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Extended Summary

1 Introduction

Screening based on the locality of defects has long been informally practiced in the

industry, whereby die from wafers, or parts of the wafer, that display a high incidence of failures

are discarded. More recently we have refined this approach such that tests results for

neighboring die on the wafer are also considered in evaluating test results for a particular die [l ].
It has been shown [2-4] that by exploiting information about defect clustering on the wafer, test

cost can be optimized and low defects levels achieved for complex VLSI circuits. A particularly

useful capability of this new approach is the ability to bin dice (or chips) following testing so as

to separate out a high quality bin with defect levels (due to test escapes) up to an order of

magnitude better than the average for the lot. Furthermore, such a strategy may also be able to
screen for potential burn-in failures, thereby eliminating the need for expensive burn-in of bare

dice. It is important to note that this proposed approach is orthogonal to other techniques for

improving test effectiveness (e.g. increased fault coverage, addition of IDD Q tests, etc.), and can

probably screen for defect levels up to an order of magnitude better than can be otherwise

achieved without exploiting defect clustering information.

Because of the difficulty of obtaining defect map data from semiconductor

manufacturers, the effectiveness of this new approach was initially established in [1-4] through

detailed analytical analysis. The mathematical models employed were based on widely accepted

negative-binomial defect distributions first introduced by Stapper [5]. Recently we presented the

first experimental study to practically demonstrate the viability of the proposed approach based

on test results from a few waters from an older IBM bipolar process [7]. In thispaper wepresent

the first results on the effectiveness of die screening for a modern submicron CJ/lOS process. The

data comes from the SEMATECH test methods experiments conducted by IBM on a production

ASIC (144K gates) in 0.5_m process. The 18,466 CMOS die tested in this experiment provide

an order of magnitude more data than the earlier bipolar study and for the first time allows

validation of the analytical models in [2-4].

• This data comes from the work of the test thrust at SEMATECH, Project S121. The analysis here is the

work of this university, the conclusions are our own and do not necessarily represent the views of
SEMATECH or its member companies.



Therestof thisextendedsummaryisorganizedasfollows. Section2 reviewsthedie
screeningapproachbasedondefectclustering.In Section 3 we outline the experimental
approach and provide details of the test data. Results are presented in Section 4. We conclude

with Section 5. The complete paper will additionally include a more comprehensive comparison
of the experimentally observed data with the theoretical predictions in [3,4].

2 Review of the Die Screening Approach

The basic idea here takes advantage of the fact that defect levels in tested components

(test escapes) depend not only on the quality of the test applied, but also on the yield of the

incoming components, i.e. how many of the manufactured components are good to begin with.
Thus, if yield is very high, even a poor test will result in mostly good parts being shipped. On the

other hand, if yield is very low, then a poor test will let through many faulty parts. For example,

if yield is 90%, even a poor test that fails to detect faults in 10% of the bad components will only

let through, on average, one bad part for every 90 good parts a defect level (DL) of 1.1%.

However, if the manufacturing yield is 10%, then the same poor test will be applied to 90 bad

parts out of every 100, and will let through 9 bad parts along with the ten good ones. In this latter

case, using the same test, the defect level in the parts being shipped is 47%, almost 45 times
higher than in the first case.

Because of the observed clustering of defects in semiconductor wafers, not all dice on a

fabricated wafer have the same probability of being defective if test results for other dice in the

neighborhood are known. A die next to another die that is known to be defective has a higher a

priori probability of being defective, and a lower expected yield than a die with good neighbors.

Now if dice that test good are binned based on these

a priori yields, the different bins can be expected to display defect levels that reflect the incoming
yield variations. Bins with high apriori yields will contain dice with low defect levels.

In the scheme described in [1] each die that tests go,)d during the wafer-probe test is

binned into one of nine separate bins based on how many of the die's adjacent neighbors (0-8) on

the _afer tested faulty. Although only dies that test good are binned, each bin can be expected to

contain some faulty dies as a result of test escapes (i.e. have higher detect levels). This is

because, due to the clustering of defects, a larger fraction of dies with faulty neighbors are likely

to be faulty to begin with when compared to dies with zero or only a few faulty neighbors.

