
ARE ENGINEERING LABORATORY SERIES SEL-960002

PROCEEDINGS
OF THE

TWENTY-FIRST ANNUAL
SOFTWARE ENGINEERING

WORKSHOP

DECEMBER 1996

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

Proceedings of the Twenty-First Annual
Software Engineering Workshop

December 54,1996

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

Page intentionally left blank

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aeronautics and Space AdministrationIGoddard Space Flight Center (NASNGSFC) and
created to investigate the effectiveness of software engineering technologies when applied
to the development of applications software. The SEL was created in 1976 and has three
primary organizational members:

NASNGSFC, Flight Dynamics Systems Branch

The University of Maryland, Department of Computer Science

Computer Sciences Corporation, Development and Systems Engineering organization

The goals of the SEL are (1) to understand the software development process in the
GSFC environment; (2) to measure the effects of various methodologies, tools, and
models on this process; and (3) to identifl and then to apply successful development
practices. The activities, findings, and recommendations of the SEL are recorded in the
Software Engineering Laboratory Series, a continuing series of reports that includes this
document.

Documents from the Software Engineering Laboratory Series can be obtained via the SEL
homepage at:

or by writing to:

Flight Dynamics Systems Branch
Code 551
Goddard Space Flight Center
Greenbelt, Maryland 2077 1

SEW Proceedings iii

SEW Proceedings

The views and findings expressed
herein are those of the authors and
presenters and do not necessarily
represent the views, estimates, or
policies of the SEL. All material
herein is reprinted as submitted by
authors and presenters, who are
solely responsible for compliance
with any relevant copyright, patent,
or other proprietary restrictions.

CONTENTS

Materials for each session include the viewgraphs
presented at the workshop and a supporting paper
submitted for inclusion in these Proceedings.

Page

6* 1 Session 1: The Software Engineering Laboratory

/.- 3 The Improvement Cycle: Analyzing Our Experience
R. Pajerski, NASNGoddard, and S. Waligora, Computer Sciences Corporation

- 2, 27 Evolving the Reuse Process
S. Condon, Computer Sciences Corporation, S. Kraft, NASNGoddard , V. Basili,
J. Kontio, C. Seaman, and Y. Kim, University of Maryland

Studies on Reading Techniques
V . Basili, G. Caldiera, F. Shull, and F. Lanubile, University of Maryland

Session 2: Process - Discussant: J. Jeletic, NASAIGoddard

Software Development Technology Evaluation: Proving Fitness-for-Use with
Architectural Styles
J. Cusick and W. Tepfenhart, AT&T

Systematic Process Improvement in a Multi-Site Software Development Project
H. Hientz, G. Smith, A. Gustavsson, P. Isacsson, and C. Mattsson, Q-Labs
GmbH

An Empirical Study of Process Conformance
S. Sorurngard, Norwegian University of Science and Technology

Session 3: Using Commercial Software - Discussant: S. Green,
NASNGoddard

Using a UniJied Object Topology To Uncover COTS Integration Challenges and
Assembly Afinities
W. Tepfenhart and J. Cusick, AT&T

Product Development with Massive Components
K. Sullivan, J. Cockrell, S. Zhang, J. Knight, University of Virginia

Technology Evolution: COTS Transition at Raytheon 1983 - 1996
T. Lydon, Raytheon Electronic Systems (RES)

SEW Proceedings

CONTENTS (cont'd)

Page

Session 4: Reliability - Discussant: M. Zelkowitz, University of Maryland

IdentiJication of Failure-Prone Modules in Two Sojiware System Releases
N. Ohlsson and C. Wohlin, Linkoping University, Sweden

Predicting Sojiware Quality Using Bayesian Belief Networks
M. Neil and N. Fenton, City University, London

Data Collection Demonstration and Sojiware Reliability Modeling For a Multi-
Function Distributed System
N. Schneidewind, Naval Postgraduate School

Operational Test Readiness Assessment of an Air Force Sojiware System: A Case
Studj
A. Goel, Syracuse University, B. Hermann and R. McCanne, U.S. Air Force

Session 5: Case Studies - Discussant: S. Waligora, Computer Sciences
Corporation

Risk Knowledge Capture in the Riskit Method
J . Kontio and V. Basili, University of Maryland

Requirement Metrics for Risk Identijication
T. Hammer and L. Hyatt, NASA Goddard, W. Wilson, L. Huffman, and L.
Rosenberg, Software Assurance Technology Center

Applying the SCR Requirements SpeciJication Method to Practical Systems: A Case
Studj
R. Bharadwaj and C. Heitrneyer, Naval Research Laboratory

Panel Discussion: Transferring Best Practices: Why Is It So Complex?
- Moderator: V. Basili, University of Maryland

R. DeMillo, Bellcore

M. Evangelist, Florida International University

P. Freeman, The Georgia Institute of Technology (slides not available)

A. Willey, Motorola Corporation

Appendix A-Workshop Attendees

Appendix B-Standard Bibliography of SEL Literature

SEW Proceedings vi

Session 1: The Software Engineering Laboratory

The Improvement Cycle: Analyzing Our Experience
R. Pajerski, NASNGoddard, and S. Waligora, Computer Sciences Corporation

Evolving the Reuse Process
S. Condon, Computer Sciences Corporation, S. Kraft, NASNGoddard , V. Basili,

J. Kontio, C. Seaman, and Y. Kim, University of Maryland

Studies on Reading Techniques
V . Basili, G. Caldiera, F. Shull, and F. Lanubile, University of Maryland

SEW Proceedings

SEW Prueeedings

: \ . * 4 - . . ** 4* / *
+ , :j<n-.* +.

3(oOb7/

The Improvement Cycle: Analyzing Our Experience A$

Rose Pajerski Sharon Waligora
NASA, Goddard Space Flight Center Computer Sciences Corporation

Flight Dynamics Division 406 1 Powder Mill Rd.
Greenbelt, MD 2077 1 Calverton, MD 20705

(301) 286-3010 (301) 572-375 1
rose.pajesrki @gsfc.nasa.gov swaligor@csc.com

Abstract
NASA's Software Engineering Laboratory (SEL), one of the earliest pioneers in the
areas of software process improvement and measurement, has had a significant
impact on the software business at NASA Goddard. At the heart of the SEL's
improvement program is a belief that software products can be improved by
optimizing the software engineering process used to develop them and a long-term
improvement strategy that facilitates small incremental improvements that
accumulate into significant gains. As a result o f its efforts, the SEL has incrementally
reduced development costs by 60%, decreased error rates by 85% and reduced cycle
time by 25%. In this paper, we analyze the SEL's experiences on three major
improvement initiatives to better understand the cyclic nature of the improvement
process and to understand why some improvements take much longer than others.

Background
Since 1976, the Software Engineering Laboratory (SEL) has been dedicated to understanding and
improving the way in which one NASA organization, the Flight Dynamics Division (FDD) at
Goddard Space Flight Center, develops, maintains, and manages complex flight dynamics systems. It
has done this by developing and refining a continual process improvement approach that allows an
organization such as the FDD to fine tune its process for its particular domain. Experimental software
engineering and measurement play a significant role in this approach.

The SEL is a partnership of NASA Goddard's FDD, its major software contractor, Computer
Sciences Corporation (CSC), and the University of Maryland's (UM) Department of Computer
Science. The FDD primarily builds software systems that provide ground-based flight dynamics
support for scientific satellites. They fall into two sets: ground systems and simulators. Ground
systems are midsize systems that average around 250 thousand source lines of code (KSLOC).
Ground system development projects typically last approximately 2 years. Most of the systems have
been built in FORTRAN on mainframes, but recent projects contain subsystems written in C and CU
on workstations. The simulators are smaller systems averaging around 60 KSLOC that provide the
test data for the ground systems. Simulator development lasts between 1 and 1.5 years. Most of the
simulators have been built in Ada on a VAX computer. The project characteristics of these systems
are shown in Table 1. The SEL is responsible for the management and continual improvement of the
software engineering processes used on these FDD projects.

SEW Proceedings 3 SEL-96-002

Table I. Characteristics of SEL Projects

Characteristics

150 - 400 KSLOC 40 - 80 KSLOC

The SEL process improvement approach shown in Figure 1 is based on the Quality Improvement
Paradigm [Reference 11 in which process changes and new technologies are 1) selected based on a
solid understanding of organization characteristics, needs, and business goals; 2) piloted and assessed
using the scientific method to identify those that add value; and 3) packaged for broader use
throughout the organization. Using this approach, the SEL has successfully established and matured
its process improvement program throughout the organization.

Make improvements part of your business
ITERATE

* Update standards
* Refine training

ASSESSING - - - - - - - - - - - - - - - - -
Determine effective improvements

Determine improvements and set goals
Measure changed process and product

UNDERSTANDING Analyze impact of process change on product .
Know your software business

What are my software characteristics?
* What process do we use?

What are our goals?

TIME t

Figure 1. SEL Process Improvement Paradigm

The SEL organization consists of three functional areas: software developers, software engineering
process analysts, and data base support (Figure 2). The largest part of the SEL is the 150 to 200
software personnel who are responsible for the development and maintenance of over 4 million
source lines of code (SLOC) that provide orbit and attitude ground support for all Goddard missions.
Since the SEL was founded, software project personnel have provided software measurement data on

SEW Proceedings 4 SEL-96-002

over 130 projects. This data has been collected by data base support personnel and stored in the SEL
data base for use by software project personnel and process analysts. The process analysts are
responsible for defining the experiments and studies, analyzing the data, and producing reports. These
reports affect such things as project standards, development procedures, and how projects are
managed. The data base support staff is responsible for entering measurement data into the SEL data
base, quality assuring the data, and maintaining the data base and its reports.

PROCESS ANALYSTS
Measur s Staff level: 1 0 -1 5

Function: Develop --8 Cunction: Design studies
software I Refined 1

Process

Perform analysis
Refine process

DATA BASE SUPPORT

Staff level: 2 - 3 I SEL
Data Base 130 Projects

Function: Process, QA, 1

& archive data I
GEL Reports

NASA & CSC I Library .Project Docs

Figure 2. SEL ~r~anizational Structure

Improvement Cycles

Although the improvement process is a never-ending endeavor, it is cyclic in nature. At the SEL,
improvement cycles operate within the context of the SEL process improvement paradiem. Each
improvement cycle tends to focus on a single organizational goal and only one or two process or
technology changes that address that goal. Often these build on earlier experimental results. Each
SEL improvement cycle has four major steps:

Each improvement cycle begins with setting improvement goals based on the current business
needs and strategic direction of the organization. Based on a solid understanding of the problem
domain (application), the development environment, and the current process and product
characteristics of the organization, process analysts identify leverage areas, i.e., software process
or product characteristics that could have a significant impact on the overall performance of the
organization. For example, increasing software reuse would have a high probability of reducing
project cost and development cycle time. Therefore, if the business goals are to reduce cost and/or
cycle time, increasing reuse would be a reasonable leverage area.

2. The next step is to identify software engineering technologies (processes, methods, and/or tools)
that are likely to affect the leverage area. For example, object-oriented techniques (OOT) are
reported to facilitate reuse. The ultimate goal of this step is to select one technology or process
change that has the greatest potential for meeting the improvement goal.

3. The third and longest step of the improvement cycle is to conduct experiments to understand the
value and applicability of the new technology in the local organization. Scientific methods are
used to pilot the technology on one or more real projects and observe the use and effect of the

SEW Proceedings 5 SEL-96-002

technology on the development process, products, and project performance. Process analysts use
both qualitative feedback and quantitative measurements to evaluate the value of the
technologylprocess change. Key project measurements are compared with those from a control
group (similar contemporary projects using the standard process) to assess overall value. Several
experiments that successively refine the processltechnology may be required before it is ready to
deploy.

4. The final step in an improvement cycle is to deploy the beneficial process/technology throughout
the organization. This involves integrating the process changeltechnology into the standard
process guidebooks, providing training to project personnel, and providing ongoing process
consulting support to facilitate the adoption of the new technologylprocess change.

Since its inception, the SEL has completed numerous improvement cycles spanning from 1 to 7 years.
The amount of time it takes to complete a cycle depends on the maturity and breadth of the
technologylprocess change. Several improvement cycles are usually active at one time; however, they
involve different subsets of the organization's projects.

tSEL Improvement Examples

In 1985, the SEL set two fairly common improvement goals: 1) reduce the cost of developing
software systems and 2) improve the quality of delivered systems. In 1990, in response to NASA's
new emphasis on launching missions more quickly, a third goal was adopted: 3) reduce the cycle time
needed to develop new systems. All of these goals were addressed by leveraging different process and
technology areas within the context of a unified improvement program.

The following examples illustrate the different approaches taken and results achieved within three
representative SEL improvement initiatives. As shown in Table 2, each initiative used a different
number of improvement cycles and a somewhat different deployment strategy to achieve the desired
results. The number of improvement cycles was driven by the experiment approach and results, while
the deployment strategy was selected based on a risklbenefit analysis of the process change using the
experiment results.

Table 2. §EL Improvement Examples

SEW Proceedings

Goal

Reduce
Cost

Increase
Quality

Reduce
Cycle

TimelCost

Improvement
Initiative

Maximize
Reuse

Leverage
Human

Discipline

Streamline
Testing
Process

Cycles

2

3

1

Experimentation
Approach

Iterative learning of how to
apply 00 concepts; develop
new reuse methods

Iterative refinement of
existing, external testing
techniques and Cleanroom
Methodology

Refine and consolidate local
(familiar) processes

Deployment
Approach

Full use in highest
payback applications
(subset of projects)

Subset of 'best'
techniques across all
projects

Full use across all
projects

Example I: Maximizing Reuse

To reduce costs, the SEL chose to introduce and experiment with two software engineering
technologies, the Ada language and object-oriented design (OOD), that had high potential for
maximizing software reuse. Experimentation began across a single class of applications, flight
dynamics simulators, as the first improvement cycle focused on defining a generalized architecture
based on more theoretical 00 concepts. Once the developers were able to apply the architecture to
their systems, the application scope expanded to include generalizing more elements of flight
dynamics systems. The second group of experiments expanded the definition of 'generalized' to
include reusable specifications, which has resulted in a large library of reusable flight dynamics
components. Figure 3 shows the experimental focus areas and timeline for these two improvement
cycles. Because the early work with 00 was more conceptual, several phases of experimentation
across different development projects were undertaken prior to deploying the supporting process
changes.

Architectures Architectures

00 Concepts

Generalized A

Library

1

Experimentation Deployment

Reuse Library
Components

Figure 3. SEL Reuse Improvement Cycle Timelhe

Reusable
Specifications

Development
Concepts

Within 4 years, this effort culminated in the first deployment of reusable generalized architectures
that have led to a 300% increase in software reuse per system and an overall cost reduction of 55%
during the next 4 years [Reference 21. Further development of these object-oriented concepts has
produced a set of reusable specifications and a corresponding component library that promises even
greater improvements in 1997 systems. Figure 4 depicts the measured impact to the FDD resulting
from these changes.

SEW Proceedings

Percent Reuse Total Cost per Mission

300% Increase in Reuse 55% Cost Reduction

Figure 4..Results of Introducing OOD and Ada

Example 2: Leveraging Human Discipline

Early experimental results showed the positive impact on software development from leveraging the
experience and perspective of the individual developer. Based on these results, the SEL chose to
focus on software engineering methodologies that support human discipline to meet our quality goal
[Reference 33. The first improvement cycle, which investigated different testing techniques such as
code reading and unit and functional testing, confirmed that those methods which relied on human
discipline were the most effective. This led to a significant effort within the SEL to maximize the
potential of human discipline by experimenting with the Cleanroom Methodology [Reference 41.

The SEL has completed two improvement cycles over four projects (two large, two small) that
specifically addressed Cleanroom; the initial SEL Cleanroom project began in 1988, with the fourth
and final effort completed this year. The focus of the Cleanroom Methodology is on producing
software with high probability of zero defects. The key elements of the methodology include an
emphasis on human discipline in the development process via code inspections and requirements
classification, and a statistical testing approach based on anticipated operational usage. Development
and testing teams operate independently, and all development team activities are performed without
on-line testing. Analysis of the first three Cleanroom efforts had indicated greater success in applying
the methodology to smaller (< 50K developed lines of code (DLOC)) in-house Goddard projects than
to larger scale efforts typically staffed by joint contractor-government teams. The final Cleanroom
project involved the development of a large-scale system (480K SLOC, 140K DLOC). The primary
study goal was to examine it as an additional data point in the SEL7s analysis of Cleanroom
applicability in the organization, especially in the area of scalability.

The goal of the SEL's Cleanroom study was not to make a decision on adopting Cleanroom in its
entirety within the organization, but rather to highlight those aspects of the methodology that had
favorable impacts and to incorporate them into the standard approach. This approach of incremental
deployment, shown in Figure 5, proved very successful in instilling these changes throughout the
organization. Experimentation with Cleanroom raised the general awareness of the organization

SEW Proceedings 8 SEL-96-002

regarding quality techniques and discipline-enhancing processes. This emphasis is one of the key
reasons for the FDD's steady improvement in reducing development error rates by 85% over a 15-
year period, as shown in Figure 6.

- I , :s&[*j&&&
r e . - I

C] Experimentation Deployment

Figure 5. SEL Quality Improvement Cycle Tirneline

Code Inspection &
Reqs. Classification

@
MeWds

Development Error Rates (1 976 -1 995)
16

14

g 12
J 2 10

8
P

2 6
9
ti 4

2

0
1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996

Project Midpoint

Code Reading &
Functional UT

Figure 6. Quality Improvement in the SEL

Example 3: Streamlining the Testing Process

In 1992, the SEL saw the cost of system development decreasing significantly due to increasing code
reuse; however, no corresponding decrease in development cycle time was occurring. In addition,
although the cost associated with design and code effort had been reduced, testing costs remained
virtually the same. This led to an assessment of the testing processes in use and resulted in a decision
to focus testing in one group. This group, called the independent testers, effectively collapsed two
separate testing phases (system and acceptance) conducted by two different groups (developers and

SEW Proceedings 9 SEL-96-002

users) into one phase (independent) performed by one group composed of experienced flight
dynamics analysts and testers. This change, in both process and organization, was introduced in order
to reduce the cycle time required to deliver a system, to improve the efficiency of the testing process,
and to do so without sacrificing the quality of any product delivered.

Since this change was limited to one organization that was already heavily involved in defining the
new testing process, the experimentation portion was brief and the risk of full deployment was judged
to be low (Figure 7). Once the organizational changes were made, process changes were implemented
quickly, simultaneously across all current test efforts. The resultant measurements (Figure 8) indicate
that independent testing has yielded a definite shift in life-cycle effort distribution, with the testing
effort being reduced from 41% to 31% of the total project effort [Reference 51. Reductions in cycle
time on the order of 5% to 20% have been verified with no loss of quality.

~xperimentation C] Deployment

Form independent
testing group

Figure 7. SEL Independent Testing Improvement Cycle Timeline

& define new ---,
test process

Total Mission Cost

New Independent
Test Team Approach

Development Schedule
150

- -
1990-1992 1993-1995 1990-1992 1993-1995

10% Cost Reduction 5% - 20% Improvement

Figure 8. Results of Streamlining the System Testing Process

SEW Proceedings

Measuring Ove~all Improvement

Each of the above initiatives resulted in measurable improvement; however, each was measured in
isolation on a particular set of projects. On a long-term, continual improvement program, it is
important to periodically assess how the organization is doing as a whole. To make this assessment
and to update the organizational characteristics that will drive future improvement decisions, the SEL
periodically computes an organizational baseline. This consists of key measurements that characterize
the performance of the project organization over a specified time period and represent the
organization's ability to perform similar work in the future.

We use a fairly small set of baseline measurements to evaluate improvement. They include total cost,
total duration, development error rate, reuse percentage, cost per new line of code, and cost per
delivered line of code. For each baseline measurement, a maximum, a minimum, and a project mean
are computed for a particular time period, referred to as the baseline period. Overall improvement in
each measurement is determined by comparing the means of two baseline periods, i.e., (current mean
- previous mean) / previous mean.

Since 1985, the SEL has computed three baselines to measure overall improvement. Figure 9 shows
when these baselines were computed in relation to the three examples discussed earlier. Notice that
baselines were computed a few years after a set of improvements were deployed, allowing time for
projects to use the improved process. Figures 10 and 11 show how the results of the individual
initiatives combined to make significant overall improvements.

Reuse &
Ada100

Unit Testing
& Clean room

Baseline f 1
Independent measurement
Test Teams I

SEW Proceedings

Figure 9. Improvement Cycle Timelines

The SEL's recently completed 1996 organizational baseline shows across-the-board improvement in
all measurements:

Average mission cost decreased by 15% when compared with the 1993 baseline, totaling a 60%
overall reduction in mission cost since 1985 (Figure 10).

The cost to develop a line of new code decreased nearly 35% since 1993. (There had been no
previous improvement in this measure.)

Ground system projects saw a modest 7% reduction in project cycle time, while simulators
experienced a 20% reduction since 1993 (Figure 8).

Error rates continued to drop, with a 40% reduction in development error rates since 1993. This
combines with earlier improvements to total an 85% drop in development error rates over the past
10 years (Figure 6).

After the initial 300% increase in reuse seen in the 1993 baseline, software reuse remained high,
with an average of 80% on all projects; however, the minimum amount of reuse has now risen
from 18% in the 1993 baseline project set to 62% in the recent project set, demonstrating a much
more consistent use of reusable products in the SEL (Figure 11).

1 985-1 989 1 990-1 992 1 993-1 995

Figure 10. Overall Cost Reduction in SEL

SEW Proceedings

340% Total Increase in Reuse

Figure 11. Overall Improvement in Reuse

Observations and Conclusions

The SEL's success with incremental process change, as opposed to leading-edge technology adoption,
has led us to select the experimental approach to changing process gradually. Experimentation has
allowed the beneficial changes to be deployed incrementally with low risk to ongoing projects.
Deployment has been quicker for those process changes that were confined to a single phase or
development activity, as with the test team process change. Following are several observations and
recommendations based on our analysis of the improvement cycles discussed in this paper.

Focus on a single goal for each process/technology change to provide a clear definition of the
expected change and non-ambiguous measurement of its effect. There is a temptation to overload a
single project with multiple changes, often in the hope that at least one will work. SEL experience
suggests that this approach will not result in sustained improvement; it will only confuse the team and
obscure the impact of the individual technologies.

Select process changes that leverage peoples' talents. Processes that enhance human discipline and
intellectual abilities provide significant improvement. Tools should be used to replace or facilitate
routine tasks such as configuration and change management.

* Allocate suflcient experimental time for tailoring and iterative applicatiodearning of new
concepts. The SEL's experience in first developing OOD concepts followed by a generalized
architecture, prior to deployment, shows the benefit of taking a little more time to develop a more
usable product (the architecture) rather than deploying the more abstract concepts first.

* Set improvement time expectations appropriately. The more familiar the organization is with the
process being changed, the faster it can be tuned and deployed and its impact realized. Existing
processes can be refined and adapted more rapidly than abstract concepts; however, adapting an

SEW Proceedings

external (unfamiliar] process, such as Cleanroom, will take longer than refining an existing local
process, such as streamlining the SEL testing process.

Deploy a subset of the changes as soon as the benejit is shown. Often it is clear that certain
subprocesses or techniques are very beneficial even though the entire new process/technology may
not yet be proven. Early deployment allows the organization to reap its benefits as early as possible
and paves the way for the rest of the method that may follow.

References

[l] Basili, V., "Quantitative Evaluation of a Software Engineering Methodology," Proceedings of the
First Pan Pacific Computer Conference, Melborne, Australia, September 1985.

[2] Waligora, S., M. Stark, and J. Bailey, "The Impact of Ada and Object-Oriented Design in NASA
Goddard's Flight Dynamics Division, " Proceedings of the 13th Annual Washington Ada Symposium
(WAdaS96), July 1996.
[3] Basili, V. and R. Selby, Jr., "Comparing the Effectiveness of Software Testing Strategies," IEEE
Transactions of Sofrware Engineering, Vol. SE-13, No. 12, December 1987.
[4] Basili, V. and S. Green, "Software Process Evolution at the SEL," IEEE Sofrware, July 1994, pp.
58-66.
[5] Waligora, S. and R. Coon, "Improving the Software Testing Process in NASA's Software
Engineering Laboratory," Proceedings of the Twentieth Annual Sofnyare Engineering Workshop,
Goddard Space Flight Center, December 1995.

SEW Proceedings

The Improvement Cycle:
Analyzing Our Experience

Rose Pajerski, NASA GSFC
Sharon Waligora, CSC

Presentation Outline

m What is an improvement cycle?
+ Relationship to SEL Improvement Approach
+ lmprovement cycle steps

m Compare/contrast SEL examples
+ Reuse
+ Quality Techniques
+ Independent Testing

Observations and Conclusions

SEW Proceedings

What Is an Improvement Cycle?

Iterations of experimentation followed by
deployment to satisfy an organizational goal

Package

Assess

Understa~

SEL Improvement Paradigm

Step 1 - Use Understanding of
Process and Environment

What's insideloutside organization's control
(requirements changes, deadlines)
Current baseline measures of organizational
performance (efbrt, schedule, errors)

m Process characteristics (work activities)
m How people spend their time

SEW Proceedings

Step 3 - Follow Experimental
Approach

Select measures to fulfill experimental goals
Iterate on multiple projects, using multiple
techniques
+ Established methods: PilotRefine
+ Conceptyal methods: CreatePilotlRefine
Involve dqvelopment organization in feedback
loop

SEW Proceedings

Step 4 - Deploy Throughout

Document process to appropriate level
m Provide training for new element in the

context of the existing process
Reinforce use by publicizing results to
development organization

Example 1 - Reuse

SEW Proceedings

Reuse Improvement Cycles

2 major improvement cycles
lferative learning of how to apply 00 concepts
Scope: Increased from code to specifications reuse

Reuse Focus

Specifications,
Design 8 Code

1985 1990 1995
Experimentation Deployment , .,. ...

Reuse - Results of

I Improvement exceeded expectations. f
Percent Reuse

300% Increase in Reuse

300

200

loo ii
Total Cost oer Mission

1985-1989 1990-1992

55% Cost Reduction

SEW Proceedings

Example 2 - Quality Techniques

Cleanroom Methodolo

Quality Improvement Cycles

3 improvement cycles
Iterafive refinement of existing technologies
Scope: Small to larger projects; unit to full system testing

SEW Proceedings

Quality Techniques - Results

Development Error Rates (1 976 -1 995)

1976 1978 1980 1982 1984 IS86 1988 1990 1992 1994 1996
Project Midpoint

Intermediate deployment drove steady decrease in error rates. I
85% improvement over 15 years. 1

Example 3 - Independent Testing

SEW Proceedings

Testing Improvement Cycle

I improvement cycle
Refinement of existing process and organization change
Scope: Piloted on all projects immediately

Form independent
testing group
& define new n
test process

1992 1994 1996)

Experimentation Deployment

Independent Test Teams - Results

10% Cost Reduction 5% - 20% Improvement

SEW Proceedings

Simultaneous Experimentation

Reuse &
Ada100

Unit Testing
& C~eanroom

@$$

Independent
Test Teams

Baseline
I I
I I

measurement
I I I

Overall Improvement

I Improvements combine to make 60% cost reduction h

1000
Total Cost per Mission

I

(Reuse) (Testing)

SEW Proceedings

Keys to Success

m Focus on one primary organizational goal
w Select process changes that leverage people

(use technology to replace routine tasks)
w Allocate more time (iterations) when creating

process from concepts
Actively seek developer feedback

Conclusions

w More localized process changes lead to more
rapid rate of improvement

. . . but, broader conceptual changes result in
larger improvements.

w Experimentation allows for intermediate
deployment of new process or technology
with minimal risk

SEW Proceedings

340% Total Increase in Reuse

SEW Proceedings

SEW Proceedings

Evolving the Reuse Process at the Flight Dynamics Division
(FDD) Goddard Space Flight Center 'x? -(/

> ..-
a / * S. Condon,' C. Seaman,' V. Basili,' S. raft,' I. Kontio,' Y. ~ i m ' 48J </;-: +-* c: s r

Abstract
This paper presents the interim results from the
Software Engineering Laboratory's (SEL) Reuse
Study. The team conducting this study has, over
the past few months, been studying the
Generalized Support Software (GSS) domain asset
library and architecture, and the various processes
associated with it. In particular, we have
characterized the process used to configure GSS-
based attitude ground support systems (AGSS) to
support satellite missions at NASA's Goddard
Space Flight Center. To do this, we built detailed
models of the tasks involved, the people who
perform these tasks, and the interdependencies and
information flows among these people. These
models were based on information gleaned from
numerous interviews with people involved in this
process at various levels. We also analyzed effort
data in order to determine the cost savings in
moving from actual development of AGSSs to
support each mission (which was necessary before
GSS was available) to configuring AGSS software
from the domain asset library.

While characterizing the GSS process, we became
aware of several interesting factors which affect
the successful continued use of GSS. Many of
these issues fall under the subject of evolving
technologies, which were not available at the
inception of GSS, but are now. Some of these
technologies could be incorporated into the GSS
process, thus making the whole asset library more
usable. Other technologies are being considered
as an alternative to the GSS process altogether. In
this paper, we outline some of issues we will be
considering in our continued study of GSS and the
impact of evolving technologies.

reuse through a series of studies, experiments,
pilot projects, and full-fledged development 3 -by()
projects at the Flight Dynamics Division (FDD) of
NASA's Goddard Space Flight Center (GSFC).
The SEL adopted Ada83 for these experiments (%A-
and projects at a time when C++ was still
relatively unknown. From this Ada work, the SEL
determined that object-oriented (0-0) technology
was providing the best reuse benefits within the
FDD.

Around 1989-90 the AdaIO-0 experience merged
with an FDD-wide initiative to develop a
"configurable" flight dynamics attitude support
system. The result evolved into the Generalized
Support SofhYare (GSS) Domain Engineering
Process. By means of this process, the FDD has
shifted from developing applications to
configuring applications out of generalized,
reusable assets. The term "assets" encompasses
design specifications, code components, tools, and
standards. To date, eight applications, supporting
two NASA satellite missions, have been
configured from the GSS asset library and
delivered to acceptance testing.

A SEL Reuse Study team was tasked to analyze
the GSS process, determine the cost and quality of
the resulting systems, document and evaluate its
strengths and weaknesses, and propose
modifications to it. This paper presents the
preliminary results of this SEL study.

The paper examines several relevant cost issues.
It compares the cost of investment in the GSS
asset library to the investment in previous FDD
reuse libraries. It compares the deployment costs
(design, configuration and testing) of GSS-based
applications to the development costs of previous
FDD applications and contrasts the resulting cost
savings with the investment cost in the GSS asset

1. Introduction library. The paper also demonstrates that the GSS
process has resulted in a significant decrease in the

Since 1985 the Software Engineering Laboratory time required to field a new application.
(SEL) has been evolving methods of software

1 Computer Sciences Corporation, Lanham-Seabrook, Maryland

Computer Sciences Dept., University of Maryland, College Park, Maryland

Goddard Space Flight Center, Greenbelt, Maryland

SEW Proceedings 27

In addition to analyzing software meuics such as
effort and cycle time, the reuse study team
interviewed numerous domain analysts, mission
analysts, component engineers, application
configurers, and application testers who have been
involved in the GSS process. The study team
adopted Yu's Actor-Dependency (AD) formalism
to model the dependence of various GSS process
actors on other actors and resources. In order to
further understand more complex actors in this
process, the team applied Yu's Agent-Role-
Position (ARP) formalism to make explicit the
many different roles one actor may play in the
process. (Reference 1)

2. History of FDD Reuse

2.1 Environment of the FDD & SEL
Over the past decade, the FDD of GSFC has
usually consisted of about 100 civil servants
supported by 300-400 CSC and subcontractor
personnel. (In the last two years, NASA-wide
reductions in the workforce have reduced these
numbers somewhat.) Of these personnel, about
40% are software developers or testers. Another -
40% are operations personnel or FDD analysts.
The analysts are the experts in orbital mechanics,
mathematics, or other technical disciplines who
write the software requirements for FDD
applications.

The mission of the FDD is to build, deploy, and
maintain space ground systems for NASA science
missions, with emphasis on earth orbiting
satellites. Flight dynamics applications are
essentially scientific data processing systems:
some are institutional (i.e., they support multiple
missions) and others are mission-specific (i.e., a
new one needs to be built for each new
spacecraft). Each FDD application supports some
aspect of spacecraft flight dynamics via one of
three domains: (1) attitude determination? (2)
mission and maneuver planning, or (3) orbit and
navigation. This paper focuses on the evolution of
software reuse within the attitude determination
domain of the FDD.

The SEL is a virtual organization which consists
of civil servants from the software development
group of the FDD, CSC contractors supporting

4 "Attitude" means the spatial orientation of a
spacecraft

them, and representatives from the Computer
Science Department of the University of Maryland
at College Park. The SEL has been in existence
for over 20 years, during which time it has guided,
studied, documented, and nurtured software
experimentation within the FDD. (Reference 2)

2.2 History of S/W Reuse at the FDD &
SEL Prior to GSS
During the last dozen years, the SEL and the FDD
have focused in particular on how to increase
software reuse levels, with the expectation that this
would reduce cost and cycle time. At the
beginning of this experimentation, the FDD was
developing software applications in a FORTRAN
mainframe environment, achieving a modest level
of reuse of very low level utilities. Through a -
series of studies, experiments, pilot projects, and
full-fledged development projects, the SEL and
FDD began evolving methods of software reuse.
Efforts were focused in the attitude determination
domain, whose class of mission-specific
applications would benefit most from increases in
software reuse.

The SEL learned a great deal about using 0-0 and
Ada generics for one particular type of
application, a simulation test tool whose
development was transferred from the IBM
mainframe to an Ada-fn'endly platform, the DEC
VAX. From these experiments and mission
projects, the SEL determined that the use of
object-oriented principles, rather than the Ada
language itself, was providing the primary reuse
benefits within the FDD. (Reference 3)

The bulk of the FDD's mission-specific
applications, the AGSSs, however, continued to be
developed in FORTRAN on the IBM mainframe.
The SEL was unable to transfer its Ada practices
to the mainframe because adequate Ada tools for
the mainframe environment were lacking. In lieu
of this, the FDD applied some domain engineering
concepts to create two FORTRAN reuse libraries
for developing AGSSs. One library was
developed to support AGSSs for non-spinning
satellites, and the other for spinning satellites.
The majority of satellites supported by the FDD,
traditionally, are non-spinning. The FDD had
some success with the FORTRAN reuse libraries,
but the results were not truly "generalized" and the
libraries grew with each new mission and became
cumbersome to maintain. Nonetheless, these were
all valuable experiences on which the FDD was
able to build.

SEW Proceedings 28

2.3 Motivation, Goals and Definition of
GSS
Concurrent with the SEL-sponsored experiments
in 0 -0 , was a division-wide FDD initiative to
examine the possibility of generalizing all flight
dynamics software so that in future all applications
would be configured rather than developed. The
members of this team wrestled with what it means
to "configure" an application, as opposed to
"develop" an application, and came to the
conclusion that it was only possible if an FDD
reuse library were built around objects. This
decision made the 0-0 experiments all the more
important. Around 1989-90 the AdaIO-0
experience and the search for "configurable" flight
dynamics software applications merged and
evolved into what was to become the Generalized
Support Sofrware (GSS) Domain Engineering
Process.

The GSS process relies upon the GSS Asset
Library, a library of generalized, configurable
application components developed by the FDD
with an object-oriented domain engineering
approach. GSS specifications adhere to a
standardized approach for specifying object-
oriented classes. This standardization allows the
use of standard rules for the implementation of
each class, including a generic detailed design for
each class and a system architecture that allows
classes to be configured into a program that
communicates with the FDD's User Interface and
Executive (UIX). By means of the GSS process,
the FDD has shifted from developing applications
to configuring applications out of generalized,
reusable assets. The term "assets" encompasses
design specifications, code components, tools, and
standards.

In 1992 the design of the GSS asset library got
into full swing, followed in early 1993 by coding
of the assets, which were implemented in the
Ada83 language and resided on a DEC Alpha
workstation. In February 1995 work began in
earnest on configuring the first application from
this asset library. To date, eight applications,
supporting two NASA satellite missions, have
been configured from the GSS asset library and
delivered to acceptance testing. These
applications run on HP or Sun workstations.

2.4 GSS as an Experience Factory
In order to carry out process improvements within
the FDD, the SEL functions as an experience
factory in relation to the project organization.

The project organization consists of FDD mission
analysts, application developers, and application
testers. The mission analysts are the FDD
personnel whose training and experience in orbital
mechanics and mathematics qualifies them to
write the requirements for FDD applications. As
the project organization goes about its business of
developing applications, the experience factory
collects metrics and lessons learned from them.
The experience factory staff stores these data in a
database, analyzes the data, suggests and conducts
additional experiments, and finally packages these
distilled project organization experiences into
recommended best practices, estimation models,
and software development training courses, which
spread these process improvements throughout the
FDD project organization. Figure 1 depicts this
traditional relationship between the project
organization and the experience factory. A heavy

Project Experience Factory:
Organization: Captun?, Analyze, andPa6kage

Figure I: Traditional SEL Experience Factory

dashed line separates the two groups. The light
dotted line separating the mission analysts from
the software developers on the project
organization side reflects the fact that traditionally
the SEL has not collected metrics from mission
analysts in the FDD.

With the development of the GSS Asset Library,
the boundaries and scope of the experience factory
appear to have expanded. New personnel,
formerly part of the project organizati~n, are now
fulfilling experience-factory-type roles. Instead of
supplying only process improvements to the FDD
project organization, however, these people are
also supplying product improvements to the FDD
in the form of generalized library assets.

SEW Proceedings 29

Figure 2. GSS Component Development and
Application Deployment Process

Figure 2 depicts this new dimension to the
experience factory concept at the FDD. A few
former mission analysts have become domain
analysts. They have designed the GSS
architecture and written the GSS functional
specifications for the library assets. At the same -

time several applications developers have become
component engineers and have coded the classes
and categories defined by the GSS functional
specs. With these assets developed, the project
organization then follows a streamlined process
for application deployment. Under the new
deployment process, a mission analyst must write
the GSS mission specification that stipulates
which GSS classes & categories are required for
the application, which of the many parameters
associated with these assets are necessary for this
application, and what values need to be assigned
to these parameters. This mission specification is
passed to an application configurer-application
developers are no longer needed-and the
configurer then instantiates the specified objects
from the generalized classes in the asset library
and links them to form the desired application.
The application testers then test the application
and turn it over to operations.

3. Characterization of the
GSS Application Deployment
Process
A SEL Reuse Study team was tasked to analyze
the GSS configuration process, determine the cost

and quality of the resulting application systems,
document and evaluate the strengths and
weaknesses of the process, and propose
improvements to it. In this section, we describe
the preliminary results of this study of the GSS
configuration, or application deployment,
process, which is used to define, configure, and
test an attitude support software application.
Below, we describe the methods we used to
gather and analyze this process information. In
the sections which follow, we first characterize
the configuration process quantitatively with
respect to its cost, schedule, and the errors in the
resulting applications. We then present the
process graphically and analyze its inner
workings.

To model the GSS configuration process, the
team began by studying documentation and
holding informal discussions with managers, task
leaders, and a few key technical personnel. At

the same time we began to analyze SEL data on
effort, estimates, schedules, and software changes
related to the GSS asset library and to the software
applications that were configured from it. As this
metrics data analysis was proceeding, we
conducted numerous detailed, structured
interviews with people playing a variety of roles
related to GSS in order to obtain information of
sufficient detail to model the configuration
process.

3.1 Analysis of Metrics Data

3.1.1 GSS Costs

There are two relevant costs to consider when
evaluating the GSS project. One is the cost
associated with configuring applications from GSS
components. Figure 3 compares the cost of
deploying GSS-based applications to costs in the
previous two eras, and demonstrates that GSS-
based applications can be deployed for as low as
10% of the cost required during the
FORTRANIAda reuse era.

Prior to 1985 it cost 58,000 hours to develop and
test the attitude support applications for a typical
FDD mission. Later, when the FDD was using
Ada reuse libraries to develop simulators and
FORTRAN reuse libraries to develop AGSSs, this
cost dropped to 30,000 hours per mission. In both
eras the development of the non-real-time system
and the utilities required the most effort.

SEW Proceedings

TP costs remwed horn appltcation costs for hnt 2 eras: TPs unecessary in GSS era.
Lbrary maintenance costs lnduded In 2nd era; GSS mission costs include total of 10 Khr of

GSS wehead (fibracy maintenance, etc.)

Figure 3: Reduced Deployment Costs
Due to GSS Process

When it came time to support the first mission
with the GSS library, the simulator was
configured first, and the real-time portion of
the AGSS was confiewed second. In each
case, the GSS asset library was still
undergoing redesign and growth. The
configurers were also evolving the
configuration process. Consequently, the
cost of deploying these first two applications
was more than it had been in the
FORTRANlAda reuse era. When the time
came to configure the non-real-time portion
of the AGSS and the utilities, the asset
library and configuration process had
stabilized. As a result, this cost only a
fraction of the typical cost from the previous
era. With the second GSS-supported
mission, we see even more dramatic savings.
The simulator and the non-real-time system
plus utilities each cost on the order of 10%
of their cost from the FORTRANlAda reuse
era. No real-time system was required for
this application.

The other important cost to remember is the
initial cost of building the GSS library itself.
These costs are shown in Figure 4 alongside
the costs to develop and test the FORTRAN
and Ada reuse libraries from the previous
era. For the GSS asset library we know that
the domain analysts spent 36,000 hours
defining the requirements and the logical
design in the GSS functional specifications.
The component engineers spent 40,000 hours
creating the physical design and
implementing, inspecting, and unit testing
the generalized Ada83 classes and

categories. We know the effort
required to develop and test the
FORTRAN and Ada reuse libraries,
but we do not know the hours spent
on requirements, since traditionally
the SEL does not collect metrics from
FDD mission analysts. Even so, we
can see that the GSS library was
developed for less than the combined
cost of developing the FORTRAN
and Ada reuse libraries, which it
replaced.

Figures 3 and 4 further demonstrate
that if the FDD continues to deploy
GSS-based applications for 10% of
the cost of the preceding era, the
FDD will recoup its entire library
investment cost of 76,000 hours by

120

- 100

0 5 80 z gg
8 2 % 4 w -" gP 5 % 40
~ 8 s

iE 20

0

FORTRAN Ada GSS
Reuse 1985-1 993 Era

Reuse Libraries

Figure 4: Library Investment Costs in Two Eras

Duration of AGSS Development

f40 136
V) s 320
a3 tm

E E s g t 80
g g 3 60
n 7 .E

E 40
0 -

20
P)
'El - 0

Max. Ave. Min. 1 st 2nd
1 Mission Mission

FORTRANlAda Reuse Era GSS Era

Note: GSS era estimates assume project completions by 1/30/97

Figure 5: GSS Reduces Deployment Cycle Time

SEW Proceedings

the fourth GSS supported mission.

3.1.2 Application Deployment Cycle Time
The GSS process has resulted not only in a great
reduction in the cost of deploying an application,
but also in a significant reduction in the cycle time
required to deploy an application. Figure 5
reveals that the time to field an AGSS during the
FORTRAN reuse era ranged from 61 to 136
weeks, with an average of 101 weeks. The time
required to design, configure, and test the
applications for the first GSS-supported mission
was a little less than the average for the preceding
era. The second project, however, was completed
in less than half of the average cycle time for the
FORTRANIAda era. In fact, it took less time than
any project in the previous era. It seems likely
that project duration can be further reduced with
this reuse process.

3.2 Process Diagrams
After gaining an initial understanding of the GSS
environment and how it is used, the team
developed a detailed interview guide and
conducted structured interviews with most of the
designers, developers, configurers, and testers
involved in the GSS processes. Once a sufficient
body of information had been collected, we began
to organize it by modeling the relevant processes,
in particular the GSS configuration process.

We chose to use Yu's Actor-Dependency (AD)
model to portray the interactions, roles, and
dependencies between the actors in the GSS
processes. Figure 6 is an AD model reflecting the
same level of detail as depicted in Figure 2. The
AD diagram reflects how each team depends on
other teams. The types of dependencies are

resource dependencies (depicted by a
rectangle), which indicate that the depender
relies on some artifact, document, or
information from the dependee;

0 task dependencies (depicted by a hexagon),
which indicate that the depender relies on the
dependee to complete some defined set of
steps. The dependee may or may not be
aware of the goals of this task;

goal dependencies (depicted by an oval),
which indicate that the depender relies on the
dependee to achieve some well-defined goal.
The depender has a great deal of freedom to
determine how to reach that goal; and

0 soft goal dependencies (depicted by a
distorted oval, i-e., a "peanut" shape), which
indicate that the depender relies on the
dependee to achieve some goal which is not
well-defined, i.e. the depender and dependee
may not agree on, and must negotiate, exactly
how the goal is to be satisfied.

The following AD diagrams focus more on the
GSS application configuration process and show
the relevant roles and dependencies at a lower
level of detail.

Figure 7 expands the complex social actors of
Figure 6 into their substructure of agents, roles,
and positions. Agents are actual, physical people
and groups of people that actors represent. Roles
indicate what parts of the process an actor is
involved in. Positions are the organizational titles
and jobs that an actor holds. Positions generally
"cover" one or more roles, while roles are
"played" by an agent, who also "fills" one or more
positions. In Figure 7, only some of the relevant
dependencies are shown and (for the most part)
are not identified by type in order to simplify the
diagram.

Figure 8 shows, at a high level, the sequences of
tasks that must be completed in order to configure
a GSS application, and the inputs and outputs of
those tasks. Tasks are represented as ovals and
artifacts (inputs and outputs) as rectangles. Many
of the tasks refer to task dependencies in Figure 6.

SEW Proceedings

LEGEND: Agents, roles, andposlbns dopkl the
htemalstrudure 01 comwx actors

Resource 1-1
AC = Application Roe 8

Conliourer
AT = Application

Tester
CE =Component Posilion

Engineer
DA = Domain Analyst

Position ~ - - s

MA = Mission Analyst Coverage *--a

SEW Proceedings

4. Recommendations for
improvements to the GSS
Configuration Process
As is often the case, organizational and technical
details which were overlooked at the project's
inception have come back in various forms to
threaten the full success of GSS. Despite dramatic
reductions in application deployment cost and
cycle time, the GSS process has not won the full
support of all groups within the FDD. Although
FDD management mandated that software
developers and analysts would jointly design the
GSS process, the resulting process is today viewed
by many as the child of the software developers,
with less than full partnership from the analysts.

But this is more than merely a perception. The
current GSS process provides a good tool that
allows traditional software developers to quickly
configure flight dynamics software applications.
At the same time, however, the current GSS
process contains hurdles for mission analysts,
whom FDD management would like to see making
more direct use of the GSS. This is because the
GSS process and the GSS documentation are
inherently more understandable to the GSS
developers and configurers than to the majority of
FDD mission analysts. As discussed later, the
writing of the initial mission specification in
particular is a task logically performed by mission
analysts, but at this time it requires a very
technical level of understanding of GSS. This
level of understanding is very difficult, and not
necessarily appropriate, for analysts to achieve. As
a result of this, relatively few FDD analysts are
currently involved in the GSS process.

As a result of our in-depth characterization of the
GSS configuration process, we discovered several
opportunities for improvement. Some of these
were synthesized from the comments of several
interviewees, while others came directly from GSS
developers, configurers, and testers. Most relate
to the problem described above (of the barriers to
use by analysts), but also would improve the GSS
process in other ways as well.

4.1 Storing application requirements
Several problems were cited that might be
ameliorated by storing the information contained
in the mission specification in database form.
First of all, it would facilitate the reuse of
requirements, which is common from one

application to another. Instead of manually
editing reused parts lists, display files, parameter
files, etc., database operations could be used to
modify these elements in the database to help
ensure consistency and avoid errors.

Secondly, it has been stated as a goal of GSS that
eventually mission analysts should be able to
configure attitude software with little or no
intervention from GSS developers. There are
several barriers to achieving this goal, one of
which is that the writing of the mission
specification seems to require very specialized
skills. This is more than a user interface problem,
but using a database format rather than a textual
one may help.

Designing and maintaining a database for mission
and application requirements would not be a
simple task. It would require the borrowing or
hiring of a specialist in database design, and a
careful analysis of the needs that the database is
meant to satisfy. Because of some of the points
discussed above, a database system with an
adequate user interface is especially important.
Also, it would be helpful to be able to integrate
this database with other databases used in the
environment, e.g. databases used to store new
component information.

4.2 Automatic generation of configuration
inputs
Another advantage of storing mission-specific
information in a database is that it would facilitate
the automatic generation of some of the inputs to
the GSS configuration. Generating these files at
present is tedious and time-consuming. Writing
the parts list in particular has been described as a
translation of the mission specification from one
notation to another. Such a translation could be
automated if the mission specification were stored
electronically. Even better, the tools which
process the parts list could be rewritten so that
they access the database directly. As mentioned
later, such a database could also facilitate the
automatic generation of some parts of the user's
guide. Also, it is conceivable that a database of
application requirements could also be used to
automatically generate the artifacts needed as
input to UIX (the user interface facility), including
the display files, the parameter files, and the
message files.

SEW Proceedings

4.3 Support for learning GSS
As mentioned earlier, the specialized skills
required for writing mission specifications seem to
be a barrier to making GSS usable by mission
analysts. Making the mission spec database-based
rather than a textual document may help
somewhat. However, it does not solve the root
problem, which is that writing the mission
specification involves choosing the proper
configuration of GSS components for a particular
mission. This requires a level of understanding of
the GSS architecture that, up until now, mission
analysts have been unable or unwilling to attain.
This problem has both organizational and
technical aspects. Analysts were not involved
enough in the development of GSS to give them
any sense of ownership. Thus, they are not highly
motivated to take the time necessary to learn to
use GSS. Motivation is further inhibited because,
up until now, one particular analyst has been
willing to take on the task of writing mission
specifications for all missions using GSS-based
software. From a technical point of view, the
current documentation on GSS (the GSS
functional specifications) are written by and for
software developers, not mission analysts. Their
size and technicality are daunting, to say the least,
and their organization is closely tied to the
organization of the software, which is not
necessarily the most logical from a user's point of
view.

Thus, if GSS is to achieve the goal of being fully
usable by mission analysts, a serious effort must
be made to support learning. There is a growing
area of research and development in software
engineering in object-oriented frameworks; for
example, the SEL is studying learning and reading
techniques for frameworks (Reference 4). GSS fits
the definition of an 0-0 framework, which is a
domain-specific repository of software classes
which fit into a cohesive architecture designed
specifically for the domain. To the best of our
knowledge, GSS is the only 0-0 framework
specific to the flight dynamics domain. However,
much of what has been learned about how to
support the learning of frameworks in other
domains could be applicable here. A number of
strategies have been used: cookbooks of
application templates and variations, example
applications, documented class hierarchies, etc.
One approach may be to develop a scenario-driven
overlay for the GSS functional specifications
which helps organize the specifications according
to user scenarios. Many of these techniques could

be useful in helping mission analysts understand
GSS sufficiently to begin producing their own
applications.

Designing learning support materials for GSS
would involve some experimentation to determine
which strategies are most helpful for mission
analysts. This would require some investment of
time and resources, and a serious commitment to
finding an appropriate solution for the FDD
domain and organization. It is also crucial that the
support materials are designed for the most part by
mission analysts, not software developers. The
involvement of members of the analyst branch of
FDD is necessary to ensure that the materials, and
GSS, will be used in the future.

4.4 User's Guide
User's guides are required to be delivered to the
acceptance testers with the application, but they
are usually not completed until well after that
point. Testers usually do not have them available
in time to help with testing at all. Instead, they
rely for the most part on the mission specification.
However, the testers did not seem to see this as a
big problem. The configurers, on the other hand,
were not highly motivated to write user's guides
and it was treated as a necessary but low-priority
chore. A suggested improvement, then, is first to
determine what information is really useful in the
user's guide (for both testers and eventual users),
then to investigate the possibility of automatically
generating parts of the user's guide from the
mission specification (this might be facilitated by
the database suggested earlier), and finally, if
necessary, assign a qualified technical writer to
take on the writing of user's guides, as a task apart
from configuration of the application.

5. New Directions for Reuse
Study
Having characterized the GSS process, the Reuse
Study Team will concentrate in the coming months
on putting this process into perspective,
particularly with respect to its changing technical
and organizational context. First of all, a number
of technological advances have taken place in
software engineering since the inception of GSS.
These advances may be relevant to how GSS is
used in the future. Furthermore, some
developments in the marketplace have produced
alternative approaches to reuse. Some of these
may be appropriately used instead of GSS in some

SEW Proceedings 37 SEL-96-002

cases. The focus of the Reuse Study Team in the may be cost-effective to replace UIX with a more
near term will be to study which of these emerging user-friendly and robust GUI capability developed
technologies could best be incorporated into GSS elsewhere.
and how, and under what conditions GSS could be
supplanted with technology that is now available
elsewhere. We hope to evolve guidelines to be
used by FDD mission teams in choosing how best
to produce their software applications. In the
sections below we outline some of the issues on
which we will concentrate.

