
NASA/TP--1998-208608

Elementary Theoretical Forms for the Spatial Power Spectrum

of Earth's Crustal Magnetic Field

C. Voorhies, Goddard Space Flight Centel, Greenbelt, Maryland

National Aeronautics and

Space Administration

Goddard Space Flight Center

Greenbelt, Maryland 20771

December 1998



Acknowledgments

Joy A. Conrad accurately and efficiently coded and quickly ran most of the computations summarized

in this paper and prepared the Figures. She deserves, but declines, coauthorship (having long since

moved to Houston to do more critical programming for the Shuttle). My special thanks to A. Jackson

and the late M. McLeod for drawing attention to a fundamental and interesting geophysics problem, to

J. Cain and M. Purucker for sharing the results of their analyses, and to T. Ravat for encouraging

discussions. My thanks to the people of the United States of America who supported this work through

their National Aeronautics and Space Administration, research and technological operating plans 579-
31-07, 579-31-08, and 670-72-03.

Available from:

NASA Center for AeroSpace Information

Parkway Center/7121 Standard Drive
Hanover, Maryland 21076-1320
Price Code: AI 7

National Technical Information Service

5285 Port Royal Road

Springfield, VA 2216 I
Price Code: A10

!!] i -



ABSTRACT

The magnetic field produced by magnetization in Earth's crest and lithosphere can be distinguished from the field produced

by electric currents in Earth's core because the spatial magnetic power spectrum of the crustal field differs from that of the
core field. Theoretical forms tor the spectrum of the crustal field are herein derived by treating each magnetic domain in the

crust as the point source of a dipole field. The geologic null-hypothesis that such moments are uncorrelated is used to obtain

the magnetic spectrum expected from a randomly magnetized, or unstructured, spherical crust of negligible thickness. This

simplest spectral form is modified to allow for uniform crustal thickness, ellipsoidality, and the polarization of domains by an

aperiodically reversing, geocentric axial dipole field from Earth's core. Such spectra are intended to describe the background
crustal field. Magnetic anomalies due to correlated magnetization within coherent geologic structures may well be superim-

posed upon this background; yet representing each such anomaly with a single point dipole may lead to similar spectral

torms. Results from attempts to fit these forms to observational spectra, determined via spherical harmonic analysis of

MAGSAT data, are summarized in terms of amplitude, source depth, and misfit.

Each theoretical spectrum reduces to a source factor multiplied by the usual exponential function of spherical harmonic

degree n due to geometric attenuation with 'altitude above the source layer. The source factors always vary with n and are

approximately proportional to n3 for degrees 12 through 120. The theoretical spectra are therefore not directly proportional to

an exponential function of spherical harmonic degree n. There is no radius at which these spectra are flat, level, or otherwise

independent of n.
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1. Introduction

In the enduring absence of magnetic monopoles, magnetic induction is a solenoidal vector field

caused by electric currents. Macroscopic magnetic induction, or magnetic flux density, B is often

partitioned into the magnetic field strength H due to conduction currents and magnetization M due to

magnetization currents

B = tao(H + M), (la)

where l.to represents the scalar vacuum magnetic permeability. This partitioning reflects the difference

between the extrinsic linear velocity and the intrinsic angular velocity of an elementary electrically charged

particle. Macroscopic net drift of many such charges gives a conduction current; macroscopic net spin of
charges gives a magnetization current.

Here attention is focused upon the slowly varying, quasi-steady magnetic field due to natural sources

within and near planet Earth. The main source of Earth's main magnetic field is evidently electric current

flowing in Earth's roughly spherical, electrically conducting, ferro-metallic liquid outer core and solid inner

core. Other sources of the geomagnetic field include weaker currents in the electrically resistive, ferro-

magnesian silicate and oxide mantle; magnetization in the colder lithosphere and crust; and elecwic currents

in the saline hydrosphere, the ionosphere above, and the magnetosphere beyond. In the pervasive presence

of sources, the geomagnetic field can be represented in terms of poloidal and toroidal vector fields and

associated scalars (see, e.g., Backus [1986]); however, the potential field representation remains appropriate

for those portions of the total field with sources located outside the region of observation.

1.1 The Geomagnetic Field of Internal Origin

In an effectively source-free region, the geomagnetic induction Bg is treated as a purely poloidal,

scaloidal, potential field given by the negative gradient of a scalar potential Vg that satisfies Laplace's

equation. This field is mathematically separable int0the intemalsottrce field Bin t and the external source
field Bex t according to the location of the sources relative to a reference surface

Bg = -VVg

= "V(Vint+ Vext) = Bint + Bext. (lb)

If the reference surface is the roughly eUipsoidal base of Earth's atmosphere, then equation (lb) omits non-

potential fields from electric currents in the lowest atmosphere (e.g., cloud-to-ground lightening).

To focus attention upon "the core field" Bc and "the crustal field" B x, both externally induced

internal fields Bin d (attributed to conduction currents induced within the Earth by time-varying external

source magnetic fields) and hydrospheric fields Bh (due to conduction currents in the oceans) are omitted

Bin t = -VVin t ffi Bc + Bx + (Bind + Bh)

ffi Bc + Bx- (lc)

The core field is mainly produced by conduction current in Earth's core (Jc = VXHc)" The crustal field is

mainly produced by magnetization current (C x = VXMx) in the portion of the lithosphere lying

gravitationally above, but thermally below, the Curie isotherm.: Within this magnetic crust, part of the

magnetization is induced by the present core field and is parallel to Bc (Min d = _H c for susceptibility _);

however, thermoremanent, viscous, chemical, and delrital magnetizations also contribute to M x.



At timet andpositionr in geocentric spherical polar coordinates (radius r, colatitude 0, and east

longitude ¢p),the spherical harmonic expansion of zero mean Vin t is well-known to be

"0 a n+l n
Vin t (r,t) = a X (--) g [gnm(t)cosm_ + hnm(t)sinm_]Pnm(cos0), (ld)

n=l r m=0

where Pnm is the Schmidt-normalized associated Legendre function of degree n and order m and [gnm(t),

hnm(t)] are Gauss coefficients at the reference sphere of radius a (about 6371 kin). Gauss coefficients can

be estimated by a weighted least squares fit to geomagnetic data; this usually requires truncating the sum

over n at finite degree N (see, e.g., Langel [1987]).

By (lc), each internal field coefficient is the sum of core and crustal contributions

gnm(t) --- gnt_(t) + gnm(t)

hnm(t) = hn_a(t) + hnxm(t).

(le)

Mathematical analysis of geomagnetic measurements made on and above Earth's surface cannot uniquely

separate core from crustal field coefficients. Geophysical analysis and interpretation of such measurements

nonetheless distinguishes core from crustal fields.

1.2 The Spatial Magnetic Power Spectrum

Lowes [1966, 1974] and others (see Cain et al. [1989b]) show the mean square magnetic induction

averaged over a sphere of radius r enclosing its sources to be

1 2n rc .0
<[B(r,t)]2> = --_ I [B(r,t)]2sin0d0d_ = Y- Rn(r,t),

4n 0 0 n=l
(Za)

where Rn(r,t) is the mean square field configured in harmonics of degree n averaged over the sphere

a2n+4 n m 2 m 2
Rn(r,0 = (n+l)(w) X [gn (t)] + [hn (t)] .

r m=0
(2b)

The values of Rn(r,t) form the spatial power spectrum of the internal magnetic field. Indeed, the magnetic

energy density per harmonic degree integrated over the sphere, 2nr2p. o" 1Rn(r,t), is the discrete (line)

spectrum with dimensions of energy per unit length, hence spatial power or force (SI units of Joules/meter).

Although the SI (MKSA) units of Rn(r,t) are (Tesla) 2, the Rn(r,0 are nonetheless collectively referred to as

the spatial magnetic power spectrum. An individual value of Rn(r,t) implies the spatial power at degree n

and is thus called a multipole power: R1 is dipole power, R2 is quadrupole power, etc.

The exponential attenuation of Rn(r,0 with n ensures convergence of the sum in (2a) at all r > a if the

reference spectrum at time t,

n (gnm)2 (hnm)2Rn ,_ (n+l) X + = lira Rn(r), (2c)
m---0 r--ca+

is of finite power law form CRn _<Knct for finite ct). Divergence of a summed reference spectrum 7_,n R n

merely indicates sources at r _>a, such as those due to Earth's ellipticity and surface topography (e.g.,



magnetizationof MountKilimanjaro).Curiously,crustalsourcesabovethereferencesphereimplythat
(ld) aloneisnotenoughtorepresentthefieldonEarth'sasphericalsurfaceduetosourceswithintheEarth.
Thisparticularcomplicationinrepresentingthefielddoesnotariseatsatellitealtitudes.

1.3CoreandCrustalSpectra
As coreandcrustalmagneticfieldschangewith time,numericalvaluesof coreandcrustal

coefficientsrealizedduringaverylongintervalof geologictimedefinetwopopulationsof coefficients
(twoensembles).Statisticalpropertiesof thesepopulationscanbeestimatedby analysisof geo-
paleomagneticobservationsandusedtotesttheoreticalpredictionsderivedfromgeophysicalhypotheses.
Suchpredictionsmayinvolveprobabilitydistributionfunctions(PDFs)for thecoefficientsor functions
thereof,notablyexpectationvalues.Anexpectationvalueofaquantityq,denoted{q}, istheintegralofq
multipliedby aPDFforqoverall possibleq. Thecorrelationbetweentwoquantitespandqis the
normalizedcovariance{(p- {p})(q- [q})}(lp2}{q2])"1/'2.

Totheextentthatcoreandcrustalcoefficientsareuncorrelatedandofzeroexpectationvalue,

{(gnm)21 = {(gn_ +gnm) 2} = {(gnU) 2} + {2gnmgnmx} + {(gnxm)21

={(gnm) 2} + {(gnm)2}. (3a)

A similar relation holds for {(hnm)2}. To the extent that (3a) holds, the expected total spectrum {Rn} is

the sum of expected core and crustal spectra,

{Rn} _' {Rnc} + {Rnx}. (3b)

Equation (3a) implies (3b), but equation (3b) does not imply (3a) because of the sum over harmonic order

implicit in (3b). Indeed, (3b) can be an excellent approximation, even if some core and crustal coefficients

are strongly correlated, provided the 2n+l cross correlations, which may be either positive or negative, tend

to cancel when summed over order m (e.g., {gn6 gn6 } -- -{gn7c gn7x} _ 0). So (3b) is less restrictive than

(3a). It may thus seem reasonable to suppose that

Rn _ Rn c + Rnx. (3c)

Given (3b) alone, a particular set of cross terms (like 2gnm gnmx) for a particular degree n amounts to 2n+l

samples of a population with zero mean. If these samples are random, then the relative error in (3c) ( [R n -
Rnc - Rnx[/R n) is expected to fall off in proportion to (2n+l) "1/2 by the central limit theorem. For

example, the expected relative error in (3c) would be <20% for n > 12.

Expectation operators are linear operators; therefore, in regions where (2a) and (2b) hold, (3b) implies

{<B2> } = {<Bc2> + <2Bc*Bx> + <Bx2>}

_,{<Iic2>1+ {<Bx2>1. (3d)

Equation (3d) also holds to the extent that the core and crustal fields are uncorrelated in the mean; it is less

restrictive than (3b) due to the implicit sum over degree and, in turn, is much less restrictive than (3a). Of

course, 2Bc.B x varies from place to place and typically domina_s the scalar anomaly I B [ - IBcl mapped

by many magnetic surveys because IBc I >> IBx I. Provided Bc is dominated by low degree, broad scale

structure and Bx is dominated by high degree, narrow scale structure, orthogonality of the spherical

harmonics ensures that 1<2Bc*Bx>l << <12BcOBx[> on the reference sphere.



