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Dynacs Engineering Co., Inc.

I. Abstract

A research project is underway at NASA Lewis to

produce a computer code which can accurately pre-

dict ice growth under any meteorological conditions

for any aircraft surface. This report will present results
from version 2.0 of this code, which is called

LEWlCE. This version differs from previous releases

due to its robustness and its ability to reproduce

results accurately for different point spacing and time

step criteria across several computing platforms. It
also differs in the extensive amount of effort under-

taken to compare the results in a quantifiable manner

against the database of ice shapes which have been

generated in the NASA Lewis Icing Research Tunnel

(IRT). The complete set of data used for this compar-

ison is available in a recent contractor report 1. The

result of this comparison shows that the difference

between the predicted ice shape from LEWlCE 2.0

and the average of the experimental data is 7.2%
while the variability of the experimental data is 2.5%.

Ih Introduction

The Icing Branch at NASA Lewis has undertaken

a research project to produce a computer code capa-

ble of accurately predicting ice growth under a wide

range meteorological conditions for any aircraft sur-
face. The most recent release of this code is LEWlCE

2.0. which will be documented in the new user man-

ual. 2 This report will not go into the details of the

capabilities of this code, as those features are well-

described by the user manual.

The purpose of this paper is to present results

from the complete set of data used for validation of

this code as well as identify and assess criteria which

are used to validate the NASA icing codes. The mea-

surement technique used in this report are not neces-

sarily the only criteria which can be used for

validation but they represent one possible path. The

process for validation of an icing code is quite chal-

lenging and consists of many steps, one of which is
the comparison of code results to some known solu-

tion whether experimental or analytical. This testing

activity is complicated by the fact that no predefined
acceptance criteria have been identified. To date, pre-

vious evaluation of the performance of ice prediction

codes has been based on subjective judgements of

the visual appearance of comparisons between ice

shapes generated by the code and ice shapes mea-

sured in an experimental facility 31°.

In order to accurately determine the capabilities

of a prediction code it is necessary to develop quanti-
tative measures for assessing the similarity between

two ice shapes. The measurement used to make the

comparison should be based on the characteristics
considered most important for the purposes of the

simulation process. For example, design of a thermal

ice protection system may dictate that icing limits,
accumulation rates, and total collection efficiency are

the most important parameters to be simulated while

certification of a wing for flight with an ice accretion

may require that the performance characteristics of

the ice shape be modeled accurately.

In past reports 1116, LEWlCE has been com-

pared to shapes created in the NASA Lewis Icing

Research Tunnel (IRT). While the qualitative compari-

sons have been favorable, they do not demonstrate a

validation process that quantitatively determines the

accuracy of an ice prediction code. Comparisons are
made in this paper using a large subset of the data

which has been generated in the IRT. The test entries
which were not used for comparison represent ice

shapes from proprietary tests or those tests for which

the ice shapes were not digitized. The results are

examined from a more quantitative approach than

has been undertaken in previous efforts. Measured

quantities are horn length, horn angle, stagnation

point thickness, ice shape cross section area and

icing limits. This paper will define the differences

between experimental ice shapes and LEWICE 2.0
as well as the differences between two experimental

ice shapes, where applicable. Due to the large num-

ber of shapes, an aerodynamic performance analysis

was not performed at this time.
The report is divided into four sections. The first

section will provide a brief description of LEWlCE
and the LEWlCE 2.0 model. The second section will
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provide a description of the experimental data pre-
sented in this report. The third section will describe
the quantitative parameters chosen and how they
were measured. The fourth section presents results
of the quantitative comparison. Comparison of
LEWICE 2.0 with the experimental average is pre-
sented as well as the comparison of individual exper-
imental ice shapes against the average. Spanwise
variability and repeatability variability are presented
as well as the variability due to the technique used by
the researcher to trace the ice shape.

III. LEWICE 2.0

The computer code LEWICE embodies an ana-
lytical ice accretion model that evaluates the thermo-
dynamics of the freezing process that occurs when
supercooled droplets impinge on a body. The atmo-
spheric parameters of temperature, pressure, and
velocity, and the meteorological parameters of liquid
water content (LWC), droplet diameter, and relative
humidity are specified and used to determine the
shape of the ice accretion. The surface of the clean
(un-iced) geometry is defined by segments joining a
set of discrete body coordinates. The code consists
of four major modules. They are 1) the flow field cal-
culation, 2) the particle trajectory and impingement
calculation, 3) the thermodynamic and ice growth
calculation, and 4) the modification of the current
geometry by addition of the ice growth.