5.1 Evolving Technologies
Over the years that the GSS has been evolving,
many technologies have been evolving in the
marketplace. Some of these technologies require a
second look to see how they compare to the GSS
process today. It may be that the GSS process
could benefit from incorporating some of these
technologies.

5.1.1 Object Orientation
The GSS assets have been built from an object-
oriented perspective since its inception. In many
ways, the development of GSS was ahead of its
time, in that tools and techniques for developing
object-oriented systems were not available when
the GSS team needed them. For example, the only
object-oriented programming languages that were
available at the inception of GSS were Ada83 and
Smalltalk. Now, other languages are available,
such as C++ and Ada95, along with supporting
tools. We will consider whether or not GSS
suffered from not having these languages and tools
available, and if any of the currently available
languages and tools might be useful in the future
maintenance of GSS. The software engineering
field also knows more now about such topics as
object-oriented design, testing, and maintenance.
New advances need to be examined to determine
their applicability to GSS.

5.1.2 Graphical User Interfaces
A User Interface and Executive (UIX) was
developed by a separate group of FDD
developers, in parallel with GSS, to provide GUI
capability for GSS-based applications. It was
decided to develop the GUI capability in-house
because, at that time, no appropriate GUI
packages were available in the commercial
market. That is no longer the case, so it is
appropriate to compare UIX to what is currently
available commercially, off-the-shelf (COTS). It

5.1.3 Other COTS Products
To support the GSS process, a number of tools
have been developed in-house, such as code
generators and editors. Most of these were
developed in an ad hoe (as needed, as time
permitted) manner. As the sophistication and
quality of currently available COTS products has
risen, we will investigate whether some could be
used to support the GSS process. Some COTS
products may even be appropriate to replace the
GSS process in some cases, as discussed below.

5.2 Alternative Reuse Processes
For several years, the FDD has been slowly
developing more and more software on UNIX
workstations and weaning itself from its traditional
reliance on the IBM mainframe. In the 1990s the
FDD began to develop some of its attitude support
software for execution on UNIX workstations
rather than on the IBM mainframe computer. For
example, the AGSSs supporting the three most
recent operational satellites (SOHO, SWAS, and
XTE) ran partly on the IBM mainframe and partly
on the UNIX workstations. Since the FORTRAN
reuse libraries resided only on the mainframe, the
subsystems based on the workstations had to be
written essentially from scratch. The GSS
strategic reuse library was designed entirely for
UNIX workstations, and would have been useful
for these subsystems, but it was not yet available.

The movement from the mainframe to
workstations received a big impetus near the end
of fiscal year 1995, when FDD management
mandated that all software would be removed
from the IBM mainframe computers by the end of
fiscal year 1996. Consequently, much of the
institutional and mission-specific FORTRAN code
on the IBM mainframes needed to be ported to
workstations in a hurry.

It was initially decided that the mainframe
portions of the three most recent operational
AGSSs would be re-implemented on the
workstations by configuring them from the GSS
library. In order to continue supporting the older
legacy missions, however, an alternative method
was sought. Since these AGSSs were built
primarily from the FORTRAN reuse libraries and

SEW Proceedings 38

ran entirely on the mainframe, it was decided to approaches, and our own analysis of interview
port these libraries to the workstations. data. These questions are presented in the

The FORTRAN reuse library used for supporting
non-spinning satellites was rehosted by two
mission analysts with considerable support from
some COTS products. FORTRAN subroutines
were edited using word processors in order to
conform to language restrictions of the COTS
products. The analysts followed some process
shortcuts and made liberal use of certain language
features provided by the COTS products. During
this rehost, the library specifications were not
rigorously followed and were not updated to
reflect the rehosted version of the library. Another
FORTRAN reuse library, used to support spinning
satellites, was rehosted by software developers,
using the same COTS products. However, they
closely followed the library specifications and
made little attempt to take advantage of language
features unique to the COTS products.

The analysts who rehosted the first library enjoyed
using the COTS product and demonstrated that the
rehost could be done cheaply and quickly. They
found that they had a lot of control over the
process and were able, because of their position,
and/or the features of the COTS products, to
rapidly make changes to the library during the
rehost. As a result of their favorable experience,
the rehosted libraries, together with their COTS
umbrella, are now viewed as an alternative process
for supporting new FDD missions as well as
legacy missions.

In addition to these COTS products used for
rehosting attitude determination systems, there are
additional COTS products that can meet various
other parts of typical FDD mission requirements.
Some of these products are already being
reviewed and adopted to support
mission/maneuver planning and orbitlnavigation
requirements for upcoming FDD missions.

sections below.

5.2.1 User Interface
GSS uses a unified user interface called UIX for
all applications. UIX was developed in-house, in
parallel with GSS. This has caused some
problems in the testing of GSS, when errors turn
out to be UIX errors, not errors in the GSS code.
The use of UIX also requires the handling and
formatting of a number of large files (parameters,
displays, messages) in configuring an application,
which can be tedious and error-prone.

Many COTS products provide their own GUI
capability, which is used to create a user interface
for each application. This interface is not
necessarily consistent.

How important is a unified user interface? How
difficult would it be to unify all the COTS-based
user interfaces?

5.2.2 Is Object-Oriented Technology
- Superior?
The rehosted libraries are written in a procedural
language associated with the COTS products used
to support the rehost, in some cases from scratch
and in others converted from FORTRAN code
using a text editor. GSS applications are mostly
Ada83 with a small amount of C code in some
cases. Thus, the GSS library is based on 0-0
concepts, whereas the rehosted libraries, and their
related applications, are not. Prior to GSS, the
SEL determined that the use of Ada and 0-0
concepts in the FDD resulted in smaller systems to
perform more functionality, while the FORTRAN
reuse libraries continued to grow in size.

Since they are based on FORTRAN, will the
rehosted reuse libraries continue to have the same

The Reuse Study Team has been charged with disadvantages (in particular, code growth) as did
studying the processes associated with the the original FORTRAN libraries? If so, this
maintenance and reuse of GSS, as well as those makes the FORTRAN libraries a less attractive
that utilize the rehosted FORTRAN reuse libraries choice compared to 0-0 Ada reuse libraries. Or is
in the development of mission support software. there some attribute of the COTS products or the
Our work thus far has resulted in a detailed rehosting process which mitigates these
understanding of the GSS configuration process, disadvantages?
described in the previous sections. As well, we
have come to some understanding of the questions
around which to focus this comparison. These 5.2.3 Software Engineering Practices

questions represent some points of disagreement The design of the rehosted libraries relies heavily
between COTS and GSS proponents, some on the use of Global COMMON data. The
concerns raised by developers and users of both software elements of the resulting applications are

SEW Proceedings 39 SEL-96-002

very tightly coupled to these data structures. Also,
as mentioned earlier, one of the rehosted libraries
has a code structure which mirrors the original
FORTRAN structure very closely. Some
developers also expressed concern that the
rehosting efforts did not follow standard software
engineering practices, such as inspections. On the
other hand, it could be argued that rehosting does
not warrant such a high process overhead because
it is based on software that has been in operation
for a long time.

GSS, on the other hand, was developed in
accordance with more modem 0-0 concepts and
practices. A rigorous software engineering
process was followed, including design and code
inspections and rigorous testing.

Does the use of 0-0 concepts and software
engineering practices really make a difference in
this case? Or does the fact that the rehosted
software is based on such a time-tested library
make up for its deficiencies in this area?

5.2.4 Maintenance
Both FDD COTS users and GSS proponents stress
the advantages of their respective approaches for
maintenance. The systems based on the rehosted
libraries are argued to be easily and quickly
modified by someone who is familiar with the
domain, but not necessarily with software
development. That is, an analyst does not have to
rely on a software developer to make every change
required. Using a GSS-based application, on the
other hand, requires a delay whenever a change is
requested, often until the next release of the GSS
library. Thus using the MATLAB-based rehosted
libraries provides users much quicker turnaround
time on modifications of the application than does
using GSS.

GSS proponents argue, on the other hand, that any
system will degrade over time if it is allowed to be
changed unsystematically by users. Also, the
structure of GSS was designed to facilitate change
without adding complexity or large amounts of
new code.

Is it more important for the user to have quick
turnaround on requested changes, or to manage the
evolving structure of the software? Is there a
reasonable compromise between the two? Do the
COTS-based applications become more difficult
to maintain the larger the application is? Does the
design of GSS really ensure that it will not
degrade over time?

SEW Proceedings

Are developers and analysts using different time
scales (i.e., "quick is 1 hr. for an analyst, but 1
day for a developer?)? Are developers and
analysts looking at different scopes of the
modification process (i.e., a developer looks at
how quick it is to change the code, whereas an
analyst looks at how long he has to wait to get the
revised)?

5.2.5 Performance
The applications based on the rehosted libraries
are interpreted, not compiled. In some cases the
source code was automatically converted to C,
then compiled. This compilation step improves
processing speed by a factor of two, but still
remains slower than traditional FDD applications.
How much slower are the COTS-based
applications than GSS-based applications, and is
this difference noticeable or important to users?

5.2.6 Reliability
The AGSSs based on the rehosted libraries rely
heavily on the intrinsic capabilities of the
underlying COTS software for performing a
number of mathematical manipulations. Care
must be given to separate out errors in the COTS
software from errors in the custom developed
portions of the code. GSS components, on the
other hand, have exhibited very low defect levels
in acceptance testing. No applications of either
approach, however, have been operational for long
enough to assess field reliability.

What assurances do we have of the reliability of
COTS products? How can it be assessed?

5.2.7 Portability
The applications based on the rehosted libraries
are all designed to be part of a single system using
the GUI provided by the COTS product used in
the rehost. This makes porting the components
relatively easy for any target platform which
supports that product. On the other hand, there
were some difficulties recently in porting one of
the GSS-based AGSSs from the HP to the Sun
workstations because UIX (the user interface
which GSS uses) had not previously been ported
to the Sun.

How important a criteria is portability? Can UIX
and GSS be made more portable in the future?

5.2.8 Documentation
During the porting of one of the FORTRAN
libraries, the original FORTRAN code structure
was followed very closely. Thus, the original
specifications for the FORTRAN software are still
valid for the rehosted version. However, none of
the advanced features of the COTS products were
used which would have allowed a more efficient
restructuring of the code. These features were
used heavily in the porting of the other
FORTRAN reuse library. As a consequence, the
code is more compact than it was, but the original
software specifications are no longer valid and no
new specifications have been written. The analysts
who were responsible for porting the libraries
believe that, to a certain extent, a separate
specifications document becomes less necessary
because in the programming language used
(associated with the underlying COTS products),
the equations are written exactly as they would be
written in the specification.

The design of the GSS system is documented in
the GSS functional specifications, but these are
1600 pages long and, as mentioned earlier, are a
real barrier to understanding the system for its
eventual intended users, mission analysts.

levels. We also analyzed effort data in order to
determine the cost savings in moving from actual
development of AGSSs to support each mission
(which was necessary before GSS was available)
to configuring AGSS software from the domain
library.

While characterizing the GSS process, we also
became aware of several interesting factors which
affect the successful continued use of GSS. Many
of these issues fall under the subject of the
evolving technologies, which were not available at
the inception of GSS, but are now. Some of these
technologies could be incorporated into the GSS
process, thus making the whole asset library more
usable. Other technologies are being considered
as an alternative to the GSS process altogether. In
this paper, we outline some of issues we will be
considering in our continued study of GSS and the
impact of evolving technologies.

7. References
1. Yu, E., "An Organizational Modeling
Framework for Multi-Perspective Information
System Design," [Conference currently unknown],
-1993(?).

However, they seem to provide all relevant 2. McGarry, F., R. Pajerski, G. Page, S. Waligora,
information necessary for maintaining the GSS V. Basili, M. Zelkowitz, An Overview of the
components, and are written from a software Software Engineering Laboratory, Software
developer's point of view. Engineering Laboratory, SEL-94-005, December
Is either type of documentation sufficient for 1994
operation and maintenance purposes? Is the 3. Waligora, S., 3. Bailey, M. Stark, Impact of Ada
COTS-based code really self-documenting enough and Design in the Flight
for maintainers to correctly make modifications? Dynamics Division at Goddard Space Flight
Can users of GSS components and applications be Center, Software Engineering Laboratory, SEL-
taught to use the GSS specifications effectively? 95-001, March 1995

6. Conclusions
This paper presents the interim results from the
SEL's Reuse Study. The team conducting this
study has, over the past few months, been studying
the GSS domain asset library and architecture, and
the various processes associated with it. In
particular, we have characterized the process used
to configure GSS-based attitude ground support
systems to support FDD missions. To do this, we
built detailed models of the tasks involved, the
people who perform these tasks, and the
interdependencies and information flows between

4. Basili, V., G. Caleiera, F. Lanubile, F. Shull,
"Studies on Reading Techniques," Proceedings of
the Twenty-First Annual Sojiware Engineering
Workshop, Greenbelt, MD, December 1996

8. Other Sources
Boland, D., L. Cisney, S. Godfrey, S. Green, T.
Gwynn, J. Langston, Upper Atmosphere Research
Satellite (UARS) Attitude Ground Support System
(AGSS) Software Development History, Flight
Dynamics Division/GSFC, FDDl552-901092,
November 1990

these people. These models were based on Briand, L., W. L. Melo, C. Seaman, V. Basili,
information gleaned from numerous interviews "Characterizing and Assessing a Large-Scale
with people involved in this process at various

SEW Proceedings 4 1 SEL-96-002

Software Maintenance Organization," ICSE'95,
Seattle, WA, 1995.

Brown, C., R. Coon, J. Langston, D. Spiegel, T.
Wood, Internatinal Solar Terrestrial Physics
(ISTP) Program/Global Geospace Science (GGS)
Project, WIND and POLAR Spacecrafr Flight
Dynamics Support System (FDSS) Software
Development History, Flight Dynamics
DivisiodGSFC, 552-FDD-93/008ROUDO, March
1993

Condon, S., M. Regardie, M. Stark, S: Waligora,
Cost and Schedule Estimation Study Report,
Software Engineering Laboratory, SEL-93-002,
November 1993

Coon, R., J. Golder, S. Green, J. O'Neill,
Internatinal Solar Terrestrial Physics
(ISTP)/Collaborative SolarTerrestrial Research
(COSTR) Initiative, Solar and Heliospheric
Observatory (SOHO) Mission Attitude Ground
Support System (AGSS) Software Development
History, Flight Dynamics DivisiodGSFC, 552-
FDD-95/026ROUDO, November 1995

FDD analysts, developers, and testers, interviews
with

FDDJGSFC, MTASS FDSS Overview, Revision 1,
Update I, October 1995

Green, D., T. Gwynn, G. Moschoglou, M.
Regardie, L. Lindrose, A. Calder, S. Valett, X-Ray
Timing Explorer (XTE) Submillimeter Wave
Astronomy Satellite (SWAS) Utilities Sofhvare
Development History, Flight Dynamics
DivisiodGSFC, 552-FDD-96/007ROUDO,
October 1996

Gwynn, T., M. Mills, M. Regardie, T. Rogers,
Submillimeter Wave Astronomy Satellite
(SWAS)/X-Ray Timing Explorer (XTE) Attitude
Ground Support System (AGSS) Software
Development History, Flight Dynamics
DivisiodGSFC, 552-FDD-95/024ROUDO,
September 1995

Kulp, D., P. Myers, M. Regardie, Total Ozone
Mapping Spectrometer-Earth Probe (TOMS-EP)
Attitude Ground Support System (AGSS) Software
Development History, Flight Dynamics
DivisiodGSFC, 552-FDD-94/03 1 ROUDO,
September 1994

Mathworks Web Site,
http://www.mathworks.com/ and
http://www.mathworks.com/matlab.html

NASAIGSFC Software Engineering Laboratory
(SEL), The Generalized Support Software (GSS):
A Description of Its Current Software
Development Process, February 1996

Software Engineering Laboratory: data from its
database

Spiegel, D., J. Doland, Fast Auroral Snapshot
Explorer (FAST) Attitude Ground Support System
(AGSS) Software Developement History, Flight
Dynamics DivisionIGSFC, 552-FDD-
94/040ROUDO, September 1994

SEW Proceedings

21st Annual Software Engineering Workshop
December 4, 1996; Greenbelt, Maryland

Evolving the Reuse Process -
at the

Flight Dynamics Division (FDD)
Goddard Space Flight Center

Condon, Seaman, Basili, Kraft, Kontio, & Kim

rn Steven Condon' -- scondon @csc.com
Carolyn Seaman2 -- cseaman @cs.umd.edu

rn Vic Basili2 -- basili @cs.umd.edu
rn Stephen Kraft3 -- steve.kraft@gsfc.nasa.gov
rn Jyrki Kontioz -- jkontio@cs.umd.edu
H Yong-Mi Kim2 -- kimy@cs.umd.edu

Computer Sciences Corporation

Computer Science Dept., University of Maryland, College.Park
Goddard Space Flight Center

SEW Proceedings

Evolving Reuse: The GSS Process
Advantages and Issues of GSS Process
Potential Improvements for the GSS
Process

-*--*--**---*-----*-.---*.-.----------*-**---*--*---.----**---.-

a Evolving Technologies
a Alternative Reuse Process
a Understanding Alternative Reuse

Processes
------------*-.-------------*------------------------*----------

a Conclusions

FDD Environment

8ize: 100 civil servants, 300-400 contractors
Mission: Deploy mission-critical applications
for NASA space ground systems
3 Software Domains
+ Attitude Determination

+ 200-300 KSLOC attitude ground support systems (AGSS)
+ 40-70 KSLOC telemetry simulators I

+ Mission/Maneuver Planning
+ Orbit and Navigation

SEW Proceedings

@Reuse History at FDD & SEL
i

mainframe
systems

+Reuse of
low-level
utilities

I I SEL sponsored experimentation in O-OlAda83 I)

mainframe
systems

+Reuse of
low-level
utilities

I I +Telemetry simulators (40-70 KSLOC) on VAX
+Application-specific architectures I I
+High reuse levels for telemetry simulators (>90 %)

SEW Proceedings

SEL sponsored experimentation in 0-OlAda83
/ \ I I +Telemetry simulators (40-70 KSLOC) on VAX I I

mainframe 11 I (+Application-specific architectures I I
systems II +High reuse levels for telemetry simulators (~90 %)

*Reuse of

SEW Proceedings

0-O/Ada

' FDD goal ,-+
to configure '
applications 0

*Generalized Support Software (GSS): a library of generalized,
configurable application components developed with an object-
oriented domain engineering approach.

to configure ' Prototyping Design Coding Configuration
applications

1989
+

1992 1993 1 995

*Generalized Support Software (GSS): a library of generalized,
configurable application components developed with an object-
oriented domain engineering approach.

SEW Proceedings

PressureslGoals:
reduced budgets

* schedule pressure

0-O/Ada
mainframe ->workstation move
eliminate duplication in functionality

experiments ' - , 0 0 ,

FDD goal ,'
to configure ' Prototyping Design Coding Configuration
applications 0 1989 1992 1993 1995 b

*Generalized Support Software (GSS): a library of generalized,
configurable application components developed with an object-
oriented domain engineering approach.

Application Model User Interface Model

- Communications and Control Model

SEW Proceedings

t t t
"oo%%&

Generalized Components

! I' - Communications and Control Model

The GSS Architecture Hierarchy

Object: a model of some individual
item of interest in the problem domain.

Applications
*---

Reuse Library
Class: a generalized object

SEW Proceedings

Category: a set of similar classes grouped
together along with rules for using these member
classes for mission support.

Subdomain: a group that contains all
categories necessary to specify the functionality
in a specific high-level area of the overall
problem domain.

Project Experience
Organization Factory

Traditional
Experience Factory

Mission
*.---

Project Experience Traditional
Organization Factory Experience Factory

n

SEW Proceedings

Project Experience
Organization Factory

The GSS as an
Experience Factory

GSS Asset Library n

I \ Engineers /

40 ONon-Real-

Thousand 30 Time Syste
& Utilities

of Hoursavb 20 real-~ime

10 OSimulator

0
he-1 985 FORTRAN 1st GSS 2nd GSS
Reuse /Ada Mission Mission

Reuse
Era

(no R-T
system)

TP costs removed from application costs for fitst 2 eras; TPs unecsssaty in GSS era.
Library maintenance costs included in 2nd era; GSS mission costs include total of 10 Khr of

GSS overhead (library maintenance. etc.)

SEW Proceedings

T P costs removed from application costs for first 2 eras; TPs unecessary in GSS era.
t. Library maintenance costs included in 2nd era; GSS mission costs include total of 10 Khr of
GSS overhead (library maintenance, etc.)

Thousand 30

Reuse ~- ~

Era

(no R-T
system)

.TP costs removed f r m application costs fortirst 2 eras; TPs unecessary in GSS era.
"ibrary maintenance costs included in 2nd era: GSS mission costs indude total of 10 Khr of
GSS overhead (library maintenance, etc.)

SEW Proceedings

Thousand
of Hoursalb

DNon-Real-
Time Syste
& Utilities

DReal-Time

Pre-1985 FOwrFw 1st GSS 2nd GSS -
Reuse /Ada Mission Mission

Reuse
Era

-~ -

(no Fi-T
system)

.TP costs removed from application wsts for first 2 eras; TPs unecessary in GSS era. I Libraw maintenance costs included in 2nd era: GSS m c l m wsts indude total of 10 h r of I - . .

I GSS overhead (library maintenance. etc.) I

Thousand
of HourHb

DNon-Real-
Time Syste
& Utiliies

DReal-Time

DSimulator

Pre-1985 FORTRAN 1st GSS 2nd GSS I
Reuse /Ada Mission Mission

Reuse
Era

(no R-T
system)

TP costs removed from application costs for first 2 eras: TPs unecessary in GSS era.
Library maintenance costs included in 2nd era; GSS mission casts include total of 10 Khr of

GSS overhead (l i i r y maintenance, etc.)

SEW Proceedings

@ GSS Reduces Deployment Costs ,

I i

60

50

40

Thousand 30
of Hoursavb 20

10

0

BNon-Real-
Time System
& Utilities

OReal-Time

Reuse /Ada Mission Mission
I Pre-1985 FORTRAN 1st GSS 2nd GSS

Reuse

I

Era

(no R-T
system)

T P costs removed from application costs for first 2 eras: TPs unecessary in GSS era.
Library maintenance costs included in 2nd era; GSS mission costs include total of 10 Khr of

GSS overhead (library maintenance, etc.)

[Most recent appliations cost on the order of 10% of pre-GSS costs. 1

Thousand
of Hours%b

ONon-Real-
Time Syste
8 Utilities

UReal-Time

BSimulator

I Pre-1985 FORTRAN 1st GSS 2nd GSS I
Reuse /Ada Mission Mission

Reuse
Era

(no R-T
system)

.TP costs removed frwn applicatim costs for first 2 eras: TPs unecessary in GSS era. I Library maintenance costs incluBd in 2nd era: GSS mission oats inaude total of lo mro f

I GSS overhead (library maintenance. etc.) I
Most recent applications cost on the order of 10% of pre-GSS costs.

SEW Proceedings

Thousand

20

0 OfHoU- "U
FORTRAN Ada GSS

~ ~

1985-1 993 Era Reuse
Reuse Libraries Library

I Deployment savings likely to recoup investment by 4th mission. I

GSS Reduces Deployment
Cycle Time 4

i

1 Duration of AGSS Development I

Max. Ave. Min. 2nd '

I Mission Mission
I

FORTRANlAda Reuse Era ' GSS Era

I Note: GSS era estimates assume vroiect comvletions bv 1/30/97 I

SEW Proceedings

I GSS viewed as a "child" of the SIW developers.
I Can't write the (GSS) mission spec without

understanding the GSS functional specs.
The GSS functional specs (1600 pages) are written
by and for developers -- not for analysts.
Very few analysts involved in GSS process.
Many analysts cool towards GSS.

Potential Improvements

Create a database for mission requirements
(text-based now) in order to reduce
mission spec effort.

w Automate the generation of mission
specifications and configuration inputs.
Create a scenario-driven overlay -- designed
by analysts -- for the functional specs.

SEW Proceedings

H 0-0 languages evolving: Ada83 --> C++ and
Ada95
+ GSS Attitude Subdomain in Ada83
+ GSS Mission Planning Subdomain in C++

H 0-0 design techniques evolving
+ use cases (scenario-driven)

H Marketplace GUI's more advanced now
H COTS products more powerful, more varied

Alternative Reuse Processes

w FORTRAN reuse libraries were rehosted to
workstations using COTS products;
can support future missions as well.

w Other COTS products being used for mission
support.

New missions can choose GSS andlor COTS.

SEW Proceedings

Understanding Alternative

Would GSS benefit from a different GUI?
Does 0-0 Tech. in GSS make it more robust or
maintainable than non-0-0 COTS products?
Other maintenance issues

H Performance
Reliability

H Portability
Documentation

@ ~onclusions rn

GSS process savings
+ Deployment time.
+ Application deployment costs --> 10% of pre-GSS costs.
+ Recoup library investment in 4 missions?

GSS not designed for FDD analysts
+ Functional specs, mission specs, configuration process
+ Mods needed to make GSS process more useful to analysts.

Alternative reuse processes now available.
More work needed to compare and assess GSS and
COTS.

SEW Proceedings

b.

'7 -.$
" * / J'

'1 r; .p
Studies on Reading Techniques

Victor Basili, Gianluigi Caldiera, Filippo Lanubile, and Forrest Shull
Institute for Advanced Computer Studies

3Ce(-Jlo 9s
Department of Computer Science

University of Maryland, MD, USA
{basili I gcaldiera I lanubile I fshull) @cs.umd.edu

1, Introduction
Software reading is a key technical activity that aims at achieving whatever degree of understanding is

needed to accomplish a particular objective. The various work documents associated with software
development (e.g., requirements, design, code, and test plans) often require continual understanding, review
and modification throughout the development life cycle. Thus software reading, i.e., the individual analysis
of textual software work products, is the core activity in many software engineering tasks: verification and
validation, maintenance, evolution, and reuse.

Through our work in the SEL, we have evolved our understanding of reading technologies via
experimentation. We have run empirical studies ranging from blocked subject-project experiments (reading
by step-wise abstraction vs. functional and structural testing [Basili,Selby87]) to replicated projects
(University of Maryland Cleanroom study [Selby,Basili,Baker87]) to a case study (the first SEL Cleanroom
study) to multi-project variation (the set of SEL Cleanroom projects [Basili,Green94]) and most recently,
back to blocked subject-project experiments (scenario-based reading vs. current reading [Basili,Green,
Laitenberger,Lanubile,Shull,Soerumgaard,Ze1kowitz96], [Porter,Votta,Basili95]).

We have used a variety of experimental designs to provide insight into the effects of different variables
on reading. The experiments are based upon the ideas that reading is a key technical activity for improving
the analysis of all kinds of software documents and that we need to better understand its effect. We believe
these studies demonstrate the evolution of knowledge about reading, experimentation, and the packaging of
experimental results over time. Several of these experiments have been replicated by other researchers.

To provide a technological base to software reading, we attempt to develop specific reading techniques,
made up of a concrete set of instructions which are given to the reader on how to read or what to look for in
a software work product. Our current research efforts focus on the development of families of reading
techniques, based on empirical evaluation. Each family of reading techniques can be parameterized for use
in different contexts and must be evaluated for those contexts.

The taxonomy of reading families is shown in Figure 1. The upper part of the tree (over the dashed
horizontal line) models the problems that can be addressed by reading. Each level represents a further
specialization of the problem according to classification attributes which are shown in the rightmost column
of the figure. For example, reading (technology) can be applied for analysis (high level goal), more
specifically to detect faults (specific goal) in a requirements specification (document) which are written in
English (notation/fonn).

The lower part of the tree, (below the dashed horizontal line) models the specific solutions we have
provided to date for the particular problems, represented by each path down the tree. The solution space
consists of reading families and reading techniques. Each family is associated with a particular goal,
document or software artifact, and notation in which the document is written. Each technique within the
family is: (1) tailorable, based upon the project and environment characteristics; (2) detailed, in that it
provides the reader with a well-defined set of steps to follow; (3) specific, in that the reader has a particular
purpose or goal for reading the document and the procedures that support the goal; (4) focused, in that it
provides a particular coverage of the document, and a combination of techniques in the family provides
coverage of the entire document. Finally each technique is being studied empirically to determine if and
when it is most effective.

SEW Proceedings

Re ding

A
Technology

High Level Goal

Specific Goal

Document
(Software Artifacts)

~ e s Plan ~ b d e ~ k i o n

~ r G s t d i e white Box ~lzck ah . !
Source Library Framework Framework
Code I I

~ e f & Based ~ e r s p h v e Based Family

Svstem
wide Oriented Ambiguity

Figure 1. Families of reading techniques

Each software life cycle phase contains both construction and analysis activities. The design phase, for
example, is responsible for creating design documents, as well as for analyzing their quality. Since
construction and analysis are two parts of the same phase, you can learn from analysis technologies about
construction technologies. At a high level, we divide reading activities into Reading for Analysis and
Reading for Construction, to parallel this distinction between analysis and construction processes and to
show that the usefulness of good reading techniques is not limited to any narrow portion of the software
life-cycle. The next two sections describe our work in these areas.

2. Reading for Analysis
Reading for analysis is aimed at answering the following question: Given a document, how do I assess

various qualities and characteristics? Reading for analysis is important for product quality; it can help us
understand the types of defects we make, and the nature and structure of the product. It can be used for
various documents throughout the life cycle. Besides helping us assess quality, it can provide insights into
better development techniques.

Our research into reading for analysis has so far emphasized defect detection; we have focused on the
requirements phase for this purpose. We have generated two families of reading techniques (collectively
known as scenario-based reading), by creating operational scenarios which require the reader to first create
an abstraction of the product, and then answer questions based on analyzing the abstraction with a particular
emphasis or role that the reader assumes. Each reading technique in a family can be based upon a different
abstraction and question set. The choice of abstraction and the types of questions may depend on the
document being read, the problem history of the organization, or the goals of the organization.

The first family of scenario-based reading techniques is known as defect-based reading, and focuses on
a model of the requirements using a state machine notation. The different model views are based upon
focusing on specific defect classes: data type inconsistency, incorrect functions, and ambiguity or missing

SEW Proceedings

information. The analysis questions are generated by combining and abstracting a set of questions that are
used in checklists for evaluating the correctness and reliability of requirements documents.

The second family of techniques, perspective-based reading, focuses on different product perspectives,
e.g., reading from the perspective of the software designer, the tester, the end-user, the maintainer, the
hardware engineer. The analysis questions are generated by focusing predominantly on various types of
requirements errors (e.g., incorrect fact, omission, ambiguity, and inconsistency) by developing questions
that can be used to discover those errors from the one perspective assumed by the reader of the document
(e.g., the questions for the tester perspective lead the reader to discover those requirement errors that could
be found by testing the final product).

In order to understand the effectiveness of scenario-based reading techniques in particular, we have
experimentally studied techniques from both families. The first series of experiments
[Porter,Votta,Basili95], [Basili, Green, Laitenberger, Lanubile, Shull, Soerumgaard, Zelkowitz961 was
aimed at discovering if scenario-based reading is more effective than current practices. Based upon these
experiments, we had empirical evidence that scenario-based reading techniques can improve the
effectiveness of reading methods. At the same time, we noted that some scenarios were less effective than
others. We give some details of these experiments here in order to illustrate our own experiences with
experimentation in software engineering.

2.1 Defect-Based Reading Experiment

In the defect-based reading study [Porter,Votta,Basili95], we evaluated and compared defect-based
reading, ad hoc reading and checklist-based reading, with respect to their effect on fault detection
effectiveness in the context of an inspection team. The study, a blocked subject-project, wis replicated
twice in the spring and fall of '93 using 48 graduate students at the University of Maryland. The
experimental design was a partial fractional factorial design. The design was less elegant than the
[Basili,Selby87] design because the comparison here is with the status quo approach (ad hoc) or with a less
procedurally organized approach (checklists) so it is impossible to teach the subject a defect-based reading
approach and then return to ad hoc or check list. In this case, a sort of ordering was assumed. On the first
pass there were more ad hoc and check list readers. Several, but not all, were moved to defect-based reading
on the second pass.

Major results were that:

the defect-based readers performed significantly better than ad hoc and checklist readers;

the defect-based reading procedures helped reviewers focus on specific fault classes but were no
less effective at detecting other faults; and

* checklist reading was no more effective than ad hoc reading.

2.2 Perspective-Based Reading Experiment

In the perspective-based reading study [Basili, Green, Laitenberger, Lanubile, Shull, Soerumgaard,
Zelkowitz961, we evaluated and compared perspective-based reading and NASA's current reading
technique with respect to their effect on fault detection effectiveness in the context of an inspection team.
Three types of perspective-based reading techniques were defined and studied: tester-based, designer-based,
and user-based. The study, again a blocked subject-project, was run twice in the SEL environment with
NASA professionals.

The design evaluated the effectiveness of perspective-based reading on both domain-specific and
generic requirements documents, which had been constructed expressly so that the generic portion could be
replicated in a number of different environments, while the domain-specific part could be replaced in each
new environment. This would allow us to combine the generic parts from multiple studies but focus on
improvement local to a particular environment. Based on feedback from the subjects and other difficulties
encountered in the first run of the experiment, we were able to make changes to the experimental design that
improved the second run. For example, we found it necessary to:

Include more training sessions, to make certain that subjects were familiar with both the documents
and techniques involved in the experiment;

SEW Proceedings 61

* Allow less time for each review of the document, since subjects tended to tire in longer sessions;

Shorten some of the documents, to reach a size that could realistically be expected to be checked in
an experimental, time-constrained setting.

Major results of this experiment were that:
o both team and individual scores improved when perspective-based reading was applied to generic

documents

team scores improved when perspective-based reading was applied to NASA documents

Although the true benefit of PBR is expected to be seen at the level of teams which combine several
different perspectives for improved coverage, the results for individuals showed that the use of PBR may
lead to improvements at the individual level as well. Thus, we further analyzed the individual reviewers'
performance with the generic documents considering other attributes of effectiveness. Preliminary results of
this second-round analysis were that:

o PBR reviewers took more time than reviewers using their current reading technique but the average
cost for finding a defect was the same for both the methods

o The percentage of false positives for both methods is about the same. There were less false
positives with PBR although the difference was not significant)

If we consider that PBR reviewers found more defects than reviewers using their current reading
technique and assume that the cost of finding a defect increases as more defects are found, we can conclude
(for generic documents) that:

PBR is actually more productive than the local reading technique.

The relative effort spent fixing defects is better for PBR.

By tailoring the perspectives also to the NASA application domain, we should be able to improve
individual performance on these tasks. We need to improve the treatments used in the reading techniques.
This can be done by developing questions for each scenario using the specific application domain (e.g.,
flight dynamics requirements documents), by focusing on the abstraction mechanism used (e.g., using a
specific technique like equivalence partition testing for the testing perspective), or focusing the questions to
cover certain classes of defects more effectively.

We need to add a qualitative component to the controlled studies to gather more insights into what is
needed to better set up the experiment, define the terminology, and interpret the results. For example,
controlled experiments could be supplemented with various standard methods in qualitative analysis such as
the use of pre-tests, post-tests, ethnographic studies, and interviews.

3. Reading for Construction
Reading for construction is aimed at answering the question: Given an existing system, how do I

understand how to use it as part of my new system? Reading for construction is important for
comprehending what a system does, what capabilities exist and do not exist; it helps us abstract the
important information in the system, It is useful for maintenance as well as for building new systems from
reusable components and architectures.

Our emphasis here has so far focused on the reuse of an existing system or library. Reusing class
libraries does increase quality and productivity, but class libraries do not provide default system behavior
but only functionality at a low level, and force the developer to provide the interconnections between the
libraries. Greater benefits can be expected from reusable, domain specific architectures and components
that are of sufficient size to be worth reusing. Thus, we are currently focusing on the reuse allowed by
object-oriented frameworks for this purpose [Lewis95].

SEW Proceedings 62

Since a framework provides a pre-defined class hierarchy, object interaction, and thread of control,
developers must fit their applications into the framework. This means that in framework-based
development, the static structure and dynamic behavior of the framework must frrst be understood and then
adapted to the specific requirements of the application. It is assumed that the effort to learn the framework
and develop code within the system is less than the effort required to develop a similar system from scratch.
Although it is recognized that the effort required to learn enough about the framework to begin coding is
high [Booch94], [Pree95], [Taligent95], little work has been done in the way of minimizing this learning
curve.

3.1 White-Box Frameworks

We are studying the process of learning such a framework (or more generally, any unfamiliar system)
and developing constructive reading techniques that may minimize the effort expended on program
understanding in particular situations. This experiment involves the study of a white-box framework, which
defines a set of interacting classes, usually abstract classes, that capture the invariants in the problem
domain. Since the source code of the classes is accessible to the programmer, a white-box framework can be
specialized by deriving application-specific classes from the base classes through inheritance and by
completing or overriding their methods [Johnson,Foote88], [Schmid96]. Learning to use a white-box
framework is the same as learning how it is constructed because the user must have detailed framework
code knowledge.

We have defined two reading techniques for using a white-box framework to build new applications: a
system-wide reading technique and a task-oriented reading technique. Both techniques look at the static
structure and the run-time behavior of the framework, and both have access to the same sources of
information. The main difference is the focus of the learning process: the system-wide technique focuses
more on the big picture than on the detailed task to be accomplished (which is the focus of the task-oriented
technique).

With the system-wide reading technique, programmers attempt to gain a broad knowledge of the
framework design. As a consequence, they deliver the functionality required by the new application mainly
by specializing the abstract classes of the framework. With the task-oriented reading technique,
programmers use existing framework-based applications as examples and attempt to gain a specialized
knowledge of the parts which are directly relevant for the required system. As a consequence, they deliver
the functionality required by the new application mainly by changing the concrete classes of the examples.

To compare these two techniques we have conducted a repeated-project experiment, in which we
present graduate students and upper-level undergraduates with an application task to be developed using the
white-box framework ET++ [Lewis95]. ET++ is a sophisticated framework that poses learning problems
which can be major inhibitors against its use. The overall goal of the experiment is to compare the reading
techniques for framework understanding (system-wide and task-oriented) with respect to their effect on ease
of framework learning and usage, i.e., the ease with which the framework is understood and functionality is
added. Students receive separate lectures on the reading techniques and work in teams of three people. One
half of the class has been taught the system-wide reading technique and the other half the task-oriented
reading technique. Preliminary results show that

Even a relatively well-designed although poorly documented framework presents many difficulties
in learning how to derive framework-based applications

Students demonstrated an overhead in learning the framework with high levels of frustration in the
early weeks because of the investment in time without an immediate payoff in programming

* Students found it easier to learn in the beginning by reading and reusing example applications than
by trying to first gain a comprehensive knowledge of the framework

Difficulties were encountered with the system-wide technique because the documentation provided
was at an insufficient level of detail to be useful, and because the technique gave little guidance as
to which area of the framework to concentrate on first.

* Difficulties were encountered with the task-oriented technique because it was hard to find suitable
examples for all required functionality and because example applications were sometime
inconsistent in terms of structure and organization.

SEW Proceedings 63 SEL-96-002

3.2 Black-Box Frameworks

Black-box frameworks allow an application to be created by composing objects rather than by
programming [Johnson, Foote881, [Schmid96]. They provide alternative concrete classes which have to be
selected when creating an application, allowing some variability in the applications created. Thus, a black-
box framework is customized by selecting, parameterizing, and configuring a set of components that
provide the application specific behavior.

The interface between components can be defined by protocol, so the user needs to understand only the
external interface of the components. Since this does not require knowledge of the framework code, black-
box frameworks could be considered easier to use than white-box frameworks. However, better
documentation and training are required because developers cannot look at the source code to determine
what is going on.

We intend to investigate reading techniques for black-box frameworks in a real development context,
focusing on the Generalized Support Software (GSS), a black-box framework developed and used to enable
much more rapid deployment of flight dynamics applications at NASNGSFC. The process for configuring
a new mission-support application with GSS consists of selecting GSS classes to compile and link together,
and setting values for a large number of control and operational parameters. The size and sophistication of
the reuse asset library poses learning problems which can be major inhibitors against its use. Here, the goal
is to improve the existing reading techniques which are used to understand which generalized components
must be configured in order to develop new applications.

Variations of the two reading techniques that were compared in the E T u experiment (system-wide and
task-oriented) will have to be designed for use with a black box framework. The idea behind each reading
technique will be the same, however. One will require the framework user to learn the overall structure of
the framework, while the other will help the student learn with specific examples.

4. Conclusions
Much of our work in reading has so far focused on three families of reading techniques:
1. the defect-based reading family for analyzing requirements specification written in SCR notation,

with the purpose of defect detection;

2. the perspective-based reading family for analyzing requirements specification written in English
language, with the purpose of defect detection;

3. the scope-based reading family for constructing applications through reuse of white-box
frameworks.

We will continue to conduct empirical studies which will allow us to closely monitor the use of different
reading techniques in laboratory and real projects, both quantitatively and qualitatively. We believe it is
necessary to integrate results from both types of studies in order to gain a deeper understanding of the
research questions.

As our ability to understand software reading as a technique evolves, we plan to develop other families
of reading techniques parameterized for use in different contexts and empirically evaluated for those
contexts..

References
V. Basili, S. Green, "Software process evolution at the SEL,", IEEE Software, pp.58-66, July 1994.

V. Basili, S. Green, 0. Laitenberger, F. Lanubile, F. Shull, S. Soerumgaard, M. Zelkowitz, "The empirical
investigation of perspective-based reading"; Empirical Software Engineering - An International Journal,
vol. 1, no. 2, 1996.

V. Basili, R. Selby, "Comparing the effectiveness of software testing strategies", IEEE Transactions on
Software Engineering, vol. SE-13, no. 12, pp. 1278-1296, December 1987.

G. Booch, , "Designing an application framework", Dr. Dobb's Journal, vol. 19, no. 2, February 1994.

SEW Proceedings 64 SEL-96-002

R. Johnson, B. Foote, "Designing Reusable Classes", Journal of object-Oriented Programming, June 1988
T . Lewis et al., Object-Oriented Application Frameworks, Manning Publications Co., 1995.
A. Porter, L. Votta, V. Basili, "Comparing detection methods for software requirements inspections: a
replicated experiment", ZEEE Transactions on Sopare Engineering, vol. 21, no. 6, pp.563-575, 1995.
W. Pree, Design Patterns for Object-Oriented Software Development, Addison-Wesley Publishing Co.,
1995.
H. Schmid, "Creating Applications from Components: A Manufacturing Framework Design", ZEEE
Software, vol. 13, no. 6, pp. 67-75, November 1996.
R. Selby, V. Basili, Baker, "Cleanroom software development: an empirical evaluation", ZEEE
Transactions on Software Engineering, pp. 1027- 1037, September 1987.
Taligent Inc., The Power of Frameworks, Addison-Wesley, 1995.

SEW Proceedings

SEW Proceedings

Studies on Reading Techniques

Victor R. Basili, Gianluigi Caldiera,
Filippo Lanubile, Forrest Shull

Experimental Software Engineering Group (ESEG)
University of Maryland, College Park

Reading Motivation

Reading is a key technical activity
for analyzing and constructing software documents

We need to evolve reading technology
by improving the analysis of all kinds of software documents

What is software reading?
the individual analysis of a textual software product

e.g., requirements, design, code, test plans
to achieve the understanding needed for a particular task
e.g., defect detection, reuse, maintenance

We have evolved our understanding of reading technology in the SEL
via a series of experiments
from the early reading vs. testing experiments
to various Cleanroom experiments
to the development of new reading techniques currently under study

SEW Proceedings

Reading Research

What is a reading technique?
a concrete set of instructions given to the reader
saying how to read and what to look for in a software product

Our current research efforts are to
develop families of reading techniques
based on empirical evaluation
parameterized for use in different contexts
evaluated for those contexts

In this talk we discuss
a taxonomy of reading families
specific techniques and experimental evaluations
where we are going in our research program

Families of Reading Techniques
Technology

High Level Goal

Specific Goal

Document
(Software Artifacts)

source Library Framework Framework
Code
1 1 1 1 1 1 1 1 1 1111111111 1111111111111111111111- C I -\
SOLUTION

~ e f e h Based ~en$ective Based Family
or (Role Based) a

System Inconsistent Incorrect Omission Tester U er Developer Technique
Wide Oriented Ambiguity

SEW Proceedings

Families of Reading Techniques

Source Library Framework Framework
Code

High Level Reading Goals

We differentiate two goals for reading techniques:

Reading for analysis:
Given a document,
how do I assess
various qualities
and characteristics?

Assess for
product quality
defect detection
...

Useful for
quality control,
insights into development
.. .

Reading for construction:
Given a system,
how do I understand
how to use it as part
of my new system?

Understand
what a system does
what capabilities do and do not exist

Useful for
maintenance
building systems from reuse

SEW Proceedings

Reading for Analysis: Perspective-Based Reading Experiment

Goal of Perspective-Based Reading (PBR):
detect defects in a requirements document
focus on product consumers

Controlled experiment run twice with NASA professionals:

I

Team
Detectio
Rate

O PBR

Reading for Analysis: Defect-Based Reading Experiment

Goal of Defect-Based Reading (DBR):
detect defects in a requirements document
focus on defect classes

Controlled exveriment run twice with UMD araduate students:

0.5

Team 3 0.4
Detection
Rate J 0.3

s = 0.2
I
f

0.1

0

SEW Proceedings

-
. .

Ad Hoc Checklist DBR

, V l L B I I U -

Experiments with Reading for Analysis

More Results from the PBR Analysis

Generic Domain at the lndividual Level:
PBR found more defects than the local Reading Technique
PBR took more time than the local Reading Technique
And the average cost for finding a defect is the same for both methods

Assuming that cost of finding a defect increases as more defects are found

detection

Might imply: PBR is more productive than the local Reading Technique

Experiments with Reading for Analysis

More Results from the PBR Analysis
Generic Domain at the individual Level:

PBR found more defects than the local Reading Technique
The percentage of false positives for both methods is about the same

% of false positives

Might imply: Relative effort spent fixing defects later is better for PBR

= V.RBC~U --a

SEW Proceedings

Reading for Construction

Interested in reading techniques
to minimize the effort to learn a new tool or existing system
for a specific application development

Framework
A set of classes augmented with a built-in model for defining how
classes interact

to reuse domain concepts
to encapsulate implementation details

Two approaches:
White-box frameworks - extend and modify classes
Black-box frameworks - select and configure ready-made classes

Framework

Experiments with Reading for Construction

White-Box Frameworks
We proposed two reading techniques emphasizing different facets of the

framework:

(domain specific)

System-wide technique:
study classes
gain a broad knowledge of the
framework design
build system by choosing
appropriate classes

Custom Software
(application specific)

r

Task-oriented technique:
study examples
gain a specialized knowledge of
directly relevant system parts
build system by modifying
examples

Experimental design:
Repeated project - 45 subjects - 15 three person teams

Environment:
University of Maryland upper-level software engineering course
Project: developing an OMT diagram editor - GUI framework ET++

- V R W SEL-a

SEW Proceedings

Experiments with Reading for Construction

Preliminary Results: White-Box Framework Experiment

Students demonstrated an overhead in learning the framework
- High levels of frustration in the early weeks,

investment in time doesn't yield immediate payoff in programming
- Even a relatively well-designed* framework presents many difficulties

*(but poorly documented)

Learning curve seems worse for system-wide technique
- More difficult to know which areas of framework to concentrate on first
- Learning appears more difficult without example-based leaming

Questions:
How prescriptive should the technique be?
How do we evolve these techniques?

Experiments with Reading for Construction

Experiment with Black-Box Frameworks (GSS)

We need to support analysts ability to understand and use GSS

We hope to learn more about
understanding and using black box frameworks to configure new systems
based upon our studies with white box frameworks

For example:
Do analysts learn differently from developers?
Would analysts do better configuring systems based on:

system-wide approach:
learning specifications/categories
to gain broad knowledge configuring
new systems based on the specifications
and categories

task-oriented approach:
taking examples

(e.g., past similar systems)
modifying the specification of
the old system

va..eyu SEL-2l

SEW Proceedings

Conclusion

We have developed three families of reading techniques
parameterized for use in diierent contexts and
evaluated experimentally in those contexts

Sco~e Based Defect Based Perspective Based
or (kole Based)

W~de Oriented Ambiguity

Long Range Research Plan

We need to
Develop better empirical evaluation methods to study these techniques
in the laboratory and in industrial settings

Provide an Experience Base of technology evaluations that can be added to
by other researchers and practitioners based upon their experiences with
the technologies

Develop other families of reading techniques

and then

Develop families of other techniques
based on empirical evaluation
parameterized for use in different contexts
evaluated for those contexts

SEW Proceedings

Session 2: Process

Sofiare Development Technology Evaluation: Proving Fitness-for-Use with
Architectural Styles

J . Cusick and W. Tepfenhart, AT&T

Systematic Process Improvement in a Multi-Site Software Development Project
H . Hientz, G. Smith, A. Gustavsson, P. Isacsson and C. Mattsson, Q-Labs GmbH

An Empirical Study of Process Conformance
S. Sonungard, Norwegian University of Science and Technology

SEW Proceedings

SEW Proceedings

AT&T Operations & Service Management

Software Development Technology Evaluation:
Proving Fitness-for-Use with Architectural Styles

2 1& NASA SEL Software Engineering Workshop
December 4-5, 1996

Greenbelt, MD

James Cusick
AT&T

Bridgewater, NJ
James. Cusick@att. com

William M. Tepfenhart
AT&T

Middletown, NJ
William. Tepfenhama ff. corn

SEW Proceedings

Software Development Technology Evaluation:
Proving Fitness-for-Use with Architectural Styles

1. OVERVIEW
A cursory glance at a few trade journals will indicate that hundreds if not thousands of
development tools are available on the market. Today, with the boom in Internet technologies,
dozens of new tools enter the market place each month. Faced with this situation we were asked
to define how to choose the best tools for use in the development of hundreds of AT&T's business
applications. Starting in early 1995 we began a revitalization of the software tool assessment
practices of AT&T and especially AT&T8s Network Services Division (NSD). These efforts are
discussed in this paper.

An evaluation methodology was developed based on the concept of fitness-for-use as measured
by the construction of architecturally representative applications within a laboratory environment.
This method was used to evaluate dozens of commercial software development tools in order to
select specific tools as corporate-wide standards.

This work presents the specifics of our software technology evaluation methodology, including our
research efforts, tool taxonomy, and evaluation procedures (especially our use of software
architecture-style-derived certifying test suites). This paper does not present the specific tools
selected through the application of this methodology. -

2. SOFTWARE TECHNOLOGY EVALUATION
Many evaluation techniques are known and meet with varying levels of success. Weighted
averaging, benchmarking, figures of merit, etc., each have certain advantages and disadvantages
(Kontio, 1995). Our approach is instead centered on the concept of demonstrated fitness for use
in the environment of choice as measured by the applicability of any given tool to the dominant
software architectures found within the target business environment. This approach reflects the
"habitat modelsn suggested by Brown (1 996).

This approach stems from viewing evaluation of software from the question: How well does the
provided functionality of a product span the needs associated with tasks to be performed using it?
Evaluation is highly dependent on the use for which the product is intended and the results are
subject to greater ambiguity than evaluations of other classes of products. Many manufacturers of
software products will be more than happy to provide metrics for common performance criteria.
Other questions are more subtle - does the tool provide the right abstractions, is it easy to use,
does it take one hour to do something or ten days. It is these subtle metrics that we intended our
evaluation environment to measure and for this we turned to Architecture Styles.

3. SOFTWARE ARCHITECTURE STYLES
A year long study of our software systems identified (at least) four basic architectural styles
present in our business applications (Belanger, et. al., 1996). These styles are: transaction, data
streaming, real time, and decision support. These styles consistently appeared, in part and in full,
in a wide variety of systems including those for Financial, Maintenance, Provisioning, and Asset
Management domains. We say, in part, because a majority of our systems are actually hybrids of
these different architectural styles.

SEW Proceedings

We eventually derived several certification applications from these styles in order to drive our
evaluation process. Our core reasoning being that the development of small scale applications
modeled after our target development tasks would prove the suitability of the product under
evaluation. This turned out to be true for virtually ail the products we evaluated. The entire process
of which the architecture styles play a key role is now presented in detail.