Assuming that the test is equally effective in detecting faulW dies from all neighborhood classes,

a larger fraction of faulty dice in the tested sample will resu t in a larger fraction of fault escapes

and therefore higher detect levels. Thus the nine bins conta ning the dies that tested good at

wafer probe time can be expected to have significantly diffe'ent defect levels depending on the

extent of the defect clustering existing on the water. These :lifferent defect levels imply differing

likelihood's of a random die being defective in each of the vine bins.

Analytical analysis in [3,4] based on negative binomial yield statistics has shown defect

levels in the best bin up to an order of magnitude better that the average for the lot. In [7] we

present the results from actual wafer test data collected at ILM for a bipolar process. Dice were

binned based on the results of a basic DC functional test. T,:st escapes were then uncovered

using a more comprehensive test which included delay testi_g. It was observed that while all the



binstakentogetherhadan8%escaperate,thebestbincontainednotestescapesatall. However,
dueto thelimitedamountof availabledata(approximately1200gooddicefrom23wafers)
binningonlyconsideredadie'sNorth,South,EastandWestneighbors(5 bins);andeventhen
thebestbinswereverysparselypopulated.

3 The Experiments

Data for the experiments presented here comes from the SEMATECH "Test Methods

Evaluation" [6] study. This was an experiment to determine the relative merits of several test

methodologies often used by SEMATECH member companies and other IC manufacturers. The

experiment was designed to determine the following: given X seconds of VLSI test time, how

should that time be optimally allocated among the various test techniques currently employed by

IC manufacturers. As previously mentioned, the experiment was conducted by IBM on

approximately 18,500 die from 75 wafers of a production ASIC (144K gates) in 0.5_tm process.

Four major test methods were selected that are in common use within the member companies.
These methods were:

• Functional test, e.g., design verification patterns
• Scan-based stuck-at fault tests

• Scan-based transition (delay) fault tests

• IDD Q tests

Figure 1 shows a typical wafer map. The legend indicates the several different possible
results from the various tests and the test results for each die site. Dots indicate missing dice or
locations for which test results were not available.

Based on this wafer map data we constructed three experiments to study the effects of

defect clustering on test escapes. In the first experiment we "assume" that only the functional test

and IDD Q tests were run at wafer probe. This means that all dice marked $$ (all pass), I P (failed
delay exclusive), 1T (failed stuck-at exclusive) and 2B (failed both delay and stuck-at tests) will

be "passed" as good. We can now look upon the dice marked IP, IT and 2B as test escapes for

the functional and IDD Q tests and study how they are binned. All the die that passed the

functional and IDD Q tests were then binned based on the 8 neighbor test results. Bin 0 then

contains those die which passed the functional and IDD Q tests with no faulty dice among the
die's eight adjacent neighbors; bin 1 dice have only 1 faulty neighbor; bin 2 dice have two faulty

neighbors, etc. up to bin 8 in which the dice have all eight neighbors faulty.

Similarly, the second experiment assumes that only the stuck-at test and IDD Q were run
at wafer probe. This results in all dice marked $$, IP, 1F (failed functional exclusive) and 2A

(failed both delay and stuck-at tests) will be passed as good dice and therefore end up as test

escapes in the subsequent binning.

Finally, in the third experiment we assume that the only test not available at wafer probe

time is the IDD Q test. In this case the IDD Q only failures constitute the test escapes. Since there
were a large number of these, they provide significantly more data. One thing to note here is that

in the SEMATECH study a 5j,tA threshold was used to declare IDD Q failures. This resulted in a

substantial number of dice which otherwise passed all test but had an IDD Q level above 5_A.



ForourthirdbinningexperimentweraisedtheIDDQthresholdto 1001aA.Therefore,dicewhich
hadatestresultof 1I(failedIDDQexclusive)andhadanIDDQlevelabove100FtAweretaken
tobefailureswhilethosedicewhichweret1buthadanIDDQ levelof 100_tAorbelowwere
passedandresultedin testescapes.

Afterbinningfor eachexperimentbasedontheavailablewafermapdataweinvestigate
thedifferentbinsfor thetotalnumberoftestescapesoutof:he totalnumberof diceineachbinto
obtaindefectlevels.