LEWlCE applies a time-stepping procedure to
"grow" the ice accretion. Initially, the flow field and
droplet impingement characteristics are determined
for the clean geometry. The ice growth rate on each
segment defining the surface is then determined by
applying the thermodynamic model. When a time
increment is specified, this growth rate can be inter-
preted as an ice thickness and the body coordinates
are adjusted to account for the accreted ice. This pro-
cedure is repeated, beginning with the calculation of
the flow field about the iced geometry, then continued
until the desired icing time has been reached.

LEWlCE 2.0 is different from its predecessors
not through wholesale changes in the physical mod-
els but rather through an extensive effort to adjust,
test and document the code to ensure: that the code
runs correctly for all of the cases shown; that the
quality of output is maintained across platforms and
compilers; that the effects of time step and spacing

have been minimized and demonstrated; that the
code inpu's and outputs are consistent and easy to
understan,3; that the structure and documentation
within the code makes it readily modifiable to those
outside the standard LEWlCE development team;
and that the code has been validated in a quantified
manner against the largest possible amount of exper-
imental data. This last statement forms the basis of

the comparisons in this report.

IV. Description of the Experimental
Data

The experimental data described in this paper
are the result of a wide variety of tests performed in

the NASA Lewis Icing Research Tunnel (IRT)in

recent years. 1724 Seven airfoils were selected for
this comparison. These airfoils and the accompany-
ing ice shapes represent the complete set of publicly
available data which has been generated in the IRT
and digitized for single element airfoils. There is
some data available on multi-element airfoils, but it
was considered to be an insufficient amount for vali-
dation purposes. There are a total of 400 IRT runs
analyzed for this validation report, of which 169 are
repeats o_ previous runs in the IRT. There are 442
digitized tracings at off-centerline locations for a total
of 842 exl:erimental ice shapes.

The fiJst airfoil is a modified NACA230XX series
airfoil with a slight spanwise taper and sweep. At the
mid-span of the test section, the thickness is 14.5%
chord and increases in thickness from the floor to the

ceiling of the test section. In this paper, it is listed as
a modified NACA23014 airfoil, as the thickness is
closer to 14% at the lower end of the model. This

data was originally presented in references 17-20.
The cross .section at the mid-span of the test section
is given ir_ Figure 1. The database for this airfoil is
comprisec of 62 IRT runs, of which 22 are repeats of
previous conditions. Due to the spanwise variation of
the model, only 8 tracings have been digitized at off-
centerline locations for a total of 70 ice shapes.

The s,._condairfoil listed is shown in Figure 2. It is
represent_[tive of a Large Transport Horizontal Stabi-
lizer and s listed with the abbreviation LTHS. This
data was originally reported in reference 17. There
are 28 IR_ cases, of which only one is a repeat of a
previous run. There are 52 tracings digitized at off-
centerline locations for a total of 80 ice shapes.
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The third airfoil in the database is representative
of a business jet airfoil and given the designation
GLC305. It is shown in Figure 3. This data was origi-
nally reported in reference 17. There are 84 IRT
cases, of which only eight are repeats of a previous
run. There are 36 tracings digitized at off-centerline
locations for a total of 120 ice shapes.

The fourth airfoil in the database is the
NACA0012. This airfoil has been used in several test

entries over the years 17' 25, 26 in order to document
the uniformity and repeatability of the IRT, especially
after the tunnel had undergone modifications which
could potentially alter the tunnel calibration. This air-
foil is shown in Figure 4. The data from this airfoil
encompasses the highest number of ice shapes
which have been created in the IRT.There are 183
IRT cases, of which 126 are repeats of a previous
run. There are 307 tracings digitized at off-centerline
locations for a total of 490 ice shapes.

The fifth airfoil in the database is a modified
NACA4415 airfoil and is shown in Figure 5. This air-
foil is representative of an airfoil used in past regional
aircraft design. The data was originally presented in
reference 19. There are 29 IRT cases, of which 11
are repeats of a previous run. There are 39 tracings
digitized at off-centerline locations for a total of 68 ice
shapes.

