, then set Sk+l = Sk, Mk+l = Mk, and increment k;

else return to Search with the recalibrated sk, but without incrementing k.
4. Poll:

If xk minimizes f(x) for x E Xk, thcn declare the Poll unsuccessful, set Xk+l = xk, and set

Mk+l = Mk/2;

else declare the Poll successful, set xk+l to a point in Xk at which f(xk+l) < f(xk), and set

Mk+l = Mk.

Rccalibrate Sk with the new values of f computed at points in Xk. Set sk+l = sk.

Increment k.

We structure our discussion of SMF around the proof of the following corollary of Theorem 2.1.1. Notice

that this result assumes nothing about the accuracy of the approximations. In practice, of course, we would



expectbetterapproximationsto yieldbetterresults.

Theorem 2.2.1. If f is continuously differcntiablc on the fca:iblc region B, then some limit point of the

sequence {Xk } produced by SMF for bound-constrained minim zation is a constrained stationary point for

problem (1).

Proof: The proof is accomplished by showing that SMF is _.n instance of a generalized pattern search

method and so Theorem 2.1.1 applies.

First, wc nccd to be sure that we have specified a finite Search step, i.e., that there is a fixed upper

bound on the number of unsuccessful search steps that will be t._ied before a poll step is taken. This follows

immediately because each choice of Tk _ 0 must contain at le_t one point of Mk at which f is unknown

and Mk is a mesh on a compact set B, hence a finitc set.

We finish the proof by noting that the Poll step is still inta_'.t. From the perspective of the optimization

algorithm, Poll is functionally unchanged by the rccalibration step that it now includes. []

The key to a successful implementation of SMF is to define _he Search strategy in a way that efficiently

exploits the current approximation sk. One obvious approach is to search for points that minimize sk. In

[42], for example, a finite-difference quasi-Newton method was started from the current iterate with sk as

the objective function. A more ambitious strategy would be to explore Sk globally for multiple prospective

basins, e.g., by performing a comprehensive grid search. For the examples in this paper, we performed a

comprehensive search on a subset of the current mesh, Mk.

Notice that we do not require f to be evaluated at all poir_ts in Tk or Xk before declaring a successful

Search or Poll step. Once we have identified a point in either _ or Xk with an objective value strictly less

than f(xk), we can declare the iteration to be successful and ir_crement k. This practical flexibility derives

from a powerful and crucial aspect of the convergence theory developed in [39, 24, 25, 26]: it is not necessary

for a pattern search algorithm to find the best point on the c._rrent mesh Mk, or even the best point in

Xk any point that produces decrease on f(xk) will suffice.

The convergence theory states that any point on the current mesh, Mk, that produces decrease on f(Xk)

can be used as the next iterate, xk+l. Traditional pattern search algorithms evaluate f at a predetermined

subset of Mk (a patteT_n) in order to try to discover such points. To try to reduce the number of function

evaluations required to discover a point that produces decrea._c, SMF uses the current approximation to

predict points in Mk at which wc expect to rcalize decrease. The set Tk contains our list of potential

candidates. If Tk contains multiple candidates, then we choose 1hose that are considered most promising. If

the approximation does not predict any such decrease, then we may choose to set Tk _- 0 and Poll.

SMF affords complete flexibility in deciding how many poil,ts to include in Tk. One obvious possibility

is to include a single point: the one at which the surrogate predicts the greatest decrease on f(xk). This is

precisely what we did to obtain the results reported in Section 2.3. In other situations, however, it may be

desirable to include several points. One such circumstance ark, es when attempts to evaluate the objective

are prone to failure. For example, for the helicopter rotor bla :le design problem we have performed runs

in which 60% of our attempts to evaluate f at a feasible x fail ed. Thus, to obtain the results reported in

Section 6, we choose Tk to contain three points in an effort to ensure that at least one of the points in Tk can

be evaluated successfully. Another circumstance arises in parallel or distributed computing environments. If

several processors are available to perform simultaneous functi, m evaluations, then it is natural to provide

Tk with one point for each available processor.



