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ABSTRACT

The subsonic, lateral-directional, stability and control derivatives of the thrust-vectoring F-18 High

Angle of Attack Research Vehicle (HARV) are extracted from flight data using a maximum likelihood

parameter identification technique. State noise is accounted for in the identification formulation and is

used to model the uncommanded forcing functions caused by unsteady aerodynamics. Preprogrammed

maneuvers provided independent control surface inputs, eliminating problems of identifiability related to

correlations between the aircraft controls and states. The HARV derivatives are plotted as functions of

angles of attack between 10 ° and 70 ° and compared to flight estimates from the basic F-18 aircraft and to

predictions from ground and wind-tunnel tests. Unlike maneuvers of the basic F-18 aircraft, the HARV

maneuvers were very precise and repeatable, resulting in tightly clustered estimates with small

uncertainty levels. Significant differences were found between flight and prediction; however, some of

these differences may be attributed to differences in the range of sideslip or input amplitude over which a

given derivative was evaluated, and to differences between the HARV external configuration and that of

the basic F-18 aircraft, upon which most of the prediction was based. Some HARV derivative fairings

have been adjusted using basic F-18 derivatives (with low uncertainties) to help account for differences

in variable ranges and the lack of HARV maneuvers at certain angles of attack.
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INTRODUCTION

High-angle-of-attack (high-AOA) technology for military aircraft has been an area of active research

in recent years. Motivated by the tactical advantage of enhanced high-AOA agility and poststall

maneuverability, aircraft designers and researchers from industry and government have moved beyond

simply studying stall and spin characteristics and have been exploring the poststall region of the high-

AOA flight envelope. Recent involvement by NASA in these efforts began in the mid-1980's with the

establishment of the High Angle of Attack Technology PrJgram (HATP), a multiyear program to
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understandandexploreaircraft flight at high AOA (refs. 1-3). Biannual conferences hosted by NASA

between 1990 and 1996 were dedicated to the latest developments in high-AOA technology (refs. 4-6).

The two prime objectives of the HATP were to provide a flight-validated aircraft design methodology

through experimental and computational methods that simulate and predict high-AOA aerodynamics,

flight dynamics, and flying qualities and to improve aircraft agility at high AOA while expanding the

usable high-AOA envelope. The development of these capabilities involved a close integration of

ground-based and flight activity, including wind-tunnel tests (refs. 7-10), computational fluid dynamics

(CFD) modeling (refs. 11-15), piloted simulations, advanced flight controls (refs. 16-20), and flight tests.

This activity focused on three key areas: high-AOA aerodynamics, advanced high-AOA control concepts,

and maneuver management. Access to full-scale flight conditions was deemed essential to address

inherent shortcomings of subscale model and ground tests. In addition, flight validation would provide a

more accurate evaluation of the emerging technologies, methods, and concepts being used than the

subscale model and ground test.

The aircraft selected for the flight portion of the HATP was an F/A- 18 airplane (McDonnell Douglas

Corp., St. Louis, Missouri), subsequently named the High Angle of Attack Research Vehicle (HARV)

(fig. 1). Previously used for high-AOA and spin research testing by the U. S. Navy at the Naval Air Test

Center (Patuxent River, Maryland), the aircraft was last flown by the Navy in September 1982. Two years

later, in October 1984, the aircraft was transferred to NASA and trucked to the NASA Dryden Flight

Research Center (Edwards, California). In the fall of 1985, major efforts to reassemble the aircraft began,

including removing unnecessary flight test wiring and installing a new research data system. On April 2,

1987, the first flight of the HARV (NASA tail number 840) was performed at NASA Dryden. On May 15,

1996, after flight number 388, testing was completed in accordance with the three-phase program

schedule of the HATP. Reference 21 provides a more detailed overview of the HARV flight program and

an accompanying reference list.

Phase I began in April 1987 and continued through 1989. During this period, the HARV flew

101 research missions, investigating high-AOA aerodynamics and handling characteristics to a maximum

of 55 ° AOA. Phase I examined developmental issues of the HARV research instrumentation suite

and established initial aerodynamic correlations between predictions and in-flight measurements

(refs. 22-26). Particular attention was given to the burst location of strong vortices that formed off the

wing-body strake (leading-edge extension (LEX)) at high AOA and the role of the vortices in inducing

tail buffet (refs. 27-31). Parameter identification (PID) was also performed on the HARV during Phase I

to initially assess stability and control derivatives obtained from wind-tunnel tests and early flight tests by

the manufacturer and U. S Navy (refs. 32-34).

Phase II involved major hardware and software modifications to the HARV: a multiaxis thrust-

vectoring control system (TVCS) consisting of externally-mounted nozzle postexit vanes, and a

specialized research flight control system (RFCS). The TVCS and RFCS are described in detail in the

next section. The design was intended for research purposes only and not for production. This second

phase, spanning from mid-1991 to late 1994, further expanded the HARV flight envelope. Demonstrated

capabilities included stabilized flight at 70 ° AOA and rolling at high rates at 65 ° AOA.

Phase III flight activities, begun in 1995 and completed in May 1996, investigated advanced

aerodynamic control concepts. These tests focused on the implementation of actuated forebody strakes

conformally mounted on the nose of the HARV to enhance lateral-directional control at high AOA

(refs. 35, 36).
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A continuingobjectiveof theflight programwasthe stud,-,of stability andcontrol characteristicsof
the HARV during thrust-vectoringflight, particularlyin the low-speed,high-AOA regime.This paper
presentsflight-determined,subsonic,lateral-directionalstability and control derivativesof the HARV
extractedfrom dynamicflight databetween10° and70° AOA in incrementsof 10° AOA. (A companion
paper,reference37,presentsflight-determined,subsonic,longitudinalstability andcontrolderivativesof
theHARV.) The26 flight maneuversanalyzedhereinwereperformedduringflights 155,226,248,250,
and274,which occurredbetween1992and 1994.SubsonicMachnumbersvariedfrom 0.52for the low-
AOA maneuversto 0.23for thehigh-AOA maneuvers.

The maneuvers were implementedby a control system feature providing preprogrammed
single-surfaceinputs (SSIs)of aerodynamiccontrolsand independentthrust-vectoringcontrols.Each
input, known asa doublet,approximatesa singlecycleof a squarewave.The control systemfeature
effectivelyeliminatedcorrelationsandnear-lineardependencyproblemsbetweencombinationsof control
and statevariablesintroducedby the basicF-18 control augmentationsystem.The derivativeswere
extractedwith a NASA Dryden--developedPID techniqueusinga maximumlikelihood estimatorthat
accountsfor bothstateandmeasurementnoisein the linearizedaircraftequationsof motion.Statenoise
wasusedto modelthe uncommandedforcingfunctionscausedby separatedandvortical flows over the
aircraft,particularlyat highAOA. Aerodynamiccoefficientsin theequationsof motionweremodifiedto
accountfor theeffectsof thrustvectoring.Theresultingderivativeestimatesareplotted asfunctionsof
AOA between10° and 70 °, and are discussed in relation to flight-determined derivatives of the basic F- 18

aircraft and to predicted values obtained from thrust-vectoring ground tests and a simulation primarily

based on wind-tunnel data of the basic F-18 aircraft. The effects of configuration differences and

maneuver input quality are also considered in the comparisons. The HARV stability and control

derivatives estimated from flight data in this paper are Cl , Clp, Clr, C15 a , Cl_dh, Cl6r, Cl6yv, Clo,

Cn_ , Cnp , Cnr , Cnsa, Cn_dh, CnBr, Cnsyv, Cno, Cy , CYBa, CY_dh, CYBr, CyBy v, and CYo.

VEHICLE DESCRIPI'ION

Many details about the vehicle described in this section were previously published (ref. 17, 38--40).

These documents provide a more complete treatment of this and related topics. The following sections

describe the hardware configuration, TVCS, software configuration, control laws, and thrust-vectoring
mixer of the HARV.

Hardware Configuration

The aircraft test bed was the sixth full-scale developmental F-18 airplane, a single-place, twin-engine,

fighter-attack aircraft built for the U. S. Navy by McDonnell Douglas Corporation (St. Louis, Missouri)

and Northrop Corporation (Los Angeles, California). The U. S. Navy previously used this particular

aircraft (serial number 160780) for high-AOA and spin test ng. The F-18 HARV is powered by two

General Electric (Lynn, Massachusetts) F404-GE-400 afte_burning engines, rated at approximately

16,000-1bf static thrust at sea level. The aircraft features a rnidwing configuration with a wing-body

strake, or wing-root LEX, that extends from the forward portion of the fuselage and blends into the wing.

The configuration studied herein was used from 1992 to 1994 and included the LEX fence modification

introduced in early 1989 to reduce vertical tail buffet caused by impingement of the LEX vortex; this

configuration did not include the actuated forebody strakes used during Phase III. As flown, the HARV



carriednoextemalstoresandwashighly instrumentedfor researchpurposes.The wingtip launchingrails
andmissileswere replacedwith speciallydesignedairdatasensorsand camerapods (describedin the
"InstrumentationandDataAcquisition" section).Thein-flight refuelingcapabilityandtail arrestinghook
wereretained.Figure2 showsa three-viewdrawingof theHARV andits majorphysicalcharacteristics.

TheHARV hasfive pairsof conventionalaerodynamiccontrolsurfaces:stabilators,rudders,ailerons,
leading-edgeflaps(LEFs),andtrailing-edgeflaps(TEFs).Thetwin verticalstabilizers,with trailing-edge
rudders,are cantedoutboardat approximately20° from the vertical. Conventionalpitch control is
providedby the collective deflectionof the all-movablehorizontal stabilators,symmetricLEFs, and

symmetricTEFs.Roll control usesailerondeflection(5a ), differential horizontal stabilator deflection

(_)dh)' and asymmetric LEFs and TEFs. Directional control is provided by symmetric rudder deflection

(_ir) and a rudder-to-aileron interconnect. In addition, the flight control system (FCS) augments lateral-

directional control with an aileron-to-rudder interconnect. Symmetric aileron droop and rudder toe-in are

employed in the power approach configuration. A speed brake is located on the upper aft fuselage,

between the vertical stabilizers. Table 1, reproduced from reference 38, lists maximum control surface

position and rate limits, which are identical for both the HARV and basic F-18 aircraft.

Table 1. F-18 aerodynamic control surface position and rate limits.

