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TECHNICAL MEMORANDUM

HIGH-STRENGTH ALUMINUM CASTING ALLOY

FOR HIGH-TEMPERATURE APPLICATIONS

(MSFC Center Director's Discretionary Fund Final Report, Project No. 97-10)

I. INTRODUCTION

A new aluminum-silicon (AI-Si) alloy has been successfully developed at Marshall Space Flight

Center (MSFC) that has a significant improvement in tensile strength at elevated temperatures (500 to

700 °F). For instance, the new alloy shows an average tensile strength of at least 90 percent higher than

the current state-of-the-art 390 AI piston alloy at 500 °F. Compared to conventional AI alloys,

automotive engines using the new piston alloy will have improved gas mileage, and may produce less

air pollution in order to meet the future U.S. automotive legislative requirements for low hydrocarbon

(HC) emissions from auto engines. Since 1995, as part of the Partnership for the Next Generation of

Vehicle (PNGV) program, MSFC has worked with Ford Motor Company (FMC) in Dearborn, Michigan,

to develop this alloy as a dual-use technology. From 1996-1998, MSFC independently developed this

new alloy under sponsorship from MSFC's Center Director's Discretionary Funded (CDDF) program.

Presently, all commercially available AI-Si alloys are unable to meet a constant demand for

higher mechanical strengths at temperatures above 450 °F. Hypereutectic AI-Si alloys offer a number of

benefits in the area of a piston's operation such as corrosion resistance, hardness, low thermal expansion,

and improvement in surface wear resistance. If such a high-strength, low-cost alloy were available, it

would help solve many of the high-temperature, high-wear-resistance material-related problems facing

NASA, and particularly the automotive industry. However, it must also be recognized that low material

cost is an important factor for mass production in commercial industries. The new alloy is economically

produced by pouring molten metal directly into conventional permanent steel molds or die casting. The

projected cost for this new alloy is <$0.95 per pound, and it readily allows the automotive components

to be cast at a high production volume with a low, fully accounted cost.



II. AIR POLLUTION AND PISTON DESIGN

A. Hydrocarbon Emission Sources

Currently, the big three U.S. automakers are facing their worst environmental crisis since the oil

embargo in the 1970's. Under the congressional Global-Warming Treaty, there is a pressing need for the

automakers to meet the U.S. automotive legislative requirements for low HC emissions from gasoline-

and diesel-powered vehicles. Combustion research conducted fi,r gasoline engines in the early 1980's

has shown that the causes for HC emission from the engine could be traced to the unburned fuel in the

combustion chamber. Some of these compounds are strong-smelling, but their main importance is as

precursors, with nitric-oxide (NO) as secondary air pollutants. Chemically triggered by sunshine, these

pollutants are the products of atmospheric reactions that lead to the noxious mist called the "Los Angeles

smog." Moreover, the unburned fuels that result in gasoline engine HC emissions also cause a

significant engine performance loss.

Combustion analysis from gasoline engines have shown that the unburned fuel comes mostly

from a ring-shaped crevice that is formed between the combustion's cylinder wall surface, the piston

outside wall, and the top of the piston ring. 1-3 This piston crevice is sometimes called the piston top-

land clearance. When an engine is under normal operation cycles, the gasoline-air mixture supplied to

the combustion chamber is compressed into the piston's ring crevice in the compression stroke. The

combustion of gasoline is initiated at the spark plug and the fla_le propagates throughout the combustion

chamber. If the flame in the combustion chamber cannot travel to the piston's wall and enter the inside

of the crevice, the unburned fuel is exhausted out of the combustion chamber in the expansion stroke as

the main source of HC emissions. 4-5 Experimental results from Adamczyk 6 have shown that the piston's

crevice volume produced =80.5 percent of the total HC emission, while the heat gasket and spark plug

threads produced ---12.5 and 5 percent, respectively. All other HC sources produce <2 percent of the total

scaled HC emission from an auto engine. Thus the piston's crevices significantly increase the HC

emissions from the auto engine, and there is a direct relationshil_ between the volume of the crevices and

the amount of HC emission. When the flame arrives at the pistol crevice, it cannot usually propagate
into the crevice and burn the contained fuel.