4. THE EVALUATION PROCESS
Our approach to evaluating software technology is to appraise technology as Ti-for-use" if we can
succeed in developing a sample application which has a reasonable similarity to our production
applications. In other words, we use the product under evaluation in an environment modeled
after the target development environment. The process can be summarized in the following
manner:

1. Survey the available products
2. Classify according to a technical framework
3. Filter the list using screening criteria
4. Construct evaluation criteria templates
5. Use the target tools to build an Architectura/ly Representative Application
6. Record findings against the templates
7. Judge the best scores and select the recommended product

4.1 Survey the available products
The overall evaluation process begins with surveying the tool market for candidate products and
classifying them according to a technical framework sometimes called a taxonomy. Consider the
survey effort first.

Initial research into software tool availability, capabilities, and trends, can be both rewarding and
daunting. The goal of tool research is to identify all or most of the tools currently available for the
support of a particular stage of the software development process. This research is technical in
that one must understand the technological capabilities of each tool. At the same time, this
research is market oriented in that one must also understand trends and supplier positioning.
Some of the techniques used in this activity include:

Literature Reviews: Books, journals, trade press publications. Key information on
technical capabilities, product announcements, corporate changes, tool assessments
and recommendations are readily available.

0 Trade Shows and Technical Conferences: We have found trade shows to be
decreasingly helpful in identifying technologies of interest. This is due to the generally
poor level of technical information available at such venues. Technical conferences
on the other hand remain helpful in putting the available products into a theoretical or
practical context.

a Direct Mail: Believe it or not this is an effective means for collecting information once
you are on enough mailing lists. (This may not be ecological but it is economical in
terms of time; it only takes a few seconds to sort incoming product information.)
Automated Topic Searches: We receive weekly or monthly summaries extracted
from current publications on software technologies and trends via email.
Web Browsing: This has become a significant source of information and freeware
tools. We maintain a list of vendor web sites and this has often provided up to the
minute information on particular products.
Vendor Demonstrations: Slicing through the sales pitch to the technical meat is
often difficult but this remains an effective means of collecting detailed product
knowledge for selected tools.

SEW Proceedings

Evaluation Copies: A time or event determined interval of hands-on experience,
execution, and utilization of the tools is invaluable in understanding actual tool
capabilities (this is discussed in detail below).

o Professional Information Services: Several organizations are under contract to us
providing strategic information on the software industry. This information is often
helpful but can also be factually incorrect or misleading. These sources are useful
more as sounding boards than anything else.

a Private Contact Network: Having a wide network of software professionals to draw
upon for knowledge of the industry and technology cannot be overlooked in research
efforts. For example, teaching a continuing education course at a local university has
brought several new tools to our attention through conversations with students.

a Experience: Having been around the development community for a number of years
directly impacts your ability to scan and decipher information on tools. Oftentimes
"new" tools end up being familiar tools refaced.

o Project Reference: Having access to the real life trials of hundreds of development
projects we know early on what is needed, what works, and what provides less than
advertised.

The output of this research includes summary information on current product availability, industry
trends, software standards and standards activities, computing techniques and methods, and
development resources both internal and external. The specific products or technologies identified
during our research efforts are given an initial classification in the tool and technology taxonomy
discussed next.

4.2 Classify according to a technical framework
A Software Development Environment (SDE) can be viewed as an integrated set of tools and
processes enabling analysts, designers, programmers, and testers to collaborate on the
production of high quality software solutions. Traditional Software Engineering Environment (SEE)
frameworks support the concept of creating an SDE by creating a view of the computing
infrastructure as a unified and sensible environment with specified functional interrelationships
instead of just a random assortment of tools (Brown, 1992).

Unfortunately, SEES are not well suited to the task of tool classification since they are operational
in nature. We required a classification scheme to build our SDE recommendations that could be
used to organize toolsets of an eclectic nature resulting from our market research. Existing tool
taxonomies (Kara, 1995; Fugetta, 1993; Sharon, 1993) typically focused on particular application
domains, limited platforms, or were designed to cover only CASE tools. Since these taxonomies
did not meet the needs of our scope (multi-platform, process driven tool standards), we derived
our own classification for software tools.

To begin with our classification scheme inherited some structure from our corporate context.
Domains typical of most software engineering environments sometimes fall outside of our mission
charter. For example, operating systems, databases, and communications protocols are defined
by other AT&T teams. Our mission was limited to a constrained view of Application Development
technologies.

We decided to base our tool classification on an existing software engineering framework (Utz,
1992) and then modify it as needed (see Figure 1). The major categories provided by Utz are re-
defined by us below. Each of these major categdries are further detailed into sub-categories.
Representative sub-categories are shown in Table 1. As our market research efforts turn up tools,
we categorize them in the taxonomy. Currently we have approximately 1,000 tools in a database
organized by these categories. This database allows us to perform ad hoc queries on tool use
within AT&T and to quickly produce candidate lists when evaluation efforts are begun.

SEW Proceedings 80 SEL-96-002

Figure 1 : Software Englneering Environment Framework as Tool Taxonomy

4.2.1 The framework categories defined
-

Process Manaaement: Tools supporting the specification, implementation, and
compliance management of development processes.
Manaaement & Metrics: Tools supporting the planning, tracking, and measuring of
software development projects.
Reaulrements Definition: Tools supporting the specification and enumeration of
requirements.
Analvsis & Desian: Tools supporting high level design and modeling of software
system solutions following specific formal methodologies and often including code
generation and reverse engineering capabilities.
lm~lementation (CodelDebuq): These tools allow both low level code
implementation to support the edit-compile-debug cycle of development in 3GLs and
visual based programming targeted at rapid application development by use of screen
painterstgenerators with graphical pallets of reusable GUI components with 4GLs.
V&V: Tools providing software verification and validation, qualii assurance, and
quantification of reliability. These include test case management, test selection, and
automated test support.
Release & S u ~ ~ o r t : Tools targeted at supporting enhancements and corrections to
existing code as well as browsers, source code analyzers and software distribution.
Content Creation: Tools used for developing Internet materials such as electronically
published documents, graphics and multimedia components of Internet sites.
Documentation: Tools supporting creation and distribution of system documentation,
specifications, and user information. These tools include documentation storage,
retrieval, and distribution.
Software Confiauration & Manufacturing: A broad class of tools related to the
control of software components and development artifacts including documentation
for the purpose of team based programming, versioning, defect tracking, and
software manufacturing and distribution.

SEW Proceedings 8 1 SEL-96-002

Process Definition & Compliance

ProJect Planning & Metrics
Project Planning
Function Points
General Metrics Release & Support

Distribution
Requirements & Deflnltlon Reverse Engineering

Requirements Trace Emulation
Utilities

Analysls & Design
Object Oriented Analysis & Design Content Creatlon
Structured or Other Design Methods Web Document Authoring
RDBMS Modeling Graphics Authoring

Multimedia Authoring

Documentation & Workflow
System Documentation

Compilers & Debuggers Help Authoring
WorMlow

GUINiual Development
Cross Platform Development Software Configuration Management
Database Development Source Code Control

Defect Tracking
Configuration or Manufacturing
Integrated SCM

Table 1: Selected Tool Taxonomy Sub-categories

4.3 Filter the list using screening criteria
With a thousand tools in the taxonomy we have to start trimming the list whenever a particular
technology sub-category must be evaluated. Using basic technical requirements many candidate
tools can be eliminated. Platform support, negative reviews in the trade press, vendor instability or
financial losses by a vendor can all be used to quickly eliminate certain products from the
evaluation list. If negative criteria do not work we use positive criteria: is the tool "Editor's Choice"
or does our development community already use it as a de facto standard? These types of tools
need to be on the evaluation list while others should be dropped.

4.4 Construct evaluation criteria templates
Each of the tool categories in the taxonomy needs specific evaluation criieria to measure the
relevant attributes of each tool type in our taxonomy. Towards that end a set of templates must be
developed for each type of technology evaluated. These templates resemble the ones found in
many trade journals and bench-marking reports. The following must be created or reused:

1. First, one overall template for generic tool and vendor measurement is provided. This
generic template covers such items as documentation, support, pricing, and platform
availability. A standard set of issues regarding tools such as iconic design, menu
features, ergonomics, printing, and so on, is included.

2. Each analyst must then define a specific template which covers the technical aspects
of the particular class of tool under investigation, if it does not already exist in our
repository of templates. This must be created for each category.

SEW Proceedings

4.5 Use target tools to build Architecturally Representative Applications
Recall that we are interested in demonstrating "finess-for-usen. To do this we now build a
representative application with the product(s) selected for evaluated from the taxonomy. Before
evaluating any software technology we must first consider what capabiliies it has and how to
construct a suitable test suite or if our current set of application specifications will need expansion.

4.5.1 Technologies and Their Tasks
Each type of software product dictates certain kinds of tasks that will be the subject of evaluation.
For example, word processors might be evaluated in terms of developing on-line (in program)
documentation, help files, man pages, hard copy user manuals, and HTML documents. On the
other hand, one would not evaluate a compiler in terms of its support of those same tasks. In
some cases, products span more than one functional category. For example a C++ IDE might
provide a visual programming environment, a class system, and a general purpose compiler.
Since each of these is a separate endeavor, an evaluation of a C++ IDE will concentrate,
independently, on the visual programming environment, class system completeness, and compiler
performance. These are individual and discrete evaluations. Each will need specific resources to
carry out the evaluation.

4.5.2 Software Resources for Evaluation
The software resources required to complete the data collection demanded by the evaluation
template fall into three categories: 1) the software under evaluation; 2) supporting software (i.e.,
the operating system); and 3) software in the form of test cases (e.g., a sample design to
implement). As we have shown, common architectures run through most AT&T applications. Our
concept was to derive the required test cases from these architecture types or patterns.

Software patterns (Gamma, 1995; Coplien, 1995) formalize some of the concepts on recurring
underlying software construction themes. We devised evaluation test cases to demonstrate that
any tool recommended supported AT&T1s specific computing problem domains. Thus we
developed and specified a set of representative appliCations modeled after architectural styles or
patterns 0bse~ed in the field, to serve as certifying test suites for any tool slated for review (see
Table 2).

Table 2: Representative Applications and their Architecture Styles

The representative applications and their relationship to the generic architecture styles of Table 2
are briefly described below:

Contact Data Base: The Contact Data Base is a very simple system for managing contacts
on a project-by-project basis. Contacts are managed at the level of tracking individuals
associated with a project, individual meetings, and tracking tools employed on the project.
This application demonstrates a forms based interface for data entry and reporting.

SEW Proceedings 83 SEL-96-002

Co-O~erative Document Svstem ICODSI: The Co-Operative Document System allows
multiple people to work on the same document. The basic capability of checking a document
into and out of a document control system is augmented with a message broadcasting feature
alerting users of a subscribed document's state. This represents a client server system with
data streaming and on-line transaction architectural components.
Gra~hlc Enterprise Modeler (GEM): The graphic organization display provides the ability to
model graphically the structure of a corporate organization. It visually illustrates relationships
among people, projects, and teams. To find answers to specific questions regarding an
organization, the user follows semantically meaningful links and uses active graphics controls.
This application demonstrates the user interaction style of the active graphics variety.

0 NetAnalvst: This application is a map based data visualization tool. It takes a set of real
telecommunications data (the 1994 L.A. earthquake phone traffic) and plots it geographically.
This is a common type of application profiling decision support and mapping.

a ToolBase: This is an lntranet based front end to a product tracking database. This application
provides for the evaluation of many types of lnternet technologies and the extent to which they
can support the architectural styles of OLTP and decision support on the Intranet.

Returning to our evaluation process, an appropriate application is selected to test the tool class
and development against a set of specifications describing the sample application is begun.
Often, the specifications need modification or additional software design efforts need to be
conducted to fully stress the products under evaluation (e.g., our lnternet application did not test
multimedia features as initially designed). Inferior products fail during implementation of the
specifications and quickly drop out.

4.6 Record findings against the templates
Throughout the work of building the sample application, feature performance data must be
captured on the custom template constructed for this technical category. This includes objective
and subjective measures. Subjective data includes how intuitive the product was or how friendly
the help desk was when called. Objective data includes if the promised features worked and if you
could accomplish the task of building the sample application.

Weighted Scoring Method (WSM) is normally used to provide a simple rating mechanism for
each product under evaluation. In this method each item in the criteria matrix is assigned a score
or weight score. Usually a score of 1 to 5 is given to the product for each criterion. Then an overall
score can be derived using the formula below (Konito, 1996):

4.7 Judge the best scores and select the recommended product
The final step is recommending a product. Out of the short list all products are evaluated. Using
the sample application as a test suite the superior product normally emerges. With a WSM
technique there is very small opportunity for any ties. The analyst must, however, still exercise
their best judgment in selecting a product for recommendation.

5. EVALUATION PROCESS RESULTS
Within a laboratory environment we developed these representative applications repeatedly using
different software technologies. We also carried out other tasks in support of this simulated
development work, such as configuration management, using still more products under

SEW Proceedings 84 SEL-96-002

evaluation. This approach provided clear evidence of the suitability of one product over another
and was much easier to derive than by only looking at a feature capability matrix. We had a high
degree of confidence that the product would work on a real development project using this
method.

Dozens of tools have been evaluated using this method and still others are currently under
examination. From this work many standard products have been chosen that are now part of
AT&T's overall body of internal technical standards. Through controlled introduction using pilot
projects and consultative jumpstarts many of these products have also proven to be successful
on large-scale software projects. Recently this technique was also used successfully to evaluate
over 30 software products used in lnternet based development projects.

6. PORTING THE PROCESS
Deployment of this technique to a different environment requires minimal modifications. We have
reused this process from the evaluation of Windows based tools to the evaluation of lnternet
based tools seamlessly. To transfer this process to a different development base or user
community we recommend making the following changes:

1. The tool taxonomy must be recalibrated to fit your environment and goals. Our
taxonomy does not address databases, office automation, or operating systems. You
need to add the appropriate technologies to fit you computing framework.

2. Your architectural styles may vary from ours. We develop very few "hard realtime
systems or embedded systems of any kind since our spin-off of Lucent Technologies.
There may be other significant architectural styles you will need to identify.

3. After adjusting the framework and architectural styles you now need to document your
screening criteria and create your detailed evaluation criieria templates. A good
template typically requires a couple of days for an analyst to create. They are
reusable and typically only one is necessary per technical category.

4. Execute. This is the crucial step where the watch-word is "emulationn. That is,
emulation of your actual development process and tasks.

We are confident that by following these simple steps the process we have been using for the last
two years can be re-deployed in any software development technology evaluation laboratory.

7. CONCLUSIONS
Using applications derived from clearly relevant architectures keeps the evaluation process
honest. Analysts with development backgrounds typically feel more comfortable building an
application than acting as a software criiic. Simulating the development tasks in this way does not
solve all the problems with technology evaluation. Politics and compromise are inescapable
factors when making decisions that will commit a corporation to spending or not spending large
sums with any given vendor. Also, some variability remains in the scoring technique. Each analyst
tends to have peculiar habiis in working through a 200 item feature matrix. One may score "highn
or "low" while another may include "mediumn. Nevertheless, we feel confident that architecture
$tyles add a healthy modicum of e*ra validity to the otherwise typical process we have described.

SEW Proceedings

8. ACKNOWLEDGEMENTS
Naturally work of this type cannot be accomplished without the cooperation and support of dozens of people. We are
indebted to several senior managers for their enthusiastic top-down support of this work including Judy Page and D i
Machol of NSD, and Rod Mack and lllene Hochman of BMD. Our immediate support managers, Barbara Beech and
Moses Ling, were especially helpful in guiding this effort. Finally, we would like to thank the dozens of people who
provided information, feedback, and cartied out the evaluations across AT&T and NSD. In particular we appreciate the
work of the NSD Software Development Environment Team and the AT&T Foundation Architecture Software
Development Tools Team. This paper reports on the combined work of each of the individual team members.

9. REFERENCES
1. Belanger, D., et. al., "Architecture Sfyes and Sewices: An Experiment on SOP-P, AT&T Technical Journal,

JanJFeb, 1996, pp54-63.

2. Brown, et. al., Software Enalneerlna Environments: Automated Sunnort for Software Enaineerlnq, McGraw-
Hill, 1992.

3. Brown, et. al., "A Framework for Evaluating Software Technology: lEEE Softwarg, September 1996, pp39-49.

4. Coplien, J., &Schmidt, D., eds., Pattern Lanauaaes of Proaram Deslan, Addison-Wesley, 1995.

5. Fuggetta, A., "A Classification of CASE T e c h n o l ~ , Com~uter, Dec. 1993.

6. Gamma, et al, Deslan Patterns: Elements of Reusable Deslan, Addison-Wesley, 1995.

7. Kara, D., "Clienf/Sewer Development Toolsets: A ~nmework for Evaluation and Undemtanding", AII~llCatl0n
Develo~ment E m , New York, NY, April 4,1995.

8. Konti. J. and Tesoriero, R, "A COTS Selection Method and Gtperiences in its Use", Proceedlnas of 20'" NASA
oftware Enalneerlna Workshog Greenbelt, MD, November, 1995.

9. Konti, J., "A Case Study in App/ying a Systematic Method for COTS Selection", Proceedlnas of 18'" International
ponference on Software Enalneerlqg, Berlin, Germany, March 25-26,1996.

10. Sharon, D., "A Reverse and Re-Engineering Tool Classifiation Schemd', JEEE Sottware Ena. Tech. Committeg
Newsletter, Jan. 1993.

11. Utz, W., Software Technoloav Transitions: Maklna the Transltlon to Software Enalneerlng, Prentice Hall,
Englewood Cliffs, NJ, 1992.

SEW Proceedings

2 1 st NASA SEL Software Engineering Workshop

SOFTWARE DEVELOPMENT TECHNOLOGY
EVALUATION: PROVING FITNESS-FOR-USE WITH

ARCHITECTURAL STYLES

December 4, 1996
Greenbelt, MD

James Cusick William Tepfenhart
AT&T AT&T

Bridgewater, NJ Middletown, NJ
James.Cusick@att.com William.Tepfenhart@att.com

Copyright 0 1996 AT&T

TODAY'S TALK

SEW Proceedings

Concepts for Architecturally Driven Evaluation

The Evaluation Process

* Examples and Results

Conclusions

Copyright 0 1996 AT&T

SOFTWARE TOOLS AND STANDARDS AT AT&T

Gartner Group estimates 40,000 software tools on the market

AT&T Has Hundreds of Projects Ongoing at any One Time

Training, Integration, Portability, Quality Drive Standards

HOW WOULD YOU CHOOSE
A FEW DOZEN TOOLS
FOR CORPORATE WIDE
DEVELOPMENT NEEDS?

Copyright O 1996 AT&T

EVALUATION APPROACHES REVIEWED

Experimental

d- Weighted Averaging

Questionnaires Benchmarking

RFI Figures Of Merit

Sample Applications

Pilot Projects

d = Techniques we Favored

Copyright 0 1996 AT&T

SEW Procei:iings

ARCHITECTURE STYLES INTRODUCED

What is an Architecture Style?
A set of operational characteristics common to a family of
a software architecture and sufficient to identlfy that family.

AT&T study yields four dominant styles :

* Transaction
* Data Streaming
* Real Time
* Decision Support

* Most svstems are Architectural Hvbrids

Copyright 0 1996 AT&T

MORE ON ARCHITECTURE STYLES

USER INTERFACE STYLES

- Forms

Documents

* Active Graphics

Alert Panels (ie, mail program)

Maps

Hypertext

Copyright 63 1996 AT&T

SEW Proceedings

EVALUATION PROCESS SUMMARIZED

1) Survey the available products

2) Classify according to a technical framework

3) Filter the list using screening criteria

4) Construct evaluation criteria templates

5) Use tools to build Architecturally Representative Applications

6) Record findings against the templates

7) Judge the best scores and select the recommended product

Copyright 63 1996 AT&T

SURVEY TECHNIQUES

SEW Proceedings

* Literature Reviews
Trade Shows and Technical Conferences
Direct Mail
Automated Topic Searches
Web Browsing
Vendor Demonstrations
Evaluation Copies
Private Contact Network
Experience
Project Reference

Copyright Q 1996 AT&T

AN OVERALL TOOL FRAMEWORK

Process Connection

Project Planning & Metrics

CONTENT CREATION

System Documentation

I

Software Configuration Management
Utz. 1992

//
Requirements Analysis & implementation

Definition Design

J

Copyright 0 1996 AT&T

//
Release &

Test support

SELECTED TAXONOMY SUBCATEGORIES

PROCESSIPLANNINGNETRICS/REQ. xi%!!
Process Definition & Compliance Test Management
Project Planning Test Design 8 Generation
Function Points Record & Playback
General Metrics Stress. Load. & Performance
Requirements Trace Coverage

PNALYSIS 8 DESIGN
Object Oriented Analysis & Design Distribution
Structured or Other Design Methods Reverse Engineering
RDBMS Modeling Emulation & Utilities

IMPLEMENTATION
Languages
Editors
Compilers & Debuggers
IDES
GUlN~sual Development
Cross Platform Development
Database Development
Components

SEW Proceedings

Help Authoring
Web Authoring
Workflow

gg&
Source Code Control
Defect Tracking
Configuration and Manufacturing

Copyright 0 1996 AT&T

FILTERING CANDIDATES & BUILDING CRITERIA

Platform
Language
Corporate Requirements

Product Specs
Journal Reviews
Existing Templates

Copyright 0 1996 AT&T

SELECTING A CERTIFICATION APPLICATION

SEW Proceedings

Copyright 0 1996 AT&T

RESULTS: SCORING & RECOMMENDING

* Recursive Development Efforts Yield Feature Scores

Simple Weighted Average Applied

Scores + Objective Side-by-Side Performance
on Sample Application Determine Recommendation

Copyright 6 1996 AT&T

AN EXAMPLE: RDBMS MODELING

* Needed RDMBS Reverse Engineering & Modeling

Selected CONTACT Application
- Reuse GUI Forms and DB created for earlier eval
- Good Reverse Engineering candidate
- Modifl Schema and Rehost on new RDBMS

Many integration, support, and administrative problems

Copyright O 19% AT&T

SEW Proceedings

REQUIREMENTS & ARCH STYLE

Table of Contents

I. OVERVIEW
2. CONTACT INTRODUCED
3. JUSTIFICATION FOR CONTACT
4. FEATURE REQUEEMFNTS
5. ARCHITECTURE OPTIONS
6. DATA SCHEMA

6.1 Information Model
6.2 Database Schema and Tables
6.3 Future Additions

7. USER INTERFACE
7.1 Command Bunons
7.2 Combo Box
7.3 Menus
7.4 Tool Bar
7.5 Icons

CONlACTItr/om~ation Model

/I
8. USAGE SCENARIOS
9. CONCLUSIONS & NEXT STEPS
10. REFERENCES OLTP + DSS + Forms

Copyright O 1996 AT&T

IMPLEMENTATION RESULTS

@ Where is stability and multiple database support?

I M: I choose A a s ODBC. If1 use a name such as asascustomer namee (note the space) as a field
name for an element in a record, PI1 get the message "invalid field name" while I generate schema.
However, I can create a table with a field name "customer name" directly in Access. Is this a
problem in TOOLABC?

m r : I need to by MS Access Jet ODBC instead of using Access 2.0.

&&& I choose Watcom 4.0. In database engine, after a schema generating, I want to change some
of my records. When I choose a record and click "Edit", TOOL-ABC exits automatically and
goes to the DOS prompt. After restarting Windows project is now "Exclusively locked".
Rojeet cannot be deleted or renamed.

h&&: In order to recover my project. I was instructed to go to the project directory from Windows
File Manager, then delete some files and copy other files, etc. No reason given for the problem.

Copyright O 1996 AT&T

SEW Proceedings

EXAMPLE 2: HTML AUTHORING FOR DEVELOPMENT

Needed Update for HTML Authoring Recommendations

* Created New Application: ToolBase
- Existing forms based OLTPIDSS Application
- Redesign for Hypertext Browser
- Implement as interactive WWW DB app

Realized Need For Additional Modifications:
- Originally built as simple UI
- Re-fit with extensive images to test graphics toolkits

Copyright 8 1996 AT&T

REQUIREMENTS & ARCH STYLE

Contents

Database schema
Selection forms
Report layouts
Usage descriptions
Table defmitions
HTML prototype

OLTP + DSS + WWW
Hypertext Interface

Copyright 8 1996 AT&T

SEW Proceedings

IMPLEMENTATION RESULTS

No Support for Database Connectivity

Poor Selection of GUI Widgets

Limited Visual Alignment Capabilities wrt Req.

Generally Poor support of Native HTML Editing

Copyright 6 1996 AT&T

ASSESSMENT TOTALS PER CATEGORY

SEW Proceedings

BENEFITS & CHALLENGES

@ Ties Evaluations to Actual Development Tasks

Produces Representative Apps to Daisy-Chain Evals

Supports Dificult Decision Making Task with Objective Data

Creates Excellent Demonstrations for Consulting

@ Does Not Provide Escape from Politics

Process Requires Some Education for Each Participant

Some Variability and Subjectivity Remains
(especially in applying consistently and scoring techniques)

Copyright 6 1996 AT&T

CONCLUSIONS

Advising ourselves on starting over:

Establish dedicated lab space
Secure superb technical support
Rotate talent
Assure top-down management support
Expand internal communication efforts
Invite more vendor "bake-offs7'(let them build it!)

Stay the course on architecturally relevant samples

Copyright 6 1996 AT&T

SEW Proceedings

SEW Proceedings

Systematic Process Improvement
in a

Multi-site Software Development Project
+-

H. Hientz, G. Smith, A. Gustavsson, .j e .f6 J -<:, /
P. lsacsson and C. Mattsson

I , * - / " /fi' {hh, gs, agu, pi, cmapq-labs.com < ,q bd> cd

Q-Labs Software Engineering GmbH,
Germany

3bbbq7

Abstract This paper reports on the application of the PER-
. FECT' Improvement Approach and specifically goal-ori-

ented measurement via G Q M ~ in a large multi-site
software development project. Successful and persistent
implementation of an Experience Factory and the GQM
approach in a large multi-site project organization is a
challenging task and needs to be based on a sound and
operational methodological support to face all the practical
problems and resistance which occur in the course of a
software process improvement programme. In the paper
we present both measures and experiences of applying
goal oriented measurement as well as experiences from
introducing systematic process improvement based on
measurement.

Keywords: Systematic process improvement, software
measurement, Goal Question Metric paradigm, Experience
Factory approach

1. Introduction
When introducing persistent process improvement in an
organization there is a need for having an underlying
framework for what activities that need to be camed out in
order to get lasting results. New results e.g. the Experience
Factory [6] and GQM [2] points to the need of introducing:

* explicit modelling of products, processes and quality
aspects in order to understand the building blocks in
software development and to be able to tailor them
for specific needs, measure their adherence within
different projects and to improve them across
projects.

comprehensive reuse of models, knowledge and expe-
rience in order to choose appropriate models for new

1. Process Enhancement for Reduction of software
deFECTs.

2. Goal/QuestionMetric

projects and to compare actual project data with base-
lines.

* measurement integrated with the software development
in order to define quality goals, understand differ-
ences between projects and to control whether quality
targets have been met

In this paper we report on the experiences in establishing
such a process improvement program using the PERFECT
project [I] results as a methodology basis. PERFECT
should be viewed as one possible instantiation of the Expe-
rience Factory concept and provides a more detailed
description of how to implement the process improvement
framework. The organization described in this paper
already promoted explicit modelling of products and pro-
cesses. The next obvious implementation step was to inte-
grate goal oriented measurement to create better
understanding of the current baselines and thus in the sub-
sequent projects better facilitate the future reuse of experi-
ences and achieve improvements across projects and sites.
This document describes the results of introducing goal
oriented measurement and the first implementation steps in
order to set up an experience factory.

The paper is organized as follows. In chapter 2 we give the
overview of the application project, its characteristics and
organization. Chapter three introduces the process
improvement framework that was used. Chapter 4 focuses
on how goal oriented measurement was applied using the
GQM approach [2]. The used method is described in detail
together with examples from the collected measures and
the analysis. FinaIIy, in chapter 5 the conclusions are pre-
sented.

2. The ~ulti-site Improvement Project
The target for the process improvement was a software
development project of 350,000 m.hrs of effort over one
year for the development of a new release of a product in

SEW Proceedings 99 SEL-96-002

Ericsson's GSM mobile telephony range. It was a collabo- transfer part
rative development involving five separate design centres. * the interaction with the target project at the five sites
It was the aim to carry out process improvement in a sys- through the technology transfer activities
tematic way rather than the ad-hoc approaches that usually * feedback from the target project
characterize process improvement programmes. This
means that: the analysis activity after target project termination

a systematic model of process improvement was used It Was to set up an to through
to provide a framework for the programme, the improvements. To ensure that the process improvement

programme maintained close contact with the design
the improvements were run within a separate improve- teams, process impmvement teams (p.1.T~) were set up in
merit project with its own budget, plans* organization each site.. They consisted of project members from that site
and reporting structure. This project ran 'in ~ardlel ' and their role was to ensure a good two-way flow of infor-
with the target software development project. mation, ideas, and feedback between the process improve-

What is meant by a "systematic approach to process ment programme and the design teams. The multi-site
improvement" is mainly the fact that the programme organization of the project consisted of:
should be based on established models. In this project, A multi-site 'Process Improvement Coordination
there were several models underpinning the project: Team' (PIcr)

a process improvement project structure Process Improvement Teams (PITS) in each site
a process improvement organization

the 'PERFECT' Model of Process Improvement [I]

* the GQM Approach for goal-oriented measurement [2]

* an approach to technology transfer

The main structure of the project is illustrated in figure 1,
which shows: - the gathering of experiences from the previous project

during the pre-execution phase

* Process improvement consultants (Q-Labs)

The Process Improvement Coordination Team (P.1.C.T)
was, as the name suggests, intended to coordinate and har-
monize the activities across all sites in the project.

This organization was deliberately 'bottom-up', i.e. the
driving force behind the programme was intended to be the
site PITs to ensure that the improvement proposals accu-
rately reflected the real needs of the users.

the use of the methodology framework from the 'PER-
FECT' project, and the feedback of experiences

* the methodology development activities providing
improved methods and processes to the technology

Figure 1: The Multi-site project organization

Target
projects

PICME
project

- - - - - - - - -
Experiences 0- Understanding

site: 1 2 3 4 5

Technology Transfer

process m e ~ O %
o~g3ntitative

qualitative data
(10k hrs) (Pre-execution phase (1 Methodology Adaptation 1-1

LLu'Ji"L A) The Process Improvement Framework project

SEW Proceedings

3. The PERFECT Process Improvement
Framework

The process improvement approach described in this paper
is the result from the European ESPRIT project PERFECT
[I], especially the organizational structuring of the
improvement project and the goal-oriented measurement
parts. The PERFECT project had when it started in Sep
tember 1993 the goal to package for European industry
methods and models for establishing measurement-based
initiatives aimed at evolutionary improvement of software
development processes relative to company-specific goals.

The PERFECT Improvement approach is based on the
technologies developed by Basili et al., the Quality
Improvement Paradigm (QIP) on the methodological
aspect, the Experience Factory (EF) for the organizational
aspect and the Goal-Question-Metric (GQM) method for
the goal oriented measurement activities, see for instance
[2], [5], [6]. These concepts have by the PERFECT project
been detailed and enhanced with activities and packaged
for use .within the trial-applications of which PICME was
one such. At the closure of the PERFECT project all devel-
oped methodologies were packaged in booklets as deliver-
ables.

The PERFECT Improvement Approach Experience
Factory Model (PEF)

PEF is based on the existing material from SEL as well as
not documented experiences. In addition to this we have
used the industrial experience from eurouean software

the project characteristics.

The EF in PEF

The EF in the PEF model consists of three focus parts, as
can be seen in figure 2. One part handles the issues of the
overall improvement work (the Strategic Improvement
management); one handles the specific issues with each
separate Software development project that are supported
by the EF (the Project Support); and one handles all spe-
cific project results that should be analysed and then gener-
alizedlsynthesized for the whole organization (the
Experience Package Engineering).

Comparing the EF in the PEF with the NASAISEL EF

In relation to the NASAlSEL EF there has been put more
emphasis on placing the EF into a context within an orga-
nization. Especially the modular approach which empha-
sizes the importance and clarifies the tasks of .the different
areas both outside and inside the EF.

From the outside and in following could be noticed:

The roles in the sponsoring organization that are neces-
- sary to establish an EF and the improvement initiative

have been made explicit. The connection to the busi-
ness goals and market situation, the internal organiza-
tional development and the short term economical
interest of the organization are described.

industry to adapt and add on necessary ar&. The usage
within the PICME project gave together with the other Figure 2: The PEFWECT Experience Factory, PEF

applications many "&M &mei t s for updating and
evolving the PEF when it comes to roles, responsibilities
and activities. Software Development Project
In the PEF model the EF (Experience Factory) is one part
out of three, see Figure 2. The other parts are: the software
development projects that is execution as case studies, sup
ported by the EF, and the sponsoring organization in which
the projects as well as the EF resides. All three parts are
equally important in establishing an effective improvement
initiative.

Experience Packages

The PEF model is based on a focused and simplified model
of an Experience Package. It includes three parts: process
model, process control model (quality model), and process
experience. The first part is what is traditionally handled
by training and experts; the second is handling the GQM
and measurement parts; while the third is focusing on the
actual data, the conclusions and new hypothesis that can be
drawn based on the process model, the measurements and

SEW Proceedings

In the projects it is suggested that the project itself Experiences from Experience Capturing from
should take responsibility for the measurement col- Perfect Application projects
lection and validation. Measurements must be an
active part of managing each project. Since the PEF model evolved to its current shape from

project feedback late in the PERFECT project the applica-
For the EF it is suggested that the overall issues of run- tions did not have time for a full implementation.
ning the EF also must be a&h3sed more sys@mahi- When mapping organisational entities and evaluating the
cally and goal oriented. That includes support for activities in the project it is reas-g that activities in the
systematically selecting new technologies to experi- PEF model are either already perfOm& or there has been
merit with and introduce* the -g an a need for introducing in the andysed application. Espe-
improvement pr0-e in a goal driven manner ci&y promising was also comments like "the PEF model
and the handling of change on Persome1 and would have helped us organize the improvement initiative
zational level. better" from one application provider.

The need for active support of each software project is identifying instances of the PEF within the PICME project
also highlighted. This is one, often neglected, success the PICT could be viewe. as the improvement
factor in Pmess improvemenL It is highlighted the management force and the PITS as the project support
need for different kind of support, i.e.: process train- functions of the PEE
ing and coaching; setting up efficient goal oriented

Figure 4: GQM V-Model

Measurement Plan

0 --
D~gcgo~lection

measurement programmes for the project; and sup In the PICME-project the PERFECT Improvement
port in reusing (identifying, understanding and apply- Approach, so far it had evolved, was used partly by apply-
ing) the experiences (conclusions and hypothesis) ing the steps of the QIP and extensive usage of the GQM
from previous projects. approach.

The third part of the EF in the PEF model is the one
with direct similarities to the NASNSEL EE The
distinction here is the structure of the activities, i.e.,
following the basic stmcture of the Experience Pack-
age: Process Model, Process Control Model and Pro-
cess Experience.

SEW Proceedings

4, Goal-oriented Measurement with GQM

The Reference Model

Conducting a measurement programme in a large
multi-site organization has to be done following an explicit
measurement process, using well defined measurement
artifacts and involving a diversity of project staff from
management to software development engineers. The
GQM V-Model (F1gure4), as defined in and for this
project, provides a reference model to illustrate, communi-
cate and guide the measurement programme. It provides
the ability to explain a d trace the measurement approach
followed (ad-hodbottom-up versus goal-ori-
ented/top-down), the involved roles (from viewpoint of the
analysis task to the data provider), required artifacts (anal-
ysis goal to data collection sheets), and key activities such
as refinement, verification and validation steps.

back, 6) package experiences for future reuse. The mea-
surement process varies depending on the purpose of the
analysis goal, e.g., assessing a delivered software product
versus evaluating a software development process, reusing
GQM measurement goals and experiences versus execut-
ing a measurement programme from scratch.

The process steps are not followed in a waterfall like way,
iterations should be considered, i.e., completion criteria
must be defined and checked. A more formal description
and experienced details could be found in [I], [9] provides
lessons to be learned regarding measurement-based pro-
cess improvement.

The Measurement Goals

The GQM analysis goals were prioritized according to the
improvement goals of the organization, e.g., reduce time to
market by 20%, and the cataiog of improvement proposals
targeted by the improvement programme. The GQM-based
measurement goals were integrated into the existing corpo-

Figure 3: High-level GQM Process
- - - - - - -

1.
3. CrrPtc

MMMMM ,

-. 3: High-level GQM Process

I explicit I

Model

Projeer & Measmment plan
I

I -
Data analysis - - - - - - - ~ ~ _ ~ r n ~ %

The Measurement Process rate wide measurement programme of assessing the

Having the GQM V-Model in place a high level measure
ment process is used to enact the measurement pro-
gramme. The underlying measurement process (figure 3)
consists basically of six steps: 1) characterization of envi-
ronment, 2) set GQM measurement goals, 3) develop
GQM models and produce measurement plan considering
the reuse of existing experiences and models, 4) collect
and validate data, 5) analyse data and provide project feed-

projects performance in terms of Productivity, Quality, and
Leadtime. The GQM goals were targeted on Inspection
Efficiency, Teamwork Effectiveness, Work allocation Fit-
ness, Stability of Requirements, and Applied Design Pro-
cess Performance. All these goals were analysed in detail.
But, due to the limited scope of this paper and confidential-
ity reasons only the Teamwork Effectiveness could be
reported throughout this paper. The relation between cor-
porate and project concerns was captured in a GQM

SEW Proceedings 103 SEL-96-002

'goal-tree' which is illustrated in Figure 5. The underlying
software development process (here: prescriptive, water-
fall like) must be respected which has a major impact on
all the facets of the GQM goal, i.e., object of study, pur-
pose, quality focus, viewpoint, and context. Also the scope
of the measurement goals should be constrained based on
the resources dedicated to the measurement programme
and the organization's maturity. Maturity is defined in
terms of stability of the processes in place and the abiity to
adhere to them.

responsible roles for providing the data. Tools for data col-
lection were either based directly on existing ones, e.g.,
h e reporting system, paperlemail-based questionnaires
or enhanced existing tools, e.g., inspection record collec-
tion tool.

A simple spreadsheet application is sufficient to process all
the collected data and aggregate them to the level of data
analysis charts. Tool support should respect the principle
of GQM, i.e., goal orientation. Currently web technology
is beiig investigated, as part of the 'engine room' concept,
which increases transparency and improves the access to
FAQ's, glossaries, instructions, etc.

Figure 5: GQM goal-tree

Co oration
leve T aspect
4--

Q" Q" ...
I

Q"
I I

/ \ I Anaiyse the impectim process Analyst the tepmwork Project
M M M fortheprpar of- for-& p m o f

level 8SPect tlletfreCtivmts5
fromtheviewpointofthePICTm'g fromtheviewpointofthePlCT

: Goal
Q: Question
H: Hypothesis
M: Metric

/
variation factors

M M M M

The GQM Models Data Analysis

GQM abstraction sheets are useful for refining the GQM
goals during interview sessions held with viewpoint repre
sentatives, affected project staff, and line representatives.
The abstraction sheet for baselining the Teamwork Effec-
tiveness is depicted in Figure 6. The derivation of the vari-
ation factors (VF) is guided by categories of factors which
are considered to have a main impact on the object of study
([2]), e.g., domain conformance as VF 1 and VF 2, process
conformance as VF 3 to VF 7. Likewise, the quality focus
is defined based on the knowledge of the target environ-
ment which is based on the viewpoint's experience.

The Data Collection

Data collection is triggered by periodic activities, e.g.,
weekly time reporting, process states, e.g., begidend of
phases or entrylexit criteria, and artifact state transitions,
e.g., inspected documents. The mggers determine the

Data analysis was done without involving sophisticated
statistical support. Nevertheless, validation of the variation
hypothesis (figure 7) and a comparison of the actual data
with the baseline hypothesis (figure 8) were performed in
regular feedback sessions.

To a limited extent the Rough Set approach was applied
([4], chosen among other approaches, e-g., [7]) to analyse
and package the measurement results. The Rough Sets
Approach ([81) is based on a learning by example theory, it
has been used as a methodological tool for handling vague-
ness, u n c e d t y and noise in the collected data. With
respect to the Teamwork example used in this paper we
identified the stability of the team composition (variation
factor 6 in figure 6) as being the core attribute for explain-
ing the performance of the teams with respect to the team
spirit (quality focus attribute 3 in figure 6).

SEW Proceedings 104

Figure 6: GQM Abstraction sheet - Teamwork Effectiveness Model

a The actual values were unknown, therefore the assumed values were stated and validated as shown in
figure 8.

Main constraints during the analysis task were

the lack of an underlying descriptive software process
model, leading to uncertainty in the reliability of data
collected,

the strict goal orientation during analysis, and

Goal

STG1.3

the inherent characteristics of software engineering
data in general ([3]).

The main purpose of this measurement programme was
'baselining'. This implies less importance related to the
hypothesis validation of the variation factors and focus
more on the validation of the baseline hypothesis (figure
8). But, because the purpose will change to 'control', the
GQM models will evolve and validation will become a key
issue. The ultimate goal for measurement must be
'improvement'.

Object

teamwork

Improvement Opportunities

Purpose

baselining

Q-w Focus

Effectiveness of teamwork:

1. degree of compliance to team
plans (effort, quality of team
deliverables, adherence to

teamwork processes)
2. competence

3. team spirit

Baseline ~ypothesis~

1. current degree of compliance
to team plans -?

2. current Wead of compe-
tence a?

3. current level of spirit-?

Three main sources for improvements of the software
development process could be identified through

Impact on Quality Focus (variation Eactors)

1. previous teamwork experience

2. suitability of defmed process for teamwork

3. team size
4. % of time devoted to teamwork

5. balance of competence within the team

6. composition

7. degree of freedom of team to develop own plans

Impact on Baseline Hypothesis

1. a lot of experience in working in teams increases the team effectiveness

2. inappropriate practices and processes reduces effectiveness of teamwork

3. inappropriate team size decreases effectiveness of teamwork

4. reduced time devoted for teamwork reduce team effectiveness

5. a good mix of skills is necessary for effective teamwork and to spread com-
petence within the organization

6. frequent changes of membership in the team reduce team effectiveness

7. empowering teams to do their own planning increases team commitment to
those plans, which in turn increases the chances of compliance to the plans

Viewpoint

PICT

Quality Focus

effectiveness

the analysis results from the measurement goals, i.e.,
quantitative understanding,

Context

Project X

the GQM modelling task itself, i.e., qualitative under-
standing, and

the enactment of goal-oriented measurement pro-
gramme, i.e., analysis and trace of execution prob-
lems.

They uncover problems with the actual software develop-
ment process, the 'software products delivered and the
management of the software projects.

SEW Proceedings

Teamwork Effectiveness

1 2 3 4 5 6 Team No

Impact: Team Size

6

t
X 5

5
E 4

E : 3 z
2

1 2 3 4 5 6 Team No

Impact: Time devoted to Teamwork

20%
c :, 15%
b - [effort]
2 ; 10%
: - 5%

0%
am No

Impact: Team Stability

C
m 6 -
s
m 5
'? 4 I.stability1
2 3
i i 2 -

1
1 2 3 4 5 6 Team No

The emphasis on process coaching to support technology
transfer and as a way of raising process adherence has raised
awareness of process issues in the organization, even if it has
not yet resulted in a noticeable increase in process adherence.

The main emphasis in the project was on the application of
goal-oriented measurement and the creation of a quantitative
process baseline. The project was largely successful in both
of these areas and the same GQM models are continuing to
be used in two follow-up projects with slight modification.
The main lesson learned from this first round of measure-
ment is the need to stat small and build up as the orgauiza-
tion's measurement maturity grows. Despite having known
this at the start, we still ended up with a measurement plan
that was too ambitious and severely taxed the ability of the
sites to collect and report data accurately and in a timely
fashion. This was perhaps an inevitable consequence of the
global project-wide scope of the measurement programme.
Current measurement programmes are being more narrowly
focussed on specific process areas. The area where we have
had to be most innovative is analysis and interpretation of the
results and presentation of these to project personnel. Mean-
ingful presentation models are needed to reveal trends in the
data and impacts between the variation factors and the qual-
ity focus. The two diagram types for validation of the 'Varia-
tion hypothesis' and 'Baseline hypothesis' worked well but
more needs to be done. The use of Web technology to dis-
seminate results will help in motivating the measurement
activities and in the feedback of results. Finally, even in this
measurement round, some useful insights have been gained
into aspects of the process that were not previously under-
stood and this has led to corrective actions in subsequent
projects and this is ultimately what justifies continuation of
the investment in measurement.

Figure 7: Validation of Variation hypothesis -
Teamwork Effectiveness Model

Conclusion

cases in a slightly modified form.

The organization set up to pursue the improvement pro-
gramme is continuing although with a slightly modified com-
position, and is gradually starting to assume the role of
'keeper of the process experience base' and 'Strategic
Improvement Management' [I] group. Although the mR-
FECT Approach for Improving Software Processes [I] pro-
vided a conceptual framework and useful reference model,
we had difficulty in really putting it into practice. Although
the underlying ideas were well-established, the practical
details of the method were still evolving during the time of
this project and practical experience of their use were not
available. Real-world examples are needed for guidance.

In this project we have attempted to apply systematic pro-
cess improvement in a large multi-site software develop-
ment. The results have been mixed but more positive than
negative. The final proof being that most of the innova-
tions are continuing in subsequent projects, albeit in some

SEW Proceedings 106

Figure 8: Validation of Baseline hypothesis - Teamwork Effectiveness Model

uality Focus I

high

normal

low

1.1 1.2 1.3 2 3
1. Compliance to team plans

1.1 weekly document status %
1.2 effort %
1.3 team process adherence

2. Competence spread
3. Team spirit

References
1 PERFECT Consortium, D22A. 'The PERFECT Approach
for Improving Software Processes'. ESPRIT Project No. 9090,
1994.
2 V. Basili and H. D. Rombach, "The TAME Project: Towards
Improvement-Oriented Software Environments", IEEE Transac-
tions on Software Engineering, 14 (6), pages 758-773, June 1988.
3 L. Briand, V. Basili, and W. Thomas, "A pattern recognition
approach for software engineering data analysis", IEEE Trans.
Software Eng., vol. 18, no. 11, Nov. 1992
4 Q-Labs, "How could Rough Sets be used for GQM-based
Data analysis", KUQLS 96:0354, October 1996 (unpublished).
5 Victor R. Basili and H. Dieter Rombach. TAME: Integrating
measurement into software environments. Technical Report

very positive
Variation Factors

positive

slightly positive

neutral

slightly negative

negative

very negative

1 2 3 4 5 G 7
1. Teamwork experience 5. Competence balance
2. Suitability of team process 6. Composition stability
3. Team size
4. Teamwork effort %

CS-TR-1764 and TAME-TR-1-1987, Department of Computer
Science, University of Maryland, College Park, MD 20742, June
1987.

6 Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach.
Experience Factory. In John J. Marciniak, editor, Encyclopedia of
Sojiware Engineering, volume 1, pages 469-476. John Wiley &
Sons, 1994.
7 L. Briand, V. Basili, and W. Thomas, A pattern recognition
approach for software engineering data analysis, IEEE Trans.
Software Eng., vol. 18, no. 11, Nov. 1992.
8 J.W. Grzymala-Busse, LERS - A system for learning from
examples based on rough sets. In. R. Slowinsky, editor, Intelligent
Decision Support: Handbook of Applications and Advances of
Rough Sets Zhory, Kluwer Academic Publ, 1992.
9 Lionel Briand, Christiane Dierding, and H. Dieter Rom-
bach, Practical Guidelines for Measurement-Based Process Im-
provement, Published as Technical Report for the International
Software Engineering Research Network (ISERN-96-05), 1996.

SEW Proceedings

SEW Proceedings

PICME
4%

PERFECT Experience Factory

I Horst Hientz

NASA/SEL December 4-5, 1996

€2-Labs Software Engineering GmbH
Technopark 1

Kaiserslautern, Germany

H O W Hientz

I Presentation Overview

1 PlCME - The Improvement Project Structure

2 PERFECT - The Experience Factory Approach

3 GQM - The Goal-oriented Measurement Approach

4 Results from the PlCME Project

5 Lessons Learned from lhe PlCME Project

f
5
f
f

Horst Hlentz I
SEW Proceedings

The PlCME Improvement Project Structure
site: 1 2 3 4 5

Target
projects ------

PICME
project
(1Ok hrs)

Experiencu
Understanding 0

- - ~ -

training.

Technology Transfer]
n quantitative
V and

aualimive data

I Re-execution phase)(MeMwology Adoptotlm IvAnalysisl

SEW Proceedings

f z
2,
'4

PERFECT lmprovement Approach
Organizational Perspective

- - - - - - - - - - - - - - - - -~nh-* p-+) - - - - -5P=_ne_n=s - - - - -
I J n d e d g ~ ;!!optCT I The Process irnmernen: Framework

Horst HIentz I

PICME usage of PERFECT
Experience Factory entities

Strategic Improvement Management
Continues Soffware Process t m p f o v m and New Technology Selection

Experience Package Engineering
' Experience generoRwtion

OlgcnbafiOn Recesses (for SW development and measuremenn enhancement

I Project Support I

GQM - V Model I

.d

$
8

P
8

Measurement Plan

4

Roiect anaiyds and undentandlng
Rolectguidance
GQM-based measurement programme application

H O W Hlentz

Horst Hlentz I

SEW Proceedings

'Goal tree'

M M M

I
g

Hort t Hlentz

SEW Proceedings

Teamwork EffecWeness
Horst Hlentz

SEW Proceedings

I Results from the PICME Project

PI project cost 2.9% of target project

a GQM cost 20% of PI project (i.e., 0.006% of target)

/ Achievements

Q GQM measurement programme instituiionaiiied:
GQM Models, GQM responsible measurement prxess owner

Q Quantitative baseline (Inspections, Teamwork, Desi n process

s 1 performance and their impact on Productivity, ~uaf ty, and Leadtime) - I
Q Experience Factory entities institutionalized, e.g., Strategic

Improvement Management organization

Horst Hlentz I

I Lessons learned from the PlCME Project

SEW Proceedings

'
I
8
Y

Process Improvement approach

Technology transfer and Coaching are crucial

Goal-oriented measurement is a prerequisite

Q Must be done in a systematic continuow way (PERFECT Model)

Goal-oriented measurement with GQM

Q Ambitiously high-level goclls

Q Measurement cycles too long for start

Measurement plan to ambiguous

2- Horst Hlentz

Abstract

1.0 Introduction
Experiences from an experiment carried out in the context of SEL at the U n i d t y of Mary-
land (UMD) in 1995 suggested that one problem concerning experiments with schwe engi-
neeriug processes is the question of whether the process under investigation is actually used by
the subjects in the - i.e. process cor&omance (Basili, 19%). Hence, we &fine pro-
cess conf-ce as:

The degree of agreement between s process dejhition and the process that is
c u : d t Y ow.

As we consider the &finition h v e , three problems immediately arise: How to measure the
degme of agreement, to define: in more detail what agreement means, and finally what is meant
by aprocess &$nition. Here, we willl gut emphasis on the first problem - how to measure pro-
cess conformance.

Some related work has been (e.g. Cook, 199+ Cugola, 1995; Miyazaki, 1987; etc.),
butnotinthedamainofsoftware ss experiments, which tend to study low-level and
thought-intensive pnrcesses. Thus, the current approaches, which are mostly focused on
higher-level pmcesses, were not considered appropriate.

This paper is describing an experiment that was carried out to investigate process conformance.
First, the context of the experiment, the god and hypotheses, and its design are described.
Then the conformance measurement is explained. Further, the reqrequired pffparatons and the
execution of the experiment are outlined briefly, before the experimental results are presented.
Finally, a conclusion summarizes the experiment and psents some ideas about the possible
futuredirectionofthiswark.

SEW Proceedings 115

2.0 Context of the Experiment
The goal of the experiment was to investigate process conformance. In particular, we wanted to
compare two variants of the same process where one variant had been modified in order to
make it more explicit as well as requiring that the subjects delivered intermediate results. Mod-
ifications such as these result in a process wbich is defined in m m &tail, and thus may be
expemd to be easier to follow comctly since the room for interpretetaion is reducad. The pro-
cess we used was Perspective-Based Reading (Basili, 1996) as applied in the UMD expexhmnt
ref& to earlier (Basili, 1996).

PBR is a technique for mukg requirements spedications in order to fhd defects. The idea is
that people mad it from thee different perspectives: Design, Use, and Test. In our experiment,
we applied only the design perspective in order to reduce the number of variables.