WealsoallowTk to contain points at which the approximation does not predict decrease. This flexibility

is desirable because the step Evaluate/Calibrate actually serves two purposes. On the one hand, we

obviously want to find an Xk+l E Tk for which f(xk+l) < f(xk). On the other hand, after each step we

know more objective function values and we therefore compute a new (and presumably more accurate)

approximation. However, the points that most decrease the objective may not be the points that most

improve the accuracy of the approximation. In fact, it may be desirable to select trial points that balance

the competing goals of decreasing the objective and constructing a better approximation. By selecting

trial points that lead to better approximations, we may gain greater insight into the global behavior of f,

accelerating optimization by improving the quality of future searches. This idea will be discussed in Section

5.

Except for recalibration, the Poll steps for GPS and SMF arc identical. Although SMF does not specify

the order in which f is to bc evaluated at the points in Xk, it is natural to evaluate them in increasing order

of the objective values predicted by sk.

If the current iterate is sufficiently near a minimizer of the true objective function, then the current mesh

must be refined in order for optimization to progress. It is the Poll step that guarantees convergence, but

this guarantee can be costly. For bound-constrained optimization, an unsuccessful Poll step requires between

n and 2n evaluations of the objective function [25], so we would like to avoid Poll steps whenever possible.

One possibility is to employ a hybrid approach that starts with SMF and assumes that an unsuccessful Poll

step signals a basin of attraction for a local method, which wc then call to see if it can succeed. Of course,

we might need to revert to SMF if we switch too hastily. A natural candidate for the second phase of such

a hybrid approach is the derivative-free optimization (DFO) algorithm described in [8, 7]. The development

of an SMF-DFO hybrid is one objective of the larger effort mentioned in Sections 2.3 and 7.

2.3. Sample Test Results. Wc now apply SMF to a standard global optimization test problem, the

six-variable Hartman problem [16], which has a single global minimizer and several nonglobal minimizers. In

realistic applications, objective functions arc expensive to evaluate and computed values have only several

digits of accuracy. Hence, wc only attempt to solve the Hartman problem approximately, and we are prepared

to decrease the chance of converging to the global minimizer in order to restrict the total number of objective

function evaluations.

Figure 1 presents run histories for two implementations of SMF, as well as the final values obtained

from nine runs of the DFO algorithm described in [8, 7]. We imposed bounds of B = [0, 1]6 and started

each run from x0 = (.5, .5, .5, .5, .5, .5) T. (The nine runs of DFO produced different results because the DFO

algorithm includes a stochastic decision.) The only difference between the two implementations of SMF

is the choice of approximating families: one choice interpolated known function values with variable-order

multivariate polynomials [12] whose degrees wcre increased as more function values were obtained; the other

choice interpolated known function values by kriging. The latter family of approximations, which we also

used for the helicopter rotor blade design problem, is discussed in Section 4. In each implementation, the

initial approximation was constructed by interpolating the same set of 16 known function values. Each time

that Search was called, the current approximation was evaluated on a 7280-point subset of the current

mesh. Because the Hartman objective can always be evaluated, Search returned only a single point from

the subgrid at which the approximation predicted the greatest decrease in the Hartman objective.

The global minimum of the Hartman function is -3.322. Except for one run of DFO, each run produced

(approximately) this value. Of particular note is the fact that SMF worked effectively with each of two

different families of approximations. The SMF run histories exhibit the characteristic plateaus that result



whenPoll stepsareexecutedon a sequentialcomputer.Theactual("wallclock")timespenton these
stepscanbe reducedif opportunitiesfor parallelor distribut_dcomputingexist. If a sufficientnumber
of processorsareavailableto evaluateall of therequiredfunctionvaluesconcurrently,andif theabscissa
indicatesactualtimeratherthannumberoffunctionevaluations,thentheplateaususuallydisappear.
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3. The Helicopter Rotor Blade Design Problem. H,_licopter rotor blade design is used here for

illustrating concepts and motivating algorithmic requirements fi,r SMF applied to industrial problems. The

particular task we consider is structural design of helicopter rotor blades for minimum vibration transmitted

to the hub.