B. Current Piston Design and Materials

Since there is a correlation between the piston's crevice /olume and the amount of HC emission

fiom a gasoline engine, several piston redesign efforts were taken by the auto industry in the early

1990"s as a way to reduce the HC emission. One way to reduce he crevice volume was to reduce the

vertical thickness of the piston top-land clearance by machining off parts of the piston crown, making it

have a thinner section. Another similar way to minimize the pislon's crevice volume is to move the top

piston ring groove upward in relationship to the piston's crown. Figure I depicts a recent approach that

is taken by FMC to reduce the piston top land which is an origfi, of a substantial HC emission. In this

design, the top piston ring groove is moved upward, very close _o the crown of the piston, in order to
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Figure 1. Piston design modifications for HC emission reduction.

reduce the vertical length of the piston top land. However, in this design, the piston top land above the

piston ring must have sufficient wall strength across the bendable zone as the piston moves up and down

in the combustion chamber. The pistons lie at the heart of the internal combustion engine and their

reciprocating motion will generate severe stress on the piston crown, sidewall, and the piston's top

rings. 7 Thus if the piston top land is made to be very thin, then a stronger piston alloy is mandatory to

permit such design modification in order to reduce the HC emission.

The universal acceptance of AI pistons by worldwide manufacturers can be attributed to the

piston's light weight that would enhance the engine. In the use of Ai alloys for pistons, several

traditional AI-Si alloys, such as the Society of Automotive Engineering (SAE) 332 and 390 alloy, have

been proposed. However, their tensile strengths are not suitable for high-temperature applications of

>450 °F. Higher tensile strength must be achieved in order to permit such piston design modification to

reduce the HC emission. Over the years, the most versatile and economical way to produce an AI piston

is through conventional casting methods. The hypereutectic AI-Si alloys are the most popular piston

alloys because they can offer a number of benefits in the area of a piston's operation such as corrosion

resistance, hardness, low thermal expansion, and improvement in surface wear resistance. 8.9 However,

the current alloys have inadequate strength to pass the required 100-hr piston and gasket test for the

higher output four-valve engine for the new piston design to operate at a temperature of =500 °F.

Some material solutions identified to date would include the piston top land's reinforcement with

nickel (Ni) welding, Ni foam, or ceramic ring carriers that are produced using squeeze casting. 1° These

solutions are generally adequate to improve the piston performance. Unfortunately, they would also add

significant cost and weight to the pistons. Another material approach is to use ceramic fibers or

particulates to reinforce conventional AI alloys to produce the so-called ceramic-reinforced metal matrix

composites (MMC's). However, the MMC's materials and processing costs are considered as

prohibitively expensive for industrial piston production levels.ll-14



III. ALLOY DEVELOPMENT

A. Aluminum-Silicon Systems

A1 casting alloys are the most versatile of all common foundry cast alloys in the production of

gasoline pistons. The universal acceptance of Al pistons by worldwide manufacturers can be attributed

to the piston's lightweight and high thermal conductivity. A lightweight AI piston would enhance the

engine perfon-nance by permitting the engine to run at a higher engine speed and with lower crankshaft

counterweighting. Virtually all AI pistons are made from a family of Al that is alloyed with Si. The AI-Si

alloy systems used in pistons fall into three major categories: Eutectic, hypoeutectic, and hypereutectic.

Following is a brief explanation of these categories.

Si additions to AI are very similar to the sugar addition t,) iced tea. Si can be made to dissolve

completely into solid AI at room temperature, and this process i, called forming a solid solution of AI

and Si. However. there is a saturation point that limits how much Si can be dissolved into AI to form a

solid solution. When Si is added above this particular saturation point, it will precipitate out in the form

of hard, small Si particles. This phenomenon is very similar to the excess sugar that could not dissolve

further in the iced tea. For an AI-Si system this saturation point is = 12 percent Si. Therefore, AI alloys

with <12 percent Si are referred to as hypoeutectic, those with c ose to 12 percent Si as eutectic, and

those with >i2 percent Si as hypereutectic. In general, hypereutq;ctic is more difficult to cast and

machine than the hypoeutectic because of its high Si content of> 12 percent. In hypereutectic AI-Si

alloys, the Si grain refinement by using a phosphorus addition i_ very essential to obtaining a good cast

and improve product performance.

Hypoeutectic and eutectic AI pistons have been the auto industry standard for many years, but

they are being phased out in favor of the hypereutectic versions. For example, the SAE 332 and 356

alloys were the standard hypoeutectic and eutectic piston alloys for the auto industry, respectively. By

the late 1980's, the production of hypereutectic AI-Si pistons ha_l dominated the manufacture of AI

pistons. Presently, the standard hypereutectic AI-Si alloy for the industry is the A390 alloy. Table !

shows the typical compositions for piston AI-Si alloy 332, 356. ,rod 390.15 The current worldwide

annual consumption of 390 alloy is estimated to be = 150,000 toiB. However, the usage of 390 alloys is

limited to a maximum temperature of =450 OF.