Form E6d - Reading Experimenthading Scenario

Perspective-based Reading

Penpsive based tleading is the concept that the various customers of a product
should read a document in such a way as to find out if the document satisfks their
needs for it. In doing so it is hoped that the reader will find defects and be able to
asses the document from their particuIar point of view.

Design-based Reading

Geoerate a design of the system fnrm which the system can be i m p l e m ~ . USPl

In doing so, ask yourself the following questions throughout the desiw.

1, h all the necessary objects (data, data stsucmm, and functions)
defined?

2. h all the interfaces specified and consistent?

3. Can all data types be defined (e.g., a the required precision and units
specified)?

4. Is all the necessary infomation avaihble to do the design? h all the
conditions involving all objects specified (eg., are any mpbmneabs/
i b c t i d specifications missing)?

5. h them any points in which you are not clear about what you should
do because the requim-onal specification is not clear or not
consistent?

6. Does the q u i r e m ~ o a a l specification make sense fiom what
you b w about the application or from what is specified in the general
d~pti04inauduction? I

SEW Proceedings

The design perspective, as described by PBR, is characterized by a short description and a set
of questions. The "designer" is to apply a design technique and make a &sign for the system,
and during this process he is to apply the questions in order to identify defects. However, the
description puts forward no requirements as to which design technique is to be applied. The
modified version of PBR was made more explicit by requiring a specific design technique
called OOram (Object Oriented Role Analysis Method) (Reenskaug, 1995) to be applied.
Another modification was to require the subjects to &liver their design as an interm-
result of the process. Hence, variation in process execution could be assumed to be reduced.
The process &scriptions for the unmodified and modified versions rn provided in Figure 1
and Figure 2 respectiwly.

Form E6d - Reading Experiment/Reading Scenario
krspedive-based Reading

Pe@e based reading is the concept that the various customers of a product
should read a dammerit in such a way as to find out if the document satisfies their
needs for it. In doing so it is hoped that the reader will find defects and be able to
asses the document from their particular point of view.

Mgn-based Reading

Generate a design of the system from which the system can be implemeated. YS(:

In doing so, ask youself the following questions throughout the desiga

1. Axe all the necessary objects (Itata, data structms, and fwctions)
d e w ?

2. Axe all the interfaces specified and u m s i ~ ?

3. Can all data types be defined (e-g., a~ the required pxecision and units
specified)?

4. Is all the necessary information available to do the design? Are all the
conditions involving all objects specified (e.g., are any requirements/
Iimctional specifications missing)?

5. AR the= any points in which you are not clear about what you should
do because the ~ e n ~ o n a l specification is not clear or not
consistent?

6. Does the requiremeWfunctiona1 specification make sense from what
you hmw about the application or from what is specified in the geneml
desription/htmduction?

F i e 2. Process &escription - MPBR.

SEW Proceedings

2.11 Hypotheses
The experiment was focused on comparing and measuring the degree of conformance. Thus
we assume that the two process variants wiU be Merent as far as the conformance is con-
cerned. This means, we assume that people tend to follow one grocess variant more closely
than the other. Based on this, the hypothesis and its associated null hypothesis for this experi-
ment was:

H1 Subjects applying the modified version of PBR will show a higher degree of
process oonformance than subjects applying the modifuxi version of PBR

HOJ There is no difference in process conformance between subjects applying the
modified version of PBR and subjects applying the unm&ed version of
PBR

There am a number of additional hypotheses that are also of high interest in the context of pro-
cess confosmance. In this paper, we will also consider the following hypothesis and associated
null hypothesis:

HZ T h a is no correlation between proctss conformance and deviation in prod-
uct quality.

HOG Process conf~~lmance and deviation in p d u c t quality are associated vari-
ables.

In the following discussion, the modified version of Perspective-Based Reading will be
r e f d to as MPBR, while the unmodified version is labelled PBR.

2.2 Measuring Process Conformance
In order to test our hypotheses, we need a way of measuring process confoxmawe and devia-
tion in product quality. One way of doing this would be to observe how the process was carried
out and then compare these obsewations with the process description. This can be acoom-
plished by collecting a number of observations far each subject's process execution, e.g. time
used, and product size and quality, and compm these observations with predicted values. Or,
alternatively, the sample means may be substituted for the predicted values, if we assume that
the average observations represent a typical process execution.

Based on the set of observations for each subject, we can construct a deviution vector, which is
a model of how the process execution diverges from the expected perfomawe. A deviation
vector with two dimensions, time and quality, is depicted in Figure 2. Here, the pdkted exe-
cution of process i is represented by a vector Pi, while the actual execution is tepsented by
the vector Ei. The deviation vector is now defined as the diffezlence between the predicted and
a d execution, where the value in each dimension is the unsigned diffance between predic-
tion and execution. Thus, the deviation vsctor in Figure 2 becomes [1% - v, lei, - QiJ 1.

The confanmance meusurement can now be defined as the length of this vector when a l l the
dimensions have been normalized by dividing the difference by the expected value so that the
diffaent dimensions can be combined. In this experiment, we used the observations time,
product size, and product qwlity (these will be explained lam) in the deviation vector, and
thmby obtained the conformance measurement for subject i given by Equation 1, wheae the

SEW Proceedings 118 SEL-96-002

predicted values are replaced by the sample averages. This measurement was used to test
hypothesis H0,l.

For testing the second hypothesis, we also need a measure of product quality deviation. How-
ever, this is exactly the third dimension in-the vector above, i.e. product quality deviation for
subject i is defined by

Testing the amciation between the quality deviation given by Equation 2 and the process con-
f m c e measurement given by Equation 1 is not reasonable to do since quality deviation is
also a component in process conformance. Thus, a simplified conf-ce measmment is
muired for testing the second null hypothesis H0,2. In this simplified measmment, we used
only the two dimensions time and size, as given by the equation below.

23 Experimental Design

We used a fkactional factorial &sign where we blocked the subjects on document order and
technique zype (these variables will be explained later), thus obtaining the design illustrated in
Figure 3 where the actual number of subjects in each block is indicated in parenthesis. The
subjects in the experiment were 48 gmduate students in their last year of study before the
diploma thesis. The number of subjects in each block i n d i d in the f i p above am slightly
uneven because some of the subjects that signed up for the experiment did not show up. Every
subject read two software requirements specifications that were seeded with a set of known
dekts , and applied a specilk technique in order to find the defects, using the same technique
for both documents. Thus, there were thee independent variables as described in Table 1
below.

SEW Proceedings

Pigme 3. Design of the Btperiment

Table 1. Independent variables.

The dependent variables which were collected m s u m m M in Table 2. The basic variables
m t;ime, defects, and size. The two latter had to be adjusted for difference in document ''size"
(size in terms of the number of seeded defects). Thus, tlwy w m =placed by rates. Jn I n a d d i t i o n
to the variables described in Table 2, a simplified variant of the conformance measment and
the measmment of product quality deviation, as given by Equation 2 and 3, were also needed,
as discussed previously.

I I rleteuioo late, d size as parameten. I
Table 2. Dependent variables.

SEW Proceedings

2.4 Preparation and Execution of the Experiment
This experiment was based on the UMD experiment r e f e d to earlier, and much of the exper-
imental material, documents and forms were reused, in addition to the process of Perspective-
Bused Reading as explained earlier. The two documents that were read by the subjects were
completely unchanged from the UMD versions, and were:

A specification for an automated teller machine network, called the ATM document.
The latest version available as of 19th A p d 1996 was used. The document was 16
pages long and contained 29 seeded defects.

A specificaton for a parking garage control system, called the PG document Again,
the latest version available at the time of the experiment was used. This document was
17 pages long and contained 27 seeded defects.

The defect lists applied were also the same as in the UMD experiment. As for the forms
applied, we only used one type of form for a l l subjects regardless of process type. We could do
this because we only applied one perspective, while the UMD experiment investigated all the
three perspectives of PBR

Since there was no pretest of the subjects, they were assigned to the blocks randomly. The sub-
jects were split into two separate groups when they received orientation and training in front of
the experiment They were not told about the hypothesis or about the differences in the pro-
cesses. All subjects received the same type and amount of mining. After the training session,
which was one hour for each of the two groups, the subjects had one week to read the docu-
ments and mark the defects. However, they were instructed not to use more than 1:45 hours on
each document. When the subjects had read both documents, they returned them to us for scar-
ing. Two persons scored the documents independently, and then resolved any conflicts by dis-
cussing each disagreement.

Finally, we removed the outliers from the data set. First, three subjects that failed to show up
were removed. Next, those mporting no eff' spent, ie. no time used to find defects, were
removed. Finally, subjects having found no defects, even though they reported some effort
spent, were m m d if their documents showed no clear signs of being read.

3.0 Results of the Experiment
In order to test the fust hypothesis, i.e. whether the process modifications caused improved
process conformance, the eight samples were first compared a l l at once to determine if they
could all be assumed to come from the same population. Here, the Kmkal-Wallis test was
used (Siegel, 1988). The test indicated that the null hypothesis could not be rejected @=0.5),
meaning that there were no significant differences between any of the eight samples, and thus
technique could not be c&&red to have any effect on process conformance. This was con-
bed by grouping subjects using the stme technique into two samples and test the difference
by using the Wilcoxon-Mann-Whitney test (Siegel, 1988). The null hypothesis for this test was
that the two samples w m drawn from the same population, while the alternative hypothesis
was that the sample using MPBR scored lower on the conformance measurement. The null
hypothesis was not rejected (~4.39) . The medians for process conformance f a the eight sam-
ples are shown in the chart in Figure 4, and illustrate the similarity between the samples.

SEW Proceedings

ATM-PG, ATM ATM-PG, PG PEATM, ATM PG-ATM, PG

was focused on the association k m w n the sirrnplified measure of pro-
by Equation 3, and deviation iro product quality, as measuzled by

Equation 2. The assumption was that subjects who were not followhg the precess correctly, as
indicated by a high deviation value, would not deliver a fwoduct that was close to the average
of the sample. Thiscis the principle which man
that by reducing the variance in the process
ensured.

To test this hypothesis, the Spe rank-or& currekaoion coeAfcient (Siegel, 1988) was
computed and used to decide whether the null hp thesh , h t the two samples
m not c-la& could be rejected The mjection was fhe test (p=0.0010),
meaning that with a si aiables can be cons signis-
candy associated The

SEW Proceedings

g tests, we can conclude that the suggested mOdif%%i011s assumd to
ss conformance had no effect. However, a &significant level of canre-

lation was detected between process , as measured by the simplified measurement
given by Equation 3, and the deviation in t quality, as given by Equation 2.

The problem with this experiment is that the subjects use4 since being studeuts, can not be
considered repsentative for the population of professional programmers. Eqpecially amsider-
ing that the experiment was carried out as a compulsory assignment. The umsequence of the
experimental situation could be that subjects being assigned the modified version of PBR
developed reactive effects due to the presumably high wd-load of also delivering an interm6
diate pxuduct. Thus, we have a potential interaction effect between the maanent and the sam-
ple, combined with possible reactive effects due to the experimental environment, meaning that
external validity may be c o m m

However, in the case of the association between process conformance and deviation in product
quality, the threat might be less relevant since we are essentially compiuing two kinds of devi-
ations. However, whether the two variables are significantly conelated also in other popula-
tions and environments can only be determined empirically.

This paper approached process conformance from an experimental point of view - Le. we con-
sidered lack of conformance a problem in softwm proc;=ss experiments. however, this is a
problem also in other contexts. One of the major problems in s o w development is lack of
predictability - this problem may be reduced by achieving a mare stable product quality
t h u g h controlling process conformance. Proper process confarmance is atso necessaru to
reuse experiences effectively both within one organization as well as in diffmnt orgauizalions.
Thus, process conformance may be considered an important aspect of process Quality.

In the experiment described here, we attempted to infiuence process conform^ by modify-
ing the process. However, we can imagine various other ways of influencing ~ormance , e.g
by education and training, or by control and enforcement. The way of improving process con-
farmance must be related to the context in each case. Diffexent ways may be beneficial in e.g.
an experiment context than in a development context.

References

(Basili, 1996) Victor R. Basili, Scott Green, Oliver Laitenberger, Hippo Lanubile,
-st Shull, Sivert S@mmgatrl and Marvin Zekowitz. The Emgiricd
Investigation of Perspective-Bared Reading. To appear in the J o d
of Empirical Software Engineering.

(Cook, 1995) Jonathan E. Cook and Alexander L. Wolf. Automating Process Discov-
ery through Event-Data Analysis. In Proc. ICSE 17, ACM, 1995.

 gol la, 1995) G. Chgola, E. Di Nitto, C. Ghezzi and M. Mantione. How To Deal With
Deviations During Process Model Enactment. In h. International
Conference on Software Engkmhg, ACM, 1995.

SEW Proceedings

,1987) Yukio M i y d aud Noritoshi Mutakami. S o m e Mem'cs Using
Deviarion Value. In Pmc. Intern& Confexence on Software Engi-
neering, ACM Press, 1987.

(Reenakaug, 1995) Trygve Reenskaug et. al. Working with Objects - The OOrm Way to
Sofnvare Success. Mamerheim Publications/Rentice Hall,
1995.

(Siegel, 1988) Sidney Siege1 and N. John Castellan, Jr. Norparametric Statistics. Set-
ond edition, McGraw-Hill, 1988.

SEW Proceedings

An Empirical Study of
Process Conformance

Sivert SsrumgOrd
Norwegian University of Science and Technology

Contents

- Informal definition, importance within experiments.
- Conformance as deviations - the deviation vector.
- Measuring process conformance.
- Process modifications.
- An experiment to investigate process conformance.
- Variables and hypotheses.
- Results from the experiment.
- Effects within software process experiments.
- Effects within software development.
- Conclusion.

Experimental context is assumed.

SEW Proceedings

Conformance in Experiments

Are the processes carried out the way we think?

The Deviation Vector

Observations indicate what's important.
@ Use as dimensions in a vector - parametrized model.

Deviation is difference between Execution and Prediction.
Rules for combining task deviations to obtain process deviation.

The deviation vector is a model of conformance.

SEW Proceedings

Measuring Conformance

Define measurement based on deviation vector.
0 Differences as fractions, independent of scale.

* Then, dimensions in the deviation vector may be compared.
* Can define measure of process conformance.

Process conformance: Length of deviation vector.

Process Modifications

Enabling effective measurement
* Observations reflecting process characteristics.
* Intermediate products.

Improving conformance
Remove ambiguities and reduce room for interpretation.
Suggest process steps.
Explicit and specific.

0 Training, teaching, representation.

Can the process be modified to become conform?

SEW Proceedings

Experimental Study

* What to compare with?
Validity vs. usability.

* What are the relations in the empirical system?
* Two aspects: Modifications, and conformance measurement.

Fractional factorial design, students as subjects.

Variables and Hypotheses

Variables
Technique, document order, and document type.
Measurements: Time, defect detection rate ("quality"), total
number of defects found ("size"), intermediate product quality.

Hypotheses
* The modifications improve process conformance.

The modifications lead to reduced product quality.
The modifications lead to reduced product quality deviation.

* Conformance is associated with deviation in product quality.

Improved conformance?

SEW Proceedings

Effect on Conformance

ATM-PG, ATM-PG, PG-ATM, PG-ATM, Order#
ATM PG ATM PG Document

No significant difference.

Effect on Defect Detection Rate

SEW Proceedings

ATM-PG, ATM-PG, PG-ATM, PG-ATM, Order,
ATM PG ATM PG Document

Both significantly worse on second document.

Effect on Deviation in DDR

ATM-PG, ATM-PG, PG-ATM, PG-ATM, Order,
ATM PG ATM PG Document

No significant difference

DDR Deviation vs. Conformance

SEW Proceedings

- - - -
N

-
m

-
rt

-
V1

-
w

-
h

-
w

-
m

Obsarvatlon

Significant association.

Conformance in Experiments

Pros
Reduced variability in process - improved statistical validity.

* Ensure/measure conformance - improved construct validity.

Cons
* Process modifications may be necessary.
* Temporary or permanent modifications?

Interaction effects with technique type.
* .Conformance at a lower level - where to stop?

Useful when obtaining knowledge?

Conformance in Software Development
- -

Pros
Reduced variance in product characteristics - better control.

* Improved predictability.
* Ensure valid process-related knowledge.

Cons
* Sensitive data collected.

Reactive effects - data could be misused.
* Bureaucracy - administrative overhead.
* Reduced performance.

Useful when applying knowledge.

SEW Proceedings

Conclusion

Findings
Quality deviation and process conformance are correlated.
No significant effect from modifications.

a Need to test validity further.

Applicability
Conformance may be useful for

- Experiments.
- Process improvement.
- Situations involving knowledge transfer.

Some benefit, but further investigation needed.

SEW Proceedings

Session 3: Using Commercial Software :/?.> "
) F*.- -

Using a Unifed Object Topology to Uncover COTS Integration Challenges and
Assembly Afinities

W . Tepfenhart and J. Cusick, AT&T

Product Development with Massive Components
K . Sullivan, J . Cockrell, S. Zhang, J. Knight, University of Virginia

Technology Evolution: COTS Transition at Raytheon 1983 - 1996
T. Lydon, Raytheon Electronic Systems (RES)

SEW Proceedings

SEW Proceedings

Using a Unified Object Topology To Uncover COTS
-') t

1
i

Integration Challenges and Assembly Affinities :, * .

d- ,' , > "

C

William Tepfenhart

AT&T

James Cusick

AT&T

Middletown, NJ Bridgewater, NJ

william.tepfenhart@att.com james.cusick@att.com

Abstract. Large corporations are attempting to cut development costs by relying on
integrating several COTS to achieve partial or complete business solutions. That the
benefits are not turning out as expected is slowly becoming a recognized issue. In this
paper, we address some of the reasons why integration of COTS is a challenge.

Introduction

As corporations move from monolithic single technology systems to large hybrid distributed systems based
on multiple technologies, it is becoming increasingly important to understand how these technologies can
work together. Often, the desire to integrate two technologies arises from a realization that two very
different programs, when combined together, should provide exactly the functionality required for a
business need. This recognition usually results in what is termed an integration effort rather than a
development effort. Shortened deadlines and reduced funding result - a practice justified by that fact that so
much of the functionality already exists. After all, why should we pay money to write a complete solution
from scratch when we can purchase two relatively inexpensive products (each of which provides half the
functionality) and link them together. How tough can it be? How long can it take? How much can it cost?

It does not take much practical experience before one realizes that a tremendous amount of development
effort is required to combine two programs (or program fragments) to meet a specific business need. The
projected time and cost savings do not manifest themselves. Answers as to why costs were so high often
sound like lame excuses - we had to write adapters to get them to work together, this function didn't work
with that function like we expected, and we had to write additional code to meet some of the requirements
that weren't met by either product, the purchased product didn't have the specific labels used by our
organization and we had to rewrite them, etc. ad nausea.

The feeling that these are lame excuses does not negate one important point. Real work has been performed
to make the integration functional. This is a major source of management dissatisfaction with integration
efforts. Why should integrating two products require almost as much work as building a system from the
ground up?

This paper introduces a technology topology as a tool for understanding COTS integration issues. It
explores the issues by demonstrating the dissonance between two technologies and the extra effort required
to get them working together.

A Tool For Understanding

In early 1995, we started looking at how diverse Object-Oriented concepts worked together to assist in the
development of large-scale systems. In particular, we wanted to know how we could use our knowledge in
areas of domain modeling, architectural styles, frameworks, kits, and object-design patterns to ease and
stream-line the development of a system. The result of this effort we termed an Object Topology in the

SEW Proceedings

Independent

Dependency
On Application
Domain

Dependent

Concrete Abstract

Abstraction Of Representation

Figure 1. Technology Topology and representative technology components.

sense that it provided a road map of how these technologies worked together. Our result was documented in
a previous paper [Tepfenhart].

Since that time, we have extended our investigations to include other development paradigms including
conventional procedural programming, relational databases, artificial intelligence, and web technology. In
the course of our investigations it became very clear that we were dealing with very diverse technologies,
each of which has its own vocabulary and supports software development in very different ways. It turned
out that each technology has its' own topology - a different road map for getting from requirements to
working system.

Technology Topology

This section of this paper introduces the concept of a technology topology. A topology is a description of
the properties of a surface. A road map is one example of a topology. Road maps use longitudes and
latitudes as the basis for organizing the points on the map. Longitude and latitude are the coordinates for the
topology.

A technology topology is a road map for using a software programming technology. In a technology
topology, we use the abstraction of the representation and the application domain dependency as the two
coordinates by which we organize points on the map. Elements of a technology that use pictures andfor
natural language are said to have a very abstract representation. Elements in which the rep~esentation can
actually be executed are said to be very concrete. Machine code is very concrete, source code is moderately
concrete, a design diagram is moderately abstract, and a requirements specification is very abstract. An
element of a technology that is expressed in terms that have little to do with the application domain is said
to be application domain independent. Conversely, an element of a technology that is expressed entirely in
terms of the application domain is said to be application domain dependent.

We can create a matrix of different elements of programming in terms of their general location in a
technology topology. In the paragraphs that follow we will explore where the different elements lie on the
generalized topology. Figure 1 shows the completed topology and representative technology components in
terms of their approximate placement on the topology. However, different technologies have elements that
lie in slightly different points on the topology. This will be shown in the next major section.

A system specification is highly application domain dependent and very abstract. This is because a system
specification is typically expressed in natural language and deals with application domain concepts. The
system specification for a billing system is necessarily expressed in terms of words associated with billing
concepts. A good system specification is essentially technology independent -- one is interested in what the

SEW Proceedings 136 SEL-96-002

system will do, not if it is implemented using 0-0 or relational approaches. In practice, system
specifications are often expressed in technological terms.

A domain model is highly abstract and very domain dependent. It is highly abstract because graphical
representations are often employed. It is moderately domain dependent because the design presents a
structure that captures application domain concepts. In most technologies, the domain model forms the basis
of a design. Such a design for a billing system would have components named print-bill where bill is a
domain dependent term.

An architecture is highly abstract and moderately application domain independent. The components of an
architecture are elements which fit specific architectural styles. The representation is abstract since
architectures are usually captured in a diagram. Architectures and architectural styles are application
domain independent because they deal with things like platforms, files, processes, and protocols. None of
these are described in terms of application domain elements.

An implementation of an architectural component is a framework. These elements are typically COTS
systems. A framework is moderately to highly concrete and highly application domain independent. For
example, a client-server architecture which has PowerBuilder and Sybase components is highly concrete
and very domain independent. PowerBuilder and Sybase have no concepts built into them of any particular
domain. The power of such COTS architectural components is that they are application domain independent
while providing a large degree of functionality. Application concepts have to be added as an additional step
in development.

The parts of a program added onto the basic implementation of an architectural component are moderately
concrete and very application domain dependent. Application domain concepts identified in a domain
model are captured in a programming language. Programming languages are moderately concrete forms of
representation (an executable version is easily achieved by compiling and linking). In a programming
language, concepts are captured in the form of variable names (PO-Number) and operations
(compute-totaLbil1).

An executable program is highly concrete and very application domain dependent. That is, an executable
program runs and thereby provides the functionality described in the a system specification. Executable
programs are necessarily technology independent. That is, we can't tell by it's executable code if it was
implemented using 0-0, relational, or A1 technologies.

There is a final technology component that has only recently become recognized. This component captures
the 'Tricks Of The Trade'. These are the programming heuristics, rules, and patterns that describe how to
recapture one technology component into the representation of a second technology component.
Programming practices are generally neutral in application domain specificity and neutral in abstraction. On
one hand, they describe pattems of domain terms. On the other, the patterns are usually in terms of very
abstract domain terms. They relate highly abstract representations with rather concrete implementations of
the information.

Development Geodesic

If we examine a technology topology, one sees that there are islands of technology components that are
reflected across the line of neutral abstraction. A system specification is reflected by an executable program.
A domain model is reflected by an implementation of the application domain component. An architecture is
reflected by a framework. The mapping of an abstract representation to a concrete representation is a
development activity.

A development geodesic can be viewed as the path of least resistance in the development of a product from
a point on the abstract side of the graph to its counterpart on the other side of the topology. Three such
geodesics exist on the topology that represent the reflections across the line of neutral abstraction. These are
shown in Figure 2.

The dashed path describes the development route for taking a domain model into a set of business code.
The path traverses through the 'tricks of the trade' node - a practice which real developers perform to

SEW Proceedings

Technology Application
/ Development

/ I Framework
Independent

Development

Dependency Path

On Application Library
Development

Domain Path

Dependent

I Path

Concrete Abstract

Abstraction Of Representation

Figure 2. Development Geodesics.

achieve high quality and high performance code. In the object-oriented development world, these tricks of
the trade are object design patterns which tell how to map an object model into an object implementation.

The dotted path describes the development route for taking an architectural style into a framework. Again,
this path traverses through the 'tricks of the trade' node. In this case, some of the tricks of the trade are the
identification of COTS products that provide a basic framework for an application. These include products
like X-Windows, DBMS, Web Servers, and others.

The solid path describes the development route for taking a system specification into an operational
application. While not really drawn, this path takes into account the other two development paths as well.
The core path travels from system specification to a domain model and then onto an architecture. This is all
work performed using abstraction representations. From those points, development is being performed to
map them onto frameworks, sets of business code and then integrating them into an application. The
development effort required to translate the abstract representations into concrete representations for
domain models and architectures wiIl follow the paths described previously.

The lines between nodes represents a kind of effort to tie all these technologies together. The traversal from
system specification to a domain model is traditionally a design process. A common manifestation of the
design process is a requirements traceability matrix. A top-level design is mapped onto an architecture.

Diverse Technologies

There are many software technologies that have reached maturity. With maturity, we now try to exploit the
strengths of each in obtaining critical business solutions. In the following sections, we examine several
technologies and identify the topologies. In all cases, the axes remain the same -- abstraction of the
representation and dependency on the application domain. The difference among these technologies are the
specifics of the locations on the topology of the components and the geodesics connecting the points. This
will become obvious as we describe the topology of each technology. In particular, we will see that they
differ even in terms of the words used to express basic programming concepts.

Object Topology

Object Oriented approaches to solving business problems have resulted in a number of very large, reliable,
and functional systems. They are becoming the cornerstone of businesses as they demonstrate the ability to

SEW Proceedings 138 SEL-96-002

Architectural Styles -
Independent

Decision Support
RequesterProvider

Dependency
On Application
Domain

Dependent

Concrete Abstract

Abstraction Of Representation

Figure 3. Object Topology.

rapidly adjust to changing business requirements. The topology for the object-oriented paradigm is shown
in Figure 3.

In an object topology, a domain model is expressed in terms of an object analysis model. In this technology,
domain elements are captured in the form of objects, relationships among objects, and behaviors which
objects can exhibit. Class systems for objects are communicated in the form of graphic illustrations with
relati~nships expressed as links or attributes. Behaviors are captured in the form of event-trace diagrams.

Certain architectural styles are common in object systems. In particular, one deals with architectural styles
such as decision support, requesterlprovider, and event-diiven styles. These are reflected in the types of
frameworks and COTS available for object systems. In particular, one has MFC from Microsoft, Zapp from
Rougewave, Objectstore from Object Design, and Orbix from Iona to name a few.

One area in which there has been a lot of major research of late concerns the 'tricks of the trade' technology
component for the object paradigm. This has lead to a clear set of specifications concerning how to map the
object model into source code. These specifications are object design patterns and the use of these patterns
is becoming increasingly more wide spread.

Relational Topology

The technologies associated with relational data bases maps into a topology of its own. Relational systems
have long held a major role in business applications. The topology for the relational paradigm is shown in
Figure 4. This topology should be compared with the one for the object paradigm.

SEW Proceedings

.J I Pipeline

Architectural Styles -

Dependency
On Application

Conceptual Analysis
Domain

Dependent

Concrete Abstract

Independent

Abstraction Of Representation

I$tabase Engines 1 Client-Server

Figure 4. Relational Topology.

In a relational topology, a domain model is expressed in terms of an entity-relation model. In this
technology, domain elements are captured in the form of tables, relations among tables, and operations over
table entries. The entity-relation model is expressed in the form of graph illustrations that reflect a table
view of the world. An entity-relation model is very different from an object model.

Certain architectural styles are common among relational systems. The most widely known is the client-
server architecture in which their is a common server and 'any number of clients that may be presentation
systems andlor decision support systems. These architectural elements are reflected in the COTS products
available for relational systems. DBMSs are one kind of product available on the server side and client-side
products like PowerBuilder are becoming more widely used.

The 'tricks of the trade' technology component are being captured in the form of Design Patterns which
relate how different domain models can be implemented in tables and queries over those tables.

Al Topology

A1 is often an overlooked technology in obtaining business solutions. However,.de based systems are still
quite a factor in the software enterprise. The AI topology is shown in Figure 5. In a vein appropriate to the
fuzzy heuristic driven AI world, developers often talk in terms of development heuristics instead of design
patterns.

In an AI topology, a domain model is expressed in terms of a knowledge level analysis model. The principle
concepts involved are: facts, predicates, rules, and chains of inference. These elements are usually captured
in natural language form.

A1 systems are usually implemented as either consultation systems or embedded systems. The COTS
products are limited to inference engines and development tools that support either mode of operation.

SEW Proceedings

A1 Paradigm

Dependency
On Application

Domain Knowledge
Domain

System
Dependent Specification

Architectural Styles -

Concrete Abstract

Independent

Abstraction Of Representation

1 3 e r e n c e ~ n ~ i n e s Embedded

Figure 5. A1 Topology.

Web Topology

One of the hottest technologies in the market place today is web technology. This promises to solve many of
the problems associated with large scale use of applications in non-homogeneous computing environments.
The browser, available across many platforms, provides'a front-end to an application on a back-end
machine. The topology for web technology is illustrated in Figure 6.

In a web topology, a domain model is often expressed in terms of pages, forms, and state models. In this
technology, information is presented as a page of material, a form to be filled out, or as a single snap-shot in
a sequences of pages. Expression of design is achieved using CGI bin scripts and J3TML documents.

Architectural Styles -
Independent / servers Client-Server

Dependency
On Application
Domain

Dependent

Concrete Abstract

Abstraction Of Representation

Figure 6. W e b Topology.

SEW Proceedings

In terms of architecture there are client-server systems and hypertext documents. COTS products include
the servers, the clients, and some authoring tools. There are some COTS systems that provide a page
generation between the web server and permanent data stores (such as DMBSs).

The development geodesic is currently poorly understood since individuals are still exploring the topology
and the topology is still undergoing tremendous changes. One of the most common appears to layout the
basic page appearance and to implement whatever processing needs to be performed as a single cgi-bin
program on a page-by-page basis.

Building Hybrid Systems

It is clear that as systems get larger and more complex that the strengths of any one technical approach will
fail to meet business needs totally. To counter this, mixtures of technical approaches are being employed.

If we were to place any two technology topologies one atop the other, we would see that each has the same
components, but the components are placed in slightly different locations. As suggested in the previous
section, this is because the different technologies provide different abstractions for expressing application
domain concepts. The result of mixing two paradigms and trying to treat them as a single technology is
illustrated in Figure 7.

A key to understanding the problems associated with mixing technologies to recognize is that two points
now reside in each area where a single point used to exist. There are now two different kinds of domain
models, one which is appropriate for one technology and another for the other technology. There are two
points for architectural styles, each point identifying a set of architectural styles appropriate for the
individual technologies. There are two points in the frameworks region denoting that there are different
architectural styles being implemented for the two different technologies (and the fact that there are
different COTS products). Finally, there are two sets of business code reflecting the fact that two different
domain models are being captured.

The significance of this picture becomes most apparent as a result of tracing the development geodesics on
the topology. The development paths become much more complicated since we have the existing paths for
each technology and additional segments that have to be added to connect the dual points. It is necessary for
the connections between dual points to be made so that one ends up with a fully functional application. In
particular, if the two sets of business code do not integrate seamlessly, then the application won't function.
In order for the two sets of business code to integrate seamlessly, then some sort of integration models must
exists for rhe two domain models.

If one takes the superficial view that each segment of a development geodesic represents some standard unit
of work that must be performed during development, it is obvious that more work is required to implement
an application. In fact, one could easily be convinced that mixing technologies can require almost three
times as much work as implementing from scratch within a single technology. The necessary work could be
computed as the sum of the work required for one technology plus the work for the second technology plus
the work for integrating them.

SEW Proceedings

Architectural Styles
Independent

I \ Dependency J ~rft of $ ~ r a d e
n A q * - L o - i u n npplicauon
Domain

Dependent

Domain
Models

/ System
Specification

Concrete Abstract

Abstraction Of Representation

Figure 7. Mizing Two Different Paradigms.

Of course, considering each link to represent some standard unit of work is a superficial view. This view
ignores some of the advantages which one has when COTS products are employed in a system. However,
the introduction of a COTS product does not eliminate the work entirely. Hence each link does represent
some amount of effort, but that amount will differ according to technology and COTS products supporting
it. That is why using a COTS product in an application can be cost effective.

There is another observation that can be made on the basis of Figure 7. This observation is that while the
individual paths for each technology can be well known and understood, the little development links
necessary to connect the development nodes can be virtually unknown. This is shown by the fact that there
aren't any 'tricks of the trade' for linking two technologies.

In essence, one aspect of using two technologies is identifying how the domain models can be linked
together, what architectural styles work well together, how to connect frameworks, and how the business
code can be integrated across technological abstractions. This kind of unique, first of a kind activity is one
that can require time and money. Further more, it cames with it a high degree of risk.

The trade-off concerning the relative costs of staying within a single technology or mixing technologies has
to be made on a total cost perspective. Staying within a single technology might lead to high costs because
of the effort associated with developing of a major functionality which is not provided in any other way. On
the other hand, the cost of mixing two technologies may be high because of the effort of development for
each technology and the difficulties in connecting them together.

Summary

This paper has presented a tool, the technology topology, for understanding COTS integration challenges. It
used this tool to describe the relative relationships among the components of a technology. It described how
development of an application traverses a geodesic across the topology.

A major section of the paper dealt with the different kinds of software technologies. It identified the basic
concepts and laid them out on the topology. This was done as a preparation for demonstrating how two
different technologies fail to overlap on the topology. The naturally arising differences in location on the
topology was identified as the major source of integration challenges. It showed how development of a
system using two separate technologies could easily require much more work than development from
scratch using a single technology.

SEW Proceedings

We did not cover some issues associated with COTS integration. These issues include a lack of maturity of
a technology. An example of this is the Web Technology which is still in its' infancy and one in which not
all of the major technological components have been adequately developed. Another issue deals a lack of
maturity in a product. Not all products are equally mature within a technology. This lack of product
maturity can demonstrate itself as a lack of basic features or inconsistant application of a technology. Also,
an immature product can be very buggy. Each of these issues raise additional integration challenges as
developers try to work around bugs in one product by implementing a feature in another.

References

[Tepfenhart] Tepfenhart, W.M, and J. Cusick, "A Unified Object Topology," JEEE Software, January,
1997.

SEW Proceedings

2 1 st NASA SEL Software Engineering Workshop

Using a Unified Object Topology to Uncover
COTS Integration Challenges and Assembly

Affinities

William Tepfenhart
AT&T

Middletown, NJ
Will iam.Tepf~@att.com

James Cusick
AT&T

Bridgewater, NJ
James.Cusick@attcom

The COTS Integration Problem
Technology Topologies
- A Tool For Understanding
- Directing & Understanding Development
- Different Technologies - Different Topologies

Insights Into the COTS Integration Problem
Summary

SEW Proceedings

COTS Integration Problem

' '. The COTS Integration
Problem Arises Whenever
Someone Observes That
Their Business Need Can Be
Satisfied By Two COTS
Products

All They Have To Do Is Just
Integrate Them Together

Just Integrate Them Together?

A Few Quick Questions:
- How tough can it be?
- How much can it cost?
- How long can it take?

A Few Hard Won Answers:
-It can be very tough
-It can cost a LOT
-It can take a long time

SEW Proceedings

Reasons Sound Like Excuses

One Product Assumed Certain Things
Inconsistent With The Other Product.
We Had To Write A Lot Of Code To Get
Them To Talk To Each Other.
We Had To Modify Them To Talk With
Our Other Systems.
The Presentation Of Information Didn't
Really Follow Our Corporate Standards.

In Failure We Forget

Real Effort Was Expended To Get It To
Work
There Are Real Reasons Why It Is Tough
To Integrate COTS software!

SEW Proceedings

A Tool For Understanding Why

i

Technology Topology
- A Roadmap Relating Different Technology

Components
- Development Methods Are Geodesics For

Traversing The Topology
- Clarifies Integration Problems

Technology Topology

Domain

Concrete Abstract

Abstraction Of Representation

SEW Proceedings

Development Geodesics

Independent

Dependency
On Application
Domain

Dependent

Concrete

Abstraction Of Representation

Object Topology

Object Oriented Paradigm
Atchitectural Styles -

Independent CORBA
Decision Support
Requesterhvider

Dependency
On Application
Domain

Dependent

Concrete Abstrnet

Abstraction Of Representation

SEW Proceedings

Relational Topology

Relational Paradigm
Architectural Styles -

Independent Client-Server
Pipeline

Dependency /Design P

On Application
Domain

Dependent

Concrete Abstract

Abstraction Of Representation

AI Paradigm
Arc-1 Styles -

Independent

Consultation

Dependency
On Application

Domain Knowledge
Domain

Dependent

Concrete

Abstraction Of Representation

SEW Proceedings

Web Paradigm

Independent

Dependency
On Application
Domair?

Dependent

Architectud Styles -
Client-Server
H m a

............................. A J-"

Concrete Abstract

Abstraction Of Representation

General Comments

* System Requirements Are Independent of
Technology

* An Application Is Just An Application
* Different Architectural Styles Support

Different Technologies
Some Points Of Topology Are In Very
Different Locations

SEW Proceedings

Hybrid Topology

Two Different Paradigms

Independent

Dependency
On Application
Domain

Dependent

Concrete A b e t

Abstraction Of Representation

Application Development

Two Different Paradigms

Independent C ~ T S - Sfla
Dependency
On Application
Domain

Dependent
Two Development con- ~bstroet

Dependency
On Application I \ I k /
Domain

Dependent Specification
Two Development con- ~bstroet

Paths and Connections
Between Them Abstraction Of Representation

SEW Proceedings

Is It A New Paradigm?

Union Of The Two Technologies Plus a Little Bit From Their Integration

Architedud Styles
Independent

Dependency
On Application
Domain

Dependent

An Integration f i t y Concrete Abstract

If Vendor Provided! Abstraction Of Representation
Entirely New Development Path

Factors Not Addressed

I I
Maturity Of Technology
- No Development Path Defined
- Missing Technology Components

COTS Product Maturity
- Bugs
- Inconsistencies
- Technological Disconnects

SEW Proceedings

COTS Integration Issues Arise Naturally
a They Are Complex In The Sense That They

Are Present At Each Step In Development
Vendors Can Help By Providing Hybrid
Development Paths

SEW Proceedings

PRODUCT DEVELOPMENT WITH MASSIVE
COMPONENTS

Kevin J. Sullivan, John C. Knight, Jake Cockrell, and Shengtong Zhang
.#- 2 3 6; /

z,*

Department of Computer Science ,/. t i 5'. ,dP &>') { < 2 : 9 *jZ

University of Virginia
Charlottesville, VA 22903

{sullivan I knight I emc5a I sz2n) @virginia.edu

An Abstract Submitted To:

The Twenty-First Software Engineering Workshop
Goddard Space Flight Center

Greenbelt, MD 2077 1

SEW Proceedings

The problem faced by many of today's software engineers is to build and maintain broad fam-
ilies of large systems in a cost-effective and timely manner. Because the market demands rapid
creation and modification of systems in response to a spectrum of evolving requirements, exten-
sive flexibility in systems is required. This situation has two implications: first, basic system
demands have to be met quickly; and, second, responses to requested variations have to be rapid
and effective. System development and modification cycle time must be shortened significantly.

One approach to cycle-time improvement that has been studied extensively is software reuse.
Current reuse techniques include system synthesis using application-generator technologies and
component-based development techniques. The latter has been effected in several ways, including
subroutine libraries, templates, and a variety of class and framework mechanisms.

On the basis of some experimental systems work, we suggest that a relatively new approach
might merit increased attention from the research community. The approach is based on the inte-
gration of large, application-scale, binary components. To date the approach has been employed
industrially using shrink-wrapped packages, such as Microsoft Office and Visio Corporation's
Visio technical drawing tool, mostly for business and office automation tasks.

We have shown that this approach can be applied more aggressively, using today's technol-
ogy combined with advanced integration strategies such as mediators [S94], to develop systems
in at least one domain far removed from business data processing, quickly and at low cost. Our
demonstration application is a fault-tree analysis tool embodying new analysis techniques devel-
oped by Joanne Bechta Dugan at the University of Virginia.

We cannot infer broad generality from a single example. However, it does appear that our
approach can be applied in developing a range of modeling and analysis tools using existing tech-
nology. The approach does appear to overcome some previously encountered impediments to
large-scale reuse [G95]. That, however, is not the main point of this abstract. More importantly,
our success applying the approach in an engineering domain suggests the hypothesis that we can
thoroughly characterize, develop, and generalize it, so as to enable its application to solve prob-
lems in a significantly wider variety of problem domains.

A key problem is that we do not yet understand very well what features of the approach
account for its success even in the limited domains of business data processing and tools. We have
decided to focus part of our research on answering this question. A first objective is to determine
what general features of the approach account for successes to date. A second objective is to
determine what is required to develop and generalize the approach, so as to apply it more aggres-
sively and systematically to problems in domains in which the existing technology is inadequate.

In this abstract, we present early answers emerging from our attempts to determine which gen-
eral design properties account for the success of this large-scale integration approach. We begin
with an analysis that suggests why it seems to offer perhaps greater promise than previous,
smaller-scale reuse approaches.

It can be argued that reuse in which engineers attempt to develop systems by reusing small
building blocks does not attack the essence of the problem. Consider, for example, a system that

SEW Proceedings 156 SEL-96-002

ends up being one million lines long. Even if the entire system is build with C++ reusable classes
and the classes are say 100 lines long on average, the total number of items being composed in
10,000. As well as understanding and using the classes themselves, the system developers have to
design and implement the interconnections among the components, and maintain intellectual con-
trol over these interconnections. That is a massive design task that would appear to be inconsistent
with fast cycle time and low cost. Developing a system with such building blocks remains a tre-
mendous challenge, and ble total software engineering burden has been reduced some but not
enough by reuse of small building blocks.

Achieving truly significant benefits from component-based reuse would appear to require the
reuse of massive components so as to enable large systems (for example, one million lines) to be
constructed by straightforward integration of just a few components. With this goal in mind, it is
clear that components that average 100 lines in length are too small by about three orders of mag-
nitude. Despite the obvious benefits, attempting to reuse large components has met with only lim-
ited success. One problem, as reported by Garlan et al. [G95], significant difficulties can arise
with what has been referred to as architectural mismatch; but this is by no means the only prob-
lem.

An even more aggressive view is that successful development based on the reuse of massive
components is unlikely to be realized by incremental improvements in the size of typical reusable
components from their present small size. Is it necessary for larger component sizes to come
about only incrementally as more is learned about building flexible components? The experiment
that we are conducting has shown the feasibility of using massive components today, and suggests
that an immediate transition to the use of massive cpmponents is possible, at least in certain cases.
As an alternative to trying to make progress by "climbing up" from the use of small components,
we suggest starting with a massive component approach and "working backwards" as difficulties
are encountered.

Our use of massive components is different from the way in which components are used in a
traditional systematic reuse approach. The components that we are using each provide tremen-
dous functionality, and each is many hundreds of thousands (possibly millions) of source lines in
length. Despite this, we have found the integration of these massive components to be successful
in the senses that they were easy to use and the resulting product performs as required. In view of
their size and functionality, we think that it is important to distinguish between the more tradi-
tional notion of component and the type of massive component that we are using. We have coined
the term "application service" to describe the latter and will refer to such components using this
term throughout the remainder of this presentation.

In an earlier paper [SK95], we reported preliminary results of an experiment on large-scale
systematic reuse. We described our experience with efforts to exploit an architecture (Microsoft's
OLE) that permits very large components to be integrated. We used this architecture enhanced
with mediators [S94] and several application services to develop a high-quality, industrial-
strength software toolset. Our conclusions were that the basic architectural concept worked well,
although several technical difficulties remained.

The high-level architecture of the toolset that is the subject of the experiment that we are con-
ducting is shown in Fig. 1. The toolset provides facilities for a technique called system fault-tree

SEW Proceedings 157 SEL-96-002

Component Integration & Master User Interface

Application Virtual Machine
Figure 1 - Toolset architecture.

analysis-a technique used in reliability engineering [VSl]. A main program is responsible for
providing the user's primary control mechanism, and also initiates execution of the required
application services. Three application services are used: Visio Corporation's Visio technical
drawing program, Microsoft's Access database program, and Microsoft's Word text processing
program. Visio is used to provide a graphic representation using customized icons of the fault tree
of interest together with a graphic (click and drag) editing facility. Access provides a general data-
base facility that is used for storing fault trees and various forms of failure data used in the analy-
sis. Word is used to edit an ASCII representation of fault trees that is useful for certain kinds of
fault-tree creation and editing. These three application services are supplemented with mediators
that provide links between the application service and certain canonical data structures main-
tained by the main program. Critical reliability analysis functions are available to the main pro-
gram in a conventional form as a set of classes (shown in Fig. 1 as the computation kernel).

The three application services form what we refer to as an application virtual machine. It is
this virtual machine that the main program manipulates, along with the computational kernel, to
provide the toolset's functionality. This manipulation uses subprogram calls as might be used in a
traditional design together with action invocation via events.

The toolset that we built demonstrates industrial strength functionality and performance.

SEW Proceedings

Some cosmetic elements of the individual application services remain. The services do provide
some support for customizing or removing application-specific interface elements. We intend to
remove those that are not needed, to the extent that this improves the toolset's coherence and
appearance, and to the extent supported by the existing application packages. Certain key func-
tional elements (such as editing commands) will be left available through the application services'
own user interfaces so that they maintain the look and feel of similar products. How best to sup-
port integration at the application service user interface level remains a technical-and perhaps a
research-issue that has not yet been fully resolved.

In terms of reuse, the results we achieved were successful-we believe significantly more
successful than might be expected since the toolset was built using application services. Why is
this the case? In this section we present the results of a preliminary analysis of this success.

The application services provide enormous functionality including large and important parts
of the basic functionality of the domain. Not only is this functionality provided but it is provided
with sufficient flexibility that it can be tailored easily to the specific needs of an individual prod-
uct. We refer to this functionality as the critical SUpe~ShUCture of products in the domain. It is this
aspect of many products that consumes the vast majority of the resources yet is not what provides
the unique capabilities of the product. In the case of the toolset we have used in our evaluation
experiment, for example, many parts of the toolset are commonly found in software tools.

That the flexibility offered by the application sei-vices was not overwhelming is counterintui-
tive. Many efforts to generalize components to meet a variety of needs has resulted in components
that are unwieldy. Support for advanced specialization mechanisms seems to play a key role in
this regard. Although it is possible to specialize Visio by writing custom code in C++, it is more
common to exploit its spreadsheet mechanisms to "program" the behaviors of user-defined
shapes. Similarly, one specializes Word by defining new document templates. These mechanisms
provide high-level support for flexibility in the dimensions that are actually critical in practice.

Even with the provision of powerful flexibility features, application services cannot be used
effectively unless they can be integrated smoothly. The architectural approach used (OLE, media-
tors, and the application virtual machine structure) allowed a set of application services and prod-
uct-specific software elements to be integrated so that the resulting system presents a
comprehensive unified interface and behavior to the user. This is a significant result since integra-
tion involves a variety of invocation and data interchange requirements.

As well as the combination of functionality, flexibility, and integration facilities, a number of
other complex aspects of both the application services and the integration mechanism contributed
to the successful reuse that we observed. We summarize briefly the main reasons for the reuse
success here-more details together with examples will be given in the presentation:

Architectural coherence.
All of the application services used were designed to work in the OLE environment. This per-
mitted their use in a systematic way and avoided several instances of architectural mismatch.

* Supplementary use of mediator architecture.
We avoided many difficulties by supplementing the OLE architecture with use of mediators in

SEW Proceedings 159 SEL-96-002

the toolset design.

* Provision of the critical superstructure.
The application services enabled the creation of the critical superstructure relatively easily.

* Provision of essential flexibility.
The application services provided flexibility in ways well suited to their use in a reuse context.

* Advanced support for exploiting flexibility.
The application services include powerful mechanisms to permit exploitation of their inherent
flexibility.

* Managed object model.
The application services provide a managed object model in that they implement an internal
object structure that is powerful yet accessible from their application-programming interfaces
thus permitting fine-grained integration.

Provision for add-on functionality.
The functionality of an application service is easily supplemented by creating the requisite
additional functionality as a software entity that can be invoked by the user in a number of dif-
ferent (and powerful) ways via the application service.

Our conclusion is that by careful design of both application services and the architecture with
which they are integrated, large systems can be built successfully using components up to three
orders of magnitude larger than components found in typical reuse libraries. We know of no com-
parable results demonstrating the degree of integration we have achieved at this scale. Our result
has not been proven generally, but it has been demonstrated. The demonstration is sufficiently
successful, and the reasons why understood well enough, that increased attention to the technical
and research issues that have to be resolved to generalize the approach appears to be warranted.

[G95) Garlan, D., R. Allen and J. Ockerbloom, "Architectural Mismatch: Why Reuse is so
Hard," IEEE Sojtware, vol. 12 No. 6, Nov. 1995, pp. 17-26.

[SK95] Sullivan, K.J., and J.C. Knight, "Experience Assessing an Architectural Approach to
Large-Scale Systematic Reuse", Proceedings ICSE 18: Eighteenth International Confer-
ence on Software Engineering, Berlin, Germany (March 1996).

[S94] Sullivan, K. J., Mediators: Easing the Design and Evolution of Integrated Systems, Ph-D.
Dissertation, University of Washington Department of Computer Science and Engineer-
ing, Seattle, WA, 1994. Also available as University of Washington Department of Com-
puter Science and Engineering Technical Report 94-08-01.

[V81] Veseley, W.E., F.F. Goldberg, N.H. Roberts, and D.F. Haasl, Fault Tree Handbook, U.S.
Nuclear Regulatory Commission, NUREG-0492, Washington DC (198 1).

SEW Proceedings 160 SEL-96-002

Goal: Radical Improvement

Productivity

Quality

Cycle Time

SEW Proceedings

Means

* Novel Architectural Styles

For Leading Edge, Real Systems

Respectful of Key Design Realities

* Explored & Demonstrated by Case Studies

Problem Domain: Tools

Even Simple Techniques Demand ... (lo4)
Massive Superstructures (1 06)
- graphical user interface
- technical drawing
- text formatting
- data management

From-Scratch Construction Uneconomical

SEW Proceedings

Case Study

Given New Modeling & Analysis Techniques

Develop Industrial Strength Software Tools

At Radically Reduced Cost & Cycle Time

Dugan 's Hybrid Fault-Tree Analysis Method

Traditional Reuse Inadequate

1 Million Lines of Code (lo6)
100 Line Reusable Components (lo2)
Need 10,000 Components (lo4)
Still A Horrendous Design Problem
Doesn't Attack Essence of Problem
Result--Many Terribly Inadequate Tools

SEW Proceedings

Attacking the Essence

Simple and Straightforward Integration

Of a Few Parts (lo1)

Tailored Quickly and at Low Cost

Observation

Powerful New Applications
- Microsoft
- Visio Corp.
- Others

Specializable
Integratable
Key Subdomains

SEW Proceedings

Concept

Application Packages as Components

Application Virtual Machines

Package-Oriented Programming (POP!)

An Old Idea

"Perhaps the simplest instance of reusability (and the one
with the highest leverage) is the purchase of an existing
software package. The purchasing organization pays very
little compared to building an equivalent capability in-house
and it is up and running in a short time. Even if a limited
amount of customization is necessary, this is often small
compared to the cost of building and entirely new system.
If organizations will come to the point of accepting such
prepackaged systems, then a major step forward will have
been achieved vorowitz & Munson, IEEE TSE, 19841 ."

SEW Proceedings

Still A Good Idea

"An especially promising trend is the use of
mass-market packages as the platforms on
which richer and more customized products
are built [Brooks, MMM, 19951"

Questions of Feasibility

"The [programmer] who uses . . . applications
as components . . . is the user whose needs are
poorly met today [Brooks, MMM, 19951."

Architectural Mismatch [Garlan 951

Lack of Demonstrated Success

SEW Proceedings

Hypothesis

Workable Basis for Mega-Reuse

Evidence

Appears to Work for Tools

SEW Proceedings

Research Issue

Why?

SEW Proceedings 168 SEL-96-002

SEW Proceedings 169 SEL-96-002

SEW Proceedings 170 SEL-96-002

S W Proceedings 171 SEb-96-002

at Made It Work?

