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1.0 INTRODUCTION

This document is a guide to the data products derived from the measurements made by the Earth Probe Total Ozone

Mapping Spectrometer (EP/TOMS), and processed by the National Aeronautics and Space Administration (NASA).
It discusses the calibration of the instrument, the algorithm used to derive ozone values from the measurements,

uncertainties in the data, and the organization of the data products. The data begin July 25, 1996 and are ongoing at

the time of this publication. These data are being archived at the Goddard Space Flight Center (GSFC) Distributed

Active Archive Center (DAAC), and being made available in near real-time based on preliminary calibration through

the TOMS Web site as given in Appendix C.

The EP/TOMS was launched only a few months before another TOMS Instrument was launched aboard ADEOS, a

Japanese meteorological satellite. The EP/TOMS was put in a lower, 500 km orbit in order to provide higher spatial

resolution for studies of local phenomena. After failure of the ADEOS satellite on June 29, 1997, it was decided to

raise the EP/TOMS orbit to 750 km to provide more complete global coverage. This was accomplished over the
course of two weeks from December 4 through December 12 of 1997 during which no EP/TOMS data are available.

The result is an EP/TOMS data set of one and one half years of high resolution data taken at the expense of full global

coverage, and a continuing data set beginning in December of 1997 that provides more nearly global coverage. This

data set can be used for monitoring of long-term trends in total column ozone as well as seasonal chemical depletions

in ozone occurring in both southern and northern hemisphere polar spring. Other monitoring capabilities include
detection of smoke from bio-mass burning, identification of desert dust and other aerosols as well sulfur-dioxide and

ash emitted by large volcanic eruptions. A one and one half year gap exists in the long-term TOMS data record
between the failure of the Meteor-3 Spacecraft in December of 1994 and the beginning of the EP/TOMS data record

in July of 1996. In spite of this, the EP/TOMS data set represents a continuation of the TOMS dataset based on the
Nimbus-7 and Meteor-3 TOMS from October 31, 1978 through December 28, 1994, and on EP/TOMS from July 15,

1996 into the future. A follow-on TOMS experiment is scheduled to fly aboard a Russian Meteor-3M Spacecraft

planned to be launched in August of 2000.

The EP/TOMS is the first of three instruments built by Orbital Sciences Corporation to continue the TOMS Mission.

These instruments are similar in design to the previous TOMS instruments. They provide enhanced systems to

monitor long-term calibration stability, and a redefinition of two wavelength channels to aid in calibration monitoring

and to provide increased ozone sensitivity at very high solar zenith angles. One of the other new TOMS was flown

aboard the Japanese meteorological satellite, ADEOS, and the other is scheduled for launch aboard a Russian Meteor

Spacecraft in August of 2000. Further discussion of the EP/TOMS instrument is provided in Sections 2.1 and 3.

The EP/TOMS was the only instrument aboard an Earth Probe Satellite launched on July 2, 1996. It achieved its

initial orbit about 12 days later, and began taking measurements on July 15th. The EP/TOMS measures solar

irradiance and the radiance backscattered by the Earth's atmosphere in six selected wavelength bands in the
ultraviolet. It scans the Earth in 3-degree steps to 51 degrees on each side of the subsatellite point in a direction

perpendicular to the orbital plane.

The algorithm used to retrieve total column ozone (also referred to as total ozone) from these radiances and
irradiances is outlined in Section 2.2 and described in detail in Section 4. This algorithm is identical to the one used
for the Version 7 Nimbus-7 and Meteor-3 TOMS data archive. Because of this, the initial archive of the EP/TOMS

data set is also referred to as Version 7. A radiative transfer model is used to calculate backscattered radiances as a

function of total ozone, latitude, viewing geometry, and reflecting surface conditions. Ozone can then be derived by

comparing measured radiances with theoretical radiances calculated for the conditions of the measurement and

finding the value of ozone that gives a computed radiance equal to the measured radiance.

Section 2 provides a general overview of the EP/TOMS instrument, the algorithm, the uncertainties in the results, and
of other basic information required for best use of the data files. It is designed for the user who wants a basic

understanding of the products but does not wish to go into all the details. Such a user may prefer to read only those

parts of Sections 3 through 6 addressing questions of particular interest. In Section 3, the instrument, its calibration,

and the characterization of its changes with time are discussed. The algorithm for retrieval of total ozone and its
theoretical basis are described in Section 4. Section 5 describes the overall uncertainties in the ozone data and how



they are estimated, while Section 6 discusses particular problems that may produce errors in specific time intervals

and geographical areas. Both sections identify some anomalies rem;tining in the data and discuss what is known

about them. The structure of the data products is identical to those of previous TOMSs. This information is presented

in Section 7. Appendix A tabulates the standard atmospheric ozone and temperature profiles used in the algorithm

for ozone retrieval. Appendix B describes software available for reading the data files, and Appendix C provides
information on data availability. Appendix D contains a catalog of Earth Probe Spacecraft attitude anomalies that

affect the derived ozone at off-nadir scan positions by less than 1%.
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2.0 OVERVIEW

2.1 Instrument

EP/TOMS was the only instrument aboard an Earth Probe satellite launched by a Pegasus XL rocket on July 2, 1996.

The satellite reached its initial orbit of 500 km at an inclination 98 degrees and a local equator crossing time of 11:16

AM some 12 days later, and regular ozone measurements began on July 25. The EP/TOMS experiment provides

measurements of Earth's total column ozone by measuring the backscattered Earth radiance in the six 1-nm bands

listed in Table 3.1. The experiment uses a single monochromator and scanning mirror to sample the backscattered

solar ultraviolet radiation at 35 sample points at 3-degree intervals along a line perpendicular to the orbital plane. It
then quickly returns to the first position, not making measurements on the retrace. Eight seconds after the start of the

previous scan, another scan begins. The measurements used for ozone retrieval are made during the sunlit portions of
the orbit. In December of 1997, the EP/TOMS orbit was elevated to an altitude of 739 km with an inclination of

98.4*. The local equator crossing time was unchanged. Figure 2.1 illustrates the resulting instantaneous fields of view

(IFOV) on the Earth's surface for adjacent scans and adjacent orbits. In its initial operation, the scanner measured 35

scenes, one for each scanner view angle stepping from right to left. The lower orbit was selected to provide the higher

spatial resolution shown in Figure 2.1 at the expense of inter-orbit filling which would provide daily global coverage.
Global coverage was not a concern until failure of the Japanese meteorological satellite, ADEOS which carried a

TOMS and provided that function. After the orbit elevation, EP/TOMS gives better coverage between orbits resulting
in 90% daily global coverage.
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Figure 2.1 Earth Probe TOMS Instantaneous Fields of View Projected onto Earth's Surface. The right portion
(samples 18-35) of two consecutive scans are shown, and a portion of a scan from the previous orbit is also shown to

illustrate the degree of inter-orbit coverage at the equator for: a) 500 km orbit altitude, and b) 750 km orbit altitude.

The higher orbit after December 1997, results in 90% daily global coverage (84% at equator and 100% at 30*
latitude).

The ozone retrieval uses a normalized radiance, the ratio of the backscattered Earth radiance to the incident solar

irradiance. This requires periodic measurements of the solar irradiance. To measure the incident solar irradiance, the

TOMS scanner is positioned to view one of three ground aluminum diffuser plates housed in a carousel. The selected

diffuser reflects sunlight into the instrument. The diffuser plate is the only component of the optical system not
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commontoboththeEarthradianceandthesolarirradiancemeasurement.Onlyachangein thereflectivityof the

diffuser plate can cause a change of the radiance/irradiance ratio with time. In principle, an accurate characterization

of these changes will yield the correct variation of this ratio, and hence, an accurate long-term calibration of the

instrument. The three diffuser plates are exposed at different rates, allowing calibration by examining the differences

in degradation of diffuser reflectivity resulting from the different rates of exposure. This approach was first used with

Meteor 3 TOMS (Jaross et al., 1995) and proved to be very successful. In addition, the EP/TOMS is equipped with

UV lamps for monitoring the reflectivity of the solar diffusers. A more detailed description of the instrument and its

calibration appears in Section 3.

2.2 Algorithm

Retrieval of total ozone is based on a comparison between the measured normalized radiances and radiances derived

by radiative transfer calculations for different ozone amounts and the conditions of the measurement. It is

implemented by using radiative transfer calculations to generate a talfle of backscattered radiance as a function of

total ozone, viewing geometry, surface pressure, surface reflectivity, ard latitude. Given the computed radiances for

the particular observing conditions, the total ozone value can be derive:i by interpolation in radiance as a function of

ozone. It is also possible to reverse this process and use the tables to o_tain the radiances that would be expected for

a given column ozone and conditions of the measurement. The logarithn of the ratio of this calculated radiance to the
measured radiance is the residue.

The reflecting surface is assumed to consist of two components, a surface component of lower reflectivity and a cloud
component of higher reflectivity. By comparing the measured radianc_; at the ozone-insensitive 360 nm wavelength
with that calculated for cloud and for ground reflection alone, the effe :tive cloud fraction and the contribution from

each level can be derived. Using this effective cloud fraction and the r: Ldiances measured at one pair of wavelengths,
an initial ozone estimate is derived using the tables. This ozone estimtte is then used to calculate the residues at all

TOMS wavelengths except the longest. A correction to the initial ozone estimate is then derived from the residues at

selected wavelengths. Applying this correction produces the Best Ozone value. The choice of wavelengths is based

upon the optical path length of the measurement. Section 4 provides a full description of the algorithm. The OPT has

developed algorithms for the derivation of other parameters from the TOMS measurements in addition to total ozone.
These include an estimate of UVB flux at the surface (Krotkov et al., 1998) and estimates of aerosol loading due to

the presence of atmospheric aerosols (Hsu et al., 1996; Seftor et al,. 19tl7; Herman et al., 1997; and Torres et al., 1995

and 1998a).

2.3 Data Uncertainties

Uncertainties in the ozone values derived from the TOMS measurements have several sources: errors in the

measurement of the radiances, errors in the values of input physical quantities obtained from laboratory

measurements, errors in the parameterization of atmospheric properties used as input to the radiative transfer

computations, and limitations in the way the computations represent _e physical processes in the atmosphere. Each
of these sources of uncertainty can be manifested in one or more of fol r ways: random error, an absolute error that is

independent of time, a time-dependent drift, or a systematic el ror that will appear only under particular
circumstances. For EP/TOMS total ozone, the absolute error is + 3 percent, the random error is + 2 percent (though

somewhat higher at high latitudes) and the drift after 1.5 years of opel ation is less than + 0.6 percent. More detailed

descriptions of the different sources of uncertainty and the extent to w lich each contributes to the overall uncertainty

appear in Sections 3, 5, and 6. Section 3 discusses uncertainties due to errors in the characterization of the instrument

sensitivity. Section 5 discusses other sources of random errors, absc lute error, and drift, combining them with the

instrument error to yield the overall estimates given above. Section 6 c iscusses errors that are limited in their scope to

specific times, places, and physical conditions. Sections 5 and 6 also d ;scribe the remaining anomalies that have been
identified in the EP/TOMS data set, with a discussion of what is know a of their origin.

Comparisons between EP/TOMS and ground based measurements of otal ozone indicate that the EP/TOMS data are
consistent with these uncertainties. The EP/TOMS ozone is approximately 1.0% higher than a 30 station network of

ground measurements. Nimbus-7 TOMS is about 0.5% higher than e similar ground based network (McPeters and
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Labow,1996)andMeteor-3TOMSisnotsignificantlydifferentfromthesamenetwork.Noneof theTOMSozone
datasetsshowanysignificantdriftrelativetothegroundbasednetworks.

Dataqualityflagsareprovidedwiththederivedozonein theTOMSOzoneFile(Level-2dataproduct).Onlythe
dataqualityflagvaluesof0 areusedtocomputetheaveragesprovidedontheCDTOMS(Level-3)product.Other
flagvaluesindicateretrievedozonevaluesthatareof lowerquality,allowingtheusersofLevel-2todecidewhether
ornottheywishtoacceptsuchdatafortheirapplications.

2.4 Archived Products

The EP/TOMS total ozone products are archived at the GSFC DAAC in Hierarchical Data Format (HDF). There are

two kinds of total ozone products: the TOMS Ozone File or Level-2 Data Product, and the CDTOMS or Level-3 Data
Product. The TOMS Ozone File contains detailed results of the TOMS ozone retrieval for each IFOV in time

sequence. One file contains all the data processed for a single orbit. The CDTOMS contains daily averages of the

retrieved ozone and effective surface reflectivity in a 1-degree latitude by 1.25-degree longitude grid. In areas of the

globe where orbital overlap occurs, the view of a given grid cell closest to nadir is used, and only good quality

retrievals are included in the average. Detailed descriptions of these products are provided in Section 7. Each

CDTOMS file contains one daily TOMS map (0.4 megabyte/day).

2.5 Near Real-Time Products

The EP/TOMS Level-3 data are also made available in near real-time over the internet. The near real-time products

are not to be considered of the same high quality as those available through the archive, but they can be accessed

earlier through the EP/TOMS Web Site at "http://jwocky.gsfc.nasa.gov/eptoms/ep.html".
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3.0 INSTRUMENT

3.1 Description

The TOMS on board the Earth Probe satellite measures incident solar radiation and backscattered ultraviolet sunlight.

Total ozone was derived from these measurements. To map total ozoae, TOMS instruments scan through the sub-

satellite point in a direction perpendicular to the orbital plane. The Earth Probe TOMS instrument is identical to two
other new TOMS instruments, one of which was flown aboard the J_.panese Meteorological Satellite ADEOS I in

1996, the other is scheduled for launch aboard a Russian Meteor Spacecraft in August of 2000. These three are

essentially the same as the first two TOMS, flown aboard Nimbus 7 and Meteor 3: a single, fixed monochromator,

with exit slits at six near-UV wavelengths. The slit functions are triangular with a nominal l-nm bandwidth. The

order of individual measurements is determined by a chopper wheel. As it rotates, openings at different distances

from the center of the wheel pass over the exit slits, allowing measurements at the different wavelengths. The order is

not one of monotonically increasing or decreasing wavelength; two samples at each wavelength are interleaved in a

way designed to minimize the effect of scene changes on the ozone retrieval. The Instantaneous Field of View (IFOV)

of the instrument is 3 degrees x 3 degrees. A mirror scans perpendicular to the orbital plane in 3-degree steps from 51

degrees on the left side of spacecraft nadir to 51 degrees on the right (_:elative to direction of flight), for a total of 35

samples. At the end of the scan, the mirror quickly returns to the first position, not making measurements on the

retrace. Eight seconds after the start of the previous scan, another begins.

On previous TOMS consecutive cross scans overlapped, creating a contiguous mapping of ozone. The low altitude of

EP/TOMS (500 km) meant less overlap for EP/TOMS than for N7/TOMS (935 km), or M3/TOMS (1050 kin), or

ADEOS TOMS (800 kin). Overlap occurred poleward of 50 degrees The initial mean localtime of the ascending

node was 11:16 AM, and remained in the range from 11:03 AM to 11:30 AM throughout the first year. The orbital

inclination was 97.55 deg. and remained essentially unchanged until 'he orbit was raised. Orbital altitude was 500

km, decaying to 495 km after 1 year. This translates to an orbital period of 94 min. 44 sec. at launch. Between
December 4th and 12th of 1997, the Earth Probe orbit was raised tc a mean altitude of 739 km. The new orbital

period is 99.7 min. and has a 98.4 ° inclination. The time of the ascending node is essentially unchanged.

One significant difference in the new TOMS series from the previous Nimbus-7 and Meteor 3 TOMS is a change in

the wavelength selection for the 6 channels of the three new instruments. Four of the nominal band center

wavelengths (Table 3.1) remain the same on all TOMS. Channels measuring at 340 nm and 380 nm have been
eliminated in favor of 309 nm and 322 nm on the new TOMS. Ozone "etrieval at 309 nm is advantageous because of

the relative insensitivity to calibration errors, though retrievals are limited to equatorial regions. Ozone retrievals at

high latitudes are improved because 322 nm is a better choice for the eptical paths encountered there.

Backscatter ultraviolet instruments measure the response to solar irradiance by deploying a ground aluminum diffuser

plate to reflect sunlight into the instrument. Severe degradation of the Nimbus-7 diffuser plate was observed over its

14.5 year lifetime, and determining the resultant change of the instrument sensitivity with time proved to be one of

the most difficult aspects of the instrument calibration (Cebula et al., 1988; Fleig et al., 1990, Herman et al., 1991;

McPeters et al., 1993; Wellemeyer et al., 1996). The three-diffuser s_ stem aboard Meteor-3 and subsequent TOMS

reduces the exposure and degradation of the diffuser used for the solm measurements and allows calibration through

comparison of signals reflected off diffusers with different rates ot exposure. The diffusers, designated Cover,

Working, and Reference, are arranged as the sides of an equilateral triazlgle and mounted on a carousel, so that a given
diffuser can be rotated into view on demand. The Reference diffuser s normally exposed for one sequence every 5

weeks, the Working diffuser every week, and the Cover diffuser is exposed for the remainder of the time whether or

not the solar flux is being measured. Comparison of the solar irradian,:e measurements from the different diffusers is

used to infer that the degradation of the Reference diffuser on EP/TOMS was negligible during the initial low orbit

period.

A new feature on EP/TOMS is the ability to monitor solar diffuser reflectance. A device referred to as the

Reflectance Calibration Assembly (RCA) was added to the new series of TOMS. This assembly employs a phosphor

light source with peak emission over the TOMS wavelength range. When powered on, the lamp illuminates the

exposed diffuser surface which is then viewed using the TOMS scan n firror. The scan mirror also rotates to view the

6



phosphorsurfacedirectly.Theratioof signalsin thetwo scan mirror positions is a measure of relative diffuser
reflectance.

The EP/TOMS has eleven operating modes during normal operations. The most important of these are:

1. Standby mode

2. Scan mode

3. Solar calibration mode

4. Wavelength monitoring mode

5. Electronic calibration mode

6. Reflectance calibration mode

7. Direct control mode

The primary operating mode of the TOMS is scan mode. It is in this mode that the scanning mirror samples the 35
scenes corresponding to the scanner view angles, measuring the backscattered Earth radiances used for deriving col-
umn ozone. During the nighttime portion of the orbit the instrument is placed in standby mode, at which time the scan
mirror points into the instrument at a black surface. During solar calibration mode the scanner moves to view the ex-
posed diffuser surface. The remaining modes are specialized for calibration purposes as the names indicate. The direct
control mode was also used several times in early 1997 to stop instrument scanning and make a continuous series of
measurements along a single ground track.