Table 1. Composition for SAE 332.356, al:d 390 piston alloys.

Piston
Alloy Si Fe

332 8-10 1.2
356 6-7 0.6
390 16-18 1.3

Compositions(% wt.)

Cu Mn Mg

2-4 0.5 0.5-1.5
0.25 0.35 0.2-0.5
4-5 0.1 0.4-0,6

Ni Zn Ti

0.5 1.0 0.25
0.5 0.35 0.25
0.1 0.1 0.20
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B. Strengthening Mechanisms

In this section the basic concepts for strengthening the tensile properties of Al-Si alloys will be

based on the theory of dislocations. Dislocations are very small lines of imperfection that exist within a

material from the misalignment of atom arrays in the crystal lattice. All cast metals and alloys contain a

large number of dislocation lines as defects. The density of dislocations is defined as the number of

dislocation lines that intersect a unit area in the crystal. There are four important ways of increasing the

tensile strength of an alloy, based on the dislocation's production and movement within the crystal

lattice: ( I ) Mechanical blocking of dislocation motion, (2) pinning of dislocations by solute atoms in a

solid solution, (3) impeding dislocation motion by short-range order, and (4) increasing the dislocation

density so that tangling of dislocations results. All four strengthening mechanisms depend upon

impeding dislocation motion for their success. In the development of the AI-Si alloy, we utilize two

major strengthening mechanisms: Mechanical blocking and impeding dislocation motion by short-range

order. These techniques are briefly explained below.

Mechanical blocking of dislocation motion can be produced by forming tiny particles of a second

phase material into a crystal lattice. 16,17 For example, when small particles of iron-carbide (FeC)

compound are precipitated into iron, the iron's strength is drastically increased. For AI alloys, the

particles of Ai-copper (AI2Cu) compound are precipitated into the AI matrix to increase the strength of

AI by pinning of a dislocation's movement. This mechanism would work well if these particles are very

small and evenly distributed within the alloys. However, if the alloy is held at a high temperature for a

certain period of time, the thermal energy will make these particles dissolve and grow even larger

through thermal diffusion, and therefore decrease the effectiveness of the mechanical blocking of

dislocation.

Dislocation motion can also be impeded by a short-range order solid solution. The passage of a

dislocation across a slip plane in a perfected ordered crystal lattice does not alter the binding energy

across the plane after the dislocation is gone. Most cast metals and alloys are considered as disordered

solid solutions in long-range but tend to have short-range order solid solution. The short-range order

means that atoms of different species are not arranged at random on the lattice sites, but tend to have an

excess or a deficiency of pairs of unlike atoms. This is called ordered crystal structure at the short range.

Thus in ordered alloys, dislocations tend to move in pairs and the second dislocation reorders the local

disorder left by the first dislocation. This action impedes the dislocation motion by short-range order

structure.

All strengthening mechanisms by impeding dislocations begin to break down at sufficiently high

temperatures where material diffusion can occur at an appreciable rate. When diffusion is rapid, most

tiny precipitated particles dissolve or become larger in size. The short-range order in solid solution

repairs itself behind slowly moving dislocations, and annealing at high temperature will decrease the

dislocation density. In this program, the search for a higher strength AI-Si alloy for use at very high

temperatures is a search for reduced material diffusion rates, so that these four strengthening

mechanisms will survive to high temperature in order to impede the dislocation movement.



C. Key Alloying Elements

This section does not contain any confidential commercial information nor does it disclose an

invention for which a patent has been applied. There are two key alloying elements which are commonly

used for all hypereutectic-Al alloy systems: Si and Cu. 15 Si is tht: major alloying element added to the

AI. For hypereutectic AI, Si has a typical range from 16 to 20 percent by weight. Additions of Si to pure

AI dramatically improve the fluidity and feeding characteristics. Moreover, Si offers a number of

benefits in the area of a piston's operation such as corrosion resistance, hardness, low thermal expansion,

and improvement in surface wear resistance. Perhaps the major advantages of using Si are its high heat

capacity and wear-resistant properties. The Si particles, being a nonmetallic material, act as small islands

of insulators, keeping the heat in the combustion chamber and preventing heat loss through conduction,

allowing the rest of the piston area to run cooler.