1.4 The Core Spectrum

According to the famous interpretation of the spatial magnetic power spectrum derived from

MAGSAT by Langel & Estes [1982], the core field dominates R n for degrees n < 12 and the crustal field

dominates R n for n > 16. For degrees 1 < n _<12, and apparently 1 <_n _<12, the spatial magnetic power

spectrum is well described by McLeod's Rule for the core field [McLeod, 1985; 1994, 1996 equation (20)].

In a simplified derivation of McLeod's Rule for finite degrees n [Voorhies & Conrad, 1996], random

geomagnetic secular variation (3t B) is induced by fluid motion near the top of a roughly spherical, high

conductivity core of mean radius c. The spatial power spectrum for such secular variation is expected to be

that of local differential dipole moments of random orientation and random moment

a 2n+4 n 2 2

Fnc(C) = (n+ 1)(--) X (_tgn m) + (_thn m) (4a)
c m=0

= {Fnc(C)} = C n (n + 1/2) (n + 1), (4b)

(c.f. section 2.2). The variation at the top of the free-stream must, however, diffuse through a thin viscous

boundary layer separating the free-stream from the electrically resistive mantle (see Appendix A). The

diffusive time-scales x n depend upon the effective scale heights 0tkrn)" 1 for poloidal field harmonics

within the core, as well as core conductivity a, and are

zn = ({Rnc}/{Fnc}) 1/2 = lao0tkm)'2 (4c)

(see (A7)). The effective scale heights are taken to be directly proportional to the horizontal length scales,

1 -1 _t khn'l -- c[n(n + 1)] "1/'2, and the consequences for Xn2 verified empirically [Voorhies & Conrad,

1996]. Combining this relation with (4c) and (41)) yields

n+ 1/2
Rnc(C) = {Rnc(C)} = K'_ (4d)

n(n + 1)

= K'/(n + 1/2), (4e)

which, upon upward continuation, is McLeod's Rule. For degrees n _< 12, the implied contribution to the

reference spectrum is

Rnc {Rnc(a)} K' (n + 1/2) "1 (c/a) 2n+4= = (40

Geophysical parameters c = 3.5 Mm and K' = 5.5x1010 nT 2 in (4f) are determined empirically via analysis

of geomagnetic observations.

Voorhies & Conrad [1996] used McLeod's Rule and ancillary hypotheses to accurately predict (i) the

mean radius of Earth's core: (ii) mean paleomagnetic field intensity; and (iii) the mean rates and mean

durations of major geomagneUc dipole power excursions and durable reversals of Earth's axial dipole. The

predicted core radius is within 1% of the seismologic value (c s = 3480 km). The predicted mean

paleomagnetic intensity is well within the broad range of experimental mean values. The predicted mean

reversal frequency (2.26/Ma) is within 3% of the paleomagnetic mean value for the past 84 million years.

Again, the core field spectrum is well described by McLeod's Rule.
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1.5 A Level Crustal Spectrum?

By analogy with Lowes [1974], when the Rn(r) for some range of n are approximated by the

exponential Rn(r) = A*(b*/r) 2n+4, linear regression through observational values of ln[Rn(a)] calculated

from a geomagnetic field model gives

ln[Rn(a)] = n[ln(b*/a) 2] + [In(A*) + 41n(b*/a)]. (5)

,
The slope of this line implies the radius b* at which the model spectrum Rn(r) becomes independent of n

(or "levels off"). If R_ is extrapolated to arbitrarily high degree, then the sum over n of Rn(r) diverges for r

_<b*; therefore, such extrapolation is not valid below b*. This might be due to failure of the potential field

representation, so b* might be the minimum radius of a sphere containing the sources.

The Langel and Estes [1982] fitted two spectra of form (5) to the Rn spectrum from their degree 23

model MGST 10/81 of Magsat data, one for the core field and one for the crustal field. Their core spectrum

* 37.1(0.974) n nT2) levels off 83 km below a.levels off I74 km below c. Their crustal spectrum (Rnx(a) =

Voorhies [ 1984] fitted the mean square radial field component alone (Brn 2 = (n+ 1) R n / (2n+ 1) _,

Rn/2) from MGST 10/81. His core spectrum levels off 200 Ion below c; his crustal spectrum (B_x2(n) =

11.91(0.9969) n nT 2) levels off 9.9 km below a. This may suggest upper crustal, rather than deep

lithospheric, sources.

Cain et al. [1989b] used their degree 63 model M07AV6 of Magsat data [Cain et al., 1989a] to obtain

a core spectrum that levels off about 76 km below c; a crustal spectrum (Rnx(a) = 19.1(0.996) n nT2) that
levels off 14 km below a; and an estimated noise level of 0.091 nT 2

The results of these analyses are clearly consistent with lithospheric sources for the internal field of

degrees 16 or more. More sophisticated crustal magnetic spectra advanced by McLeod and Coleman

[1980], Jackson [1990, 1994], and McLeod [1994, 1996], however, indicate substantial modification of the

plain exponential form.

2. Theoretical Magnetic Spectra for Thin Spherical Shells

Consider the crustal magnetic field Bx = -VV x caused by all K magnetic domains within Earth's
magnetic crust. These domains may be considered microscopic rock magnetic domains within the mineral

grains comprising Earth's crust; however, the formalism is the same if each domain represents a

macroscopic geologic structure. At altitudes above Earth's surface exceeding several times the domain

size, each domain k = 1, 2, 3.... K produces a field that can be fairly well described by that of a point

magnetic dipole of moment mk -- Mk/_to at domain position rk. The total crustal potential at observation

position r is thus treated as the superposition of K offset dipole potentials Vxk,

K K M k 1
Vx(r) = Y Vxk(r) = - _g --* V _ (6a)

k=l k=l 4rt Ir - rkl

K M k 1
= Ig --,V*_ (6b)

k=l 4_ Jr- rkl "

In (6a) and henceforth "M" represents normalized dipole moment, not magnetization. The SI (MKSA)

units of M are Tesla meter 3 (Tin3). In (6b), V* represents the gradient operator written in terms of, and

acting on, rk coordinates (rk, Ok, _k)" The spherical harmonic expansions for the Vxk are used to rewrite

(6a,b) above the crust as

5



K _,o a n+l n

Vx(r) = X a Y (_) Y_.
k= 1 n=l r m=0

[An_cosm¢ + Bn_sinm¢]Pnm(cos0). (&)

To find the coefficients (An_, Bn_) for moment M k, recall that

1 ,_ n (rk)n

= Z Z [Cnm(0,¢)Cnm(0k,Ck ) + Snm(0,0)Snm(0k,Ck)],
tr r kl n=0m=0 rn+l

(7)

where Cn m = cosm_Pnm(cos0) and Snm = sinm_Pnm(cos0 ) (see, e.g., Jackson [1975, equation (3.70)] or

Langel [1987, (195)]. Using (7) to evaluate the gradient in (6b), and equating the result with (6c), gives

n-1
I rk

An_ = -- (--)
4r_a3 a

m m

[/vl_ n Cnm(Ok,_) + M_ _-_Cnm(Ok,_) - M_ si_ Sn (Ok'_)]
(Sa)

1 rk n-1
= _ (_) [M_rn Snm(0k,Ck ) +

Bn_ 4ha 3 a

m m

M_ _a0k Snm(0k,_)k) + M_ si_Cn (0k,Ck)],
(8b)

where (/vlk, Mk, M_) are the components of Mk .

Detailed models of the phase information

K K

gnm = Z AnOn , hnm = Z Bn_
k=l k=l

(9a)

are not needed to derive theoretical forms for the expected crustal magnetic spectrum

a 2n+4 n
{Rnx(r)} = (n + 1)(--) { E (gnxm)2 + (hnxm)2}

r m=0
(9b)

= {Rnx} (agr)2n+4 (9c)

implied by simple statistical hypotheses about the K domain dipoles, Indeed, by (9a-c), the reference

spectrum for the crustal field produced by these sources is expected to be

n K K

{Rnx} = (n+ 1) 1 I; ( X; An_)2 + ( 5". Bn_)2 }
m--0 k=l k=i

(lOa)

n K K
m Ba= (n+l){ X [ _; X (An_An_) + (BnkB n_)]}. (10b)

m=0 k=l i=l

The functional dependence of the coefficients in (10a,b) upon the domain dipole moments is given by

(8a,b). Detailed models (9a) are, however, required to test statistical hypotheses about crustal

magnetization by comparing expected spectra (10a,b) with observational spectra (2b) (see section 6).

2.1 Spectrum of a Single Offset Dipole

The magnetic spectum of a single point dipole Mk(rk) is

i:l I "



2n+4 n

P.n_(r) = (n ÷ 1) (a__) x
r m=O

(An_)2, (Bn_) 2. (II)

By (8a,b), the sum over order m in (11) is

n

T. (An_)2 + (Bn_)2
m--0

n n 2

Gn m--0y" (Mk)2 n2 [Pnm]2 + Gn m=0Z(M _)2[ d_ Pnm],

(12)

n m 2 n d

_)2 _ r 0 n [Pnm _ Pn m]+ G n Z (M [-Pnm] 2 + G n Z MkM k

m=0 sin_0k m=0 UUk

where Gn(rk) - (4na3)'2(rk/a)2n-2 and it is understood that both Pnm and its derivative are evaluated at

cos0 k.

To cast (11) into a more illuminating function of M k, five harmonic identities (13a-e) are used to

reduce the four sums over m on the right of (12). For arbitrary (0,0), the sum rule for the Schmidt

normalized harmonics

n n

X [Cnm(0,¢)]2 + [Snm(0,¢)]2 = Z (Pnm) 2
m--0 m----0

= 1 (13a)

(see, e.g., Jackson [1975, equation (3.62) with 3' = 0] or Langel [1987]) is repeatedly differentiated with

respect to 0 to obtain

n d

Z 2 [ _ Pnml[Pn m]
m=0

= 0 (13b)

n d2 d

m=0X2 [ d02- Pnm][Pn m] + 2 [ --_Pnm] 2
= O. (13c)

The first sum (of radial terms) on the right of (12) is (IVl_)2n 2 by (13a); the fourth sum (of cross terms) is

zero by (13b).

To reduce the second sum (of colatitudinal terms) on the right of (12), recall that for either Cn m or

Sn m the surface Laplacian is

1 0 0Sn m 1 #Snm
Vs2Sn m = -n(n+ 1)Sn m = ----sin0_ +

sin0 30 O0 sin20 0¢ 2

d2Pn m m 2 cosO dPnm

= [-n(n+ 1) + _]Pn m
d02 sin20 sin0 dO

so

n d2 n m 2
X [ Pn m] = X _. n(n+l)][Pnm]2, cosO dPnm

m=0 d-_ Pnm [ sin20m=O sin0 [ _]l-Pnm] "dO



The last terms on the fight of this expression sum to zero by (13b); substituting the remainder into (13c)

gives

n Pnm] 2 n m2 lPnm] 2Z td = X tn(n+l) - -7-]
o

m=O dO m=O _inZ0
(13d)

The sum over m of [m(Pnm)/sin0]2 is needed to reduce third sum on the right of (12) as well as to

complete reduction of the colatitudinal terms. To obtain this sum, recall that, with y being the angle

between the position vector to the observation point r and the position vector to the source rk

cosy = cos0cos0 k + sin0sin0kcos( ¢ -Ok),

the full addition theorem for the Schmidt normal harmonics is

n

£ Cnm(O,O)Cnm(Ok.Ok ) + Snm(O,C_)Snm(Ok,ok) = Pn(COS_),
m---O

where Pn is the Legendre polynomial of degree n. Repeated operation with (sin0k)'l 3/30k gives

n -m 2 1 O2Pn(COS_)

Z _ [Cnm(O,O)Cnm(Ok,qk ) + Snm(O,O)Snm(Ok.Ck)] =
m--O sin20 k sin20 k 3ok 2

which, when evaluated at _,= 0, is the desired sum. Because

32Pn (c°s'3') d2Pn (c°_) 0cos_ 2 dPn(cOs_)

= [---'-@] + _cos_
_2 dcosy2 deo_ _k

and noting that

1 _cos7

sin2% %
= sin0(sin0k)'lsin(, - Ok)

is zero at _,= 0 while

1 02cos_

sin02 k 30k 2
.sin0(sin0k )- 1cos(¢ - Ok)

is -1 at y= 0, the desired sum reduces to

n .m 2
£ _ [Pnm(cosOk)] 2

m--O sin20k
dPn(C°_) I_ 0

dco_

,= . dPn(X)/dxlx=0 ; -n(n + 1)/2. (13e)

77 I



In (13e),x denotescosy and the final step follows from the Legendre equation at x = 0 and the usual

normalization of Legendre polynomials (Pn(0) = 1).