3.2 Radiometric Calibration

Conceptually, the calibration of the TOMS measured Earth radiance and solar irradiance may be considered

separately. The Earth radiance can be written as a function of the instrument counts in the following way:

lm(t)= CrkrGrf inst(t) (1)

where

Ira(t) = derived Earth radiance,

Cr = counts detected in earth radiance mode,
k r = radiance calibration constant,

Gr = gain range correction factor, and

finst _- correction for instrument changes.

The measured solar irradiance, F m can be written as:

Fro(t)= CikiGif inst(t) / gO(t) (2)

where

C i = irradiance mode counts,

k i = irradiance calibration constant,

G i = gain range correction factor,

finst = correction for instrument changes,
p(t) = solar diffuser plate reflectivity (p (t -- 0) ,= 1), and

g = relative angular correction for diffuser reflectivity.

In practice, however, there is no attempt to accurately determine k r or k i separately, either their absolute value or time

dependent changes. The primary quantity measured by TOMS and used to derive ozone is the normalized radiance,
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Irn/F m . The advantage of this approach is that the spectrometer sensiti_ ity changes affecting both the Earth and solar

measurements (fi,,st) cancel in the ratio.

The ratio becomes:

1 C G
m r r

F cIK_, gp(t) (3)
m i t

where K is a combined calibration constant for TOMS normalized radiances referred to as the albedo calibration

constant (Table 3.1). Radiance and irradiance measurements are generally made in different gain ranges, but evidence

indicates that G has been properly characterized (see Section 3.4). The initial absolute TOMS calibration therefore,

involves knowledge of the quantity krg/k i. Since the instrument changes affecting both the Earth and solar

measurements cancel in the ratio, the quantity critical to the time-dependent calibration of the normalized radiance is

the diffuser plate reflectivity, p(t). The angular dependence, g, is primarily required to correct for the diffuser Bi-

directional Reflectivity Distribution Function (BRDF), but also contains the small correction due to light scattered
from the instrument.

Table 3. l.Earth Probe TOMS Albedo Calibration Cons:ants and Gain Range Ratios.

Wavelength Albedo Cal Constant Adjustment Factor
(nm) (steradian-1) (ratio)

308.60 0.087 1.015

313.50 0.088 1.015

317.50 0.089 1.012

322.30 0.088 1.010

331.20 0.091 1.009

360.40 0.094 1.000

Gain Range Ratios

Range 2/1 Range 3/2

10.027 9.999

3.2.1 Prelaunch Calibration

Earth Probe TOMS prelaunch characterization included determination af the albedo calibrations, K, and band center

wavelengths. Both of these are reported in Table 3.1. Several different methods were employed to measure the values

of K for the six TOMS channels. These included separate characterizar.ion of radiance and irradiance sensitivity and

direct measurement of the flight diffuser reflectance. Only one method was chosen to represent the instrument
calibration.

The technique selected to calibrate the instrument radiance and irr tdiance sensitivity ratio (albedo calibration)

involves calibration transfer from a set of laboratory diffuser plates. "Ihese Spectralon diffusers were independently

characterized by GSFC and by NIST. A NIST-calibrated tungsten-halogen lamp is used to illuminate a Spectralon

plate which in turn is viewed by the instrument. This yields an estimate of the radiance calibration constants kr The

same lamp illuminating the instrument directly yields the irradiance calibration constants k i. In the ratio of calibration

constants many systematic error sources, such as absolute lamp irradia_ce, cancel. The value of k i is also measured at

various illumination angles to determine the angular correction g.

The film strip technique was used to determine instrument wavelength selection. Photo-sensitive film is placed to

cover the six exit slits prior to final instrument assembly. An image of the exit slits is obtained by exposing the film
with the slit plate acting as a mask. The film is then exposed through the monochromator using several emission line

sources placed at the entrance slit of the instrument. The film images _ff these lines overlap the exit slit images, thus



providingforrelativemeasurementof thetwo.Severalfilmsareusedtoprovideoptimumexposureandtogivethe
bestestimateforbandcenters.

A reassessment of the film strip data from ADEOS TOMS revealed a deviation from the nominal band center

wavelength of the 312.5 nm and 360 nm channels of 0.02 nm and 0.3 nm respectively. These errors were determined

by comparing the slit position on the film with positions of nearby emission lines. A similar analysis performed for

the EP/TOMS film strip data yielded a 0.3 nm error in the 360 nm channel, but no error at 312.5 nm. No adjustment

has been applied to the data to account for the 360 nm error. A 0.3-0.4 N-value error in the aerosol index results, and

derived ozone is systematically high by approximately 0.5%. This ozone error is reflected in the time invariant

wavelength calibration uncertainty in Table 5.1.

3.2.2 Radiance-Based Calibration Adjustments

The initial albedo calibrations of the wavelengths were adjusted prior to processing. The main motivation for this

adjustment is algorithmic. Since different wavelengths are used to determine total ozone in different solar zenith

angle regimes, it is imperative that the wavelength dependence of the initial calibration be consistent with the forward
model calculation of the theoretical radiances used in the retrieval. Any inconsistencies can be identified through

analysis of the residues (see Section 4.5 for further discussion of the residues). In cases where the A-triplet (313 nm,

331 nm, and 360 nm) wavelengths are used to determine total ozone and effective reflectivity, adjusted residues can

be computed for the remaining wavelengths (309 nm, 318 nm, and 322 nm). These residues specifically characterize

the inconsistency of the measured radiances with the total ozone and reflectivity derived using the A-triplet. Modal

residues to A-triplet retrievals from the equatorial region were used to estimate the necessary adjustments (see Table

3.1). No adjustment has been made to the absolute scale (360 nm albedo calibration value). Since these adjustments
were based on data from the first few days of operation, some small inconsistencies remain, on average, in the data

(Figure 4.1), but these are well within the error budget discussed in Section 5.

3.2.3 Time-Dependent Calibration

As discussed in the introduction to this section, the time-dependent calibration requires a correction for changes in the

reflectivity of the solar diffuser plate. The EP TOMS was equipped with a carousel with three diffusers that were

exposed to the degrading effects of the Sun at different rates. The cover diffuser was exposed almost constantly, but

the working diffuser was exposed weekly, and the reference diffuser was exposed once every 5 weeks. While the
cover diffuser degraded quite rapidly, working and reference diffuser degradation has been minor.

Evidence for Working surface reflectance change has been observed through comparison of working and reference

solar signals. By assuming that reflectance change is proportional to solar exposure amount we have estimated the

total reflectance decrease in the working surface. Decreases at the end of 1997 relative to the initial values were 0.7%

and 1.0% at 360 nm and 309 nm, respectively. The uncertainty is + 0.1%. However, the decreases scale linearly with

wavelength. Therefore, changes in triplet wavelength combinations are insignificant at the level of 0.1% (see
discussion in Section 4.5). As a consequence, we have not applied a correction to existing data to account for diffuser

degradation. We treat all solar data from the working surface as though its reflectance has remained constant.

Solar measurements are made near the northern terminator when the trailing side of the spacecraft and the TOMS

solar diffuser carousel are exposed to the sun. Weekly measurements of the Working surface are presented in Figure

3.1, where the initial values have been normalized to 1 and signals have been corrected for sun/earth distance. These

plots representJ_nst (equation 2) since we have assumed no degradation of the Working surface. In the figure, the 360
nm signal is shown along with the 331/360 nm signal ratio and the A triplet wavelength combination. The nearly 25%

decrease at 360 nm is substantial, greater than previous TOMS instruments. The decrease in throughput is believed to

be optical degradation of the fore-optics, probably the scan mirror. A curious feature is observed in ratios to the 360
nm channel, and exemplified by the 331/360 nm plot. The rate of decrease in instrument throughput was initially

greater at shorter wavelengths, but reversed after 6 months. The reasons for this are not completely understood. It

appears to be the result of two competing changes, one where sensitivity decrease is greater at short wavelengths and

one where it is greater at long wavelengths.
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ThesolarWorkingmeasurementshavebeenusedtocharacterizetheinstrumentcalibrationfor thenearreal-time
product.SinceCr andCi ofequation3cannotbemeasuredsimultaneously,Ci mustbecharacterizedatthetimeat
whichCraremeasured.A regressionofexistingsolardataisperformedeveryweektopredictthevalueofCi forthe
comingweek.ThesepredictionsareshownoverplottedinFigure3.1.Innearreal-timemode,theregressionchanges
eachweekwiththeadditionof newdata,sosmallweeklydiscontinuitiesresult.Also,regressionsareperformedfor
360nmandthefivewavelengthratiostothatchannel.Thisresultsinasomewhatpoorerpredictionforthetriplet
combinations,thecharacterizationswhichmostaffectozone.Deviationstypicallydonotexceed0.3%inequivalent
ozone.

Theearthradiancedatafrom1996havebeenreprocessed.ThecharacterizationofC i used for this reprocessing was

based on a smooth polynomial regression of the 1996 solar data. The near real-time predictions described above begin

in 1997. The EP TOMS data are being archived in this form in 1998, and may be reprocessed using a smooth function
later in the life of the mission.

3.3 Wavelength Monitoring

Following the laboratory wavelength calibration, an on-board wavelength monitor has tracked changes in the

wavelength scale, both before launch and in orbit. Change might be produced by excessive temperature differentials

or mechanical displacement of the wavelength-determining components resulting from shock or vibration. Scans of

an internal mercury-argon lamp for in-flight monitoring of the wavelength selection are executed once per week

during nighttime. The wavelength calibration is monitored by observing two wavelength bands on either side of the

296.7-nm Hg line. Relative changes in the signal level indicate wavelength shifts. These shifts are nearly equivalent at
all 6 wavelengths. There is no evidence of any prelaunch wavelength drift. Wavelength monitor results indicate a drift

in band centers since launch of less than 0.02 nm. Changes in the instrument wavelength selection of this magnitude
are not considered significant for ozone retrieval.

3.4 Gain Monitoring

The current from the Photo-Multiplier Tube (PMT) is fed to three electronic amplifiers in parallel, each of which

operates in a separate gain range. The choice of amplifier recorded for output is based upon the signal level. Thus,

knowledge of the gain ratios between ranges represents part of the determination of instrument linearity, and the

stability of the gain ratios can affect the time-dependent calibration of the normalized radiance (Equation 3). The two
ratios were determined electronically prior to launch. The value of the ratios directly affects the ozone retrieval

because the solar calibration takes place exclusively in the least sensitive range, while earth measurements occur in all
three ranges.

In the postlaunch phase, the gain ratios are monitored using signals which are simultaneously amplified in all three

ranges. These simultaneous readings are reported in the instrument telemetry for one scene each scan. Thus earth

radiances can be used to verify the interrange ratios when the signals fall within the operating range for both

amplifiers. This tends to occur near the day/night terminator in the orbit. Interrange ratios have been found to be

constant in time, with average values close to the prelaunch characterization. The postlaunch averages used in ozone
processing are reported in Table 3.1.

3.5 Attitude Determination

The spacecraft attitude has been well maintained since launch. Apparent large excursions (up to 40 dee.) have been

observed in the horizon sensor, but these individual measurements do not represent true attitude changes and are

averaged for 16 sec before being used for attitude adjustment. These excursions occurred several times per month on

average during the low orbit period. They are believed to be caused by high energy particles creating noise in the
attitude sensor. Maximum errors in the actual attitude have been 0.6 deg. in roll and pitch, and the mean value was

about 0.1 deg. The errors arise when the spacecraft corrects for the perceived attitude error. Excursions always last

less than 2 minutes and occur throughout the orbit. Yaw excursions can be slightly larger (~1 deg. max.) and longer in

duration (-3 min.), but are correlated in time with roll/pitch changes. The effect of these attitude errors on solar

calculations is negligible. Errors in retrieved ozone resulting from altitude errors are typically 1 D.U. or less and are
always less the 4 D.U. These significant errors tend to be limited to the extreme off-nadir scenes. A table of orbits and

times when large attitude excursions occurred is given in Appendix D.
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3.6 Validation

Several techniques are employed to validate characterizations of instru_ _ent performance. Among these is an internal

method based on the residues described in Section 4.5. Monitoring the triplet residue for the 309 nm channel is

equivalent to the pair justification method (Herman et al., 1991). This method is being used to verify wavelength

dependent changes in the spectrometer sensitivity, but cannot detect ab_-olute changes at a single wavelength.

The spectral discrimination technique was first applied as the primary calibration technique for the Nimbus 7 TOMS,

which had no on-board diffuser calibration apparatus (Wellemeyer et a., 1996). This method has been applied to the

EP/TOMS data record. The trend in the 331 nm residue over highly reflective equatorial clouds indicates that the

wavelength dependent calibration of EP/TOMS is stable to within a few tenths of a percent. Using the spectral

discrimination technique, the difference in trend between the 331 nm residue over low reflecting surfaces and the 331

nm residue over highly reflective clouds can be used to derive the drift in calibration at the 360 nm reference channel.

This analysis indicates a small upward trend in derived surface reflectix ity of approximately 0.5 percent over the first

1.5 years. This drift, which is consistent with our estimate of working diffuser degradation would have no significant
effect on derived ozone.

Absolute changes in spectrometer sensitivity have also been observed t,y studying signals measured at the nadir over

Antarctica and Greenland and corrected for solar zenith angle dependence. The ice signal time series is plotted with

the solar Working measurements in Figure 3.2. Greenland and Antarctica results have been combined in a single data

set by normalizing results during their overlap at the first equinox. Solar and ice data are further normalized to 1

during the first week of data. Ice results represent weekly average sensitivity values determined for all available

zenith angles up to 83 degrees. The solar and ice results at 360 nm e_hibit good agreement, with deviations of less
than 1%.
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Figure 3.2. Comparisons of estimates of instrument change in the EP/':'OMS based on solar output and the

reflectivity of Antarctica and Greenland.
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4.0 ALGORITHM

The Earth Probe TOMS algorithm is based on the one used for Nimbus-7 and Meteor-3 TOMS. The major differences

concern the use of the 360 nm wavelength for reflectivity instead of 380 nm and the use of 322 nm and 331 nm in the

C-triplet instead of 331 nm and 340 nm for ozone determination. The Earth Probe and ADEOS TOMS algorithms are

identical except for small differences in the band center wavelengths.

4.1 Theoretical Foundation

To interpret the radiance measurements made by the TOMS instrument requires an understanding of how the Earth's

atmosphere scatters ultraviolet radiation as a function of solar zenith angle. Incoming solar radiation undergoes

absorption and scattering in the atmosphere by atmospheric constituents such as ozone and aerosols and by Rayleigh

scattering. Radiation that penetrates to the troposphere is scattered by clouds and aerosols, and radiation that reaches

the ground is scattered by surfaces of widely varying reflectivity.

The backscattered radiance at a given wavelength depends, in principle, upon the entire ozone profile from the top of

the atmosphere to the surface. The three shortest wavelengths used in the TOMS ozone measurements were selected

because they are strongly absorbed by ozone. At these wavelengths, absorption by other atmospheric components is

negligible compared to that by o_one.

At all of the TOMS wavelengths, the backscattered radiance consists primarily of solar radiation that penetrates the

stratosphere and is reflected back by the dense tropospheric air, clouds, aerosols, and the Earth's surface. The

intensity is determined primarily by the total optical depth above the scattering layer in the troposphere. The amount

of ozone below the scattering layer is small and can be estimated with sufficient accuracy to permit derivation of total

column ozone. Because most of the ozone is in the stratosphere, the principal effect of atmospheric ozone at these
wavelengths is to attenuate both the solar flux going to the troposphere and the component reflected back to the
satellite.

Derivation of atmospheric ozone content from measurements of the backscattered radiances requires a treatment of

the reflection from the Earth's surface and of the scattering by clouds and other aerosols. These processes are not

isotropic; the amount of light scattered or reflected from a given scene to the satellite depends on both the solar zenith

angle and view angle, the angle between the scene and the nadir as seen at the satellite.

Earlier TOMS algorithms, previous to the current version 7 algorithm, were based on the treatment of Dave (1978),

who represented the contribution of clouds and aerosols to the backscattered intensity by assuming that radiation is
reflected from a particular pressure level called the "scene pressure," with a Lambert-equivalent "scene reflectivity"

R. When this method was applied, at the non-ozone-absorbing wavelengths the resulting reflectivity exhibited a

wavelength dependence correlated with partially clouded scenes. To remove this wavelength dependence, a new

treatment has been developed, based on a simple physical model that assumes two separate reflecting surfaces, one

representing the ground and the other representing clouds. The fractional contribution of each to the reflectivity is

obtained by comparing the measured radiances with the values calculated for pure ground and pure cloud origin.

The calculation of radiances at each pressure level follows the formulation of Dave (1964). A spherical correction for

the incident beam has been incorporated, and Version 7 treats molecular anisotropy (Ahmad and Bhartia, 1995).

Consider an atmosphere bounded below by a Lambertian reflecting surface of reflectivity R. The backscattered

radiance emerging from the top of the atmosphere as seen by a TOMS instrument, Ira, is the sum of purely

atmospheric backscatter Ia, and reflection of the incident radiation from the reflecting surface Is,

where

lm(_,, O, 0O, _, PO' R) = la(k, O, 0 O, ¢, _, PO) + Is(k, O, 0 O, (_, _, PO' R) (4)

k = wavelength,

0 = satellite zenith angle, as seen from the ground,
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00 - solarzenithangle,
- azimuthangle,
- column ozone amount,

Po " pressure at the reflecting surface, and

R _ effective reflectivity at the reflecting surface.

The surface reflection term can be expressed as follows:

where

Is( _.,0, 00, _, P0' R) =
RT(_.,O, 0 0, D, P0)

1 - RSb(_.,_, PO)
and (5)

where

T(_.,0, 0 0, _, P0 ) - Id(k,0, O0, _, P0 ) f(k,O, _, P0) (6)

Sb - fraction of radiation reflected from surface that atmosphere t effects back to surface,
Id - total amount of direct and diffuse radiation reaching surface at P0,
f - fraction of radiation reflected toward satellite in direction 0 that reaches satellite,

and the other symbols have the same meaning as before. The denominator of Equation 5 accounts for multiple
reflections between the ground and the atmosphere.