Cu is added to the AI mostly for improvement in tensile strength. Alloys containing 4 to 6

percent Cu will respond strongly to heat treatment in T5 and T6 _onditions. The major step is to control

the AI-copper (AI2Cu) compound particle size which is made to precipitate uniformly into the AI matrix

to increase strength by pinning the dislocation's movement. This mechanism would work well if these

particles are very small and evenly distributed within the alloys. However, if the alloy is held at a high

temperature for a certain period of time, the thermal energy would make these particles dissolve and

grow even larger through thermal diffusion, and decrease the effectiveness of the mechanical blocking

of dislocation. When thermal diffusion is rapid, most tiny precipitated particles of Al2Cu will dissolve or

become larger in size. I11 this program, additional Al-transition element compounds must be used to slow

down the diffusion rate of Ai2Cu compound.

The alloy development strategy is to reduce the Cu2AI diffusion rates, so that the mechanical

blocking and short-range order solid solution strengthening mechanisms from the Cu2AI particles will

survive to high temperature in order to impede the dislocation mc_vements. The key is to make AI-

transition (A1-TE) element compounds to precipitate in submicroa-size particles (<0.3 lure), and evenly

distribute throughout the Ai matrix. Surprisingly, the total amoun of transition elements required to

form the AI-TE is usually not >2 percent by weight. The key is to select a certain transitional element to

react with AI at a relatively low temperature (<1,400 °F) during c _sting to form the AI-TE compounds.

This is why any preformed metal-oxide powders (i.e., non-AI-TE forming) added to AI, such as

zirconium-oxide (ZrO2), thorium-oxide (ThO2), titanium-boride (TiB2), and even AI-oxide (A1203),

are ineffective as strengthening mechanisms for blocking dislocations because they are very large in size

(5-20 _m). Second, most of these preformed metal-oxide particles do not form a short-range order solid

solution because their solubility limits at room temperature with/d is practically zero. Third, the

insolubility of these metal-oxides with Ai means that they generally do not form a strong chemical bond

with the AI atoms in order to enhance the cohesive strength or the tensile strength of the alloy. Adding

prefomled metal-oxide powders may enhance the alloy strength only in some rare instances that usually

require high cost process conditions and high volume percent of l:owders.

Similarly, using preformed powder of nonmetal-oxide and carbide particles such as Si-carbide

(SiC), Si-nitride (Si3N4), and boron-carbide (B4C) will be ineffective as strengthening mechanisms for

the same reasons stated above. In fact, it has been shown that all AI MMC's, reinforced with particulates

(nonfibers) such as SiC. B4C, AI203, etc., are rarely able to achieve a higher strength level than their

6



nonreinforcedalloys.Evenwhenthevolumefractionof theseMMC reinforcementsarerelativelyhigh
(i.e., up to 60percent),particulatereinforcedMMC's aredevelopedfor higherstiffness(modulusof
elasticity)componentsratherthanfor highertensilestrengths.

D. Foundry Practices

This section does not contain any confidential commercial information nor does it disclose an

invention for which a patent has been applied. Hypereutectic AI-Si alloys are among the most difficult

AI alloys to cast using conventional gravity-poured casting because of the high Si contents. Controlling

the material compositions and fine-grain microstructures are important keys to producing successful

AI-Si cast parts.15 There are three important casting parameters for hypereutectic alloys that foundrymen

have to understand in order to produce a good cast: ( 1) Grain refinement for the primary Si particles,

(2) controlling the "fluidity" of the molten metal pouring into permanent molds due to the broad

solidification range, and (3) providing a rapid cooling rate to control the high heat of fusion fi'om AI-Si

alloys. These basic foundry techniques for hypereutectic alloys are briefly explained below.

Si grain refinement is very important for producing a sound cast and obtaining product

performance, particularly in the areas of high hardness and wear resistance. The unique feature in every

hypereutectic alloy's microstructure is the primary Si phase that appears as large black "cuboids"

particulates. These are hard Si particles that provide a hypereutectic alloy with its exceptional

performance in wear resistance. In fact, these Si particles are so hard that diamond tooling is routinely

required to machine the alloys for making pistons. However, the wear resistance is effective only when

these Si particles are precipitated in very small sizes. '_ One of the key steps for making very small Si

particles is to provide appropriate nucleation sites for small Si particles to precipitate out of Al. It is

found that phosphorus addition to A! would be sufficient in forming extremely small Al-phosphide

crystals to act as nucleate sites for the primary Si particles to precipitate in small sizes. 15