By (13e), (13d) is equal to n(n+l)/2. The second sum on the right of (12) is thus n(n+l)(M_)2/2.

Moreover, by (12e), the third sum (of longitudinal terms) on the right of (12) is n(n+l)(M_)2/2
Substitution of (12), as simplifed via identites (13a-e), into (11) yields

1 rk 2n-2 1

-- _ (--) [n2(n+l)[Mk] 2 + _ n(n + 1)2 [(M _)2 + (M _)2] ] . (14)Rnxk(r) (4nr3)2 r

Equation (14) gives the spatial magnetic power spectrum on the sphere of radius r due to a point dipole of

moment Mk located inside the sphere at position r k. Note that there is no radius at which (14) becomes

independent of degree n. Compared with the plain exponential spectrum that levels off at radius rk (Rn* --

A*(rk/r)2n+4), the spectrum of an offset dipole increases as a cubic polynomial of n.

Spectrum (14) is insensitive to the north-south vs. east-west orientation of a dipole because Rn(r) is

invafiant under rotations of the coordinate system. Yet a well-offset radial dipole can produce almost twice

the mean square field (_zn Rn(r)) of a horizontal dipole because Rn(r) does vary under coordinate

translations. This seems intuitively obvious in light of the inverse cube law and the anisotropy whereby, at

a fixed distance from a dipole, field intensity on its axis is twice that on its equator. The area of strong field

intensity directly above a well-offset radial dipole clearly dominates the mean square field on the sphere.

For a horizontal dipole of the same absolute moment at the same modest depth, there are two areas of

sa'ong field on the sphere; however, these areas are further from the dipole itself, have lesser intensity, and

thus give a smaller mean square field than does the radial dipole. Of course, a geocentric magnetic dipole

of moment m^ is purely radial and, with rk = 0, equation (14) correctly gives the single non-zero Rn, R 1 =

2(I.tomo/4m'3)_.

2.2 Randomly Oriented Dipoles on a Spherical Shell (Spectrum Iss)

At a particular instant in geologic time, the K domain dipoles are regarded as a sample population

with mean square moment IM2}. The coefficients appearing in (10) are given in terms of domain dipole

moments Mk by (8a,b). The positions of the dipoles are taken to be random samples from a laterally

uniform spatial distribution. The positions are thus expected to he uncorrelated in that {rk*r i} is equal to

{(rk)2 }, where the Krtnecker delta qSkiis 1 if k = i and is 0 if k _ i.

If the dipole moments are randomly oriented, then any particular orientation is as likely as its

opposite

IM I-- fM I-- --0,
there is no reason to expect cross-correlated components for an individual moment

(15a)

there is no reason to expect cross-correlated moments

(15b)

{MkM }= {MkM }--- " 0 fork i, (15d)
but the auto-correlations remain perfect



Equations(15a-e), summarized by IMj k} = 0 and IM jk MIi } = IM2/3 }_kiSjl , provide a mathematical
statement of the random dipoles hypothesis.

Although M k depends upon position (0k,Ck), position is independent of Mk; therefore, in evaluating

{An_} and {Bn_} via (Sa,b), the expectation operator passes right through the harmonic functions of

(0k,Ck). For random dipoles the expectation values of the coefficients are thus zero: {AnT } and {Bn_ }

are zero by (15a) and {(8a-b)}, so {gnmx} and {hn_} are zero by {(9a)}. It follows that the expected field

components are also zero. Moreover, (15c-d) and (8a-b) imply that contributing coefficients are

uncorrelated

IAn_An m} = IBn_BnT} = 0 for k ¢i. (16)

The expected field vector from random dipoles is zero, but the expected spatial power spectrum,

hence the expected field intensity, is not. Substitution of (16) into (10b) yields the expected reference

spectrum

n K

{Rnx] = (n+l){X [ X (An_)2+ (Bn_)2ll. (17)
m=0 k=l

The order of summations in (17) is reversible, so the expected magnetic spectrum from K random dipoles is

the sum of the expected spectrum from each dipole. If all K dipoles are at radius rx, then (14) and (17)

imply

K rx 2n-2 1

IRnx }Iss (4ha3) 2 (--_) [n2(n+l)lMr 2} -_n(n 1)21M02 M_2}] . (18)

With (15c), (18) simpifies to

rx 2n-2
{RnxllSs = K {M2} [n (n+l) (2n+l)] (m) (19)

3(4x,a3)2 a

This is the reference spectrum expected from K random dipoles of mean square moment {M2 } on the shell

of radius rx. With amplitude defined via A I - (2/3)K{M2}/(4ma3) 2, (19) is rewritten as

IRnx}ISs = Alx n (n + 1/2) (n + 1) (rx / a)2n'2 (20a)

and the expected magnetic spectrum above the spherical shell is just

{Rnx(r)}Iss = {Rnx }Iss (a/r)2n+4 . (20b)

There is no radius at which spectrum (20) becomes independent of degree n. Compared with an

exponential spectrum that levels off at rx, the spectrum expected from a shell of random dipoles increases

as a cubic polynomial of spherical harmonic degree n.

Although n is a positive definite integer, the derivative of (20b) with respect to n vanishes when

(2n 3 + 3n2 + n) ln(rx/r) = -(3n 2 + 3n + 1/2);

10
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therefore, spectrum (20b) has finite extrema if and only if rx < r. To the extent that Earth's magnetic crust

resembles a randomly magnetized shell of radius rx < a, its reference spectrum (2c) should resemble (20a).

If the positive definite shell depth d -- a - rx is small in that d << a, then reference spectrum (20a) has a

maximum or 'peak' at high spherical harmonic degree Nxp = -3/[21n(rxla)] = 1.5(rx/d) With a = 6371 kin,

shell depths of 10 km, 20 km, or 40 km respectively give Nxp of 954,477, or 238.
The geometric attenuation factor makes the degree of the peak of spectrum (20b) decrease as radius r

increase. For example, at satellite altitude 450 km above, and a shell 10 km below, the reference sphere,

the peak is at harmonic degree 21.

2.3 Random Polarity Field-Aligned Dipoles on a Spherical Shell (Spectrum IIss)

Thermoremanent magnetization (TRM) of volcanic rock cooling in the aperiodically reversing

geocentric axial dipole field from the core suggests non-randomly oriented domain dipoles. The crustal

magnetic spectrtnn appropriate to field-aligned domain dipoles derived in this section is for domain dipoles

that are either parallel or anti-parallel to the present axial dipole field with equal liklihood. Subsequent

reorientation of domain dipoles by crustal deformation, metamorphic remagnetization, sea-floor spreading

and continental drift, and/or true polar wander may lead to a crustal spectrum more akin to that derived in

the previous section: however, the two spectral forms turnout to be remarkably similar.

If the domain dipoles are not randomly oriented, but are either parallel or anti-parallel to a geocentric

axial dipole field, then

Mk_-2MokCOS0k,; MkoSin0k, 0, (2,
and M ko can be either positive or negative. With no preferredpolarity, each M okis a random sample from a

population with zero mean value, {M ok}---0 and

For example, the PDF for M k could be symmetric due to remanent acquistion processes that are

independent of core dipole polarity which, in turn, is independent of absolute core dipole moment. With no

reason to expect cross-correlated polarites, IM k Mio}is zero for k _ i, so

-- 21MkoMilcos%sinOi-- 0 fork i

and the expected cross-correlations are zero

IMkM_I - {MkM_I = IM_M_I- 0 fork,i

{MkM_}--{M_M_}- {M k i0M0} -- 0 fork_i.

The auto-correlations remain perfect, but now depend on colatitude

= 4Mo2Cos2ek

fM M = Mo2sin2%

{M k M _} = 2Mo2cOSOksinOk

(22b)

(22c)

(22d)

(22e)

(22f)

11



whereMo2istheensembleaverage{(Mk)2}. Thelatteris independentofposition,sothesumof (22d)
plus(22e)canbereadilyintegratedoverthespheretoobtain<{Mk*Mk}>= 2Mo2.

Forrandompolarityfield-aligneddipolestheexpectationvaluesofthecoefficientsareagainzero:
IAnt_}and IBn_} are zero by (22a) and {(Sa-b)}, so {gnm } and Ihnt_} are zero by l(9a)}. The expected

field components are again zero. Equations (22b-c) and (8a-b) imply that individual coefficients are

uncorrelated (see (16)), so the expected spatial magnetic power spectrum is again given by (17).

From (Sa,b), (17), (22) and the supposition that all domain dipoles are on the sphere of radius rx, one

obtains the expected reference spectrum

K n d

{Rnx }Ilss = Gn(rx) {(Mk) 2} Z Z n2(n+l)[2cos0kPnm] 2 + (n + 1)[sin0 k d--@Pnm]2 (23a)k=l m=0

or, by identites (13a-e),

d
+ n(n + 1) cos0ksin0k[Pnm_Pn m]

d0k

{RnxllIss = On(rx) Mo2

K

Z n2(n+l)[4cos20 k]
k=l

+ n(n + 1)2[sin2Ok]/2 . (23b)

With domain positions amounting to random samples from a uniform distribution over the spherical shell,

the sum in (23b) over all K positions is equivalent to the average over the sphere multiplied by K

K
X

k=l
[n(4cos20k ) + (n + 1)(sin20k)/2]

K I [4ncos20k + (n+l)(sin20k)/2] sin0kdOk
2 0

= (K/3)[4n + (n+l)] = (5K/3)(n + 1/5) ;

therefore,

{RnxllIss = Gn(rx) (5KMo2/3) n (n+l)(n + 1/5) .

With Mo2 = {M2}/2 and amplitude AII t 5K{M2}/[6(4xa3)2], (23c) is rewritten

(23c)

{Rnx }Ilss = A_I n (n + 1/5) (n + 1) (rx/a) 2n'2 (24a)

and the expected magnetic spectrum above the shell is

{Rnx(r)}llss (r) = {Rnx }Ilss (a/r)2n+4 . (24b)

Like (20a), reference spectrum (24a) increases as a cubic polynomial of n. Like (20b), there is no radius at

which spectrum (24b) becomes independent of degree n.

The ratio of the expected spectrum for random polarity field-aligned dipoles (24) to that for randomly

oriented dipoles (20) is

12
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{Rnx}IlsS/lRn x}Iss = (AxlI/AxI)[(n + 1/5)/(n + 112)], (25a)

which increases by but 2.5% as n is increased from 12 to infinity. This should make it difficult to

distinguish between these two source distributions by examing observational values of Rn alone.

Nonetheless, if the sum of the squared domain dipole moments are the same for these two different

dipole distributions, then KIM 2 } in AxI is the same K{M 2} as in AxII and

{RnlISs}/lRnx Iss} = (5/4)[(n + l/5)/(n + 1/2)]. (25b)

All else being equal, the high degree multipole power from random polarity field-aligned dipoles is thus

about 25% more than for randomly oriented dipoles. This is attributed to the nearly radial orientation and

typically strong moments {2M2} I/2 of field-alligned domain dipoles located near the poles. These

contribute more to multipole powers R n than do randomly oriented dipoles of ordinary strength {M2 }112.