Right Basis Components

"MighyMoiphic" Components

High Valence Components

SEW Proceedings

Right Basis For Tools

Technical Drawing
Text Management
Data Management

Domain-Specific Language
Domain-Specific Types
Domain- Specific Analysis

Flexibility in Critical Dimensions

High-level Specialization Mechanisms

Provisions for Add-on Functionality

Control Over User Interfaces

SEW Proceedings

High Valence

Architectural coherence (OLE)

* Application Programming Interfaces

Managed object model (Visio)

Conclusion

We Demonstrated Effective Mega-Reuse
* "Order of Magnitude Better Tool" --Dugan

Promising Architectural Concept
Investigation of Generalizability Warranted

SEW Proceedings

TECHNOLOGY EVOLUTION:
COTS Transition at Raytheon 1983-1996

ABSTRACT

(Part I)

' >

Tom Lydon, Laurie Fischer, Karl Gardner s . , % # t

Raytheon Company

The Raytheon RES Software Engineering Laboratory is a large software development
organization consisting of about 1200 engineers. It has been independently rated as an SEI
Level 3 site for four years and won the IEEE Software Process Achievement Award in
1995. The Raytheon process relies extensively on the use of integrated engineering tools to
achieve process control. Data on 84 tools, 25 Raytheon-developed and 59 COTS, over the
period 1983-1996 shows that the number of tools used in software engineering has grown
from an average of about 4 tools per engineer in 1986 (not including standard host editors
or compilers provided with the 0 s) to about 12 tools per engineer in 1996. Furthermore,
over this period there was a definite, systematic swing from Raytheon-developed tools
which were predominant from 1984-1990, to COTS tools which have been predominant
since 1990. The current mix is about 3 Raytheon tools and 9 COTS tools in use per
software engineer.

There are pros and cons to the use of COTS tools. -Overall costs have initially gone up, but
they are still expected to go down in the future, though this is'not certain. Standardization
is one method of controlling overall costs. Productivity and quality both appear to improve
with the use of COTS tools, but this improvement data is also a result of other factors such
as process initiatives, training, and better hardware (workstations). There are regular births
and deaths of tools, and this "churning" must be managed. The data suggest that the
overall use of tools will level off over the next few years at about 13 tools per engineer, 2
Raytheon and 11 COTS. COTS is not a panacea, but they are here to stay.

This paper is the initial portion of a study of overall COTS tool costs. Data on the use of
Raytheon-developed and COTS tools is included, but life cycle cost data has not yet been
collected. The second portion of this study will be completed early in 1997.

BACKGROUND

The Raytheon Electronic Systems (RES) Software Engineering Laboratory (SEL) is a
large, diverse software development organization, geographically distributed across eight
major sites in six different states (primarily Massachusetts). This laboratory develops
software for the primary RES business areas of Command & Control Systems; Naval, Air
to Air, and Strike Systems; Air Defense Battle Management and Radar Systems;
THAAD/Ground Based Radar, and Transportation Systems, inchding Air Traffic Control.

The Raytheon RES Software ~ n ~ i n e e r i n ~ Laboratory has been independently rated as an
SEI Level 3 site for four years and won the IEEE Software Process Achievement Award in
1995. The Raytheon process relies extensively on the use of automated, integrated
engineering tools to achieve process control. The number of software engineers in the
current RES SEL has grown from about 600 in 1983 to about 1200 in 1996.

SEW Proceedings 175

DATA ON TOOLS

During the 1980's, Raytheon had three major software laboratories located at Missile
Systems Division in Bedford and Burlington MA, at Equipment Division in Sudbury,
Wayland, and Marlboro MA, and at Submarine Signal Division in Portsmouth RI. These
divisions employed about 600 software engineers in early 1983. The three divisions were
consolidated into a single division, Raytheon Electronic Systems (RES) in early 1995, and
three software laboratories are now consolidated into a single Software Engineering
Laboratory (SEL).

In the 1980's, there were three t y ~ e s of tools used:

(a) Raytheon-developed internal tools
(b) Tools provided "free" with operating systems, such as yacc, lex, lint,

curses, and troff with Unix, and CMS with VMS
(c) Purchased third-party tools, now known as COTS

Raytheon's policy was always to encourage purchasing category (c) wherever possible, in
preference to building our own in category (a), but the fact was that most of our
requirements could not be met by COTS tools, so the majority of tools were developed
internally. The data included in this study is from categories (a) and (c), and does NOT
include data on the use of tools that were provided standard as "no cost" components of the
operating system.

Also in the 1980's, there were four sources of funding for tool acquisition or development:

Approx % of
SOURCE Funding - COMMENT
Corporate 40% - interdivisional initiative to aide many projects

- used mainly for tool development
Cost Center 30% - common tools used by many programs

- costs centrally absorbed, redistributed to programs
Program 20% - used for tools specific to program needs

- tools owned by the program, not Raytheon
Overhead 10% - used for productivity improvement tools

- used for special tools on high-end computers

As lead engineer for both Corporate and Cost Center tool programs at the time, and through
regular interaction with programs and overhead tasks, I was able to reconstruct good
historical data on the extent of use of 84 tools over the period 1983-1996. The goal was to
analyze the true costs of conversion from internal to COTS tools. Data on tool use has
been developed, but data on costs has not yet been finalized.

This study of 84 tools includes 25 Raytheon-developed tools and 59 COTS, mostly for
computer-aided software engineering (CASE). The data is shown below in a table where
each row represents one tool, and the columns represent average "Fraction-of-Use" data for
each year. "Fraction-of-Use" is the decimal fraction of software laboratory engineers who
used the tool on a regular basis during the year. For example, ".3" means that 30% of the
engineers used that particular tool (either internal or COTS) on a regular basis that year, so
if there were 800 total engineers then 240 used the tool.

SEW Proceedings

28% g2Eoq
RAY REQTS
RAY CM
RAY DOCUM
COTS COST
COTS COST
COTS CODING
RAY DESIGN
RAY DESIGN
RAY CM
RAY MAINT
RAY MAINT
COTS DB
RAY MGMT
COTS DATA
RAY DESIGN
RAY CM
COTS DB
COTS DB
RAY DEFECT
RAY MAlNT
RAY DEFECT
RAY DOCUM
RAY DATA
COTS DATA
COTS DOCUM
COTS DOCUM
COTS MGMT
COTS CODING
RAY TEST
COTS DOCUM
COTS DESIGN
COTS REQTS
COTS DATA
RAY TRACE
RAY DEFECT
COTS DOCUM
COTS DESIGN
RAY TRACE
COTS DATA
COTS GUI
COTS MOMT
COTS CODING
COTS DATA
COTS DATA
RAY DEFECT
COTS GIs
COTS GUI
COTS DATA
COTS DESIGN
RAY MGMT

88T8 E!
COTS DOCUM
RAY DATA
COTS DB
COTS COST
COTS COST
COTS GIs
COTS GUI
COTS DATA
COTS CODING
COTS DOCUM
RAY DEFECT
COTS REQTS
COTS REQTS
COTS DB
COTS DOCUM
COTS DOCUM
COTS GUI
COTS CODING
COTS CODING
COTS CODING
COTS CODING
RAY DEFECT
COTS CM
COTS DOCUM
COTS TRACE
COTS DEFECT
COTS DESIGN
COTS TEST
COTS DOCUM
COTS DATA
COTS CODING
TOTAL 84

RAY 25
COTS 99

SEW Proceedings 177 SEL-96-002

The data is usually rounded to the nearest 10% due to inability to measure the data more
precisely. For example, some projects used tools for parts of the year, and other projects
did not have 100% of their engineers use a given tool at a given time, so annual weighted
average Fractions-of-Use have been totaled across all programs and rounded to the nearest
tenth. In some cases, small numbers such as .05 (5%) or .O1 (1 %) are used to indicate that
a tool was still in active use, but only by small populations of users.

Overall Use of Software Tools has Steadily Increased

Use of Raytheon-Developed Tools has Dropped Off

SEW Proceedings

The data shows a definite, systematic swing from Raytheon-developed tools to COTS
tools. As the use of COTS CASE tools has increased, the use of comparable Raytheon-
developed tools has declined, while the overall use of tools for software engineering has
steadily increased.

Use of COTS Tools has Increased Dramatically

Counterpoint: Swing from Internal to COTS Tools

SEW Proceedings

The shift from internally developed to COTS software tools over this period has been
driven by several factors, including:

1. Customer Reauirements - Customers are becoming increasingly knowledgeable and
sophisticated in their requirements for software development. In some cases, they require
certain specific tools to be used on a program. In other cases, they require a COTS tool be
used, if not a specific tool.

2. Need to Improve Productivity - Contractors are in constant competition, and if there is a
betterlfaster way to develop software, they must learn and take advantage of it. Many
COTS tools embody well-documented computer-aided software engineering (CASE)
methodologies specifically aimed at improving productivity.

3. Need to Im~rove Ouality - Similar to productivity, competition for improved software
quality (fewer defects) is acute. COTS tools with CASE methodologies also specifically
aim at improving quality.

4. Need to Improve Turnaround Time - Sometimes called time-to-market, this is often more
important the either productivity or quality. A task may cost the same, or it may cost more,
but if you can complete it with the same quality in half the time there is often a premium that
can be gained.

5. Need to Reduce Costs - In-house tools require internal staffing for maintenance,
upgrades, and support. COTS tools appear now to be mature enough that vendors can get
a wide enough usage base to defer these costs more cost-effectively than any one user
could do themselves. Thus there is an opportunity to reduce internal staff (or redirect to
other projects) and reduce overall computing costs to programs.

6. Standardizatioflntegration - By using COTS tools, it is easier to standardize tools
across organizations (e.g. divisions), and to provide more standard tool integration
mechanisms, allowing for synergy across tools and programs.

The primary development environment(s) for Raytheon software development have
evolved gradually over the past 15+ years. In the 1980s there were almost equal amounts
of VMS and Unix based development. From 1990-1995 it was primarily Unix based
(several flavors) development, Since 1995 it has still been primarily Unix development,
but we now see many smaller, more commercial programs beginning to use NT as the
platform of choice.

SEW Proceedings

TYPES OF TOOLS

The data on the 84 tools can be divided into the following categories of tools, by primary
application to the software life cycle:

CODING
COST
DATA
DB
DEFECT
DESIGN
DOCUM
GIs
GUI
MAINT
MGMT
REQTS
TEST
TRACE

Configuration Management, code control, automated build tools
(internal tools have been built on top of sccs, RCS, and CMS)
Support for coding, compilers, debuggers, environments
Cost estimation tools
Data analysis and data reduction tools
Database related tools, e.g., relational or object-oriented tools
Defect collection, tracking, reporting tools
Preliminary and detailed design tools, PDL and graphical
Documentation tools
Geographic Information Systems tools
Graphical User Interface tools
Maintenance and code documentation tools
Management tools
Requirements analysis tools (some overlap with prelim. design)
Test support, test generation, test tracking tools
Traceability tools

The mix of tools by category and type (Raytheon or COTS) is shown below:

Category
CM
CODING
COST
DATA
DB
DEFECT
DESIGN
DOCUM
GIs
GUI
MAINT
MGMT
REQTS
TEST
TRACE

Raytheon
3
0
0
2
0
6
3
2
0
0
3
2
1
1
2
2 5

COTS
3
9
4
9
5
1
4
10
2
4
0
2
4
1
1

5 9

TOTAL
6
9
4
1 1
5
7
7
12
2
4
3
4
5
2
3
8 4

Raytheon is a large software engineering organization that is NOT primarily a developer of
software tools. From the distribution of data, it is clear the Raytheon has spent relatively
more effort on defect-tracking and maintenance tools, and relatively little effort on coding,
cost estimation, data analysis, database, documentation, GIs, and GUI tools.

INDIVIDUAL TOOL CATEGORIES

A closer look at a few tool categories reveals some micropatterns in the data, for example:

SEW Proceedings 181 SEL-96-002

a) The use of CM tools increased linearly until about 1987 when essentially all engineers
used a CM tool on their project. Since then it has leveled off at about one tool per engineer,
as would be expected. (The amount over one may be due to data rounding up.)

b) The use of CODING tools increased very slowly through the 1980s, probably due to an
acceptable level of "standard" operating system-supplied tools. The number of CODING
tools has increased dramatically since 1993, however, indicating an active need for
integrated coding environment tools, especially for embedded systems development.

2

CODING

c) The use of DESIGN tools increased quickly to about one per engineer in the mid-1980s,
probably due to immediate productivity and quality gains from the use of these tools. As
expected, it has leveled off at one tool per engineer, since it is rare that a project would need
to actively use two different, independent DESIGN tools per engineer.

2 r

DESIGN

SEW Proceedings

d) The use of MANAGEMENT tools has remained at about one-half tool per engineer since
the mid-1980s. This makes sense, since not all engineers need to prepare schedules, track
actuals, and report on project status. Group leaders, software lead engineers, section
managers need to use these tools and make up about 113 the engineering base.

e) The use of DEFECT tools has risen steadily since the mid-1098s. This is partly because
there has been a variety of tools, with projects having their own preferences, sometimes
their own home-grown tools, and no consistent standard across all projects.

f) The use of DATA tools blossomed initially in the mid-1980s, and again in the early
1990s. The fist wave was probably due to the need for basic data analysis capability, but
the second wave is more likely due to increased an emphasis on quantitative data collection
and management while going from SEI CMM Level 3 to Level 4, which is what is
happening at Raytheon now.

SEW Proceedings

COTS TOOL ARE NOT A PANACEA

Despite the well-documented shift to using COTS tools in place of internal tools, there is a
new set of problems that must be dealt with due to this transition.

The main tradeoff for a large software contractor is gaining quality tools at a reduction in
cost (at least that's the promise) versus giving up control over those tools. The table below
illustrates the principal PROS and CONS of this tradeoff:

PROS CONS

Internal
Tools

COTS
Tools for maint & support Problem fixes usually s

Instead of immediately lowering costs, during transition from internal to COTS tools the
costs appear to initially go up, due to the startup costs of tool acquisition and the fact that
legacy tools must still be supported for some period of time on ongoing projects that cannot
afford to switch mid-stream. A schematic diagram of this short term cost "bubble" effect is
shown below:

COST

SEW Proceedings

There are other indicators of a more general, more persistent shift of support costs from
hardware and labor to software, however. In a review of the costs incurred by the cost
center to support about 500 software engineers in the former Missile Systems Division
between 1990-1995, the percentage of costs related to software (purchase, maintenance,
amortization) doubled from about 15% to about 30%, while labor fell from 50% to 30%,
and hardware (purchase, maintenance, depreciation) remained constant at about 25-30% of
total support costs. Other factors (supplies, allocations, etc) accounted for the remaining
10%.

Software maintenance was the highest growth factor, since it is a function not of
purchases, but of total active inventory. These trends are shown in the figure below:

One way to help control the number of COTS licenses required, and thus the cost, is to
consolidate concurrent licenses as far as possible onto large license servers. This is not
always possible, for example on classified projects, but there is an economy of scale on
licenses required related to an increasing total number of users.

For example for tools such as Rational Apex or Atria Clearcase, 10 networks of 10 users
each would require 8-9 licenses on each network for a total of about 85 concurrent licenses,
whereas 100 users on a single network would require only about 50 licenses, saving 35
licenses or 40% up front.

We have observed three classes of tools with different economies of scale based on usage
patterns, referred to here as High, Medium, and Low Saturation tools. "Saturation" is the
number of licenses required as a percent of the total number of users, and reflects how
intensively a tool is used by an engineer. Coding environments tend to be high saturation
tools, since coders usually stay in them most of the day, while occasional use tools tend to
be low saturation tools.

SEW Proceedings

For large networks, fewer licenses are required per user

USERS

HIGH Saturation tools settle at about 50% licenses per users (e.g. Apex, Clearcase)
MEDIUM Saturation tools settle at about 25% licenses per users (e.g. Interleaf, StP)
LOW Saturation tools settle at about 10% licenses per users (e.g. MatLab, SPR)

(Note: SPR is a Raytheon-developed internal problem reporting tool)

STANDARDIZATION

Another way to minimize the cost of tools, especially COTS, is to maintain a standard list
of supported software. Raytheon currently maintains a list of 22 standard tools that are
supported by the main software engineering cost center. This provides a financial incentive
for programs to use the same tools for design, code, test, CM, documentation, etc.,
without "forcing" them to do so. This is important because there are cases where a
program is REQUIRED to use a particular tool specified by the contract or by the customer
(or PREFERS a non-standard tool), and they are able to do this by paying for the software
out of program funds without impacting other programs who do not need the tool.
Conversely, if a program can opt to use a "standard" tool, it will incur no extra cost over
the normal charge to use other cost center software.

This Standard Software List has encouraged the use of a minimum common set of tools
(sometimes more than one tool per category, however), economies of scale in centrally
serving licenses, in consolidating training, and in purchasing ability (minimum number of
suppliers, maximum leverage), without unnecessarily restricting programs.

The number of tools on the standard list has varied since the list was started in 1994. It
increased from 18 in 1994 to 26 in 1995, due to the consolidation of the three divisions and
several cost centers into one, and the need to expand the standard list based on current tool
use across all sites. These 26 were reduced to 22 in 1996, in an effort to streamline and
further control overall costs.

SEW Proceedings

IMPROVED PRODUCTIVITY AND QUALITY

Raytheon has measured changes in organizational productivity and quality over the past 8+
years, and the trends show continuously productivity and quality improving simul-
taneously. The exact impact of increased use of software tools (or COTS tools) is hard to
extract from the data, however, since there were several factors at work at the same time.
These factors included:

hardware improvement (workstations, servers, networking, etc)
process improvement (standards, policies, procedures, inspections, etc)
and expanded training
in addition to the increased use of tools

This was the same time period that the Raytheon software laboratories went from SEI Level
1 to Level 3, achieved IS0 9001, documented overall process improvement savings (Ref.
Ray Dion), and were awarded the IEEE Process Award. It is clear that better quality
software was an important contributor, but not the only contributor, to this improvement.
The two figures below show DS1M.M productivity improvement (Jan 1988 is normalized
to 1.00), and quality improvement as measured by reduced Cost of Nonconformance (cost
of rework), which can be considered a proxy for the number of defects.

Tools help improve productivity

0 20 40 60 80 1 00
MONTHS SINCE JAN 1 988

SEW Proceedings

* Tools help reduce defects & rework

0 20 40 60 80 100
MONTHS SINCE JAN 1988

OTHER OBSERVATIONS

A closer empirical lcmk at the data reveals some other interesting observations:

* The total ~iumber of UNIQUE TOOLS in use at one time has incteased from 4 to 62,
however, (a) the measure of 4 in 1982 is incomplete and probably closer to 6 or 8, atld
(b) 14 of the 62 cumntly active are "almost dead" (very few users, usually legacy),
leaving 48 truly currently active

The number of DEATHS (discontinued use of a tool) over this period was 22, or an
average of about 2 per year. Another obse~ation is that tods ate often dow to "die",
as projects gradually discontinue use, but a few keep using them until the projects end.

The average LIFESPAN of the 22 tools that "died" was 4.4 years.

The percentage of tools that reached COMMON status (that is, reaching more than 25% of
the engineers in the software lab) is 39%

The percentage of tools that nevet exceeded NICHE status (that is, never reaching 25% of
the engineers in the software lab) was 43%

For the remaining 18% of the tmls it is too soon to tell whether they will become
COMMON tools, or will remain NICHE tools

SEW Proceedings

FUTURE STABILIZATION

From the data we've analyzed, and from observation of tool use by software engineers on
many programs, it appears that the increase in the number of software tools in use may
level off in the next few years at around 13 per engineer (about 2 Raytheon and about 11
COTS), though it is too soon to determine this with confidence. This projection is shown
in the figure below:

OTHER LESSONS LEARNED

* THE TRANSITION TO COTS TOOLS IS PEFWANENT
- ALTHOUGH COTS TOOLS ARE NOT A PANACEA

* THERE IS A SHORT-TERM INCREASE IN COST, THOUGH (HOPEFULLY) A
LONG-TERM COST DECREASE --> THE QUESTION IS: HOW MUCH??

* TO CONTROL COSTS, SUPPORT "STANDARD TOOLS WITH $ INCENTIW
- THESE CAN BE SUPPLIED BY A COST CENTER FOR "FREE

* TOOLS CAN HELP IMPROVE PRODUCTIVITY & QUATJTY
- EXACT AMOUNT IS HARD TO DETE-, THERE ARE OTHER FACTORS

* EXPECT A REGULAR "CHURNING OF THE EXACT TOOL MIX
- THERE WlLL BE REGULAR BlRTHS AND DEATHS (ABOUT 2-3 PER YEAR)
- THERE ALWAYS SEEMS TO BE (AT LEAST) TWO OF EVERY TYPE OF TOOL

* THE OVERALL BALANCE OF COTS VS IN'IERNAL WILL LEVEL OFF

SEW Proceedings

FURTHER STUDY

As was mentioned earlier, this is the first portion of a study of the overall cost of transition
to COTS software engineering tools at Raytheon over a 13 year period. The second part of
the study, which will focus on costs, is expected to be completed in 1997.

TOM LYDON, LAURIE FJSCHER, KARL GARDNER
RAYTHEON RES, MAILSTOP T3MR8

50 APPLE HILL DFUVE
TEWKSBURY, MA 0 1876

rtl@swl.msd.ray.com, lpf@swl.msd.ray.com, fkg@swl.msd.ray.com

SEW Proceedings

Sollwan Engineering Labontory Raythem Ekctmic
syJtenrr

NASAIGODDARD SOFTWARE ENGINEERING WORKSHOP
-belt, MD - W b e s 4,1996

TECHNOLOGY EVOLUTION :
COTS Transition at Raytheon 1983-1996

Tom Lydon, Laurie Fischer, Karl Gardner
Raytheon Company

software wineering ~abontory Raythean ~~c

SUMMARY systanr

OVER PAST 13 YEARS:

Data collected on use of SOFTWARE TOOLS

Increased NUMBER OF TOOLS per Engineer

Shift from INTERNAL tools to COTS tools

Driven by ECONOMICS and CUSTOMER REQTS
- Shift from HW POWER to SW POWER - COTS are not a PANACEA

Increased PRODUCTIVITY and QUALITY

WHAT DOES IT MEAN? WHAT'S IN THE FUTURE?

SEW Proceedings

$oitwara Enginwring hbontoy Raytheon Electronic

BACKGROUND systems

RAYTHEON RES Software Engineering Laboratory
- 5 Major Sites in Massachusetts & Rhode Island
- 600 (1983) to 1200 (1996) s o h a r e professionals
- SEI Level 3, IS0 9001, IEEE Process Award 1995

MAJOR BUSINESS AREAS
- Air Defense, Transportation, Command & Control,
Naval Systems, Radar, Technology

PRIMARY DEVELOPMENT ENVIRONMENT
- VMS and Unix - 1980s
- Unix - 1990-1995
- Unix and NT - 199%

Software Engineering Lsboratoly Raytheon Electronic

DATA systems

DATA ON 84 TOOLS 1982-1996
- 25 Raytheon-Developed
- 59 COTS (mostly CASE)
- Standard host editors and compilers not included

HISTORICAL DATA FOR EACH TOOL
- Number of Users (as fraction of total lab)
- Averaged on an annual basis
- About 600 data points

EMPIRICAL ANALYSIS (Sort, count, compare)

PRODUCTIVITY AND QUALITY (Normalized)

SEW Proceedings

o a r # v u r a n O k m r i n ~ W ~ ' " Raytheon E t b c

DATA syrtsmr

Excerpt *om Database

CetQaorv
CM
CODING
COST
DATA
DB
DEFECT
DESIGN
DOCUM
GI8
c3UI
MAIM
MOM7
REQTS
TEST
TRACE

SEW Prtxeedings

COTS
3
9
4
9
5
1
4
10
2
4
0
2
4
I
1

59

TOTAL
6
9
4
11
5
7
7
12
2
4
3
4
5
2
3

84

Sofmra Enginewing LabontMy Raytheon E l d c

Overall Tool Use syrtans

Use of Software Tools has Steadily Increased
13.A I

Raytheon Tools

Use of Raytheon-Developed Tools has Dropped Off
1071 1

SEW Proceedings

Wbvare Engineering Laboratory Raytheon Elcctdc

COTS Tools syslcmr

* Use of COTS Tools has Increased Dramatically

Wbvare Enginmeting Labommy Raytheon Elcctmnic

Raytheon vs COTS syltcw

* Counterpoint: Swing from Internal to COTS Tools
101 I

SEW Proceedings

SoRware Engineering Labomtory Raythe& El-c

TOOL CATEGORIES fw=

Software Engineering Laboratory hythe~~l El-6

PROS & CONS -
COTS Tools are not a Panacea

Internal
Tools

COTS
Tools

PROS
Cost is fixed, not
proportional to #users

Problem fixes usually fastex
New capabilities can be

added faster

Less expensive to develop
Less manpower required
for maint & support

Usually better quality tools
Faster initial availability

CONS
More expensive to develop
More manpower requid

/ formaint&support
1 Usually lower quality taols

Slower initial availability

I Cost increases almost linear11
with #users

Problem fixes usually slower
New capabilities usually not

added quickly

SEW Proceedings

Software Engineering Laboratory Raytheon slntronic

COTS COST systems

During Transition, costs initially go UP

TIME -

Soflware Engineering Laboratory Raytheon Electronic

SUPPORT COST systans

12/4/96

Costs Shifting Towards Software (esp. Maintenance)

SEW Proceedings

sofware Engineering ~aboratory Raytheon El-c

LICENSE REQUIREMENTS SF-

-- -

For large networks, fewer licenses required per user

10 20 30 40 50
USERS

software Engineering Laboratory Raytheon Electronic

STANDARDIZATION systrms

RAYTHEON USES A STANDARD SOFTWARE LIST

PROGRAMS & DEPTS HAVE OWN PREFERENCES
STANDARDS PROVIDED "FREEn BY COST CENTER
FINANCIAL INCENTIVE TO USE STANDARD
MINIMIZES NUMBER OF SUPPLIERS
MAXIMIZES LEVERAGE WITH EACH SUPPLIER
SOME NON-STANDARD TOOLS STILL REQUIRED

1994 - 18 STANDARD TOOLS (1 Division)
1995 - 26 STANDARD TOOLS (Merged Divisions)
1996 - 22 STANDARD TOOLS (Budget Constraints)

SEW Proceedings

Soltwsre Engineering ~aboratory Raytheon Elccm~c

PRODUCTIVITY s-

o Tools help improve productivity
3

1
0 20 40 60 80 100

MONTHS SINCE JAN 198

Soltwsre Engineering ~aboratory Raytheon Elcaronic

DEFECTSLREWORK s-

Tools help reduce defects & rework
50

0
0 20 40 60 80 100

MONTHS SINCE JAN 198

SEW Proceedings

Software Engineering Labontory bytheon Elenronic

OTHER METRICS systans

OTHER OBSERVATIONS IN THE DATA:

Total UNIQUE TOOLS in use increased from 4* to 62
- 14 of 62 are almost dead, leaving 48 truly active

Number of DEATHS = 22, Average -2 per year
- Tools are often slow to actually die

Average LIFESPAN of 22 Dead Tools = 4.4 years

COMMON Tools (reaching >25% of Lab) = 39%

NICHE Tools (never reaching 25% of Lab) = 43%
- Remaining 18% too soon to tell

Soflware Engineering Laboratory bytheon ElaPonic

FUTURE? systaar

Tool Saturation, Stabilized Levels

SEW Proceedings

softwarn mgineering ~sbomry Raytheon Elwmuc

LESSONS LEARNED syrtems

* TRANSITION TO COTS TOOLS IS PERMANENT
- COTS TOOLS ARE NOT A PANACEA

SHORT-TERM COST INCREASE; LONGTERM
COST DECREASE -> HOW MUCH??

4 SUPPORT uSTANDARD* TOOLS WITH $ INCENTIVE - SUPPLIED BY COST CENTER "FREEn

WILL BIELP IMPROVE PRODUCIWITY & QUALITY - AIDED BY HW & PROCESS IMPROVEMENT

REGULAR CHURNING OF EXACT TOOL MIX - BIRTHS AND DEATHS (ABOUT 2-3 PER YEAR)
-ALWAYS SEEMS TO BE TWO OF EVERY TYPE

USE OF COTS VS INTERNAL WILL LEVEL OFF

TOM LYDON
RAYTHEON RES, T3MR8

50 APPLE HILL DRIVE
TEWKSBURY, MA 01876

rtl@swl.msd.ray.com

SEW Proceedings

SEW Proceedings

'
< / ' " ? " i .

' ,
/ \

Session 4: Reliability

IdentiJication of Failure-Prone Modules in Two Software System Releases
N. Ohlsson and C. Wohlin, Linkoping University, Sweden

Predicting SoJZware Quality Using Bayesian Belief Networks
M . Neil and N. Fenton, City University, London

Data Collection Demonstration and Software Reliability Modeling For a
Multi-Function Distributed System

N . Schneidewind, Naval Postgraduate School

Operational Test Readiness Assessment of an Air Force Software System: A
Case Study

A. Goel, Syracuse University, B. Hermarin and R. McCanne, U.S. Air Force

SEW Proceedings

SEW Proceedings

Identification of Failure-Prone Modules
m I

c '

Two Software System Releases
f /").-,f..f

" C /

Niclas Ohlsson and Claes Wohlin
Dept of Computer and Information Science ~36~2) ;:S/

Linkoping University, S-581 83 Linkiiping, Sweden
E-mail: (nicoh, clawo)@ida.liu.se PIa

1 Introduction
This paper presents a case study of fault and failwe data from two consecutive releases of a large
telecommunication system. In this context it is important to have clear interpretations of errors,
faults and failures. Thus, we would like to make the following distinction between them. Errors
are made by humans, which may result in faults in the software. The faults may manifest them-
selves as failures during operation. Thus, faults can be interpreted as defects in the software and
failures are the actual malfunction in an operational environment. In this paper we have used
fault-prone modules to denote the modules that account for the highest number of faults disclosed
during testing, while failure-prone modules is used to denote the modules accounting for the
highest number of faults disclosed during the first office application and in operation. The general
objective of the study is to investigate methods of identifying failureprone software modules.
Furthermore, the goal is to use the knowledge acquired to improve the software development
process in order to improve software quality in the future.

Some early results using parametric statistics have been reported in (Ohlsson and Alberg, 1996).
The models have since been refined and analysed with non-parametric statistics (Ohlsson
et al., 1996). Identification of fault-prone modules has also been addressed by other researchers
(Khoshgoftaa. and Kalaichelvan, 1995) and (Munson and Khoshgoftaar, 1992). Few, if any, stud-
ies have exploited the opportunities to identify not only fault-prone modules, but also failure-
prone modules which are the main concern of the user. There is also a general lack of studies
investigating whether identification of fault-prone modules means that we actually also identify
failureprone modules.

Another important issue is to establish when in the development phase we are able to identify
modules which will be failure-prone in the operational phase. This paper investigates three differ-
ent times for prediction: history (previous release), the design phase and the test phase. One
important consideration is to address whether or not fault-prone modules during testing are fail-
ure-prone during operation. If fault-prone does not imply failure-prone, then we may have to
improve the test methods.

The paper is organized as follows. In Section 2, an overview of the study is presented. Section 3
discusses identification of failureprone modules based on experience fiom a previous release,
and Section 4 presents results using prediction models based on design measures. In Section 5,
results concerning identification of failure-prone modules based on test data are presented.
Finally, some conclusions are given in Section 6.

SEW Proceedings

2 Ovehew of study
This paper is part of a long-term empirical study conducted at Ericsson Telecom AB with the
objective of studying how identification of fault and failure-prone modules can be used to achieve
cost-effective quality improvement. In release n of the system 130 modules have been analysed
and in release n+l232 modules have been investigated. Fault and failure data have been collected
from functional testing, system testing, first office application (i.e. the first 26 weeks and a
number of site tests) and operation. It was possible to trace 69 modules developed for release n
that were modified in release n+l. Release n+l is a major system revision. Data is currently being
collected for release n+2. The modules are of the size of 1000 to 6000 lines of code each.

Promising results concerning identification of fault-prone modules have been presented else-
where, i.e. design measures were used to identify fault-prone modules (Ohlsson et al., 1996) and
(Ohlsson and Alberg, 1996). The objective here is to study the identification of failureprone
modules based on fault and failure data as well as from design measures. In this paper we have
used one failure as threshold for the dependent variable, i.e. modules with one or more failures are
classified as failure-prone. The underlying analysis of design measures is based on ordinal analy-
sis, as it allows for changing the threshold with regards to what are viewed as being fault- and
failure-prone modules (Ohlsson et al., 1996). Actual threshold-values are not recommendations;
thresholds should be determined in individual projects on the basis of, for example, the level of
criticality of the system and market requirements. The primary objective of the thresholds as pre-
sented in this paper is to illustrate the outcome when applying the methods for identification of
failure-prone modules.

The predictability of the different models is viewed in Contigency tables and the kappa coeffi-
cients are calculated to measure the agreement in classification of the modules (Siege1 and Castel-
lan, 1988). The kappa coefficient is the ratio of the proportion of times that the classifications is
correct to the maximum proportion of times that the classifications could be correct. If the classi-
fications completely agree, then kappa-1; whereas if there is no agreement between the classifica-
tions, then kappad. Kappa will assume -1 if there is a perfect missclassification.

The study is divided into three parts:

1. Identification of failure-prone modules using data -&om a previous release

This part is aimed at investigating whether the information from release n conc
and failure-prone modules is a good predictor of failure-prone modules in release n+l. More
than 90 percent of the modules in release n had one or more faults. Therefore, it is infeasible to
use one fault as a threshold. Thus, when fault-prone modules from release n is used to predict
failure-prone modules in release n+l, a threshold of five faults is used for the independent var-
iable as an indication of potential failure-prone modules. When failure-prone modules in
release n are used as the independent variable, one failure is used as threshold.

2. Identification of failure-prone modules using design measures
?

The initial objective was to build prediction models in release n for identification of failure-
prone modules based on design measures, which then should be validated with data from
release n+l. Due to variation in quality between the two releases this was not possible. Instead
design metrics were only evaluated within release n+l. Only the best design measure is
reported here, as the main objective is to investigate different es to identify failure-

SEW Proceedings 206 SEL-96-002

prone modules rather than evaluate which measures are the best predictors. To the best of our
knowledge there exists no empirical evidence that complexity values higher than a specific
threshold would indicate either fault- or failure-prone modules. However, there are results
suggesting relative stable distribution in line with the Pareto principle (Ohlsson et al., 1996).
Therefore, the threshold is based on the percentage of failure-prone modules in release n+1.
That is, 29 percent of the modules in n+l had one or more failures. ~ence , this percentage
value is used as a threshold for the design measures.

3. Identification of failure-prone modules from fault-prone modules

The objective of this part is to investigate whether the fault-prone modules identified in release
n and n+l are good indicators of failure-prone modules in the two releases. This means that
fault data from testing is used to predict failure-proneness during operation. The rationale for
selecting thresholds is the same as in part 1.

To summarize, the main difference is when prediction can be made. The three parts imply three
different points of time in a project, namely: project start @art I), design phase @art 2), and test-
ing phase @art 3). It is important to remember that the sooner we are able to identify modules
which are likely to be failure-prone, the sooner we can take appropriate measures to deal with
them. For example, we can allocate the best people, intensify inspections or take other special
improvement measures.

3 Failure-prone modules from history
For software systems, it is normal practice that a syst& is regularly upgraded and released in new
versions. This implies that some parts of the system are the same in different releases. Tkis infor-
mation can be used to apply experience from one release to the next release or following releases.
In this empirical study, the hypothesis is that fault- or failure-prone modules in release n are likely
candidates for being failure-prone in release n+l. It was possible to trace 69 modules developed
for release n that were modified in release n+l. The data from the historical analysis is shown in
Table 1. It should be noted that only four modules were failure-prone in release n, see analysis A,
while 18 modules were failur+pne in release n+l .

To evaluate the goodness of the predictions, the prediction errors must be considered. This
includes two different types of errors: failing to identify failure-prone modules and identification
of modules as failureprone when they are not. These are hereafter referred to as errors of type I
and 11 respectively. It should be noted that a correct identification means actually pin-pointing a
certain module correctly.

To evaluate the goodness of the predictions, the prediction errors must be considered. This
includes two different types of errors: failing to identify failure-prone modules and identification
of modules as failure-prone when they are not. These are hereafter referred to as errors of type I
and 11 respectively. It should be noted that a correct identification means actually pin-pointing a
certain module correctly.

SEW Proceedings

TABLE 1. Fqilwes identified in release n+l based on release XI.

Adnal F Not F F Not F F NotF

Failure-prone(n+l) 4 14 14 4 15 3
(18 obsenraton)

Not Failure-pme(at1) 0 51 28 23 28 23
(51 obmvatiolls)

Total obsemitiolls 4 65 42 27 43 26

Overall misCtasSificati~~l~ 20% (1469) 46% (32169) 45% (31169)

Analysis A in Table 1 illustrates that even though the type I error is as high as 78%, there is no
type I1 error. This means that the modules that are fdure-prone in release n are all failure-prone
in release n+l. Possible explanations for this are the actual type of failure and late erroneous fault
correction in test.

For analyses B and C, we have used five faults as a threshold for the independent variable. It has
earlier been suggested (Khoshgoftaar and Kalaichelvan, 1995) that this should be used as thresh-
old for fault-prone modules. The threshold could therefore indicate failure-proneness. Using one
fault is not reasonable since this would identify 63 modules as being failure-prone. Even with a
threshold of five faults in analysis B as many as 61 percent (42169) of the modules are identified in
release n as failure-prone. However, only 78 percent (14118) of all the failure-prone modules in
release n+l are idenl35ed. Therefore, fault-prone modules in release n are poor predictors of fail-
ure-prone modules in n+l. This is also true for analysis C.

Another possible alternative would be to select a threshold based on the percentage of failure-
prone modules in release n+l, i.e. assuming that this proportion of fault- and failure-prone mod-
ules will be stable over later releases. The number of potential failure-prone modules would be
more realistic using 26 percent (18169) as a threshold. However, only 28 percent of the failure-
prone modules would be identified. This also holds for analysis C. Therefore, the two models in
analyses B and C are not applicable.

4 Failure-prone modules Prom design measures
Earlier studies (Ohlsson et al., 1996) have indicated that models built on design metrics are worth-
while when the total number of faults and failures are considered as the dependent variable. Thus,
it is reasonable to try this approach for failure-prone modules. In this study, fourteen different
design measures are used to build prediction models for release n+l. Spearman's correlation coef-

SEW Proceedings 208 SEL-96-002

ficient (Siege1 and Castellan, 1988) was used for a first analysis. All potential variables have low
correlation values (below 0.35). There was, however, a rather low correlation among some of the
variables, hence it could be possible to improve the model by combining the variables into more
complex models. Multiplicative aspects of the potential variables will be investigated in later stud-
ies. In this particular case, the best design measure predictor was IS, which is the number of
input-signals for a module in the design. The result was later compared with lines of code, which
was found to be doing even worse.

It has been suggested that prediction models should first be developed for one release, validated in
the succeeding release, and then applied in the third release. However, the quality of the two
releases varied widely, and it was therefore not possible to do so in this study. From a modelling
point of view, the number of failure-prone modules in release n was too few. Instead, the explana-
tory ability of design metrics was evaluated by building the best possible model based on data in
release n+l. The results shown in Table 2 are based on a threshold of one failure, which corre-
sponds to 29 percent of the modules.

TABLE 2. Failures identilied in release n+l based on IS(n+l).

Not F

Not Fail-pronc(ni-1)
(165 obsuvali~ll~) '

Total observations 67 165

From Table 2, it can be seen that the explanatory ability is unsatisfactory, i.e. the misclassification
is too high, including a large proportion of both type I and II errors. This, in combination with the
fact that the quality of the two releases differed, suggests that more complete models should be
investigated, for example including verification effort and quality.

5 Failure-prone modules from fault-prone modules
The data from the testing phase can be used for both releases to predict the failure-prone modules.
The problem with choosing relevant thresholds, discussed in respect to part 1, is relevant for this
part, too. The results of the analyses are shown in Table 3, using a threshold of five faults for the
independent variable.

SEW Proceedings

TABLE 3. Failures identified based on faults disclosed during testing of release n md n+l respectively.

Analysis na Analysis n+lb

Fawn) Fault(n+l)

Actnal F Not F Aetaal F Not F

Failure-prom(n) 5 8 Failm-pPone(n+l) 47 20
(13 o M o n) (67 obsemtion)

Not Failm-prone(n) n 40 Not Failm-pm&n+l) 102 63
(1 17 observations) (165 obmations)

Total obsemitions 82 48 Total obsmvations 147 83

The misclassification is also too high in this analysis. This means that modules that are fault-
prone during testing are not failure-prone. A possible explanation is that other types of defects are
discovered in operation, such as performance problems, that are difficult to test. This explanation
is supported by experienced developers from Ericsson. This could also explain the result in part 1.
A possible explanation of the fact that failure-prone modules in n are failure-prone in n+l could
be that modules which are critical from a capacity perspective in release n, will remain so in
release n+l. The results indicate the need for a better understanding of the types of defects that
result in failures and the types of the failures themselves. The results also stress the need to iden-
tify factors causing the defects which result in failures. Increased understanding is essential for
quality improvement.

6 Conclusions
In this paper we have investigated the opportunity to predict failure-prone modules based on fault
and failure data from two succeeding releases, design metrics, as well as test data. The study
revealed that failure-prone modules in release n are failure-prone in n+l. Other suggested inde-
pendent variables are poor predictors of failure-proneness. However, this is not the same as say-
ing that they do not explain any of the variation. It only means that on their own they are poor
explanatory factors. Instead, the study suggests that methods that combine these different inde-
pendent variables are needed.

In this study, we have addressed two consecutive releases of a software system. This is an impor-
tant aspect as in most cases it is not possible to both build, validate and use a prediction model
within one release. It is, thus, important to investigate how to build models in one release, validate
the model in the next release and then use the model in the third release. The transferability of a
model between a software system's releases is crucial to success in the mission of identifjhg fail-
ure-prone modules prior to the operational phase.

A major problem with predictions is that failures are dynamic, hence it may be difficult to identify
failure-prone modules using static measures. This is an issue which has to be further studied. One

SEW Proceedings

potential solution would be to take the use of modules into account when predicting failure-
proneness. This would allow for capturing the dynamic aspects of usage in the independent varia-
ble.

Another important issue which has been addressed here is the p i n t of time when we are able to
identify failure-prone modules. To improve the usefulness of the predictions, they should prefera-
bly be done at an early stage. In this study, we have focused on data from the previous release, the
design and the test phase. The knowledge from the previous release is important in identifying
failure-prone modules, but this is not a feasible approach for new modules. Thus, it is very impor-
tant to find early indicators of failure-proneness, since this is the only way to enable us to address
the problem within the same release.

Models which identify failureprone modules are important not only in enabling prediction dur-
ing the operational phase, but also as a planning and control tool during development. Managers
may use these models to improve the resource allocation for design, both in terms of effort and
experience. Furthermore, knowing which modules are most likely to be failure-prone in operation
suggest that the modules will be tested and inspected differently. Therefore more attributes need
to be considered and incorporated in the models, for example verification effort and quality, in
line with Fenton et al. (Fenton et al., 1995), to explain the variation and to be able to apply the
models in subsequent releases.

Future work should not only aim at building these more complete models, but also aim at investi-
gating additative and multiplicative aspects of design measures and measures from different
phases, in order to gain more knowledge about how such a component fits into a more complete
model. The results in this study also suggest that prediction models that are only based on test
data will have limited applicability in real projects aiming at addressing operational issues.

Acknowledgement
The authors would like to thank Ericsson Telecom AB for supporting this empirical study.

References
Fenton, N. E., Neil, M., and Ostrolenk, G. (1995). Metrics and models for predicting software de-

fects. Technical Report CSRl10102, Centre for Software Reliability, City University, London,
UK.

KhoshgoW, T. M. and Kalaichelvan, K. S. (1995). Detection of fault-prone programs modules
in a very large telecommunication system. In Proceedings of The Sixth International Symposi-
um on Software Reliability Engineering, pages 24-33, Toulouse, France.

Munson, J. C. and Khoshgoftaar, T. M. (1992). The detection of fault-prone programs. IEEE
Transactions on Software Engineering, 1 8(5): 423-433.

Ohlsson, N. and Alberg, H. (1996). Predicting fault-prone software modules in telephone switches.
To appear in ZEEE Transactions on Software Engineering.

Ohlsson, N., Helander, M., and Wohlin, C. (1996). Quality improvement by identification of fault-
prone modules using software design metrics. In Proceedings of Sixth International Conference
of Sofrwae Quality, pp. 1-13, Ottawa, Canada.

Siegel, S. and Castellan, N. J. J. (1988). Nonparmetrics Statistics for the Behavioral Sciences.
McGraw-Hill, second edition.

SEW Proceedings

SEW Proceedings

Identification of Failure-prone Modules
in

Two SofhYare System Releases

Niclas Oklsson
Claes Wohlin
Linkoping University,
Sweden

Fault-Prone vs Failure-Prone

Development Inspection &Testing Operation

Faults Failures Errors
(c) N i b OH- ~intepirg udrrniy. -

SEW Proceedings

Three Parts

* Identification of failure-prone modules
using data from a previous release

* Identification of failure-prone modules
using design metrics

* Identification of failure-prone modules from
fault-prone modules

Discriminant Analysis

* Dependent Variable

Failure-prone = Fault disclosed in operation > 0

* Independent Variable

Specifying Threshold

* Type I and Type 11 error

SEW Proceedings

Models Based on Previous Release

* Three analyses

Failure(n) , Fault(n), and Failure(n)+Fault(n)

Failure-prone(n+ 1) ?

Models Based on Design Metrics

* 14 different metrics

* LAW correlation

* Methods to combine ordinal metrics

SEW Proceedings

Models Based on Fault-Proneness

* Two analyses

* Very high misclassification

Summary

* Design and testing data: low explanatory ability

* Lack dynamic aspects

* More complete models

Combining measures of one attribute
C o m b i g attributes of product, process, and resources (BBN)

SEW Proceedings

Proceedings of 21st Annual Software Engineering Workshop I / , G] /f t'
f -- I * <

NASAlGoddard Space Flight Centre, December 4-5.1996

Predicting Software Quality using Bayesian Belief Networks 8ab 9 $ d 4/
Martin Neil 8 Norman Fenton
Centre for Software Reliability

City University
Northampton Square

London EClV OHB, UK

Abstract

In the absence of an agreed measure of software quality the density of
defects has been a very commonly used surrogate measure. As a result
there have been numerous attempts to build models for predicting the
number of residual software defects. Typically, the key variables in these
models are either size and complexity metrics or measures arising from
testing information. There are, however, serious statistical and
theoretical difficulties with these approaches. Using Bayesian Belief
Networks we can overcome some of the more serious problems by
taking account of all the diverse factors implicit in defect prevention,
detection and cornplexlty.

I . Background

For the last 20 years the software engineering community has spent much effort in
trying to answer the question, "Can we predict the quality of our software before we
use it?". There are literally scores of papers, articles and reports advocating
statistical models, metrics and solutions which purport to answer this question.
Generally, efforts have tended to concentrate solely on one of the following three
problem perspectives:

a) Predicting the number of defects in the system using software size and
complexity metrics

The earliest study of the relationship between defects and complexity appears to
have been [Akiyama,l971] which was based on a system developed at Fujitsu,
Japan. It is typical of many regression based "data fittingn models which became
common-place in the literature (such as [Ferdinand 19741, [Lipow 19821, [Gaffney
19841, [Basili and Penicone 19841, [Shen 19851, [Compton and Withrow 19901,
[Moller and Paulish 19931). The study showed that linear models of some simple
metrics provide reasonable estimates for the total number of defects d (the
dependent variable) which is defined as the sum of the defects found during testing
and the defects found during two months after release. Although there is no
convincing evidence to show that any of the hundreds of published complexity
metrics are good predictors of defect density, there is a growing body of evidence
that some of these metrics may be useful in outlier analysis (especially when
grouped together) [Bache and Bauana 1993I-they can be used to predict which
of a set of modules is likely to be especially defect-prone.

SEW Proceedings 217

6) lnfemng the number of defects from testing infomation

Some of the most promising local models for predicting residual defects involve very
careful collection of data about defects discovered during early inspection and
testing phases. A notable example of this is reported by the IBM NASA Space
shuttle team [Keller 19921. Another class of testing metrics that appears to be quite
promising for predicting defects is the class of so called test coverage measures.
[Fenton and Pfleeger 19961. For a given strategy and a given set of test cases we
can ask what proportion of coverage has been achieved. The resulting metric is
defined as the Test Effectiveness Ratio (TER) with respect to that strategy. Clearly
we would expect defect rate to decrease as the values of these metrics increases.
veevers and Marshall 19941 report on some defect and reliability prediction models
using these metrics which give quite promising results.

c) Assessing the impact of design or process maturity on defect counts.

There are many experts who argue that the quality of the development process is
the best predictor of product quality. The simplest metric of process quality is the
5-level ordinal scale SEI Capability Maturity Model ranking. Despite its widespread
popularity, there is no convincing evidence to show that higher maturity companies
generally deliver products with lower residual defect rate than lower maturity
companies. Nevertheless, this seems to be a widely held assumption and is
therefore important in explaining and predicting defects.

2. The need to take account of diverse factors

Despite the many efforts described above there appears to have been little overall
improvement in the accuracy of the predictions made using these models (if
predictions are formally made at all) or indeed whether the models make sense.
Broadly speaking there are a number of serious statistical and theoretical difficulties
that have caused these software quality prediction problems ([Neil 19921 provides
explicit criticisms of many of the models). To avoid these problems we need to take
account of all the diverse factors implicit in defect prevention, detection and
complexity.

Perhaps the most critical issue in any scientific endeavour is agreement on the
constituent elements or variables of the problem under study. Models are developed
to represent the salient features of the problem in a systemic fashion. This is as
much the case in physical sciences as social sciences. For instance, in macro-
economic prediction we could not predict the behaviour of an economy without an
integrated, complex, model of all of the known, pertinent variables. Choosing to
ignore or forgetting to include key variables such as savings rate or producfivity
would make the whole exercise invalid and meaningless. Yet this is the position that
many software practitioners are in - they are being asked to accept simplistic
models which are missing key variables that are already known to be enormously
important. Predicting the number of defects discovered based on lines of code
alone is as much use as predicting a person's IQ from a knowledge of their shoe
size.

Our view is that the isolated pursuit of these single issue perspectives on the quality
problem are, in the longer-term, fruitless. The solution to many of the difficulties
presented above is to develop prediction models that unify the diverse software

SEW Proceedings 218 SEL-96-002

quality prediction models. This unification will help produce new systematic models
that better represent the complex relationships inherent in software engineering.
Only when such unified models are developed will statistical experimentation and
then practical use be warranted.

As well as facing up to the complexity inherent in software engineering we must also
recognise that modelling the actions of the designer and manager are crucial if we
are to predict the quality of the final product. Again and again experience dictates
that it is good managers and designers that determine the difference between
failure and success. However researchers have tended to ignore the issue of
human intervention even though we know it is the key variable in software design. A
consequence of this is that subjectivity and uncertainty is all pervasive in software
development. Project managers make decisions about quality and cost using best
guesses; it seems to us that will always be the case and the best that researchers
can do is a) recognise the fact and b) improve the 'guessing' process.

The results of inaccurate modelling and inference is perhaps most evident in the
debate that surrounds the 'Is Bigger Better?' dilemma. This is the phenomenon that
larger modules have lower defect densities [Basili and Penicone 19841 and [Shen
19851. [Moiler and Paulish 19931 provide further evidence, and also examined the
effect of modifications and reuse on defect density. Similar experiences are
reported by [Hatton 1993, 19941. Basili and Perricone argued that this may be
explained by the fact that there are a large number of interface defects distributed
evenly across modules, and that larger modules tend to be developed more
carefully. Others have mentioned the possible effects of testing.

The notion that larger modules have lower defect density is surprising because it
questions the whole edifice of problem and design decomposition so central to
software engineering. It suggests that building bigger modules will result in less
defects overall. To act on these results would mean throwing away much of what is
being advocated in structured, object-oriented and formal design - 'Why should we
apply decomposition when it doesn't improve quality?'. Post-hoc explanations
cannot easily dismiss the uncomfortable significance of this result.

3. Bayesian Belief Networks (BB Ns)

Achieving the above modelling challenges appear onerous when one considers the
tools previously available to researchers and practitioners. They have had to rely on
the power of classical statistical analysis tools, such as regression, discriminant
analysis and correlation. Classical methods demand simple linear structures and a
wealth of data so often missing in software engineering. These methods have
severely restricted the scale of problems that could be tackled. However, a relatively
new but rapidly emerging technology has provided an elegant solution enabling us
to push back the boundary of the problems that can be attacked: Bayesian Belief
Networks (BBNs) [Pearl, 19881.