As indicated in Figure 2, the design variables consist of up to five structural parameters for each span

segment. The variations on this problem that we have considere( have between 10 variables and 56 variables.

As described below the objective function is a weighted sum o: various harmonics of forces and moments.

The analysis code used is Tech01 [33].

Tech01 is a multidisciplinary analysis code. The disciplines include dynamic structures, aerodynamics,
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FIG. 2. Rotor blade design variables

wake modeling, and controls. The run time for a Teeh01 fixed-wakc analysis is roughly 20 minutes on a mid-

level workstation. However, the run timc can increase to sevcral days on the same machine if wake updating

is invoked. The full wake analysis has greater fidelity to thc physics of the problem. Our main focus is

on the usc of approximations to the analysis code results as objective function surrogates for optimization.

Thus, to facilitate studies of algorithmic issues for surrogate optimization, the test results discussed hcrc use

fixed-wake analyses.

A more detailed statement of the optimization problcm is

(2)

minimize

with respect to

subject to

nh
Ih (x)l

f(x) = E W,
i=i lhi(xB) _- 11

x E _n

XUj _ X3 _ xlj, j = 1 ..., n

cuk > ck(x) >clk, k = 1,...,neon.

In the above equation, the hi, i = 1,...,nh, arc output rcsponscs from Tech01. The subscript i is an

index that maps from the response function vector elements to forces in three directions, moments in three

directions, and harmonic numbers for each force and moment. In addition, the indexing may span several

flight conditions, such as hover and forward flight at various speeds. Normalization to account for the

different physical units of the responses is accomplished by including hi(xB) in the denominator of the

objective function terms, where XB is the baseline design.

The objective function components are weighted by factors wi. The limits xuj, xlj, cuk, and clk are upper

and lower bounds on the variables and constraints, respectively. The constraints Ck(X) can be quantities such

as required rotor horsepower, centrifugal force, autorotational inertia, snow load, and limits on total mass.

Asidc from the bounds on the independent variables, the only constraint in the examples considered here is

total mass. Since thc masses are a subset of the design variables, the mass constraint is a linear constraint

involving a subset of the variables. Thus, it is independent of the analysis results, and does not require

consideration of issues involving the construction of surrogate approximations of constraint functions.

The helicopter rotor blade design problcm is summarized in Table 1. Note that this problem has upper

and lower bounds on all the variables.



Example Variables Objective Constraints

31 Variable 10 masses,

10 centers of gravity,

11 stiffnesscs in

a single direction

weighted sam of 1st

and 2nd h, Lrmonics

for two flight

conditions

upper bound on

sum of masses

TABLE 1

Rotor blade design examF:te

4. Constructing the Surrogates. Even with fixed wakei the helicopter rotor blade design examples

arc not easily modeled using simplified, less expensive simulations. In consequence, wc concentrate on

approximations constructed by interpolating or smoothing a set of known objective function values. In this

section wc describe our method of choosing a set of initial desi_in sites at which the objective function f is

evaluated before optimization commences, our choice of a class of function approximations from which the

initial surrogate s is to be selected, our method of selecting s from this class, and some diagnostic procedures

for extracting useful information from s.

The problem of choosing a set of initial design sites, xl, ..,Xd C B, is a problem in the design of

experiments. This problem has been studied extensively in the recent literature on the design and analysis

of computer experiments (DACE), surveys of which include [31_ 2, 22].

We seek designs that are "space-filling" (for lack of a better term), i.e., that will allow us to sample

the behavior of the objective function throughout the feasible region. We want to avoid designs that are

tied to a narrow class of approximating functions, e.g., linear (_r quadratic functions. Wc want to be able

to generate designs somewhat automatically, and we would like to be able to generate designs for irregular

(nonrectangular) feasible regions.