The surplus power from the polar regions evidently exceeds the power deficit due to the nearly horizontal

orientation and typically weak moments {M2/2} 1/2 of the dipoles located near the equator.

3. Theoretical Magnetic Spectra for a Spherical Annulus

Earth's magnetic crust is not a spherical shell, so the spectra derived above should be corrected for

effects of non-zero crustal thickness and ellipticity. To see the effect of such corrections while staying

close to the geologic null hypothesis, the position of each dipole is treated as a random sample from a

spatially uniform distribution within a magnetic crust of uniform thickness 2d.

3.1 Random Dipoles in a Spherical Annulus (Spectrum Isa)

As noted in section 2.2, the expected magnetic spectrum from K random dipoles is the sum of the

expected spectrum from each dipole. This remains true if such dipoles are dislributed in a spherical annulus

of inner radius rx - d and outer radius rx + d. So (18) is here replaced by

K rk 2n-2
{RnxllSa = IM2} I2 (--) n(n+ 1)(2n+ 1) . (26)

3(4ma3) 2 k=l a

The sum over k is equivalent to K times the volumetric mean, so

{Rnx}iSa 4nKIM 2} rx+d r' 2n-2= n (n + 1) (2n + 1) _ (--) r'2dr ' (27a)
3(4ma3)X rx-d a

K{M2 } rx+d 2n+l rx. d 2n+l
= n (n + 1) [(_) - (_) ] (27b)

3(4xa3)2X a a

where the volume of the annulus is X = (4rC3)[(rx+d)3 - (rx-d)3]. As anticipated, (27b) reduces to (20a) in

the limit as (d/rx) approaches zero. The alternate form

rx+d 2n+l rx_d 2n+l

{Rnx }Isa = K{M2} n(n+ 1)(_) [1 - (rx--_) ] (27c)
3(4na3)X a

13



shows that if the top of the layer is at the reference radius, then expected reference spectrum (27) at very

high degree is proportional to n2 rather than n3.

With rx + d = a, AIa - AxI (4ma3/2X), and

rx_d 2n+l
{Rnx}ISa = Alan(n+l)[1 - (_) ]

a

a-2d 2n+l
= Alan (n + 1) [1 - (_) ],

a

the expected magnetic spectrum above such an annulus is

(28a)

{Rnx(r)} Isa = {RnxJlSa(a]r) 2n+4 . (28b)

Reference spectrum (28a) is equivalent to that obtained by Jackson [1990, equation (21)] using a more

elegant method. Note that for a solid ball of random dipoles, the expected magnetic spectrum is directly

proportional to n(n + 1)(a/r) 2n+4.

The ratio of thick crustal spectrum (28a) to thin shell spectrum (20a) is the thickness factor

2n+l rx.d 2n+l
T n --- {Rnx}ISa/{Rnx} Iss = (4mx3/X)(2n+l)'l[(--_-a) -(_) ]. (29)

rx rx

For small relative thickness 8 = 2dh"x << 1 and lower degrees n << 8-1, T n is close to unity and (27) can be

approximated by (20). Such approximation fails at higher degrees near or exceeding 8 "1. For example, the

first, second and third columns of Table 1 list n, 360°/n, and the values of T n for a 40 km thick crust

obtained with a = 6371 km, rx = 6351 kin, and 8 = 1/159. The thickness correction amounts to 10% at

degree 120. Therefore, a 40 km crustal thickness might be distinguished from an equivalent source shell

depth of 20 km- provided the Rn could be determined with 10% accuracy for degrees through 120. Fitting

expected spectrum (28a) to similarly uncertain Rn values from a degree 60 model of satellite data is,

however, unlikely to give a very much better estimate of magnetic crustal thickness 2d than is fitting (20a)

and concluding 2d ---2(a - rx).

3.2 Random Polarity Field-Aligned Dipoles in a Spherical Annulus (Spectrum EUsa)

For field aligned dipoles of random polarity distributed in a spherical annulus of inner radius rx- d

and outer radiusrx+d, the analog of (27) is

5(4xK)Mo2 rx+d r' 2n-2
{Rnx }IIsa = n (n + 1/5) (n + 1) J (--) r '2 dr' (30a)

3(4na3)2X rx_d a

5KIM 2} n (n + 1/5)(n + 1) rx+d 2n+l rx. d 2n+l
[(_) - (_) ]

6(4ma3)X (2n + 1) a a

5K{M 2} (n+l/5) rx+d 2n-2 rx. d 2n+l

n (n+ I)-- (_) [I - (r-_)6(4r_a3)X (2n + 1) a

(30b)

(30c)

14
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Table 1: Sample Thickness and Ellipticity Correction Factors for

type I and type II dipoles (Tn based on a = 6371.000)

n 360°/n Tn (40km) Qn EnI En rl

12 30 1.00091 0.9737

18 20 1.00208 0.9611

24 15 1.00373 0.9487

30 12 1.00586 0.9366

36 10 1.00847 0.9248

48 7.5 1.0151 0.9021

60 6 1.0238 0.8803

72 5 1.0344 0.8595

90 4 1.0541 0.8301

120 3 1.0975 0.7853

180 2 1.228 0.7090

240 1.5 1.425 0.6470

300 1.2 1.708 0.5960

360 1 2.102 0.5536

480 0.75 3.383 0.4876

600 0.6 5.767 0.4390

720 0.5 10.23 0.4018

900 0.4 25.38 0.3598

1.00023 0.9857

1.00056 0.9786

1.00103 0.9865

1.00164 0.9718

1.00239 0.9586

1.00430 0.9462

1.00676 0.9344

1.00976 0.9234

1.0153: 0.9081

1.0271 0.8857

1.06o5 018518
1.107 0.8310

1.166 0.8217

1.239 0.8230

1.427 0.8549

1.680 0.9240

2.011 1.0313

2.694 1.2728

TEnI

1.00116

1.00267

1.00480

1.00755

1.0109

1.0196

1.0307

1.0445

1.0702

1.1127

1.302

1.577

1.991

2.602

4.819

9.667

20.51

68.08

TEnlI

0.9860

0.9801

0.9748

O.9702

0.9662

0.9600

0.9561

0.9546

0.9567

0.9715

1.0449

1.183

1.402

1.728

2.886

5.315

10.51

32.16
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where X is again the volume of the annulus. The form (30c) again shows that, when the top of the layer is

at the reference radius, the expected reference spectrum at very high degree is proportional to n2. With rx +

d = a, AIIa _ AxII(4na3/2X),

(n+ 115) rx. d 2n+l
[Rnx }Ilsa = AxlIa n (n + 1)-- [1 - (_) ], (31a)

(n + 1/2) a

and the expected magnetic spectrum above such an annulus is

{Rnx(r)} Ilsa = {Rnx }Ilsa (a/r) 2n+4 . (31b)

The difference between thick crust spectrum (3 I) and thin shell spectrum (24) again remains small until

harmonic degree n approaches the reciprocal relative thickness (n = rx/2d). Indeed, the ratio of these

spectra for type II dipoles gives the same crustal thickness factor T n as for type I dipoles (see (29) and third

column of Table 1). This is becasue any systematic change in the absolute moment of type II dipoles with

depth, perhaps due to the increase in the strength of the alligning field, has been omitted for simplicity.

4. Theoretical Magnetic Spectra for a Thin Ellipsoidal Shell

Consider K domain dipoles on an ellipsoid of revolution about the polar axis re(0). The radius of the

k th dipole depends upon colafitude Ok

[re(0k)] 2 = bx2 (1 - e2sin20k)'l = ax2 (1 + y2cos20k )'1 , (32a)

where a x is the semi-major axis, bx is the semi-minor axis, g is the (numerical) eccentricity e 2 f 1 -

(bx/ax)2, and "t is here called the "coeccentricity" T2 = (ax/bx)2 - 1 = t2/(1 - E2). The eccentricity of

oblate spheroidal shell (32a) is here taken to be that of the reference ellipsoid. For the latter, Nerem et al.

[1994] give a e = 6378.137 km and be = 6356.7523 km; therefore, t 2 = 6.694384x10 "3.

The volume of the oblate spheroid is

Ve = (2nbx3/3) J 0 (1 - e2sin20)'3/2sin0d0 = 4ratx2bx/3. (32b)

For ae and be above, (32b) gives a volume equal to that of a sphere of radius 6371.001 kin. The differential

surface area element of the elUpsoidal shell fs

e4 sin20 cos20 1/2
dA e = [1 + ] [re(0)]2sin0d0d ¢

(1 - e2sin20) 2

= (1 - e2sin20) "1 [1 - e2(2 - e2)sin20] 1/2 [re(0)]2 sin0d0d¢

= (1 + T2cos20)" 1 [ 1 + tx2cos20] 1/2 [re(0)]2sin0d0d¢

= (1 + "t2x2) "1 [1 + ct2x 21 [re(x)]2 dxd ¢

where a 2 = (y2 + e2)/(1, e2) = 2y2 + _ and x -- cos0. The area of the oblate spheroid is

(32c)

rc _4 sin20 cos20 I/2
A e ffi 2_t J [I + -] [re(0)]2 sin0d0

0 (1 - e2sin20) 2
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bx 2 1 + e

= 2r_ax2 + _ _ ln(--_, e)£
(32d)

For ae and b e cited above, the radius of the sphere with area Ae is 6371.007 km.

4.1 Random Dipoles on an Eilipsoidal Shell (Spectrum les)

Statistical properties of random dipoles are still described by (15). The reference sphere of radius a

does not enclose those sources at b x _<rk < a; yet Rnxk(ax ) is merely Rnxk(a)(a/ax )2n+4 by (14).
Combining (14), (17), and (15) now gives

{M2} K rk 2n-2
[Rnx }Ies = [n (n + 1)(2n + 1)] I; (w) , (33)

3(4xa3) 2 k=l a

where rk depends upon Ok by (32a).

The sum over k is equivalent to K times the average over the ellipsoidal shell, so the reference

spectrum is

2K{M2}4r_a2 n (n + 1/2) (n + 1) In , (34a){Rnx }Ies =
3(4_a3) 2 A e

the expected mean square field per harmonic degree n averaged over a sphere above the shell is

{Rnx(r)}Ies = IRnx )Ies (air) 2n+4 ; (34b)

and, in terms of x -- cos0, the integral in (34a) is

I re(X) 2n (I +a2x2)l/2
In m _ 1_] [ -]dx.

0 a (1 + y2x2)

With [r(x)] 2 = ax2/(1 + T2x2) from (32a),

(34c)

ax 2n 1 1/2dxIn = (--) J (l+y2x2)'n'l[l+ot2x 2]
a 0

" (ax/a)2n Qn"

(35)

Integrals Qn were evaluated numerically using Simpson's Rule. An analytic recursion relation that

accurately approximates the Qn is derived in Appendix B.
To correct the spherical shell reference spectrum (19) for ellipticity, simply multiply it by the

ellipticity factor

EnI '= {Rnx}IeS/lRnx }Iss = (a/rx)2n'2 (4na2/Ae) Qn (ax/a)2n = (ax/rx)2n (4m'x2/Ae) Qn" (36)

If rx is chosen such that 4r:rx2 = Ae, then EnI is simply Qn(ax/rx )2n and the increase in (ax/rx)2n with n

partly compensates the decrease in Qn"

17



Table1showsvaluesof EnI computed using the semi-major and semi-minor axes (a e, be) cited

above and the radius rx of the sphere with area equal to that of the corresponding reference ellipsoid. The

columns of Table I give: n, 360°/n, Tn, Qn' EnI = Qn(ax/rx)2n from (36) and other terms discussed in

following sections. Enl exceeds unity because elevating random dipoles on the equatorial bulge adds more

to {Rnx} above the shell, hence to EnI, than depressing dipoles near the poles subtracts from it. As

anticpated in light of section 3.2, the corrections are appreciable (+17% or more) at harmonic degrees near

or exceeding the reciprocal flattening (n > 1/f = ax/(a x - bx) _- 298).