The intensity of radiation as it passes through a region where it is absorbed and scattered can be described in general

terms as having a dependence I o, exp(-x). For a simplified case, where ill processes can be treated as absorption, the

optical depth x depends on the number of absorbers n in a column and the absorption efficiency a of the absorbers;

that is, I 0_exp(-na). The column number should thus scale approxima :ely as -log I. The ozone algorithm therefore
uses ratio of radiance to irradiance in the form of the N-value, defined a_; follows:

N _ -100 lOgl0 _ .

The N-value provides a unit for backscattered radiance that has a scaling comparable to the column ozone; the factor

of 100 is to produce a convenient numerical range. (This same definiticn is used in the derivation of ozone from the

ground-based Dobson and Brewer networks).

The basic approach of the algorithm is to use a radiative transfer mo:lel to calculate the N-values that should be

measured for different ozone amounts, given the location of the measurement, viewing conditions, and surface

properties, and then to find the column ozone that yields the measured N-values. In practical application, rather than

calculate N-values separately for each scene, detailed calculations are performed for a grid of total column ozone

amounts, vertical distributions of ozone, solar and satellite zenith angles, and two choices of pressure at the reflecting

surface. The calculated N-value for a given scene is then obtained b ¢ interpolation in this grid of theoretical N-
values.

The ozone derivation is a two-step process. In the first step, an initial es imate is derived using the difference between

N-values at a pair of wavelengths; one wavelength is significantly abscrbed by ozone, and the other is insensitive to

ozone. Use of a difference provides a retrieval insensitive to wavelengt a-independent errors, in particular, any in the

zero-point calibration of the instrument. In deriving the initial estimate, the same pair is always used.

In the second step, N-values are calculated using this ozone estimate. In general, these calculated values will not

equal the measured N-values. The differences, in the sense Nmeas-Ncalc, are called the residues. Using the residues at

a properly chosen triplet of wavelengths, it is possible to simultaneously solve for a correction to the original ozone

estimate and for an additional contribution to the radiances that is linear with wavelength, arising primarily from
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wavelengthdependencein thesurfacereflectivitybutalsopossiblyoriginating in the instrument calibration. The

triplet consists of two pair wavelengths, as described above, plus 360 nm, which is insensitive to ozone. The pair

wavelengths used are those most sensitive to ozone at the optical path length of the measurement. The separation of
the 360-nm wavelength from the pair wavelengths is far larger than the separation between the pairs; thus, the 360-nm

measurement provides a long baseline for deriving wavelength dependence. This process may be iterated, using the

results of the first triplet calculation as the new initial estimate. Table 4.1 lists the wavelengths of the pairs and triplets.

Table 4.1. Pair/Triplet Wavelengths

Pair/Triplet Ozone Sensitive Ozone Insensitive

Designation Wavelength (nm) Wavelength (nm)
Reflectivity Range of Application

Wavelength (nm) (optical path s)

A 312.6 331.3 360.4 1 > s

B 317.6 331.3 360.4 3 > s > 1

C 322.4 331.3 360.4 s > 3

4.2 Calculation of Radiances

To carry out the calculation described in Section 4.1 requires the following information:

• Ozone absorption coefficients as a function of temperature for the wavelengths in the TOMS bandpasses.
• Atmospheric Rayleigh scattering coefficients.

• Climatological temperature profiles.

• Climatological ozone profiles.

• Solar zenith angle.

• Satellite zenith angle at the IFOV.

• Angle between the solar vector and the TOMS scan plane at the IFOV.
• Pressure at the reflecting surface.

Because of the its finite bandwidth, TOMS does not measure a monochromatic radiance. For comparison with the

TOMS measurements, radiances are calculated at approximately 0.05-nm intervals across each of the TOMS slits,

using the appropriate absorption coefficient and temperature dependence (Paur and Bass, 1985) for each wavelength.
The I/F for the entire band, A(L0), is then given by the following expression:

A(kO) = f A(k )F(k )S(_ )d_./ f F(_.)S(_.)d_. (8)

where

A(_.)

F(k )

I(_.)

s(z)

= l(k----2)at wavelength k,
F(_.)

= solar flux at wavelength _.,

= earth radiance at wavelength k, and

= Instrument response function at wavelength k.

The wavelength dependence of the solar flux is based on SOLSTICE measurements (Woods et al., 1996). This
detailed calculation replaces the effective absorption coefficients used in Version 6.

Table 4.2 shows effective absorption coefficients for the EP/TOMS wavelengths. As discussed above, effective

absorption coefficients are not used in the Version 7 algorithm. The same method of calculation was used as in

Version 6, integrating the monochromatic laboratory values over the TOMS bandpass for the following conditions: a

mid-latitude profile for _ = 350, a path length of 2.5, and a wavelength-independent solar flux. These effective

absorption coefficients are given in Table 4.2. Because the effective absorption coefficient depends on the ozone
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profile, optical path length, and solar flux spectrum, the Version 7 technique of calculating I/F at individual

wavelengths and then integrating over the TOMS bandpass eliminates tte imprecision arising from using one set of

effective absorption coefficients, derived for a particular set of conditions, for all calculations. Table 4.2 also contains

the Rayleigh scattering coefficients and the regression equations used for the temperature dependence of the ozone
coefficients. The values shown in the table are purely to illustrate the magnitude of the change; they have not been

used in the algorithm.

Table 4.2. Effective Absorption and Scattenng Coefficients

Effective Ozone

Vacuum Wavelength Absorption Coefficient Temperature _pendence
(nm) (atm-cm -l) at 0°C Coefficients

(Co) C_ C2

308.65 3.23 7.89 x 10 -j 3.79 x l0 -5

312.56 1.83 6.10 x 10 -3 3.15 x 10-5

317.57 0.973 3.59 x 10 -3 2.11 x 10 -5

322.37 0.536 2.08 x 10 -3 1.21 x 10 -5

331.29 0.165 9.10 x 10 -4 4.94 x 10 -6

360.40 < 10 -8 - -

Correction to ozone absorption for temperature:

Ozone absorption - C o + C_T + C2T 2

(where T is in degrees C)

Rayleigh Scattering
Coefficient (atm'l)

1.077

1.020

0.953

0.894

0.795

0.557

Ozone and temperature profiles were constructed using a climatology based on SBUV measurements above 15 km
and on balloon ozonesonde measurements (Klenk et al., 1983) for lower altitudes. Each standard profile represents a

yearly average for a given total ozone and latitude. Profiles have bet_n constructed for three latitude bands: low
latitude (15 degrees), mid-latitude (45 degrees), and high latitude (75 d ;grees). There are 6 profiles at low latitudes

and 10 profiles each at middle and high latitudes, for a total of 26. Thesq _profiles cover a range of 225-475 D.Us. for
low latitudes and 125-575 for middle and high latitudes, in steps of 50 l).Us. The profiles are given in Appendix A.

Differences between these assumed climatological ozone profiles and -',he actual ozone profile can lead to errors in

derived total ozone at very high solar zenith angles. The longer wavelength triplets are used at high path lengths

because they are much less sensitive to profile shape effects. The differential impact of the profile shape error at the
different wavelengths indicates, however, that profile shape information s present in the TOMS measurements at high

solar zenith angles. An interpolation procedure has been developed to extract this information (Wellemeyer et al.,

1997), and implement it in the Version 7 algorithm.

To use the new Version 7 ozone profile weighting scheme for high path lengths, it was necessary to extend the

standard profiles beyond the available climatology. To minimize the use of extrapolation in this process, profile

shapes were derived by applying a Principal Component Analysis to a separate ozone profile climatology derived

from SAGE II (Chu et al., 1989) and balloon measurements to derive Empirical Orthogonal Functions (EOFs). The

EOFs corresponding to the two largest eigenvalues represented more t_ an 90 percent of the variance. The EOF with

the greatest contribution to the variance was associated with variation i_ total ozone. The second most important EOF

was associated with the height of the ozone maximum and correlated w_ 11with latitude, showing a lower maximum at

higher latitude. This correlation was used as the basis for lowering the leights of the ozone maxima at high latitudes

and raising them in the tropics when extending the original climatolog) to represent the more extreme profile shapes

(Wellemeyer et al., 1997).

Given the wavelength, total ozone and ozone profile, surface pressure, satellite zenith angle at the field of view, and

solar zenith angle, the quantities Im, Ia, T, and Sb of Equations 4 and 5 can then be calculated at the six TOMS

wavelengths. For the tables used in the algorithm, these terms are computed at the TOMS wavelengths for all 26

standard profiles and two reflecting surface pressure levels (1.0 atm and 0.4 atm). For each of these cases, Im, Ia, T are
calculated for 10 choices of solar zenith angle from 0-88 degrees, spa_:ed with a coarser grid at lower zenith angles
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and a finer grid for higher zenith angles, and for six choices of satellite zenith angle, five equally spaced from 0-60

degrees and one at 70 degrees. In Version 6, the tables extended only to a satellite zenith angle of 63.3 degrees. The

fraction of reflected radiation scattered back to the surface, Sb, does not depend on solar or satellite zenith angle.

4.3 Surface Reflection

To calculate the radiances for deriving ozone from a given measurement requires that the height and reflectivity of the

reflecting surface be known. The TOMS algorithm assumes that reflected radiation can come from two levels, ground

and cloud. The average ground terrain heights are from the National Oceanic and Atmospheric Administration

(NOAA) National Meteorological Center (NMC), provided in km for a 0.5-degree x 0.5-degree latitude and longitude

grid. These heights are converted to units of pressure using a U.S. Standard Atmosphere (ESSA, 1966) and

interpolated to the TOMS IFOVs to establish the pressure at the Earth's surface. Probabilities of snow/ice cover from

around the globe are collected by the Air Force Global Weather Center and mapped on a polar stereographic

projection. These data have been averaged to provide a monthly snow/ice climatology mapped onto a 1-degree x 1-

degree latitude and longitude grid and used to determine the presence or absence of snow in the TOMS IFOV. If the

probability is 50 percent or greater, snow/ice is assumed to be present. For cloud heights, a climatology based upon
the International Satellite Cloud Climatology Project (ISCCP) data set is used. It consists of the climatological

monthly averages over a 0.5 x 0.5-degree latitude-longitude grid. The impact of the use of this climatology on the
TOMS derived ozone is discussed in Hsu et al., 1997.

Reflectivity is determined from the measurements at 360 nm. For a given TOMS measurement, the first step is to

determine calculated radiances at 360 nm for reflection off the ground and reflection from cloud, based on the tables

of calculated 360-nm radiances. For reflection from the ground, the terrain height pressure is used, and the reflectivity

is assumed to be 0.08. For cloud radiances, a pressure corresponding to the cloud height from the ISCCP-based

climatology is used, and the refleetivity is assumed to be 0.80. The ground and cloud radiances are then compared

with the measured radiance. If Iground < Imeasured < Icloud, and snow/ice is assumed not to be present, an effective
cloud fractionfis derived using

I -1
f_, measured ground (9)

Iclou d- Igroun d

If snow/ice is assumed to be present, then the value off is divided by 2, based on the assumption that there is a 50-50

chance that the high reflectivity arises from cloud. The decrease in fmeans that there is a smaller contribution from

cloud and a higher contribution from ground with a high reflectivity off snow and ice. Equation 9 is solved for a

revised value of Iground, and the ground reflectivity is calculated from Equation 5. For the ozone retrieval, the
calculated radiances are determined assuming that a fraction f of the reflected radiance comes from cloud with

reflectivity 0.80, and a fraction l-f from the ground, with reflectivity 0.08 when snow/ice is absent and with the

recalculated reftectivity when snow/ice is present. An effective reflectivity is derived from the cloud fraction using the
following expression:

R _, Rg(l -f) + Rcf (10)

where Rg is 0.08 when snow/ice cover is assumed absent and has the recalculated value when it is assumed present,
This reflectivity is included in the TOMS data products but plays no role in the retrieval.

If the measured radiance is less than the ground radiance, then the radiation is considered to be entirely from surface

terrain with a reflectivity less than 0.08. Equations 4 and 5 can be combined to yield:

I-I

R - a . (11)
T +Sb(l - la)
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ThegroundreflectivitycanbederivedusinganIaobtainedassuminggroundconditions.Similarly,if themeasured
radianceisgreaterthanthecloudradiance,whensnow/iceareabsent,thereflectedradianceisassumedtobeentirely
fromcloudwithreflectivitygreaterthan0.80,andanIaderivedusingthecloudconditionsisusedinEquation11to
derivetheeffectivereflectivity.If snow/icearepresent,thecloudandpoundareassumedtocontributeequallytoIf,
at360nm.Equation11canthenbeusedtocalculatenewvaluesof bothgroundandcloudreflectivitiesfromthese
radiances.Radiancesattheshorterwavelengthsarecalculatedusingthesereflectivitiesandavalueof0.5forf.

4.4 Initial B-Pair Estimate

The initial ozone is calculated using the B-pair, which provides _,,ood ozone values over the largest range of

conditions of any of the pairs.

The first step is to calculate radiances for the conditions of the measurement--geometry, latitude, cloud and terrain

height, and cloud fraction. For each ozone value in the table, radiances are calculated for the 1.0 atm and 0.4 atm

levels, using ground reflectivity and the values of Ia, T, and S b from the tables for the geometry of the measurement
and a single ozone profile--the low latitude profile for measurements at latitudes 15 degrees and lower, the mid-

latitude profile for 15 degrees < latitude < 60 degrees, and the high latitude profile at latitudes higher than 60 degrees.

These radiances are then corrected for rotational Raman scattering (the Ring effect). The correction factors, based on

the results of Joiner et al., (1995), are shown in Table 4.3. They we:e computed using a solar zenith angle of 45

degrees and a nadir scan. The dependences on solar and scan angles, which are small under most conditions, are

neglected. Two sets were calculated, one at 1 atm and the assumed 8 percent ground reflectivity for use with the l-atm

radiance tables and the other at 0.4 atm and the assumed 80 percent clt_ud reflectivity for use with the 0.4-arm tables.
This correction greatly reduces the biases that had been seen between ozone values.

Table 4.3. Rotational Raman Scatterir g Corrections

Actual Wavelength (nm)

Radiance Correction (%)

Pressure _- 1.0 atni Pressure = 0.4 atm

Reflectivity = 8% Reflectivity = 80%

308.65 --0.295 -0.167

312.56 0.17 0.006

317.57 --0.598 -0.311

322.37 0.126 0.056

331.29 0.310 0.139

360.40 -0.430 --0.175

The ground radiance is then derived by interpolating between values f__r the two pressures to derive the radiance for

the pressure at the terrain height from the grid. A similar process i', carded out for both pressures using cloud

reflectivity, and the cloud radiance is derived by linear interpolation for the pressure level at the height given by the
ISCCP cloud height climatology. Finally, the appropriate fractions ol ground and cloud radiances, determined as

described in Section 4.3, are added to yield I/F for all ozone values. These results are then converted to N-values.

The next step is to compare the measured radiance with the calculate d radiance. The two tabulated ozone values

whose calculated B-pair N-value differences bracket the measured N-_ alue difference are identified in the table. A

climatological ozone amount below the terrain pressure level is subtr _cted from these two bracketing table ozone

values, and the initial ozone estimate is derived by linearly interpolating between the two resultant values, using the
measured N-value and the two calculated N-values.

4.5 Best Ozone

Once an initial estimate of ozone has been obtained, it is used to calculate N-values at all TOMS wavelengths in the

way described in Section 4.2, applying the rotational Raman scattering correction described in Section 4.4. N-values

are calculated for each measurement, using one profile or two, depending upon the latitude. For latitude _<15 degrees,

only the low latitude profiles are used, for 15 degrees< latitudes < 45 defrees, one set each is calculated using low and
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middlelatitudeprofiles,for 45degrees<latitudes< 75 degrees, N-values are calculated using middle and high

latitude profiles; and for latitude > 75 degrees, only N-values for high latitude profiles are calculated. Values of dN/

d_ are calculated, as well.

In general, these calculated N-values will not equal the measured N-values. In the derivation of the initial ozone
estimate, reflectivity is assumed to be independent of wavelength, but for some surface conditions, such as sea glint,

desert dust, or ice, the reflectivity will be wavelength dependent. In addition, residual errors in the instrument

calibration can produce a wavelength dependent artifact in the measured N-value. Because of these effects on the

spectrum of backscattered radiation and because of the simplifications used in its derivation, the initial ozone estimate

will not be equal to the true ozone value. This error in ozone will also contribute to the discrepancy between the

measured N-value N m and the value N O calculated from the initial ozone estimate. The initial ozone estimate should,

however, be sufficiently close to the true value to derive a correction using a first order Taylor expansion in the

difference. The wavelength-dependent contribution from factors other than ozone, such as reflectivity and residual
errors in the instrument characterization, is assumed to be a linear function of wavelength, a + bk. Then,

dN)+ a + b?_. (12)Nm=No +(_-_O) d-_ 0

Let

r_ = (N m -N0)z. be the residue at wavelength k, and

dN) be the sensitivity at wavelength k.s_ = _-fi_

Equation 17 becomes:

r_. = s_(g2 - _0 ) + a + b_.. (13)

The radiation at 360 nm is insensitive to ozone, and therefore s360 = 0. Further, since the reflectivity was derived at

360 nm, the residue is zero at that wavelength. Substituting into Equation 13 and solving yields:

a = -360b (14)

and therefore, for the ozone-sensitive wavelengths,

rk = sk(_ - f_0 ) + b(k - 360). (15)

There are two unknowns, f_ and b. Let Ak = k-360. Using measurements at two wavelengths, labeled k I and k 2, it is

possible to solve for _:

rlA_. 2 - r2A_ 1

=_0 + SlA_.2-s2AX 1"
(16)

Equation 16 is the form in which the algorithm applies the correction. Ozone values are derived for each of the two

profiles selected.