We have opted for designs that are used in quasi-Monte Carlo integration: Latin hypercube sampling

(LHS) [27, 35], orthogonal arrays (0`4) [28] and O`4-based LHS [36]. In LHS, each of the n variables is

chosen from d equally spaced values. The O,4s we use are spaco_filling in the following sense: the variables

in the experimental design are assigned from l distinct values, h every subset of k variables every one of the

I k combinations of values occurs the same number of times. Arre_ys with this property are of strength k. LHS

designs are of strength 1. Typically we use OAs of strength 2 This is a straightforward process because

LHS designs are easily generated and efficient code for generating 0`4 designs is available from STATLIB

(http ://lib. star. cmu. edu).

LHS and 0,4 were devised for rectangular regions. In the helicopter rotor blade design examples, the

mass constraint induces a nonrectangular feasible region. We h_ tve experimented with various strategies for

adapting 0,4 designs to this region, e.g.,

• Generate a design with d points in the rectangle defined _y the variable bounds, then alter the design

so that the d points satisfy the mass constraint.

• Generate a design with many points in the rectangle defined by the variable bounds, then discard

the points that are outside a slightly expanded mass co astraint boundary.

After the design sites have been chosen and the objective "unction f has been evaluated at them, the

initial surrogate s can be constructed. This surrogate is intended to be an approximation of f throughout the

region of interest that is inexpensive to evaluate. It will be reca ibrated as new function values are obtained

in the course of solving the optimization problem. Because we do not want to make a priori assumptions

about the structure of f, we require a large, flexible class of fun(tions from which surrogates can be selected.
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Plausible families of approximating functions include neural networks and low degree interpolating poly-

nomials [12]. In §2.3 wc gave evidence that the SMF can use different families of approximation. We have

opted for the family of functions defined by the kriging procedures discussed in the DACE litcraturc. The

kriging parametcrization, defined by means and covariances of function values, is more intuitive for the

present applications than other approximations in the response surface literature. For some choices of co-

variance function, kriging is equivalent to splinc interpolation, a correspondence that has been discussed in

the geostatistics literature [43].

It is quite common in the statistics literature to motivate kriging by assuming that f is a realization of

a stationary Gaussian spatial process. As implausible as this assumption may seem in the present context,

it does suggest useful ways to proceed with the selection of a surrogate objective function from the family of

approximating functions. Upon making this assumption, it becomes possible to estimate mean and covariancc

parameters from f(xl),..., f(Xd) by the method of maximum likelihood estimation (MLE) and thereby to

specify a well-defined procedure for selecting s.

Although MLE has been criticized in the spatial statistics literature, e.g. [30], it has been defended by

others as a crude form of cross-validation [19, 10]. Our experience to date has been similar to that reported in

[31]: "crude MLE's lead to useful prediction .... " Assuming that the covarianccs in question are a constant

unknown variance times unknown correlations of a specified form, there exist closed-form expressions for

the MLEs of the mean and variance parameters. To obtain MLEs of the correlation parameters, wc have

attempted global optimization of the (log) likelihood function via an implementation of the algorithm in

[29].

One technical difficulty with kriging should be noted. Kriging calculations require inversion of the matrix

of estimated correlations bctween function values at the design sites. The initial correlation matrix usually

is well-conditioned but as the function is sampled at additional sites that cluster near a minimizcr, the

process of recalibration generally causes subsequent correlation matrices to become ill-conditioned. We have

addressed this difficulty by adding a small number (10 -6) to the diagonal of the correlation matrix. With

this addition, the approximating functions do not exactly interpolate the observed function values; however,

they retain their flexibility and predict observations very closely.

Once a surrogate function s has been constructed, one can use it to predict values of f(x) and also to

approximately bound the errors in such predictions. The latter is accomplished by calculating mean squared

error (MSE) under the assumption of a stationary Caussian process. It has been argued in [31, 21] that

this is a reasonable framework in which to bound future prediction errors, particularly if one can assess the

plausibility of the assumption of a stationary Gaussian process. Since larger values of MSE are associated

with larger uncertainty in prediction, we have used MSE to guide our choice of new sites at which data would

be of particular value in improving the accuracy of the surrogate.

One also might predict future prediction errors by examining the cross-validation residuals. These

error estimates are obtained at each observation by kriging (with the original MLE parameters) the other

observations and predicting the designated observation. Similarly, it was suggested in [21] that one might

cross-validate the MSEs to assess their predictive capabilities.