4.2 Random Polarity Fieid.Alligned Dipoles on an Eilipsoidal Shell (Spectrum Hes)

Field alligned domain dipole moments Mk should vary systematically over the oblate spheroidal shell

(32a), not only because an alligning geocentric axial dipole field varies with colatitude, but because the

(a/r) 3 attentuation further weakens such a field on the equatorial bulge and strengthens it on the flattened

poles. The latter indicates modification of (21); however, omitted variations in the alligning field (dipole

tilt, non-dipole core fields, and temporal changes) are already larger than this effect. Equations (21) and

(22a-f) are therefore retained and, with (8a,b) and (10b), the expected spectrum remains the sum of K

contributing spectra (17).

As in section 4.1, ellipticity prevents attenuation factor Gn(rk) = (4na3)'2[re(0k)/a]2n'2 from being

replaced with Gn(rx). So (23b) is replaced with

Mo2 K rk 2n-2
{Rnx }Iles = _ n (n+l) _ (m) [4ncos20k + (n + 1)(sin20k)/2)]. (37a)

(41ta3)2 k=l a

With (32a) for rk = re(0 k) = re(Xk) on the ellipsoid,

Mo2 ax 2n-2 K
{Rnx ]lles = _ n(n+l) (--) X

(4na3)2 a k= 1
[4nxk2 + (n + 1)(1 - Xk2)/2](1 + y2Xk2)l'n . (37b)

Again, the sum is replaced with K times the average over the shell, which amounts to integrating over

differential area element (32c) and dividing by the area of the ellipsoidal shell. The resulting reference

spectrum

2za2K {M 2 }

{Rnx }Iles = n(n+l) Jn , (3Ka)
(4ma3)2A e

with

ax 2n 1
Jn = ( _ ) I

a 0
[4nx 2 + (n + 1)(1 - x2)/'2](1 + y2x2)'n'l(1 - cz2x2)1/2 dx

5n + 1 ax 2n
= (_) Yn '3 a

(38b)

becomes physically meaningful above the shell (r > ax) where

{Rnx(r)}Iles = IRnx }Iles (a / r)2n+4 . (38c)

18
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Comparisonof(38a-c)with(23c)showstheellipticitycorrectionfactorforrandompolarityfield
alligneddipolestobe

EnlI = {RnxllIes/{Rnx }Ilss = (ax/rx)2n (4n'rx2/Ae) Yn" (39)

Table 3 shows values of EnlI computed using numerically integrated Y_, the semi-major and semi-minor

axes given above, and rx = (Ae/4r01/2. Unlike Enl, correction factor Enh is less than one for low through

intermediate degrees (n < 660). This is because ellipticity places the stronger, nearly radially oriented

domain dipoles near the flattened poles (see section 2.3) and thus further from a source-containing sphere

on which the spectrum is evaluated. The corrections are appreciable at harmonic degrees near or exceeding

the reciprocal flattening 298 (e.g., -18% at n =300). Correction factor EnlI begins to increase with n above

this degree and exceeds unity at degree 720. This reflects the dominance of the geometric factor (ax/rx)2n

at sufficiently high degree: elevation of weaker horizontal domain dipoles on the equatorial bulge

ultimately adds more to very high degree multipole power, hence to EnlI, than depressing stronger radial

dipoles on the flattened polar caps can suNxact from it.

5. Theoretical Magnetic Spectra for an Eliipsoidal Annulus

The expected spatial magnetic power spectrum for an ellipsoidal annulus of either randomly oriented

(type I) or random polarity field-alligned dipoles (type II) is here obtained for an oblate layer of invariant

eccentricity e and thus slightly variable thickness. In particular, at the top of the shell

[r+(Ok)]2 = bx 2 (1- e2sin2Ok)'l = ax2 (1 + y2cos20k)'1 (40a)

and at the base of the shell of equatorial thickness 2d = ax - re0t/2 )

[re(0k)] 2 -- b: 2 (1- e2sin20k )'1 = (ax - 2d)2 (1 + y2cos20k) -1 , (40b)

where bx = (ax - 2d)(bx/ax). The volume of this annulus is

Xea = (4rc/3)[ax2b x - (ax - 2d)3(bx/ax)] = 4naxbx(2d)[1 + 2dla x - (2d2/ax)2/31. (40c)

5.1 Random Dipoles in an Ellipsoidal Annulus (Spectrum lea)

The statistical properties of random dipoles are still described via (15). Combining (14), (17), and

(15) again gives (33), but the range of rk is given by (40a-b). For a spatially uniform distribution of domain

dipoles, the sum over K dipoles is replaced by K times the volumetric mean. The differential volume of

integration is drdAe, with dAe given by (32c); integration over _byields

{Rnx }Iea 2rta2K{M21 1 r+ r 2n (1 + ot2x2) 1/2= n(n+ 1)(2n+ 1) .[ _ (--) drdx. (41)
3(4na3) 2 Xea -1 re a (1 + "t2x2)

Evaluation of the radial integral at the 0 dependent limits (40a,b) yields

K{M 2} ax 2n+l ax-2d 2n+l
{Rnx }Iea= n (n + I) (--) [1 - (_) ] W n , (42a)

3(4_a3)Xea a ax
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where

1 1 + a2x 2
W n = j [1 +T2x2] "n-1 [- ]l/2dx. (42b)

0 1 + T2x2

The ratio of spectrum (42a) for random dipoles in ellipsoidal annulus [ax-2d, ax] to spectrum (27b) for

random dipoles in spherical annulus [rx-d, rx+d] gives an ellipsoidality factor

{Rnx }Iea (ax)2n+ 1 . (ax.2d)2n+ 1

--- (X/Xea) Wn . (43)
{Rnx}ISa (rx+d)2n+l - (rx.d)2n+l

Comparison of the expected reference spectrum for random dipoles in an ellipsoidal annulus (42)

with that for random dipoles on a spherical shell (20) leads to the thick ellipsoid factor for type I dipoles,

TEnI -- (4m-x3/Xea)(2n + 1)"l(ax/rx)2n+l(l - [(ax-2d)/ax]2n+l) Wn . (44)

The seventh column of Table 1 lists TEnI computed using ax = 6378.137, b x = 6356.7523 km, and d = 20

krn as before; however, the radius of the sphere with area equal to that of the ellipsoid with semi-major axis

ax - d is used for rx = 6351.03 km. As anticipated, TEnI differs but slightly from the product TnEn I.

5.2 Random Polarity Field-Alligned Dipoles in an Eliipsoidal Annulus (Spectrum IIea)

To obtain this final sample spectrum, the sum over K random polarity field alligned domain dipoles

in (37a) is again replaced by the volumetric mean over the ellipsoidal annulus. The differential volume

element is drdA e. With dAe from (32c), evaluation of the ¢ integral gives

2xa2KMo2 1 r+ r 2n
{Rnx}IIes = n(n+l) j J (--) x

(4xa3) 2 Xea -1 re a

[4nx2 + (n + 1)(I - x2)/2]
(1 + et2x2) 1/2

(1+ x2)
drdx. (45)

Evaluation of the radial integral at the 0 dependent limits (40a,b) yields

KMo2 n(n + 1) ax 2n+l ax-2d 2n+l
{Rnx }Ilea = (--) [1 - (_) ] Un

(4ma3) Xea 2n+l a ax
(46a)

where

Un m 5n+ 1

1 4nx 2 + (n+l)(l-x2)/2 + cx2x2) 1/2
I [,(1 -]
0 (1 + y2x2)n+l (1 + y2x2)

ax. (46b)

Comparison of the expected reference spectrum for random polarity, field-alligned dipoles in an

ellipsoidal annulus with that for such dipoles on a spherical shell leads to the thick ellipsoid factor for type

II dipoles,

TEnlI ,= (4mx3/Xea) (2n + 1)"1 (ax/rx)2n+l (1 - [(ax-2d)/ax]2n+l)U n . (47)
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Table 2: Elementary Spectral Forms {Rnx) at Reference Radius a.

Type Description

Flat Spectrum
at radius rx

Random Dipoles

Iss Spherical Shell (20)

Isa Spherical Annulus (28)

Isb Spherical Ball (radius a)

Ies EIlipsoidal Shell (34)

or (36)

Iea Ellipsoidal Annulus 02)

or

Ieb Ellipsoidal Ball

Form Amphmde A in
K {M2 }/(4xaS) 2

A(rx/a) 2n-2 Undefined

A n(n + 1/'2)(n + 1)(rx/a) 2n'2 2/3

A n(n + 1)(1 - [(rx-d)/a] 2n+l) 4ma3/SX

A n(n + 1)" 1

A n(n + 1/'2)(n + 1)(ax/a)2n Qn (2/3)(47ta2/Ae)

A n(n + 1/2)(n + 1)(rx/a)2n'2 EnI 2/3

A n(n + l)[(ax/a) 2n+l - ((ax-2d)/a)2n+l] W n 4xa3/3Xea

A n(n + l/2)(n + 1)(rx/a)2n-2 TEnl 2/3

A n(n + l)(ax/a)2n+l W n 4rm3/3Xea

Random Polarity Field.Alligned Dipoles

Hss Spherical Shell (24) A n(n + l/5)(n + l)(rx/a)2n'2

n + 1/5
lisa Spherical Annulus (30) A n (n + 1) _ (1 - [(rx-d)/a]2n+l)

5/6

(5/4)(4rta3/3X)

Ilsb Spherical Ball (radius a) A n (n + 1)

lies

n + 1/5

n+l/2
5/4

EUipsoidal Shell (38)

or

Ilea Ellipsoidal Annulus (46)

A n(n + l/5)(n ÷ l)(ax/a) 2n Yn (5/6X4ma2/Ae)

A n(n + I/5)(n + 1)(rx/a)2n'2 EnII 2/3

1 n + 1/5 ax 2n+l(ax'2d )2n+l]
An(n+ )n_[(-_-) - _ O n (5/4)(4ma3/3Xea)

or A n(n + 1/2)(n + l)(rx/a)2n'2TEn II 2/3

.n + 1/5 _ ,_,2n+l
Ileb Ellipsoidal Ball A n(n + 1 n+_(_x/_j Un (5/4)(4rta3/3Xea)

Explanatory Note: For spheres, rx denotes the radius of a shell of K domain dipoles sources with mean
square moment {M21; rx-d is the radius at the base of a source layer (top at rx + d = a), and X is the volume
of the spherical annulus. Sample thickness factors T n are listed in Table 1. For ellipsoids, ax is the semi-
major axis and Ae is the area of the ellipsoidal shell; X.. is the volume of the constant ellipticity annulus
spanning [av-2d, a_]. Sample ellipticity factors E,, I, E,_ll_are given in Table 1 for 4_., 2 = A,_,as are thick

ellipsoidal annulus_factors TEnI and TEnlI. ' .....
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Theeighthcolumn of Table 1 lists TEnlI computed using ax -- 6378.137, bx = 6356.7523 km, d = 20 kin,

and rx = 6351.03 kin; the latter is the radius of the sphere with areaequal to that of the ellipsoid with semi-

major axis ax - d. As anticipated, TEnlI differs but slightly from the product of Tn with EnlI.

Table 2 sumarizes the elementary theoretical forms the spatial power spectrum of a randomly

magnetized crust derived above.