Another form of this equation is:

Ak 2 r 1 -Sl(_-_ O)
m

Ak 1 r2- s2(_2- f_0)"
(17)

This form illustrates how the correction is equivalent to assuming that the size of that part of the residual not arising

from ozone error is linear with wavelength.
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ThissituationisillustratedinFigure4.1,whichshowsthemodesof heequatorialdistributionsof residues at each

channel as a function of wavelength. These modal residues represent a huge population, but they serve to illustrate

concepts applicable to individual retrievals as well. Because the A-triplet is used exclusively at path lengths

encountered in the tropics, the modal residues at 313, 331, and 360 nm are co-linear.
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Figure 4.1. Modes of Equatorial Distributions of Residues for Each of the EP TOMS Channels as a Function of

Wavelength. Residues are reported on the Level-2 product in units of N-value. A difference of 1 N-value is equal to
2.31%.

The A-triplet residue can be defined as:

l - 360
r'x = rx + 331 - 360 r331" (18)

The modal A-triplet residues for the 309, 318, and 322 nm channels are equal to their vertical displacement from the

A-triplet line in Figure 4.1. These non-zero triplet residues indicate some residual wavelength dependent
inconsistency in the measurement system. This may be due to calibration error, some systematic error in the

atmospheric radiation transfer model used in the retrieval, or systerratic wavelength dependence in the effective

surface reflectivity at the bottom of the atmosphere. As discussed in Se :tion 3.2.2, calibration adjustments have been

made to remove the modal A-triplet residues. This is intended to re nove the systematic offset that would occur

between A-triplet ozone and B-triplet or C-triplet ozone. It also serves :o normalize the triplet residues for use in the

profile mixing scheme described below. As discussed in Section 3.2.2, t lese initial adjustments were derived based on

a limited population. Figure 4.1 is based on the first 1.5 years of data, so it represents the residual uncertainty in the

current archive dataset which is less than 1% in ozone. It also serves to illustrate the concept of A-triplet residue. Note

that similar definitions of B-triplet residue and C-triplet residue can he constructed relative to total ozone derived

using these triplets as well.

For retrievals at latitudes where two profiles are used, an ozone value appropriate to the latitude of the measurement is

then derived from the ozone values for the two profiles, using an equati _n of the following form:

f_ = (1 - f prof)g21ower + f prof£;higher (19)

where

f_

f_lower

_-/higher

fprof

= best ozone,

= ozone retrieved using lower latitude profile,

= ozone retrieved using higher latitude profile, and

= weight given to higher latitude profile.
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Thus,fprofwillbe0if onlythelowerlatitudeprofileisselected,1if onlythehigherlatitudeprofileisselected,andin
betweenforacombinationofthetwoprofiles.Thechoiceof pairsandfprofdependsupontheopticalpathlength
_0(sec00+sec0),inatm-cm.

Forpathlengthslessthan1.5,avalueoffprofobtainedbysimplelinearinterpolationinlatitude,

[latitudel - [latitudel lower

f prof = Ilatitudelhighe r_ [latitudellower
(20)

is used for latitudes between 15 and 75 degrees using the two profiles appropriate to the latitude. The low latitude

profile alone is used from the equator to 15 degrees, and the high latitude profile alone is used from 75 degrees to the

pole. For a path length less than or equal to 1.0, the A-triplet wavelengths are used in Equation 16; for a path length

greater than 1 and no greater than 1.5, the B-triplet is used with the same latitude interpolation.

For longer path lengths, the profile mixing scheme mentioned above in Section 4.2 is used to determine the profile

mixing factor, fprof. The basic principle is to improve the triplet ozone using profile shape information in the triplet
residue of a shorter wavelength to determine the profile mixing factor defining a linear combination of the standard

profiles that best explains the radiances at all four wavelengths. This profile mixing factor is defined as:

r'(lower)

f prof -- r'(lower)- r'(higher)
(21)

where lower and higher refer to latitudes of the two profiles used and r" refers to the B-triplet residue for the 313 nm

channel for 1.5 < s < 3.0 and to the C-triplet residue at the 318 nm channel for s _>3. In most cases, the appropriate

profile will be between the higher and lower latitude profiles, and the residues will be of opposite sign; thus the

denominator represents a distance between the residues (or sensitivity to profile shape) and the numerator a fraction

of this distance. When the low- and mid-latitude profiles are used, if the derived value of fprof is greater than 1, the

process is repeated using the mid- and high-latitude profiles; similarly, if fprof < 0 when using mid- and high-latitude
profiles, the process is repeated using the low- and mid-latitude profiles.

The final step is to estimate the amount of the derived ozone that is beneath clouds. Estimates of the ozone hmount

under the cloud level pressure level are obtained for each of the two latitude profiles used to derive Best Ozone and
the two tabulated ozone values on either side of the derived Best Ozone. The column ozone beneath cloud is then

derived by interpolating in ozone and using fprof tO weight the latitudes. Finally, this ozone amount is multiplied by
the cloud fraction f to derive the ozone in a particular field of view that is under cloud. The sensitivities are calculated

from the sensitivities for the two profiles using the same weighting as for ozone.

4.6 Validity Checks

The algorithm contains several validity checks for maintaining data quality. Before measured radiances are accepted

for use in ozone determination, the solar zenith angle, satellite attitude, and instrument status are checked to ensure

the suitability of the radiances and other geophysical input to the algorithm. This section describes the quality checks

performed to identify invalid and lower quality ozone values caused either by bad input data that passed

preprocessing checks or by limitations of the ozone algorithm. It also explains the significance of the error flags that
are set.

The principal tool used to investigate the validity and quality of a total ozone value is the set of residues. The residues

measure how well radiances calculated based on the ozone derived using one set of wavelengths match the radiances

measured at the other wavelengths. The usual significance of a large residue is that the atmospheric or surface

conditions deviate significantly from those assumed in the algorithm, for example, if reflectivity has a non-linear

dependence on wavelength. The final triplet residues for wavelengths used in the retrieval will be zero.
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Thefirstcheckisofallthenon-zeroresidues;if anyisgreaterthan1'.;.5inunitsof N-value, the error flag is set to 5.

This condition usually arises when problems in the data stream lead t 3 incorrect values for the measured radiance or

when the atmospheric conditions are so unusual that the assumptions u _ed in the calculation of radiances do not hold.

Data that pass flag 5 are checked for sulfur dioxide contamination. The SO 2 index (SOl) is defined by the following

equation:

r= SOl[ dd(_02)]+ A_(d_-_-]+ b()_-360). (22)

This equation is formulated in the same way as Equation 13, the basic equation for the ozone correction, with an

additional term for sulfur dioxide contamination. The physical interpretation is that the mismatch between calculated

and measured radiance has a component due to SO 2 in addition to the components due to ozone error, wavelength-

dependent reflectivity, and residual calibration error accounted for in _luation 15. Using three wavelengths provides

three equations, which can be solved for SOl as a function of the resicues, the sensitivities, and the wavelengths. The

algorithm uses the residues at 317 nm, 322 nm, and 331 nm. The 317_-nm wavelength is not used because it is more

affected by aerosols. If the SOl is greater than 12.5, the error fla_ is set to 4. Since the triplet residues at the

wavelengths used to derive the SOl are all zero when the C-triplet is i_sed to derive ozone with the B-triplet to select

the profile, SOI is not evaluated for path lengths greater than 3; the output data set will contain a fill value. SO 2-

contaminated data will still be likely to be flagged by the remaining rcsidue tests, but the presence of SO 2 will not be
identified.

In principle, Equation 22 could be used to simultaneously solve for ozone and SOI. However, the wavelengths best

for ozone determination at a given path length are not necessarily the best for SOI determination. The more

complicated expression for ozone that would result would significantly increase the computer time required, and the

accuracy of the "corrected" ozone would likely be poor. For further information about SO 2 derived from TOMS
measurements, see Krueger et al., 1995 and 1998, Schaefer et al., 199", and Krotkov et al., 1997.

The next check assesses triplet consistency. If a single triplet is usec, the triplet residue defined in Equation 18 is

checked for the ozone-sensitive wavelength not used in the ozone det_ rmination: 317 nm in the case of the A-triplet,

and 312 nm for the B-triplet. The maximum residues allowed, in N-v:due units, are 1.1 at 317 nm when an A-triplet

determination is checked and 0.9 at 312 nm when a B-triplet determination is checked. If a second triplet is used to

determine the profile, then the requirement is that a value of fprof can be found such that 0.5 _< fprof -< 3.5. Values of

fprof outside this limit require such a degree of extrapolation that the profile is not considered highly reliable. If the
data fail the relevant test, the error flag is set to 3. The next check uses :he 33 l-nm residue. If this residue exceeds 4 in

N-value units, the error flag is set to 2. Flag values of 3 or 2 resulting _rom large residues imply that the values of I/F

may be inconsistent with the assumption that the linear correction can be used.

For solar zenith angles greater than 84 degrees, the algorithm loses accuracy. Most retrievals must make use of the C-

triplet, which is not highly sensitive to ozone. In addition, the condit ons depart from those for which the radiative

transfer code was designed, in particular the extreme geometry (Caudill et al., 1997). For this case, the error flag is set

to 1. Finally, the value 10 is added to the flag value for the data that are taken in polar summer on the descending

(north to south) part of the orbit. While all flagged ozone values appear on the Level-2 data sets, only ozone values

with the flag set to 0 for a good retrieval from the ascending part of th,', orbit are used to derive the gridded means of
Level-3.
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Table4.4summarizestheerrorflags,whentheyareset,andtheirsignificance.

Table4.4.ErrorFlags

Flag Criterion Significance
0 Nootherflagset
1 Solarzenithangle>84°
2 r(331)> 4(N-value)
3 rtrip(317)> 1.1(N-value)

(ifA-tripletaloneused)
rtrip(312)> 0.9(N-value)
(if B-tripletaloneused)

fprof<-0.5orfprof>3.5
(profileselection)

4 SOl> 24
5 anyresidue> 12.5

÷10 Descendingorbit

Goodvalue
Algorithmlessaccurate
Linearcorrectioninadequate
Linearcorrectioninadequate

AnomalousProfile

Sulfurdioxidecontamination
Unusualatmosphericconditionsor
datastreamproblems
Datatakenduringdescending(northto
south)portionoforbit.

4.7 Level 3 Gridding Algorithm

The level-3 gridding algorithm is used to combine the orbital TOMS measurements into a daily map product with a

fixed global grid. The grid used is 1 degree in latitude by 1.25 degrees longitude over the entire globe. Only high

quality level-2 data with a quality flag of zero as defined in Table 4.4 are included in the cell averages.

The cell averages are computed as weighted averages of TOMS parameters derived for IFOVs that overlay the given

cell. For this purpose, a simple rectangular model is used for the actual TOMS IFOV, which is illustrated in Figure

2.1. The area of overlap between the rectangular IFOV and a given cell is used to weight its contribution to the given

grid cell average. A single TOMS IFOV can contribute weight to more than one cell average within a single l degree
latitude band. Contributions outside the latitude band are ignored as a simplification of the calculation. The

dimensions of the model IFOV vary from 26 km x 26 km at nadir to 45 km x 80 km at the extreme off-nadir for the

low 500 km orbit period, and from 38 km x38 km at nadir to 70 km x140 km at the extreme off-nadir during the high

750 km orbit period after December 12, 1996.

At higher latitudes where orbital overlap occurs, the orbit that provides the best view of a given cell is used. In

practice, cell averages are computed separately for each TOMS orbit, and the one with the shortest average path index

is selected. The path index is calculated as sec(00) + 2sec(0), where 00 and 0 are the solar zenith and spacecraft zenith

angles respectively, defined at the IFOV. This index is designed to place more importance on the spacecraft zenith

angle than on solar zenith angle relative to the proper calculation of geometric path (sec(00) + sec(0)).

The TOMS level-3 product is non-synoptic. The Western Pacific is measured near the beginning of the GMT day, and
the Eastern Pacific is measured near the end of the GMT day. There is a 24-hour discontinuity in the data at 180 th

meridian. Individual TOMS IFOVs are sorted into different days across the 180 th meridian to ensure that this is the

only place where such a time discontinuity occurs.

TOMS level-3 products are archived at the Goddard DAAC in Hierarchical Data Format as described in Section 7.1.2.

The derived total ozone and effective surface reflectivity are available in this form. The TOMS near real-time level-3

products are available via anonymous ftp in their native format, which is described in Section 7.2.2.
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5.0 GENERAL UNCERTAINTIES

There are three areas in which uncertainties can be introduced into the ozone derived from TOMS: the accuracy and

precision of the measurements, the value of the radiances calculated #om the radiative transfer model, and the

process of comparing the measured and calculated radiances to derive ozone. In each of these areas, errors of three

kinds are possible: random errors, time-invariant systematic errors, and time-dependent systematic errors.

Table 5.1 summarizes the estimated uncertainties in the retrieved Earth ]'robe ozone. They are organized by kind of

error rather than by where they originate in the ozone retrieval process. This organization makes it clearer how the

errors are to be combined to derive a total error for the retrieval. However, the following discussion will be organized

by where the error arises in the retrieval process, to clarify the relationship between the individual uncertainties and

how they arise.

It is important to recognize that the use of a single number to describe the uncertainty from any source is an
oversimplification. In all cases, the uncertainty in total ozone depends upon the wavelengths used in determining

ozone, the uncertainty in the measurement at those wavelengths, and the _ensitivity of the retrieved ozone to a change

in the value of I/F at that wavelength. In addition, the error from a partic alar source will depend on the conditions of

measurement, with values higher than the usual values under certain conditions. The entries in Table 5.1 represent

values for the most common conditions. Some cases where the uncertain :y may differ significantly from the values in
the table are noted.

Table 5.1. Errors in Retrieved TOMS Ozone

Source Error (%)

Random--not applicable to long-term change
(typical values--may be larger in winter months
or under disturbed atmospheric conditions)
Instrument noise
Instrument characterization

Atmospheric temperature
Retrieval error

Tropospheric ozone
Net (Root sum of squares)

Time Invariant
Rayleigh scattering
Ozone absorption cross-section
Wavelength calibration
Radiometric calibration
Retrieval error
Net (Root sum of squares)

Time Dependent (over first year)
Radiometric calibration

Wavelength calibration
Atmospheric temperature
Tropospheric ozone

0.3
0.3

1
1"

1.5
2.0

<0.5
< 2"*

1
<1
<1

3

<0.5
<0.25

0.16/°K

).05/percent change

May be 5 percent or higher at very high solar zenith angles.
**Value for comparisons with non-UV instruments or UV measurement., evaluated using different ozone absorption

cross-sections.

5.1 Accuracy and Precision of TOMS Measurements

There are three separate components to determining the accuracy and p)ecision of the normalized radiances that are

used in the total ozone retrieval from TOMS. First is the precision of th_ radiances, which is governed by instrument

noise and by the digitization of the TOMS output. These factors product: random errors in the value that is given for

measured radiance. The second is the initial laboratory calibration. An error in the absolute radiometric calibration

or in the wavelength calibration may lead to a time invariant, systematic zero-point error or bias in the retrieved
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ozone.Thethirdispossiblechangeswithtimeintheinstrumentsensitivity.Anerrorheremaycauseadriftwithtime
ofthederivedtotalozonevalues.

Instrumentnoisehasbeenreducedin thenewTOMSinstrumentsanddoes not contribute significantly to errors in

derived ozone. The total random instrumental error is 0.3 percent. This error is the first entry under random errors in

Table 5.1. As discussed in Section 3.2.3, uncertainty in near real-time fitting of newly acquired solar data leads to a

small short-term precision error. It is labelled instrument characterization in Table 5.1.

The uncertainty of the initial radiometric calibration of EP/TOMS is less than I percent in derived total ozone.

Uncertainties in the radiometric calibration at individual wavelengths may be somewhat larger than this, but since the

ozone is derived using wavelength triplets, the impact on derived ozone remains small.

Errors in the instrument wavelength scale also can generate uncertainties in the retrieved ozone. The radiances that

are calculated for comparison with measurements must be derived for the wavelengths and slit sensitivity of the

TOMS instrument. If there is an error in the wavelengths assumed, then the calculated radiances will not be the same

as those actually measured by the TOMS instrument, leading to an error in the retrieved ozone. Other than the 0.3 nm

error at 360 nm discussed in Section 3.2.1, it is estimated that the initial TOMS wavelength calibration is known to

_+0.03-nm accuracy. This uncertainty plus the 360 nm error correspond to a possible systematic error of about 1

percent in derived ozone, constant with time.

A wavelength calibration drift could produce a time-dependent error in ozone. As noted in Section 3.3, the

wavelength calibration drifted by less than 0.02 nm over the first 1.5 years of the EP/TOMS data record,

corresponding to a possible drift of less than 0.25 percent in ozone. The upper limit to the possible change appears on

the second line under the time-dependent changes of Table 5.1.

The uncertainty in the time dependence of the radiometric calibration is estimated to be less than 0.5 percent in

ozone. This uncertainty is relatively small because of the low solar exposure of the Earth Probe Working diffuser.

Much of the uncertainty arises from the solar signal characterization. This situation is illustrated in Figure 3.1 by the

fit of the A-triplet wavelengths. It is the uncertainty in the determination of the wavelength dependent calibration that
is critical to the TOMS total ozone determination.

5.2 Calculated Radiances and Their Use in the Algorithm

Errors in the calculation of radiances have two principal origins: in the physical quantities whose values are obtained

from laboratory physics and in the atmospheric properties assumed for the radiative transfer calculations. Calculation

of radiative transfer through the atmosphere requires values for the ozone absorption and Rayleigh scattering

coefficients. The values used in the algorithm are obtained from laboratory measurements. Any error in the laboratory

values will propagate through the algorithm to produce a systematic error in the derived ozone. The first two lines in

the time-invariant error group of Table 5.1 show the effect of the uncertainties in these quantities on derived ozone. In

addition, the absorptivity of ozone is a function of the temperature. The calculated radiances are based upon

climatological temperature profiles (Appendix A). However, if the temperature structure departs from the

climatology, the absorption coefficient may change from that assumed in the algorithm, producing an error in

retrieved ozone. The size of this error is shown in the second line of the random error group.