A BBN is a graphical network that represents probabilistic relationships among
variables. BBNs enable reasoning under uncertainty and combine the advantages
of an intuitive visual representation with a sound mathematical basis in Bayesian
probability. With BBNs, it is possible to articulate expert beliefs about the
dependencies between different variables and to propagate consistently the impact
of evidence on the probabilities of uncertain outcomes, such as 'future system

SEW Proceedings 219 SEL-96-002

reliability'. BBNs allow an injection of scientific rigour when the probability
distributions associated with individual nodes are simply 'expert opinions'. A BBN
will derive all the implications of the beliefs that are input to it; some of these will be
facts that can be checked against the project observations, or simply against the
experience of the decision makers themselves. There are many advantages of
using BBNs, the most important being the ability to represent and manipulate
complex models that might never be implemented using conventional methods.
Because BBNs have a rigorous, mathematical meaning there are software tools that
can interpret them and perform the complex calculations needed in their use. The
specific tool used here is Hugin Explofer [Hugin 19961, which provides a graphical
front end for inputting the BBNs in addition to a computational engine for the
Bayesian analysis.

4. The Defect Density BBN

Debugging Cost

Figure A - BBN Topology

The topology of the Defect Density BBN is shown in Figure A. The ellipses
represent 'chance' variables, the rectangles show the 'decisions', the diamonds
represent 'utility' (costlbenefit) variables and the arrows show the flow of information
or cause-effect links. The variables represented are measured on ordinal,
subjective, scales. Subjective scales are used to make the model simpler; there is
no theoretical impediment to modelling ratio scales and continuous variables. Each
variable has the following states: very-high, high, medium, low, very low or none
(optional for some variables). The probabilities attached to each of these states is
determined from an analysis of the literature or common-sense assumptions about
the direction and strength of relations between variables.

SEW Proceedings 220

The BBN can be explained in two stages. The first stage covers the life-cycle
processes of specification, design or coding and the second stage covers testing. In
Figure A problem complexity represents the degree of complexity inherent in the set
of problems to be solved by development. We can think of these problems as being
discrete functional requirements in the specification. Solving these problems
accrues benefits to the user. At the specification stage a project manager assesses
the complexity of the problems and assigns design effort accordingly. The skill with
which this is done is denoted by the variable: assessor skil~specification. This
assessment process could involve formal measurement, using function points for
example, subjective judgement or some combination of both. Assessing the
complexity of the problem accrues an assessment cost-specification. Any mis-
match between the problem complexity and design effort is likely to cause the
introduction of defects and a greater design complexity. Hence the arrows between
design effort, problem complexity, introduced defects and design complexity. For
example an optimistic project manager may allocate a small amount of design effort
to a complex problem simply because the complexity was underestimated during
assessment of the specification. Applying design effort incurs a design cost.

In Figure A the testing stage follows the design stage. Here design complexity is
assessed by the project manager in order to gauge the amount of testing effort to
allocate. This decision is represented by the assessor skill-testing variable. This is
similar to the specification assessment process in that the project manager' may
measure the design complexity directly using appropriate static or dynamic metrics
or will make a guess based on intuition and experience. The extent to which either
of these measure precisely the actual design complexity will be uncertain. Doing the
assessment will incur assessment cost-testing. Ideally any testing effort allocated
would match that required by the design complexity. However in practice the testing
effort actually allocated may be much less, whether by intent or accident. The mis-
match between testing effort and design complexity will influence the number of
defects detected, which is bounded by the number introduced. Fixing these defects
during testing incurs a de-bugging cost. The difference between the defects
detected and defects introduced is the residual defects count. Any residual defects
will be released with the product and may increase the maintenance costs, incurred
by the user and maintainer.

SEW Proceedings

Medrum

Very l o w

Maintenance Co Debugging Cost

Figure 5 - Is Bigger Better? Dilemma

Figure 5 shows the execution of the defect density BBN model for the 'Is Bigger
Better?' dilemma using the Hugin Explorer tool. Each of the decision and chance
variables is shown as a window with a histogram of the predictions made based on
the facts entered. The scenario runs as follows. A very complex problem is
represented as a fact set at 'very high'. Assume the project manager performs no
precise estimation on this so the assessment skil&specification variable is set to
'no measurement'. This results in the allocation of 'high' design effort, rather than
'very high' commensurate with the problem complexity. The model then propagates
these 'facts' and predicts the design complexity with a peak at 'high' with probability
of approx. 90%. The introduced defects follows a modal distribution shape with a
peak at 'medium' with probability of around 27%. We may also find that the project
manger is again optimistic. He does not measure the design complexity and
allocates a 'low' level of testing effort. This results in low levels of defects detected,
with approximately 60% probability of finding no defects at all. From the predicted
values for detected and introduced defects is propagated to predict the residual
defects. Residual defects peaks at 'low' with around 40% probability but with a
significant tail towards medium and high numbers of residual defects.

From the model we can see a credible explanation for observing large 'modules'
with lower defect densities. Under allocation of design effort for complex problems
results in more introduced defects and higher design complexity. Higher design
complexity requires more testing effort, which is unavailable, leading to less defects
being discovered than are actually there. Dividing the small detected defect counts
with large design complexity values will result in small defect densities! The model

SEW Proceedings 222 SEL-96-002

explains the "is bigger better" phenomena without ad-hoc explanation or
identification of 'outliers'.

5. The Way Forward

At a general level we can see how the use of BBNs and the defect density model
provide a significant new approach to modelling software engineering processes
and artefacts. The dynamic nature of this model provides a way of simulating
different events and identifying optimum courses of action based on uncertain
knowledge. These benefits are reinforced when we examine how the model
explains known results, in particular the 'Is Bigger Better?' dilemma. Our new
approach shows how we can build complex webs of interconnection between
process, product and resource factors in a way hitherto unachievable. We also
should how we can integrate uncertainty and subjective criteria into the model
without sacrificing rigour and illustrate how decision-making throughout the
development process influences the quality achieved.

The benefits of this new approach are:

a it is more useful for project management than outlier analysis and classical
statistics

e it incorporates current research ideas and experience
it can be used to train managers and enable comparison of different decisions by
simulation and what-if analyses

e it integrates a form of cost and quality forecasting

So far we have explained historical results rather than real projects. Much work
remains to be done to:

provide guidelines on how to apply the approach to specific situations
e develop a modular approach where whole development processes can be

modelled using linked BBNs
assess the validity of the model by testing its predictions on real projects

We have embarked on the above tasks in the area of safety cases in the CEC
ESPRIT project SERENE (Safety and Risk Evaluation using Bayesian Nets) and will
be improving it for statistical software process control in the IMPRESS (Improving
the Software Process using Bayesian Nets) project funded by UK EPSRC. We will
be applying the defect density BBN model to a project with Ericsson Radio Systems
in Sweden and are working with the UK Defence Research Agency (DRA) to
develop BBNs for procurement processes.

Acknowledgements
This work was supported in part by the ESPRIT projects SERENE and DEVA.

References
[Akiyama 19711 Akiyama, F 'An example of software system debugging', Inf

Processing 71,353-379 1971

SEW Proceedings

[Bache and Bazzana 19931 R.Bache, G.Bazzana (1993) Software metrics for
product assessment , McGraw Hill, London.

[Basili and Perricone 19841 V.R. Basili and B.T. Pemcone, "Software Errors and
Complexity: An Empirical Investigation", Communications of the ACM, 1984,
pp.42-52.

[Compton and Withrow 19901 , 'Prediction and control of Ada software defects',
Proc 2nd Annual Oregon Workshop on Software Metrics, March 1990.

[Cusumano 19911 Cusumano, MA, Japan's Software Factories, Oxford University
Press, 1991.

[Fenton and Pfleeger 19961 Fenton NE, Pfleeger SL Software Metrics: A Rigorous
and Practical Approach. International Thomson Computer Press, 1996.

[Gaffney 19841 J.E.Gaffney, JR., "Estimating the Number of Defects in Code", IEEE
Trans. Software Engineering, Vol.SE-10, N0.4, 1984

[Hatton 1994]Hatton, L. (1 994). C and Safety Related Software Development:
Standards, Subsets, testing, Metrics, Legal issues. McGraw-Hill.

[Hugin 19961 Hugin Expert N S Niels Jemes Vej 10 DK - 9220 Aalborg, Denmark
[Koga 19921 Koga K, 'Software Reliability Design Method in Hitachi', Proceedings of

the 3rd European Conference on Software Quality, Madrid, 1992
[Lipow 19821 M.Lipow, "Number of Defects per Line of CODE", IEEE Trans.

Software Engineering, Vol.SE-8, No.4, 1982,437-439, 1982
[Moeller and Paulish 19931 K.H. Moeller, D. Paulish, 'An emprirical investigation of

software defect distribution', Proc 1st lntl Software Metrics Symp, IEEE CS
Press, 82-90, 1993

[Neil 19921 Neil, M.D. "Multivariate Assessment of Software Products". Journal of
Software Testing, Verification and Reliability, Vol 1 (4), pp 17-37, 1992.

[Ottenstein 19791 Ottenstdin LM, 'Quantitative estimates of debugging
requirements',, IEEE TSE 5(5), 504-51 4, 1979

[Pearl 19881 Pearl J, Probabilistic reasoning in intelligent systems, Morgan
Kaufmann, Palo Alto, CA, 1988.

[Shen et al 19831 Shen W, Conte SD, Dunsmore H, 'Software science revisited: a
critical analysis of the theory and its empirical support', IEEE Trans Soft Eng,
SE-9(2), I g43, 155-1 65.

[Shen 19851 Shen VY, Yu T, Thebaut SM, Paulsen LR, 'Identifying error-prone
software - ah empirical study', IEEE Trans Soft Eng SE-1 l(4) 1985,317-323.

weevets and Marshall 19941 Veevers A and Marshall AC, A relationship betwen
software coverage metrics and reliability', J Software Testing, Verification and
Reliabili ,4, 3-8, 1994

[Yasuda, 1 1 891 yksuda, K.'Software Quality Assurance Activities in Japan. In
~apadese ~ersbectives in Software Engineering,.187-205, Addison-Wesley,
1989.

[Friedman and Voas, 19951 M. A. Friedman and J. M. Voas Software Assessment:
Feliability, Safety and Testability. John Wiley and Sons, 1995.

SEW Proceedings

p g;;i~~;p;g@z.::! - . ,.::' L.,cr.... ""::: . . . ' ;.!'"':.. ..
..,~.::i,2.;..:I.. : . . - I . . . ,

~i'; rL' i.:!rl.ilv-:i.'- :."..i.~P!..i ..,'&."'. ... ;,fi.:.:t ;;:,;.r:,:%:*:..2.
. '..?,!.: z..,

: : ' ,.,' ' . '
:.:-

. . : . . ::Pred:icting Software Quality
using Bayesian Belief

Networks

Dr. Martin Neil
Centre for Software Reliability

. .

.
.

. . . . City University
.

. _. .
., London I

. < '

h t t p : / / ~ . c s r . ~ i t y , ~ a ~ ~ uk180801', ' ::i:,'.:!: L:';..i:: i.!::.;;':
. . . .,.

: . . . " ;. :,?' :, ,:: :, :.. ,:,, .. ::;;::;: ;,:
. : .. : . . .]: : , . . .". . .$::;;Cy , _ . " , . 2. .'.' , :: :. , dr..iS4'i:

, :.. .,..re~<',y.
. : , ., .<, ;3;.f~<@,!$F;!/ ~S ,R -~&$ggk j~

. : . : : , . . , , <.gE2s;ja .
" ;<<.; ...L~=Q.I$~~~.,.? ,... : ,-~c<;;%l;~~~r. . . .

Baseline systems using defect

SEW Proceedings

.' . '

. . density (DefectslKLOC)

. . . .
. .

. . . .
.

. ,.
. " ..., _ . . .

:<;;:,.;.:: :: ...':.;;:::::,; , . -. ,!:
. ? : "

.,.r::.:.'i :,.'y:;:,;.'.;i..!; . ,
,-::. .? ': :. ;..

Typical
industrial
indices:

. :j:, ,;-.;,::..:::: ... , ..,, ' . ..?":.:,:.. :;g<-
.:..::::.;., ;,:, j .: g;$z@ : :.. .,.:: . . .<,.. :>:.:..;:: qC,(&q ,;,: :: ASS., $ ".ZS,!

.

, , - . . : csi~+!)$&~~ , :.>.+z:%:.:?.:>E P% ' ': , , ::;, , :;:;:., : . .: .<-.. i<+*.?l$>".-g. . . , : :::.~iE.jp&9$j~si:~~

Density
USA and Europe: 5 - 10

< 4 Japan:
1- 6 Motorola:

Pfleegar et al: 0.30
0.13 Schlumberger:

Cleanroom: 2 70
Ostrolenk and Neil: 1 -30

.

f Code Models

Akiyama
D = 4.86 + 0.078 L D: Defects

Gaffney L: Lines of Code

D = 4.2 + 0.0075 L ~ ' ~
(optimum module size 877 LOC)

Compton and Withrow
D = 0.069 + 0.00576 L + 0.00000047~~
(optimum module size 83 Ada LOC)

I - - - - - -2 , - . .,
+.?..L I<-;

8 - i -7

(> CsR-i::$.j:
. --ys;-; <[&@

% 2 %

Defect
Density t Decomposition m

Lines of Code

SEW Proceedings

I Using any single Quality Model I
will be grossly miseading

r I
defects not solely caused by design
complexity or size
models ignore complexity of problem
if you don't test you don't find defects
competent people produce 'better' designs
we cannot trust defect density figures - . . :. , . . 3

, ,* i

> .&q - 's. , . -,& ?:;*:

,.CSR?%;>

* Need to better reflect 'difficulties' of
quality management

* Synthesise partial quality models
- include elements from each approach
- explain existing empirical results
- consistent with 'good' sense

Multivariate and 'messier'
Cope with uncertainty and subjectivity = i

. :*-::L"' :-. :;.I?;
8 < ' -:. 0, .- CSFx&Jg . :,;= .. c e * .

SEW Proceedings

* P .. ,?.?< .;;:,,:,., ;.. ;.: ;,.
$+ ,, ,:,*.:#:?::+:~;*c, -i. .
*;;iPijzl:S~i::I.LI;!" . . * =... ! ::5!3>.:!7:..: . :;

: :..,-a. ..,::--. ...%.. I y .. .:: >;;.< .e . ::.Bayesian .Belief Networks
*:.!3..$;2: .:
: '. . . : , ..&.. .v, . ' ,

. .

.

' ' (BBNs)

Consists of three major components:
- graphical model
- conditional probability tables modelling

prior probabilities and likelihoods
- Bayes' theorem applied recursively to

propagate data through network

* Graph topology models causeeffect . '

reasoning structures , . -
rl.!, , "_ "" - - -='P

. , $:;;$?>
*-- * ,,z.%;T-7 CSR%?$&

' . s , j,

Data entered
E updates parent, C

First activation
C updates neighbourn,
A, F

Second activation
root nodes, A, C update
children, B, D, El F

SEW Proceedings

SEW Proceedings 229 SEL-96-002

clusions

Equivocal results when partial quality
models applied
New model is synthesis of partial
models
Bayesian Belief Networks offers
technology to implement new model
Coherent model of expertise - empirical

I .

validation remains to be done . , - -
st -3 , , ,..-. - . - a . - .-'+I. .- -.;,:. - k,, -7;,j:52*~; CSRegg +. ;,sJ---,-5a- w

. - S T : , - - ,,-, -+$*

SEW Proceedings

DATA COLLECTION DEMONSTRATION and SOFlWARE RELIABILlTY MODELTNG FOR a MULTI-
FUNCTION DISTRIBUTED SYSTEM

Naval Postgraduate School
Code SM/ss I '

,6' rd) 1

Montemy, California 93943 I"

Voice: 408-656-27 1 9
Fa : 408-656-3407

3607a-7

NEED FOR A MUM Function Distributed Svstem (MFDS) MODEL gr

Popular sohare reliability models treat software as a single entity and model the failure process in acumhce with this
perspective. However in a MFDS, with multiple clients and servers, this approach is not applicable. Comeqwntly a software
reliability model was developed that takes into account the fact that not all software defects and failures result in system f a i l u ~ s in
a client-server system. In this model there are critical clients and servers: clients and servers with critical fimctions (e.g., network
~~&)~m~bekeptaperationalforthesystemto~ve.~arealsonancrit icalcl ientsandserverswithmcritical
fimdcas (e.g, email). These clients and savers also act as backups for critical clients and servers, respectively. The system does not
failde~~ddWc~Mand~oaeamareaiWclientsfail,ord~)nnitical serversfailandoneormorecriticalservers
fail.

The Marine Corps Tacticel System Support Activity (MCTSSA) required the development of such a model because the MFDS
is the type ofsystem that is developed by this agency, where valid predictions of software reliability are hportant for evaluating the
reliability of systems that will be deployed in the field

CLENTSERVER SOFIWARE RELIABILITY PREDImON

This section prcrvides an htmdwh to client-server software reliability prediction and provides definitions of several important
terms. Too the assumption is made, when doing scillware reliability modeling and prediction, that the software involves a single
node. The d t y in todays hcawshg use of mula: node d h k x n e r systems is that there are multiple entities of sohare that execute
an multiple nodes that must be modeled in a system context, if realistic reliability predictions and asssmmts are to be made. For
example ifthere are N, clients and N, servers in a client-server system, it is not necessarily the case that a software failure in any of
the N, clients or N, servers , which causes the node to fail, will cause the system to fail. Thus, if such a system were to be modeled
as a single entity, the predicted reliability would be much lower than the true reliability because the prediction would not account
for criticality and redundancy. The The factor aammts for the possibility that the survivability of some clients and servers will be
mae aitical to c m h e d system opedon than others, while the second factor ~ccounts for the possibility of using redundant nodes
to allow for system n m m y shaPlld a critical node fail To addreso this problem, we must identify which nodes - clients and servers -
are critical and which are not &tical. We use the following definitions:

Node: A hardware eleanent on a network, generally a computer, that has a network 111terface card installed pOV95].

Client: A node that makes requests of servers in a network or that uses resowas available through the servers pOV951.

Serve9: A node that provides some type of network d c e [NOV95].

CSent&wver Computing: WelEgeax, & k d either as pmxshg cqddity or available infinmation, is distributed across multiple
nodes. canbevariousdegees ofallocatianofcompuhgfimctianbetweenthe client and server, h o n e extreme of an
application running on the client but with requests for data to the server to the other extreme of a server providing cedrakd
pmxshg (e-g, mail server) and sharing infkmation with the clients wV95]. The tenns client-server computing and distributed
system are used synonymously.

SEW Proceedings 23 1 SEL-96-002

Critirrrltpnction: Anapplicationfunctionthatmustoperateforthe~onofthe~qin~withits~in
order for the system to achieve its mission goal (e.g, the requirement states that a military field unit must be able to send messages
to and meive memages h m headquarters during tlpz entire time that a military operaton is being planned). This type
d h c t h operates in tile netwkmode, which which that the application nequires morp: than a single cliemt to perform its hction;
thus client to server or client to client communication is required

N a w d t i d h c t h : An application hction that Qes not have to aperate for the duration dthe mission in order for the system
to&&~@(eg,itisn?ot~to~~ord~duringtheentiretimethatamilitary~onisbeing
planned). Often this type offimdon operates in the stmdaibne mode, which means that a single client perfozms the application
~ b d i e d t o s e r v e r o r c l i e n t t o d i e n t ~ . . is not requiffcl, except for the poS7,le initial ~~ of a program
&om a file server or the printing of a job at a print server.

Critirrrl clients and servers: Nodes with critical fimdons, as dehed above. These nodes must be kept operational for the system
tosurvive,eikbyincurringmfail\~e~arby~~ncwcriticalnodestoaperateascriticalnodes.

lYobClitiffl C1Se;llfi and servers: NOdeS with nowxitical iimtbm, as d e b d above. These nodes also act as backups for the critical
nodes,shouldthecriticalnodesfail.

Software Dd&: Any uudeshble deviation in the operation dthe sothare &om its intended operation, as stated in the software
requirements.

Software Fdure: A defect in the software that causes a node (either a client or a server) in a client-server system to be unable to
perform its required function within specified perfbmmce requirements (i.e., a node failure).

System F m The state d a died-server system, which has expekwd one or more node failures, wherein there are hdicient
numbers and types d nodes available for the system to perfom its required fundolls within specified perfinmame mphments.

MODEL FORlKUUTION

By defining System Nodes, N d e Failure Probabilities, and Failure States, the user will be able to compute the probability of
system failure given that a node failure has occurred Start by defining the number and type ofMFDS nodes as follows:

N,: Number of Critical Client nodes.
N,(t): Number of Non-Critical Client nodes.
Nu: Number of Critical Server nodes.
NJt): Number of Nan-Critical Server nodes.
The sum of these nodes should equal the total number of nodes
N=NOC+N,(t)+Nu+N,,(t).

As long as the system survives, N, and N, are castauts because a failure of a critical node will result in a noncritical node
replacing it, ifthere is a nonaitical node available. A A g e in software configuration may be ~lecessary on the former noncritical
node in order to nm the failed critical node's software. If a critical node fails, the system fails, ifthere rn no no-tiad nodes
mailable on which to nm the failed critical node's software.

In contrast, N,(t) and N,(t) are decreasing fimctions of operating time these nodes replace failed critical nodes, and
tinz not tbans%ves replaced, whea WO) is the number of noncritical clients and N,(O) is the number of nonaitical servers at the
startdsystem~respedvely. Inadditim,ifa~tidnodefails,thefunctionthathadbeen~onalonthefailednode
can be ccmtinued on asother node of this type and the system can continue to operate in a degraded state. When either a non-critical
node replaces a critical node or a ~mcritical node faits, N,(t) or N,(t) is decreased by one, as appropriate.

Node Failure Probabilities

We must also account for the following node failure probabilities:

SEW Proceedings 232

p,: probability of a software defect causing a critical client node to fail.
p,: probability of a software defect causing a nonnitical client node to fail.
pa: probability of a software defect causing a critical server node to fail.
p,: probability of a software defect causing a non-critical server ncde to fail.

These probabilities are importent to b w i n d i v i w in the analysis., they are also important in the computation of the probability
of system failure.

The general function for the probability of system failure, given a node failure, is the following:

P d d fail-fw,, P,, N,, P , N, Pa, N, PA (2)

Equation (2) means that the probability of a system failure, given a node failure, is dependent on the four node counts and the
correspondingfmfaim probabilities. The four probabilities are computed from data that is derived fiom a defect database (defect
M p t i o n s , defect classifications, and administrative informatiem) as follows:

p,=CfrCo/D, where &(I) is the critical client node failure count in interval I;
p,==o/D, where &(I) is the non-critical client node failure count in interval I;
pa=TZfa0/D, where f a o is the critical server node failure count in interval I;
p,=K(I)/D, where &(I) is the non-critical server node failure count in interval I;
and the total defect count across all intervals is D=zd(l),

where I is the identification of an interval of operating time of the software and d o is the total defect count in interval I.

In a specific application, Boolean expressions (i.e. expressions containing AND, OR, and NOT, logic operations) are used to
search the defect database and extract the failure counts (e.g., &(I)) that are used to compute equations (3)-(6). These expressions
specify the conditions that qualify a defect as a node failure (e.g., defect that is a General Protection Fault that affects network
operations on a Windows-based system).

Failure States

Next we need to know that at a given instant in test or operational time t, a MFDS may be in one of three failure states that
pertam to the survivability of the system, as follows, in decreasing order of capability:

Degded - Type 1: A sofbvare defect in a non-critical node causes the node to fail. As a result, the system operates in a degraded
state, with one less non-cxitical node. No reconfiguration is necessary because the failed node is not replaced.

Degded - Type 2: A &are defect in a critical node causes the node to fail. As a result, the system operates in a degraded state,
but one that is mxe severe than Type I , because there would be both a temporary loss of one critical node during reconfiguration and
a pamanent loss ofone noncritical node (i.e., one of the non-critical nodes takes over the function of the failed critical node). Under
certain conditions - see Table 1 -- this type of node failure can cause a system failure.

The cumnt vasion of the model assumes that node failures are not recoverable on the node where the failure occaared, during
the missiaa The mxtversion of the model will contain a repair function to account for the case where a node failure is repaired and
the node is put back into operation during the mission.

Syrtem Faihur: The system fails under the following conditions: 1) all non-critical clients fail and one or more critical clients fail,
or 2) all muiW servers fail d am: or wxe aitical servers fail. The reason for this failure event formulation is that, in the event
ofa failed aitical node, a non-critical node can be substituted, possibly with a different software confguration. However, if all non-
aitical clients (servers) fail, and one or more critical clients (servers) fail, there would be no non-critical clients (servers) left to take
over for the failed critical clients (servers).

SEW Proceedings

The failure states are edinTable 1.

Svstem Failure Probability

Having equations (3)-(6) for the node failure probabilities in had, the model applies them to computing
the probability of system failure - equation (12). The intendiate equations leading up to equation (12) follow:

The probability that one or more critical clients N, fail, given that the software fi, is:
P,=l-(l-pJN" (8)

The probability that all noncritical clients N,(t) have failed by time t, given that the software fails, is:
P,(t)=(p3"4') (9)

The probability that one or more critical servers N, fail, given that the software fails, is:
P z l -(I -pJN, (10)

The probability that all non-critical servers N,(t) have failed by time t, given that the software fails, is:
P,(t)=(p,,JN"@ (1 1)

Equatio~ls (8) and (9) assum that dieat failtaes rae indepavlent (i.e., one type of node failure does not cause another type of node
failure). This is the case because a failure in one client's software would not cause a failure in another client's software. However it
is posaile that a Mure m saver sofhvm coutd cause a failure m client sofhvare, such as a client accessing a server that has corrupted
data. Also, equations (10) and (1 1) assume that server failures are independent This is the case because a failure in one servds
dhvm would not cause a failure in another server's soflsvare. However it is possible that a failure in client software could cause a
faihae in server dswm, such as a client with corrupted data accessinga server. No case of client failures that were caused by server
M l t a e s nor ofthe coiwme have been folmd m the UXtAISdatabase. O f ~ f , this does not mean that these events could not happen
m &. To acunmt for the pcsibility of these events, we would need to include the caditiionat probability of a clieat failure, given
a server failure, and the converse. This model farmulation is beyond the scope of this handbook and will be included in the next
version of the model.

Combining (8), (9), (lo), and (1 l), the probability of a system failure by time f given that a node fails, is:

PJ- failW?JP~(~)l+I? J[P,(Ol=[l -(1-~3"1~@3~'1+[l-(l-~O)NQ]E@3~~)1
and the probability of a node failure due to software is:

Time to Failure Prediction

In order to make Time to Failure predictions for each of the four types of node failures, the user first analyzes the defect data to
determine what type of software defects could cause each of the four types of node failures; then the user partitions the defect data
accordingly. More will be said about this process in the Application of Model section. Next the user applies equation (14) of the
SchneidewindSofik,are Reliabiliq Model [AIA93, KEL95, L W 96, SCH92, SCH931 to make each of the four predictions, using
thesMERFSsofhvm reliability tool [FAR93]. In equation (14), Tdt) is the predicted time (intervals) until the next F, failures (one
or more) occur, a and are failure rate parameters, s is the first interval where the observed failure data is used, t is the current
interval, and Y, is the cumulative number of failures observed in the range s,t

Time to Failure predictions are made far critical clients, non-cxitid clients, critical servers, and non-critical servers. As the
predided faiure times mz recorded, the user observes whether the umdition for system failure, as deikd previously, has been met
Ifthis is the case, a predicted system failure is recorded. Thus, in addition to monitoring the types of predicted failures (e.g., critical
client), the process also involves monitoring N,(t) and N,(t) to ideatify the time t when either is reduced to zero, signifying that the

SEW Proceedings 234 SEL-96-002

supply ofnoncritical clients ar d t i c a l servers has been exhausted. In this situation, a failure of a critical client or critical server,
respectively, ,will result in a system failure. Thus the user predicts a system failure when the following -on is true (where "Aw
me8115 "AND" and "V" means "OR"):

((Predict critical client failure)A(N,(t)=O))V((Predict critical server failure)A(N-(t)=O)) (15)-

If the predictions produce multiple node failures in the same interval (e.g., critical client and critical server), the user records
multiple failures for that interval.

Analvsis of tbe Defect and Failure Data

In this example the user applies the sofhare reliability model to the Marine Corps LOGAIS system - a client-server logistical
support system. In this system it is important that the reliability specification distinguish between failure states Degmded-Type I,
Degraded-Type 2, and System Failure, as previously defined (i.e., distinguish between node failures that cause performance
w o n but allow the system to survive, and node failures that cause a system failure). This distinction is made when analyzing
the system's defect data Tbr: defect data used in the example are h m the LOGAIS defect database, using the Defect Control System
(DCS), a defect database management system which was used on the LOGAIS project @4Hl3%, MTP%].

In this Windows-based client-server system, the types of clients and servers that were previously f i e d are used, with
oam=(spondingtypes ofdefects and failures, as identified in the defect database -%, m%]. The following short-hand notation
for identifying the attributes of the Mect database is used:

o S: Software Defect
o G: General Prokction Fault (GPF)
o N: Network Related Failure
o C: System Crash

The LOGAIS defect database is queried in order to identify the software defects that qualify as node failures. The following
Boolean expressions, amesponding to the four types of node failures, are used:

1. Critical Client Failure: COUNT as faim WHWE (SAGANAnofC). A GPF causes a node failure (Degraded-Type 2) on a critical
c k f a client which must maintain cxmmdxtion with other nodes on the network (NetworkMode), and the failure does not cause
a System Crash (loss of server).

2. NmCritical Client Failure: COUNT as failures WHERE (SAGAnotNAnoK!). A GPF causes a node failure (Degruded-Type 1)
on a noncritical client a client which does not have to maintain communication with other nodes on the network (Srandalone Mode),
and the failure does not cause a System Crash (loss of server).

3. Critical Server Faihae: COUNT as failures WHERE (SAnoffiANAC). A System Crash causes a node failure (Degraded-Type 2)
rn a aihl server, a server which must maintain communication with other nodes on the network (Network Mode), and the failure
is not a GPF; it is more serious, resulting in the loss of a server.

4. Nm-CritW Server Failm. COUNT as faiures WHERE (SAnoffiAnotNAC). A System Crash causes a node failure (Degraded-
Type 1) on a nonnitical server, a .server which does not have to maintain communication with other nodes on the network, and the
failure is not a GPF; it is more serious, resulting in the loss of a server.

The above c h d k a h associates GPFwith clients and Sptem Crarh with servers; it also associates Network Related Failures
with critical node failures. Note that this is only an example. For other systems, different defect and failure classifications may be
appwate.

The tdal failure count is obtained by taking the union of expressions 1-4 as follows:

5. Total Failure Count: COUNT as failures WHERE (SA((GAnotC)V(noffiAC))). This expression is used to verify the corr-

SEW Proceedings 23 5 SEL-96-002

The major objective of reliability modeling is to predict future reliability over the prediction range of test or operational time of
a system. However to do so, there must be a historical record of defects and failures far computing the model parameters and for
malcing the best fit with the historical data; the data is collected during the observed range of test or operational time of a system. The
length ofthe obsuved range is dehmhd by the amoimt of data that has been wllected prior to making a prediction, while the length
ofthe prediction range is determbd by duration of the system's mission. The observed range in this example is 1,50 intervals and
the prediction range is 5 1-61 intervals. These ranges are ahitmy and selected only to illustrate the process. We note that once a
grstem has been tested or aperated over the prediction range, there will be observed defects and failures in this range. The observed
defectsandfaihaesinthe~&rangearelistedinTable2. Thefailurecountscorresporadingtotypes 1-5,above,aresummd
in Table 3, which shows the empirkal pdxbilities of node failure that are computed using equations (3)--(7) and (1 3). For example,
for critical clients, the computation is 24/4048=.005929. The user should verify the computations for the remaining types of nodes.

bp~lication Predictions

Time to Failure

Using equation (14) and failure data in the observed range 1-50 (not shown) , we made predictions for Time to Failure, for P50 days,
for critical ckds, non-critical clients, and m-critical servers, in Tables 4,s and 6, respectively. The predictions are made for a given
numbers of failures (time to one failure for P50 days, time to two failures for P50 days, etc.). The predictions are compared with
the actual failure data, with the relative error and average relative error fot cumulative values shown. In the case of critical servers,
there are only two actual failures, both of which occur in the observed range. Only one prediction of Time to Failure for one more
faihm could be made at t=50 for critical servers because the predicted remaining failures at t=50 is 1.40 ; M o r e , critical server
failures are not tabdated In the case of m-critical nodes, the failure data is dcient ly dense to allow a failure count interval of one
day. In the case ofcritical clients, the failure data was sparse; thus a five day interval was used for prediction, with these predictions
convated to the cme day intervals shown in Table 4. We note that predictions are Wcult to make with this type of data because the
defects and failures are not recorded in CPU execution time. Rather they are recorded in calendar time in batches, as shown in the
Table 2, based on d m b k t d v e convenience. Many of these batches are submitted at the end of a workday. This time becomes the
"submit date".

Using the data in Tables 4-6, we merge and squence the various types of failure predictions in Table 7. The purpose of this table
is to consbuct the d o of failures and surviving noncritical nodes so that the time of System Failure can be predicted The table
shows that w e n node failures (i.e., the sequence NS, NC, NC, CC, NC, NC, CC) are predicted to occur before the system is predicted
to fail. This ocam at H1.07 days when there are no noncritical clients available and a critical client fails. No critical server failures
are shown in this table because the prediction of Time to Failure of 99.35 days cumulative is beyond the prediction range of interest
in this example.

Using the data in Tables 4-6, we merge and sequence the various types of actual failures in Table 8. Similar to Table 7, the
purpose of this table is to construct the scenario of actual failures and surviving nonclitical nodes so that the actual time of System
Fdhm can be determined and compraed with the predicted values. As in the case of the predictions, this table shows that seven node
failures (i.e., the sequence NC, NS, NC, NC, NC, NC, CC) occur before the system fails. This occurs at t=6ldays when there are no
m-gitical clients available and a critical client fails. No critical server failures are shown in this table because they occwed prior
to the range of this example.

Probability of System Failure

Lastly, using equation (12), we predict the probabhty of system faihPe, given a node failure, in column 5 of Table 9, as the system
progresses thswgh the predicted failure scenario that was shown in Table 7. Except for row 2 in Table 9, the actual probability is the
same as the predicted probability because the actual failure scenario that was shown in Table 8 produces the same numbers of non-
critical clients and servers that are shown in columns 6 and 7, respectively. Because the predicted and actual failure scenarios are
identical, except for raw 2, the predicted time to failure and type of node failure, columns 1 and 2, respectively, can be compared in
with the ccxrespoading adual values in columns 3 and 4, for given pubabilities of system failure. These values were reproduced ftom
Tables 7 and 8, mptively. Because ffor a given PJnode fa&, the cumulative time to failure occurs later for the predicted values,

SEW Proceedings

the model is a bit optimistic with respect to reality for this example. Note that the in the last row of Table 9 the system has not yet
Med This occurs when a critical client fails at Day 61.07 predicted (see Table 7) and at Day 61 actual (see Table 8). At this time
there are no non-critical clients left to replace the failed critical client.

The @cant d t s that emage hm this analysis are that: 1) The PJnode fails is only significant (.029790) when the supply
of both wn-aitical clients and wn-aitical servers has been exhausted and 2) PJnode fails is significantly lower than the probability
of any type of node failure caused by a software defect: p,=.065705, obtained from equation (13) and computed in Table 3. Thus
evaluations of system reliability should recognize that sojhvare failures are not necessari& equivalent to system failures and that
asesments of software reliability that treat every failure as equivalent to a system failure will grossly undastate system reliability.

Based on the above approach, it appears feasible to develop a system software reliability model for a client-server system. In
order to implement the approach, it is necessary to partition the defects and failures into classes that are then associated with critical
and non-critical clients and servers. Once this is done, predictions are made of Time to Failure for each type; the predictions are
class5ed according to those that would result in a node failure caused by a software defect and those that would result in a system
failure caused by a series of software defects. Then the probability of system failure is computed. A significant result of the research
is that software failures should not be treated as the equivalent of system failures because to do so would grossly understate system
reliability.

In future research we will deal with the problem of how to apply the model to a system that has a large number of nodes. The
technique that we described for monitoring the times when predicted node and system failures occur would be cumbersome for a large
system. It appears that a program must be written to automate this process. Other possible future research activities include the
fo11- extend the model to include -are failures; develop measures of performance degradation, as nodes fail, include a node
repair rate to reflect the possibility of recovering failed nodes during @e operation of the system; apply smoothing techniques, such
as the moving average, to mitigate anomalies in calendar time defect data.

[AIA93] Rramraended & Sofhwar Rdiability, R-013-1992, Amaicnn NPtioaal Stadan% I d t u t d A m a i ~ krrtiMe 0fAemnwtig a d Ashunda,
370 L'Eafant Pranmsde, SW, Wsshingtoq DC 20024,1993.

FAR931 WilliPn H. F n pndOlivs D. Sn& Statistical Modeling ad E d h a t h ofReliability Functiom fa Softwsrr (SMERFS) Urn Guide, NAVSWC TR-
84-373, Revision 3, Naval S& Wtepocls Center, Revised Septaaba 1993.

[KEWS] Ted KeUu, Naman F. ScQeidAivkd, and Patti A Tharton "Redictions fa Inaeasiog Coatidence in the ReliabUy ofthe Space Shuttle FligM S o h " ,
haedbgs ofthe AIAA computing in Aeraspea 10, San Antcab, TX, Mercb 28,1995, pp. 1-8.

[LWW h4ichml R Lyu m-id:h ie fX Handbook of Sohare ReWdiity Engiwcriak Conrputa Society RSS, Los &&os, CA ad McGRw-N New
Y* NY, 1995.

-1 MCTSSA Softwarr Rdiability HaodbodS Norman F. Sctaeidewiad aad Judie A Heineman, Naval Postgraciuate School, Jmuary 10.19%.

MCTSSA Softwan Reliabii b g k a i n g Training Plan, Naman F. Sdmeidewind and Judie A Heheman, Naval Postgraduate School, Ja~lsry 10,
19%.

[NOV95] Waaer F e i i NoveU1s Complete Eacyclopedia of N&dchg, Novel1 Pmq San Jose, CA, 1995.

[SCH93] Namm E Sdmidmin4 ''!Mhaae R c l i ~ Model with Optimal SeledMa of Failwe Dets", IEEE Tramadhm (*I Sohare Engineer& V d 19,
No. 11, Novanber 1993, pp. 1095-1 104.

[SCH92] NanrsnF. Scbaeidnwmdad T. W. Kdkr, "Application ofReliabiMy Mod& to the Space Shuttle". IEEE Sobare, V d 9, Na. 4, July 1992 pp. 28-33.

SEW Proceedings

Tabk 2
C d Wb (Sonrple)

CC: Criiienl Caknt Node
NC: NobCrltkrl Qkat Node
CS: C H i d Server Node FPUune

SEW Proceedings 238 SEL-96-002

SEW Proceedings

Tabk 8
Actual Time to Fnihve Whcn FPUnrts am Merged and S e q d RmgeS1,61 Day

CC: CWcal Client NC: Nm-Critical Client NS: Nm-critical Server

Tabk 9

"Appaks0wto-v-

SEW Proceedings

DATA COLLECTION DEMONSTRATION and SOFTWARE RELLABILITY
MODELING FOR a MULTI-FUNCTION DISTRIBUTED SYSTEM

Dr. Norman F. Schneidewind

Code SM/Ss
Naval Postgraduate School
Monterey, CA 93943

OUTUNE

o Client-Server Softwtlre Reliability Prediction
- Criticality and Redundancy

o Definitions
o Model Formulation

- System Nodes
- Node Failure Probabiities
- Estimating Node Failure Probabiities
- Failure States
- System Failure Probabiity
- Model Concepts
- Time to Failure Prediction

o Application of the Model
- Node Failure Counts
- Defect Database
- Application Predictions
- Application Results
- Probabiity of System Failure

o Conclusions

SEW Proceedings

CLIENT-SERVER SOFTWARE RELIABILITY PREDICTION

Too often the assumption is made, when doing software reliability modeling and

prediction, that the software involves either a single module or node. The reality in

today's increasing use of multi node client-server and distributed systems is that there

are multiple entities of software that execute on multiple nodes that must be modeled

in a system context, if realistic reliability predictions and assessments are to be made.

Ifthere are N, clients and Ns servers in a client-server system, it is not necessarily

e case that a software failure in any of the -N, clients or Ns servers will cause the

tem to fail. If such a system were to be modeled as a single entity, the predicted

would be much lower than the true reliability because the prediction would

ot account for criticality and redundancy.

The first W r accounts for the possibility that the survivability of some clients and

ewers will be more critical to continued system operation than others.

o The second h r accounts for the possibility of using redundant nodes to allow for

system recovery should a critical node fd .

o Iden* which nodes - clients and servers -- are critical and which are not critical.

SEW Proceedings

DEFINITIONS

Critical function: An application function that must operate for the duration of the

mission, in accordance with its requirement, in order for the system to achieve its

mission goal (e.g., the requirement states that a militaq field unit must be able to send

messages to headquarters and receive messages fiom headquarters during the entire

time that a military operation is being planned).

Usually this type of function operates in the network mode, which means that the

application requires more than a single client to perform its function; thus client to

server or client to client communication is required.

Non-critical function: An application function that does not have to operate for the

duration of the mission in order for the system to achieve its mission goal (e.g., it is

not necessary to perform word processing during the entire time that a military

operation is being planned).

ORen this type of hction operates in the st&lone mode, which means that a single

client perTorms the application function; thus client to server or client to client

communication is not required, except for the possible initial downloading of a

program fiom a file server or the printing of a job at a print server.

SEW Proceedings

DEFINITIONS (Continued)

Critical clients and servers: Nodes with critical hctions, as defined above. These

nodes must be kept operational for the system to survive, either by incurring no

failures or by reconfiguring non-critical nodes to operate as critical nodes.

Non-critical clients and servers: Nodes with non-critical functions, as defined

above. These nodes also act as backups for the critical nodes, should the critical nodes

fail.

Software Defect: Any undesirable deviation in the operation of the software fiom its

intended operation, as stated in the software requirements.

Software Failure: A defect in the software that causes a node (either a client or a

server) in a client-server system to be unable to perform its required function within

specified performance requirements (i.e., a node hilure).

System Failure: The state of a client-server system, which has experienced one or

more node failures, wherein there are insufficient numbers and types of nodes

available for the system to perform its required functions within specified performance

requirements.

SEW Proceedings

MODEL FORMULATION

Svstem Nodes

N,: Number of Critical Client nodes.

N,(t): Number of Non-Critical Client nodes.

N,: Number of Critical Server nodes.

N,(t): Number of Non-Critical Server nodes.

where the total number of nodes N=N,+Nm(t)+NCS+N,(t).

As long as the system survives, N, and N, are constants because a failure of a

critical node will result in a non-critical node replacing it, if there is a non-critical

node available. A change in software configuration may be necessary on the former

non-critical node in order to run the failed critical node's software.

If a critical node Ms, the system fids, ifthere are no non-critical nodes available

on which to run the failed critical node's software.

In contrast, N,(t) and N,(t) are decreasing functions of operating time because

these nodes replace failed critical nodes, and are not themselves replaced, where

N,(O) is the number of non-critical clients and N,(O) is the number of non-critical

servers at the start of system operation, respectively.

In addition, if a non-critical node fails, the function that had been operational on

the failed node can be continued on another node of this type and the system can

continue to operate in a degraded state.

When either a non-cxitical node replaces a critical node or a n o n d c a l node fds,

N,(t) or N,(t) is decreased by one, as appropriate.

SEW Proceedings 245 SEL-96-002

Node Failure Probabilities

p,: probability of a software defect causing a critical client node to fail.

p,: probability of a software defect causing a non-critical client node to fail.

p,,: probability of a software defect causing a critical server node to fail.

p,: probability of a software defect causing a non-critical server node to fail.

Thus given a node failure, we have the following function for the probability of

system failure:

PJnode fails=f(N, P , N,, P,, N , P,, N,, PJ

Estimatin~ Node Failure Probabilities

The four probabilities are estimated fiom data in a defect database as follows:

p,=Eif,(i)/D, where f=(i) is the critical client node failure count in interval i;

p,=EiL(i)/D, where Q(i) is the non-critical client node failure count in interval i;

pcs=zif,(i)/D, where fcs(i) is the critical server node failure count in interval i;

p,=EiL(i)/D, where L(i) is the non-critical server node failure count in intenal i;

arid the total defect count across all intervals is D=xid(i), where i is the i d e n ~ c a ~ o n

of an interval of operating time of the software and d(i) is the total defect count in

interval i.

In a specific application, Boolean expressions are used to search the defect

database and extract the Mure counts (e.g., &(i)) that are used to compute the above

equations. These expressions specifL the conditions that qwl@ a defect as a node

failure (e.g., defect that is a General Protection Fault that affects network operations

on a Windows-based system).

SEW Proceedings 246 SEL-96-002

At a given h e t, the system can be in one of three failure states that p to

the ility of the systenn, as follows, in decreasing order of capability:

Degraded - Type 1: A software defect in a non-critical node causes the node to fail.

As a result, the system operates in a degraded state, with one less non-critical node.

No reco&~ation is necessq because the failed node is not replaced.

Degraded - Type 2: A software defect in a critical node causes the node to fail. As

a result, the system operates in a degraded state, but one that is more severe than

Type I, because there wodd be both a temporary loss of one critical node during

reconfiguraio9 and a permanent loss of one non-critical node (i.e., one of the non-

c ~ t i c d nodes takes over the fuaction of @e failed critical node). Under certain

conditiom - see below -- this type of node failure can cause a system failure.

We s s m e hat node failures are non-recoverable on the node where the failure

occurred.

System Faaure: The system fails under the following conditions: 1) all -critical

clients fail and one or more critical clients fail, or 2) all non-critical servers fail and

one or more &aical servers fail. The reason for this failure event formulation is that,

in the event of a failed critical node, a non-critical node can be substituted, possibly

with a merent software configuration. Nowever, if all m-critical clients (servers)

fail, and one or more critical clients (servers) M, there would be no non-csiaical

cfienb (sewers) left to take over for the failed critical clients (servers).

SEW Proceedings 247 SEL-96-002

The M u r e states are s u m m a r k 4 in Table 1.

Table 1

Failure States

SEW Proceedings

System Failure Probabilitv

The probability that one or more critical clients N, fail, given that the software
fails, is:
P,= 1 -(I -pJN=

The probability that all non-critical clients N,(t) have failed by time t, given that
the sohare fails, is:

P,(t)=(p,JNHt)

The probability that one or more critical servers N, fail, given that the software
fails, is:

1 -(1 -p&)Ncs

The probability that all non-critical servers N,(t) have failed by time t, given that
the software fails, is:

P,(t)=(p,JN*t)

Combining the above four equations, the probability of a system failure by time t,
given that a node fails, is:

PJnode fails=Pccl [P,(tll+ [P'kl Pm(tll=

Ndt) [1-(1-~~)~~l[(p,)~"O1+[1-(1-~~~l[b~) I ------- -UI--

Probability of Client Failure Probability of Server Failure

Probabilitv of a Node Failure Due to Software

PSW=P,+P,+PcS+P,

SEW Proceedings 249

Figure 1. Surviving Configuration

Model Conce~ts

o The model concepts are
illustrated in Figures 1 and 2,
where there are five critical
clients, five non-critical clients,
one critical server, and one non-
critical server.

o Figure 1 shows a surviving
configuration, where a critical
client fails and a critical server
fails but there are non-critical
clients and a non-critical server
to take over the functions of the
failed nodes.
- The consequence of this
configuration is a Degraded -
Type 2 failure mode.

SEW Proceedings

Figure 2. Failing Configuration

o Figure 2 shows a failing

configuration where there are

no non-critical clients and

server to take over for the

failed nodes.

- The consequence of this

configuration is a system

failure.

SEW Proceedings

Time to Failure Prediction

In order to make Time to Failure predictions for each of the four types of node

failures, we h t analyze the defect data to determine what type of software defects

could cause each of the four types of node failures; then we partition the defect data

accordmgly. Next we apply the time to Mure equation of the Schneidavind Sofiare

Reliability ModeI to make each of the four predictions, using the M R F S software

reliability tool.

In the equation, Tkt) is the predicted time (intervals) until the next F, failures (one

or more) occur, a and p are failure rate parameters, s is the first interval where the

observed failure data is used, t is the current interval, and Y, is the cumulative

number of failures observed in the range sf

Tp(t)=[fl~ [a/(a-B(Xbt+FJ1)/BI-(t-g+l)

for (a/P)>(XfFJ

SEW Proceedings

Time to Failure Prediction (Continued)

Time to Failure predictions are made for critical clients, non-critical clients,

critical servers, and non-critical servers.

As the predicted edure times are recorded, we observe whether the condition for

system Mure has been met. If this is the case, a predicted system failure is recorded.

Thus, in addition to monitoring the types of predicted fdures (e.g., critical client), the

process also involves monitoring N,(t) and NN,(t) to iden@ the time t when either is

reduced to zero, sigdjmg that the supply of non-critical clients or non-critical servers

has been exhausted. In this situation, a failure of a critical client or critical server,

respectively, will result in a system failure.

Thus we predict a system failure when the following expression is true:

((Predict critical client failure)A(N,(t)=O))V((Predict critical server

fail~e)~Ws(t)=O)>.

If our predictions produce multiple node failures in the same interval (e.g., critical

client and critical server), we record multiple failures for that interval.

SEW Proceedings

APPLICATION OF THE MODEL

o We apply the model to the Marine Corps L O W S system - a client-sewer

logistical suppsrt system. It is isnp that fhe reliabaw speczcation dishfish

between failure states Degraded-Type I, Degraded-Type 2, and System Failure, as

previously defined (i.e., distinguish between node fdures that cause perfommce

degradation but allow the system to survive, and node failures that cause a system

failure). We make this distinction when analyzing the system's defect data.

The defect data used in the example are &om LOGAIS defect data w196,

MHB96, 61. We use the configuratiom itn Figures 1 and 2.

o In this Windows-based client-server system, we use the classes of cgents an8

servers previously defined, with comespondiag classes of defects andl fdmes, as

identified in the defect ase, and fhe fo shod-hd notation for ide g

the attrr'butes of the defect database:

o S: Software Defect

o G: General Protection Fault

o N: Network Related Defect

o D: System Crash

SEW Proceedings

Node Failure Counts

o The LOGAIS d e w ase was queried in order to identify the software defects

that as node Mures. The Boolean expressions, corresponding to the

four types of node failures, were used:

1. C r i ~ s d Client Failure: C as failures (SAGANAnotC). A GPF

causes a node failure (Degraded-Type 2) on a critical client, a client which must

maintain c cation with other nodes on the network (Network Mode), and the

failure does not cause a System Crash (loss of server).

2. Non-Critical Client Failure: COUNT as failures WHERE (SAGAnotNAnotC). A

GPF causes a node failure (Degraded-Type 1) on a non-critical client, a client which

does not have to maintain communication with other nodes on the network

(Standalone Mode), and the failure does not cause a System Crash (loss of server).

SEW Proceedings

Node Failure Counts (Continued)

3. Critical Server Failure: COUNT as failures WHERE (SAnotGANAC). A System

Crash causes a node failure (Degraded-Type 2) on a critical server, a server which

must maintain communication with other nodes on the network (Network Mode), and

the failure is not a GPF; it is more serious, resulting in the loss of a server.

4. Non-Critical Server Failure: COUNT as failures WHERE (SAnoK;AnotNAC). A

System Crash causes a node failure (Degraded-Type I) on a non-critical server, a

server which does not have to maintain communication with other nodes on the

network, and the failure is not a GPF; it is more serious, resulting in the loss of a

server.

o The above classification associates GPF with clients and System Crashes with

servers; it also associates Network Related Failures with critical node failures.

SEW Proceedings

Defect_Database

A . example of the defect database is shown in Table 2, where Interval identifies

the period for counting defects (daily in this case), Defect ID is the identification

assigned the defect, Number is the count of defects in the interval, Submit is the date

the defect was submitted to the defect database, and the last four columns indicate

whether the defects resulted in one of the four types of failure.

Upon querying the defect database, using Boolean expressions 1-4, we find the

failure counts listed in the sample database in Table 2. The failure counts

corresponding to types 1,2,3, and 4 above are summarized in Table 3, which shows

the empirical probabilities of node failure.

