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Introduction

Fractals embody important ideas of self-similarity, in which the spatial behavior or

appearance of a system is largely independent of scale (5). Self-similarity is defined as a

property of curves or surfaces where each part is indistinguishable from the whole, or where the

form of the curve or surface is invariant with respect to scale. An ideal fractal (or monofractal)

curve or surface has a constant dimension over all scales, although it may not be an integer value.

This is in contrast to Euclidean or topological dimensions, where discrete one, two, and three

dimensions describe curves, planes, and volumes. Theoretically, if the digital numbers of a

remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property,

the fractal dimension of the image will not vary with scale and resolution. However, most

geographical phenomena are not strictly self-similar at all scales, but they can often be modeled

by a stochastic fractal in which the scaling and self-similarity properties of the fractal have

inexact patterns that can be described by statistics. Stochastic fractal sets relax the monofractal

self-similarity assumption and measure many scales and resolutions in order to represent the

varying form of a phenomenon as a function of local variables across space.

In image interpretation, pattern is defined as the overall spatial form of related features,

and the repetition of certain forms is a characteristic pattern found in many cultural objects and

some natural features. Texture is the visual impression of coarseness or smoothness caused by

the variability or uniformity of image tone or color. A potential use of fractals concerns the

analysis of image texture. In these situations it is commonly observed that the degree of

roughness or inexactness in an image or surface is a function of scale and not of experimental

technique. The fractal dimension of remote sensing data could yield quantitative insight on the

spatial complexity and information content contained within these data (2). A software package

known as the Image Characterization and Modeling System (ICAMS) (6) was used to explore

how fractal dimension is related to surface texture and pattern. The ICAMS software was

verified using simulated images of ideal fractal surfaces with specified dimensions. The fractal

dimension for areas of homogeneous land cover in the vicinity of Huntsville, Alabama was

measured to investigate the relationship between texture and resolution for different land covers.

Methodology

The isarithm or line-divider method (3) for calculating fractal dimension was used in this

analysis due to its robustness, accuracy, and its relative lack of sensitivity to input parameters. In

this method, the fractal dimension of a curve (in a two-dimensional case) is measured using

different step sizes that represent the segments necessary to traverse a curve. For an irregular

curve, as the step sizes become smaller, the complexity and length of the stepped representation

of the curve increases. For surface representations (such as remotely sensed images), the

isarithm method uses contours of equal z values as the objects of measurement whose fractal

dimensions are estimated. The contours or isarithms are generated by dividing the range of

pixel values into a number of equally spaced intervals. For each resulting isarithm line, the

image is divided into two regions--areas above and below the isarithmic value. Each isarithm's

length (as represented by the number of edges in a grid representation of a surface) is then

measured at step sizes up to a user specified maximum. The logarithm of the number of edges is
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regressed against the log of the step sizes and the slope of the regression is used to calculate the

fractal dimension, resulting in a unique value of D for each isarithm. The fractal dimension of

the entire image is calculated by averaging the fractal dimensions of each isarithm.

Huntsville Texture Analysis

High resolution imagery of the Huntsville, Alabama area was used to evaluate the

differences in fractal dimension that occur among textures associated with differing land covers.

Mission M424 conducted by the Lockheed Engineering and Science Company collected 10

meter resolution data using the Advanced Thermal and Land Applications (ATLAS) sensor

system mounted in a NASA Learjet, (4). The collection date was 7 September, 1994, a clear day

with less than 5 percent cloud cover. ATLAS is a 15 channel imaging system which incorporates

the bandwidths of the Landsat Thematic Mapper with additional bands in the middle reflective

infrared and thermal infrared range. 384 x 384 pixel images containing homogeneous land uses

were obtained from the 10 meter ATLAS.data set. Three land uses were analyzed: 1) an

agricultural area located north of Huntsville; 2) a forested area located in the mountains to the

southeast of town; and 3) an urban area containing the central business district and adjacent

commercial/residential areas. The agricultural area contains large cotton fields and pastures

devoted to grazing, with a sparse road network oriented generally along the cardinal directions.

The image of the forested area is fairly uniform, since the 10 meter resolution is insufficient to

resolve individual trees. Topographical features such as the valley extending from the northwest

comer to the south central part of the image are the main distinguishing features. The urban

image is highly complex, with individual streets and buildings clearly visible.

The Normalized Difference Vegetation Index (NDVI) was computed for the agricultural,

forest, and urban images at 10 meter resolution (384 x 384 pixels) and for resampled images at

20, 40, and 80 m resolution using an image pyramid approach (1). NDVI was computed from

resampled images in ATLAS channels 6 (near infrared) and 4 (red) using the following formula:

[1] NDVI = (ch6 - ch4) / (oh6 + eh4)

NDVI varies from -1 to +1, and provides a good indication of the amount of

photosynthetically active biomass in the image. Snow, water, clouds, moist soil, and highly

reflective non-vegetated surfaces generally have NDVI values less than zero, rock and dry soils

have values close to zero, and highly vegetated surfaces have indices close to +1.0. NDVI varies

across spatial extents in a complex fashion due to influences of the varying domains of

topography, slope, availability of solar radiation, and other factors (7). The NDVI values were

rescaled to an 8 bit format to facilitate comparisons between the three land cover textures. The

image size and the range of resolutions analyzed was limited at the upper end by the need to get

a homogeneous land cover (thus limiting the maximum size of the image) and at the lower end

by the minimum image size (48 x 48 pixels) necessary to use five steps in the isarithm method of

computing fractal dimension.