The sixth airfoil presented is an NLF-0414 airfoil
which is representative of a laminar flow design for
general aviation. It is shown in Figure 6. This data

comes from a very recent test in the IRT 21. Due to
time constraints, only eight cases from this test entry
have been digitized and analyzed for this compari-
son. Additional test points from this airfoil will be
included for future validation efforts.

The last airfoil entry in the database is for a
NACA0015 airfoil used for scaling studies. This airfoil
is shown in Figure 7. This data is also from a very

recent test entry in the IRT23. Again due to time con-
straints only six cases were processed for this effort,
one of which is a repeat case.

The data is taken in the IRT by cutting out a small
section of the ice growth and tracing the contour of
the ice shape onto a cardboard template with a pen-
cil. The pencil tracing is then transformed into digital
coordinates with a hand-held digitizer. Recently, a
flat-bed scanner with digitizing software has been
available to accelerate the data acquisition process.
For any given IRT test run, up to five spanwise sec-

tions of the ice shape are traced and digitized in this
manner. There are several steps within this process
which can potentially cause experimental error.
Those which can be quantified by the current tech-
nique are the spanwise variability, the repeatability
error, and errors involved in the tracing technique.

Spanwise Variability

Except for the NACA23014(mod) model, all of
the models used for this comparison are two-dimen-
sional models. This means that they have a constant
cross-section in the spanwise direction and are
mounted in the test section without any sweep angle.
Even with a two-dimensional model, the ice shape
produced in the tunnel will have some spanwise vari-
ability due to the random nature of the ice accretion
process. One means which has been used in the IRT
to assess this variability is to take ice tracings at sev-
eral spanwise sections. In the reports mentioned pre-
viously, the variability was assessed in the same
qualitative manner as comparisons of predicted ice
shapes. One technique often used was to visually
inspect the ice shape and the cardboard tracings for
similarity in the spanwise direction. The shapes may
also be digitized at each tracing location and plotted
to assess the variability.This report applies the quan-
titative scale described in section V for assessing
both LEWICE predictions and the variability of the
test condition. In both cases, the reported difference
will be the difference between a measurement on a

given ice shape and the average of the experimental
measurements for that condition.

Repeatability

Several tests in the IRT have also assessed
experimental error by running the same flow and
spray conditions for the same airfoil multiple times.
Cases processed for this validation effort have been
repeated by the researcher by immediately running
the same condition again, by running the same con-
dition on a different night than the original test and by
running the same condition in a different test entry
with the same model. In the past for each of these
cases, the researcher would apply the same qualita-
tive assessment of the repeatability of the condition.
This study will apply the quantitative scale described
in section V for assessing LEWlCE predictions for
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assessing the quantitative repeatability of ice shapes
in the IRT.

Tracing Technique

There are several potential errors involved in the
ice tracing and digitization process which in the past
have been difficult to quantify. Some of these errors
are the quality of the template, the technique used by
the researcher to trace the ice shape, and the digiti-
zation process.

The template is a rectangular piece of cardboard
which has the contour of the airfoil cut into it. This is

illustrated in Figure 8. As can be seen from this fig-
ure, if the ice shape extends beyond the dimensions
of the template, it cannot be traced. Additionally, in
the past the contour of the airfoil was not always cut
precisely into the template so the template may not
have fit squarely onto the airfoil. More recent tracing
techniques use registration marks to ensure precise
fit.

The technique used by the researcher also may
have an effect on the final digitized ice shape. The
template may not be placed squarely on the airfoil or
the researcher may only trace the tops of ice feathers
or not trace feathers at all, as the feather may break
off due to the pressure applied by the pencil. The
researcher may not always trace a single continuous
line for the ice shape, making the digitalization pro-
cess more difficult. In order to assess these potential
errors, researchers may trace the ice shape more
than once or have more than one person trace the
same shape. These tracings were then compared in
the same qualitative manner as used for spanwise
variability and repeatability.

Multiple tracings of the same ice shape are rarely
performed in the IRT and even more rarely are both
tracings digitized. Those which have been digitized
are included in this report to provide a more quantita-
tive assessment of the errors involved in the data
acquisition process. It will be shown that despite the
problems listed here, the quantitative errors due to
tracing issues are minor in comparison to other
sources of error.