SEW Proceedings

Table 2

CC: Critical Client Node Failure

CS: Critical Server Node Failure

Defect Database (Sample)
NC: Non-Critical Client Node Failure

NS: Non-Critical Server Node Failure

Table 3

Summary of Node Failures (4048 Software Defects)

SEW Proceedings 258 SEL-96-002

o Based on the above approach, it is feasible to develop a system s o h e reliability model

for a client-server system.

o In order to implement the approach, it is necessary to partition the defects and failures into

classes that are then associated with critical and non-critical clients and servers.

o Once this is done, predictions are made of Time to Failure for each class; the predictions

are classified according to those that would result In a software failure and those that would

result in a system failure; and the probability of system failure is computed.

o It is important that software failures not be treated as the equivalent of system failures

because to do so would grossly understate system reliability.

o Possible model enhancements include the following: extend the model to include hardware

fdures; develop measures of performance degradation, as nodes fail; include a node repair

rate to reflect the possibility of recovering failed nodes during the operation of the system.

SEW Proceedings

SEW Proceedings

Operational Test Readiness Assessment of an
Air Force Software Svstem: A Case Studv 3 6 0 7 q

Amrit L. Goel, Syracuse University
Capt. Brian Hermann, AFOTEC, NM
Major Randy McCanne, Scott AFB, IL

This paper describes a new methodology that was developed to assess operational test

readiness of an Air Force software system under development over a period of several years.

The evaluation is primarily based on an analysis of the open and closed problem reports. Other

factors such as test completeness and requirements stability are also considered, but mostly in

an implicit way. The methodology is objective, has a sound mathematical foundation and can

be employed for evaluation of any large software system.

AFOTEC Software Maturity Evaluation Guide provides details of the data needs and

assessment approach to be used for Air Force Systems. The key criterion is to determine whether

the unresolved severity 1 and 2 failures can be resolved prior the scheduled OT&E (Operational

Test and Evaluation) start date. The approach taken in the AFOTEC Guide is to estimate the

time required for resolution based on the current unresolved failures and an average closure rate.

This methodology extends and builds upon the current AFOTEC approach by (i) considering the

as yet undetected faults in the system, and (ii) using two different estimated fault closure rates.

An equivalent problem in commercial applications is to determine readiness for beta test,

readiness for release, or readiness for first customer ship. Several studies over the past twenty

years have attempted to address this problem for both defense and commercial systems. Most

of these have proposed using a decision rule in conjunction with some software failure model to

predict software readiness. Others have proposed approaches based on minimizing a predefined

cost function.

SEW Proceedings

The new methodology employs statistical trend tests and software reliability models for

assessing readiness for dedicated OT&E. It explicitly incorporates the use of these techniques

in the decision making process by employing an iterative three step procedure:

Step 1. Perform statistical trend analysis

Step 2. Select software reliability model that best fits the system failure data

Step 3. Conduct a readiness assessment using the results of Steps 1 and 2

The basic idea behind the proposed methodology is to determine objective readiness

information from the available data on problem reports and their closures. In addition to studying

the plots of cumulative open and closed problems and average time to close, it uses a statistical

assessment of the trends in the failures and closed fault curves. Each of the steps has a solid

mathematical foundation.

In particular, it uses the Laplace trend statistic for determining whether the software

failure rate is steady, improving, or deteriorating. When an improving trend is indicated, the

failure process is modeled by an appropriate software reliability model.

Information from the trend plots is used to guide model selection as well as to obtain

initial model pqarneter estimates. Next, the reliability model is used to estimate the future

failure detection pattern. An initial assessment of OT readiness is then made by accounting for

the number of failures remaining open, the problem closure rate and the expected new failures

likely to be detected. This is done using the reliability model selected, the actual number of open

problems and a stochastic model fitted to the problem closure curve. Such assessments are made

for four different cases. Information from the Laplace trend plots and other factors such as rate

of testing can also be used to decide whether earlier data should or should not be considered for

SEW Proceedings

modeling and readiness assessment.

The presentation will address the following topics:

Proposed methodology

Laplace trend test and its relationship to software reliability models

Description of development data from an Air Force system

Analyses of open and closed problems, and readiness assessment

Limitations and benefits of the methodology.

The methodology described here is currently being used on other commercial and defense

systems. This paper will provide an assessment of the experience gained and problems

encountered in these applications. Suggestions for improvements and any progress on them will

also be discussed.

e Software Change Trends
e Software Defect Density
e Software Immaturity Case Study and Lessons Learned
s Software Maturity
e Software Operational Testing
e Software Problem Trends
@ Software Test Readiness

SEW Proceedings

SEW Proceedings

Operational Test Readiness
Assessment of an Air Force System:

A Case Study
PART 1

Brian G. Hermann
Captain, United States Air Force

Air Force Operational Test and Evaluation Center
Software Analysis Division

SEW Proceedings

Prior to purchasing space, aircraft, or communications systems, the Air Force
operationally tests them to ensure they meet the specified needs of their users. The Air
Force Operational Test and Evaluation Center (AFOTEC) conducts these operational
tests for the Air Force. Since many modern systems rely heavily on software, the Air
Force requires software to be mature before beginning these lengthy, expensive tests.

Software maturity is a measure of the software's progress toward meeting documented
user requirements. The software analysis division at AFOTEC uses software problem,
change, and failure tracking data to help demonstrate when software has sufficiently met
requirements and fixed identified problems. The concept and evaluation are simple, but
rarely considered by developers and acquirers prior to AFOTEC involvement.

AFOTEC evaluates software maturity with three distinct goals:

generate the largest-future maintenance effort. Where possible

Table 1: Software Maturity Evaluation Goals

2.1 Software Maturity Data and Collection
The evaluation begins with the software maturity database. Many programs use different
names, but the required data is almost always collected by development organizations.
Collection and analysis of the data typically begin when the software is placed under
formal configuration control and continues through fielding of the software. The
minimum data required to evaluate software maturity is shown in Table 2.

1. Software Change (Problem) Number
2. Description
3. Computer Software Configuration Item (CSCI) Identifier
4. Severity Level
5. Date Change Opened (or problem found)
6. Date Change (Problem) Closed and Implemented

SEW Proceedings

Table 2: Software Maturity Data

266

During the development and initial testing, developers and acquirers work together to
assign a severity level rating to each problem. Later during operational testing, AFOTEC
is responsible for scoring of software problems. The Air Force uses a standard five-point
scale shown in Table 3.

2.2 Severity Level Categorization
Current Air Force policy requires that no system can progress to the operational testing
phase with open severity level one or two software problems. According to these
definitions, severity level one and two problems imply the system does not meet user
needs and therefore operational testing would be a waste of time and money.

Table 3: Software Problem Severity Levels (MIL Standard 498)

2.3 Weighting of Severity Levels
To help estimate the operational impact of each change, we assign a weight to each
severity level (Table 4). The description of the trend charts will show how these
weightings can help to distinguish between many insignificant problems and many
important problems.

Severity Weight
Level (Change Points)

1 30
2 15
3 5
4 2
5 1

Table 4: Weighting Factors

2.4 Maturity Evaluation and Analysis Tool
AFOTEC developed a ~icrosoft" Excel for Windowsm based tool, called Maturity
Evaluation and Analysis Tool (MEAT), to automate the data manipulation, produce trend
charts, and speed analysis and reporting. The tool and user's manual are available at no
cost from HQ AFOTECISAS.

SEW Proceedings

2.5 Evaluation Indenture Level
While software maturity can be evaluated at the system software level, it is also beneficial
to look at maturity from lower indenture levels. Selecting the appropriate evaluation
indenture level is based on software size, number of changes, and the length of time the
software change data is collected. As a general rule, we suggest the software maturity
should be evaluated to at least the CSCI level. For some large programs, it will be
possible and beneficial to delve deeper to the computer software component (CSC)
indenture level. In either case, the results help to determine which components or
configuration items are causing maturity problems. This specific information helps the
acquiring organization and the developer more effectively address problems.

2.6 Synthesis of Many Trends
Software maturity is not a single trend or evaluation. It is a synthesis of many trends that
must be considered together with the external factors that influence them.

All Trends Contribute to Maturity

Figure 1: Software Maturity - A Synthesis of Many Trends

SEW Proceedings

2.7 External Factors

2.7.1 Test Rate
One of the external factors that can affect software maturity is developmental test
schedule. This aspect can be seen in both test rate and test completeness. An
understanding of test rate helps the evaluator determine if software appears mature only
because testing has slowed, or explain an unusually high change origination rate resulting
from an aggressive test schedule. The test rate should, in fact, affect the slope of the total
originated changes curve. A sample test rate chart is shown in Figure 2.

Test Rate

n n n

o n

Week

Figure 2: Test Rate by Week

2.7.2 Test Completeness
Another way program schedule can affect software maturity is through test completeness.
This measure enables the evaluator to estimate confidence in the software maturity
evaluation. A high percentage of successfully completed test procedures, with respect to
the total number of test procedures, indicates testing has identified a correspondingly high
percentage of problems. One drawback to this measure is that traceability between test
procedures and requirements or functions is not part of test completeness, but it is
necessary to verify the thoroughness of testing. Figure 3 shows an example of test
completeness. Notice the total number of test procedures typically increases during the
development and testing.

SEW Proceedings

I Test Completeness I

I Date I
- - - -

Figure 3: Test Completeness

2.7.3 Requirements Stability
Another factor which influences software maturity trends is requirements stability.
Software requirements continue to grow and change in nearly every development. New
or modified requirements will likely drive software changes and increase the slope of the
total originated changes curve. Knowing the cause for software changes can help to
pinpoint solutions.

SEW Proceedings

3.Neigkted and Unweighted Scamare Changes
This basic maturity chart (Figure 4) shows the total changes originated, closed, and
remaining trends. This chart is also a good example the ideal shape of each trend line.
To indicate maturity or progress toward maturity, the total changes originated trend
should begin to level off. This indicates testing is finding problems at a lower rate than
earlier in the development and testing. The total changes closed curve should closely
follow the identified changes. Ideally, all identified changes would be closed and the
remaining changes curve would show no backlog. This chart is also presented in an
unweighted form as well as individually for each severity level.

Figure 4: Accumulated Software Changes (Weighted)

3.2 Remaining Problems
Although the remaining changes trend in an unweighted chart shows the current software
problemlchange backlog, Figure 5 presents a more useful view. This stacked bar chart
shows the overall backlog trend as well as each severity level's contribution to the total
backlog.

SEW Proceedings

Remaining Software Probebns (Unweighted) as of 25 Dec 95

- * I - = c = $ g g g z g z g g g
Pwiod Numbor Mona&

Figure 5: Remaining Software Problems

3.3 Average Severity Level
In the next chart (Figure 6), we present the average severity level of all originated, closed,
and remaining changes. Ideally, the average severity level of problems should drop over
time. Another good sign is if remaining changes are of a lower average severity level
than those changes already closed. This indicates that the developer is doing a good job
prioritizing his efforts.

Average Severity of ALL Sm Changes as of 25 Dec 95

- n " h m = = ~ ~ = ~ E ~
Period Number Qua*rfy

Figure 6: Average Severity Level

3.4 Distribution of Changes by Severity Level
Although Figure 7 is not actually a trend, it shows how the changes are distributed by
severity level. The sample chart exaggerates tlie expectation that most changes will be of
lower severity level.

SEW Proceedings

Figure 7: Distribution of Changes by Severity Level

3.5 Average Closure Time by Severity Level
Figure 8 shows the average length of-time required to close problems and change requests
of each severity level and the average length of time that remaining changes have been
open. Understanding this information and the process used to implement changes helps
to estimate much change traffic to expect, how many software maintainers will be
required, and how far away the software is from being ready for release.

Average Cbsure Time For Changes by Severity as of 31 Oct 94

78.75

1 2 3 4

-m b W l

Figure 8: Average Closure Time

3.6 Total Changes and Change Density
The total number of changes for each CSCI helps to identify software maturity problem
areas. In addition to sheer numbers of changes, normalizing changes by the size (new or
modified lines of code) for each CSCI shows which parts of the code have the most
change requests and are most likely to require future effort. We call this normalized
measure, change density.

SEW Proceedings

Change Density

- 35.00
-. 30.00

25.00

bmpumr Software Configurntion Item

Figure 9: Total Changes and Change Density

From the bars in Figure 9, we identify CSCIs #8, #17, #7, and #13 as portions of the
software which have produced large numbers of changes. The lines on the same chart
identify CSCIs #8, #12, #17, #lo, and #7 as components which produce large numbers of
changes per line of code. The union of these two sets can be thought of as maturity
drivers for the software system

SEW Proceedings

3.7 Remaining Changes and Defect Density
The final trend chart is a relatively new addition to our evaluation methodology Figure 10
shows both remaining changes for each CSCI and the number of remaining changes
(problems) divided by thousands of new or modified source lines of code (defect density).
Michael Foody suggests software is not ready for release until the defect density is below
0.5'. Finding portions of software with the most remaining problems and the highest
defect densities are two additional pieces to the maturity puzzle

Remaining Changes

aw

.. 250
0

- - 1.50 'f I

C

0.00
e z ~ g g s r e z g r ~ ~ ; *
g g g g g gg-g;gggjg

U " O " " v ~ ~ ~ o v " o "

Computer Softwan Contlgunlion Ibm

Figure 10: Remaining Changes and Defect Density

The bars in Figure 10 identify CSCIs # 8, #17, #7, and #13 as components with large
numbers of remaining changes. The CSCIs with a defect density above the 0.5 threshold
(CSCIs #8, #12, #15, #18, #17, #7, and #2) are not ready for operational testing or
release. The union of these two sets are the software components which are currently
driving software immaturity.

' Michael A. Foody, "When is Software Ready For Release?" UNIX Review March 1995

SEW Proceedings 27 5 SEL-96-002

4damiuY
This section is a time-phased example of software maturity evaluation for a major Air
Force acquisition program. The program was selected because it's initial immaturity
presents a convincing case for delaying operational use of software until maturity. The
program name and developer will not be identified.

4.1 Initial Evaluation - March 1995
The initial evaluation of the software maturity was analyzed and briefed in March of
1995. Although the data was available to, and in fact from, the development
organization, software maturity was not evaluated except to track open software change
requests. The acquiring organization understood there were problems in the
development, but had not evidence of how severe the problems were or where the
problems were located.

4.1.1 Weighted and Unweighted Software Changes
Like most software developments, problems were initially found much more quickly than
they were being fixed. Unfortunately, this trend continued up to the point of our initial
evaluation. As shown in Figure 1 1, the total originated and total closed trends diverge
except for a push to close changes from week 16 through 20. The result is an increasing
backlog of software changes. At that time, we had no reason to expect a slowdown in
change origination and current closure rates do not predict improvement.

Accumulated Soltrran Changes (weighted) 8s of 06 Yar 95 I

Figure 11: Initial Evaluation Weighted Changes

The unweighted version of this chart (Figure 12) looks almost identical. The only
difference is that the numbers in this chart represent actual changes and backlog size
rather than the change points used in the weighted chart.

SEW Proceedings

Accumulated S~fIwSre Changes (unweighted) as ol 06 Mar 95

.

.

.

.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PuIodWunbu W r k l y

Figure 12: Initial Evaluation - Unweighted Changes

4.1.2 Average Severity Level
The average weight of changes (problems) throughout the period up to the initial
evaluation was between six and eight (Figure 13). This equates to between a severity
level two or three change. The only positive trend shown by this chart is that the
developer has recently been working on the most severe problems.

Figure 13: Initial Evaluation - Average Severity Level

4.13 Distribution of Changes by Severity Level
The distribution of changes across severity levels showed two surprising results. First, an
unusually large number of severity level one changes were opened and remained open.
Second, very few severity level two changes had been identified. Overall, this chart
spurred a discussion of severity level definitions.

SEW Proceedings 277

Number of Changes by Severity as of 06 Mar 95

.

1 2 3 4 5

S.WW L0V.l

Figure 14: Initial Evaluation - Number of Changes by Severity Level

4.1.4 Average Closure Times by Severity Level
The next set of trends (Figure 15) showed that most problems had historically taken
between 35 and 40 days to formally close. Unfortunately, changes that were currently
open at that time had, with the exception of severity level five, been open longer than the
average of those already closed. This indicates that closure times will likely rise in the
future. Because difficulty and severity level are not synonymous, we were careful not to
compare closure times across severity level.

Figure 15: Initial Evaluation - Average' Closure Times

SEW Proceedings

Since the maturity data for this development program did not include information about
which portions of the code the changes/problems related to, we were unable to produce
change and defect density charts.

4.1.5 Summary
Nearly all of the trends pointed to immaturity of the software. In addition, we knew the
test schedule was consistently being shortened to save time at the tail-end of the
development. All parties agreed to further study this data on a biweekly basis until the
test readiness decision in early August 1995.

4.2 Test Readiness Decision Evaluation - July 1995
Between the initial evaluation and the test readiness decision, the developer modified
severity levels of many of the problems to reflect a better understanding of the severity
level definitions. As a result, software maturity was not as bad a previously thought.

4.2.1 Weighted and Unweighted Software Changes
A great deal of progress was made toward closing the backlog (Figure 16, Figure 17, and
Figure 18). Notice that changes in the slope of the curves are more dramatically shown
on the weighted chart. For example, between weeks 13 and 17 on Figure 16, we see a
great deal of progress in closing problems. The trend is more dramatic on the weighted
chart because the problems were of high severity levels.

Figure 16: Test Readiness - Weighted Software Change Trends

SEW Proceedings

Figure 17: Test Readiness - Unweighted Software Change Trends

Remaining Sdtwam Problems (unweightd) 8s of 28 Jul95

. - .

i 3 s T 9 i t 13 15 17 19 21 23 2s n zo 31 33 35 37 s 41

PwlodNunbv w*

Figure 18: Test Readiness - Remaining Software Changes

SEW Proceedings

4.2.2 Average Severity Level
Figure 19 shows the average severity level of recently opened, closed, and remaining
changes has decreased and remained stable for the last three months.

Figure 19: Test Readiness.. Average Severity Level

4.2.3 Distribution of Changes by Severity Level
The developer's better understanding of severity level definitions resulted in a
distribution of changes that is closer to normal expectations. Unfortunately, one severity
level one change remains unresolved. This means that execution of some part of the
software will result in a mission failure or jeopardize safety.

SEW Proceedings

Number of Changes by Severity as of 28 Jul95

.

.

.

.

.

.

1 2 3 4 . 5

-v-iv-

Figure 20: Test Readiness - Change Distribution

A - A n
4.~4 summary

The software showed signs of improving maturity, but local trends were too short to
absolutely declare the software mature. For this reason and because of the open severity
level one problem and the reduced testing schedule, we declare the software not ready for
test.

Due to schedule and funding constraints, the system proceeded to the operational testing
phase despite maturity problems. Although this decision did not follow
recommendations, we were anxious to see how the results matched with our maturity
analyses to date.

9.3 llllilal vperailurtal use - nuyuai I Y Y ~

Just days before the first operational test exercise of the software, a new version was
delivered and checked out on the system. During the first familiarization session of the
software for field operators rather than system developers, the software worked less than
40% of the time. This list of work around procedures to software problems grew to over
100.

Finally during the first operational use of the software, it failed dramatically. A software
failure caused an incomplete safety notification to system users. The system allowed the
users to bypass the warning and overheat some sensitive electronic equipment. As a
result, the one-of-a-kind system was out of commission for two months, $1.5 million in
hardware repairs were required, a new version of software produced and tested, and
expensive test time was lost until October 1995.

SEW Proceedings

4.4 Extended Operational Testing - October 1995
After the lengthy delay, the system was once again accepted for test. Largely due to this
delay, the software maturity charts appeared mature. Fortunately, this time the
operational testing was run to completion. Unfortunately, the system had performance
problems as well as user interface troubles. In fact, users stated they would, "prefer to
have the old system back." Over 100 software deficiencies were identified during one
month of operational use. Six of these software problems were judged to be severity
level one and two. Clearly the system, and the software in particular, was not ready for
fielding.

4.5 Software Impact on Purchase Decision - March 1996
After a miserable showing during initial operational testing, developers proceeded to fur
identified problems prior to the system purchase decision. As a result of preliminary
findings, the decision to purchase the system was delayed. The system would undergo a
second round of operational testing to look for improvement.

As shown in Figure 2 1, current maturity trends indicate the software has progressed
toward maturity. We must temper this analysis with an understanding that the scope of
software testing has been reduced during the period between operational testing and the
decision to re-test the system. The impact of this reduced testing is a slower rate of
identifying new changes. As a result, the developers were able to fix most of the
outstanding changes including all of the severity level one and two changes.

,
Accumulated Software Changes (weighted) as of 30 Jan 96

.

. -+-Ta;JClord

.

.

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

RriodNlunkr weekly

Figure 21: Current Maturity Status

Software maturity is a simple evaluation to conduct and interpret, yet the information is
extremely useful for developers, acquirers, and operational testers. The trend charts must,

SEW Proceedings 283 SEL-96-002

however, be interpreted together as a whole and in the context of external factors such as
program schedule and requirements stability. As a result, the maturity evaluator must
have in-depth knowledge of the software development and testing.

Specifying maturity requirements for release and following through with those decisions
will help to ensure time and money are not wasted testing immature software, users are
not disappointed with initial software capabilities, and software maintainers receive
quality products. In the case study, the software maturity evaluation correctly predicted
software immaturity. Failure to listen to this advice resulted in millions of dollars in
repair expenses and wasted test time.

SEW Proceedings

PART PI

Readiness Analysis for an Air Force System

R. McCanne
Major, United States Air Force

Scott AFB, IL

SEW Proceedings

SEW Proceedings

mADINESS ANALYSIS FOR AN AIR FORCE SYSTEM

1. Introduction

Development data from an Air Force software system are analyzed in this section using
the three-step methodology. The data consist of weighted originated failures and weighted closed
failures. The weights are 30, 15,5,3 and 1 for severity levels 1 ,2,3,4 and 5, respectively. The
time period of data is 86 months.

A brief description of the data is given in Section 2. Guided by the trend statistic curve,
analyses and maturity assessments are then done at months 70, 75, 80 and 86 in Section 3. A
summary of the assessments is presented in Section 4.

2. Data Description

A graph of the cumulative weighted originated failures, cumulative weighted closed
failures and weighted failures remaining open is shown in Fig. 21a. These values are called
change points and thus the data are cumulative Open Change Points (OCP), cumulative Closed
Change Points (CCP) and Remaining Open Change Points (ROCP). A cursory study of the OCP
and CCP plots in Fig. 21a indicates very little failure activity for the first twenty-five months.
Then there is an almost constant rate of increase up to month 60. This is followed by a convex
curve for OCP and an almost straight line for CCP. The ROCP curve seems to be increasing up
to month 50 and then remains constant up to month 70. Finally, it shows a decreasing trend up
to month 86. A better understanding of their behavior can be gained from the Laplace Trend
Statistics curves in Figs. 21b and 22 for OCP and CCP, respectively.

Figure 21b indicates a slight reliability decay and them some growth during the first
twenty months. It is followed by stable reliability indication up to month 27, and reliability
growth to month 40. Then there are indications of local reliability growth and decay. Starting
with month 60, there is strong indication of continuing reliability growth up to the present, viz,
month 86. Figure 22 seems to follow a pattern similar to that of Fig. 21b. In practice, analysts
track the failure phenomenon and management tries to keep up with the failure curve. In other
words, as more change points are originated, management tries to ensure that more are closed.

As mentioned earlier, readiness assessment is a difficult problem. In addition to the open
and closed curves, it may require consideration of test rate, test completeness and requirements
stability. Since these items are generally not available, the following assessments are based
purely on the behavior of the OCP and CCP plots. Reexamining these plots in light of
observations made above, it would seem that readiness assessment could have started with month
sixty. However, by month seventy, there is strong indication of sustained reliability growth. In
the following, the results of assessments at months 70, 75, 80 and 86 are briefly summarized.

SEW Proceedings

3. Assessments at Months 70,75,80 and 86

In each case, the Laplace trend statistic curves were studied for total change points,
originated and closed. These were used as guides for determining the NHPP model choice and
initial parameter estimates as detailed earlier in this paper. After fitting the appropriate models,
the best one was selected. The fitted models were then used to estimate the future failure curve
and the model closure rate (MCR). The average closure rate (ACR) was computed from the
change points remaining open data. The above values were then used to assess readiness. In the
analysis given below, the system would be considered ready for release when problems remaining
open become zero.

The resulting analyses can be summarized graphically in four figures for each analysis
month. The first two figures in each case would show fitted NHPP models to open and closed
data, the third problem closure months for cases 1 and 2 and the fourth problem closure months
for cases 3 and 4. The figures for each of the analysis months were studied and the results
analyzed for readiness assessment. Such plots for months 80 and 86 are shown in Figures 23 to
26 and 27 to 30, respectively.

4. Summary of Assessments

The above table summarizes the results of various analyses at months 70,75, 80 and 86.
It gives the failure closure month (month all remaining open failures are closed) for each
assessment month and for each of the four cases. The corresponding values of ACR and MCR
are given in parentheses. Thus for case 1 at month 70, the average failures closure rate is 332
per month and all currently open failures should be res~lved~by month 77.4. For case 4, month
80, the model based closure rate is 238 per month and current unresolved failures and the failures
to be detected should be resolved by month 98.3. A graphical representation of these results is
shown in Figure 3 1.

SEW Proceedings

Some observations from above table are summarized below.

Case 1.

This represents the situation when no new detected failures are assumed and the average
closure rate (ACR) is used to close the remaining open problems. For this data set, the
ACR is almost constant. The changes in the month to reach zero remaining open problem
in each assessment month is due to the additional new failures detected from the previous
assessment month.

Case 2.

The model closure rate in this case is decreasing for each successive assessment month
because of the decreasing closure rate. It would take longer to resolve the open faults
than for case 1 for each respective assessment month.

Case 3.

Compared to case 1 (which also assumes an average closure rate) this case explicitly
accounts for the extra time required to resolve the failures to be detected in future months.
This is a more realistic situation than case 1 would represent.

Case 4.

Just as in Case 2, the closure rate is decreasing for each successive assessment month.
Hence it would take longer to resolve the problems remaining open than in case 3 for
each respective assessment month.

SEW Proceedings

' Open ' 4-

'Closed' --.
'Remaining' q . 1 - -

0 10 2 0 3 0 40 5 0 6 0 7 0 8 0 90
Time

Figure 2 1 a: Accumulated software changes

SEW Proceedings

Figure 21b: Trend test for open data

Trend

Trend

130.00 1
I 120.00 ,

110.00

100.00

90-00

SEW Proceedings

-
I aend

!
i
i
I

Figure 22: Trend test for closed data

80.00
I f

Change Points x 103

SEW Proceedings

Figure 23: Open data and fitted model at month 80

32.00

30.00

Change Points x lo3

, actual
I JIH" z i f i m , I R !

Figure 24: Closed data and fitted model at month SO

Time

Change Poinu x 103

3.60 ..--.. Remaining
Model CR

3 .40 --------*--
Avenge CR

3.20
3.00
2.80

2.60
2.40
2.20
2.00

Figure 25: Readiness analysis at month SO not accounting for new faults

Change Poinu x lo3

Figure 26: Readiness analysis at month SO accounting for new faults

4.50

SEW Proceedings

I I . Undetected

I I =X-CCii'-
! I.----_-------------- (Average CR .\ I I I I

Change Poincs x 1 o3

SEW Proceedings

I
32.00 t j actual

I I ! / xiiEiizi=-s-

I I ! I I Time
0.00 20.00 40.00 60.00 80.00

Figure 27: Open data and fitted model at month S6

Change Points x 103
actual
-----.--

0.- tmecuon-s

28.00
i

26.00
I 3 ,

24.00,
I

22.00,
.i' I

Figure 25: Closed data and fitted model at month 86

Change Points x lo3

Figure '29: Readiness analysis at month 86 not accounting for new faults

Change Points x 103 -
3.60 I I L Remaining

I I I
I I 1 Average CR

Figure 30: Readiness analysis at month 86 accounting for new faults

SEW Proceedings

'Case 2 ' -+--

'Case 3' en--
' Case 4 ' ..*--

s
L)

c
P
P)

a
0
r(

U

I5
d
n
2
LL

7 0 7 2 74 76 78 80 8 2 8 4 86
Assessment Xonth

Figure 31: Graphical representation of readiness assessments at months 70, 75, 80 and 86

SEW Proceedings

Outline

H Summary of Operational Test Readiness Problem
H Current AFOTEC Approach

New Approach - Air Force System Case Study
n AdvantagesILimitations
W h e r e to Next. . .

SEW Proceedings

Summary of Operational Test
Readiness Problem

H AFOTEC operationally tests systems to ensure
they meet user requirements

Il Operational testing is very expensive (especially for
embedded systems)

H Need a method for determining if system is ready
for operational testing
- Use templates (checklists)
- Software maturity evaluation

>> CURRENT STATUS ONLY
n NEED ABILlTY TO PREDICT

Current AFOTEC Approach

H Software Maturity - progress software products
are making toward meeting user requirements

H Use software problemfchange report data and
categorize by severity level
- Change Points = Severity Weight * Number of Changes

Limited to current status with only crude
"straight-line" estimates

SEW Proceedings

Current AFOTEC Approach

II Basic Maturity Chart
I 1

I Accumulated Software Changes (unweighted) as of
31 O d 94 I

-Total Originated
+TotalCbsd
-Remainimg

1 2 3 4 5 6 7 8 9 10 11 1 2 1 3 U 1 5 1 6 1 7 1 0

I Period Number Monthly I

Current AFOTEC Approach
'~~~~~~~~~~

II Backlog Chart

SEW Proceedings

Current AFOTEC Approach
mrnrnmmMmm1u

Demonstration of Mduritv Evaluation Shortcomin~s
II Embedded Air Force System

Completely hopeless initial evaluation
II Improving test readiness evaluation - but not yet

acceptable
II Decision makers proceeded with operational

testing
- Found lots of BIG problems -Required new software build
- $1.5 Million damage to system
- 2 Month Test Delay

Current AFOTEC Approach
mmmmmmaPlI

Problems With Current A ~ ~ r o a c h
II Too often ignored by senior decision makers

Lacks the ability to reasonably predict future
maturity status

SEW Proceedings

New Approach - AF Case Study

Three Step Method
1. Statistical Trend Analysis
2. Reliability Growth Modeling
3. Readiness Evaluation

Statistical Trend Analysis

Assess Trends in Data
LaPlace Trend (LT) Test
- Widely studied, applied to dw reliability problem
- UMP unbiased test when paired with some NHPP models

Indicates stable, increasing, or decreasing failure
rate trend

SEW Proceedings

Reliability Growth Model

Used to estimate the impact of undiscovered faults
A l s o can be used to estimate the closure rate
W Two common problems . . .

- Model Selection
- Estimation of Model Parameters

Readiness Evaluation

Four Cases

.Case 1 .Case 3
- No new failures - New failures according to

RGM
- Average Closure Rate - Average Closure Rate

(ACR) (ACR)

- No new failures - New failures according to
RGM

- Model-based Closure - Model-bakd Closure
Rate (MCR) Rate WCR)

SEW Proceedings

Post-Mortem Results
for an Air Force System

Advantages
- Provides an objective and systematic framework for analytically

performing readiness assessments
- Can be adapted to be consistent with current AFOTEC

approach

Limitations
- Assumptions must represent actual development environment
- Practical use requires a good understanding of underlying

theoretical framework
- Requires tool support to perform necessary analyses

SEW Proceedings

Where to Next. . .

Conclusions

Proposed a method of three iterative steps for
conducting assessments to determine software
readiness for dedicated OT&E
Methodology explicitly uses trend test and
reliability models for decision making
It extends current APOTEC approach
- considers undetected faults
- provides two estimates of fault closure rate

SEW Proceedings

Questions?
mrnrnmm~m~i~i

SEW Proceedings

SEW Proceedings

Session 5: Case Studies

Risk Knowledge Capture in the Riskit Method
J . Kontio and V. Basili, University of Maryland

Requirement Metrics for Risk IdentiJication
T . Hammer and L. Hyatt, NASA Goddard, W. Wilson, L. Huffinan, and L.

Rosenberg, Software Assurance Technology Center

Applying the SCR Requirements Specification Method to Practical Systems: A
Case Study

R. Bharadwaj and C. Heitmeyer, Naval Research Laboratory

SEW Proceedings

SEW Proceedings

Risk Knowledge Capture in the Riskit Method -

Jyrki Kontio and Victor R. BasiIi
jyrki.kontio@ntc.nokia.com / basili@cs.umd.edu

University of Maryland
Department of Computer Science

A.V. Williams Building
College Park, MD 20742, U. S.A.

http://www.cs.umd.edu/users/tjkontio, basilill

Abstract

B i s paper describes how measurement h t a and experience can be capturedfor risk
management purposes. fie approach presented is a synthesis of the Riskit risk
management method and the Experience Factory. In this paper we describe the main
goals for risk knowledge capture and derive a cl~~~szfication of information based on
those goals. We will describe the Riskrt method and its integration with the
Experience Factory. We will also outline the initial experiences we have gainedffom
applying the proposed approach in practice.

1. Introduction

Unanticipated problems frequently cause major problems to projects, such as cost overruns,
schedule delays, quality problems, and missing knctionality. To some degree these problems can
be seen as signs of immaturity of our field and we should expect some improvements in our
discipline as our methods and knowledge improve. However, as each software development
project involves at least some degree of uniqueness and our technology changes continuously,
uncertainty about the end results will always accompany software development. While we cannot
remove risks fiom software development, we should learn to manage them better.

Ability to capture, analyze and package experience is a prerequisite for systematic, planned
improvements in software engineering [2], as in any field. The framework proposed in this paper
builds upon the Riskit method and the Experience Factory, both developed at the University of
Maryland. The proposed risk knowledge capture framework contains templates for capturing data
about risk elements, templates for capturing relevant information about the risk management
process, definition of where in the risk management process risk management knowledge is
captured and utilized, and a proposed model for improvement goals for risk management.

2. Background

Risks in s o h a r e development were not addressed in detail until late 1980's when Boehm [6]
proposed and synthesized an approaches for software risk management. His work was
complemented by Charette [9], and on these foundations recent advances in software risk

SEW Proceedings 309 SEL-96-002

management have produced well-documented approaches for risk management [14,18,24,26],
several categories of risks have been identified [6,8,23], quantitative approaches for risk
management have been proposed and used [5,7,11], and there are several software tools available
for risk management. Furthermore, most commonly used software engineering standards [15,16]
or assessment frameworks [17,27] require at least some form of risk management to take place.

Despite these efforts and the obvious industry interest in risk management, it seems that few
organizations apply specific risks management methods actively [28]. The limited survey data
from a recent workshop by Basili and Koji Tori supports this observation: only 20% of
respondents claimed to use risk management techniques 'kxtensively" while 40% stated that they
are not using ' h y risk management techniques or approaches" [19]. Clearly, the industrial
practice of risks management methods has not yet reached its full potential.

There is little reported work on utilizing data and experience from past project in software
engineering risk management literature. Some aspects of Boehm's work implicitly assumed that
data from past projects is available if simulation and cost models are used for estimating risks [6].
He also mentioned factors of cost models as possible risk monitoring metrics. Charette has
presented an outline of items that should be defined for a project to initiate risk management [lo].
He has also given examples of what should be measured and how this data can be graphed for risk
management purposes. However, neither one of these approaches can be considered a systematic
way to capture or utilize risk management experience.

The Software Engineering Institute (SEI) has collected data from risk assessments they have
carried out during the last few years. Their goal seems to be to support analysis risks and their
relationships using lexical analysis on the qualitative descriptions in the database [25]. It also
seems that frequencies of risks in the database have been used to indicate what are the most
common risks. To our knowledge, this database focuses on the results of risk assessments and
contains little or no data of what actually happened in projects. Also, it is not clear how much
context information is captured about risks and projects so that information in the database can be
utilized more effectively.

Hall has defined and implemented a risk database while working at Harris corporation [12].
Risks from three projects were collected [13] and used for analysis in evaluating Hall's risk
management maturity model. Hall has also collected survey data on the levels of risks
management practices in various organizations [12].

There have been several other, less formal approaches in documenting information about
software risks. The ACM SIGSOFT Software Engineering Notes has run a long series of reports
on computer related problems or disasters. However, such a list is not very usefbl for analyzing
risks of an individual projects as most of the reported risks do not contain enough context
information and details to be usefbl.

In summary, it seems that while several some advances have been made in the area of software
risk knowledge capture, none of the reported approaches provide a comprehensive framework for
capturing risk knowledge. Furthermore, software risk management data and knowledge is rarely
systematically collected and utilized in the industry. We hope that the framework proposed in this
paper can act as a step towards more systematic risk knowledge capture so that our
understanding of risks and risk management methods can improve.

SEW Proceedings

3. Risk Knowledge Capture

We have identified three generic types of goals for risk knowledge capture: monitoring risks,
understanding risks, and risk management process improvement. First, the risk situation in a
project needs to be monitored so that appropriate risk controlling action can be taken. Second, we
need to collect information about risks so that frequencies of occurrence and losses of risks can be
estimated better. Finally, information needs to be collected so that the risk management process
itself can be improved.

Each of the three goals described above focus on different kinds of information and, as always
in measurement, the individual metrics and data collection procedures may vary between
situations. However, we have identified some generic classes of information based on these three
goals. This risk information classification will be introduced in the following paragraphs.

Project context information refers to such information that determines the circumstances and
setting where the project is carried out. Project context information is relevant for all software
engineering measurement data, but it is particularly important for risk management. The
probability of a risk event is often influenced by many factors. By capturing as much as possible of
the risk management context information we make it easier to interpret risk management data in
the future.

The risk management znfiastructure znformatzon defines what risk management methods,
techniques, tools, processes and approaches are used for in risk management. The risk
management infrastructure can also be extended to include several other organizational issues that
marginally influence risk management, as proposed by Hall [12]. In fact Hall's framework can be
used as a model to document the state of risk management infrastructure in an organization.

The project information defines the project itself and it includes the definition of the goals,
customers, schedule, and constraints of the project. It also includes the definition of the risk
management mandate for the project: the risk management mandate is a project-specific statement
of the scope of risk management in a project.

Table 1: The relationships between risk knowledge capture goals and risk information
types

SEW Proceedings

While the project information provides a static view to the project, enactment data provides
the dynamic perspective to the project: how much effort is spent, what artifacts are produced and
when, how much time has passed, and which individuals worked on the project. Enactment data is
usually collected for project control and experience capture purposes as a part of software
engineering measurement program.

The risk management process information describes the activities and events related to risk
management in the project. The risk management process information is, in fact, a special case of
project information, but as it represents our special focus, it is meaningful to separate it &om the
general enactment data of the project.

Finally, risk element information refers to information about risks in a project. This type of
information can include descriptions of factors that influence risks, such as methods, tools,
resources; events that may influence the project; or impacts that risks might have. As we will
discuss later, the Riskit method contains conceptual tools to structure such information more
formally than is usually done.

The relationships between risk knowledge capture goals and risk information types is presented
in Table 1. Each row in Table 1 represents a risk information type and each column a risk
knowledge capture goal. An 'X" in a cell indicates that the goal in that row normally needs to
utilize the type of information listed in that row. However, it is important to point out that
information from other categories may often be needed as well, Table 1 merely represents what
we believe to be typical relationships between goals and information types.

4. Towards a Risk Knowledge Capture Framework

4.1 The Riskit Method

The Riskit method has been developed to support systematic risk analysis. The Riskit method
uses a graphical formalism to support qualitative analysis of risk scenarios before quantification is
attempted, its risk ranking approach can be selected based on the availability of history data or
accuracy of estimates, it supports multiple goals and stakeholders, and its risk ranking approach is
based on the utility theory [20]. We have presented an overview of the activities in the Riskit
process in Figure 1. More information about the method is available in separate reports 120-221.

A central part of the Riskit method is the graphical formalism used to document risks, the
Riskit analysis graph. The Riskit analysis graph is used to define the different aspects of risk
explicitly and more formally than is done in casual conversation. The Riskit analysis graph is used
during the Riskit process to decompose risks into clearly defined components, risk elements. Its
components are presented in Figure 2. Each rectangle in the graph represents a risk element and
each arrow describes the possible relationship between risk elements. We will define the
components of the graph in the following paragraphs.

SEW Proceedings

Instead of informal, general descriptions of
risks, we can document the different aspects of
risks more precisely, as is shown in Figure 2.
The Riskit analysis graph allows explicit and
more formal documentation of risks and risk
scenarios.

Review1
define
goals Q

objectives,
expectations,
constraints,

The Riskit method has several potentially
useful characteristics that can support risk Identify
knowledge capture. First, the Riskit Analysis
Graph enforces more formal definition of risks expected /('& monitor
so that more information is collected about each potential

results
risk. Second, the graphical formalism used as
well as the tool that is used to draw these
diagrams lay the foundations for automating
some of the risk knowledge capture:
information about risks can be captured as
Riskit graphs are drawn. Third, the Riskit
process itself is a defined process that increases

0 0
repeatability of the risk management process
and supports the collection of relevant risk selected prioritized,

management experience through the templates actions quantified risks
Plan risk

and guidelines included in the method. control

4.2 Risk Knowledge Capture in the
Ekperience Factory Framework

-0-
Figure 1: The Riskit risk management cycle1

In this section we present how the Riskit
method can be integrated into Basili's Experience Factory (EF) and Quality Improvement
Paradigm (QIP) [3,4]. The Quality Improvement Paradigm (QIP) is a systematic process for
continuous improvement. It is similar to the scientific principle of learning in its emphasis of
learning through empirical experience. The QIP process can be seen as consisting of three main

may influence

I I
I Risk scenario I
L,------,--l

Figure 2: A conceptual view of the elements in the Riskit analysis graph

Note that Figure 1 presents a simplified view of the activities in the Riskit process. More comprehensive
description of the Riskit process is available through other publications [20].

SEW Proceedings 313

activities that include the six steps normally described for QIP: planning, consisting of the steps
characterize, set goals, and choose process; execute; and learning, consisting of steps analyze and
package [4].

The Experience Factory Organization is an organizational model for implementing the QIP
process. The main idea of this approach is the recognition the distinct roles belonging to the
project organization and a learning organization, the Experience Factory. The Project
Organization focuses on delivering the s o h e product and the Experience Factory focuses on
learning from experience and improving software development practice in the organization. A
central aspect of the Experience Factory is the Experience Base, a repository of data and
knowledge about the software development process and products. The knowledge in the
Experience Base can be in various forms, it can include raw and summarized data, mathematical
models about the data (e.g., prediction models), experiment reports, and qualitative lessons
learned reports [1-41.

From risk management perspective the Experience Factory concept serves to fulfill the
following goals:

separation of responsibilities between risk management within projects and improving the
risk management process itself and improving the understanding of risks;

systematic capture and accumulation of risk management knowledge into the Experience
Base;

continuous learning fiom risk managemeflt experience through measurement, data
collection, analysis and synthesis; and

systematic reuse of accumulated risk management knowledge through packaging and
dissemination of this knowledge.

When the Riskit process is viewed from the perspective of the Experience Factory and the QIP
cycle, it is possible to identifl steps where risk management process needs to be initiated to
support the QIP process, as shown in Figure 3. The initial planning cycle represents the first cycle
of the Riskit process, whereas the risk management cycle supporting the execute step support
mainly project monitoring, i.e., risk monitoring and control. The learning step analyzes and
packages the risk management experience gained through the process.

All of the Q P and Riskit activities represented in Figure 3 produce data about risk
management that can be captured and stored in an experience base. We have defined a database
definition for such information for the Riskit process. Furthermore, the project planning step in
QIP also includes goal definition for risk understanding and risk management process
improvement. These goals can introduce new data and experience capture needs that can be
implemented as required. The learning step of QIP, and the two risk related activities associated
with it, utilize the data and experience collected about risks and produce packaged, reusable
pieces of risk knowledge to be stored in the.Experience Base and utilized in future projects.

SEW Proceedings

risks
prioritized,

quantified risks

Figure 3: The mapping between QIP cycle and the Riskit process

4.3 Applying the Riskit Knowledge Capture Framework

The Riskit method and its knowledge capture framework have been applied in several trial
projects. So far the case studies have focused on the last one of the goals we introduced earlier:
improving the method itself

The goals of the first case study [22] were to characterize the method, investigate its feasibility,
and to collect empirical feedback on its use to be able to improve it. This first case study resulted
in several changes in the method itself and it produced approximately 15 risk scenarios
(corresponding to about 50 risk elements). Project and context information was documented
informally in a separate report [22]. Other, on-going empirical studies with the method focus
similarly on obtaining feedback on the methods feasibility and effectiveness.

These case studies have produced large amounts of risk management data and experience and
we are in the process of formaliking this data into a risk management database, or a risk
management experience base. Our goal is to evaluate the feasibility and potential benefits of such
a database given the empirical data we have obtained.

SEW Proceedings

5. Conclusions

This paper presented background and motivation for risk knowledge capture and proposed a
classification of goals and information types for such capture. We also outlined how the Riskit
method supports this type of experience capture. We reported some initial experiences from the
use of the Riskit method and the proposed risk knowledge capture framework.

The potential benefits f?om%sk knowledge capture are significant. Frequency and severity of
typical risks can be estimated more accurately, changes in potential risks observed more
concretely, risk management methods and tools can be improved based on empirical feedback,
and projects have more up-to-date information about risks and risk management actions in a
project. Furthermore, it may be possible to identie and package some risk management patterns:
reusable pieces of risk management knowledge that can be utilized by project managers. Examples
of such risk patterns could be lists of risks that are associated with certain project characteristics
and descriptions of risk controlling actions that have been found effective in controlling certain
types of risks. The Riskit method itself, through its more formal definition of risk and its graphical
representation formalism, provides a good basis to capture and reuse such knowledge in practice.

While it is too early to make any conclusions about the feasibility and benefits of the proposed
risk knowledge capture approach, the combination of Riskit and the Experience Factory contain
the necessary foundations for more systematic and detailed experience capture. The initial
empirical studies indicate that the approach is feasible in industrial context.

However, it is yet to be determined whether such experience capture is cost effective.
Although the Riskit method may potentially allow automation of some of the experience capture
processes, it is currently a manually driven process and therefore potentially too costly in large
scale use. Furthermore, given the subjective nature of the definition of risk, one could also
question how reliable is experience that, to a large degree, is based on subjective opinions and
judgment calls about future events.

While there may be some valid concerns about the cost-effectiveness of a risk management
database and its utilization, it is nevertheless likely that risk management experience needs to be
captured and formulated into knowledge to be reused in future projects. The Riskit method
provides a more concrete basis even for qualitative knowledge formulation process, even when
the risk management experience and data are not captured into a formal database but stored in
less formal parts of the Experience Base.

6. References
[I] V. R Basili, Quantitative Evaluation of Software Engineering Methodology, 1985. Proceedings of the First

Pan Pacific Computer Conference. Also available as computer science technical report TR-1519, University of
Maryland.

[2] V. R Basili, Software Development: A Paradigm for the Future, 1989. Proceedings of the 13th Annual
Computer Software and Applications Conference (COMPSAC).

[3] V. R Basili, G. Caldiera, F. McGarry, R Pajerski, G. Page, and S. Waligora, The Software Engineering
Laboratory - an Operational Software Experience Factory, pp. 370-38 1,1992. Proceedings of the
International Conference on Software Engineering, May 1992.

SEW Proceedings

[4] V. R. Basili, G. Caldiera, and H. D. Rombach. The Experience Factory. In: Encyclopedia of Software
Engineering, Anonymous New York: John Wiley & Sons, 1994.p~. 470-476.

[5] J. Berny and P. R. F. Townsend, Macrosimulation of project risks -- a practical way forward, International
Journal of Project Management, vol. 11, pp. 201-208, 1993.

[6] B. W. Boehm. Tutorial: Software Risk Management, IEEE Computer Society Press, 1989. pp. 1-469.
[7] J. A. Bowers, Data for project risk analyses, International Journal of Project Management, vol. 12, pp. 9-16,

1994.

[8] M. J. Carr, S. L. Konda, I. A. Monarch, F. C. Ulrich, and C. F. Walker. Taxonomy-Based Risk Identification,
SEI Technical Report SEI-93-llR-006, Pittsburgh, PA: Software Engineering Institute, 1993.

[9] R. N. Charette. Software Engineering Risk Analysis and Management, New York: McGraw-Hill, 1989.
[lo] R. N. Charette. Applications Strategies for Risk Analysis, New York: McGraw-Hill, 1990.
[1 1] R. Fairley, Risk Management for Software Projects, IEEE Software, vol. 1 1, pp. 57-67, 1994.
[12] E. M. Hall, Proactive Risk Management Methods for Software Engineering Excellence 1995. Florida Institute

of Technology. Also available from UMI Dissertation Services.
[13] E. M. Hall, Email correspondence ed. J. Kontio. 1996. email correspondence.
[14] R. Hefher, Experience with Applying SEI's Risk Taxonomy, 1994. Proceedings of the Third SEI Conference

on Sohare Risk Management. SEI. Pittsburgh, PA.
[15] IEEE. IEEE Standard for Developing Sojhvare Life Cycle Processes, New York: IEEE Computer Society,

1992.
[16] ISO. IS0 9000-3, Guidelines for the application ofIS0 9001 to the development, supply and maintenance of

software, IS0 9000-3: 1991 (E), International Standards Organization, 199 1.
[17] ISO. SPICE: Baseline Practices Guide, an unfnished draft of a standard being developed for ISO, version

I. 00, 1994. (UnPub)
[18] D. W. Karolak. Software Engineering Risk Management, Washington, DC: IEEE, 1996.
1191 J. Kontio, IWSED-95 Web pages Anonymous. Anonymous. <None Specified>, vol. 1995. University of

Maryland. World Wide Web. http://www.cs.umd.edu/projects/SoftEng/ESEG/iwsed/iwSed95/.
[20] J. Kontio, The Riskit Method for Software Risk Management, version 1.00 Anonymousl996. Computer

Science Technical Reports. University of Maryland. College park, MD.
1211 J. Kontio and V. R. Basili, Empirical Evaluation of a Risk Management Method, 1997. Proceedings of the

SEI Conference on Risk Management. Software Engineering Institute. Pittsburgh, PA.
[22] J. Kontio, H. Englund, and V. R Basili, Experiences from an Exploratory Case Study with a Software Risk

Management Method Anonymous CS-TR-3705, 1996. Computer Science Technical Reports. University of
Maryland. College Park, Maryland.

[23] L. Laitinen, S. Kalliomilki, and K. KiiWiIa. Ohjelmistoprojektien Riskitekijdt. Tutkimusselostus N o L-4,
Helsinki: VTT, Tietoje-ittelytekniikan Laboratorio, 1993.

[24] J. V. Michaels. Technical Risk Management, Upper Saddle River, NJ: Prentice Hall, 1996.
[25] I. A. Monarch, S. L. Konda, and M. J. Carr, Software Engineering Risk Repository, 1996. Proceedings of the

1996 SEPG Conference. Software Engineering Institute. Pittsburgh, PA.
[26] G. Pandelios, T. P. Rumsey, and A. J. Dorofee, Using Risk Management for Software Process Improvement,

1996. Proceedings of the 1996 SEPG Conference. SEI. Pittsburgh.
[27] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber. Capability Maturity Model for Sojbare, Version

I. 1, Technical Report SEI-93-TR-024, Pittsburgh: Software Engineering Institute, Camegie Mellon
University, 1993.

[28] J. Ropponen, Risk Management in Information System Development Anonymous TR-3, 1993. Computer
Science Reports. University of Jyv&lq4ii, Department of Computer Science and Information Systems.
Jyvaskyla.

SEW Proceedings

SEW Proceedings

Risk Knowledge Capture in the Riskit
Method

Jyrki Kontio and Victor R. Basili
University of Maryland

Department of Computer Science
A.V.Williams Building

College Park, MD 20742, U.S.A.
{jkontio, basili}@cs.umd.edu

http://www.cs.umd.edu/users/jkontio/

Outline
rn Definition of risk
rn The Riskit method

+Underlying principles
+Riskit process through an example

Case studies
rn Conclusions

SEW Proceedings

Definitions of Risk
Risk: a possibility of loss -- or
any characteristic, object or
action that is associated with
that possi&ility.
Risk is associated with:
- probability: there is uncertainty
- loss: some harm or damage

goals or expectations
stakeholder

m Risk management refers to a systematic and
explicit approach used for identifying,
analyzing and controlling risk.

Riskit Main Principles
Risks are relative to goals and
expectations
There's always more than one
stakeholder
Risks must be well defined

Multiple goal effects are accounted for
Losses estimated through utility loss
Learn from past experience

SEW Proceedings

goals

objectives,
expectations.
constraints,

The Riskit
Process results risks

selected prioritized,

Plan risk
control

Analyze
risks

priorilkad.