The third random error component listed in Table 5.1, called retrieval error, arises from variations of the properties of

the real atmosphere about those assumed for the calculation of radiances. The most important of these is the

difference between the actual vertical distribution of ozone and the standard profile used to compute the look-up

tables. At low to moderate solar zenith angles, the TOMS derived total ozone is not significantly dependent on the

ozone profile used. At high solar zenith angles, however, profile sensitivity is a significant source of error. The profile

interpolation procedure described in Section 4.5 reduces this error, but does not eliminate it (Wellemeyer et al., 1997).

The fourth random error in Table 5.1 arises from possible variations in tropospheric ozone, in particular from cases

where changes in tropospheric ozone do not affect the measured radiance. TOMS cannot measure ozone that is

hidden from the instrument by thick cloud. In the TOMS algorithm, a climatological tropospheric ozone amount is
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assumedtobepresentbeneaththecloudfractionidentifiedbythereflectivitychannelofTOMS.Thus,theerrordue
tohidingbycloudsinagivenmeasurementisequaltotheerrorintr,_posphericozonetimesthecloudfraction,and
thealgorithmwill, in general,belesssensitivetoerrorsin troposphericozoneif thecloudfractionis low.About6
percentoftotalozoneisinthelowest5km,witha50percentvariability.Theradiationfromthetropospherehasboth
surfaceandatmosphericcomponents:thesurfacecomponenttraversesthetroposphereandprovidesameasureof
troposphericozone,whiletheatmosphericcomponent,arisingfromRayleighscattering,is notassensitivetothe
ozoneamount.Oversurfaceswithlowreflectivity,theRayleighscattt:ringcomponentdominates,andthemeasured
radiancewillnotbesensitivetodeparturesfromthestandardtroposphericozoneprofile.Whenthesurfaceishighly
reflective,theozone-sensitivesurfacecomponentismoreimportant,and the TOMS estimate of tropospheric ozone

improves; thus, the problem of tropospheric ozone is less significant over ice-covered regions such as the Antarctic.

The retrieval also improves at low solar zenith angles when incidert UV penetrates further into the troposphere

(Klenk et al., 1982). A related error has to do with variability of the actual cloud height about the ISCCP climatology
assumed in the algorithm. Standard deviations of about 100 mb occur near the equator and can be associated with

1.0% error in derived ozone, resulting from assigning the incorrect ozone beneath the cloud. Overall, TOMS

measures roughly half of the tropospheric ozone variation.

Assignment of the temperature, retrieval, and tropospheric ozone errors as random is based upon an approach in
which the atmospheric variations are not known and are treated as random variability about the climatology.

However, if independent measurements of any of these quantities are available for a scan, then such measurements

can be used to correct the ozone values derived from TOMS, and the error would no longer be random.

5.3 Comparison with Fairbanks Ozone Sondes

A number of ozone-sondes were flown from Fairbanks, Alaska during fall of 1996 in support of the EP/TOMS

validation effort. These measurements have been used to validate the profile selection scheme described in Section
4.5. Nineteen coincidences have been identified between these Fairba.lks ozone-sondes and EP/TOMS retrievals in

which the profile selection method was applied. Coincidences were _lso identified between the ozone-sondes and

measurements of the ozone profile by the SBUV/2 instrument on-boarc the NOAA-9 Spacecraft, so that a composite

profile could be constructed of the lower atmosphere measured by the czone-sonde and the upper levels measured by

SBUV/2. Figure 5.1a shows a sample composite profile compared to TOMS standard profiles for the same total

ozone amount with profile shape selected purely by latitude (TOMS Version 6) and with profile shape determined

using the mixing fraction fprof in Equation 21. Figure 5.1b summarizes estimated errors in EP/TOMS total ozone
relative to the composite profiles that are due to differences between the profile shape estimated using the TOMS

profile selection scheme and that measured by ozone-sonde and SBUV/2. These are quite small considering that

most of these retrievals are at solar zenith angles higher than 84 degree_. (See the first footnote in Table 5.1 ).

5.4 Comparison with ADEOS/TOMS

A TOMS instrument flown on the Japanese Meteorological Satellite, _tDEOS, took data from September ! 1, 1996

through June 29, 1997 when contact was lost with the satellite. The AI_EOS/TOMS was identical to the EP/TOMS,

though it was flown in a higher orbit to provide complete daily global coverage. Similar calibration procedures were

carried out for the two instruments, and the same retrieval algorithm was applied to both data sets. Figure 5.2 shows
the time series of the percent differences in total ozone between Earth Probe and ADEOS TOMS, which fall within

the experimental uncertainties. These differences may be compared witt the A-triplet fitting in Figure 3.1.

5.5 Comparison With Ground-based Measurements

The EP/TOMS data have been compared with ground based measuremeats made by a network composed of 30 mid-

northern latitude stations with Dobson and Brewer ozone measuring instruments. Each ground measurement was

paired with the TOMS sample whose center was closest to the station; if _wo measurements were equally near, the one

measured closest to nadir was used. A weekly mean was then calculat,._d of the daily TOMS-ground differences at

each station. These means were then averaged to derive a weekly average TOMS-network difference.

Figure 5.3 shows the percentage difference of TOMS--ground ozone measurements as a function of time. The EP/

TOMS total ozone is about 1.0% higher than the ground measurements Similar comparisons of the Nimbus-7 and
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Meteor-3 TOMS with ground measurements indicate biases of about 0.5% and 0.0% respectively. There is no signif-

icant trend in the bias, so only the mean bias and its standard deviation are noted in the figure.

Ground based comparisons also indicate an underestimation in TOMS at low ozone amounts in the Northern Hemi-

sphere. This appears to be because of the lower tropospheric ozone amounts assumed in the standard profiles (Appen-
dix A) for 225 D.U. and lower (McPeters and Labow, 1996).
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6.0 PROBLEMS LOCALIZED IN SPACE AND TIME

6.1 Aerosol Contamination

Increased Mie scattering resulting from the presence of Iropospheric aerosols modifies the radiative properties of the

atmosphere and may significantly affect the radiances measured by TOMS. The triplet formulation described in

Section 4 is designed to correct for such departures if they result in algorithmic residues that are linear with

wavelength. This appears to work quite well except in the situation where absorbing aerosols are present. A careful

study of this effect using a variety of absorbing aerosol models has indicated that absorbing aerosols are generally

associated with a positive residue at 331 nm (the aerosol index), and that the resulting error in TOMS derived ozone is

roughly linear with the 331 nm residue (Tortes et al., 1998b). This finding is illuslrated in Figure 6.1. Retrievals with

331 nm residues greater than four are flagged with an error code of 2 and are excluded from the level-3 product.

However, Figure 6.1 indicates that significant errors in derived ozone may still be present. These situations occur in
northern Africa and the equatorial Atlantic during late summer and fall when large quantities of desert dust are

present in the atmosphere. They also occur when large quantities of smoke due to bio-mass burning or forest fires are

present. Interested users may correct these data based on the results summarized in Figure 6.1 using the 331 nm
residue (aerosol index) reported on the level-2 product. A level-3 product containing the aerosol index is planned for

release later in 1998. We hesitate to provide a corrected data set because the modeling is quite specific and other

sources of uncertainty contribute to the 331 nm residue. However, we think that corrections based on Figure 6.1

during episodes of absorbing aerosols in the troposphere will give 2 percent accuracy.
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6.2 Scan Angle Dependence

For the near local noon equator crossing time, Sun glint can occur over water for clear sky and near overhead Sun.

Under these conditions, the derived surface reflectivity is enhanced, a result of the extra radiation reflected from the

surface. The consequence is that derived ozone is low under these conditions slightly east of nadir in the vicinity of

scan position 22. This effect is illustrated in Figure 6.2, which shows weekly averages of equatorial ozone as a

function of scan position away from and near equinox. The bottom panel shows a modest impact in the weekly mean,

but individual scans show about a 2 percent effect. Individual samples susceptible to glint contamination are over

water and have scattering angles, g < 30*,

where _ -cos-l(cosOocos0+sin0osinecos_).

The upper panel shows ozone as a function of sample number for an unaffected scan. It shows a smaller scan angle

dependence of about 1 percent, probably arising from scattering due to background aerosols and by cirrus cloud,

neither of which is fully treated in the radiative transfer calculation described in Section 5.1. To date, no major

volcanic eruption has injected aerosol into the stratosphere, during the EP/TOMS lifetime. If such an event occurs,

significant scan angle dependence similar to that seen in Nimbus 7 TOMS after the eruptions of E! Chichon and Mr.
Pinatubo (McPeters et al., 1996) will result.
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6.3 Solar Eclipses

When the Sun is eclipsed, the decrease in incoming solar irradiance leads to a decrease in the backscattered Earth
radiance. However, because the solar irradiance used for the ozone rctreval is derived from measurements of the

uneclipsed Sun, the derived I/F is not correct during times of eclipse. Consequently, ozone values are not retrieved

for periods of time and ranges of latitude where the radiances are affected by a solar eclipse. In actual production,

tabulated eclipse information is part of the input stream for the job run md is used by the software to exclude the

eclipse periods and regions. These are shown in Table 6.1.

Table 6.1 Earth Probe TOMS Eclipse Excluskns (1996-1998)

Year Start Time (UT) End Time (UT) Latitude

Day Seconds Day Seconds Min Max

1996 206 46950 206 47142 -90 90

1997 67 83796 68 12648 5 84

1997 244 78246 245 85_6 -83 -10

1998 57 53424 57 72T'8 -36 66

1998 233 83412 234 18120 -67 36

6.4 Polar Stratospheric Clouds

The effect of anomalously high clouds can be a significant error source for localized regions in the Arctic and

Antarctic. Polar Stratospheric Clouds (PSCs) above the ozone peak may cause the TOMS retrieved total ozone to be

underestimated for solar zenith angles larger than 70 degrees. Models indicate that the impact of these clouds on

TOMS retrieved total ozone is a strong function of optical depth. Type PSCs of optical depth 0.01 (composed of

HNO3/3H20, particle mean radius -0.5 grn) may produce an underestim tte of up to 2 percent at solar zenith angles

greater than 80 degrees. Larger errors (up to 6 percent) may be introdu :ed by Type II PSCs of optical depth 0.05
(water ice, particle mean radius -5-50 jam). Underestimates as large as 5_) percent may occur when Type II PSCs of

optical depth 0.4 (associated with lee-waves) are present. No corrections have been made for the presence of PSCs,

but they tend to be very localized in time and space, lasting 3-5 days with typical sizes of 1000--3000 km (Torres et
al., 1992).

6.5 High Terrain

Users may note an apparent anticorrelation of ozone with terrain height, t articularly in the form of ozone dips above
high mountain ranges. These dips occur because the algorithm retrieves _he actual column ozone above the surface,

not above sea level. The atmospheric ozone that would normally be pres, :nt between sea level and the actual terrain

height is "missing." Column ozone actually is lower above the mounta: ns, in the same way as other atmospheric

constituents. The relation between column ozone and altitude is thus no1 an artifact of the measurement but simply
reflects the fact that when the surface is higher, there is less atmosphere agove it. Some TOMS data users have made

use of this effect to infer tropospheric ozone amounts in regions adjacen: to high mountains. It should be noted the

measurement efficiency of the BUV technique used by TOMS is reduced :or tropospheric ozone (Klenk et al., 1982).

6.6 Missing Data

A number of data gaps appear in the EP/TOMS data record due to loss _,f telemetered data. A summary of missing

Level 2 data (whole orbits and partial orbits) is given in Appendix E. Not_ that the Level 3 data may appear complete

when part of an orbit is missing at high latitude where data from an adjac¢nt orbit may be used to complete coverage.
Conversely, data coverage may be incomplete in situations where all )f the telemetered data are available. For

example, data gaps sometimes appear over western Africa when retrievals are flagged as bad quality due to high

levels of UV absorbing desert dust. Any Level 2 data with quality flag otl er than zero are excluded from the Level 3
data set.
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7.0 DATA FORMATS

7.1 Hierarchical Data Format

TOMS data products will be available electronically from the Distributed Active Archive Center (DAAC) in the form

of Hierarchical Data Format (HDF) files (Ilg et al., 1993; Kalman, 1994). Along with the files, the DAAC will

distribute HDF software tools for reading the files. A detailed HDF description is provided below for completeness,

but the HDF tools available at the DAAC and elsewhere make it unnecessary to understand this detail except under

special circumstances.

7.1.1 Level-2 Hierarchical Data Format Product

The standard archival Level-2 products are stored in HDF files, one for each orbit, at the GSFC DAAC. They are

generated using version 3.3 release 4 of HDF available from the University of Illinois' National Center for

Supercomputing Applications (NCSA) and endorsed by the Earth Observing System Data Information System

(EOSDIS) Project. The Level-2 file contains all output from the Version 7 ozone processing, including ozone and

reflectivity products, as well as diagnostic parameters and a SOl, on a scan-by-scan basis for each TOMS daylit FOV.

The Level-2 HDF file consists of the following components:

1. A File Label

2. A File Description

3. Metadata (stored as a second file description)

4. Network Common Data Form (netCDF) style attributes

5. Multiple Data Scientific Data Sets (SDSs)
6. Multiple Coordinate SDSs

The File Label is a string that identifies the instrument, the spacecraft, date, and orbit number of the data within the

Level-2 HDE It has the following form: "TOMS_EP_yyddd_nnnnn", where yy is the (two-digit) year, ddd is the

three-digit day of year, and nnnnn is the lifetime orbit number (i.e., revolution since launch, where orbit 1 is defined

to start with the first ascending node equator crossing). Leading zeroes are used for yy, ddd, and nnnnn when

applicable.

The File Description is a field of up to 40,000 ASCII characters which describes, in free form text, the Level-2

product and its generation algorithm.

Metadata include the following:

1. Data set name ("data_set=TOMS")

2. Data product name ("data_product=Level 2 orbital data")

3. Granule size ("granule_size=XXXXXXX" where'XXXXXXX' is in bytes)

4. Time of first scan ("begin_date=YYYY-MM-DD HH:MM:SS" where 'YYYY" is year, 'MM' is month of

year (1-12), 'DD' is day of month, 'HH' is hour of day, 'MM' is minute of hour', and 'SS' is second of minute
in UT)

5. Time of last scan ("end_date=YYYY-MM-DD HH:MM:SS" where 'YYYY' is year, 'MM' is month of year

(1-12), 'DD' is day of month, 'HH' is hour of day, 'MM' is minute of hour', and 'SS' is second of minute in
UT)

6. Geographical flag ("geog_flag=O" indicating orbital data)

7. Northern latitude ("north_lat=SDD.DD" where'S' is + for northern hemisphere and - for southern

hemisphere and DD.DD is latitude in degrees)

8. Southern latitude ("south_lat--SDD.DD" where'S' is + for northern hemisphere and - for southern

hemisphere and DD.DD is latitude in degrees)

9. East longitude ("east_lon=SDDD.DD" where'S' is + for east of the Prime Meridian and - for west of the

Prime Meridian and DDD.DD is longitude in degrees)

33



10. West longitude ("westlon-SDDD.DD" where'S' is + for east c,f the Prime Meridian and - for west of the

Prime Meridian and DDD.DD is longitude in degrees)

11. Day/night flag ("day_night_flag-D" indicating daytime data)
12. Granule version ("granule_version-01" indicating first archive version

13. Producer granule ID ("producer_granule_id-alsNNNNN.hdP' w_aere 'NNNNN' is orbit number with leading

zeroes as necessary)
14. Number of scans including fill ("last_seq_index-XXX" where 'XXX' is number of scans)

15. Date and time of ascending node equator crossing ("date_eqx-YYYY-MM-DD HH:MM:SS where 'YYYY'

is year, 'MM' is month of year (1-12), 'DD' is day of month, 'HH _is hour of day, 'MM' is minute of hour, and
'SS' is second of minute in UT)

16. Longitude of ascending node equator crossing ("long_eqx-SDDD.DD" where'S' is + for east of the Prime
Meridian and - for west of the Prime Meridian and DDD.DD is longitude in degrees)

17. Spacecraft altitude at last scan ("altitude-XXX" where XXX is altitude in km)

18. Orbit number ("orbit-NNNNN" where NNNNN is orbit number)

19. Fill value for 4 byte signed integer ("miss_val_signed_4_byte-0x7fffffff")*

20. Fill value for 2 byte signed integer ("miss_val_signed_2_byte-0x7fff")*

21. Fill value for 1 byte unsigned integer ("miss val unsigned_l_byte-0x7f")*

*Note: C code assignment shown for values in Table 7.3

The following netCDF style attributes are included:

°

.

3.

.

.

Quality flag counters (32)
1 Number of input/output errors for this orbit
2 Number of scans read for orbit

3 Number of scans written for orbit

4 Number of samples out of range (total of 5-7)

Number of samples out of range for

5 Zenith angle > 88 degrees
6 Latitude

7 Instrument counts (negative)

8 Number of samples written that were bad (total of 9-32)
Numbers of individual error flags for each Algorithm Flag (see Table 7.2 for description of error and

algorithm flags):
9 Number of samples that had error flag - 0 or 10

10 Number of samples that had error flag - 1 or 11

11 Number of samples that had error flag - 2 or 12

12 Number of samples that had error flag - 3 or 13

13 Number of samples that had error flag - 4 or 14

14 Number of samples that had error flag - 5 or 15

15-20 Same as 9-14 for Algorithm Flag - 2

21-26 Same as 9-14 for Algorithm Flag - 3

27-32 Same as 9-14 for Algorithm Flag - 4
TOMS band center wavelengths (rim), shortest first
Solar irradiance F-values at 1 A. U. (watts/cm 3) for the curren_ day at the six TOMS wavelengths, shortest

first

Count-to-radiance conversion factors (watts/cm3/steradian/count) for each of the four gain ranges for each of

the six wavelengths, shortest first

Nominal spacecraft zenith angle (degrees) at each scan position

There are 26 Data SDSs stored in the Level-2 product. Their names, dim msions and data types are listed in Table 7.1.