V. Description of Comparison
Method

This section describes the methodology used to
make the quantitative measurements on experimen-

tal and predicted ice shapes. This methodology has
been incorporated into a computer code called
THICK wh:ch calculates and outputs the parameters
described. This code was created in order to process
the large aumber of ice shapes presented in this
report. This program reads two geometry files: one
for the clean airfoil and one containing an ice shape.
This code will also be documented more thoroughly

in the LEWtCE 2.0 User Manual 2. The following sec-
tions desc,-ibe the calculations made by the THICK
program.

Calculation of Ice Thickness

The ice thickness distribution for both experimen-
tal ice shapes and LEWICE ice shapes is determined
by using a combination of two measurement tech-
niques. The thickness is first measured by calculating
the minimum distance from each point on the ice
shape to a point on the clean surface. If the distribu-
tion of points on the clean surface is sufficiently con-
centrated, this procedure will provide a good
approxima:ion to the actual ice thickness. For this
effort, each clean airfoil geometry contained over
5000 points to ensure the quality of the calculation.

An approach using the unit normal from the ice
shape or from the surface will fail to determine ice
thickness at every location on complex ice shapes.
This is illustrated in Figure 9. As seen in this figure,
the unit n(_rmal from the surface diverges outward.
Even for a geometry with over 5000 surface points, a
unit norm_d approach could not accurately capture
thickness on the large and complex ice shapes pre-
sented in this report. This is especially true of experi-
mental ice shapes which have a large amount of
detail.

The minimum distance approach will very accu-
rately dete-mine large ice thicknesses. For very small
ice thicknEsses, however, the accuracy is lessened
as the thi(kness nears the resolution of the surface

geometry.l-his is illustrated in Figure t0.
The plocedure used is to first calculate the thick-

ness usin{t the minimum distance approach. When
this thickness becomes less than the segment length
of either tl'e iced or clean surface, it is then recalcu-
lated usin# the unit normal approach. Using the
approach ,Jescribed, a unique ice thickness is deter-
mined for _._achpoint on the ice shape. At each point
on the cle.tn surface, however, it is possible to have
regions wt ere there is no recorded thickness or for a
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point to have more than one thickness value. This is
illustrated in Figure 11.

In the first case where there is no thickness
recorded, a thickness value at the clean surface can
be interpolated from the values which have been
obtained. In the second case where more than one
value exists, the maximum ice thickness value is
recorded.

Determination of Icing Limits

The upper and lower limits of ice accretion for
both experimental shapes and LEWlCE shapes are
easily found from the ice thickness distribution. They
are located at the points on the clean airfoil where
the ice thickness first changes from zero as mea-
sured from the trailing edge. Experimental ice
shapes may have sections where parts of the ice (ice
feathers) are isolated from the main ice shape. This
definition extends the icing limit to include this sec-
tion of the ice shape. It should also be noted that the
definition used in this report for icing limit is distinct
from the impingement limit, which only refers to the
extent of water collection on the airfoil. Both the wrap
distance from the leading edge and the x-distance
are recorded for each icing limit. The icing limits are
illustrated in Figure 12 on a sample ice shape. Figure
13 shows the icing limits on the ice thickness plot for
this ice shape.

Determination of Maximum and
Minimum Thicknesses

Three ice thicknesses were selected for the
quantitative analysis, the upper surface max. thick-
ness, the lower surface max. thickness and the min.
thickness between these two maxima. These thick-

nesses are illustrated in Figure 14. In this illustration,
the upper surface and lower surface maxima clearly
correspond to the classic definition of a glaze ice
horn. For other conditions this may not be the case,
hence the use of the term "max. thickness" rather

than "horn thickness". This differentiation is usually
found on smaller ice shape for which the max. thick-
ness is not easily seen. This is illustrated in Figure
15.

For the upper surface and lower surface max.
thickness, the x,y locations at the maxima are also
saved for calculation of a max. thickness angle. The
min. thickness between the two maxima is also

recorded. This thickness is often termed the "stagna-
tion point thickness", but the aerodynamic stagnation
point is not necessarily at this location. In this report,
the term "min. leading edge thickness" is used
instead.

For a rime ice shape, the term "horn" does not
apply, nor are there two distinct maxima to record.
For this case, only the max. ice thickness and the x,y
location at this maxima are recorded.