Finally, we have found that performing a functional analysis of variance [17, 28, 31] on the surrogate

function s is a useful way of identifying lower-dimensional subspaces in which most of the variation in

s resides. This ANOVA technique, which can in principle be applied to any square-intcgrablc function,

decomposes s into main effects (contributions of individual variables to variation in s) and interaction

effects (contributions of combinations of variables to variation in s). The hope is that one can identify a few
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keyvariablesthataccountformos_ofthevariationin f, then o' _timize solely with respect to those variables

at reduced expense.

5. DACE Model Refinement by Balanced Searches. The Search phase of SMF allows us to use

any method to choose a trial set of new mesh points at which to evaluate the true objective function. In

this section we discuss several search strategies with which we }Lave experimented.

Whatever approximations are used as surrogates for the ,,bjective function, a straightforward search

strategy is to optimize (either locally or globally, depending on one's goals) the current approximation and

to return trial points that reside on the mesh Mk near the solu_:ion(s) thus obtained.

A simple implementation of this strategy, in which a finite-difference quasi-Newton method was used

to find a local minimizer of the current DACE approximatior (see §4), is the model-assisted grid search

(MAGS) described in [42]. MAGS was intended for situations in which only a relatively small number of

function evaluations are permitted. Because it approximates the objective function over the entire feasible

region, recalibration of the approximation is made using one new objective value at a time, as these values

are produced by the optimization procedure.

In contrast to MAGS, a "zoom-in" method for local refinement was proposed in [18]. This strategy uses

the existing approximation to determine an interesting subregioa of the design space for further exploration.

The optimization process is halted, additional function values are obtained in the subregion, and a new

approximation is formed. The expectation is that the approxiination constructed in thc subregion will be

more accurate than the original approximation because it will be based on a higher density of data.

One method for determining the zoom-in region is to loca_c the local minima of the original approxi-

mation and determine the extent of their basins. For a specifie_ value greater than the function value at a

local minimum, the extent of its basin is assessed in terms of thei distance of the minimum in each coordinate

direction to the nearest level set corresponding to the specified v.due (or the distance to the coordinate bound

if the specified lcvcl is not attained.)

Zoom-in methods favor exploration in the vicinity of local sc[utions of the current approximation. Hence,

they may fail to find basins of better local solutions elsewhere i_1the design space. In the parlance of global

optimization, they are purely local in nature. A purely global method for determining new points at which

to evaluate f is to minimize an estimate of the integrated mean squared error (IMSE, [31]) of the resulting

new approximation. This method is space-filling in that it terds to place new design points in previously

unexplored regions. In contrast to zoom-in methods, the IMSE optimal methods defer examining promising

regions in the interest of obtaining a better "global" picture of t he design space. The result is that they tend

to converge slowly to a minimizer of the objective.

To address both local and global concerns, we have experir ranted with a balanced search strategy. This

method is based on our observation that, at any location in design space, the current DACE approximation

can supply two key pieces of information: an approximate va.ue of the objective and an estimate of the

approximation's mean squared error (MSE) at the point. Th _ former provides purely local information;

the latter, which increases with the distance from the subject I'oint to the nearest design site and with the

degree of nonlinearity of the data, quantifies uncertainty aboul the behavior of the true objective function

and hence provides some degree of global information.

Based on local concerns, one would evaluate f at points that the approximation indicates have low

values. Based on global concerns, one would evaluate f at p_ints with high MSE values. The balanced

search method selects a portion of the total of the trial set irk based on each measure. Ideally, one would

measure the approximate values and MSEs at each point on a fine grid in design space and select the best
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candidates,asin [9]. Unfortunately,in high-dimensionaldesignspacesit is impossibleto considerevena
crudegridformedbysplittingeachdimensionin two;hence,thebalancedsearchalgorithmdescribedbelow
considerseachmemberofa "densecloud"of (say5000)trial sites.Toensurethatthiscloudisspace-filling,
it isgeneratedfromanOA-based LHS.