More detailed descriptions, units, offsets, and scale factors are listed in rable 7.2. The data are stored as integers; to

convert to the physical units, they must be added to the offset and then _nultiplied by the scale factor. Table 7.3 lists
the fill values used for different data types for missing scans. An exception to these fill values has been identified in

the Level-2 HDF for EP/TOMS and left uncorrected. An ozone value o _-1 is given on rare occasions when an error

34



flag of 3 is returned for algorithm flag 3 or 4 due to lack of convergence in the ozone algorithm. One-dimensional

SDSs are stored in a TOMS scan number domain. Two-dimensional SDSs are stored in a TOMS scan number by

TOMS scene number domain. Three-dimensional SDSs are stored in a TOMS scan number by TOMS scene number

by TOMS wavelength domain. The dimension of 500 (column 2) is nominal. The actual dimension is "scan-number"
(Table 7.4).

The four Coordinate SDSs stored in the I_vel-2 product are listed in Table 7.4.

Table 7.1. TOMS Level-2 HDF SDSs

Name of SDS Dimensions Data Type

LSEQNO 5O0
YEAR 500

DAY 500

SECOND-OF-DAY 500

ALTITUDE 500

NADIR 500

SYNC 500

LATITUDE 35 x 500

LONGITUDE 35 x 500

SOLAR_ZENITH_ANGLE 35 x 500

PHI 35 x 500

NVALUE 6 x 35 x 500

SENSITIVITY 5 x 35 x 500
dN/dR 6 x 35 x 500

RESIDUE 5 x 35 x 500

TOTAL_OZONE 35 x 500

REFLECTIVITY 35 x 500

ERROR_FLAG 35 x 500

OZONE_BELOW_CLOUD 35 x 500

TERRAIN_PRESSURE 35 x 500

CLOUD_PRESSURE 35 x 500
SOI 35 x 500

ALGORITHM_FLAG 35 x 500

CLOUDFRACTION 35 x 500

MIXING_FRACTION 35 x 500

CATEGORY 35 x 500

2 byte

2 byte

2 byte

4 byte

2 byte

2 byte

2 byte

2 byte

2 byte

2 byte

2 byte

integer

integer

integer

integer

integer

integer
integer

integer

integer

integer

integer

byte integer

byte integer

byte unsigned integer

byte unsigned integer

byte integer
byte integer

byte integer

byte unsigned integer

byte unsigned integer

byte unsigned mteger

byte unsigned mteger

byte unsigned mteger

byte unsigned mteger
byte unsigned integer

byte unsigned integer
The last index varies most rapidly in all arrays.

Table 7.2. Detailed Description of TOMS Level-2 SDSs

SDS Name Description

LSEQNO
YEAR

DAY

GMT

ALTITUDE
NADIR

Sequence number of scan within orbit

Year (four digits) at start of scan, GMT.

Day of year (1-366) at start of scan, GMT.

Greenwich Mean Time in seconds of day at start of scan (1-86,400).

Spacecraft altitude at start of scan (km).

Nadir scan angle, used to express the spacecraft's attitude error, the angle
between the vectors from the S/C to the local normal and from the S/C to the

FOV (0 < nadir angle < 180) (x 100).
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Table7.2.DetailedDescriptionofTOMSLevel-2SDSs(Continued)

SDSName Description
SYNC Flagforchoppernon-synchronization.ccurrence:

0: Doesnotoccur in current or next scan

l: Occurs in current scan, not in next

2: Occurs in next scan, not current

3: Occurs in both current and next scan

IFOV latitude, from 90* N-90 ° S (degrees x 100).

IFOV longitude, from 180" W-180* E (degrees x 100).

LATITUDE

LONGITUDE

SOLAR_ZENITH_ANGLE
PHI

NVALUE

SENSITIVITY

dN/dR

RESIDUE

TOTAL_OZONE
REFLECTIVITY

ERROR_FLAG

OZONE_BELOW_CLOUD

TERRAIN_PRESSURE
CLOUD_PRESSURE

SOl

ALGORITHM_FLAG

CLOUD_FRACTION

MIXING_FRACTION

CATEGORY

IFOV solar zenith angle (degrees x 10f,).

Angle _ between Sun and satellite measured at IFOV, (degrees x 100).

N-values (as defined in Section 4.5) at 6 wavelengths, shortest first (x 50).

Sensitivity dN/d_ at 5 shortest wavelengths, shortest first, obtained by table

interpolation (matm-cm -1 x 10,000).

N-value sensitivity to reflectivity dN/dR at 6 wavelengths, shortest first

(%-1 x-50).

Adjusted residues (see Sections 4.5) at 5 shortest wavelengths, shortest first

(x 10 + 127).

Total Ozone (matm-cm), x 10.

Effective reflectivity assuming Lambertian surface (% x 100).

Error Flag

0 good data
1 good data, 84* < solar zenith angle < 88*

2 residue at 331 nm greater than 4 in N-value units

3 triplet residue too large

4 SOI> 24 (SO 2 contamination)
5 At least one residue has absolule value larger than 12.5

A value of l0 is added to the error flag for all scans on descending (midnight)

part of orbit.
Estimated ozone below cloud layer (n_atm-cm).

Ground pressure derived from NOAA, NMC grid (atm x 100).

Cloud pressure from ISCCP climatology (atm x 100).

Sulphur dioxide index (SOI), (matm-cm + 50).

Algorithm flag - identifies triplet(s) used

1: A-triplet alone used

2: B-triplet alone used

3: B-triplet used with profile sele(tion (B-mix)

4: C-triplet used with profile selec tion (C-mix)
Effective cloud fraction, as defined in Section 4.3 (percent).

Mixing fraction fprof, which paramete "izes contributions of lower and higher
latitude profiles in ozone determinatio 1, as described in Section 4.5; values range
from 0.5 to 3.5 (x 10).

!.0 pure low latitude

2.0 pure mid latitude

3.0 pure high latitude

Surface Category code
0: ocean
1: land

2: low inland (below sea level)

3: mixed land and ocean

4: mixed land and low inland

5: mixed ocean, land, and low inlmd
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Table7.3.FillValuesforMissingScans

DataType Decimal Hexadecimal
1byteunsignedinteger: 255 xFF
2byteintegers: 32767 x7FFF
4byteintegers: 2147483647 x?PIq_FI_FF

Table7.4.TOMSLevel-2HDFCoordinateSDSs

Name Type Scaletype Scalemin Scalemax
scan-number 2byteint regular 0 #scans-1
scenenumber 2byteint regular 0 #scenes-1
wavelength_6 4bytereal irregular n/a(6TOMSwavelengths)
wavelength_5 4bytereal irregular n/a(5shortestwavelengths)

7.1.2 Level-3 Hierarchical Data Format Product

The standard archival Level-3 product contains global arrays of total ozone and effective surface reflectivity stored as
daily HDF files. A Level-3 file is generated from each complete daily set of Level-2 files.

The Level-3 HDF file is comprised of the following elements:

1. a File Label

2. a File Description

3. Metadata (stored as a second file description)

4. 2 Data Scientific Data Sets (SDS)
5. 2 Coordinate SDSs

6. The File Label is "tOMS EP DAILY_GRIDDED_DATA_mm_dd_yy" where 'mm' is month of year
(1-12), 'dd' is day of month, and 'yy' is 2-digit year. Leading zeroes are used in these substitutions.

The Level-3 file names have the following form:

algYYDDD.hdf

where YY is a 2-digit year and DDD is day of year.

The File Description provides background on the TOMS instrument, processing algorithms and data products, in free
format. The following metadata are included:

1. Data set name ("data_set=TOMS")

2. Data product name ("data_product=Level 3 daily gridded data")

3. Granule size ("granule_size=XXXXXXX" where 'XXXXXXX' is in bytes)

4. Begin date and time ("begin_date=YYYY-MM-DD HH:MM:SS" where 'YYYY' is year, 'MM' is month of

year (1-12), 'DD' is day of month, 'HH' is hour of day, 'MM' is minute of hour, and 'SS' is second of minute
in UT)

5. End date and time ("end_date=YYYY-MM-DD HH:MM:SS" where 'YYYY' is year, 'MM' is month of year

(1 - 12), 'DD' is day of month, 'HH' is hour of day, 'MM' is minute of hour, and 'SS' is second of minute in UT)
6. Geographical flag ("geog_flag=G" indicating global data)

7. Northern latitude ("north_lat=+90.00")

8. Southern latitude ("south_lat=-90.00")

9. East longitude ("east_ion=+180.00")

10. West longitude ("west_Ion=- 180.00")

11. Day/night flag ("day_night_flag=D" indicating daytime data)

12. Granule version ("granule version=01" indicating first archive version)
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13.ProducergranuleID ("producer_granule_id=algYYDDD.hdf"v,here'YY' is2-digityearand'DDD'isday
of year both with leading zeroes as necessary)

14. Fill value for ozone ("miss val ozone--0")

15. Fill value for reflectivity ("miss val ref=999")

16. Local time of ascending node equator crossing ("lect=YYYY-MVI-DD HH:MM:SS where 'YYYY' is year,

'MM' is month of year (1-12), 'DD' is day of month, 'HH' is horn of day, 'MM' is minute of hour, and 'SS' is

second of minute)

The data stored in the SDSs are on a fixed 1-degree latitude by 1.25-degree longitude grid. The gridded ozone values

are stored as 3-digit integers in units of matm-cm. Reflectivity in percent, is also stored as 2-byte integers. Grid cells

that are missing data due to lack of sunlight or other problems will be filled with 0 for ozone, 999 for reflectivity.

The two Coordinate SDSs stored in the Level-3 product are listed in Table 7.5.

Table 7.5. TOMS Level-3 HDF Coordinate SDSs

Name Type Scaletype Scalemin Scalemax

Latitude 4 byte real regular -89.5 89.5

Longitude 4 byte real regular -179.375 179.375

7.2 Native Format

7.2.1 TOMS Ozone File (Level-2 Data Product)

The TOMS Ozone File, also called the Level-2 Data Product, is a binary file, written as FORTRAN unformatted

records. It is generated under UNIX. These files are used primarily as part of the TOMS processing. They are not

normally distributed but may be obtained by special arrangement.

Each file contains all of the data processed for a single day. The first record of the file is a header, written in character

format, containing information on the production hardware and software ior both the Level-2 product and the Level-
1 product used to generate it, the date and time the Level-2 file was generated, and the time period that the data on the

file cover. The data records follow, ordered chronologically by time (GMT) of observation, and grouped by TOMS

orbit. Each data record contains the information processed from one scan of the TOMS instrument. Only daylight

scans, where the solar zenith angle at the nadir view for the scan is less than or equal to 92 degrees, have been

processed by the ozone algorithm and written to the ozone file. The end of an orbit is indicated by a record called the

orbital summary record, which contains the date, time, and location of the start and end of the orbit and of the equator

crossing, counts of the number of scans processed and those flagged for various reasons, and other summary and
ancillary information for the orbit. The last record of the file, called the trailer record, contains the time and date of

the first and last scan of the last orbit of the day and the total number of he scans processed and fagged for various
reasons for all orbits.

Each type of record, other than the header, can be identified by the loghal sequence number, which is stored as an

integer in the two most significant bytes of the third word of the recold. All data records have a positive logical

sequence number that counts the order of that record within the orbit to which it belongs, starting with a value of 1 for

the first data record of the orbit. The orbital summary record for each or)it has a negative logical sequence number

whose absolute value is one greater than that of the last data record of the orbit. The trailer record contains the unique

logical sequence number of-l, which may be used to identify the end of :he file.

Tables 7.6-7.10 contain, in order, the format of the header record, tae format of the data records, a detailed

description of selected words in the data record, the format of the orbital s lmmary record, and the format of the trailer
record.
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Table7.6.FormatofTOMSOzoneFileHeaderRecord

CharacterRepresentation* Description
1-9

10-14

15-22
23-38
39-51
52-63
64-83
84-106

107-135

136-159

TOMS-EP
FM-3b

LEVEL-2b
BYbXXXXXXXXXXXXb
VERSIONbXXXXb
MMMbDDbYYYYb
ONbXXXXXXXXXXXXXXXXb
GENbMMMbDDbYYYYbHHMMSSb

DATAbSPANbMMMbDDbYYYYbHHMMS
Sb
TObMMMbDDbYYYYbHHMMSSbbb

160-170 LEVEL-1bBYb
172-220 rufgen.c
221-2100Blanks

Spacecraftidentification.
Flightmodelidentifier.
l= Nimbus
2=Meteor
3=EarthProbe
4=ADEOS
Dataproductidentification
Programnamein12characters,e.g.,ozt.f
Programversionin4characters,e.g.,1.0
Programdateinmonth-day-year,e.g.,JUL011994
Processingenvironment,char.,e.g.,ALPHAUNIXV
Timeinmonth,day,year,hours,minutes,andseconds,
correspondingtogenerationtimeoffile.
Timeinmonth,day,year,hours,minutes,andseconds,
correspondingtostartofdataspanonfile.
Timeinmonth,day,year,hours,minutes,andseconds,
correspondingtoendofdataspanonfile.
IndicatesthatLevel-1programnamefollows.
Programnameandversioninformation.
Blankspace

* Character"b"isusedtoindicateablankcharacter.

Table7.7.FormatofDataRecords

Word Bytel Byte2 Byte3 Byte4
1 Orbitnumber
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20-495
496-525

GMT(secondsofday)atstartofscan
Logicalsequencenumber Choppersynchronizationflag
Dayofyearatstartofscan Yearatstartofscan
Altitude Sample1viewangle
Latitude Longitude
SolarZenithAngle _Angle
N3O9 N313
N318 N322
N331 N360
(dN/d_)309 (dN/d_)313
(dN/d_)318 (dN/d_)322
(dN/df2)331 Reflectivity
TotalOzone ErrorFlag
(dN/dR)309 (dN/dR)313 (dN/dR)318
(dN/dR)33! (dN/dR)360 Fill
RES(N3o9) RES(N313) RES(N318)
RES(N331) OzoneBelowCloud SO1
AlgorithmFlag Eft.CloudFraction MixingFraction
Sameas6through19forsamples2to35
Spares

(dN/dR)322
Terrainpressure
RES(N322)
Cloudpressure
SurfaceCategory

Notes:
All valuesarestoredinINTEGERformat,MSBfirst.Valuesstoredinonebytearealwayspositive,withavalueof
255indicatingmissingdata.Valuesstoredintwobytescanbeeitherpositiveornegative,withvaluesof32767
indicatingmissingdata.Somevalueshavehadconstantsaddedormultipliedtoaccommodateintegerstorage.
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Table7.8.DetailedDescription,,

Word Bytes Description

4

5

6

7

8

9

10

11

12

13

14
14

15

16

Orbitnumber,startingatascendingnode
GreenwichMeanTimeatstartofscaninseconds(1-86,400)

1-2 Sequencenumberofrecordinorbit
3-4 Flagforchoppernon-synchronization:

0 Doesnotoccurincurrentornextscan
1 Occursincurrentscan,notinnext
2 Occursinnextscan,notcurrent
3 Occursincurrentandnextscan

1-2 DayofYear(1-366)atstartofscan
3-4 Yearatstartofscan(4digits)
1-2 Spacecraftaltitudeinkilometersatstartofscan
3-4 Sample1viewangleisthesameforallscenes,sincenominalattitudeisassumed.
1-2 IFOVlatitude,from90*S-90°N,indegreesx 100
3-4 IFOVlongitude,from180"W-180°E,indegreesx 100
1-2 IFOVsolarzenithangle,indegreesx 100
3-4 Angle _ between Sun and satellite measured at IFOV, in degrees x 100
1-2 309 nm N-value x 50 (N-value is defined in Sectior. 4.5)
3-4 313 nm N-value x 50
1-2 318 nm N-value x 50

3-4 322 nm N-value x 50

1-2 331 nm N-value x 50

3-4 360 nm N-value x 50

1-2 309 nm sensitivity dN/d_, in (matm-cm) -1 x 10,000

3-4 313 nm sensitivity dN/dfL in (matm-cm) -1 x 10,000

1-2 318 nm sensitivity dN/dfL in (matm-cm) -1 x 10,001_
3-4 322 nm sensitivity dN/d_, in (matm-cm) -1 x 10,00_

1-2 331 nm sensitivity dN/d_, in (matm-cm) -1 x 10,000

3-4 Effective Reflectivity, in percent x 100
1-2 Total Ozone, in matm-cm x 10

3-4 Error Flag (flag = flag + 10 for data taken during descending, N-S, orbit):
0 (10) good data

1 (11) good data, 84* < SZA < 88 °

2 (12) pair residue too large

3 (13) triplet residue too large:

(A-triplet:r317 > 1.1 N-value units)

(B-triplet:r31 z > 0.9 N-value units)

(B-mix:fprof < -0.5 or > 3.5)

(C-mix:fprof < -0.5 or > 3.5)

4 (14) SOl flag set (SO 2 is present)

5 (15) fatal: set when the absolute value of any residue is larger than 12.5; ozone and SOl
set to fill values

1 309 nm dN/dR (reflectivity sensitivity), in percent- x -50

2 313 nm dN/dR, in percentl x -50

3 318 nm dN/dR, in percent-l x -50
4 322 nm dN/dR, in percent -t x -50

1 331 nm dN/dR, in percent -1 x -50

2 360 nm dN/dR, in percent -l x -50

3 spare byte

4 Terrain pressure, in atm x 100
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Table7.8.DetailedDescriptions(Continued)

Word Bytes Description
17 1 309nmresiduex 10+ 127

2 313nmresiduex 10+ 127
3 318nmresiduex 10+ 127
4 322nmresiduex 10+ 127

18 1 331nmresiduex 10+ 127
2 Amountofozoneaddedbelowcloudlayer,inmatm-cm
3 SOI,inmatm-cm+50
4 PressurederivedfromISCCPcloudclimatology,inatmx 100

19 1 Algorithmflag(flag=flag+ 10forsnowassumedpresent):
1(11)A-tripletused
2(12)B-tripletused
3(13)B-tripletusedwithprofileselection(B-mix)
4(14)C-tripletusedwithprofileselection(C-mix)

2 Effectivecloudfractionx 100
3 Profilemixingfractionx 10:

1<fp<2 profilebetweenlowandmidlatitude
2<fp<3 profilebetweenmidandhighlatitude

4 Surfacecategorycode:
0 water
1 land
2 lowinland(belowsealevel)
3 landandwater
4 landandlow-inland
5 water,landandlow-inland

Sameas6-19forsamples2-35
Spares

20-523
524-525

Table7.9.FormatofOrbitalSummaryRecord

Word Description
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Orbitnumber
GMT(seconds)offirstscanoforbit
Negativelogicalsequencenumber(2mostsignificantbytes)*
Dayofyearoffirstscanoforbit
Yearof firstscanoforbit(4digits)
Latitude(90°S-90°N)forfirstscan,nadirview(degreesx 100)
Longitude(180°W-180°E)forfirstscan,nadirview(degreesx 100)
GMT(seconds)oflastscanoforbit
Dayofyearoflastscanoforbit
Yearoflastscanoforbit(4digits)
Latitude(90*S-90°N)forlastscan,nadirview(degreesx 100)
Longitude(180"W-180°E)forlastscan,nadirview(degreesx I00)
Localtime(seconds)atequatorcrossing(or-77if unavailable)
Dayofyear(localtime)atequatorcrossing
Year(localtime)atequatorcrossing
GMT(seconds)atequatorcrossing(or-77 if unavailable)
Dayofyear(GMT)atequatorcrossing
Year(GMT)atequatorcrossing
Longitudeatequatorcrossing(or-77777if unavailable),nadirview(degreesx 100)
Altitude(km)atlastscan

41



Table7.9.FormatofOrbitalSummaryReco'd(Continued)

Word
21
22
23
24

Numberofinput/outputerrorsforthisorbit
Numberofscansreadfororbit
Numberofscanswrittenfororbit
Numberofsamplesoutofrange(total)
Numberofsamplesoutofrangefor:

25
26
27
28

29-34
29
30
31
32
33
34

35-40
41-46
47-52

53
54

55-60
61-66

67-90

Description

Zenithangle> 88degrees
Latitudeoutofrange(>90degrees)
Countsnegative

Numberofbadsampleswritten:algorithmflagnot0,1,10,or11(total)
CountsoferrorflagsforAlgorithmFlagm1(seedatarecordfordescriptionoferrorflags):

numberofsamplesthathaderrorflag- 0 or 10

number of samples that had error flag _ 1 or 11

number of samples that had error flag _ 2 or 12

number of samples that had error flag _ 3 or 13

number of samples that had error flag - 4 or 14

number of samples that had error flag _ 5 or 15

Same as 29-34 for Algorithm Flag - 2

Same as 29-34 for Algorithm Flag _ 3

Same as 29-34 for Algorithm Flag = 4
Minimum ozone for orbit.