Determination of Max. Thickness

Angle

The max. thickness alone does not adequately
capture all of the necessary quantitative attributes
desired. Some indication of where that max. thick-
ness occurred is also desirable. For this effort, the x,y
locations at the max. thickness were recorded for
each ice shape, both experimental and for LEWlCE.
An angle at the max. thickness is then calculated.
The reference location for all cases is the center of
the inscribed circular cylinder at the leading edge for
each airfoil. This is illustrated in Figure 16.

Again note the terminology of "max. thickness
angle". As discussed earlier, not all ice shapes have
a classic glaze ice "horn" but every ice shape has a
max. thickness. Where a glaze ice horn does exist,
however, this measurement does define the "horn
angle".

Determination of Ice Area

The iced area calculated for this report is not a
true area. A more simplified calculation was per-
formed by integrating the ice thickness calculated
with respect to the wrap distance, as given by Equa-
tion 1. The approach used is valuable for quantita-
tively assessing ice shape features such as horn
width which are not included in the other parameters.

t

A = Jtds (1)

For the large number of points used on the clean
surface, the calculation given is a reasonable approx-
imation of area. Three areas are recorded: the total

iced area, the lower surface area and the upper sur-
face area. The lower surface area is defined as the

ice area below the leading edge and the upper sur-
face ice area is calculated by subtracting the lower
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surface va.lue from the total. For complex ice shapes

where the ice thickness is multiply defined as is

shown in Figure 11, this method for calculating ice
area will result in an overstatement of the actual ice

area.

Vl. Procedure for the LEWICE Runs

There are 231 cases which were run with

LEWICE for this validation study. This is the complete

set of unique conditions, as 169 of the 400 test
entries are repeat conditions. All of the cases run for

this validation test were performed using the same

procedure on a Silicon Graphics Indigo2 to ensure

the consistency of the LEWICE predictions. It is well
known that a user of an ice accretion code may alter

the ice shape prediction by varying the time step and/

or the panel spacing until a desired prediction is

achieved. This procedure was not followed for these

validation runs. For every run, the point spacing was

fixed at a value of 4"10 -4 (dimensionless). This was

the smallest value which could be used for the array

sizes in the program. The time step for all runs was 1
minute for cases where the accretion time was 15

minutes or less. For longer runs, an automated pro-
cedure was implemented based on accumulation

parameter. When the accumulation parameter
exceeded 0.01 for that time step, a new time step

was started. The number of time steps is calculated

internally in the program by Equation 2.

where

LWC

V

Time

chord

Pice

N = (LWC)(V)(Time) (2)
( chord)(p, e)( O.OI )

= liquid water content (g/m 3)

= velocity (m/s)
= accretion time (s)

= airfoil chord (m)

= ice density = 9.17"105 g/m 3

The variability of LEWlCE results for various time

steps and point spacings is discussed in the section

on Numerical Variability in the validation report 1. The
LEWlCE cases had an additional correction due to

the use of a potential flow code for the flow solution.

As illustrated in Figure 17, a potential flow code will

overpredict lift coefficient especially at high angles of

attack. To compensate for this, all LEWlCE cases

were run using a corrected angle of attack. This is

determined by equating the lift coefficient predicted

by LEWlCE on the clean airfoil for a given case with
the lift coefficient on the airfoil at the angle of attack
run in the tunnel.

VII. Quantitative Results

For each of the 842 experimental ice shapes and

231 predicted ice shapes, the quantitative measure-

ments described in a previous section were taken

and then entered into a Microsoft Excel _ spread-

sheet. A description of the exact contents of this

spreadsheet is given in the validation report 1. In that

contractor report, each of the 231 ice shapes is plot-

ted against the tunnel centerline ice shape for that

condition. The ice thickness distribution is also plot-

ted. This paper will provide a summary of results of

the quantitative comparison between the LEWlCE

predicted shape and the experimental average as

well as the comparison of individual experimental ice

shapes to this average. In each case, the experimen-

tal averag ._for a given quantity is the average of all

experimertal ice shapes at that condition. Repeat
runs and off-centerline measurements are averaged
with the centerline value to arrive at this measure-

ment.

Icing Limits

The i(ing limits are the chordwise locations on

the ice shape on the upper and lower surface where

the ice sh ]pe merges with the airfoil. Both the wrap

distance f'om the leading edge and the x-distance

are recorded for each icing limit. The results pre-

sented here are for the wrap distance values.