Balanced Search Algorithm for New Site Selection

Given: an existing approximation, current design sites, a list of local minimizers of the current approximation,

the number nlocal of new design sites to bc based on local concerns, the number nglobal of new design sites

to be based on global concerns, and a tolerance T equal to the minimum distance that will be allowed between

any two sites.

1. Create an initial list of (say) 5000 trial sites using an O,4-based LHS.

2. Add the local minimizers of the current approximation to the list of trial sites.

3. Calculate the distances from each of the trial sites to each other and to each of the design sites for

the current approximation.

4. Sort the trial sites in order of increasing values as determined by the current approximation.

5. Select as new design sites the nlocal trial sites with the smallest values determined by the current

approximation, maintaining the condition that each design site is > r distant from every other

design site.

6. Compute the MSE at each of the remaining trial sites using the correlation parameters of the current

approximation, but after updating the model parameters to reflect MSE = 0 at the newly selected

design sites.

7. For i = 1,..., nglobal, do:

(a) Select as a new design site the trial site with the largest MSE value, maintaining the condition

that each design site is > 7 distant from every other design site.

(b) Update the approximation to rcfiect MSE = 0 at the newest design site, then recompute the

MSE at each of the remaining trial sites.

6. Test Results for Rotor Blade Design. We now summarize the performance of several optimiza-

tion methods when applied to the helicopter rotor blade design problem described in Section 3. We remind

the reader that this problem has a linear inequality constraint which we treat by declining to evaluate f(x)

for any infeasible x. The optimization methods that we considered are the following:

• MMF: This is Serafini's [32] implementation of the surrogate management framework, SMF, de-

scribed in Section 2.2. An initial approximation was constructed from 59 successful function eval-

uations using the DACEPAC software package [2, 3]. The initial iterate was a baseline solution

provided by Boeing. Search evaluated the current approximation on a 29,800-point subset of the

current mesh and returned the three points with the lowest values. The true objective function was

then evaluated sequentially at each of these points until one was found to be better than the current

iterate.

• DFO: This is the derivative-free optimization method discussed in [7, 8]. The results that we report,

which include final values but not run histories, were provided by Katya Schcinberg. The initial

iterate was the baseline solution provided by Boeing. Two variants of DFO were implemented, one

that scales the decision variables to be of comparable magnitude and one that leaves the decision

variables unsealed. (The significance of this distinction will be discussed below.) Because DFO

randomly chooses the second point at which the objective function is evaluated, multiple runs of

13



eachvariantwercperformed(nineforthescaledvariant,tenforthcunscaledvariant).
• PDS:ThisisTorczon'simplementation[37]oftheparalleldirectsearchmethodof [14],withmodifi-

cationsbySerafinitosupportconstraintsandthestandardMessagePassingInterfacc(MPI)parallel
communicationslibrary[34].Theinitial iteratewasthebaselinesolutionprovidedbyBoeing.PDS
wasexecutedusing96evaluationsof theobjectivepc: iteration,morethan theminimalnumber
(62)requiredto ensureconvergence.

• G/k: Thisisa geneticalgorithmfromPCAPack[23].Ontheadviceof its author,DavidLcvine
oftheBoeingCompany,weusedasteady-statereproductivestrategywithapopulationsizeof200
anda replacementrateof 10%of thepopulationperit_.'ration.

• BLG$: This implementationof the SMFis dueto BookerandFrank[4]andwasdiscussedin
Section5. The initial approximation was the same as for MMF. The current approximation was

refined twice, each time by adding 50 new values of the objective function. Some of these 50 new sites

were chosen because the current approximation predicted that they would have objective function

values lower than that of the current iterate; others were chosen because they were relatively far

from any previously selected sites.

• Sampling: This is a simple sampling algorithm that generates OA-based LHS of the Bose typc

[28]. Each sample contains the initial design, and in addition, samples that contain 58, 200, 380,

and 684 convergent points were generated independently. For each sample, the best value of the

objective function was taken to be the minimum of the objective function values computed at the

points in that sample, if this value improved on the be_t found in prior samples. Wc include these

results only as a simple strawman, and for this reason we did not count the rather larger number

of points in each sample for which the f(x) did not re1 urn a value, nor did we try to implement a

more sophisticated sampling algorithm.