4 Results

One of the decisions to be made before compiling the results is in the handling of dice for

which some neighborhood test results are missing. All dice on the periphery of the wafer fall in

this category, along with some internal dice as shown in Figure 1. For the purposes of our

experiments we considered these missing dice to be failures This is because dice on the

periphery of the wafer typically have a high defect rate.

Table 1 shows the results when failures detected exclusively by the stuck-at and delay

tests are considered escapes. Observe that the best bin, with all eight good neighbors, has only

one test escape and a defect level of 0.17%. The fraction of test escapes (stuck-at and delay

failures) generally increases as the number of faulty neighbors for a bin increase, although there

is a reversal for some bins. This is most likely a statistical aberration because of the small sample

size. The overall defect level is 102 defective dice out of 11,881 or 0.86%, which is 5 times that
for the best bin.

Table 2 shows the results when failures detected exclusively by the functional and delay

tests are considered escapes. Again observe that the best bil_ has only one test escape and a

defect level of 0.17%. As seen in Table l, the fraction of te._t escapes (functional and delay

failures) generally increases as the number of faulty neighbc, rs increase, although there is a
reversal for some bins. In this case the overall defect level is 56 defective dice out of I 1,881 or
0.47%, which is 2.75 times that for the best bin.

Similarly Table 3 shows the results when failures detected exclusively by only the IDDQ

tests are considered escapes. For this case the best bin ende J up with 43 test escapes and a defect

level of 3.45%. The traction of test escapes continues to increase through bin 7 with bin 8 having

the only reversal. Again. this is probably a statistical aberration due to the small sample size in

bin 8. The overall defect level is computed as 766 out of 12,649 or 6.06%, which is almost twice
that of the best bin.

For comparison, we have included in Table 4 the re:;ults from the bipolar data presented

in [7]. In this instance a DC functional test was applied at v afer sort and test escapes were those

dice which failed more elaborate DC functional tests delay lests. These results show a similar
trend to what we have seen in Tables 1 - 3. These results ar. • less stable because of the smaller

number of dice used in that study.



Theearlier smaller bipolar study did not provide a high enough bin 0 population to

directly observe test escapes and thereby estimate defect levels for the best bin. Results

presented here indicate that the best bin can be reasonably expected to show a 2 - 5 factor

improvement in detect levels over the average for the lot for moderate to high yields (the overall

yield for these experiments was approximately 65%). The experiments also confirm the

dependence of the best bin quality on test transparency. The defect level improvement is poorer

for the case of IDD Q escapes where the tests applied had a much higher escape rate. Overall
experimental results are consistent with analytical projections for typical values of the clustering

parameter in [9]. The final version of this paper will include extensive analysis to validate the

analytical models based on this data.

5 Conclusion

The primary contribution of this paper is the analysis of actual submicron CMOS

experimental test data to validate the potential of the defect cluster based die screening approach.

Wafer defect maps for state of the art processes are very difficult to obtain for published studies;

the availability of the SEMATECH experimental data has been invaluable.

The experimental study presented here has conclusively established the effectiveness of

defect clustering based strategies in screening dice (and chips) with very low defect levels.

Because this approach is orthogonal to all other techniques for improving test effectiveness, it

can provide quality levels that cannot be achieved without exploiting defect clustering

information. Defect level improvements of up to a factor of 5 can potentially be achieved for

moderate to high yielding dice, and perhaps even more for large complex dice with low yields.

Observe that this screening approach is equally effective in screening out IDDQ failures

as it is for DC functional failures and delay faults. This is because the underlying physical

mechanism that our approach relies on is defect clustering. Defects, in general, can cause a range
of faults with different manifestations. For this reason, binning can be expected to be equally

effective in screening dice for other fault types, such as "'faults" that are likely to result in burn-in

failures. This is an important potential application for this die screening approach.
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Wafer Map Legend

$$ = Pass All Tests

IO = Shorts/Open Fail

SP = Softpower Fail
AF = All Fail

IT = Failed Stuck-at Exclusive

IF = Failed Functional Exclusive

IP = Failed Delay Exclusive

iI = Failed IDDQ Exclusive

3T = Failed All EXCEPT Stuck-at

3F = Failed All EXCEPT Functional

3P = Failed All EXCEPT Delay

3I = Failed All EXCEPT iDDQ

2A = Failed Functional Test and Delay test Only

2B = Failed Stuck-at Test and Delay test Only

2C = Failed Stuck-at Test and IDDQ test Only

2D = Failed Functional Test and IDDQ test Only

2E = Failed Functional Test and Stuck-at test Only

2F = Failed IDDQ Test and Delay test Only

XX = Test was not applied

0 1 2 3 4 5 6 7 8 9 i0 Ii 12 13 14 15 16 17 18 19 20 21

0 ...........................................