Position Rate limit,
Surface

limit, deg deg/sec

Stabilator

Trailing edge up 24.0 40

Trailing edge down 10.5 40

Aileron

Trailing edge up 24.0 100

Trailing edge down 45.0 100

Rudder

Trailing edge left 30.0 82

Trailing edge right 30.0 82

Trailing-edge flap (TEF):

Up 8.0 18

Down 45.0 18

Leading-edge flap (LEF):

Up 3.0 15

Down 33.0 15

Speed brake:

Trailing edge up 60.0 20-30
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Thrust-Vectoring Control System

The addition of a TVCS required significant hardware and software modifications to the aircraft. As

figure 3 shows, externally-mounted nozzle postexit vanes were added to vector engine thrust and provide

additional pitching and yawing moments. The engines were modified to accommodate the

thrust-vectoring vane installation by removing the divergent flap portion of the engine nozzle. Controlled

deflection of the vanes (three for each engine) into the engine exhaust plume provides thrust-vectoring

capability. The location and geometry of the thrust vanes (fig. 4) resulted from tradeoffs between

thrust-vectoring performance and possible interference with aerodynamic surfaces and the vanes

themselves. The larger top vanes generate a greater nosedown pitching moment, and the smaller inboard

and outboard vanes used together generate sufficient noseup p_tching moment. The upper vanes work in

conjunction with either outboard or inboard vane to produce yawing moment. Details on the thrust-vane

mixer controller, which coordinates the combined motions of both aerodynamic and thrust-vectoring

controls, are provided in the "Thrust-Vectoring Mixer" section. Vane actuation is accomplished using

modified aileron electrohydraulic actuators. Table 2 shows vane system specifications from reference 38.

Table 2. HARV thrust-vectoring vane system

specifications.

Vane size, in.

Upper 20 x 20

Inner and outer 20 x 15

Vane area, in 2 (ft 2)

Upper

Inner and outer

358.76 (2.49)

263.64 (1.83)

Vane position limit, deg -10 to 25

Vane rate limit, deg/sec 80

TVCS total weight, lb 2200

To provide clearance for the outer vane actuator housing, the inside trailing edges of the stabilators

were modified slightly. The area of a single unmodified stabihLtor is 44.13 ft 2, and the area removed was

0.89 ft 2. This minor area reduction did not significantly redu ze stabilator effectiveness. An emergency

spin-recovery parachute was installed on the upper aft portior of the fuselage between the two engines.

The HARV also has an emergency hydraulic and electrical s2,stem in case of inadvertent loss of engine

power. Engine control was modified to provide a pilot-selectable, turbine discharge-temperature bias

control for additional engine stall margin at high AOAs.

Table 3, from reference 21, compares the unmodified anti modified F-18 HARV. The total weight

difference of 4119 lb includes approximately 2200 lb for the '?VCS itself; 1500 lb for the spin-recovery

parachute, emergency systems, and ballast (located in the nosecone for pitch balance); and 419 lb for

equipment and wiring not directly associated with the TVCS. The final TVCS design does not represent a

production prototype, but is strictly an experimental installalion for research evaluation of the thrust-

vectoring control concept.
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Table3. Comparisonof unmodifiedandmodifiedF-18HARV.

Parameter Unmodified* Modified*
(PhaseI) (PhasesII andIII)

Weight,lb
Referencewing area,ft 2

Reference MAC, ft

Reference span, fl

Center of gravity

Percent MAC

Fuselage reference station, in.

Waterline, in.

Roll inertia, slug-ft 2

Pitch inertia, slug-ft 2

Yaw inertia, slug-fl 2

Product of inertia, slug-ft 2

Overall length, ft

Wing aspect ratio

Stabilator span, ft

Stabilator area (total of both), f12

31,980 36,099

400 400

11.52 11.52

37.4 37.4

21.9 23.8

454.33 456.88

105.24 105.35

22,040 22,789

124,554 176,809

139,382 191,744

-2,039 -2,305

56 56

3.5 3.5

21.6 21.6

88.26 86.48

*In each case, the fuel weight is 6480 lb, which represents an approximately 60-percent fuel condition. The

landing gear is up; the configuration is clean; and pilot and support equipment are included in the weight.

Software Configuration

The TVCS hardware modifications required corresponding software modifications to the FCS and

mission computer (MC) (refs. 17, 39). The FCS for the basic F-18 airplane consists of quadruply-

redundant 701E (General Electric, Lynn, Massachusetts) flight control computers (FCCs) running the

standard F/A-18 V10.1 flight control law, which is a digitally mechanized fly-by-wire control

augmentation system. The basic FCS was modified for the HARV by adding an analog interface to the

thrust-vectoring vane actuators and an RFCS programmed in Ada (ref. 40). The analog input card and
RFCS were installed in spare card slots in the basic 701E FCC. The basic FCC maintains overall and

primary control of the aircraft, controls input/output processing functions, communicates with the MC for

outer-loop control, and displays information through a military standard 1553 data bus.

The RFCS was added to provide a flexible platform for control law research. The RFCS central

processing unit is a PACE (Performance Semiconductor Corp., Sunnyvale, California) military standard

1750A architecture processor slaved to the primary 701E computer. With the RFCS engaged, the 701E

computer selects the RFCS actuator commands computed by the 1750A computer rather than the HARV

V10.1 control law. Dual-port random access memory (DPRAM) provides the communication link

between the 701E and 1750A computers. The RFCS contains 32,000 words of electrically erasable

programmable read-only memory, 16,000 words of ultraviolet programmable read-only memory,

2,000 words of random-access memory, and 2,000 words of DPRAM. All RFCS command inputs,
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feedbackinputs,monitordata,andactuatorcommandoutputs_recommunicatedto theFCCthroughthe
DPRAM, suchthattheRFCScanbeconsideredanembedded,:ontrolsystem.

The aircraft is only underRFCScontrolduring theup-an_-awayresearchphasesof a HARV flight.
The RFCSis armedby a cockpit toggleswitchandengaged(or activated)by the existing nosewheel
steeringswitchon the control stick. The RFCS is manually disengaged through the arm switch or a paddle

switch on the control stick. Autodisengagement may occur if predefined limits on rates, accelerations,

engine sensors, or airdata sensors are exceeded. The 701E FCC retains complete failure detection and

fault management as well as appropriate mode switching in the event of certain failures. The basic F-18

V 10.1 control laws and RFCS control laws run independently, in parallel, and are continuously computed

throughout the flight envelope. The backup nature of this architecture allows the RFCS software to be

classified as non-safety-of-flight. The basic control laws are used with the RFCS disengaged during

normal flight, including takeoff and landing.

A useful and important research tool called the onbo_d excitation system (OBES) was also

incorporated in the RFCS. Software in the OBES held preprogrammed research and envelope expansion

maneuvers, which were used for flutter envelope clearance, cor_trol power research, and aerodynamic and

control law PID. For aerodynamic PID, the OBES, when activated by the pilot, would command SSIs

through the RFCS to particular control surfaces. By permkting single-surface aerodynamic control

deflections, control surface correlation problems were eliminated from the PID analysis. Typically, the

feedback and control augmentation systems of modem fighter aircraft introduce relatively high

correlations (near-linear dependency) between combinations of the aircraft controls and states,

complicating the identification of individual control surface effectiveness (ref. 41). Independent thrust-

vectoring vane deflections were also available with the OBES; these deflections were not single-vane but

rather single-axis deflections, using all vanes to excite responses in either the pitch or yaw axis.

Controls Laws

The RFCS control laws were originally developed by McDonnell Aircraft Company (St. Louis,

Missouri) with the goal of demonstrating the research utility of the TVCS and to allow flight envelope

expansion of the RFCS software (ref. 17). The control laws were designed to provide stabilized flight and

large amplitude maneuvering capability at high AOA. This capability was achieved through the

integration of both aerodynamic and propulsive controls. Initial design emphasis was placed on the

stabilized flight task. The RFCS control laws were designed with a modular approach and implemented in

Ada. The RFCS software can be separated into longitudinal, Lateral-directional, thrust-vane mixer, and

gross-thrust estimation modules. The latter two modules are di:;cussed in the next section.

The longitudinal control law is an AOA command system that uses pilot stick position, AOA, pitch

rate (q), and inertial coupling feedback (through the product ef angular rates p and r) as inputs. Inertial

coupling feedbacks are used to counteract undesirable cross-a_is motion generated at high angular rates.

Both stabilator and pitch thrust vectoring are used for rapid commands, but steady-state vectoring is

driven to zero deflection (washed out) if collective stabilatcr is not saturated. This scheme helps to

minimize thrust loss caused by vectoring and reduces therm il loads on the vanes. Trimmed flight at

greater than approximately 55 ° AOA requires a nonzero stea, Jy-state pitch thrust vectoring because of

stabilator saturation. The control stick is geared to provide an AOA of 70 ° at 5 in. of aft stick deflection.

The control system selects airdata-measured AOA at less than 25 ° AOA and selects inertial navigation

system-computed AOA at greater than 30 ° AOA. The control system fades between the two AOA
sources between 25 ° and 30 ° AOA.
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The lateral-directionalcontrol lawsusestability-axisroll andyawrate,lateralacceleration,sideslip
rate, and inertial coupling (the productof p and q, directional only) as feedback signals. Differential

stabilator, aileron, differential TEFs, rudder, and yaw vectoring are used for stabilization, coordination,

and maneuvering flight. Differential LEFs are not used. Differential stabilator command is limited as a

function of AOA and by symmetric stabilator command to maintain pitch command priority. The lateral-

directional control law provides a feet-on-the-floor stability-axis roll rate command capability; lateral

stick commands stability-axis roll rate separately from rudder pedal inputs, which command sideslip

angle. At the lowest AOA and highest subsonic Mach numbers, the RFCS uses lateral-directional

commands from the basic F-18 control laws with the addition of some yaw thrust vectoring to augment

rudder power. Whereas the longitudinal control laws were designed using a model-following technique,

the lateral-directional controls used an eigenstructure-assignment technique.

As new software versions of the RFCS control law integrating the thrust-vectoring system became

available, configuration control of the various versions was necessary. The original control law was

designed by McDonnell Aircraft Company, as described earlier, and revisions to it included RFCS

version sets 22, 24, 26, and 28. These early versions were used during most of Phase II and were

collectively referred to as the NASA-0 RFCS control law. During the end of Phase II, the NASA Langley

Research Center (Hampton, Virginia), with help from NASA Dryden, developed a control law called

NASA-1A, which first flew successfully on flight 256 on June 3, 1994. The NASA-1A control law used

a technique called variable-output feedback gain to design the longitudinal axis. An eigenstructure-

assignment design procedure using control power, robustness, agility, and flying qualities tradeoffs was

implemented in the lateral-directional axes in combination with a control power allocation technique

called pseudocontrols. During Phase III, the addition of nose-mounted conformal strakes called Actuated

Nose Strakes for Enhanced Rolling (ANSER) required a new control law to complement the NASA-1A

thrust-vectoring control law. Reference 21 provides additional discussion of and references for these

control system features.

When the RFCS is armed, the basic F-18 control system sets the turning vanes to a predetermined

ready position (the 0 ° vane deflection position). The V10.1 control laws continue to control the aircraft

until the pilot engages the RFCS, at which point the turning vanes move to the edge of the exhaust plume

boundary (approximately 8°-10 ° vane deflection, depending on nozzle pressure ratio) and the RFCS

control laws take over. The integrated coordination of the six thrust-vectoring vanes is performed by the

RFCS function known as the "mixer."