6. Comparison of Theoretical with Observational Spectra

We fitted some of the foregoing theoretically expected forms for the spatial magnetic power spectrum

of Earth's crust, {Rnx(r)}, to observational spectra derived via analyses of MAGSAT data, Rn(r ). We

worked with the Rn(r) computed from the maximum degree N = 60 model M102189, and the related N =

49 model M102389, derived by Cain, Holter and Sandee [1990]. At the time of our first fits (1994), these

models were the state of the art in high degree geomagnetic field analysis. To eliminate any plausible need

to correct for core field contributions, only Rn of degrees n > 16 were fitted. Covariances for these models

were not made available, so formally weighted fits were not possible. It was, however, possible to fit Rn(r)

at either reference radius a = 6371 km ("at the surface") or at radius a + 420 km ("at satellite altitude").

The former assigns relatively heavier, and arguably excessive, weight to the higher degree Rn than does the

latter. Before summarizing the fits, the derivation of the field models is reviewed to aid understanding of

the origin and limitations of the observational Rn.

6.1 High Degree Models of Cain, Holler, and Sandee [1990].

Both M102189 and M102389 are modifications of the model MG7AV6 derived by Cain et al.

[1989a]. M07AV6 extended an N = 29 least squares model to N ---63 via numerical integration (Neumann

or Gauss-Legendre method). Quiet (Kp < 1+), near midnight, Dst corrected, hourly observatory means
were used to obtain an improved, degree 10 secular variation (SV) model for reducing data from the 10/79 -

6/80 MAGSAT mission to common epoch. MAGSAT data prior to 11/3/79 or data with Kp > 2+ were
rejected, as were 4,478 of 1,330,285 observations that deviated by more than 100 nT from N = 29 model

M070284. Residuals relative to that model were further corrected for external field effects using (i) a Dst

correction for ring current effects and (ii) long wavelength corrections to separated dawn and dusk data as a

function of dip latitude for ionospheric and remaining magnetospheric effects.

The corrected residuals were sorted into 3° longitudinal blocks centered about the roots of the degree

64 Legendre polynomials and block mean values of ABr computed. Empty blocks (poleward of MAGSAT

ground tracks) were filled by linear interpolation over the pole. Gauss coefficients were computed from the

augmented block mean AB r by the usual quadrature in _ and Gauss-Legendre quadrature in cos0.

Coefficients up to m ---59 and n = 63 were retained; however, coefficients above degree 50 appeared to

represent noise [Cain et al., 1989a; 1990]. As noted in section 1.5, Cain et al. [1989b] interpreted the Rn(r )
spectrum from model M07AV6 in terms of a 0.091 nT2 noise spectrum that levels off at 420 km altitude, a

crustal spectrum that levels off 14 km below the reference sphere a -- 6371 km, and a core spectrum that
levels off about 80 km below the core surface.

Cain et al. [1990] reexamined the 8 second MAGSAT data set underlying M07AV6 and rejected

22,478, typically high latitude, observations that deviate by more than 50 nT from this model. From the

remaining vector component and scalar data, 49,998 were selected to equalize the number of data per

10°xl0 ° block; 276 values were synthesized from the first 50 degrees of M07AV6 to fill in blocks

poleward of the MAGSAT ground tracks. Some abnormalities in the distribution of the resulting 50,274

residuals relative to M07AV6 helped motivate a higher degree least squares spherical harmonic fit to these

field values.
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ModelM102189wasobtainedfromthesevaluesandM07AV6bykeepingcoefficientswithdegrees
51-60fixedanditeratingweightedleastsquaresadjustments(withsomemodificationsintheweights)to
coefficientsofdegrees<50 (and first degree external terms). The N = 49 model M102389 was obtained by

a single minor adjustment to a similarly truncated version of M102189. Values of Rn for both models were

generously provided by J. Cain [personal communication, 1994].

The coefficients of degrees greater than 50, being those of M07AV6, result from integrating block

mean values. Two possible disadvantages to the use of block mean values are noted in passing. First, the

calculation of a block mean value filters out information about horizontally narrow scale field structure

within the block. Such horizontal averaging should tend to make high degree R n, as computed from a
model fitted to block mean satellite data, underestimate true values. Second, the calculation of a block

mean value from data acquired in even a thin annulus sampled by a satellite filters out information about

the variation of the field with radius in each block. Such information could help establish the degree of

contributing fields that fall off as (a/r) n+2 for large n. For example, R50(6371 + 400 km) is 2.15 times

R50(6371 + 450 km). Unlike the horizontal averaging, such radial averaging should tend to make high

degree Rn overestimate true values. For potential fields, the two effects cancel when the block is replaced

with a small spherical ball; yet orbit decay may still cause non-uniform sampling, notably over-sampling of

higher altitudes and a tendency for computed Rn to understimate true values.

6.2 Thin Shell Reference Spectra With No Noise Correction.

The reference spectrum Rn(a) computed from model M102389 [Cain et al., 1990] is shown in Figure

1 as the intersections of short solid line segments. Following I.angel & Estes [1982], the spectrum appears

dominated by the dipole; a broad scale non-dipole field of deep internal (core) origin for degrees 2 through

12; and fields of crustal origin for degrees 16 and higher. Degrees 13, 14, and 15 are considered

transitional. No special significance is attached to the behavior at degrees 2-3 or 8-9 [Voorhies & Conrad,

1996]. The tendency of Rn increase with n above 16 is qualitatively consistent with a crustal origin;

indeed, theoretical crustal spectra (20) and (24) show {Rnx} increasing as n 3. The tendency for R n to

increase with n is also consistent with the satellite altitude noise level discussed by Cain et al. [1989a,b,

1990].

Plain Exponential Fit. Piecewise exponential representations of a reference spectrum set

ln[Rn*] = a0 + aln (48a)

for some range of n. By analogy with (5), writing this as

ln[Rn*] = lnA* + (2n+4)ln(a/r*) (48b)

• , . • •

confirms that such representatmns level off at radms r -- exp(al/2) and that A = exp[a 0 - 41n(a/r )].

Although no geophysical s_gmficance is here attached to r or A , the fit of Rn to observational Rn does

provide background for the study of other spectral forms.

Figure 1 shows the unweighted least squares fit of (48b) to the 34 values of lnRn for degrees 16-49 as

the long solid line with positive slope. The fit appears close and amounts to

Rn* = 3.5196 (6587.1/6371.2) 2n+4 nT2 . (49)

Spectrum (49) levels off high in the ionosphere, some 216 km above the reference sphere. (This is about

half the typical spacecraft altitude and twice the altitude of the ionospheric maximum). The sum of squared
residuals
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$2 = Y-'n(lnRn" lnRn*)2 = Zn [ln(Rn/Rn*)12 (50)

over the 34 harmonic degrees fitted is 1.630. Without the covariance needed to weight R n or lnR n, we are

unable to formally test the statistical significance of the residuals. We can, however, compute the scatter

factor f, which is the exponential of the root mean square value of ln(Rn/Rn*)

f -- exp[(S2/34)l/2], (51)

and is 1.245. The Rn have been thus been fitted to within a typical factor of (1.245) +-1. Comparison of the

Rn from M102189 with those from M102389, again for degrees 16 through 49, gives the correpsonding

uncertainty factor fo = 1.0248. The residuals are therefore much too large to attribute to plausible changes
in field model truncation level.

Thin Shell Fits. Figure 1 also shows the fit of expected reference spectrum (20) for randomly

oriented dipoles on a shell to the same Rn as the dot-dash curve. In particular, a linear function was least

squares fitted to ln[Rn n"1 (n + 1/'2)"1 (n + 1)"1] for degrees 16-49 of model M102389. The result,

RnlSS = 2.880x10 "3 n (n + 1/2) (n + 1) (6277.1/6371.2) 2n'2 nT 2 , (52)

gives a source shell depth of 94 km below the reference sphere. The sum of squared residuals to lnR n is

now 3.206 and the Rn are fitted to within a typical factor f of (1.359) +-1. The n 3 dependence of the thin

spherical shell spectrum RnlSS, visible as curvature in Figure 1, produces a fit which is not quite so close as

that of plain exponential Rn .
The similar fit of expected spectrum (24) for random polarity field alligned dipoles on a shell to the

lnRn of M102389,

RnlISs = 2.940x10 "3 n (n + 1/5) (n + 1) (6276.1/6371.2) 2n'2 nT2 . (53)

gives a source shell depth of 95 kin. The S2 of 3.221 shows that the Rn have been fitted to within a typical

factor of (1.360) +-1. As noted in section 2.2, it is indeed difficult to distinguish between randomly oriented

dipoles and random polarity field alligned dipoles from observationally accessible Rn alone.

Table 3 summarizes some spectra fitted to degrees 16-49 of M102389, and to degrees 16-60 of

M102189, in columns listing spectral form, model, degree range, key depth, amplitude, and scatter factor.

When either random dipoles or random polarity field alligned dipoles spectra are fitted to the higher degree

model, the effective shell depth decreases from about 94 km to about 64 km. The shallowing of the source

layer compensates the increase in n3 at the higher degrees (see equations (20), (24)). For the convergent

spectral forms, the final column of Table 3 lists the mean square crustal field on the reference sphere

obtained by extrapolating the fit,

100,000

BxrmS = [ I: RnlSS ]1/2 (54)
n=l

for spectrum Iss and the corresponding sum for spectrum Ilss.

A few remarks on Figure 1 and Table 3 are offered. Firstly, the negative depth at which spectrum

Rn* levels off might be physically insignificant because the plain exponential form is unphysical and/or

because of noise in the Rn fitted. If the problem is noise, then the slightly closer fit offered by Rn is not

physically significant. Secondly, the source shell depths from spectra RnlSS and RnlISs seem deeper than a

mean Curie isotherm, perhaps because these physically motivated forms are inadequate, because of noise in
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Form

Exponential

Exponential

Iss

Iss

IIss

IIss

Table 3: Elementary Spectral Forms Fitted to M102189 & M102389
with no noise adjustment

Model

M102389

M102189

M102389

M102189

M102389

M102189

Degrees Dcp_ Am_tude f
(km) (nT ")

16-49 -216 3.520 1.245

16-60 -208 3.768 1.251

16-49 94.1 2.880x10 -3 1.359

16-60 63.5 2.188x10 -3 1.380

16-49 95.1 2.940x10 -3 1.360

16-60 64.3 2.229x10 -3 1.382

BxrmS

(nT)

NA

NA

137.23

137.56

122.73

123.03
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the Rn fitted, or because of a loss of power from high degree Rn. It turn§ out that a trade-off between

amplitude A and source depth a-rx makes their coestimation very uncertain.

The extrapolated rms crustal field listed in the final column of Table 3 is about 130 nT. This is the

same order of magnitude as background scalar magnetic anomalies inferred from marine and aeromagnetic

surveys. Such anomalies mainly measure the crustal field component parallel to the main field, so the total

crustal field intensity could be larger than the scalar anomaly (by a factor of 31/2 in an isotropic case);

however, the rms crustal field ought not be less than the rms scalar anomaly.

To check this 130 nT rms crustal field prediction, we analyzed the "observatory biases" derived with

many main geomagnetic field models by R. Langel and others at GSFC. The idea is that each observatory

bias approximates the crustal magnetic field at the observatory. R. Baldwin generously provided 10 sets of

observatory biases obtained in the course of making 10 somewhat different geomagnetic field models. For

each model, each observatory bias (AB = (AX2 + AY2 + AZ2) 1/2) was calculated and used to compute the

rms bias. The ten rms biases average to 488 +_. 106 nT. A very few observatories had very large biases,

perhaps due to data errors, site instability, or location on exceptionally magnetic volcanic edifices.