The fluidity is an important property indicating how far a molten metal can flow in a mold to fill

out all fine details before it becomes too solid to flow any further. The heat of fusion for Si is several

times greater than that of AI. When Si is alloyed into AI it adds a large amount of heat capacity that must

be removed from the alloy to solidify it. The heat of fusion is what provides AI-Si cast alloys with their

unique characteristic "fluidity." This is why adding a small amount of Si to pure AI can dramatically

improve the fluidity and mold feeding characteristics. However, when the Si content for hypereutectic is

between 18-20 percent by weight, these Si primary crystals, upon precipitating rapidly out of the AI

matrix during cooling, may "mechanically" impede the flow of the alloy within the mold. This is due to

the uneven solidification temperatures within the molds. This b,oad range of solidification temperature

equates to poor castability in certain types of mold geometries. In fact, hypereutectic AI-Si has a very

broad solidification range of--250 °F. The broad solidification range is directly related to the amount of

Si content alloyed in the Ai. The optimum molten metal temperatures fo," pouring, gate and riser design

for pennane,lt molds, and mold temperatures must be carefully measured and designed to optimize

casting parameters. For hypereutectic alloys, the casting parameters change with each change in Si

concentration. The exact conditions which yield good castings for a 16-percent Si level will not yield an

equally good casting at a 20-percent Si level. Presently. it is a common practice to keep the Si content to

< 18 percent. 8-9



Since AI-Si alloys have very high heat of fusion, a large amount of heat from the molten metal is

absorbed by the molds and other surrounding parts. This excess lhermal energy must be removed from

the alloys rapidly in order to solidify the cast and achieve optimt_m fine-grain structures. A system of

rapid heat removal technique that operates in a cyclic cooling schemes for molds or dies must be

designed as parts of the casting production lines. The optimum molten metal temperatures for pouring

and the preheated temperatures for permanent molds and dies must be carefully measured and designed

to optimize casting parameters. If possible, rapidly cooling the molds is one of the key steps in

producing fine Si grains in submicron sizes and evenly distributing them throughout the AI matrix. After

casting, using permanent molds, the mechanical properties can be further improved by using heat
treatment in the standard T5 and T6 conditions.



IV. RESULTS AND DISCUSSION

A. Mechanical Properties

A new AI-Si alloy has been successfully developed at MSFC that has a significant improvement

in tensile strength at elevated temperatures (500 to 700 °F). For instance, the new alloy shows an

average tensile strength of at least 90 percent higher than the current state-of-the-art 390 A! piston alloy

at 500 °E Compared to conventional A1 alloys, automotive engines using the new piston alloy will have

improved gas mileage, and may produce less air pollution in order to meet the future U.S. automotive

legislative requirements for low HC emissions from auto engines. The alloy development strategy is to

reduce the Cu2AI diffusion rates, so that the mechanical blocking and short-range order solid solution

strengthening mechanisms from the Cu2A! particles will survive to a high temperature in order to

impede the dislocation movements. The new alloy is economically produced by pouring molten metal

directly into conventional permanent steel molds or die casting.

Figure 2 is a chart showing a comparison of this new alloy with conventional piston alloys. The

chart shows the ultimate tensile strength, tested at 500 °F, after exposure of the cast specimens to a

temperature of 500 °F for at least 100 hr. Similarly, figures 3 and 4 show a comparison of this new alloy

with conventional piston alloys exposed to similar testing conditions at 600 and 700 °F, respectively.
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B. Material Performance Versus Cost Trade-Study

The auto industry consumes roughly 23M ton of materials annually and 16 percent of this is AI.

However, there are some key requirements that control the imple,nentation of a new material in the auto

industry. In recent years, there are many advanced materials developed for the aerospace industry that

have outstanding properties but are considered as prohibitively e::pensive for the auto industry

production levels. 13 Concerning the materials and its processing :osts, table 2 shows a list of new

materials implementation requirements for the auto industry. The manufacturiqg rates are very high for

mass production in the auto industry. The high costs of a new material usually derives from low

production volumes and immature processing technology for component productions. The low

production volume usually comes from the problem of a worldwide raw material supply limitation or the

manufacture's production capability for raw materials. For exam t,le, there is always a high demand for

gold in our society, but the price of gold is never cheaper than AI because the supply of gold as a raw

material is not plentiful. Futhermore. over the centuries the production capability for gold. whether

through mining, processing, or recycling, has never been a low-c_st process for the manufacturers. To

some extent, a similar argument can be applied for advanced met, d-oxide materials such as boron-

carbide. Si-nitride. carbon/carbon composites, ceramic-reinforceci MMC's is, etc. in which they do not

exist plentifully in nature as raw materials.