Thrust-Vectoring Mixer

To interface the flight control laws with the thrust-vectoring vanes, a "mixer" was developed to

translate the pitch and yaw thrust-vectoring commands from the RFCS into appropriate vane commands

for distribution to the actuators. Although individually commanding the six thrust-vectoring vanes from

within the inner-loop control laws (similar to aerodynamic surfaces) is possible, the mixer function was

designed to accomplish the complex task of computing the proper thrust-vane deflections required to

achieve the desired moments from a separate software module.

The mixer was developed by McDonnell Aircraft Company based upon the results of high-pressure

cold-jet tests conducted at NASA Langley using a 14.25-percent-scale nozzle of the TVCS (refs. 42-45).

Because the total moment achieved from thrust vectoring is a function of the vane deflection angle as well

as the thrust level, the RFCS calculates pitch and yaw thrust-vectoring commands in terms of degrees of
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vectored-thrustdeflectionon thebasisof a referencegrosstl-_rust.Themixer thenusesthe resultsof a
real-timethrust estimationalgorithm to scalethe RFCS-corrJnandedthrust-vectoringmomentsto the
thrust availableandto adjustthevaneanglesto producethedesiredcontrol moments.In this way, the
apparentthrust-vectoringeffectivenessis independentof enginethrust (within the rangeof the vane
position limits and accuracyof the thrust computation).Grossthrust for eachengineis individually
estimatedfrom nozzleexit radius,enginepressureratio,andpowerleveranglefor the left or right engine
(ref. 46). The mixer requiresnozzlepressureratio,estimatedgrossthrust, andnozzleexit radiusfrom
eachengine,and the desiredvectoringcommandsto producethe six thrust-vaneactuatorcommands.
Position,rate,andloadlimiting arealsoaccountedfor bythemixer.Thetheoryandimplementationof the
mixer hasbeenpresentedin anoriginal corporatereport (ref. 47). In addition to the NASA Langley
14.25-percent-scalecold-jet tests,reference48describesindependentsubscalelaboratoryteststo predict
thrust-vectoringeffectiveness.

Towardtheendof PhaseII of theHARV flight program,newversionsof themixer werestudied.The
original mixer wassubsequentlycalledmixer 1; however,only oneof theseveralrevisions,mixer 4.2,
wascarriedthroughto flight. Mixer 4.2wasincorporatedin theNASA-1A control law, whichwas first
successfullyflown during flight 256 on June3, 1994.The developmentof mixer 4.2 was motivated
becausemixer 1hadnoroll-vectoringcapability(onlypitchandyaw),nordid mixer 1prioritizepitchand
yaw vectoringwhenacombinationof thesecommandscouldnotbe simultaneouslyachieved.The new
mixer was developedwith a numericaloptimizationtechniquebasedon thrust-vectoringeffectiveness
andthrust-lossdatafrom groundtestsandconsiderationsof optimalvaneplacementof inactivevanes.
The primary designrequirementwas to achievethe commandedthrust-vectoringmomentswith the
smallesterrorpracticalwhile incorporatinga pitch,yaw, androll priority logic and meetingstructural
limitations.A completedescriptionof thedesignmethodolog)andoptimizationprocessusedto develop
thenewmixer haspreviouslybeenpublished(ref. 49).

The first four flights addressedin this paper(flights 155,226,248,and250) wereflown with the
earlier NASA-0 and mixer 1 softwareand cover 25 of the 26 PID maneuversstudiedherein.The
remaining(26th)maneuver(at approximately70° AOA) wasperformedon flight 274,andtheNASA-1A
andmixer 4.2 softwareversionswereoperating.At 70° AOA, however,differencesin softwareversions
did not affectthemaneuverin anywayandthusaffectednoneof theresultsof this paper.

INSTRUMENTATION AND DATA ACQUISITION

The MC controlled the 1553 multiplex data bus, which provided a standard interface for all equipment

connected to the bus (such as monitoring instrumentation and recording systems). The MC also was the

interface between the flight control sensors and computers to the pilot's digital display indicators. The

indicators display system status, caution, and failure annunciation in addition to primary flight

information. Selected flight information could also be presented on the pilot's head-up display.

Research instrumentation included three-axis linear accelcrometers, attitude and angular-rate gyros,

control surface position transducers, and redundant alrdata :;ensors. Angle-of-attack information was

available using production airdata sensors mounted on the folward fuselage, but only to a maximum of

approximately 35 ° AOA because of sensor position limits. Fgr this reason, AOA, AOA rate, angle of

sideslip, and sideslip rate were computed in the MC using d_ta from the inertial navigation system. In

addition to inertially-derived airdata, two high-AOA airdata systems were developed. One system used
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swiveling (self-aligning) pitot probeswith conventionalAOA and sideslip vanesmountedon both
wingtips(ref. 50).A secondsystemusedapneumaticflushairdatasystemconsistingof severalpressure
sensorslocatedaroundthetip of theHARV nosecone(ref. 51-53). Airdatafrom bothsystemswereused
for postflight dataanalysis.Additionally,airdatafrom thewingtip swivelprobeswereusedfor real-time
cockpit displayandcontrol roommonitoring.Airdatausedin thepresentPID analysisweretakenfrom
thewingtipprobes.

Many other parameterswere measuredto study high-AOA flight. Additional instrumentation
included 75 thermocouplesand 14 strain gages on the thrust-vectoring system for monitoring
temperaturesandloads.Nearly 400 static-pressureorificeswere installedon the forebodyand LEX to
characterizethe forebodypressuredistribution(refs. 25 and 26). Off-surfaceflow visualizationof the
forebodyand LEX vorticeswereobtainedusinga smokegenerationsystemthat emits particlesat the
nosetipandLEX apex(refs.27and54).Fourvideocamerasandonestill camerawereusedto photograph
theflow. Surfaceflow visualizationwasexaminedusingconventionaltufts aswell as anemittedfluid
technique(ref. 23).Flow visualizationandpressuredatawereusedto correlatewith andvalidateexternal-
flow CFDsimulations(refs. 11-15)andfull-scalewind-tunnelpredictions(refs.7, 8).

Both engineswere instrumentedto monitor engineoperationand were equippedwith a real-time
thrust-measurementsystem(ref.46).Therightenginehadadditionalinstrumentationfor engineandinlet
diagnosticswith 63 pressuresensorslocatedalong the inlet lip and down the duct to measureinlet
distortionat high AOA. An inlet rakecomplexwith 40high-responsepressuresensorswasalsoinstalled
just forward of the right enginecompressorfaceto studycompressorstallsduringhigh-AOA dynamic
flight (ref. 55).Datafrom theinlet sensorsandinlet rakecomplexwerealsousedto validateinternal-flow
CFD simulationsof theF-18HARV inlet (refs.56and57).

Datameasurementsandvideosignalsweretelemeteredto groundstationsfor real-timemonitoringin
thecontrolroomandrecordedfor postflightanalysis.Thetelemetrysystemconsistedof two independent,
asynchronouspulsecodemodulation(PCM)dataencoders,eachwith abasicPCMword sizeof 10bits.
All outputsof theencodersweresentby telemetryto thegroundbecausenoonboardrecordingof PCM
data was available. Special provisions were incorporated in the data acquisition system for
high-resolutionsignalsof certaintypesof data.As manyas2000parameterscouldbe telemeteredon the
two PCMtelemetrystreams,with dataratesashighas2142Hz onselectsignals.

Flight datausedin thepresentPID analysiswereacquiredfrom ground-recordeddataandthinnedto
a final samplerateof 40 Hz. Measurementsof AOA andsideslipwerecorrectedfor center-of-gravity
(CG) offset. Correctionsfor upwash,sidewash,andboom-bendingeffectswere also madefor boom-
obtainedairdata.Linearaccelerometerdatawerecorrectedin thePID programfor instrumentoffsetsfrom
the CG. Transducerswere also availablefor measuringengineoperationand fuel consumption,from
which instantaneousmassand inertia characteristicscould be calculated.Furthermore,before the
maneuverswereanalyzed,thedatawerecorrectedfor time lagsintroducedby sensordynamicsandsignal
filtering. Making thesecorrectionswascritical to adequatelyestimatestability andcontrol derivatives
(ref. 41).

METHODS OF ANALYSIS

The formulation of the PID method is described in this section. The associated equations of motion

used in the method are also presented.

15



Parameter Identification Formulation

A primary purpose of the HARV flight program was to evaluate the aircraft configuration during

high-AOA flight. When flying at high AOA, significant flow separation and vortical flow over the aircraft

cause the vehicle to exhibit uncommanded responses. A discussion of maneuver difficulties and related

analysis issues under these conditions for the 3/8-scale F- 15 Remotely Piloted Research Vehicle at AOAs

from -20 ° to 53 ° has previously been published (ref. 58). At high AOA, the uncommanded motions vary

from relatively small amplitude, high-frequency disturbances to very large wing rocking motions or

complete rolloff from the flight condition. In addition to being bothersome to the pilot, the motions also

complicate the extraction of stability and control derivatives from the planned stability and control

maneuvers (ref. 58). The OBES aided the present analysis by augmenting the RFCS control laws and

allowing for SSIs. To better analyze the existing maneuvers, accounting for the uncommanded portions of

the aircraft motion was necessary.

The procedure implemented in this analysis used state noise to model the uncommanded forcing

functions. This technique has previously been described in detail (refs. 59-61). The technique applied to

the HARV data also required that the normal aircraft equations of motion be linear in the aerodynamic

coefficients; this requirement presented no particular difficulty because the normal stability and control

derivatives were already locally linear approximations of nonlinear aircraft aerodynamics.

To perform the analysis presented in this report, an existing parameter estimation computer program

was modified to reflect the additional complexity required to include the effects of the state noise (inputs

caused by separated and vortical flows) on the stability and control maneuvers. A brief description of the

state noise algorithm follows.

A precise, mathematically probabilistic statement of the parameter estimation problem is possible.

The first step is to define the general system model (aircraft equations of motion). This model can be
written in the continuous/discrete form as follows:

x(t o) = xo (1)

xCt) = f[x(t), u(t), _ ] + F(,_)n(t) (2)

Z(ti) = g[x(ti) ,u(ti),_]+(;(_)lqi (3)

where x is the state vector, z is the observation vector, f and g are system state and observation functions,

u is the known control input vector, _ is the unknown parameter vector, n is the state noise vector, rl is

the measurement noise vector, F and G are system matrices, and t is time. The state noise vector is

assumed to be zero-mean, white, Gaussian, and stationary; and the measurement noise vector is assumed

to be a sequence of independent Gaussian random variables w:th zero-mean and identity covariance. For

each possible estimate of the unknown parameters, a probability that the aircraft response time histories
attain values near the observed values can then be defined. The maximum likelihood estimates are defined

as those estimates that maximize this probability. Maximum likelihood estimation has many desirable

statistical characteristics; for example, the estimator yields asymptotically unbiased, consistent, and
efficient estimates.