Increasing the pixel size from 10 to 80 meters affected the non-spatial variance of the

three land covers in different ways (Table 1). Variance dropped by a moderate amount for the
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agricultural image and by a greater mount in the forested image, but it changed very little for the

urban image. Moran's I spatial statistic dropped as resolution decreased from 10 to 80 meter

pixels in the agricultural and urban images (indicating decreasing spatial autocorrelation), and [

increased then declined in the forested image. These measures provide indications that the

resampling process (and by extension, imaging at different resolutions) affects both the non-

spatial distribution of the values in an image as well as the relationships between features in the

image.

Table 1. Descriptive Statistics--Huntsville NDVI Texture Analysis

Land Cover Resolution D Mean Median Std. Dev. Moran'sl

Agricultural 10 2.6101 127.10 137 42.18 0.9023

20 2.6640 127.13 137 42.10 0.8763

40 2.7893 127.15 136 41.97 0.8217

80 2.9371 127.22 134.5 41.79 0.7369

Forest 10 2.8667 127.73 132 38.68 0.7557

20 2.8229 127.86 132 38.19 0.7830

40 2.8159 127.89 131 37.73 0.8073

80 2.7419 128.02 131 37.53 0.7932

Urban 10 2.7417 127.01 137 42.50 0.7587

20 2.7471 127.00 133 42.50 0.7595

40 2.7734 126.99 132 42.50 0.7063

80 2.7829 127.00 133 42.51 0.6726

The ICAMS isarithm method with step size of five and contour interval of 10 was used to

compute fractal dimension for the three land uses. Unlike the ideal fractal surfaces, real world

images are rarely self-similar, so one would expect fractal dimension to vary with the resolution

of the sensor. The slope of the changes in D with changes in resolution for the three land uses

indicates how agricultural, urban, and forested areas compare over the range of pixel sizes

considered. Figure 1 shows that over the 10 to 80 meter range of resolutions, the agricultural

image D increases from just over 2.6 to more than 2.9. The forest image shows a general decline

in D with decreasing resolution, and resampling the 10 meter resolution image has only a small

negative effect on the computed D value. The forested scene behaves as one would expect--

larger pixel sizes decrease the complexity of the image as individual clumps of trees are averaged

into larger blocks. It is likely that the complexity of the forested image (as indicated by a higher

D value) would increase if the sensor were able to resolve individual trees within the scene. A

linear regression on the three land cover responses leads to the conclusion that the urban image

behaves most like an ideal fractal surface and can be said to be self-similar over the range of

pixel sizes analyzed, since one cannot reject the hypothesis that the slope of the pixel size-fractal

dimension relationship is equal to zero. The 95 percent confidence interval for the regression

slope overlaps zero (although just barely at the low end). It should be noted, however, that these

regressions are based on only one image and four pixel sizes in a limited range for each land
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cover type. Although the R 2 values for the agriculture and forest images is 0.94 or higher, the

regression of the urban resolution-D relationship is 0.87 which is not as strongly linear.

The increasedcomplexity ofthe agriculturalimage with increasingpixelsizeresultsfrom

the loss of homogeneous groups ofpixels in the large fields to mixed pixels composed of varying

combinations of NDVI values that correspond to roads and vegetation. As resolution decreases

in the agricultural image, the roads tend to appear wider and the fields are smaller, until

eventually the image appears very complex, with few homogeneous areas. This is also reflected

in the changes in Mom's I statistic in Table 1. The I statistic for the agricultural area drops

from near + 1.0 (indicating a high level of spatial autocorrelation) to 0.74, indicating a more

dispersed spatial arrangement of values in the image as resolution grows more coarse. The same

process occurs in the urban image to some extent, but the lack of large, homogeneous areas in the

high resolution NDVI image means the initially high D value is maintained as pixel size
increases.

Figure 1. Fractal Dimension of Huntsville NDVI Images
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Conclusions

In the example presented here, the complexity of NDVI images of agriculture, forest, and

urban areas responds differently to aggregation. The image of the agricultural area grew more

complex as the pixel size increased from 10 to 80 meters, while the forested area grew slightly

smoother and the complexity of the urban area remained approximately the same. In examining

the changes in fractal dimensions with changing pixel size, an obvious question to ask is whether

it is best to use a fme resolution for analyzing complex scenes with heterogeneous land uses, or is

it best to select a resolution where the complexity of each land cover is approximately the same
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(around40metersresolution). If oneis wishing to distinguish between the different land covers,

then the resolution at which the greatest differences in complexity occur may provide the

maximum discrimination between land covers. If the question is concerned with determining

lumped characteristics of a heterogeneous scene, then the resolution with the least differences in

fractal dimension between land covers will likely provide more unbiased estimates of the scene

taken as a whole.

More research is needed to examine how the complexity of a geographical process having

a known spatial domain is depicted in remotely sensed images. This process domain benchmark

would allow significance testing of the fractal dimension's response to changes in resolution.

Processes that are more scale independent (closer to the monofractal ideal) require fewer data

(i.e., lower resolutions) than other processes that are highly scale dependent. No one resolution is

optimal for all research questions, so further investigation is needed to determine how the fractal

dimension can be used to provide indications of the tradeoffs involved in selecting the scale,

resolution, and spatial extent of the input imagery.
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