Rejecting the few observatory biases over 1500 nT led to 10 rms biases that average to 360 + 45 nT. The

model using the most observatories and longest time span (1900-1995) gave the smallest rms observatory

bias of 274 nT. All these values exceed the 130 nT prediction. The sigmas of aeromagnetic (173 nT),

repeat (263 nT), and survey (373 nT) data relative to model GSFC(S95-sc) [Sabaka et al., 1997] also

exceed the 130 nT prediction. It can thus be argued that the 130 nT prediction for rms crustal field is too

low, perhaps by a factor of two or three. This might be due to overestimation of source depth and, in turn, a

loss of power from the higher degree Rn fitted.

6.3 Remark on Coestimation of Amplitude, Depth and Thickness

Scatter factors for thin shell spectra Iss and Ilss to the obsei'vational spectrum (about (1.36) +-1) exceed

the thickness and ellpiticity correction factors in Table 1 (which are nearer unity than (1.07) -+1 for degrees

less than 60). This suggests that allowance for thickness and ellipticity ought not appreciably alter the

apparent source depth. However, an attempt was made to estimate source layer thickness along with

amplitude and depth; this leads to a non-linear inverse problem.

We naively used iterative linearized least squares to fit the spectrum for a thick annulus of random

dipoles to observational Rn. The method failed to converge due to an ill-conditioned, almost singular
information matrix. As is well known from forward modeling of magnetic anomalies, there is a trade-off

between magnetization and thickness of a source layer. In the present context, note that spectrum (27b) can

be written

rx 2n+l 2n+l 2n+l
{Rnx lisa _ Axla n (n + 1) (--) [(1 + d/rx) - (1 - d/rx) ] (55a)

a

which, for sufficiently thin layers (2d << rx) and low degrees is approximately

rx 2n
{Rnxllsa ,- Axla n (n + 1) (--) (2n + l)(2d/a)]. (55b)

a

The partial derivative of (55b) with respect to amplitude Axla is directly proportional to the partial with

respect to d; in practice, the approximate colinearity led to a near singular information matrix.

It was possible to fix layer thickness, estimate amplitude and depth, and then adjust the layer

thickness to tighten the fit, but no clearly preferred solution emerged by iterating this procedure.
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6.4 Thin Shell Spectra With Noise Correction.

The form of the satellite altitude noise spectrum used by Cain et al. [1989b] is the plain exponential

that levels off at 420 kin,

Rne(r) = e [(a + 420km)/r] 2n+4 . (56)

Cain et al. [1989b] averaged the higher degrees (n > 50) of Rn(a + 420km) to obtain the noise level e =
0.091 nT2. For a degree 60 model, the correponding rss noise would be (60e) 1/2, or 2.3 nT. This is about

the rss noise expected uniformly distributed attitude errors of at most 20" in the ambient field and so seems

plausible; however, it is less than indicated by a Magsat total measurement error budget. It is not clear that

attitude, other data errors, or modeling errors such as aliasing should cause a level spectrum (56).

We did not expect to estimate noise level e along with the amplitude and source depth of a crustal

spectrum due to colinearity; subsequent experiments verified this colinearity. We bypassed least squares

coestimation in favor of mapping misfit as a function of theoretical spectrum parameters (amplitude and

depth) at each of several noise levels. The measure of misfit computed was the standard deviation of the

theoretical spectrum relative to the noise-adjusted unweighted observational Rn(r) from degrees 16-50 of
M102189,

50

o(r) = ([32] "1 _: [Rn( 0 _ {Rnx(r)} . Rne(r)]2 ) 1/2 (57)
n=16

Contour plots of o at each noise level show_a strong tradeoff between amplitude and depth: a shallower

source layer can be accomodated without much change in misfit provided source amplitude is reduced.

Figure 2 shows two examples of such o plots, both obtained from (56) at reference radius r = a --

6371 km and e = 0.091 nT2. The upper panel contours the standard deviation, as a function of amplitude A

(nT 2) and depth a-r x (km), when {Rnx(r)} in (57) represents an ellipsoidal shell of random dipoles (34),

{Rnx(a)) = A n (n + l/2)(n + 1)Q* n [rx/a]2n'2, (58)

A flaw caused Q*n to exceed the Qn in Table 3 by an unimportant 0.23%. Minimum o (10.91 nT2) is for a

source depth of 45 kin; the range of source depths giving o _<11 nT 2 is 20-55 kin, This seems almost

geophysically plausible; however, the range of source depths giving o < 12 is far larger. The tradeoff

between amplitude and depth is clear in the upper panel of Figure 2,

The lower panel of Figure 2 contours the standard deviation as a function of amplitude and depth, but

with IRnx(r)} in (57) taken to be the plain exponential spectra Rn = A(r*/a) 2n+4. The leveling depth a-r*

is negative and o is minimum (9.57 nT2) for a leveling altitude of 200 km; however, o is less than 10 nT2

for a broad range of altitudes between 265 km and 235 kin.

Compared with an exponential spectrum leveling off at 200 km altitude, the modest increase in o

caused by the random dipoles spectrum (20) seems a small price to pay for a 45 km deep crustal source

layer. Yet the misfit contoured in Figure 2 is for Rn evaluated on the reference sphere, not at satellite
altitude.

With no formal weights for the observational Rn, misfit o(a) is dominated by the deviations at the

higher degrees (n > 40) due to the geometric amplification upon downward continuation from satellite

altitude. To reduce this effect, similar figures were constructed (i) for misfit measured at satellite altitude

instead of on the reference sphere and (ii) for degrees 16-40 instead of 16-50. Many noise levels were

sampled in both cases. The de-emphasis upon higher degree Rn tends to increase the apparent depth of the
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Figure 2. Trade-off surfaces map standard deviation c as a function of trial spectrum amplitude A (nT 2)

and depth (kin). Deviations are measured with respect to degrees 16-50 of noise adjusted observational

spectrum Rn(a) from model M102189 of Cain et al. [1990]. Upper panel contours a for trial spectrum

expected from and ellipsoidal shell of random dipoles; note minimum a for shell depths of 20-55 kin.

Lower panel contours a for plain exponential trial spectrum; note minimum o at negative depth (positive

altitude) may result from downward continuation of noise.
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source layer. The main result is that a very broad range of source depths and noise levels can be

accomodated without much change in misfit.

For example, we summarize standard deviations relative to stallite altitude Rn(a + 420 kin), minus
noise level e = 0.091 nT 2, for degrees 16-50 of M102189. The plain exponential spectrum gives a(a +

420km) < 0.1 nT2 at leveling altitudes between 120 km and 160 km; yet values _<0.2 nT 2 are found in the

much broader range between a leveling depth of 80 km and a leveling altitude above 200 km. One local

minimum within this range is about 20 km deep - close to the geophysically plausible 14 krn leveling depth

obtained by Cain et al. [1989b]. In contrast, the ellipsoidal shell of random dipoles (57) only returns a(a +

420kin) < 0.2 nT2 for seemingly implausible shell depths of 60 km or more.

To perform decisive statistical tests needed to reject various theoretical functional forms for the

crustal magnetic speclrum, one requires reliable uncertainty estimates not only for observational Rn, but for

the theoretical spectrum (e.g., {(Rn - {Rnl)2}). In the interim, geophysically reasonable source models can

be preferred to either elementary theoretical forms or arbitrary mathematical functions.

6.5 Spectrum of an Equivalent Source Model of Magsat Crustal Anomalies

Since the identification of magnetic anomalies in Magsat data, many researchers have devoted much

effort to develop data processing techniques that help isolate the field of lithospheric origin and improve

satellite magnetic anomaly maps for geologic interpretation (see, e.g., Ravat et al. [1995]). One step in

some of these techniques involves computing an equivalent source representation of reduced anomaly data.

An equivalent source model is a network of point dipoles, typically main field-alligned and located on the

reference sphere, with absolute moments distributed so as to reproduce the anomaly data. In practice, the

dipoles are closely spaced, albeit fewer in number than the data, and singular value decomposition may be

used to avoid unphysical numerical instabilites in a least squares estimate of absolute moments;

alternatively, a damped least squares appraoch may be used.

From one such equivalent source model with a nearly uniform dipole spacing of about 220 kin, M.

Purucker [ 1994, personal communication] generously provided values of the radial magnetic component

computed at the mesh points of a 2° equiangular grid and 400 km altitude. The spherical harmonic

coefficients and equivalent source spectrum Rn(ES) through degree and order 90 were computed from these
synthetic data by numerical integration. The spectrum peaks near degree 50, but shows ringing above

degree 70 due to source spacing and coarseness of mesh. From apparently reliable degrees 16-55, the

standard deviation a of simple power laws (Rn(ES) ,_ Anq) was mapped as a function of amplitude A and
index q. Minimum a was found for q = 1.55. Neither a level (n0) spectrum nor a random dipoles (n 3)

spectrum describes the equivalent source crustal anomaly model as well as an intermediate (n 3/2) form.

Whether the particular q value obtained reflects correlations introduced by data reduction and equivalent

source modeling procedures or some fundamental property of Earth's magnetic crust is not clear. It is clear

that a power law index less than 3 is reasonable for spatially correlated magnetizations.

7. Summary

The magnetic field produced by magnetization in Earth's crust and lithosphere is distinguishable

from the field produced by electric currents in Earth's core becasue the spatial magnetic power spectrum of

the crustal field differs from that of the core field. This principle has long guided anlyses of land, sea, and

aero-magnetic survey data, which routinely subtract a broad scale field - be it a constant level, a regional

trend, a long wavelength model, or a low degree geomagnetic reference field model - before attempting

geologic interpretation of residual anomalies. According to the famous Langel & Estes [1982]

interpretation of the spectrum derived from MAGSAT, the core field dominates the total spectrum, Rn, for
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sphericalharmonic degrees n < 12 and the crustal field dominates for n > 16. Observational spectra exhibit

two distinct regimes becasue the different radii of the two main source regions (rc << rx) cause distinctly

different geometric attenuation factors for the core spectrum (rc/a)2n+4 and the crustal spectrum

(rx/a)2n+4. The absence of a third spectral regime, apart from the narrow range of core-crustal overlap,

indicates that most of Earth's mantle is neither strongly magnetized nor carrying slrong electric currents - as

expected for hot insulating silicates. The spectral separation of core and crustal fields remains a

geophysical distinction; it does not enable a formally unique mathematical separation of core from crustal

field by analysis of satellite and/or near surface geomagnetic feld measurements.

The geometric attenuation factors are exponential functions of n, so a single exponential can be fairly

closely fitted to either low, or to high, degree Rn. The fit returns a radius which coarsely approximates the

radius of either Earth's core or Earth's crust, respectively. This fact boosts confidence in the spectral

separation. It does not imply that the core spectrum is fiat at the top of the core, nor does it imply that the

crustal spectrum is fiat at the top of the crust. It does suggest that, after allowance for geometric

attenuation, core and crustal spectra are sub-exponential functions of n - perhaps ratios of polynomials in n

if not simple power laws.

Physical models of core and of crustal sources suggest that exponential spectra should indeed be

multiplied or divided by more slowly varying polynomial functions of harmonic degree n. For example,

the core spectrum Rnc is well described by McLeod's rule (4e): geometrical attentuation of a spectrum that

falls off as 1/(n + 1/2) atop Earth's core. Elementary spectra for a randomly magnetized crust are listed in
Table 2.

7.1 Two Types of Dipoles on a Shell

Elementary theoretical forms for the crustal magnetic spectrum {Rnx} derived above treat the source

of the crustal magnetic field as an ensemble of domain dipoles. The first step derived the spatial magnetic

power spectrum on the sphere of radius r due to a point dipole of moment Mk located inside the sphere at

position r k (14). There is no radius at which the spectrum for an offset dipole (14) becomes independent of

degree n or levels off. Compared with the exponential spectrum that levels off at radius rk (Rn* =

A*(rk/r)2n+4 ), the spectrum of an offset dipole increases as a cubic polynomial of n.