If equations (2) and (3) are linearized (as is the case for the stability and control derivatives in the
aircraft problem), then
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x(t 0) = x 0 (4)

x(t) = Ax(t) +Bu(t) + Fn(t) (5)

z(ti) = Cx(ti) + Du(ti) + Grli (6)

where A, B, C, and D are system matrices.

When state noise is important, the nonlinear forms of equations (1) to (3) are intractable. For the linear

model defined by equations (4) to (6), the cost function that accounts for state noise (that is, a function of

the difference between the measured and computed time histories) is as follows:

N
1 1

J(_) = 2 Z [z(ti) - z_(ti) ]*R-l[z(ti) - z_(ti)] + _N lnlRI (7)
i=1

where R is the innovation covariance matrix and N is the number of time points. The z_(t i ) term in equa-
tion (7) is the Kalman-filtered estimate of z.

To minimize the cost function J(_ ), the Newton-Raphson algorithm can be applied, which chooses

successive estimates of the vector of unknown coefficients, _. Let L be the iteration number. The L + 1

estimate of _ is then obtained from the L estimate as follows:

--1 * ^_L+l = _L-[ V J(_L)] [V_J(_L)I (8)

If R is assumed fixed, the first and second gradients are defined as follows:

N

V_J(_) =- Z [z(ti)-z_(ti)] (GG) [V_z_(ti)]
i=1

(9)

N

Z [V_z_(ti)] (GG) [V_z_(ti) ]
i=1

N
* --1

-Z [z(ti)-z_(ti)] (GG) [V_z_(/i)]

i=1

(10)

where GTzG* is the measurement noise covariance matrix. The Gauss-Newton approximation to the

second gradient is as follows:

N

V_J(_)= Z [V_(ti)] (GG) [V_z_(ti)] (11)

i=1
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The Gauss-Newton approximation, which in past reports by the first author was sometimes referred to

as modified Newton-Raphson, is computationally much easier than the Newton-Raphson approximation

because the second gradient of the innovation never needs to b_,.calculated.

Figure 5 shows the maximum likelihood estimation concept. The measured response is compared

with the estimated response, and the difference between these responses is called the response error. The

cost function of equation (7) includes this response error. The minimization algorithm is used to find the

coefficient values that minimize the cost function. Each iteration of this algorithm provides a new

estimate of the unknown coefficients on the basis of the response error. These new estimates are then used

to update values of the coefficients of the mathematical model, providing a new estimated response and,

therefore, a new response error. Updating of the mathematical model continues iteratively until a

convergence criterion is satisfied (that is, when the ratio of the change in total cost to the total cost,

AJ(_)/J(_), is less than 0.000001). The estimates resulting from this procedure are the maximum
likelihood estimates.

The maximum likelihood estimator also provides a measure of the reliability of each estimate based

on the information obtained from each dynamic maneuver. This measure of the reliability, analogous to

the standard deviation, is called the Cram6r-Rao bound (refs. 60, 62). The Cram6r-Rao bound, as

computed by current programs, should generally be used as a measure of relative, rather than absolute,

accuracy. The bound is obtained from the approximation to the information matrix, H, which is based on

equation (11); the actual information matrix is defined whet evaluated at the correct values (not the

maximum likelihood estimates) of all the coefficients. The bound for each unknown coefficient is the

square root of the corresponding diagonal element of H -1 ; that is, for the ith unknown, the Cram6r-Rao

bound is 4(H-li,i). The stability and control derivatives presented in the "Results and Discussion"

section were analyzed assuming that state noise was present in all maneuver cases.

Equations of Motion

The linearized aircraft equations of motion used in the PID analysis are derived from a general system

of nine coupled, nonlinear differential equations that describe the aircraft motion (refs. 63, 64). These

nonlinear equations assume a rigid vehicle and a flat, nonrotati ng Earth. The time rate of change of mass

and inertia is assumed negligible, and fuel-sloshing effects arc ignored. No small angle approximations

are used, but the absolute values of angle of sideslip, [3, ant pitch attitude, 0, must be less than 90 °

because of singularities at ±90 °. The aircraft velocity must not _3e0. No symmetry assumptions are made.

Engine thrust terms are included, assuming the engine alignment and thrust vector are along the X axis.

(Terms accounting for thrust vectoring are included in the exFressions for the aerodynamic coefficients,

to be described later). The equations are written in body axe_ referenced to the CG. All angles are in

degrees. The I)"and _ equations are not relevant to the present analysis and therefore are not included.

The remaining system of state equations is as follows:

6t = q-tan_(pcosot + rsinot)- I?ls/(mVcos['J)_(CNCOSOt-CAsinoQ

+[g/(Vcos_5)_{cosOcosOcosot+sinOsinot-ET/(mg)_sinot }
(12)
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- psinot- rcoso_ + cos_SI(Fts)Cy/(mV)+ (g/V)cosOsinO 1

+ sin_JI[?tS(CNsino_+CACOSOOl/(mV)

- (g/V)[cosOcosOsina- sinOcos_ - (T/(mg)) cos_ }

(13)

pI x - qlxy- i'Ixz = FgsbC l + qr(ly - Iz) + (q2 _ r2)iyz + pqlx z _ rplxy (14)

ql y - i'I yz - Pixy = qscC m + rp( l z - I x) + (r 2 - p2)l xz + qrl xy - pql yz (15)

i'I z Plxz-qly z ?tsbC n+pq(I x ly)+ (p2 q2_ = - _ )Ix) ,+prly z-qrlxz (16)

0 = qcosO-rsinO (17)

= p + rcosCtan0 + qsin_)tan0 (18)

Most aircraft, including the HARV examined here, are symmetric about the x-z plane. This symmetry

can be used with small-angle approximations to separate the equations of motion into two largely

independent sets describing the longitudinal and lateral-directional motions of the aircraft. Certain

nonlinear terms are linearized through the use of measured data. A comprehensive treatment of the

aircraft PID linearization problem is given in references 63 and 65.

Symmetry and small perturbation approximations allow the lateral-directional equations of motion

(eqs. 13, 14, 16, and 18) to be expressed in forms that contain locally linear approximations in the

aerodynamic coefficients as required by equation 5 (repeated here):

:_(t) = Ax(t) + Bu(t) + Fn(t)

The aerodynamic terms of interest in equations 13, 14, and 16 are Cy, C 1, and Cn, the coefficients of

lateral force, rolling moment, and yawing moment, respectively. The coefficients Cy, C 1 , and C n are

expanded as follows:

Cy = Cy_ + ( Cypp + CYrr)b/(2V ) + CYSa8 a -I- CYSr 8r + CYsdhSdh + CYo

+CY8 _pv/(q s)+CY8 _yv/(q s)
pv yv

(19)

Cl = Cl_ + (ClpP + Clrr)b/(2V) + Clsa_a + Clsr_r + Clsd h_dh + Cl 0

+ C/8 8pv/(qsb)+ Cl8 _yv/(q sb)
pv yv

(20)
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C n = C%_J + (Cnp p + Cnr)b/(2V) + _a + C + CnoCn_ a "n_r_r + CnSdh_dh

+ Cn_ 8pv/(?lsb) + Cn_ 5yv/(?lsb)
pv yv

(21)

The unknown stability and control derivatives to be estimated by PID are Cy, Cy8 , CYSdh, Cy_ ,
a r

CYSv v' CYo, Cl _ , Clp, Cl r , flea , Cl_dh , Cl_r, Cl_y v , Clo, C_[_ ' Cnp" Cnr" Cnsa " Cn_dh' Cn_r' Cnsy,. ,

and C n . The Cy , C l , and C n derivatives were not estimated because those derivatives did not

o _pv _pv _pv HARV and were found to be small and are not
significantly affect the analysis. For tlae , Cyp Cyr

estimated. Note that Cy_ , Cl6y v, and Cnsy v are the coefficients resulting from yaw vane inputs. The
yv

stability and control derivatives are related to equation 5 through the following expressions for system

matrices A, B, and F with corresponding state, control, and noise vectors x, u, and n:

A ._

Cy_[qs/(m V) ] sin o_m -cos (xm (g/V) cos 0 m sin ¢_m

Clf_ (?lsb/lx) Clp (?lsb/Ix)[b/(2V)] CI r (?lsb/Ix)[b/(2V)] 0

Cno(_lsb/Iz) Cnp(_lsb/Iz)[b/(2V)] Cnr(_lsb/;z)[b/(2V)] 0

0 1 tanOmcOS¢m 0

(22)

g

Cvsa[_ts/(mV)] CYsdh[?ls/(mV)] CYSr[?ts/(mV)] Cysyv[1/(mV)] Cvo[_ls/(mV)i

C18 (_lsb/lx) Clsdh(_tsb/Ix) CI_ (?tsb/Ix) C/By(l/Ix) Clo(?tsb/l x)
tl r '

CnSa(_Sb/Iz) CnSdh(_tsb/Iz) C%r(?tsb/lz) C%vv( 1/Iz) Cno(?tsb/l z)

0 0 0 0 0

(23)

f_ 0 0

0 fp 0

0 0 fr

0 0 0

(24)

x= prO]

_dh 8r 8yv 1]

(25)

(26)
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n= [n[_ np ni.] (27)

where _m" 0m' and 0m are the measured values of or, 0, and 0. The state noise coefficients are f_, fp,

and fi, and the state noise is defined as n_, np, and ne.

RESULTS AND DISCUSSION

The 26 stability and control maneuvers examined herein were all analyzed with the PID technique

described in the previous section. All maneuvers were subsonic (from Mach 0.23 to 0.52) and performed

as small perturbation maneuvers about the 1-g flight condition at AOAs of approximately 10 °, 20 °, 30 °,

40 °, 50 °, 60 °, and 70 °. The maneuvers were performed by the OBES while the vehicle was under RFCS

control as described in the "Software Configuration" section. All maneuvers were analyzed assuming

state noise was present as described earlier, although those maneuvers at approximately 10 ° AOA did not

exhibit significant uncommanded motions caused by unsteady flow phenomena.

The OBES maneuvers were ideal for derivative extraction in that each of the four lateral-directional

control surfaces (_dh, _r" _)a' and 5y v ) was independently commanded using a separate 4-sec doublet
during each maneuver. Table 4 shows the control input amplitudes commanded by the OBES for all

26 maneuvers. Some variation in control input excitation and dynamic response was exhibited during

maneuvers 10, 12, 16, and 20, which were flown on the first HARV PID flight (flight 155). Experience

gained from these maneuvers proved useful in determining proper doublet sizes for maneuvers on

subsequent flights. In some of the figures to follow, these early maneuvers are highlighted with flagged

solid symbols.