For each of the above optimization methods, the best objective function value obtained after selected

numbers of function evaluations was plotted against the number of function evaluations. The resulting graph,

adapted from [5, 32], is displayed in Figure 3. We report the total number of attempts to evaluate the objective

function, whether or not the attempt was successful. However, we did not count unsuccessful attempts

encountered during the construction of initial approximations, _rior to commencement of the optimization

algorithm. Thus, for MMF and BLCS, our count includes the 59 successful function evaluations obtained

by DACEPAC, but not the additional 97 evaluation attempts t lat failed. For the sampling algorithm, only

successful function evaluations were counted.

The results summarized in Figure 3 arc quite encouraging so good, in fact, that it may be that the

31-variable helicopter rotor blade design problem is substantial y easier to solve than we anticipated. Both

CA and PDS performed as advertised. GA produced substanti d decrease with a small number of function

evaluations, but then had difficulty descending below a fairly high value of the objective function. PDS

descended somewhat more steadily to an appreciably lower v_lue of the objective function. Both DFO

and MMF found even lower objective function values in a nm aber of function evaluations that would be

considered extremely small for finite-difference quasi-Newton m._thods.

Exccpt for one variant of DFO, all of the algorithms for whi( h we have reported results scale the decision

variables to be of comparable magnitudes. The variables in t-m 31-variable helicopter rotor blade design

problem differ by ten orders of magnitude, yet the single lowest value of the objective function was found by

the variant of DFO that did not scale the variables. This appm cnt paradox deserves further comment.
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FIG. 3. Results for the 31-variable helicopter rotor blade design problem

When DFO is applied to the unscaled problem, its trust region precludes appreciable change in the

variables of large magnitude but hardly restricts changes in the variables of small magnitude. In effect,

DFO thereby restricts its search to the subspace defined by the variables of small magnitude. A subsequent

ANOVA decomposition of a DACE approximation of thc 31-variable helicopter rotor blade design objective

function revealed that the objective does not vary much with respect to the variables of large magnitude.

Thus, the unscaled variant of the DFO implementation was actually solving a lower-dimensional problem

coincidcntally generated by the most important variables. (This is a dramatic illustration of the diagnostic

value of the ANOVA decomposition.) Wc arc now investigating the lower-dimensional problem in greater

detail.

Finally, we observe that most of the above algorithms can exploit parallelism to reduce the "wall clock"

time required to get a solution, principally by concurrent evaluations of thc objective function. The im-

plementations used here differ with respect to how many concurrent evaluations can be used effectively. In

particular, two of the codes, PDS and GA, were designed explicitly to be executed in parallel and so they

15



have the advantage that they can use any number of processors without any recoding. Given this implemen-

tation philosophy, the total number of function evaluations these methods take to reach a solution does not

compare favorably with the sequential implementations of the other algorithms. However, when executed

in parallel, the "wall clock" time for PDS and GA is more comi)ctitivc. Nonetheless, for the tests reported

here, MMF and some runs of DFO found feasible solutions wil h appreciably lower values of the objective

and required far fewer total evaluations of the objective functio_l in the process.

7. Conclusions. The results reported in Section 6 lend credence to our overall plan to develop approxi-

mation-based optimization methods that use SMF. Our current intent is to construct DACE approximations

of sufficient accuracy that ANOVA decomposition will provid( insight into the problem at hand. Subse-

quently, some variant of SMF, perhaps one with a BLGS fia_ or, will bc used to identify the basin of a

promising minimizer of the true objective function.

Of course, much remains to be done. We would like to find ways to accelerate the search for a minimizer

after SMF has identified a basin and its reduction of the objectiv,_' function has begun to slow. One possibility

is then to use known objective function values to provide an initial approximation for DFO, as there are

reasons to be believe that DFO enjoys faster local convergenc:_ properties than SMF. Another important

challenge is to extend SMF to address problems with general constraints, particularly constraints that involve

outputs of expensive analysis codes. We are currently working to address these issues.
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