Maximum ozone for orbit.

The six instrument wavelengths.

Solar irradiance F-values at 1 AU (watts/cm 3) for current day at the six instrument wavelengths,
shortest first.

Calibration constants: The counts to radiance conversion ;actors, in units of watts/cm3/steradian/

count, given for each of the four gain ranges for each of the six wavelengths in order: words 67-80,

309 nm; ...; words 87-90, 360 nm.

91-127 Nominal spacecraft zenith angle (0-80 degrees) at each s_:an position.

* Notes: The logical sequence number is a 16-bit integer that occupies the left half (two most significant bytes) of
word 3. Words 53-127 are stored in IEEE-754 32-bit floating-point fo "mat (REAL*4); all others are 4-byte (32-

bit) integer format with the most significant byte first.

Table 7.10. Format of Trailer Record

Word Description

1

2

3
4

5

6

7

8

9

10

!!

12

13

14

t5

Orbit number of last scan

GMT (seconds) of first scan of last orbit of day
Logical sequence number (z -1) (2 most significant byte: )*

Day of year of first scan of last orbit of day

Year of first scan of last orbit of day

Latitude (90* S-90" N) for first scan, nadir view (degrees x 100)

Longitude (180* W-180 ° E) for first scan, nadir view (de ;rees x 100)

GMT (seconds) of last scan of last orbit of day

Day of year of last scan of last orbit of day

Year of last scan of last orbit of day

Latitude (90* S-90" N) for last scan, nadir view (degrees _ 100)

Longitude (180 ° W-180* E) for last scan, nadir view (de_:rees x 100)

Total number of input/output errors
Total number of scans read

Total number of scans written
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Table7.10.FormatofTrailerRecord(Continued)
16 Totalnumberofgoodsampleswritten
17 Totalnumberofsamplesoutofrange

Totalnumberofsamplesoutofrangefor:
Word Description

18
19
20
21

22-27
22
23
24
25
26
27

28-33
34--39
40-45
46-525

Zenithangle>88degrees
Latitudeoutofrange(absolutevalue> 90degrees)_normallyzero
Countsoutofrange(negative)

Numberofsampleswrittenthatwerebad:algorithmflagnot0,1,10,or11(total)
Totalsoferrorflagcountsforalgorithmflag= 1:

Total number of samples that had error flag = 0 or 10
Total

Total

Total

Total

Total

Same as

Same as

Same as

Spare

number of samples that had error flag = 1 or 11

number of samples that had error flag = 2 or 12

number of samples that had error flag = 3 or 13

number of samples that had error flag = 4 or 14

number of samples that had error flag = 5 or 15

22-27 for Algorithm Flag - 2

22-27 for Algorithm Flag = 3

22-27 for Algorithm Flag = 4

* The trailer record identifier (= -1) is a 16-bit integer that occupies the left half (two most significant bytes) of

word 3. All other values are stored as 4-byte integers, MSB first.

7.2.2 CDTOMS (Level-3 Data Product)

The CDTOMS Level-3 product contains global total ozone on a fixed l-degree latitude by 1.25-degree longitude

grid. It is available at URL ftp://jwocky.gsfc.nasa.gov/pub/eptoms. In the near future, we plan to make additional

TOMS derived parameters available in similar format. The averaging technique for producing this grid from the
Level-2 product is described above in Section 4.7.

Except for some changes in the header line, the Version 7 Level-3 product is identical to the Nimbus-7/TOMS

Version 6 CD-ROM product and the CDTOMS ozone product that was available by ftp. One global grid is stored in
each CDTOMS file.

Table 7.11 provides a detailed description of the first line of a daily grid file. Figure 7.1 shows an example of the

header and the first two latitude zones in a CDTOMS daily file from the ADEOS/TOMS. The gridded ozone values

are stored as 3-digit integers in units of matm-cm. Each of the 180 latitude zones requires 10 lines. They are ordered

from south to north with the first zone centered at -89.5 degrees. Within each latitude zone, values are given for each

of 288 longitude zones from 180 ° W through 0* (Greenwich) to 180" E. The first longitude zone is centered at -
179.375 degrees. As shown in Figure 7.1, annotation is present after all values are given for a latitude zone. Zeroes

denote missing data; that is data that could not be collected due to lack of sunlight or other problems.

Table 7.11. Format of Header Line of CDTOMS Daily Grid

Character Contents

1 ASCII blank (HEX 20)

2-5 "Day:" (quotes indicate fixed content)

6 ASCII blank

7-9 day of year
10 ASCII blank

11-13 month ("Jan," "Feb," "Mar" ...)
14 ASCII blank

15-16 day of month
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Table7.11.FormatofHeaderLineofCDTOMSDrilyGrid(Continued)
Character Contents

18 ASCIIblank
19-22 year
23-16 ASCIIblanks
27-33 "EP/TOMS"
34-37 ASCIIblanks
38-40 "STD"
41 ASCIIblank
42-46 "OZONE"
47-50 ASCIIblanks
51-60 "GEN:yy.ddd"
61 ASCIIblank
62-70 "AscLECT:"
71 ASCIIblank
72-73 hour(local)ofascendingnodeequatorcrossing
74 ASCII":"
75-76 minute(local)ofascendingnodeequatorcrossir_,g
77 ASCIIblank
78-79 "AM"or"PM"indicatingmorningoraftemoon_eveningascendingnodeequatorcrossing
80 ASCIIblank
81< if >(linefeedcharacter;i.e.,HEX0A)

Day:269Sep25,1997 EP/TOMSSTDOZONEGEN:97.269AscL!_CT:11:19AM
Longitudes:288binscenteredon179.375Wto179.375E (1.25degreestops)
Latitudes: 180binscenmredon 89.5Sto 89.5N (1.00degrees_ps_
2_2_2_2_2_72_72_72_72_52_52_52_52_52_52_52_52_52_52_52_52_52_52_52_52_52_52_52_52_2_2_
2___99_99_99_99_97_97_97_97_95_95_95_95_94_94_94_94_94_94_94_94_94_94_94_94_94_94_94_94_94_94
_94_94_94_94_94_94_87_87_87_87_89_89_89_89_92_92_92_92_92_92_92_92_92_92_92_92_92_92_92_92_88
_88_88_88_88_88_88_88_88_88_88_88_88_88_88_88_89_89_89_89_89_89_89_89_89_89_89_89_95_95_95_95
_95_95_95_95_95_95_95_95_95_95_95_95_97_97_97_972_2_2_2_98_98_98_98_99_99_99_992_2_2_
2_2_2_2_2_2_2_2_2_2_22_22_22_22_22_22_22_2_92_92_)2_92_92_92_92_92_92_92_92_92_92_92
_92_92_92_92_92_92_92_92_92_922_82_82_82_82_82_82_82_82_82)82_82_82_82_82_82_82_82_82_82_8_97
1971971971971971971972002002002002002002002002022022022022)3203203203201201201201201201201201
2_2_2_2_2_2_2_2_2_2_2_2_2_2_2_2_97_97_97_)7_99_99_99_99_98_98_98_98_96_96_96
196196196196196192192192192lat= -89.5
2_72_72_72_72_72_72_72_72_92_92_92_92_32_32_32_32_22_22_22_22_22_22_22_22_22_22_22_2_99_99_99
_99_98_98_98_98_9_9_9_9_9_9_9_9_9_9_9_9_9_9_9_9_9_9_9_9_89_89_89_89_89_89
_89_89_89_89_89_89_86_86_86_86_86_86_86_86_87_87_87_87_87_7_87_87_87_87_87_87_87_87_87_87_87
_87_87_87_88_88_88_88_9_9_9_9_9_9_9_9_9_9_9_9_)_9_9_9_9_9_9_9_9_9_9_9_
_92_92_92_92_92_92_92_92_92_92_92_92_93_93_93_93_93_93_93_)32__2__2__2__2__2__2__2__2__2__2__
2__2__2__2__2__2__2__2__2__2_22_22_22_22__2__2__2__2__2__2__2__2__2__2__2__2__2__2__2__2__2__
2__2__2_32_32_32_32_72_72_72_72_72_72_72_722_22_22_22_2_62_62_62_62_92_92_92_92_92_92_92_92__
2__2__2__2__2__2__2__2_92_92_92_922_22_22_22_22_22_22_22_2_82_82_82_82_82_82_82_82_72_72_72_7
2_62_62_62_62_42_42_42_42_82_82_82_82_62_62_62_62_62_62_62)62_62_62_62_62_32_32_32_3_98_98_98
198196196196196196196196196lat= -88.5

Figure 7.1. Sample CDTOMS Daily Gric File Excerpt
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LIST OF ACRONYMS, INITIALS, AND ABBREVIATIONS

ASCII

A.U.

BRDF

BUV

CAO

CD-ROM

CDTOMS

DAAC

D.U.

EOF

ESSA

EOSDIS

FOV

ftp

GMT

GRIDTOMS

GSFC

HDF

HDTOMS

IAM

IFOV

ISCCP

LECT

M3

MSB

N7

NASA

NCSA

netCDF

NMC

NOAA

OPT

PMT

PSC

American Standard Code for Information Interchange

Astronomical Unit

Bi-directional Reflectivity Distribution Function

Backscatter Ultraviolet

Central Aerological Observatory

Compact Disk-Read Only Memory

Compact Disk TOMS Gridded Data

Distributed Active Archive Center

Dobson Units (- milliatmosphere-centimeters)

Empirical Orthogonal Functions

Environmental Science Services Administration

Earth Observing System Data Information System

Field-of-View

file transfer protocol

Greenwich Mean Time

Gridded TOMS Tape

Goddard Space Flight Center

Hierarchical Data Format

High Density TOMS Tape

Interface Adapter Model

Instantaneous Field-of-View

International Satellite Cloud Climatology Project

Local Equator Crossing Time

Meteor-3 spacecraft

Most Significant Byte

Nimbus-7 spacecraft

National Aeronautics and Space Administration

National Center for Supercomputing Applications

Network Common Data Format

National Meteorological Center

National Oceanic and Atmospheric Administration

Ozone Processing Team

Photo-Multiplier Tube

Polar Stratospheric Cloud

51



LIST OF ACRONYMS, INITIALS, AND ABBREVIATIONS (Continued)

RCA

SAGE

SBUV

SDS

SOI

TOMS

URL

UV

Reflectance Calibration Assembly

Stratospheric Aerosol and Gas Experiment

Solar Backscatter Ultraviolet

Scientific Data Set

Sulfur Dioxide Index

Total Ozone Mapping Spectrometer

Uniform Resource Locator

Ultraviolet
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APPENDIX A. STANDARD TEMPERATURE AND OZONE PROFILES

This appendix contains the standard ozone and temperature profiles used in the calculation of radiances discussed in

Section 4. The profiles are described as a function of Umkehr Layer. Table A.1 gives the column ozone, in units of

matm-cm, for each layer. The three-digit and one-letter code identifies the total ozone and latitude of the profile.

Profiles are provided for three latitude zones: 15 degrees, denoted L for low, 45 degrees, denoted M for mid, and 75

degrees, denoted H for high. The three-digit number is the total ozone, in units of matm-cm. Table A.2 gives the

temperature at the midpoint of each layer, and the boundaries of the layers, in pressure units, and the locations of the

midpoints of the layers are given in Table A.3.

Table A. 1. TOMS Version 7 Standard Ozone Profiles

Umkehr Layer Number

Profile 0 1 2 3 4 5 6 7 8 9 > 9

225L 15.0 9.0 5.0 7.0 25.0 62.2 57.0 29.4 10.9 3.2 1.3

275L 15.0 9.0 6.0 12.0 52.0 79.2 57.0 29.4 10.9 3.2 1.3

325L 15.0 9.0 10.0 31.0 71.0 87.2 57.0 29.4 10.9 3.2 1.3

375L 15.0 9.0 21.0 53.0 88.0 87.2 57.0 29.4 10.9 3.2 1.3

425L 15.0 9.0 37.0 81.0 94.0 87.2 57.0 29.4 10.9 3.2 1.3

475L 15.0 9.0 54.0 108.0 100.0 87.2 57.0 29.4 10.9 3.2 1.3

125M 6.0 5.0 4.0 6.0 8.0 31.8 28.0 20.0 11.1 3.7 1.4

175M 8.0 7.0 8.0 12.0 26.0 41.9 33.6 22.3 11.1 3.7 1.4

225M 10.0 9.0 12.0 18.0 44.0 52.1 39.2 24.5 11.1 3.7 1.4

275M 16.0 12.0 15.0 29.0 58.0 63.7 40.6 24.5 11.1 3.7 1.4

325M 16.0 14.0 26.0 45.0 74.7 66.9 41.7 24.5 11.1 3.7 1.4

375M 16.0 16.0 39.0 64.0 85.7 71.1 42.5 24.5 11.1 3.7 1.4

425M 16.0 18.0 54.0 84.0 97.7 71.7 42.9 24.5 11.1 3.7 1.4

475M 16.0 22.0 72.0 107.7 101.0 72.6 43.0 24.5 11.1 3.7 1.4

525M 16.0 26.0 91.0 127.7 108.0 72.6 43.0 24.5 11.1 3.7 1.4

575M 16.0 30.0 110.0 147.7 115.0 72.6 43.0 24.5 11.1 3.7 1.4

125H 9.5 7.0 18.3 7.6 8.2 28.6 22.0 12.4 7.7 2.5 1.2

175H 9.5 8.0 22.8 22.0 26.9 32.3 26.8 15.0 8.0 2.5 1.2

225H 10.0 9.0 27.6 45.7 41.0 35.0 28.8 15.4 8.3 2.9 1.3

275H 14.0 12.0 34.0 66.9 54.2 36.0 28.8 15.4 8.9 3.4 1.4

325H 14.0 15.0 46.8 82.6 65.2 41.7 28.8 17.2 8.9 3.4 1.4

375H 14.0 20.0 61.2 93.8 75.2 45.9 32.5 18.7 8.9 3.4 1.4

425H 14.0 25.0 76.2 104.9 84.2 51.4 35.6 20.0 8.9 3.4 1.4

475H 14.0 32.0 91.0 117.1 93.0 55.8 37.5 20.9 8.9 3.4 1.4

525H 14.0 41.0 107.1 128.1 101.0 60.2 38.2 21.7 8.9 3.4 1.4

575H 14.0 49.0 123.2 142.2 111.0 60.6 38.8 22.5 8.9 3.4 1.4
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Table A.2. TOMS Version 7 Standard Temgerature Profiles

Umkehr Layer Num)er
Profile

0 1 2 3 4 5 6 7 8 9 >9

225L 283.0 251.0 215.6 200.7 210.7 221.6 231.1 245.3 258.7 267.4 265.4

275L 283.0 251.0 215.9 203.5 211.9 222.5 231.1 245.3 258.7 267.4 265.4

325L 283.0 251.0 216.5 207.0 213.6 223.0 231.1 245.3 258.7 267.4 265.4

375L 283.0 251.0 216.0 210.0 216.0 224.0 Z_I.1 245.3 258.7 267.4 265.4

425L 283.0 251.0 216.0 213.0 217.0 224.5 231.1 245.3 258.7 267.4 265.4

475L 283.0 251.0 216.0 216.0 219.0 225.0 231.1 245.3 258.7 267.4 265.4

125M 237.0 218.0 196.0 191.0 193.0 210.0 227.6 239.4 253.6 263.9 262.6

175M 260.0 228.0 201.7 198.0 202.1 214.3 227.6 239.4 253.6 263.9 262.6

225M 273.0 239.0 213.3 207.5 211.7 219.1 227.6 239.4 253.6 263.9 262.6

275M 273.0 239.0 217.1 212.2 214.9 220.4 227.6 239.4 253.6 263.9 262.6

325M 273.0 239.0 219.1 216.6 217.0 220.8 2;!7.6 239.4 253.6 263.9 262.6

375M 273.0 239.0 220.2 219.0 219.0 221.9 227.6 239.4 253.6 263.9 262.6

425M 273.0 239.0 220.9 220.7 221.0 223.7 21!7.6 239.4 253.6 263.9 262.6

475M 273.0 239.0 221.5 222.5 222.7 224.4 21!7.6 239.4 253.6 263.9 262.6

525M 273.0 239.0 222.3 224.8 225.5 225.8 227.6 239.4 253.6 263.9 262.6

575M 273.0 239.0 225.0 227.0 227.0 227.0 227.6 239.4 253.5 263.9 262.6

125H 237.0 218.0 196.0 191.0 193.0 210.0 223.3 237.1 251.6 262.4 265.6
175H 260.0 228.0 201.7 198.0 202.1 214.3 223.3 237.1 251.6 262.4 265.6