The main deficiency of the maneuvers analyzed in this paper is that the maneuvers were performed at

10 ° AOA increments. A 10 ° increment is not sufficient (too large) to completely define the derivatives as

functions of AOA, as substantial changes in a derivative can occur within as few as 2 ° or 3 ° AOA.

High Angle of Attack Research Vehicle Stability and Control Maneuvers

Figure 6 shows a typical lateral-directional maneuver performed at approximately 10 ° AOA by the

HARV. Figure 6(a) shows the flight condition parameters for the 24-sec maneuver. The AOA varied

between 9 ° and 11 o, the altitude was 30,300 ft, the Mach number was 0.50, and the dynamic pressure

varied between 110 and 113 lb/ft 2. Figure 6(b) shows the lateral-directional response variables used for

PID: angle of sideslip ([3), roll rate (p), yaw rate (r), and lateral acceleration (ay). Figure 6(c) shows the

control inputs used to excite the vehicle response: differential stabilator deflection (_)dh), rudder

deflection (_5r), aileron deflection (_ia ), equivalent pitch vane deflection (Spv), and equivalent yaw vane

deflection (_Syv ). Figure 6(d) shows the individual vane deflections, V 1, V 2 , V 3 , V 4, V 5, and V 6 plotted

along with the computed left and right engine thrust, T L and T R , and the computed total engine thrust, T.

As figure 3 shows, V 1, V2, and V 3 are the upper, outer, and inner vane deflections for the left engine;

and V 4, V 5 , and V 6 are the upper, outer, and inner vane deflections for the right engine. If the vanes are
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Table4. Summaryof OBES-commandedcontrolinput amplitudes.

Maneuver Average5, A_, ASdh , ASr, AS a , A(Syv/T),

number deg deg deg deg deg deg

1 9.52 9.5 3 5 5 10

2 9.67 9 3 5 5 10

3 9.91 9 3 5 5 10

4 9.92 9 3 5 5 10

5 10.27 9 3 5 5 10

6 20.03 9 6 11 11 18

7 20.17 9 6 11 11 18

8 20.26 10 6 11 11 18

9 20.38 9 6 11 11 18

10 24.52 7 3 8 8 10

11 29.29 10 6 11 11 18

12 29.53 7 3 8 8 10

13 29.87 10 6 11 11 18

14 29.89 10 6 11 11 18

15 30.04 10 6 11 11 18

16 39.03 8 3 8 8 10

17 41.05 10 6 11 11 18

18 41.38 10 6 11 11 18

19 41.67 10 6 11 11 18

20 49.46 7 3 8 8 10

21 49.70 8 3 10 11 18

22 49.97 9 3 10 11 18

23 58.53 9 0 8 15 18

24 59.53 12 0 8 15 10

25 59.65 11 0 8 15 8

26 66.73 10 5 10 10 5

assumed to be touching the exhaust plume, the equivalent pitch vane and yaw vane inputs in figure 6(c)

are defined by and calculated with the following equations:

IV - ( V2 + V 3 + V5)] ,T
(28)
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 v2 vs lt
÷

_) yv = _ T (29)

where T is equal to T L + T R . In figure 6(d), the individual vanes are plotted as lateral-directional effector

pairs. That is, where the overplotted vane signals agree, a force and moment will result in the lateral-

directional axes. Where the signals do not agree, a force and moment will result in the longitudinal axes.

The degree to which the plotted vane signals of figure 6(d) agree or disagree in producing an adequate

lateral-directional response is illustrated by examining the _pv and _yv signals in figure 6(c) that are
computed from equations 27 and 28.

The maneuver shown in figure 6 was performed by the OBES with the aircraft under RFCS control, as

were all 26 HARV maneuvers discussed in this report. The aircraft responses that are shown in figure 6(b)

were the result of the control input excitation given in figure 6(c). Doublets were commanded by the

OBES on each of the four vehicle controls in the following sequential order: _)dh, _)r' _a' and 6yv"

Figure 6(c) also shows the effect of feedback on these controls, for although the command is for a pure

doublet, the actual control deflection is somewhat modified. These four somewhat-modified control

doublets are all very distinct and independent, which is very desirable for PID analysis.

The primary reason to excite individual control doublets (using SSIs) is to guarantee that independent

information exists for all of the controls and states. This independence assures the identifiability of each

stability and control derivative. With a feedback system, the control motions can be defined as a function

of the responses that are fed back and of the other control positions, thereby making the states and control

positions almost linearly dependent (ref. 41), which is undesirable for identifiability. The independent

doublet on each control assures that this near-linear dependence will not occur. All five maneuvers

performed at approximately 10 ° AOA were very similar to the maneuver shown in figure 6. The SSI

approach to PID maneuvers has been investigated on several other flight research programs, including the

3/8-scale F-15 Remotely Piloted Research Vehicle (ref. 58), the Space Shuttle Orbiter (ref. 66), and the

recent and similarly thrust-vectoring X-31 vehicle (ref. 67).

Figure 7 shows a 25-sec lateral-directional maneuver that varies between 28 ° and 32 ° AOA.

Figure 7(a) shows the flight condition; figure 7(b) shows the response variables; figure (7c) shows the

control variables; and figure 7(d) shows the engine thrust and vane positions. In later discussions where

the HARV PID analysis is compared to the basic F-18 PID analysis described in reference 34, the time

histories in figures 6 and 7 can be compared directly to the time histories in figures 4 and 7 of reference 34.

All 26 maneuvers were similar to the 2 maneuvers just presented in terms of maneuver duration,

doublet sequence, and doublet shape as illustrated by the control doublets shown in figures 6(c) and 7(c).

Nonetheless, the maneuver and input summary of table 4 shows two exceptions. First, the three

maneuvers at approximately 60 ° AOA (maneuver numbers 23, 24, and 25) did not include doublets in

5dh(because the horizontal stabilator was near its maximum deflection limit); therefore, no

_)dh derivatives were estimated for these maneuvers. Second, as previously mentioned, four of the earliest
maneuvers had noticeably different doublet amplitudes than later maneuvers at similar AOA conditions.

These maneuvers (numbers 10, 12, 16, and 20) are identified with flagged solid symbols in some of the

stability and control derivative results to be presented. The 10 ° AOA maneuver shown in figure 6 is

maneuver number 3 from table 4, and the 30 ° AOA maneuver shown in figure 7 is maneuver number 13.
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The amplitudesof 13,8yv/T, and the control inputs (8d_, Sr, S a) shown in table 4 need some

explanation. The amplitude of AI3 and A(Svv/T ) is the amoant of maximum variation (peak-to-peak
¢

value) in ]3 and 8yv/T during the maneuver. For example, comparisons of the [3 variation in figures 6(b)
and 7(b) with corresponding values of A 13 in table 4 (for maneuver numbers 3 and 13, respectively)

illustrate how these values were selected. Conversely, the ampli:.ude of a control input in table 4 is roughly

the average value of the dwell (deflected) portion of the control input from its value just before and after

the doublet, which can be nonzero at high AOA. In other words, the AS given in the table denote control

doublets of ±AS about a nominal deflection value (which ma) _ or may not be 0°), and does not imply a

total peak-to-peak variation as is the case with A_ and A(Syv/T ). Although the OBES command was for

a pure doublet, the F-18 control system and the RFCS somewhat modify the control input, as figures 6(c)

and 7(c) show.

Stability and Control Derivative Results

The stability and control derivatives resulting from PID are presented and discussed in this section.

Each derivative is plotted as a function of AOA where the symbols are the flight-determined estimates--

also referred to as the flight estimates or flight values--and the vertical lines are the uncertainty levels.

The uncertainty levels (ref. 41) shown on the plots are obtained by multiplying the Cram6r-Rao bound of

each estimate by a factor of 5. Theoretically, information on maneuver quality such as the duration of the

maneuver, amount of response signal noise at the time of the control input, excitation of the response

variables (]3, p, r, and a y ), and the fit of the maneuver is contained in the value of the uncertainty level.

A large uncertainty level indicates low information on the estimated derivative for that maneuver, and a

small level indicates high information. In addition, several curves are plotted on top of the derivatives and

represent one or more of the following (depending on the particular plot):

• fairings of the HARV flight estimates based on the authors' interpretation of the data.

• fairings of the prediction obtained from cold-jet thrust-vectoring tests (ref. 42) and a simulation

based primarily on wind-tunnel data of the basic F- 18 aircraft (refs. 68, 69).

• fairings of the basic F-18 flight estimates (ref. 34).

• final fairings based on both HARV and basic F-18 flight estimates.

The fairing of flight estimates is based primarily on the uncertainty levels, the scatter of adjacent

estimates around a given AOA, and engineering judgment of the maneuver quality. Note that the

aerodynamic wind-tunnel data used to characterize the prediction fairing was for the basic F-18

configuration and did not account for the external modification; made on the HARV, which included the

thrust-vectoring apparatus and the LEX fences as discussed in the "Hardware Configuration" section.

The estimation of stability and control derivatives at high AOA is always difficult because of the

uncertainty of the aerodynamic mathematical model and the occurrence of uncommanded responses

during the dynamic maneuver. Although the derivatives are plctted as functions of AOA, other variables

(such as altitude, Reynolds number, Mach number, and horizonlal stabilator position) account for some of

the scatter seen in the plotted estimates.

HARV Derivatives

Figure 8 shows the sideslip derivatives Clf _, C% , and Cy_ as functions of AOA. The agreement of

the flight-determined CI_ with prediction (fig. 8(a)) is good at less than 20 ° AOA and at 50 ° AOA. The
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estimatesfor theflight dataarecloselyclustered(with thepossibleexceptionatapproximately20° AOA)

and have relatively small uncertainty levels. The small uncertainties provide a fairly high confidence in

the flight estimates, including those estimates at high AOA where associated vortex flows can complicate

PID. Differences between the conditions at which the flight estimates are obtained and those at which the

predicted values are obtained exist, however. The flight estimates of Clf _ were determined over a A_

range of variation of a maximum of 10°; this variation was true for nearly all of the flight maneuvers, as

table 4 and figures 6(b) and 7(b) show. Because the 13 derivatives are usually nonlinear with sideslip

angle, the range of sideslip over which the derivatives are defined makes a difference. The sideslip range

for the predictions is likely smaller than the flight range A[_. In addition to differences in sideslip range,

the LEX fences installed on the HARV would certainly be expected to affect Clf _ (especially in the AOA

region greater than 25 ° dominated by strong vortical flow), a factor not accounted for in the predictions.

Figure 8(b) shows the general trend of decreasing C% with AOA for flight and predicted values with

good agreement from 30 ° to 40 ° AOA. The flight estimates are tightly clustered with small uncertainty

levels around most AOAs. Again, possible explanations for the disagreement at other AOAs may include

the range of sideslip variation of the flight maneuvers and HARV configuration modifications. In addition

to any effect of the LEX fences, the additional surface area resulting from the aft-mounted thrust-

vectoring apparatus would tend to make the flight-determined C% somewhat larger than C% would be

without the apparatus.