The immature component processing technology refers to an inadequate understanding of the

relationship between material properties, process co,lditions, equipment design, and microstructures to

the properties of the finished products. For example, when dealin ,. with advanced ceramic and MMC's.

experimental data are often too expensive to obtain and usually c_wer only a small part in the total

p,'ocess-material space. The issue of affordability cannot be reliat:ly addressed when "'critical" data

needed for a mass production program are often lacking. This lact: of inlormation, regarding the novel

materials and processes, often leaves little more than guesswork x¢hen down-selecting among competing

material technologies or formulating a corporate rcsearch and de,,elopment investment strategy for mass

production in a near-term basis.

I 0



Table 2. New materials implementation requirements for auto industry.

Plentiful supply of raw material

- Readily available from natural resources

- Inexpensive to process and can be recycled

Low accounted cost at subsystem level

- Materials cost

- Fabrication cost

- Tooling and facilities cost (amortized)

High reliability

- Superior material properties

- Materials database is available

- Proven performance through experimentations

Existing supplier infrastructures

- Mass production capability

- Minimum supplier's equipment modifications

The low cost of new material is a key factor for mass production in commercial industries,

achievable because the new alloy is economically produced by pouring molten metal directly into

conventional pemaanent steel molds or die casting molds. The mass production capability for AI alloys

and the worldwide supplier infrastructure for cast AI alloy remain unchanged. In comparison, the AI-Si

piston alloy 390 costs =$0.87 per pound; our new material projected cost fbr this new alloy will be

<$0.95 per pound. The new alloy readily allows the piston to be cast at high production volume with a

low, fully accounted cost. Figure 5 shows the comparative cost analysis for the new AI-Si alloy.

Projected cost for MMC would range from $10-$30 per pound, and for carbon/carbon ceramic

composite from $100-$300 per pound. Obviously, these advanced composite materials and their

processing costs are considered as prohibitively expensive for piston mass production levels at the

present time.

C. Potential Commercial Applications

Presently, the production of hypereutectic AI-Si pistons has dominated the manufacture of AI

pistons in the U.S. The standard hypereutectic AI-Si alloy for the industry is the A390 alloy. The current

worldwide annual consumption of 390 alloy is estimated to be = 150,000 ton. However, the usage of 390

alloys for pistons is limited to a maximum temperature of =450 °F. Thus the intention of this new alloy

is to systematically replace the 390 alloy for piston production in the near term. Other potential

commercial applications are listed as follows: Rotary engine side housings, air compressors, master

brake cylinders, and chain saw cylinders. It can also be used for the variable-speed drive sheaves and

pulleys, freon compressor pistons and cylinder bodies, automatic transmission pump bodies, pump

covers, and clutch input housings.
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State-of-the-Art Candidate Materials

Comparative Piston Material Cost Analysis ($/Ib)

Est. $100-300/Ib

I

t Q   s,onHea,
Piston Connecting Rod

t
Program Target Cost
for New Piston Alloy \
$0.87/Ib $0.95/Ib

Conventional New NASA C/C

AI-Si Alloy AI-Si Alloy Composites

Est. $10-30/Ih

AI-Melal

Composites

Figure 5. Candidate piston materials cost comparisons.
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V. CONCLUSIONS AND RECOMMENDATION

A new AI-Si alloy has been successfully developed at MSFC that has a significant improvement

in tensile strength at elevated temperatures (500 to 700 °F). For instance, at 500 °F test temperature, the

new alloy showed an average tensile strength of 24 KSI, which is at least 90 percent higher than the

current state-of-the-art 390 piston alloy. With this remarkable performance in strength, it is anticipated

that automotive engines using this new piston alloy will have improved gas mileage, and may produce

less air pollution in order to meet the U.S. automotive legislative requirements for low air pollution

emissions. It is also anticipated that the cost to implement this alloy for piston mass production is about

the same level as the current auto industry's 390 alloy. The new alloy is economically produced by

pouring molten metal directly into conventional permanent steel molds or die casting molds.

It is recommended that MSFC should conduct a proof-of-concept study phase with the U.S.

piston vendors within the next 24 mo. This activity will serve as a focal point to bring together the

unique material experiences from MSFC, U.S. automaker's experience in auto engine emission test, and

piston suppliers for mutual benefits. Some of the major tasks to be accomplished are to ( 1) develop a

material property database for the auto industry, (2) cast the alloy and fabricate the pistons, and

(3) perform the piston-engine assembly and HC emission testings
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