Figure 18 shows the results of these measure-

ments for both the experimental ice shapes and for

LEWlCE. these results are presented as a percent-

age of ch(Ird in order to normalize the results for dif-

ferent cas._s. This figure shows that the experimental
variation i l the lower icing limit is 2% of chord while
the LEWI(;E result lies within 6% of chord from the

experimertal average value. This result uses the

absolute error for each case in order to compute the

average. Contrary to popular belief, in the majority of

cases LE/VICE underpredicts rather than overpre-

dicts the i,'ing limit as compared to the experimental

data. This result can likely be attributed to the use of

a monodi.';persed drop size when obtaining the pre-
dicted res Jlt.
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Max. Ice Thickness (Horns)
Thedetailsofthe icethicknesscalculationwere

presentedin thesectiononDescriptionof Compari-
sonMethod.As discussedin thissection,the mea-
surementof a max. thickness is not necessarily the

thickness of a glaze ice horn. Where the ice shape

does have a glaze ice horn, the max. thickness does

give the horn thickness. In order to compare different

conditions with different chord lengths and accretion

conditions, the individual ice thicknesses were non-

dimensionalized by the maximum accumulation thick-

ness as given in Equation 3.

(LWC)(V)(Time)
t,,,. _ = (3)

Figure 19 shows the dimensionless difference in
ice thickness for the three ice thickness measure-

ments made in this report. Results are presented for

the variation of tunnel repeatability, spanwise vari-

ability, tracing error as well as for the overall experi-
mental error and for LEWlCE. This figure shows that

the max. thicknesses can be measured to within 5%

experimentally and that the average difference for the
LEWICE cases is 11% for max. thickness.

Ice Area

The comparison of ice area for the different

cases also poses a problem. A fair comparison
across the varied conditions and airfoil sizes is diffi-

cult. In this report, the area difference has been non-
dimensionalized by the maximum accumulation

thickness given earlier and by the airfoil thickness. It
should be noted that the absolute values for ice area

are maintained in the Excel ® spreadsheet so that the

users of this data can make their own comparisons.

Figure 20 shows the results for the ice area com-

parison. Values for the upper surface ice area, lower
surface ice area and overall ice area are shown for

each of the categories described earlier. This figure
shows that the experimental difference in ice area is

less than 4% on the scale given while for the

LEWICE results the variation is approximately 10%.

Angle at Max. Thickness (Horn Angle)

As described earlier, the horn angle was mea-

sured with respect to a horizontal line which goes

through the center of the inscribed cylinder at the

leading edge. This angle was measured for all ice

shapes whether or not they fit the classical definition

of having a glaze ice horn. Many experimental ice

shapes were in the form of distributed roughness

with several peaks which can cause a large amount

of scatter in the experimental results shown.

Figure 21 shows the variation in max. thickness

angle for LEWICE and for the experimental catego-
ries described earlier. Results are presented in

degrees. This figure shows that the variation in the
experimental data is 6 degrees for the upper angle,

10 degrees for the lower angle and 13 degrees for

the difference between these angles. The LEWICE

difference from the experimental average are 16

degrees for the upper angle, 30 degrees for the lower

angle and 33 degrees for the angle difference.

Overall Assessment

Once the individual measurements are taken for

each ice shape, it becomes useful to create an over-

all assessment of the ice shape prediction. Since
each measurement is different, several methods

could be used to assess the overall difference

between two ice shapes. Eight of the 11 measured

values presented in this report have been nondimen-

sionalized. Angles do not have a characteristic mea-
sure to use for nondimensionalization, so the three

angle criteria are reported in degrees. Since not all of

the measured quantities can be nondimensionalized,
two overall assessment factors have been calculated.

The first overall assessment was determined by an

average of the eight individual dimensionless values

and the three angle criteria in degrees. The second
overall assessment was calculated by using only the

eight dimensionless measurements.

Figure 22 shows the comparison of the first over-
all assessment for each of the experimental errors

and for LEWlCE. This calculation shows an average

overall difference of approximately 4.4 for the experi-
mental data base and 12.5 for LEWlCE. Since the

angle criteria are not dimensionless, these numbers
cannot be considered a percent difference. Figure 23

shows the comparison using the second overall
assessment. This second calculation shows an aver-

age overall difference of 2.5% for the experimental
data and 7.2% for LEWlCE. The standard deviation is

1.8% for the experimental data and 4% for the
LEWICE results. In order to determine if this simple

average is a good assessment of the variation, plots
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were made of the average variation for the experi-
mental shapes and for the LEWlCE shapes.