Figure 8(c) shows flight-determined Cy_ as a function of AOA with comparison to prediction. The

flight estimates are somewhat higher (more positive) than predicted at less than 40 ° AOA, with good

agreement at greater than 40 ° AOA. The tight clustering of flight data and small uncertainty levels at less

than 40 ° AOA underscore the disagreement between flight and prediction, with possible explanations

again including sideslip range and configuration differences.

Figure 9(a) shows the coefficient of rolling moment due to differential horizontal stabilator deflection,

Cl_dh, with flight and predicted values as a function of AOA. The flight values show considerably more

effectiveness from 10 ° to 30 ° AOA than the predicted values. The predicted values were corrected for

stabilator position, which does not seem to explain the discrepancy. The flight variation for differential

stabilator deflection, A_dh, is +3 ° or __.6°, depending on the particular maneuver (table 4). (Figure 6(c)

shows maneuver number 3 with a +3 ° variation, and figure 7(c) shows maneuver number 13 with a ±6 °

variation.) Over what _dh range the predicted values are determined is not known, but if the range were

significantly different than the flight range, then that may account for the difference. The flight estimates

are of very high quality, including those estimates at high AOA, as can be seen by the small amount of

scatter and the relatively small uncertainty levels at the low AOAs.
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Figure9(b) showsthecomparisonbetweenflight andpredictedvaluesfor .Theflight estimates
CnSdh

show an increasingly larger negative value (adverse yaw) witll increasing AOA in comparison with the

prediction. The flight estimates are seen to be very good, as illustrated by the tight clustering of data at

less than 50 ° AOA and the relatively small uncertainty leve)s at less than 40 ° AOA. The differences

between flight and prediction are large and are probably only partially explained by differences in the

respective ranges of _dh"

Figure 9(c) shows the coefficient of lateral force due to differential horizontal stabilator deflection,

CY_dh, for flight and predicted values as a function of AOA. Both values are quite small, but some

differences can be seen, especially at approximately 40 ° AOA. The predicted values could be used as a

fairing of the flight estimates everywhere except at approximately 40 ° AOA.

Figure 10(a) shows the comparison of the flight and predicted values for Cl_ . The flight value is
a

10 to 25 percent lower than predicted throughout the AOA range. The flight estimates are seen to be good,

especially for high AOA, as the estimates are tightly clustered with relatively small uncertainty levels at

less than 50 ° AOA. At approximately l0 ° AOA, the flight maneuvers have A_5a amplitudes of

approximately ±5 °, and elsewhere the maneuvers have A8 a amplitudes of approximately ± 11 °, except for

the four flagged solid symbols. The four flagged values correspond to A8 a amplitudes of approximately

± 8 °. To study the A8 a inputs closely, refer to figures 6(c) altd 7(c) and table 4. The two flagged solid

symbols at 25 ° and 30 ° AOA are in good agreement with the prediction, which may indicate that the

prediction is based on a A_ia range smaller than the +_11 ° range of the other maneuvers.

Figure 10(b) shows the flight and predicted values of Cn_ . The flight values are smaller (less
a

negative) than predicted throughout the range of AOA. A pos, ible explanation for this feature is that the

range of A_5a for the prediction may be different than the range of A_ a for the flight maneuvers as

discussed above. This difference between flight and prediction fairings is substantial.

Figure 10(c) shows the comparison of flight and predicte, i values for Cy8 . Both sets of values are
a

small, but the flight and predicted values are of opposite sign _t less than 30 ° AOA.

Figure 1 l(a) shows the flight and predicted values of CI_ _ as a function of AOA. Good agreement

exists at less than 30 ° AOA. The flight values are more positive: than the predicted values at 30 ° AOA and

greater. As table 4 shows, the maneuvers at approximately 10' AOA have a A_ r of ±5 °, and most of the

maneuvers at 20 ° AOA have a A_ r of ±11 °. Given the good agreement at approximately 10 ° and at
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20° AOA, therangeof A_ r for flight and predicted values does not seem like a plausible explanation for

the differences between flight and prediction seen at the high AOAs.

Figure 1 l(b) shows the comparison of Cna for flight and predicted values. Very good agreement
r

exists between flight and predicted values throughout the AOA range, with the predicted effectiveness

being somewhat larger (more negative) than the flight estimates at approximately 10 ° AOA and slightly

less negative for AOAs greater than 20 °.

Figure 1 l(c) shows the comparison of Cy_ for flight and predicted values. Again, the agreement is
r

very good throughout the AOA range. The predicted values make a plausible fairing of the flight

estimates.

Figure 12 shows the rotary derivatives Clp, Cnp , Clr, and Cnr as functions of AOA along with

comparisons of flight and predicted values. The flight values of (fig. 12(a)) are less damped than
CIp

predicted at greater than 25 ° AOA. The flight and predicted values of Cnp (fig. 12(b)) are both very small

at less than 50 ° AOA and agree well with each other at 30 ° AOA and less. The flight values of fir

(fig. 12(C)) are less than predicted throughout the AOA range. Both flight and predicted values of Cnr

(fig. 12(d)) are damped for all AOAs, with the flight values being significantly more damped at 20 ° and

50 ° AOA.

Figures 13(a), 13(b), and 13(c) show the coefficients of rolling moment, yawing moment, and lateral

force due to yaw vane deflection (Cl_ , Cns , and Cy_ , respectively). These coefficients are different
yv yv yv

than the other stability and control derivatives discussed in this report because of the nature of the thrust-

vectoring control. The moment and force are a result of the deflection of the engine exhaust plume when

the thrust-vectoring vanes are actuated. The mechanization and software driving the thrust vectoring are

described in the "Vehicle Description" section. Details on the prediction of the effectiveness of the thrust

vectoring have previously been published (refs. 42--45). Thrust-vectoring effectiveness is defined in terms

of the effective plume-deflection angle, measured from the nominal (undeflected) thrust line. When the

vane is against or inside the plume, this effectiveness has been calculated from prediction in reference 42

to be 0.563 deg/deg or 0.00982 rad/deg, which is the ratio of plume deflection to vane deflection for

nozzle pressure ratios of 2. The data in reference 42 also show that a similar value is true for nozzle

pressure ratios of 3 and 5. All 26 maneuvers presented here had nozzle pressure ratios between 3 and 5.
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Yaw vane effectivenessis different than the otherstability andcontrol derivativesstudiedin this

report in that the 8y v derivatives are not functions of flight condition such as velocity or dynamic

, C% v , and Cy_y v derivatives are normalized by dividingpressure. Because of this difference, the C18y v

the moment (ft-lb) and force (lbf) by both the thrust and lhe vane deflection (as given in eq. 29).

Therefore, the units of Cl_yv and Cnsyvare ft/deg, and the units of Cy_yv are deg -1. The thrust is

calculated for each sample point using the method described in reference 46. Then, _Syv is calculated by

equation 29 and is used as an input to the equations of motion. The derivatives Cl8 , Cn8 , and Cy_
_'v yv vv

are then estimated the same way as all the other derivatives, as described in the "Pai'ameter Identification

Formulation" section. The predicted value of ClSy v (fig. 13(a)) is 0 ft/deg; the predicted value of Cn_

(fig. 13(b)), based on a moment arm of approximately 20 ft between the aircraft CG and the center of the

vanes, is 0.196 ft/deg; and the predicted value of Cy_ (fig. 13(c)) is -0.0098 deg -1.
yv

Figure 13(a) shows the comparison between flight and predicted values of CI_ as a function of
yv

AOA. The "zero value" of both flight and prediction are in excellent agreement. This value is expected, as

no intended rolling moment due to 5y v is introduced by the TVCS.

Figurel3(b) shows the comparison of flight and predicted values of Cn8 as a function of AOA.
yv

The flight estimates are slightly higher than predicted for AOAs less than 30 ° and are in good agreement

elsewhere. The flagged solid symbols indicate the four maneu,, ers from the first flight where the variation

in vane deflection, A_Syv , was ±10 °, in contrast to the other mmeuvers at 20 ° AOA and greater in which

the variation was ±18 °. All four of these flagged flight estimates show the highest values of Cn8 for

their AOA range, and therefore indicate that vane effectiveness may be somewhat higher for small _Svv

deflections than for large deflections, which is consistent with tindings in reference 42. Moreover, the five

flight estimates grouped at approximately 10° AOA, in whictL the ASy v was only ±10 °, clearly show a

higher estimate than predicted.

To see how the flight estimates can be higher than predicted is difficult because the prediction

represents the ideal case where the vane effectiveness is at a m_.ximum (corresponding to a plume-to-vane

deflection ratio of 0.563 deg/deg (ref. 42)); an explanation of this difference is attempted. Reference 37

presents loads data for the instrumented left-engine vanes. The reference discusses the presence of a

resulting load on the undeflected vanes opposite the deflected vanes (a condition called "plume

pinching"). The reference also shows that the deflected vanes are essentially touching or just inside the
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plumesuchthattheeffectivenessof thevanesis notaffectedby anuncertaintyin therelationshipbetween

the vanepositionsand theexhaustplume.Therefore,alongwith otherpossibleexplanations,the most

likely explanationfor thedifferencein predictionandflight is that thethrustcalculationusedto define

_yv for ASyv = +10 ° is at least 10 percent too high, which is particularly evident for maneuvers at 10 °

AOA (which all have A_)y v = +10°).

Figure 13(c) shows the comparison of Cy8 for flight and predicted values as a function of AOA.
yr.

Virtually all of the flight estimates are more negative than predicted. Again, the most negative estimates

tend to be from maneuvers with small vane deflections; that is, the maneuvers with flagged solid symbols

and those at approximately 10 ° AOA. These values, along with the explanation given above, support the

probability that the thrust estimate may be 10 percent too high at 10 ° AOA, where ASy v = __.10°, as was

seen for Cn_
yv

Based on the above discussion, the argument can be made that the calculated thrust used in this

analysis was at least 10 percent too high for flight maneuvers with the lower A_Svv (±10°). Further

supporting this conclusion, reference 37 also shows flight estimates of CN8 to be 10 percent higher for
pv

small vane deflections at low AOA than their ideal values where no plume pinching occurred. All three

derivatives, C N , C n , and are independently estimated, and all three show that the calculated
8P v 8Vv Cy_ ,

thrust is probably too high. yv

Figure 14 shows the flight estimates of Clo, Cno, and CYo as functions of AOA. At greater than

50 ° AOA, these coefficients show significant values other than zero. This characteristic is not unusual for

very high AOA flight conditions, where strong vortices exist off the forebody and LEX of the HARV. The

biases Clo and Cno show very definite and strong trends indicating that these vortices are probably

asymmetric. The next section will compare the flight-determined derivatives of the HARV with those of

the basic F-18 aircraft that were previously reported (ref. 34).