1 ................ $$ $$ AF AF $$ 3F ...............

2 ............ 3P $$ AF iI iI $$ $$ $$ $$ $$ AF .........

3 ........ iI $$ $$ AF $$ $$ $$ AF 2E $$ AF AF .........

4 ........ 3F S$ $S $$ $$ $$ $$ $$ $$ .- 3F AF II $$ AF .....

5 .... $$ $$ AF $$ $S AF AF 3F $$ $$ $$ $$ $$ $$ 3F $$ $$ AF ..

6 .... S$ $$ $$ $$ SS $$ $S $$ $$ $$ 3F $$ $$ $$ AF $$ AF AF ..

7 ...... $$ $$ AF $S $$ $$ $S AF .. $$ AF $$ 3F $$ $$ $$ $$

8 .. AF AF $$ AF AF $$ $$ $$ $S $$ $$ $S AF $$ $$ $$ AF 3F

9 .... $S $$ $$ $$ $$ $$ $$ ., 3F $$ $$ $$ $$ $$ $$ $$ $$ $$ Am

I0 ,. $S $$ AF $$ AF $$ $S AF $$ 3F $$ $$ $$ AE $$ $$ $$ $$ $$

II .... 2E iI 3F $$ 3F $$ $$ 3F $$ $$ .. $$ $$ $$ 3F S$ 3F AF 3F

12 .... 3F S$ AF AF .. $$ $$ $$ II $$ __ $$ AF $$ $$ $$ .. $$ ..

13 .... SS AF $S 3F $$ AF $$ $$ $$ AF $$ AF S$ $$ AF $$ AF .....

14 ........ $S AF SS __ AF __ AF $$ AF .. $$ $$ SS $$ .......

l_ ........ ss Av _ ss ss 3F ss AF __ A_ AF .. SS .........
16 .......... $$ .. $$ S$ S$ ,. 3F S$ AF AF .. AF .........

17 ................ AF ........ AF AF .............

Figure 1. Typical Water Map



Bin

0

No. Passing
Functional& It_Do

6OO

Delay__ndStuck-at
Failures

% Failsafter

FunctionalandIDt_
0.17

1 1584 15 0.94
2 2378 19 0.79
3 2533 15 0.59
4 2109 23 1.08
5 1468 12 0.81
6 814 11 1.33
7 308 5 1.60
8 87 1 1.14

Lot Average 11881 56 0.86

Table 1"Binning resultsfor Experiment#1

Bin

7
8

Lot Average

No. PassingStuck-at
& ID_

590

1547

2379

2526

2110

1506

824

312

87

11881

Delay and % Fails after Stuck-at

Functional Failures and IDoq
1 0.17

9

12

11

7

9

0.58

0.13

0.47

0.52

0.46

1.08

3 0.95

1 1.14

56 0.47

Table 2: Binning results for Experiment #2



Bin No. PassingStuck-at
& IDoQ

Delayand
FunctionalFailures

43

% FailsafterStuck-at
andIDr_

3.450 1205
1 2322 117 4.80
2 2746 164 5.64
3 2491 149 5.64
4 1824 120 6.17
5 1203 98 7.53
6 611 48 7.28
7 198 24 10.81
8 49 3 5.77

Lot Average 12649 766 6.06

Table 3: Binning results for Experiment #3

Bin No. Passing DC Failures a_er DC %Fails after DC Tests

Tests Tests

0 1 0 0.00

1 9 1 11.11

2 39 0 0.00

3 108 9 8.33

4 224 14 6.25

5 297 21 7.07

6 324 41 12.70

7 194 31 16.0

8 91 19 20.9

Lot Average 1287 136 10.57

Table 4. Results from [7] with 9 Bins