Figure 24 shows an example of two ice shapes
which are near the overall experimental average.
This plot shows the spanwise variability from a data
point in the NACA4415(mod) database. The qualita-
tive comparison of these two ice shapes suggests
that the overall assessment parameter is a reason-
able approximation. Similarly, Figure 25 shows an
example which is at the average variation for the
LEWlCE cases. The qualitative assessment of this
comparison also agrees with the overall assessment
parameter used.

Improvements to methodology

The technique used in this report for quantitative
comparison of ice shapes represents only one possi-
ble path for quantitative validation of code results.

Ruff 27 proposed an alternate methodology for creat-
ing an overall assessment of ice shape prediction.
Other methods can also be tested for creating an
overall assessment of ice shape prediction. Due to
the number of cases in this database, an important
consideration is the efficiency at which quantitative
measurements can be taken and entered into a

spreadsheet for analysis. The current technique used
a stand alone utility program to generate the ice
thickness distributions. This code was very useful in
generating the data needed for this comparison, but
the process of transferring the information to the
spreadsheet was time consuming. More efficient
methods for acquiring the quantitative parameters
will be developed in the future.

The definition of max. thickness angle used in
this report is not the only possible definition. Other
definitions could use the chord line of the airfoil
instead of a horizontal line. The reference point could
be selected as the leading edge of the airfoil or the
point on the clean surface where the ice thickness
was defined. Due to time constraints, the definition
presented in this report was the only one calculated
from the ice shapes.

It was stated in the introduction of this report that
a quantitative analysis is only one facet of the code
validation process. Once the comparison of ice
shape has been made, it would be useful to quantify
the difference in aeroperformance based on the
quantitative difference in geometry. This process
would be very time consuming to perform on the

entire database even at the fast processor speeds
available now. A comparison of a selected number of
these cases is being planned at this time. This com-
parison would calculate the difference in predicted
aeroperformance for a given difference in ice shape,
using both experimental ice shapes and predicted ice
shapes from LEWlCE. For example, this comparison
would try to determine if the difference in aeroperfor-
mance for two ice shapes which are 10% different is
consistently greater than the difference in aeroperfor-
mance for two ice shapes which are only 5% differ-
ent.

VIII. Conclusions

This report has presented the quantitative com-
parisons c_fseveral geometric characteristics for a
database of over 1000 ice shapes. Measurements of
icing limit, ice thickness, ice area and horn angle
were made for each ice shape. Comparisons were
made for the difference in experimental variations
such as tunnel repeatability, spanwise variability and
tracing err_rs. Comparisons were also made for the
difference between the predicted ice shape from
LEWlCE end the average experimental value. Com-
parisons were made for each individual quantitative
criteria. An overall assessment was made for the
quantitative comparison as well.

This comparison shows that based on the overall
assessment criteria presented in this report, the vari-
ation in the experimental data was 2.5%+1.8% and
the LEWlCE predicted ice shape differs from the
experimenial average by 7.2%+4%. The variation
due to tra( ing technique was found to be statistically
insignificaJDt. The spanwise and repeat variability
were found to be extremely close and at the same
low level (2.5%). This may indicate that the variation
in ice shape for either measure are a reflection of the
chaotic nature of the icing phenomena and are not
due to the tunnel dynamics. The LEWlCE predictions
on the wht_le are reasonably accurate, with a signifi-
cant perc_,ntage (35%) of cases within the experi-
mental aw_rage. The ice shape data and output files
from LEWtCE which were generated for this report
are includ_,d on CD-ROMs along with all of the quan-
titative conparison numbers in a published contrac-

tor report 1
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FIGURE 8. Example of a Cardboard Template for Tracing Ice Shapes

FIGURE 9.
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FIGURE 10. Limitations of Minimum Distance Approach

Minimum Distance
thicknesses

Some surface locations may not have
ice thickness v_lue due to sparcity of
points on ice sl-ape.

FIGURE 11. Corrections to Ice Thickness Distribution
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Icing Limits on Sample Ice Shape
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Max. Thickness Angle on Sample Ice Shape
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