Comparison of HARV and Basic F-18 Derivatives

The results of PID for the basic F-18 aircraft (without thrust-vectoring modifications) were previously

published in reference 34. In this section, those results will be compared with the HARV results from the

previous section. As reported in reference 34, the stability and control maneuvers for the basic

F-18 aircraft were less than ideal. Both the basic F-18 and HARV maneuvers were hampered by

uncommanded responses resulting from separated and vortical flows typical of flight at high AOAs.

However, the basic F-18 maneuvers had several other drawbacks that made them even less desirable, as

discussed in detail in reference 34. These drawbacks were primarily caused by the basic F-18 control
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systemintroducingrelatively high correlations(near-lineardependence)betweenthecontrol variables
and the feedbackresponsevariables.In addition,the variousinterconnectsbetweenthe aileron (5a ),

differential stabilator (Sdh), and rudder (5 r ) deflections made separation of the individual effects of these

control derivatives less than ideal. In contrast, because of the implementation of the RFCS and the OBES

on the HARV, the effects of the feedback variables and contro! dependencies were nearly eliminated, as

described in the "HARV Stability and Control Maneuvers" section.

In the remainder of this section, the stability and control derivative estimates and associated

uncertainty levels for the HARV and for the basic F-18 aircraft (taken from reference 34) will be plotted

alongside each other. These plots will be discussed, and a combined "final" flight fairing will be defined

based on the results from both aircraft. Some small configuration differences exist (such as the LEX

fences and the thrust-vectoring mechanism) that will not be completely accounted for in the final fairings.

The HARV estimates will be represented by "o" symbols and the basic F-18 estimates by "×" symbols.

As with the other flight fairings, the "final" fairing will also be determined by considering the uncertainty

levels (Cram6r-Rao bound times 5 for all data points), the scatter of the adjacent estimates, and

engineering judgment of the maneuver quality. In some inst_ces, a dual fairing may be appropriate,

indicating separate fairings for different ranges of the primary variable (for example, different sideslip or

control input ranges). These different ranges will be mentioned in each applicable case. In general, any

fairing at less than 9 ° AOA will be based on the basic F-18 aircraft because no HARV data exist in

this range.

Figure 15(a) shows the flight estimates of C l for both the ItARV and the basic F-18 aircraft (ref. 34)
9 °as a function of AOA. The uncertainty levels between and 40 ° AOA are significantly smaller for the

HARV estimates than for the F-18 estimates. At less than 30 ° AOA, good agreement exists between the

HARV and F-18 estimates. Between 30 ° and 39 ° AOA, the estimates are exclusively basic F-18 estimates

with a large amount of scatter and large uncertainty levels. These points do not effect the final fairing

because of the tight clustering and small uncertainty levels of the HARV estimates at approximately 30 °

and 40 ° AOA. However, at approximately 43 ° AOA, a basic 17-18 estimate exists that has a very small

uncertainty level that is significantly smaller than any of the nearby HARV estimates. Therefore, the final

fairing deviates from the trend of the HARV-only data. This deviation may seem unwarranted, but a

change of 2 ° or 3 ° AOA in flight can show a marked change in the separated and vortical flows at high

AOA and thus in C 1 . The balance of the fairing (the portion at greater than 50 ° AOA) is based solely on

the HARV estimates because no F-18 estimates are available.

Figure 15(b) shows HARV and basic F-18 flight estimate_ for Cn. At greater than 39 ° AOA, both

sets of data agree; and between 19 ° and 39 ° AOA, the HAR\ estimates are more tightly clustered and

have locally smaller uncertainty levels than the F-18 estimates. Therefore, the final fairing at greater than

19 ° AOA is identical to the HARV fairing. At approximately 14 ° AOA, two F-18 estimates exist with

reasonably good uncertainty levels, so the final fairing includes the uncertainty levels for these two points

in the absence of any nearby HARV estimates. At less than ,_o, many F-18 estimates exist with small

uncertainty levels and no HARV estimates. The final fairing :ncludes these points although the fairing

requires a rapid change in Cnf _ because the data at less th_ 9 ° are tightly clustered and have small
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uncertaintylevels.This changeoccursover2° or 3° AOA, andthesetypesof changesin Cnf _ magnitude

(0.0006) are not uncommon. However, the rapid change may also be caused by a difference in the range

of ]_ during the stability and control maneuver. The range of [3 (A]3) for all of the F-18 maneuvers was

less than 4 °. The AI3 for all the HARV maneuvers was approximately 9 °, as shown in table 4. Therefore,

this rapid change in the fairing may actually indicate that two fairings are needed; one for the AI3 of 4 ° for

the F-18 estimates and one for the AI3 of 9 ° for the HARV estimates. The same may also be true for the

two F-18 estimates at 20 ° AOA because the estimates were extracted for a AI3 maneuver of 6°; the

HARV estimates at 20 ° AOA were extracted from maneuvers with a AI3 of 9 ° to 10 °.

Figure 15(c) has all of the flight estimates of Cy_ from both the HARV and basic F-18 aircraft as

functions of AOA. As before, the final fairing at less than 9 ° AOA is the same as the basic F- 18 fairing

(ref. 34). The final fairing between 20 ° and 30 ° AOA has been lowered somewhat from the HARV-only

fairing to incorporate the basic F-18 estimates with similar uncertainty levels as the single HARV

estimate between 20 ° and 30 ° AOA.

Figure 16 shows all of the flight estimates for the equivalent lateral control deflection, _L"

, and Cy_ L , respectively, as functions of' CnsLFigures 16(a), 16(b), and 16(c) present derivatives C/8L
AOA. The _L derivatives are defined as follows:

CI_ L = CI_ + 0.42Cl_dh (30)

Cn_ L = Cn8 a -I- 0.42C (31)n_dh

CY_L = CYSa + 0.42CYSdh (32)

These derivatives result from the control system of the basic F- 18 aircraft (explained in detail in ref. 34)

simultaneously moving _a and _dh according to equations 30 to 32 for flight at greater than 15 ° AOA. In

order to compare the basic F-18 and HARV estimates, the HARV estimates, uncertainties, and fairing for

the _a and _dh derivatives were converted to the equivalent _L derivative using equations 30 to 32

(fig. 16). Note that flight estimates of the basic F-18 aircraft are only plotted for AOAs greater than 15°;

at less than 15 ° AOA, additional control surfaces move simultaneously with _a and _)dh such that the

resulting control derivative cannot be compared directly with the HARV using equations 30 to 32.

Figure 16(a) compares HARV and basic F-18 flight estimates of CI_ L as a function of AOA. Two

final fairings (solid curves) are shown. The longer fairing is identical to the HARV fairing, and the shorter

fairing is nearly the same as the fairing reported in reference 34 for the basic F-18 aircraft between

20 ° and 45 ° AOA. The reason for showing two final fairings is because the shapes and amplitudes of the
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_a and _)dh doublets are different between the HARV and b_ sic F-18 aircraft. The shapes of all of the

HARV doublets are the same: the doublet rises rapidly from the "zero" position to the doublet amplitude

in one direction, holds that value for approximately 2 sec, then rapidly switches sign to the doublet

amplitude in the opposite direction, holds that value for approximately 2 sec, and then retums to zero to

complete the 4-sec doublet. These waveforms can be seen in the control inputs of figures 6(c) and 7(c).

Between 20 ° and 49.5 ° AOA (see table 4), all but four of the HARV maneuvers have doublet amplitudes

of A8 a = ±11 ° and A_dh = ±6 °. The other four maneuvers have doublet amplitudes of A8 a = ±8 ° and

A_)dh = ±3 ° and are denoted as flagged solid symbols in figure 16(a).

In contrast, for the basic F-18 aircraft, the entire 8 L maneuver doublet is completed in approximately

1 to 1.5 sec, which is three to four times as rapid as the complete HARV 4-sec doublet. These waveforms

can be seen in the control inputs of figure 7(c) of reference 34, repeated here as figure 16(d). In addition,

the maximum amplitude for the basic F-18 doublet is determined by the control system; figure 6 in

reference 34 shows that the maximum amplitude for _a = 6° .rod for _)dh = 2"6° for flight at 25 ° and at

greater than 25 ° AOA. Reference 34 also shows that basic F-18 doublets resemble sinusoids rather than

classic square waves, minimizing the dwell time spent at the maximum amplitudes (see fig.16(d)). Thus

by comparison, whereas almost all of the HARV 8 a doublets dwell near +11 ° for 4 sec and the _dh

doublets dwell near ±6 ° for 4 sec, the basic F-18 5 a doublets dwell near ±6 ° for less than 1 sec, and the

_dh doublets dwell near ±2.6 ° for less than 1 sec. Moreov,_r, whereas for nearly all of the HARV

maneuvers, the average positive values for _a is 11 ° and for _,th is 6°; for the basic F-18 maneuvers, the

average positive value for 8a is 3 ° and for _dh is 1.75 ° or less. Similar averages for negative values of

each input can be seen for each aircraft.

Thus, referring again to figure 16(a), the unflagged HARV _naneuvers have [aa[ -- 11° and [adh [ = 6%

and the basic F-18 maneuvers have [aa[ --- 3 ° and [adh [ --- 1.75 °. These values mean that [_L[ for the

unflagged HARV maneuvers is 3 to 4 times [aL[ for the bask F-18 aircraft. Therefore, the longer solid

fairing in figure 16(a) represents Cls L for 8a -- 11 ° and 5dh -- 6 °, and the shorter solid fairing

represents CI_ L for 8a[ ---3 ° and 8dh [ _ 1.75 °. The flagged circles for the most part lie between the two

fairings as would be expected because they represent HARV estimates with 30 percent lower 5a and

50 percent lower 8dh amplitude than the rest of the HARVest Lmates.

Figure 16(b) shows both HARV and basic F-18 flight estimates for Cn8 L as a function of AOA. Two

final fairings are given here with the same rationale as was gixen above for CI8 L. The shorter fairing has

been adjusted slightly from the basic F- 18 fairing (ref. 34) to cc nform better with the overall fairing of the
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HARV estimates. The longer final fairing and the HARV fairing overlap each other. Interpreted together,

the two fairings show that more adverse yaw exists for large deflections than for small deflections.

Figure 16(c) shows the comparison of the flight estimate of Cy8 L as a function of AOA. The final

fairing is the unaltered HARV fairing presented in the last section, and the fairing adequately represents

all of the data and is consistent with the scatter and uncertainty levels of the estimates.

Figure 17(a) shows HARV and basic F-18 flight estimates Of Cl_ as a function of AOA. The HARV

flight fairing is consistent with all of the basic F-18 flight estimates _nd uncertainty levels except for the

F-18 estimate at approximately 43 ° AOA. The final fairing is raised slightly in this local AOA region to

accommodate this point. The final fairing is also drawn to agree with the basic F-18 estimates at less

than 9 ° AOA because no HARV estimates were obtained in this region.