225H 260.0 228.0 209.7 208.5 212.5 222.0 228.0 237.1 251.6 262.4 265.6

275H 260.0 228.0 222.6 223.4 223.8 226.5 2 _1.6 237.1 251.6 262.4 265.6

325H 260.0 228.0 222.6 223.4 223.8 226.5 2 _1.6 237.1 251.5 262.4 265.6

375H 260.0 228.0 222.6 223.4 223.8 226.5 2 _1.6 237.1 251.5 262.4 265.6

425H 260.0 228.0 222.6 223.4 223.8 226.5 2 f 1.6 237.1 251.5 262.4 265.6
475H 260.0 228.0 222.6 223.4 223.8 226.5 2 _1.6 237.1 251.5 262.4 265.6

525H 260.0 228.0 222.6 223.4 223.8 226.5 2 _1.6 237.1 251.5 262.4 265.6

575H 260.0 228.0 222.6 223.4 223.8 226.5 2_ 1.6 237.1 251.5 262.4 265.6

Table A.3. Umkehr Layers

Umkehr Layer Layer Pressure Pressure a LAltitude Layer Midpoint

Number (mb) of Mi( point (km)

12 0.000-0.247 - -

11 0.247-0.495 .3:;0 56.5

10 0.495-0.990 .7(_3 51.0

9 0.990-1.980 1 .,4) 45.5

8 1.980-3.960 2.5 0 40.2

7 3.960-7.920 5.( ,0 35.2

6 7.920-15.80 11 2 30.4

5 15.80-31.70 22 4 25.8

4 31.70--63.30 44 8 21.3

3 63.30-127.0 89 6 17.0

2 127.0-253.0 179.0 12.5

1 253.0-506.0 351 _.0 7.9

0 506.0-1013 71(,.0 2.8
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APPENDIX B. SOFTWARE TO READ HDF OZONE DATA

This appendix describes software that can be used to read the TOMS HDF Level-2 and Level-3 data files. The

software is written in C and requires the HDF version 3.3 or 4 (or higher) libraries to compile. The read software is

available at the GSFC DAAC (see Appendix C). The HDF libraries can be downloaded via anonymous ftp at

ftp.ncsa.uiuc.edu in directory/HDE Copies of the most recent HDF version libraries can be downloaded from the

DAAC anonymous ftp server at daac.gsfc.nasa.gov in directory/pub/hdf.

The Program read_tomsl2.c can be used to read the TOMS Level-2 HDF files. Issuing the command read_tomsl2 will

display a list of the HDF files in the current directory. Next, the program will display the following information--

• Text: "File description stored in the file" (optional),

• A prompt to save the output to an ASCII file, and
• File label and metadata.

The next keystroke will display netCDF-style global attributes.

The next keystroke will display a numbered list of all the SDSs providing the name and dimensions of the SDS

corresponding to each number. The user can select any SDS to view, or can exit the program by entering q. For the

selected SDS, the program will display a description of the axis or axes, the physical units, and offsets and scale
factors used to convert the values in the HDF data set to physical values. The user can then press q or any other key to

go back to the SDS list and continue browsing the data. After selecting the desired SDS, the user can then select a

latitude band for which the data will be displayed. The output will include year, day number, time, latitude, longitude,

solar zenith angle, scan number, nadir angle, and the SDS data. The output will be displayed in physical values.

The program read_tomsl3.c can be used to read the TOMS Level-3 HDF files. Issuing the command read_tomsl3 will

display a list of the HDF files in the current directory. Next, the program will display the following information--

• File label,

• Text: "File description stored in the file" (optional), and
• Metadata.

The next keystroke will display a numbered list of all the SDSs providing the name and dimensions of the SDS

corresponding to each number: 1 is ozone, 4 is reflectivity. (Numbers 2 and 3 are coordinate data sets and will not be

displayed by this software). The user can display either SDS by entering its number or can exit the program by

entering q. The user will be prompted to output the file to the screen, an ASCII file, or to a binary file. The output will
be displayed in physical values. For screen and ASCII dumps, latitude and longitude values will be included with the
data values.
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APPENDIX C. DATA AVAILABILITY

Data Archive

The derivative data products defined in this User's Guide are archived at and available from the NASA Goddard Space

Flight Center Distributed Active Archive Center (NASAJGSFC/DAAC). All data and services offered by the Goddard

DAAC are free. For very high volume data orders, users may be asked to provide the magnetic tapes for the requested

data.

The DAAC may be accessed on World Wide Web at http://daac.gsfc.nasa.gov/. Options for locating and accessing

data are listed on the DAAC home page. Information about TOMS and other ozone data archived at the Goddard

DAAC can be found at http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/ATM_CHEM/ac_main.html. In addition to

data, the DAAC Web pages contain information about HDE the format in which it provides the Level-2 and Level-3

TOMS products, available from http://daac.gsfc.nasa.gov/REFERENCE_DOCS/HDF/gdaac-hdf.html.

The DAAC maintains a help desk, which provides assistance with its on-line ordering services. It can be reached as

follows:

Electronic Mail:
Telephone:
FAX:

daacuso@daac.gsfc.nasa.gov
+1-301-614-5224 or 1-800-257-6151
+1-301-614-5268

The postal address of the DAAC is:

Goddard Distributed Active Archive Center
Global Change Data Center
Code 902.2

NASA/Goddard Space Flight Center
Greenbelt, MD 20771

Near Real-time Data

Various TOMS Level-3 data (native format, Section 7.2) and images as well as electronic versions of the data products
user's guides are available on the World Wide Web TOMS Home Page at http://jwocky.gsfc.nasa.gov/index.html.
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APPENDIX D. ATTITUDE ANOMALIES

The EP/TOMS spacecraft has experienced a number of attitude anomalies listed below in Table D.I. These anomalies

are short lived and tend to affect only the extreme off-nadir scans (not used in level-3 at high latitude). The ozone

errors are typically 1D.U. or less during the events listed in Table D. 1.

Table D.I. Summary Listing of EP TOMS Attitude Anomaly Events

UT Start UT End Maximum Attitude Spacecraft Position
Error (deg) (deg)

Orbit Year day hr:mn:sc hr:mn:sc Roll Pitch Yaw Lat Lon

337 1996 206 18:36:48 19:07:27 -0.70 -0.95 0.70 28.5 -121.9

611 1996 224 18:08:12 18:09:29 -0.55 0.31 -0.88 32.3 -108.0

693 1996 230 03:33:06 03:33:10 -0.18 0.056 -0.26 17.9 113.4

723 1996 232 02:55:39 02:56:04 0.17 0.064 0.32 21.1 122.2

754 1996 234 03:54:11 03:54:16 0.19 0.076 0.34 27.3 106.7

800 1996 237 04:31:39 04:33:54 -0.40 0.19 -0.83 36.3 95.1

981 1996 249 02:11:07 02:13:02 0.57 0.26 1.2 14.5 133.9

1300 1996 270 01:51:17 01:51:38 0.22 0.089 0.41 25.9 137.6

1863 1996 307 02:32:12 02:34:23 0.54 0.21 1.2 27.0 126.8

1893 1996 309 01:58:23 01:55:14 -0.34 0.13 -0.74 26.3 136.7

2196 1996 329 00:07:38 00:14:40 -0.52 0.23 -1.5 42.6 158.7

2351 1996 339 04:45:17 04:45:33 0.19 0.080 0.36 14.8 95.9

2438 1996 344 23:34:49 23:35:50 0.47 0.24 0.85 3.5 174.9

2473 1996 347 05:17:16 05:20:20 0.58 0.30 1.3 23.4 86.0

2577 1996 354 01:25:23 01:28:28 -0.52 0.24 -1.3 22.7 144.1

3003 1997 016 01:43:30 01:45:21 0.52 0.24 1.1 23.1 139.9

4150 1997 091 11:32:56 11:34:46 0.28 0.12 0.62 24.6 -7.6

4484 1997 113 10:25:54 10:32:15 0.43 0.19 1.3 34.2 6.5

4583 1997 119 22:37:39 22:40:19 -0.47 0.21 -1.0 24.1 -173.8

4629 1997 122 23:09:39 23:18:27 -0.52 0.32 -1.5 40.1 173.7

4703 1997 127 19:54:53 19:55:01 0.18 0.081 0.34 11.5 -130.7

4816 1997 135 06:10:19 06:14:29 0.37 0.23 1.6 29.5 71.8

4910 1997 141 10:27:05 10:29:49 0.50 0.28 1.4 25.0 8.7

5007 1997 147 19:27:17 19:30:42 0.50 0.24 1.0 25.3 -126.5

5017 1997 148 11:15:55 11:16:19 0.21 0.11 0.51 23.3 -2.6

5132 1997 156 00:38:08 00:41:16 0.47 0.21 1.3 28.2 155.4

5333 1997 169 05:42:38 05:42:46 0.27 0.11 0.44 24.9 80.6

5524 1997 181 18:55:13 18:57:08 0.62 0.33 1.4 23.5 -117.8

5607 1997 187 05:52:41 05:53:54 0.31 0.27 0.61 31.6 76.7
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TableD.1. SummaryListingofEPTOMSAttitudeAnomalyEvents(Continued)

Orbit
5614
5774
5848

5934
6208
6241
6367
6565
6593
6620
6634
6772
6787
7277
7805
8061
8135
8209
8237
8319
8322
8340
8444
8597
8618
8709
8841
8845

8916
8986
9213
9267
9835
9845

Year

1997

1997

1997

1997

1997

1997

1997

1997

1997

1997

1997

1997

1997

1997

1997

1997

1997

1997

1997

1998

1998

1998

1998

1998

1998

1998

1998

1998

1998

1998

1998

1998

1998

1998

UT Start UT End Maximum Attitude
Error (deg)

day hr:mn:sc hr:mn:sc Roll Pitch Yaw

187 16:53:30 16:54:23 -0.39 0.25 -0.51

198 05:14:43 05:16:22 0.28 0.18 0.67

203 01:58:19 02:00:18 -0.54 0.26 -1.1

208 17:33:46 17:33:58 0.17 0.12 0.33

226 17:41:22 17:43:50 0.39 0.39 0.77

228 21:41:25 21:45:02 -0.60 0.29 -1.3

237 04:28:07 04:32:37 -0.52 0.29 -1.4

250 04:38:31 04:40:10 -0.51 0.22 -0.83

252 00:50:57 00:53:08 0.56 0.29 1.2

253 19:25:04 19:26:06 -0.30 0.22 -0.50

254 17:27:56 17:29:30 0.36 0.17 0.73

263 19:04:43 19:05:44 -0.39 0.22 -0.60

264 18:46:50 18:46:54 0.16 0.067 0.25

296 23:11:50 23:13:49 0.37 0.17 0.96

338 02:52:46 03:29:22 -0.81 -1.2 -0.84

348 17:53:20 17:55:23 0.41 0.17 0.93

353 20:49:56 20:51:26 -0.46 0.22 -0.68

358 23:47:25 23:49:48 0.59 0.29 1.4

360 23:57:45 00:00:33 0.60 0.31 1.6

001 16:08:58 16:09:56 0.31 0.15 0.66

001 19:36:46 19:38:57 -0.33 0.12 -0.64

003 01:29:27 01:33:08 -0.50 0.21 -1.3

010 06:24:02 06:24:06 -0.21 0.053 -0.32

020 20:37:42 20:40:34 -0.60 0.31 -1.4

022 09:02:38 09:05:09 0.30 0.12 0.60

028 16:18:27 16:18:35 0.22 0.10 0.40

037 18:07:23 18:07:27 0.14 0.053 0.29

038 00:43:03 00:43:07 0.16 0.057 0.28

042 22:44:28 22:47:32 -0.40 0.15 -0.86

047 19:04:18 19:06:58 0.42 0.20 1.1

063 12:19:33 12:24:48 0.45 0.21 1.6

067 07:31:14 07:31:18 0.16 -0.052 0.30

106 15:29:11 15:31:26 0.55 0.27 1.3

107 06:34:57 06:37:49 0.51 0.25 1.4

Spacecraft Position
(deg)

Lat Lon

23.5 -87.1

27.9 86.7

33.9 134.7

17.3 -96.0

26.9 -99.9

21.6 -159.4

41.6 95.1

17.8 97.4

30.6 152.2

25.5 -125.2

20.7 -95.3

22.0 -119.6

29.3 -116.0

12.0 179.9

3.9 117.2

22.1 -102.0

12.6 -144.5

11.0 171.1

7.5 169.0

-16.8 -69.7

18.1 -127.3

15.4 144.6

19.2 71.3

20.6 -143.0

-12.1 35.8

-13.0 -72.4

11.6 -103.3

1.2 159.3

19.2 -174.5

16.7 -118.9

31.7 -21.1

-32.1 62.8

-9.6 -61.1

21.5 67.6
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Table D. 1. Summary Listing of EP TOMS Attitude Anomaly Events (Continued)

Orbit

9877

10173

10191

10551

10582

10624

10661

10798

10884

10943

11130

11172

11369

11433

11532

11576

11648

Year

1998

1998

1998

1998

1998

1998

1998

1998

1998

1998

1998

1998

1998

1998

1998

1998

1998

UT Start UT End Maximum Attitude

Error (deg)

day hr:mn:sc hr:mn:sc Roll Pitch Yaw

109 11:48:27 11:48:47 0.18 0.074 0.43

130 01:12:03 01:15:03 0.63 0.32 1.5

131 05:32:42 05:36:52 0.30 0.14 1.3

156 07:09:16 07:09:20 0.16 0.052 0.34

158 07:21:51 07:21:59 0.18 0.082 0.31

161 05:08:29 05:10:53 -0.39 0.18 -0.81

163 18:35:58 18:39:19 0.53 0.26 1.2

173 06:16:21 06:18:57 -0.57 0.29 -1.2

179 05:12:32 05:14:27 0.51 0.25 1.2

183 07:17:06 07:18:36 0.24 0.099 0.55

196 05:54:10 06:00:27 0.58 0.32 1.9

199 03:41:01 03:43:08 -0.55 0.26 -1.1

212 19:07:33 19:07:54 0.19 0.082 0.42

217 05:27:11 05:30:16 0.56 0.32 1.4

224 02:02:53 02:04:40 0.38 0.18 0.82

227 03:02:19 03:04:54 0.40 0.21 1.1

232 02:44:29 02:47:05 -0.57 0.29 -1.2

Spacecraft Position
(deg)

Lat Lon

23.1 -10.4

0.3 151.6

24.5 82.4

23.2 59.5

26.4 55.8

30.9 87.7

29.2 -114.1

30.9 70.7

34.1 86.1

39.6 53.8

31.9 75.1

13.2 112.7

26.3 -120.7

32.6 82.5

45.6 130.7

23.2 120.6

36.5 122.5
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APPENDIX E. MISSING DATA

No Earth scan data (and therefore no Level-2 or Level-3 data) were acquired for the orbits given in Table E. 1. Table

E.2 lists the orbits that were partially missing through June of 1998. The percentage of available data is shown in

parenthesis. These tables will be updated and made available at the Web Site for Near Real-time data given in

Appendix C. Table E.3 shows the set of orbits during which some "stare mode" data were taken. In this mode, the

scan mirror is held stationary so that the instrument stares at a fixed view angle. As a result, approximately 3 minutes

of the ozone data are missing from each of these orbits. We do not anticipate the acquisition of any additional stare
mode data.

Table E. 1 EP/TOMS Orbits with No Ozone Data

Month Days Year Orbit Numbers Comment

November 28 1996 2258

November 16-19 1997 7640-7675 Instrument in "safehold"

December 4-13 1997 7903-8037 Orbit altitude being raised

Table E.2 Incomplete EP/TOMS Orbits

Date Year orbit (% Available)

July 16 1996 216 (84%), 219 (61%)

July 17 1996 221 (40%), 227 (61%), 229 (40%), 232 (29%)

July 19 1996 264 (39%)

July 21 1996 295 (60%)

July 22 1996 299 (12%)

July 24 1996 339 (40%)

October 9 1996 1505 (64%), 1506 (80%)

November 28 1996 2257 (38%), 2259 (62%)

December 31 1996 2773 (77%)

March 9 1997 3794 (65%)

November 16 1997 7639 (41%)

November 19 1997 7676 (60%)

December 4 1997 7902 (38%)

December 13 1997 8038 (67%)

April 14 1998 9807 (82%)

May 1 1998 10045 (72%)

May 12 1998 10212 (96%), 10213-10216 (38% each)

May 13 1998 10217-10223 (38% each), 10224 (40%)

May 19 1998 10312 (99%)

May 20 1998 10327 (98%)

May 24 1998 10376 (61%), 10377 (39%)

June 14 1998 10675 (99%)
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TableE.3EP/TOMSOrbitsContainingS_areMode Data

Date Year Orbits Date Year Orbits

4152 June

4167 June

4228, 4230 June

4306 June_

April 1 1997

April 2 1997

April 6 1997

April 11 1997

April 16 1997 4382

April 20 1997 4443

April 21 1997 4458

April 25 1997 4519

April 30 1997 4595

May 4 1997 4655

May 5 1997 4671

May 9 1997 4732

May 10 1997 4747

May 13 1997 4793

May 14 1997 4808

May 19 1997 4884

June 1 1997 5082

June 2 1997 5097

5 1997 5143

6 1997 5158

7 1997 5173

10 1997 5219

June 11 1997 5233,5234

June 12 1997 5240,5250

June 14 1997 5277,5280

June 15 1997 5295

June 16 1997 5309,5310

June 17 1997 5316,5326

June. 19 1997 5353,5356

June 20 1997 5371

June 21 1997 5386

June 24 1997 5432

June 25 1997 5447

June 28 1997 5493

June 29 1997 5508
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