The second step formulated the geologic null-hypothesis that the magnetic field of Earth's crust is

due to many domain dipoles scattered at random throughout a thin crust. Two types of dipole ensembles

were considered. Type I, or random, dipoles are of random absolute moment and random orientation; they

are not cross-correlated and the auto-correlation matrix is diagonal as described by (15) { M jk Mli } =

{M2/3 }SkiSjl. Type II, or random polarity field-alligned, dipoles are also of random absolute moment, but
are oriented either parallel or anti-parallel to the modern axial dipole field with equal liklihood; they are

also not cross-correlated, but the auto-correlation matrix is not diagonal and varies with colatitude as

described by (22).

The magnetic spectrum expected from many uncorrelated random dipoles is the sum of the expected

spectra from each random dipole. The expected spectrum for type I random dipoles on a spherical shell

(20) is thus proportional to that of a single random dipole. There is no radius at which the expected

magnetic spectrum from a shell of random dipoles is independent of degree n. Compared with the plain

exponential that levels off at the shell radius rx, this spectrum increases as a cubic polynomial of n. The

same is true of the expected spectrum for type II random polarity field alligned dipoles (24).

The expectation speclra for type I and type II dipoles prove remarkably similar. Type II dipoles do,

however, tend to generate more multipole power - the spectral ratio {RnII}/lRnI}, given by (25) for thin

spherical shells, being about 125% for degrees greater than 12. The nearly radial orientation and typically
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strong moments of type II dipoles in the polar caps more than makes up for the nearly horizontal orientation

and typically weaker moments of type II dipoles in the equatorial belt.

7.2 Crustal Thickness and Ellipticity Corrections

When domain dipoles are scattered throughout a spherical annulus of uniform thickness 2d, instead of

confined to a spherical shell of radius rx, the shape of the expected spectrum changes. The change amounts

to multiplying thin shell spectra by a crustal thickness factor. The factor is quite close to unity at harmonic

degrees less than the reciprocal relative thickness of the annulus (n _<rx/2d ). This is in accord with the

common geophysical view that the length scale of a source region cannot be established until variations in

the exterior potential field of similar scale are resolved. For a 40 krn thick annulus, the correction is about

10% at degree 120; therefore, if observational R n could be determined with 10% accuracy for degrees

through 120, a 40 km thick crust might be distinguished from an equivalent source shell depth of 20 kin.

When fitting models to observational R n of much lesser degree and/or accuracy, a thick crust model is not

likely to return a much better estimate of magnetic crustal thickness than simply doubling the apparent

source depth of a thin shell model (2d = 2a - 2rx). In practice, a near co-linearity makes coestimation of

amplitude, depth, and thickness difficult or impossible without observational R n at sufficiently high

degrees (n _- rx/2d ).

The expected spectrum from a spherical annulus of either random dipoles (28), or random polarity

field alligned dipoles (31), does not level off at any radius. Compared with the plain exponential that levels

off at the top of the annulus, these spectra increase as a quadratic polynomial of n at sufficiently high

degree (n >> a/2d). This is true for a solid ball of such sources regardless of n.

In deriving expected spectra {Rnx }, the effect of oblateness is somewhat more difficult to include

than the effect of uniform thickness. The effect amounts to multiplying the thin shell spectrum by an

ellipticity factor. This factor is close to unity for harmonic degrees less than the reciprocal flattening (n <

ax/(ax-b x) = 298). For type I dipoles, the factor exceeds unity due to geometric amplification: elevating

random dipoles on the equatorial bulge adds more to {Rnx} than depressing dipoles at high latitudes

subtracts from it. For type II dipoles, this geometric effect also causes the ellipticity factor to exceed unity

at sufficiently high degrees; however, there is a range of lower degrees for which the type II ellipticity

factor is less than unity. The reason is clear: compared to a spherical shell, the nearly radially oriented

domain dipoles located near the flattened poles are further from the source-containing sphere on which the

spectrum is evaluated. Only at very high degree (about 720 for a terrestrial flattening) can this effect be

overcome by the elevation of weaker, nearly horizontal domain dipoles on the equatorial bulge.

The effect of scattering the domain dipoles throughout a thick ellipsoidal annulus amounts to

multiplying the spectrum expected for a thin spherical shell by a thick ellipsoid factor TE n (for either type I

or type II dipoles). The factor differs but slightly from the product of thickness and ellipticity factors.

7.3 Comparison of Theoretical and Observational Crustal Spectra.

When downwardly continued to the reference radius (6371 km), the observational magnetic spectrum

Rn derived from Magsat data by Cain et al. [1990] tend to increase with degree n for degrees 16 through 60.

This conflicts with the notion of an exponential crustal spectrum that levels off at or below the Earth's

surface. Following Cain et al. [1989b], the increase in R n with n may be due to downward continuation of

a noise component that gives a level spectrum at satellite altitude. The increase may also be due to, and is

expected from, a magnetic field originating in randomly magnetized domains, each acting as a random

dipole, scattered throughout Earth's crust. When both the satellite altitude noise correction of Cain et al.
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[1989b] and the spectrum expected from a shell of random dipoles are used to describe Rn for degrees 16-

50, the standard deviation of the residuals is minimal for an apparent source depth in the 20-55 km range.

Although the covariance needed to weight R n was not available, higher degrees can be de-

emphasized by considering satellite altitude Rn(a + 420 kin) or by trunction at degree 40. So doing tends to

lower a source shell of random dipoles to seemingly implausible depths of 60 km or more (with or without

the noise correction). It also reduces the leveling altitude of a plain exponential spectrum fitted to noise

adjusted Rn. We have yet to encounter a physical reason to suppose a level Rn(r*) spectrum describes

either a geophysical source, measurement error, or modeling error at radius r .

The results show that, in the absence of reliable uncertainty estimates, neither an elementary

functional form for the crustal spectrum, a source shell depth, nor even a simple leveling depth can be

reliably extracted from the field models considered. There is, however, some indication that a priori

specification of a spectral form An°t(rx/a)2n'2 with source depth a-rx in the 0-60 km range would return a

power law index ct: 0 -<0t _<3. Indeed, analysis of an equivalent source model of Magsat anomalies

suggests a crustal refernce spectrum that varies approximately as n3/2.

7.4 Conclusion

A suitable geologic null-hypothesis for the magnetic field orginating in Earth's crust is that it results

from an ensemble of uncorrelated domain dipoles, either of random orientation or random polarity,

scattered throughout the lithosphere. The spatial magnetic power spectrum due to such a randomly

magnetized crust differs from the exponential form describing geometric attentuation with radius above a

sphere on which the spectrum is independent of spherical harmonic degree n. For harmonic degrees 16-60

of interest in satellite anomaly studies, the difference amounts to multiplying the exponential spectrum by a

factor of n3. Mathematically interesting corrections for non-zero uniform crustal thickness and ellipticity

are of little or no practical concern in this range; they are important for harmonic degrees approaching the

reciprocal relative thickness, or the reciprocal flattening, of the magnetized layer.

Analysis of observational spectra from Magsat by Cain et al. [1990] on the reference sphere indicates

that the spectrum expected from random dipoles on a shell offers more satisfactory performance that a plain

exponential spectrum. The former gives a lithospheric source depth for crustal fields instead of an

ionospheric source altitude. This is also true when the reference spectrum is adjusted for a satellite altitude

noise level. However, analysis of the noise adjusted observational spectrum at satellite altitude indicates

that the random dipoles spectrum gives excessive source depths, while the plain exponential spectrum gives

a broad range of leveling altitudes. The contrast suggests that the dominant part of the crustal magnetic

spectrum is of an intermediate form which neither levels off, nor increases as rapidly as n 3, on a

lithospherie source shell. Such a form should be expected from correlated domain dipoles describing

coherently magnetized geologic structures.
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APPENDIX A

At the top of the viscous sub-layer, regarded as the sphere of radius c, the well-known magnetic

induction equation,

BtB = Vx(vxB)+ (Bc0"IV2B, (A1)

reduces to the diffusion equation because of the no-slip boundary condition on the fluid velocity v(c,0,O;t)

- 0. Here la and a respectively denote core magnetic permeability and core electrical conductivity at the
top of the sub-layer. The diffusion equation for the radial component of the core field is

0tB r -- (!ttac)'lV2rB r --- (laa)'l/0r2Br/, (A2)

where/0r2Br / denotes the jump in the second radial derivative of Br across the core-mantle interface. This

jump in the curvature of the field lines is due to the jump in lateral electric current density across the

boundary between the conducting core and the resistive mantle. Following Voorhies & Conrad [ 1996], the

spherical harmonic expansion of (A1) is summarized via its coefficients

3tgmt(n+l)(a/c)n+2] m (lao)-lJn m (A3)

= (_to)-I 0tkrnm)2 g m [(n+l)(a/c)n+2] (A4)-- nc "

Equation (A3) defines the current density jump coefficient Jnm; (A4) defines an effective modal scale

height [krnm(t)]" 1 which may be either real or imaginary. Similar relations can be written for Bthm i n

terms of Jn m and k_m(0 .

Summing the squares of these relations over orders m and dividing by (n+ 1) yields

n

Fnc(C) = (_2/_to)2(n.l)(a/c) 2n+4 Z [(kmm)4(gnm)2 + 0¢_.nm)4(hnm) 2] (A.5)
m=0

= (Bo) "2 (Ttkrn)4 Rnc(C) (A6)

which defines positive krn4 [krn ]'1 is the effective scale height for harmonic degree n. Upward

continuation of (A5) to any radius r > c gives

Fnc = (laa)'2(r&rn)4Rnc . (A7)

The expectation value of (A7) yields (4c), with the understanding that the contribution to {F n } from

Inkrn}41Rn } --- (nkrn)4 {Rn} is of more immediate concern than are correlated fluctuations in (krn)4 and

R. n. _

APPENDIX B

The integral in the ellipticity correction (35) is

Qn = /10 (1 + y2x2) "n'l [1 + ct2x2]l/2dx (Bla)

where

ct2 _ (y2 + e2)/(1, e2) = .t2(2. e2)/(l_ e2)
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° 2 +74.

Because y2 << 1, we approximate (1 + ct2x2) 1/'2 = 1 + T2x 2 and

(Bib)

Qn = _(1 + 72x2)'ndx - Zn/7. (B2)

The integrand is expanded in powers of (7 x) 2 << 1

Z n = 711 7 (n+j-l)!(.y2)Jx2Jdx,

0 j=O (n-1)tj!
033)

integrated term by term, and evaluated at the limits

n (n+j-1)! (._2j+l)
Z n = -Z

j=O (n-l)!j! (2j+I)
O34)

Equation (B4) is rewritten as the sum of indefinite integrals

n (n+j-1)!
Z n = Z _I(-_,)2Jdv

j=O (n-1)!j!
(B5)

which is equal to the indefinite integral of the sum

n (n+j- 1)!
Z n = I Z _(-T 2) jde

j=O (n-1)lj!
(B6)

= I (1 + y2)-n d3' . (B7)

To obtain the recursion relation for Zn, note

cl [7(1 + y2)-n] = (1 + y2)-n . 2ny2(1 + y2)-n-1 038)

d7

= -(2n- l)y2(l + y2)-n-1 + (1 + y2)-n-I ; 039)

therefore, integration of (B7) by parts and back substitution from (B9) yields

Zn = Y(I+Y2) "n + 2n[y2(l+T2)'n'ld7 (1310)

= [2nZn+ I - 7(1+y2)'nl/(2n- I). (BII)

Equations 0311) and (B2) give the recursion relations

Qn+l " [(2n- 1) Qn + (1 + T2)-nl/(2n). (BI2)

Detailed calculations, inititalized with Q1 = 1 - _/3, show that (B12) underestimates Qn by about 4 parts

per million. This is mainly due to ommission of a factor of about (1 + 74/12).
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