Figure 17(b) shows the flight estimates of Cn5 as a function of AOA. The final fairing at greater
T

than 9 ° AOA is the same as the HARV fairing, except for lowering the fairing a little between 20 ° and 30 °

AOA. This adjustment is made to include several basic F-18 estimates with relatively small uncertainty

levels. The fairing at less than 9 ° AOA needs some explanation because the fairing shows a rapid

reduction in rudder effectiveness between 8 ° and 10 ° AOA. Estimate clusters at 6 ° to 8 ° AOA for the

basic F-18 aircraft and estimate clusters at approximately 10 ° AOA for the HARV are tightly clustered

with small uncertainty levels. In order to assess if this jump may be caused by differences in doublet

amplitude (as was the case for CI_L), similar observations are considered for Cn_ r. The 4-sec HARV

doublets at approximately 10 ° AOA used _r - 5° (see table 4). The 1-sec doublets of the basic F-18

aircraft from 6 ° to 8 ° AOA varied from _ir of 3 ° to 20 °. As figure 17(b) shows, this range of _r for the

basic F-18 aircraft nonetheless resulted in similar values of Cn_ estimates and uncertainty levels. This
F

range also spans the HARV doublet amplitude of _ir = 5 °. Therefore, the jump in Cn_ cannot be
/-

attributed to differences in _r alone. A possibility exists that the longer dwell time (2 sec) for the HARV

(as opposed to 0 to 0.3 sec for the basic F-18 aircraft) may be a contributing factor, but insufficient

information exists to conclude that. Therefore, the most likely cause of the jump in the value of C% is an
F

effect of AOA. This jump is similar to that found for Cnf but to a lesser extent than was just shown

for Cn_ .
r

Figure 17(c) shows HARV and basic F-18 flight estimates for Cys as a function of AOA. The

HARV flight fairing is a very good final fairing of all of the data. The rbasic F-18 fairing is used to

complete the final fairing at less than 9 ° AOA.
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Figure 18showsall of the flight estimatesfor therotary derivatives (Clp, Cnp, fir, and Cnr) as

functions of AOA. At less than 9 ° AOA, the basic F-18 flight fairing (ref. 34) is used for all the rotary

derivatives because the fairing merges nicely with all of the data in this AOA range. At greater than

9 ° AOA, the HARV flight fairing is used for all of the rotary cerivatives except when estimates from the

basic F- 18 aircraft indicate small modifications to the HARV fairing. The fairing for Clp in figure 18(a) is

modified at approximately 15 ° to better reflect the two data points from the basic F-18 airplane. The

fairing for Clr in figure 18(c) is modified at 10 ° AOA to allow a more reasonable merging of the two

original flight fairings. A modification from the HARV fairing at approximately 25 ° AOA was made in

figure 18(d) for Cn_ to better represent the single HARV estimate and several of the basic F- 18 estimates.

The comparison of the rotary derivatives shows that the HARV estimates are more tightly clustered and

the uncertainty levels are, in general, considerably smaller than those of the basic F-18 estimates in all

regions. These conclusions result from the consistent HARV maneuver implementations and the reduced

correlations between control and rotary derivatives, both of which are direct results of the RFCS and

OBES implementations (see the "Software Configuration" section). These conclusions are particularly

evident in the two most important rotary derivatives, Clp and Cnr, at less than 50 ° AOA. Both Clp and

Cnr can be troublesome derivatives to estimate at low AOA but are often nearly impossible to obtain at

high AOA. For the HARV, however, the high quality data system, the excellent maneuvers with low

effective feedback gains and independent control deflections, and the state noise PID algorithm have all

contributed to improving the estimation of the rotary derivatiw_s.

Overall, the HARV estimates are seen to define the final flight fairings much better because of their

tight clustering and relatively small uncertainty levels. These estimate characteristics are primarily a

result of the excellent quality and near repeatability of the flight maneuvers and the modeling of the

uncommanded motions with the state noise algorithm described in the PID methodology section. The two

primary factors for modifying the HARV flight fairings with basic F-18 estimates were the effect of

different amplitude ranges for 13and for _a and _)dh inputs, and the paucity of HARV estimates for AOA

other than those clustered at 10 °, 20 °, 30 °, 40 °, and 50 ° _OA. These two reasons are not inherent

drawbacks to the HARV maneuvers or PID method; these re_ sons are issues only because the complete

maneuver set did not include maneuvers to define these characteristics. That 10 ° AOA increments are too

large to define the trends of stability and control derivatives is well known. That 2 ° AOA increments are

needed to provide meaningful AOA trends throughout the flight envelope can be argued. The final

fairings for Cn9 and Cn_ between 5 ° and 10 ° AOA certainly h:lp support the argument for 2 ° increments

at less than l0 ° AOA. In_crements of 5 ° are probably adequate for most of the high-AOA region. If more

detailed PID characterization is needed, additional maneuvers can be flown to fill in the desired AOA

values. If better definition of the stability and control derivat ves is needed as a function of variable or

control deflection range, an appropriate adjustment (reprogramming) in the OBES can be made to provide
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suitable maneuverswith either larger or smaller size doublets. These considerationswere not

requirementsfor theHARV program,but thediscussionsin thissectionindicatethattheseconsiderations

wouldhaveprovidedamorestraightforwardandwell-definedinterpretationof theHARV datathanusing
themuchlessdesirablebasicF-18estimates.

Summary of HARV, Basic F-18, and Predicted Derivatives

Figures 19 to 24 show summaries of the fairings for each derivative as a function of AOA. These

stand-alone fairings (without data points and uncertainty levels) make seeing the trends between flight and

prediction easier. The differences between the HARV-only fairing and final fairing were discussed in the

last section, but presenting the differences in this format provides a clear comparison. Again, the

predictions do not account for the LEX fences nor the thrust-vectoring apparatus, which may explain some

of the differences seen.

The final fairing made the agreement between flight and prediction slightly better than the HARV

fairing alone for the following derivatives: Clf _, CyB , CnsL, Cnsr, Clp , and Cnr. The final fairing made

the agreement between flight and prediction slightly worse for Cl_ z and Cl_ _. Figure 23 shows fairings

for the _dh derivatives, and figure 24 shows the 8 a derivatives. In these figures, the final fairing is the

same as the HARV fairing because no estimates exist from the basic F- 18 aircraft to suggest modification.

Identifying individual _dh and _a derivatives from the basic F-18 aircraft was not possible because of the

various interconnects and correlations introduced by the basic F-18 flight control system, as explained

earlier. The 8y v derivatives shown in figure 13 have no counterpart for the basic F-18 aircraft; therefore,

they are not repeated for these figures.

CONCLUSIONS

The lateral-directional stability and control derivatives of the F-18 High Angle of Attack Research

Vehicle (HARV) equipped with thrust vectoring have been determined from subsonic, dynamic flight

data using a maximum likelihood parameter identification (PID) technique. The technique uses the

linearized aircraft equations of motion and accounts for thrust-vectoring terms and state and measurement

noise. State noise is used to model the uncommanded forcing function caused by unsteady flows at high

angles of attack. A specialized research flight control system (RFCS) controls the integration of

aerodynamic and thrust-vectoring controls. The PID maneuvers were performed "hands-off' by an

onboard excitation system (OBES) working through the RFCS to allow for single-surface inputs. The
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independentinputs wereideal for parameteridentificationby eliminatingcorrelationsbetweencontrol

variablesandresponsevariablesintroducedby feedbackfrom tt_ehigh-gaincontrolaugmentationsystem.

A total of 26maneuvershasbeenanalyzed,eachmaneuverfeat:Jringdoubletsin aileron(8a ), differential

stabilator (Sdh), and rudder (Sr) deflection and equivalent yaw vane input (Syv). The following

derivatives are determined from the flight maneuvers and are plotted as functions of angle of attack:

.... Cn5 a , CnSdh , , Cyf,Cl_, Clp, CI r, ClSa' Clsd h' ClSr Clsy v' Cl O' Cn B Cnp Cn,. , Cn_r Cnsy v Cn O'

and Comparisons have been made with predictions obtained from
CY_a' CYsd h' CY_r' CYsy v' CY O"

laboratory cold-jet thrust-vectoring tests and a simulation based primarily on wind-tunnel data from the

basic F-18 aircraft. Comparisons have also been made to flight-determined derivatives of the basic

F-18 aircraft. Configurationally, the basic F-18 aircraft differs from the HARV by not having

leading-edge-extension fences nor the aft-mounted thrust-vectoring apparatus. These configuration

differences probably contributed to some of the difference seer between flight-determined and predicted

derivatives values.

The results are presented in three sets of figures: first, showing HARV flight-determined derivatives

with fairings for the flight values and for predicted values; second, showing flight-determined derivatives

of both the HARV and basic F-18 with fairings for both aircraft and for a "final" fairing combining the

two sets of derivatives; and third, showing the HARV flight fairing, the prediction fairing, and the "final"

fairing. In addition to the stability and control derivative valves extracted by PID, these results reveal

several important conclusions:

• The preprogrammed doublet maneuvers performed by the OBES were repeatable and accurate in

wave form (in terms of amplitude, dwell time, full-cycle duration, and overall square-wave shape),

resulting in tight clustering of flight-estimated derivatives near a given angle of attack, low data

scatter, and small uncertainty levels. In contrast, pilot-input doublets performed with the basic

F-18 aircraft were deficient in wave form and repeatability, resulting in significantly greater data

scatter and large uncertainty levels.

• The main deficiency of the HARV maneuvers in the ctxrent study was that the maneuvers were

performed at 10 ° angle-of-attack increments. These increments were too large to adequately define

the derivatives as functions of angle of attack because natable differences can occur over 2 ° or 3 °

angle of attack, as shown by comparing HARV deriva :ives with basic F-18 derivatives at other

angles of attack. These increments were known to be toc large, but at the time, no HARV program

requirement existed to investigate smaller increments. In :rements of 2 ° or 3 ° angle of attack would

have been ideal, although increments of 5 ° angle of atta_:k would probably have been sufficient.

• Uncommanded responses at high angles of attack cau,'_ed by separated and vortical flows were
accounted for and modeled as state noise in the PID formulation.
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The thrust-vectoring derivatives Cy8 and Cn_ show more effectiveness for smaller _vv inputs
yv yv

than for larger 5y v inputs, with the most likely explanation being that the thrust calculation used to

define 8yv is a minimum of 10 percent too high.

HARV derivative faifings were modified as indicated by considering estimates from the basic F- 18

aircraft that had small uncertainty levels, which helped account for differences in variable ranges

and the paucity of HARV maneuvers at angles of attack other than 10 °, 20 °, 30 °, 40 °, and 50 °. This

modification resulted in slightly improved comparisons between flight and prediction for CI, CyB

CnSL, Cnsr, Clp, and Cnr and slightly degraded comparisons for Cl8 L and CI_ r.

Dryden Flight Research Center

National Aeronautics and Space Administration

Edwards, California, March 30, 1998
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Figure 1.TheF-18High Angleof Attack Research Vehicle (HARV).
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