Plan risk
control

SEW Proceedings

Example
This presentation

more than one
stakeholder"

Stakeholders
- Audience
- Presenter
- Session chair

Goals
- Learn about risk management
- Finish in 30 minutes
- Sell Riskit to practitioners

goals and

Example: Review and Definition of
Goals

I risk mgmt I
Goal

Learn about
Questions asked
Use of Riskit?

Stakeholders
Audience

Finish in 30
mins

Info requests
WWW visits ...

Metrics
Feedback

"Sell" Riskit

SEW Proceedings

Target

Audience
Session chair

Presenter

Elapsed time 30 minutes

Feedback
Questions asked

Some will
try it out

Review1
define
goals Q

Example: Risk Identification
Possible risks:
- Talk will last longer than 30 minutes
- On line slide presentation system fails
- Presenter will mess up his slides
- Too many questions at the end
- Presenter will ramble off the topic
- Audience does not have much background in

risk management
- Booster rockets from the space shuttle hit this

building

. SEW Proceedings

Example: Risk Identification
Selected risks for risk analysis:
- Talk will last longer than 30 minutes
- On line slide presentation system fails
- Presenter will mess up his slides

- Too many questions at the end
- Presenter will ramble off the topic

- Audience does not have much background in risk
management

- Booster rockets from the space shuttle hit this building

define

obje'ctives.
expectations.
constraints.

Identify A

SEW Proceedings

Example: Risk Scenarios

Risk
Risk events

factor TOO many
questions at Risk effect

Aud~ence not

short

Audience not ,
Poor learning

familiar with risk Fair sale
mgmt technologies

SEW Proceedings

Risk
analysis
example

Audtence not
lamlllar wtth rlsk

-mqmt tecnnolog~es

Risk analysis
example (~ 0 ~ t . 1

Scenario 3

short
I

I Probability: Low I Scenario 4 I

"* " -
Aud~ence not Poor learning

famll~ar wlth r ~ s k ' - ' Fair sale

SEW Proceedings

SEW Proceedings

define
goals

objictives.
expectations.
oonotninls.

risks

Risk Control Planning
Presenter's priorities:
- Scenario 1
- Scenario 3

I - scenario 2 I .
- Scenario 4

Audience's priorities:
- Scenario 1
- Scenario 2
- Scenario 3 and 4

Chair's priorities
- Scenario 2
- Scenario 1
- Scenario 3
- Scenario4

presenter' s problem
(and so is scenario 4)

SEW Proceedings

Risk Control Planning for

Test the on line Bring back up slides

/ /flv

presentation system for overhead
thoroughly

Finish without
slides

Risk Control Planning for
Scenario 2

, ,

Reaction

A

Poor Learning
Poor sale

L

I -2

Test the on line
~resentation
A

n r r n + ~ m Have a back ay 3 LGlll

up system Bring back thoroughly
V ~ O A X , UD slides for -

overhead

SEW Proceedings

Risk Control Planning for

* Provide references for further information

Event Scenario 3
Too many

questions at end \, iN ,. m ~ e a c t i o n - ~ f f e c t -

Hang around after the talk

Risk Management Experience
Goals capture
- Risk management process improvement

Fair learning

- Risk understanding
- Risk monitoring

Means
- Risk management Experience

, A

Base

Cut them
short

Risk
Management
Experience

. .
- Risk management experience analysi -.

SEW Proceedings

Risk Management Experience Base
Project Risk

management
Context infrastructure

I

Empirical Studies
* SEL Case Study

- exploratory study to support method
development

Hughes Case Study
- exploratory study on method use
- describe the method, assess feasibility,

compare effectiveness

-Produced 4 stakeholders, 17 goals and 48 risks

SEW Proceedings

Case Study Experiences
* Riskit results in more detailed description

and analysis of risks
* Method users gave high marks for Riskit for

- "Well-defined process, usable and practical"
- "Provides a high-level view of all risks"
- "More confidence in results, more thorough, more

complete analysis"

Identified risks that normal approach might
have ignored
Riskit consumed more resources

Benefits Conclusions
- avoids common limitations in risk management

(multiple goals and stakeholders, risk ranking)
- explicit and precise description of risks
- increases user confidence in results
- captures risk management experience

Potential problems
- higher cost

Further work
- case studies continue (e.g. Nokia Corporation)
- potential automation for graphs and database

SEW Proceedings

Main References
V. R. Basili, Software Development: A Paradigm for the Future (keynote address), 1989.

Proceedings of the 13th Annual Computer Software and Applications Conference
(COMPSAC).

B. W. Boehm. Tutorial: Sofhare Risk Management, B.W. Boehm (Ed). IEEE Computer
Society Press, 1989.

R. N. Charette. Software Engineering Risk Analysis and Management, New York:
McGraw-Hill, 1989.

J. Kontio, The Riskit Method for Software Risk Management, version 1.00 1996. Computer
Science Technical Reports. University of Maryland. College park, MD.

J. Kontio and H. Englund, Experiences from an Exploratory Case Study with a Software
Risk Management Method 1996. Computer Science Technical Reports. University of
Maryland. College Park, Maryland.

More information:

- email: jkontio @ cs.umd.edu
- WWW: http://www.cs.umd.edu/users/jkontio/

SEW Proceedings

SEW Proceedings

<;//
<:9 :. > : i

Requirement Metrics for Risk Identification

Theodore Hammer, GSFC, 30 1-6 14-5225, Theodore.Harnrner@gsfc.nasa.gov 3 '34 7 5 ~
Lenore Hufhan, SATC, 30 1-286-0099, Lenore.Hu~an@gsfc.nasa.gov
Wiam Wilson, SATC, 30 1-286-0 102, William. Wilson@gsfc.nasa.gov
Dr. Linda Rosenberg, SATC, 301-286-0087, Linda.Rosenberg@gsfc.nasa.gov

l'g
Lawrence Hyatt, GSFC, 30 1-286-7475, Larry.Hyatt@gsfc.nasa.gov

1. Introduction

The Software Assurance Technology Center (SATC) is part of the Office of Mission
Assurance of the Goddard Space Flight Center (GSFC). The SATC's mission is to assist
National Aeronautics and Space Administration (NASA) projects to improve the quality of
software which they acquire or develop. The SATC's efforts are currently focused on the
development and use of metric methodologies and tools that identifjl and assess risks
associated with software performance and scheduled delivery. This starts at the requirements
phase, where the SATC, in conjunction with software projects at GSFC and other NASA
centers is working to identifjr tools and metric methodologies to assist project managers in
identifjing and mitigating risks. This paper discusses requirement metrics currently being
used at NASA in a collaborative effort between the SATC and the Quality Assurance Office at
GSFC to utilize the information available through the application of requirements management
tools.

Requirements development and management have always been critical in the implementation
of software systems - engineers are unable to build what analysts can not define. Recently,
automated tools have become available to support requirements management. The use of
these tools not only provides support in the definition and tracing of requirements, but also
opens the door to effective use of metrics in characterizing and assessing risks. Metrics are
important because of the benefits associated with early detection and correction of problems
with requirements; problems not found until testing are at least 14 times more costly to fix
than problems found in the requirements phase. This paper discusses two facets of the
SATC's efforts to identifjr requirement risks early in the life cycle, thus preventing costly
errors and time delays later in the lie cycle.

The first effort that will be discussed is the development and application of an early life cycle
tool for assessing requirements that are specified in natural language. This paper describes the
development and experimental use of the Automated Requirements Measurement (ARM)
tool. Reports produced by the tool are used to identify specification statements and structural
areas of the requirements document which need to be improved.

The second effort discusses metrics analysis of information in the requirements database used
to provide insight into the stability and expansion of requirements. The research into
attaching certain document attributes to analyses results done on requirements stored in
requirements databases is providing project management with valuable information. The
correlations between document structure and language, and requirement expansion and testing

SEW Proceedings 335 SEL-96-002

have been strong. This information has been assisting and continues to assist the Quality
Assurance Office in its project oversight role.

When discussing metric results the project must remain anonymous; however, for this paper, a
general understanding of the project's development environment is necessary. The project in
discussion is implementing a large system in three main incremental builds.' The development
of these builds is overlapping, e.g. design and coding of the second and third builds started
prior to the completion of the first build. Each build adds new hnctionality to the previous
build and satisfies a fbrther set of requirements. The definition of requirements for this system
started with the formulation of System Level Requirements. These are mission level
requirements for the space craft and ground system; they are at a very high level and rarely, if
ever, change. Requirements at this level will not be discussed since they are not stored in the
requirements database under scrutiny.

System requirements then undergo several levels of decomposition to produce Top Level
Requirements. These requirements are also high level and change should be minimal. The
development of the project discussed in this paper started with the Top Level requirements.
Top Level requirements are then divided into subsystems and a m h e r level is derived in
greater detail; hence, "Specification Requirementsy'. Generally, contracts are bid using this
level of requirement detail. The Design Requirements are derived fiom the Specification
requirements; these requirements are the ones used to design and code the system. This
project chose to develop an additional intermediate set of Specification Level Requirements
after contract award.

2. Automated Requirements Measurement Tool (ARM)

Despite the signscant advantages attributed to the use of formal specification languages, their
use has not become common practice. Because requirements that the acquirer expects the
developer to contractually satisfy must be understood by both parties, specifications are most
often written in natural language. The use of natural language to prescribe complex, dynamic
systems has at least three severe problems: ambiguity, inaccuracy and inconsistency. Many
words and phrases have dual meanings which can be altered by the context in which they are
used. Weak sentence structure can also produce ambiguous statements. For example, the
statement "Twenty seconds prior to engine shutdown anomalies shall be ignored." could result
in at least three diierent implementations. Defining a large, multi-dimensional capability
within the limitations imposed by the two dimensional structure of a document can obscure
the relationships between individual groups of requirements.

The SATC developed the Automated Requirements Measurement (ARM) tool to address
certain management needs: that of providing metrics which NASA project managers can use
to assess the quality of their requirements specification documents and that of identiijing risks
poorly specified requirements introduce into any project. The ARM tool searches the
requirements document for terms the SATC has identified as quality indicators. Reports
produced by the tool are used to identifjl specification statements and structural areas of the

Various names are used, deliveries, releases, builds, but the term build will be used in this paper.

SEW Proceedings 336 SEL-96-002

requirements document which need improvement. It must be emphasized that the tool does
not assess correctness of the requirements specified, it does, however, assess the structure,
language, and vocabulary of both the document itself and the individual requirements.

2.1 Specification Quality Attributes

The SATC study was initiated by compiling the following list of quality attributes that
requirements specifications are expected to exhibit: Completeness, Consistency, Correctness,
Modifiability, Ranking, Traceabiity, Non-ambiguity, and Verifiability. As a practical matter,
it is generally accepted that requirements specifications should also be Valid and Testable.
These characteristics are not independent. A specification, obviously, cannot be correct if it is
incomplete or inconsistent.

Most, if not all, of these quality attributes are subjective. A conclusive assessment of a
requirements specification's appropriateness requires review and analysis by technical and
operational experts in the domain addressed by the requirements. Several of these quality
attributes, however, can be linked to primitive indicators that provide some evidence that the
desired attributes are present or absent.

2.2 Specification Quality Indicators

Although most of the quality attributes of documented requirements are subjective, there are
aspects of the documentation which can be measured and therefore can be used as indicators
of quality attributes. Nine categories of quality indicators for requirement documents and
specification statements were established for two types of classification: those related to the
examination of individual specification statements, and those related to the requirements
document as a whole. The categories related to individual specification statements are:
Imperatives, Continuances, Weak Phrases, Directives, and Options. The categories of
indicators related to the entire requirements document are: Size, Specification Depth,
Readability, and Text Structure.

IMPERATIVES are those words and phrases that command that something must be
provided. "Shall" normally dictates the provision of a functional capabiity; "Must" or
"must not" normally establishes performance requirements or constraints; "Will" normally
indicates that something will be provided fiom outside the capability being specified. The
ARM report lists the imperatives and their associated counts in descending order of
forcefulness. An explicit specification will have most of its counts high in the report
IMPERATIVE list (i.e. shall, must, required).
CONTINUANCES are phrases such as "the following:" that follow an imperative and
precede the definition of lower level requirement specification. The extent that
CONTINUANCES are used is an indication that requirements have been organized and
structured. These characteristics contribute to the tractability and maintenance of the
subject requirement specification. However, extensive use of continuances indicate
multiple, complex requirements that may not be adequately factored into development
resource and schedule estimates.

SEW Proceedings

e WEAK PHRASES are clauses that are apt to cause uncertainty and leave room for
multiple interpretations. Use of phrases such as "adequate" and "as appropriate" indicate
that what is required is either defined elsewhere or worst, the requirement is open to
subjective interpretation. Phrases such as "but not limited to" and "as a minimum"
provide the basis for expanding requirements that have been identified or addiig firture
requirements. WEAK PHRASE total is indication of the extent that the specification is
ambiguous and incomplete.
DIRECTIVES are words or phrases that indicate that the document contains examples or
other illustrative information. DIRECTIVES point to information that makes the specified
requirements more understandable. The implication is the higher the number of Total
DIRECTIVES the more precisely the requirements are defined.

e OPTIONS are those words that give the developer latitude in the implementation of the
specification that contains them. This type of statement loosens the specification, reduces
the acquirer's control over the final product, and establishes a basis for possible cost and
schedule risks.
LINES OF TEXT are the number of individual lines of text read by the ARM program
fiom the source file.

e UNIQUE SUBJECTS is the count of unique combinations and permutations of words
immediately preceding imperatives in the source file. This count is an indication of the
scope of the document. The ratio of unique subjects to the total for SPECIFICATION
STRUCTURE is also an indicator of the specifications' detail.
READABILITY STATISTICS are a category of indicators that measure how easily an
adult can read and understand the requirements document. Flesch-Kincaid Grade Level
index is also based on the average number of syllables per word and the average number
of words per sentence. (For the project of this paper, the score indicates a grade school
level.)

Table 1 below shows the summary statistics for 41 NASA requirement documents and the
results for the project discussed in this paper, Project X.

Table 1 : Summary Statistics

SEW Proceedings

Two approaches can be applied to compare Project X to the metric database containing 41
documents. The first approach is to compare Project X to the other projects using standard
deviations. Since approximately 99% of the projects should fall within +/- 3 standard
deviations, we mark that range on the graph in Figure 1.

Figure 1 : Document Attributes by Standard Deviation

However, since Project X is larger than all projects analyzed to date, Figure 1 may present an
inaccurate picture. Normalizing the data on Lines of Text (Figure 2) yields a dierent picture
of Project X in relation to other projects, thus suggesting that Project X attribute counts are in
line. The number of weak phrases should however be investigated since it indicates potential
risk.

Figure 2: Document Attributes Normalized by Lines of Text

The structure of the document is also indicative of potential project risks. ARM uses the
structure depth and specification depth to depict two aspects of the document's structure.

STRUCTURE DEPTH provides a count of the numbered statements at each level of the
source document. These counts provide an indication of the document's organization and
consistency and level of detail. High level specifications will usually not have numbered

SEW. Proceedings 339 SEL-96-002

statements below a structural depth of four. Detailed documents may have numbered
statements down to a depth of nine. A document that is well organized and maintains a
consistent level of detail will have a pyramidal shape (few numbered statements at level 1
and each lower level having more numbered statements than the level above it).
Documents that have an hour-glass shape (many numbered statements at high levels, feur
at mid levels and many at lower levels) are usually those that contain a large amount of
introductory and administrative information. Diamond shaped documents (a pyramid
followed by decreasing statement counts at levels below the pyramid) indicate that
subjects introduced at the higher levels are probably addressed at diierent levels of detail.
SPECIFICATION DEPTH is a count of the number of imperatives at each level of the
document. These numbers also include the count of lower level list items that are
introduced at a higher level by an imperative that is followed by a continuance. This
structure has the same implications as the numbering stmcture. However, it is significant
because it reflects the structure of the requirements as opposed to that of the document.
Differences between the shape of the numbering and specification structure are an
indication of the qm-ount and location of background andfor introductory information is
included in the document. The ratio of total for SPECIFICATION STRUCTURE to tot&
lines of text is an indication of how concise the document is in specifLing requirements.

The application of this information is still under investigation, and initial results Rom Project
X are interesting. Figure 3 depicts expected structure versus actual structure of the
Specification and Design requirement documents. The project data suggests the Spdcation
requirements may have been overly defined, therefore artificially constraining the design and
its expansion. The structure of the imperative levels in the Design document reinforces this
observation, indicating little expansion where extensive expansion is expected.

Figure 3: Document Depth at Which Imperatives are Located

SEW Proceedings

3. Requirement Metrics

This section of the paper focuses on the application of metrics available through the use of a
requirements management CASE tool. These metrics assist project managers and quality
assurance engineers to identi@ the risks of insuring that the completed software system
contains the finctionality specified by the requirements. There are no published or industry
standard guidelines for these metrics: intuitive interpretations, based on experience and
supported by project feedback, are used in this paper. Project management has reacted
favorably to the metrics and has used the analysis results to mitigate certain perceived risks.
The SATC wntinues working on methods to mathematically validate the intuitive guidelines
so that the reqvirement metrics and their interpretation are applicable to an ever increasing
variety of soWare development applications. Three areas of requirement metrics will be
discussed: Stab'flity Over Time Per Requirement Design Level, Stabiity Over T i e By Project
Build, Expansipn From Specification To Design Level.

3.1 Requirement Stability Over Time per Requirement Design Level

Requirements are developed and baselined at major reviews during the system development
life cycle. At these milestone reviews, documents containing the requirements are reviewed
and commen ed upon. ARer resolution of the comments, the requirement documents are
baseliied ant put under configuration control. Ideally, the rate of change in each level of
requirement, i should decrease as a milestone review approaches. Figure 4 shows the count of
requirements at each level during the 6 month period starting at Preliminary Design Level
(PDR) (through Cxjtical Design Review (CDR) As expected, the Top Level and Specification
requirements remahed stable during this six month period. The Intermediate Specification
and Design Level documents both stabilized prior to CDR.

Figure 4: Requirement Count by Document Level

SEW Proceedings

3.2 Requirement Stability Over Time By Project Build

As stated earlier, this system is implemented in three builds with the Specification and Design
requirements allocated to each of these builds. One of the purposes of a multiple build
development effort is to minimize the implementation risk associated with any one build. This
insures that no single build implements an inordinate number of requirements. Figure 5 shows
the counts of the Design Requirements (Figure 4) for Build 1 and Build 2.

Figure 5: Design Requirement Allocation by Build

This is a different picture of the requirements stability, showing a shift in the number of
requirements fiom Build 1 to Build 2; and indicating a potential risk to the schedule of Build 2
which should be closely monitored.

3.3 Requirement Detail Expansion

In addition to requirement stability, the expansion of the upper level requirements to more
detailed levels generates potential project risk. Figure 6 shows the number of requirements of
the Detail level referencing the number of requirements in the Intermediate Specification
Level. The tails on the expected curve in the upper right indicate a scattering of upper level
requirements referenced either by very few or very many detailed requirements; however, the
majority of requirements will have multiple references and result in a bell-shaped curve..

SEW Proceedings

Figure 6: Requirement Expansion

Project data however, does not match the expected; there is a high number of Intermediate
Specification requirements that are referenced by only one or very few Detail requirements
(left hand side of the graph) while other requirenients have high numbers of multiple
references (right hand side of graph). As an example, the Intermediate Specification
requirement "The system shall have a database." is linked to 200 Design level requirements.
The shape of the curve in Figure 6 indicates that the Design analysis is incomplete with the
specific requirements are not adequately decomposed, thus suggesting that requirements were
copied with neither analysis nor expansion into detail for the implementation phase.

4, Conclusions

Based on the work done to date, four conclusions can be reached:
e Requirement metrics assist in identifying potential project risks
e Multiple metrics are needed for comprehensive evaluation
e Evaluation of requirement text can yield risk information very early in the life cycle
e Metric collection is cheaper, faster and more reliable with requirement management tools

Using automated tools to track requirements has opened the door to deriving metrics for
characterizing requirement text , stability and expansion rate. Tracking and correlating test
cases and test results to individual requirements within a database is essential for viewing
relationships not otherwise available.. The use of an automated requirements database allows
the metrics program to generate metrics for best insight into the requirements and test case
interplay . The metrics presented in this paper are the result of much research 'into data use
and pictorial display; however, all results have been used by project management to
successfblly identify and manage risks.

SEW Proceedings

REFERENCES

Brooks, Frederick P. Jr., No Silver Bullet: Essence and accidents of software engineering, IEEE Computer,
vol. 15, no. I , April 1987, pp. 10-18.

DOD MIL-STD-490A, Specification Practices, June 4, 1985.
IEEE Std 830-1993, Recommended Practice for Software Requirements Specifications, December 2,1993.
Kitchenham, Barbara, Weeger, Shari Lawrence, Software Quality: The Elusive Target, IEEE Sofhuare, Vol.

13, No. I , January 1996, pp. 12-21.
Stokes, David Alan, Requirements Analysis, Computer Weekly Sofhuare Engineer's Reference Book, 1991,

pp. 1613-16121.
Wilson, William, Rosenberg, Linda, Hyatt, Lawrence, Automated Quality analysis of Natural Language

Requirement Specifications, Fourteen Annual Pacific Northwest Software Quality Conference, October,
1996.

SEW Proceedings

Requirement Metrics for
Risk Identification

Ted Hammer, GSFC, NASA
~ ~ p 3 0 0 . & s f c c n a s a . g w

301-614-5225

Lenore Huffimm, SATC William Wilson, SATC
lhuff~p300.gsfc .nasagov ~@pop300.gsfc.nasa.gov

301-286-0099 301-286-0102

Dr. Linda Rosenberg, SATC,Unisys Lany Hyatt, GSFC, NASA
lrosenbe@pop300.gsfc.nasa.gov lhyat@pop300.gsfc.nasa.gov

301-286-0087 30 1-286-7475
Mlccne 1vvPs

Overview

Objective - To use requirement metrics to identify
potential risks

Areas of investigation:
Stability over time per requirement design level
Stability over time by project build
Expansion fiom specification to design level
Automated Requirements Measurement Tool (ARM)

Lessons Learned

SATE;(& 1- d

SEW Proceedings

Primary Responsibilities:
Software Guidebooks, Standards
Metrics Research and Development
Assurance Tools and Techniques
Outreach / Project Support

http://satc.gsfc.nasa.gov/homepageehtml

Supported primarily by NASA SoEtware Technology

SEW Proceedings

Requirement Expansion

Requirement Stability
By Build

SEW Proceedings

BUILD 1

Y a h U a h y o . . l Y a h Y a h u m
I S 4 5 6 -

PLW CDR
Du

SATCSPL 121Y96

BUILD 2

Y D l h l & , m l & , m M m m Y a h Y a h
1 . 2 3 4 5 8 .

KR M e cm

--

Automated Requirement
Measurement Tool (ARM)

Objective - Provide measures that can be used to evaluate the
quality of a requirements specification document.'

Available early in the life cycle
Simple to use

* Easy to understand output
Identify specific requirement weaknesses
Indicator of specification areas that can be
strengthened
Basis for estimating required resources

'Not "JXd we mite the right requirement?" But "Did we write the nquircments right?"
SATCSeL 1-

Requirement Documentation
Problems

Structural
Organization
Detail
Relationships

Language
Ambiguity
Inaccuracy
Inconsistency

SAlcae 1-

SEW Proceedings

1

ARM Analysis of Document Set

1-x 1 11,998 1 1 . ~ ~ 2 1 820 1 574 1 132 1 m 1 WO S

aAICSBL lYY96

Project X Specification Document
Attributes

D o c u m o n t A m f b u t . r Q M u d m n
...

rD.wI

WI* maw wml Rh - Ykc.0 - Ol.bM
b

Documrnt Nomuuzw Amtbutr CornpafbIon .. --&--

.................. ...
..... ..

L

&swab cammca w* mck. wml' Rh
Pka - lowd

G m m M
SAICm IYY96 -

SEW Proceedings

Structure
Level at Which Imperative Occurs

specmcath W g n

i xv Expected i n
I I

s 8

I l l l ~ ~ l l ~ l l l . l l l l l l . ~ ~ . ~ 8 ~ ~ ~ ~ ~ ' ~ . n . ~ . . ~ . ~ # t ~ ~ ~ ~ 8 ~ ~ . . ~ n ~ ~ 8 8 # ~ n . ~ . . . # . . . , , , , ~ 8 ~ ~ . . ~ . . . , , , ' , . . . , , , ~ , , , , , ~ , , , , . , , . , , , , , ' , , , , , ' . , , ' , . , ' , , , , , , , , , . . , , . . , , , ,

specmution Dedgn

Actual

SEW Proceedings

Lessons Learned

Requirement metrics assist in identieing potential

Multiple metrics are needed for comprehensive

Evaluation of requirement text can yield risk
information very early in the life cycle

Metric collection is cheaper, faster and more reliable
with requirement management tools

Project Phases - Graphical Representation

SEW Proceedings

SEW Proceedings

3'60 7 o a
Applying the SCR Requirements Specification Method

to Practical Systems: A Case study§

Rarnesh Bharadwaj and Connie Heitmeyer
Center for High Assurance Computer Systems

Naval Research Laboratory
Washington, DC 20375-5320

Email: {ramesh , h e i t m e y e r j ~ i t d . n r l .navy . m i l

1 Introduction

Studies have shown that the majority of errors in software systems are due to incorrect requirements
specifications. The root cause of many requirements errors is the imprecision and ambiguity that
arise because the software requirements are expressed in natural language. An effective way to
reduce such errors is to express requirements in a formal notation. For a number of years, researchers
at the Naval Research Laboratory (NRL) have been working on a formal method based on tables to
specify the requirements of practical systems [2,11]. Known as the Software Cost Reduction (SCR)
method, this approach was originally formulated to document the requirements of the Operational
Flight Program (OFP) for the U.S. Navy's A-7 aircraft [2]. Since SCR's introduction more than
a decade ago, many industrial organizations, including Lockheed, Grumman, and Ontario Hydro,
have used SCR to specify requirements. Recently, NRL has developed both a formal state machine
model [12, 141 to define the SCR semantics and a set of software tools to support analysis and
validation of SCR requirements specifications [lo]. The tools support consistency and completeness
checking, simulation, and model checking.

To evalute the SCR method and toolset, we recently used SCR to produce a black box require-
ments specification of a simplified mode control panel for the Boeing 737 autopilot. Beginning with
the English language description of the system presented in [4], we represented the environmental
quantities that the computer system monitors (e.g., the pilot switches, dials, and sensors) and
the environmental quantities that the computer system controls (i.e., the individual displays) as
monitored and controlled variables. We then used these variables and the SCR tabular notation to
specify the requirements of the mode control panel. The heart of the specification is the relation
RE&, the required relation between the monitored and controlled variables [20].

In this paper, we use the autopilot mode control panel as an example for comparing and con-
trasting the SCR approach to requirements specification and analysis with the approach used in
[4]. The latter approach uses the formal language of SRI's Prototype Verification System (PVS)
[17] to represent the requirements of the mode control panel and then applies the automated rea-
soning provided by PVS to analyze the specification. Formulating the requirements specification

§This work was supported by the Office of Navd Research.

SEW Proceedings 353

for the mode control panel in SCR exposed a number of problems, including a missing input event,
an incorrect assumption about the environment, and a misinterpretation of the prose description.
We also discovered that because parts of the PVS specification are highly abstract, certain key
aspects of the system's requirements are omitted. In contrast, the SCR approach makes explicit
many important questions about the required behavior of the mode control panel. We conclude
with a discussion of general issues such as the appropriate level of abstraction for documenting
requirements, the choice of notation, the kinds of analyses that can be done on the specification,
the relation between different kinds of analyses, and the role of tool support. Appendix B contains
the complete SCR requirements specification of the mode control panel.

2 Motivation and Background

It is widely acknowledged that requirements are a major source of errors during the development of
large software systems [I, 9, 161. For example, studies by Lutz [16] have shown that functional and
interface requirements were the source of a majority of safety-related software errors in NASA's

I Voyager and Galileo spacecrafts. There is no doubt that getting a complete and consistent charac-
terization of software requirements is inherently hard. However, there are failings in the software
development process, including the requirements process, that can be rectified by improved practice
[8]. A disciplined and rigorous approach to the analysis and specification of software requirements
can address many difficulties that result from such failings.

The goal of the requirements phase is to create adocument, the Software Requirements Spec-
ification (SRS), to precisely describe the problem to be solved and to accurately characterize the
set of acceptable solutions to the problem. The effectiveness of the requirements phase is deter-
mined by the extent to which the SRS is precise, unambiguous and consistent (i.e., its correctness),

I
whether it captures all the results of the analysis (i.e., its completeness), and its useability. The
useability criteria are ease of change (i.e., its modifiability), whether the notation is understandable
both by customers as well as the developers (i.e., its readability), its organization for easy reference
and review (for instance, one should quickly be able to find answers to specific questions about
the requirements), and organization for ease of change. In addition, the underlying conceptual
model and notation of the SRS should support formal analyses such as validation (to ensure that
the specification describes the intended requirements), and verification (which establishes that the
specification satisfies critical properties of interest). Finally, the method should provide guidelines
that support decisions on organization and modification of the SRS. By sufficiently constraining
the underlying semantic model, these guidelines ensure that the quality of the SRS does not depend
too much on the level of expertise of its writer(s).

2.1 The SCR Method

Unlike traditional research on requirements, which concentrates on the requirements analysis pro-
cess, the focus of the SCR work at the Naval Research Laboratdry is on issues that influence the
creation and maintenance of the SRS. By identifying desirable properties of an SRS, the SCR
project has developed a set of guidelines for writing the SRS [l l , 81. These guidelines include
separation of concerns, information hiding, and the use of a readable yet formal notation. For

SEW Proceedings 354 SEL-96-002

example, the guideline separation of concerns supports useability, modifiability, and verifiability of
the SRS. Moreover, the notation supported by the SCR method is designed to be understandable
both by customers as well as software developers. Underlying the notation is a mathematical model
which supports completeness and consistency checking, validation, test case generation, and formal
verification.

To support the SCR method, NRL has developed a set of software tools for analysis and
validation of SCR requirements specifications [lo, 131. The tools include a specification editor for
creating and modifying the specifications, a sinzalator for symbolic execution, and tools for formal
analysis. The latter include a consistency checker which uncovers application-independent errors
such as syntax and type errors, missing cases, and unwanted nondeterminism, and a verijer which
checks a specification for critical application-specific properties.

2.2 PVS

PVS (Prototype Verification System) [I?] is an environment for specification and verification de-
veloped at SRI International. The PVS system is built around a highly expressive specification
language. The system has a number of predefined theories, and comes with a very effective in-
teractive theorem prover in which most of the low-level proof steps are automated. The PVS
specification language is based on higher-order logic with a richly expressive type system. The
PVS prover consists of a powerful collection of inference steps which include arithmetic and equal-
ity decision procedures, automatic rewriting, and boolean simiplification. PVS has been applied
to a number of practical problems [4, 5, 211. Many organizations, including NASA, have used the
PVS specification language for documenting software requirements.

3 Comparison of PVS with the SCR method

In this section, we address some of the strengths and limitations of using PVS, and compare the
PVS approach t o the SCR method. We base our comparison on the assumption that a notation (and
associated tools) should support the following process, which may be thought of as an idealization
of a real-world process for requirements analysis [19].

1. SRS Creation: The results of problem analysis are captured in the SRS, using a formal
notation.

2. SRS Checking: The SRS is checked for proper syntax, type correctness, consistency, com-
pleteness, and other application-independent properties, using an automated checker.

3. SRS Validation: The goal of this phase is t o ensure that the SRS captures the customers'
intent. This is achieved by symbolically executing the SRS using a simulator.

4. SRS Verification: This phase verifies that certain crucial application specific properties, such
as safety and security properties, hold for the SRS. Verification is carried out by using an
interactive theorem prover or by "lightweight" analysis tools such as model checkers.

SEW Proceedings

3.1 SRS Creation

The choice of notation, and availability of guidelines to support decisions on SRS organization
and modification, are factors which influence this phase. A simpler, more restrictive notation is
preferable to a more powerful, expressive one. In addition to ease of use, a restricted semantic
model can provide guidelines for creating and organizing the SRS. A well-designed notation will
help even novices create good specifications.

The PVS system is built around a highly expressive specification language. However, most
developers, being unfamiliar with higher-order logic (the underlying formalism of the PVS spec-
ification notation), lambda expressions, higher-order functions and quantification, etc, find the
notation hard to use. It has also been our experience that the expressive power of higher-order
logic is seldom required for requirements specification of most practical systems. The organizing
unit for PVS specifications is the "Theory". The PVS language lacks structures to support read-
ability and ease of change. It is very hard for novices to create good PVS specifications. For
example, it has been observed by Young [22] that the quality of specifications in PVS depends to
a large extent on the expertise of the specification writer.

The SCR method is suitable for embedded, real-time systems, i.e., for systems that sense and
control quantities in their environment [20]. The SCR method includes a systematic approach
for capturing requirements [ll, 15, 61, and is based on a tabular notation which has a formal
mathematical basis [12, 13, 141. The SCR notation, having been tailored to a specific class of
problems, sacrifices generality for ease of use and imp~oved support for analysis. Most engineers
find the tabular notation easy to use and understand. Also, tables afford a natural organization
which permits independent construction, review, modification, and analysis of smaller parts of a
large requirements specification.

It has been observed that in comparison to graphical notations and (structured) text, tabular
notations scale very well to large problems. According to Parnas, the specification of the shutdown
system for the Darlington Nuclear Power Plant [18] weighed more than 20 kilograms on paper. In
our own experience, we have come across examples of SCR requirements specifications for practical
systems (e.g., the OFP for the C-130J aircraft [7]) containing more than a thousand tables.

3.2 SRS Checking

In addition to checks for incorrect syntax, the PVS language has a rich type system which supports
rigorous typechecking. The type system of PVS is undecidable, which means that typechecking
cannot be completely automated. In most situations, the PVS typechecker will generate proof
obligations which have to be proved using the interactive prover. Such proofs amount to a very
strong consistency check on some aspects of the specification.

The consistency and completeness checker of the SCR toolset verifies application-independent
properties derived automatically from the requirements model. These checks ensure that a specifi-
cation is well-formed by identifying syntax and type errors, incompleteness, missing initial values,
unreachable modes, and circular definitions. The tool also identifies missing cases and undesirable
nondeterminism. All these checks are carried out automatically.

SEW Proceedings

3.3 SRS Validation

PVS does not support validation.
The tabular notation of SCR supports validation by inspection and simulation. Most domain

experts find this notation easy to read and review. For example, Parnas [18] observes that the
utility of the tabular notation was evident during the formal review of the Darlington specification.
During the review, each "case" and its associated subcases could be reviewed individually and inde-
pendently of other "cases". The tabular notation also forces one to consider all possible scenarios.
Further, we show in [3] that theorems that are true of certain fragments of an SCR requirements
specification also hold for the whole specification.

The simulator in the SCR toolset performs symbolic execution of the underlying state machine
model, which allows users to assess system behavior in specific "use cases" directly from the re-
quirements specification. The simulator can expose problems - such as missing requirements and
incorrectly stated requirements - that cannot be detected by verification techniques.

3.4 SRS Verification

Using PVS, one can establish, by interactive theorem proving, properties that are deemed to be
true of a requirements specification. However, few practitioners have the mathematical sophistica-
tion required to carry out such proofs. The state-of-the-art theorem prover of PVS does ameliorate
the problem by including powerful decision procedures that automate parts of a proof that would
otherwise require user guidance. Very often, a property will not hold for a requirements specifi-
cation. In such a case, either the formulation of the property is incorrect, or the specification is
wrong (or both). Proper diagnosis and user feedback are therefore very important to help correct
the problem. Theorem provers provide very little help in such situations because theorem proving
is incomplete; i.e., if one is unable to prove a theorem using a theorem prover, then all one can
conclude is that the theorem prover failed to find a proof (the theorem may be true). On the other
hand, methods such as model checking are complete - if a model checker reports that a theorem
is false, it is false. Additionally, most model checkers will provide a counterexample that falsifies
the theorem. PVS does support model checking for a limited subset of the language, but provides
no counterexample.

The SCR toolset supports proof of safety properties of a requirements specification using state
exploration based model checking [3]. One of the main design goals of our toolset is to provide
proper error diagnosis by generating understandable counterexamples for user feedback. Future
plans include support for other forms of model checking and automatic theorem proving. Since the
underlying model of the SCR notation is a state machine, several other verification activities can be
supported. For instance, we plan to automatically generate test-cases from an SCR specification,
to assist in black-box testing of implementations. In certain limited contexts, it should also be
possible to automatically generate code directly from an SCR requirements specification.

4 The Autopilot Requirements specification

To illustrate the SCR method, we consider a simplified mode control panel for the Boeing 737
autopilot as discussed in [4]. The mode control panel for the autopilot is shown in Figure 1.

SEW Proceedings 357 SEL-96-002

Figure 1: Mode Control Panel

SEW Proceedings

The system monitors the aircraft's altitude (ALT), flight path angle (FPA) and calibrated air
speed (CAS). The panel includes three displays which show the current values for altitude, fight
path angle, and airspeed of the aircraft. The pilot may enter a new value into a display by "dialing-
in" the value using one of three knobs next to the displays. The pilot engages or disengages the
autopilot by pressing one of four buttons on the panel. Appendix A contains a description of
the system in English prose (adapted from [4]). Below, we informally present the steps taken to
document the requirements using the SCR notation.

In SCR, the required system behavior is described by REQ, the required relation between
monitored variables, environmental quantities that the system monitors, and controlled variables,
environmental quantities that the system controls [20]. To specify this relation concisely, the SCR
approach uses four constructs - modes, terms, conditions, and events. A mode class is a variable
whose values are system modes (or simply modes), while a term is any function of monitored
variables, modes, or other terms. A condition is a predicate defined on one or more system entities
(an entity is a monitored or controlled variable, mode class, or term). An event occurs when the
value of any system entity changes. The notation "@T(c) WHEN d" denotes a conditioned event,
defined as

@T(c) WHEN d ef l c A c' A d,

where the unprimed condition c is evaluated in the "old" state, and the primed condition c' is
evaluated in the "new" state. The notation "OF(c)" denotes the event @T(NOT c). The environ-
ment may change a monitored quantity, causing an input event. In response, the system changes
controlled quantities and updates terms and mode classes.

We begin by identifying the monitored quantities, i.e., the environmental quantities that the
autopilot system monitors, and denote them by corresponding monitored variables. We use the
prefix "m" for all monitored variable names. Each monitored variable is of a certain type, which
specifies the range of values that may be assigned to that variable. The autopilot system moni-
tors the actual altitude (denoted by monitored variable mALTactual), the actual flight path angle
(mFPAactual), and the actual calibrated air speed (mCASactua1). We assume these variables to
range over the integers. Switches ALTsw, ATTsw, CASsw, and FPAsw are denoted respectively by
mALTsw, mATTsw, mCASsw, and mFPAsw. These monitored variables may take on one of the values
from the set {on, off}. Finally, knobs ALTdesired, CASdesired, and FPAdesired are denoted by
monitored variables mALTdesired, mCASdesired, and mFPAdesired respectively, which range over
the integers.

We then identify the controlled quantities, i.e., the environmental quantities that the autopilot
system controls, and denote them by corresponding controlled variables. We use the prefix "cn for
all controlled variable names. Just as for monitored variables, we assign a type to each controlled
variable. For simplicity of exposition we shall, as in [4], only model the mode-control panel itself,
and not the commands that will be sent out to the flight-control computer. The three controlled
quantities of the mode control panel are ALTdisplay, FPAdisplay, and CASdisplay, which we
denote respectively by cALTdisplay, cFPAdisplay, and cCASdisplay. We assume these values to
range over the integers.

We model the primary modes of the mode-control panel by the modeclass Status, denoted by
variable mcstatus. The variable can take on any value in the set mod mode, ATTmode, mo mode).
The altitude engaged mode being "armed" is denoted by a boolean term variable tARMED (we use

SEW Proceedings 359 SEL-96-002

the prefix "t" for terms). If tARMED is true, then mcStatus should be FPAmode. The previous
sentence is an example of a property of the specification which we may later want to prove. We
also define a boolean valued term tCASmode, to model the system being in the calibrated air speed
mode. By describing the status of the mode-control panel in this manner, we have ensured that
the following sentences in the prose requirements are trivially satisfied:

1. Only one of the three modes ALTmode, ATTmode, or FPAmode can be engaged at any time.

2. One of the three modes, ATTmode, FPAmode, or ALTmode should be engaged at all times.

3. Engaging any of the three modes will automatically cause the other two to be disengaged since
only one of these three modes can be engaged at a time.

4. The mode CASmode can be engaged a t the same time as any of the other modes.

We define three boolean valued terms tALTprese1, tCASpresel, and tFPApresel to denote
whether the corresponding quantity has been pre-selected by dialing in a new value using one of
the three knobs. Finally, we define a boolean term tNear to denote the predicate mALTdesired -
mALTactual5 1200.

The behavior of mode class mcstatus is specified in a mode transition table. In the following,
the expression CHANGED (x) denotes the event "variable x has changed". The table defines all events
that change the value of the mode class mcstatus. For example, the first row of the table states, "If
mcStatus is ALTmode, and mATTsw is switched on, or the setting of knob mALTdesired is changed,
then mcStatus changes to ATTmode." Events that do not change the value of the mode class are

Each row in the mode transition table above corresponds to certain sentences in the prose
requirements. We describe this correspondence below. Here, "paragraph x" refers to the numbered
paragraph x of the prose requirements in Appendix A.

omitted from the table.

Row 1. The pilot engages a mode by pressing the corresponding button on the panel (paragraph 1) i.e.,
pressing ATTsw should engage ATTmode OR If the pilot dials in a new altitude while ALTmode
is engaged, then ALTmode is disengaged and ATTmode is engaged (paragraph 7) .

Source Mode

ALTmode

ALTmode

ATTmode

ATTmode

FPAmode

F'PAmode

Row 2. The pilot engages a mode by pressing the corresponding button on the panel (paragraph 1) i.e.,
by pressing FPAsw the pilot engages FPAmode.

SEW Proceedings 360

Events

OT(mATTsw = on) OR CHABGED(mALTdesired)
OT(mFPAsw = on)
OT(mALTsw = on) WHEX (tALTprese1 ABD tBear)
@T(mF'PAsw = on) OR OT(mALTsw = on) WHEB
(tALTprese1 AND HOT tBear)

OT(mALTsw = on) WHEN (tALTprese1 ABD ttlear) OR
OT(tBear) WHEN tARMED

OT(mATTsw = on) OR OT(mFPAsw = on) OR
CHABGED(mALTdesired) WHEN tARMED

Destination Mode

ATTmode

F'PAmode

ALTmode

FPAmode

ALTmode

ATTmode

Row 3. The pilot engages a mode by pressing the corresponding button on the panel (paragraph 1) i.e.,
pressing ALTsw engages ALTmode. However, the altitude must be pre-selected before ALTsw is
pressed (paragraph 4). If the pilot dials an altitude that is more than 1,200 feet above ALTactual
and then presses ALTsw, then ALTmode will not directly engage (paragraph 3).

Row 4. The pilot engages a mode by pressing the corresponding button on the panel (paragraph 1) i.e.,
by pressing FPAsu the pilot engages FPAmode OR If the pilot dials into ALTdesired an altitude
that is more than 1,200 feet above ALTactual and then presses ALTsu, then ALTmode will not
directly engage. Instead, the altitude engage mode will change to "armed" and FPAmode is
engaged (paragraph 3).

Row 5. The situation described for row (3) above OR Instead, the altitude engage mode will change to
"armed" and FPAmode is engaged. [. . .] FPAsaode will remain engaged until the aircraft i s within
1,200 feet of ALTactual, then ALTmode is automatically engaged (paragraph 3).

Row 6. The pilot engages a mode by pressing the corresponding button on the panel (paragraph 1) i.e.,
by pressing mATTsw the system enters ATTmode OR FPAsw toggles on and ofl every time it is
pressed. (paragraph 5) O R If the pilot dials i n a new altitude while the altitude engage mode is
Karmedn then ATTmode is engaged. [. . .] FPAmode should be disengaged as well. (paragraph 7).

The behavior of term tARMED is specified in the event table below. Like mode transition tables,
event tables make explicit only those events that cause the variable defined by the table to change.
For example, the first entry in the first row states, "If'mc~tatus is ATTmode or FPAmode a d mALTsw
is turned on when tALTpresel is true and tNear is false, then tARMED becomes true." The entry
"NEVER" in an event table means that no event can cause the variable defined by the table to
assume the value in the same column as the entry; thus, the entry "NEVERn in row 2 of the table
means that when mcStatus is ALTmode no event can cause tARMED to become true. An entry
"OT(1nmode)" in a row of a mode transition table or an event table denotes the event "system
entered the corresponding mode".

1 Hodes I Events 1
I I

ATTmode , 1 QT(mALTsa = on) WHEN (tALTprese1 I OF(mcStatus = FPAmode) 1
I FPAmode I AlDD NOT tNear) I I
I ALTmode I NEVER 1 OF(mcStatus = FPAmode) I
1

~ARWED = I true I false I
We finally present the behavior of the display cCASdisplay using the condition table below. This

table states that "If tCASpresel is true then cCASdisplay has the value mCASdesired; otherwise,
it has the value mCASactualn. The complete autopilot specification is in Appendix B.

SEW Proceedings

5 Discussion of General Issues

In [3] we present a verification technique for proving properties of SCR requirements specifications.
This technique proved to be valuable in detecting and correcting bugs in the autopilot specification.
For example, an initial formulation of the specification violated the property "the altitude engage
mode will be ARMED only when the flight path angle select mode is engaged". The counterexample
generated by the tool helped diagnose the error (we were setting tARMED to true when mcStatus is
ALTmode, and mALTsw is turned on when tALTprese1 is true and tNear is false).

We found that the PVS model does not clearly distinguish a system's environmental quantities
from the dependent quantities. Also, by not clearly identifying environmental quantities the system
monitors, and environmental quantities the system controls, it was very hard to find an answer to
the question "What is the required behavior of the system?" by examining the PVS model. During
the process of creating the SCR requirements specification, we came up with several questions for
which we could not find answers from the PVS model. This is because the PVS description is not
at the appropriate level of abstraction.

5.1 Appropriate Level of Abstraction

The PVS model of the autopilot in [4] is too abstract to serve as a requirements specification, i.e.,
as a black box description of all acceptable system implementations. Rather than specifying the
required relationship between environmental quantities of the autopilot mode control panel, the
PVS description is an abstract model of the mode control panel. Therefore, it is not a require-
ments specification. For example, the monitored quantity ALTactual is denoted abstractly by two
boolean variables a l t r eached and al t-getsnear; boolean variable input-alt abstractly denotes
the pilot "dialing-in" the desired altitude using knob ALTdesired; etc. It is usual to make such ab-
stractions during verification, because existing methods cannot be directly applied to requirements
specifications, which are too detailed. However, the right approach is to begin by formulating the
requirements specification, and later to describe formally the relationship between the specification
and the abstract verification models. If the correspondence between the abstract models and the
requirements specification is informal (or if the requirements specification is never created), it leaves
room for misinterpretation.

5.2 Kinds of Analyses

In our experience, the first three phases of our idealized process for requirements analysis, viz., SRS
Creation, SRS Checking, and SRS Validation, are the most crucial ones. It is very likely that a
large proportion of activities of requirements analysis will be in support of these phases. It is also
safe to assume that for a majority of projects (barring a small number of projects developing safety
or mission critical applications) the last phase, i.e., SRS Verification, will be completely skipped.
Since PVS concentrates exclusively on this phase of analysis, and provides poor support for the
initial three phases, it is unlikely to be very effective as a tool to support requirements analysis.
However, PVS has been effective in the analysis of critical algorithms and architectures for fault-
tolerance, such as the correctness of distributed agreement protocols for a hybrid fault model, and
in the verification of crucial subsystems, such as a commercial avionics microprocessor.

SEW Proceedings 362 SEL-96-002

5.3 Role of Tool Support

In our experience, tools that support a limited analysis domain, with a specific conceptual model,
tend to be more effective than general purpose tools. If a method lacks a strong underlying con-
ceptual model, the benefits of automation are likely to be minimal ([8] provides more details). If a
method does not adequately constrain the problem, the corresponding support tools cannot guide
the developer when making difficult decisions. Since the SCR method standardizes the problem
domain, the conceptual model, the notation, and the process, significant automated tool support
is possible. For example, by using information about the current state of a specification, and
knowledge of the process, a tool can guide developers in making the next step. Also, by providing
standard templates, a tool can automate the routine activities of SRS creation. By applying the
SCR method to several industrial problems, we plan to exploit the full potential of such tools.

6 Acknowledgements

We thank Jim Kirby for many helpful discussions on the autopilot specification. We gratefully
acknowledge Ricky Butler for providing helpful insights and for his prompt answers to all our
questions about the autopilot mode control panel.

References

[I] M. Alford. Software Requirements Engineering Methodology (Development). RA DC- TR- 79-
168, U.S. Air Force Rome Air Development Center, June 1979.

[2J T. Alspaugh, S. Faulk, K. Britton, R. Parker, D. Parnas, and J. Shore. Software Requirements
for the A-7E Aircraft. Technical Report NRL-9194, NRL, Washington DC, 1992.

[3] R. Bharadwaj and C. Heitmeyer. Verifying SCR requirements specifications using state explo-
ration. Submitted for publication.

[4] Ricky W. Butler. An Introduction to Requirements Capture Using PVS: Specification of a
Simple Autopilot. NASA Technical Memorandum 110255. NASA Langley Research Center,
May 1996.

[5] B. L. DiVito and L. W. Roberts. Using Formal Methods to Assist in the Requirements Analysis
of the Space Shuttle GPS Change Request. NASA Contractor Report 4752. NASA Langley
Research Center, Hampton VA 23681, August 1996.

[6] S. R. Faulk, et al. The CoRE method for real-time requirements. IEEE Software, 9(5), Septem-
ber 1992.

[7] S. R. Faulk, et al. Experience applying the CoRE method to the Lockheed C-130J. In Proc.
gth Annual Conference on Computer Assurance, Gaithersburg MD, June 1994.

[8] S. R. Faulk. Software Requirements: A Tutorial. Technical Report NRL/MR/5546-95-7775,
Naval Research Laboratory, Washington DC, 1995.

SEW Proceedings 363

[9] General Accounting Office (US). Mission Critical Systems: Defense Attempting to Address
Major Software Challenges. GA O/IMTEC-93-1 2, December 1992.

[lo] Constance Heitmeyer, et al. SCR*: A toolset for specifying and analyzing requirements. In
Proc. loth Annual Conference on Computer Assurance, NIST, Gaithersburg MD, June 1995.

[l l] K. L. Heninger. "Specifying software requirements for complex systems: New techniques and
their applicationsn. IEEE Transactions on Software Engineering SE6(1), Jan 1980.

[12] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Tools for Analyzing SCR-style Requirements
Specifications: A Formal Foundation. Technical Report NRL-7499, NRL, Wash. DC, 1995. In
preparation.

[13] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. "Automated Consistency Checking of
Requirements Specificationsn. ACM Trans. on Software Engg. and Methodology, 5(3)231-261,
July 1996.

[14] Constance Heitmeyer, Bruce Labaw, d Daniel Kiskis. Consistency checking of SCR-style
requirements specifications. In Proc. 1995 Int '1 Symposium on Requirements Engg., York, Eng-
land, March 1995.

[15] C. L. Heitmeyer and J. McLean. "Abstract requirements specifications: A new approach and
its application". IEEE Transactions on Software Engineering, SE-9(5), Sep 1983.

[16] R. Lutz. Analyzing software requirements errors in safety-critical embedded systems. In Pm.
IEEE Int'l Symp. on Requirements Engg., pp. 126-133, Jan 1993.

[17] Sam Owre, John Rushby, and Natarajan Shankar. PVS: A prototype verification system. In
11" International Conference on Automated Deduction, LNCS-607, pp 748-752, 1992.

[18] D. L. Parnas, 6. J. K. Asmis and J. Madey. Assessment of safety-critical software in nuclear
power plants. Nuclear Safety, 32(2), 1991.

[19] D. L. Parnas and P. Clements. A rational design process: how and why to fake it. IEEE
Trans. on Software Engg., 12(2), February 1986.

[20] D. L. Parnas and J. Madey. Functional documents for computer systems. Science of Computer
Progmmming, 25(1), pp 41-62, Oct 1995.

[21] M. K. S r i w and S. P. Miller. Formal Verification of an Avionics Microprocessor. NASA
Contractor Report 4682, NASA Langley Research Center, July 1995.

[22] W. D. Young. Comparing verification systems: interactive consistency in ACL2. In Proc.
COMPASS996, Gaithersburg MD, 1996.

SEW Proceedings

A Description of the autopilot

1. The mode-control panel contains four buttons for selecting modes and three displays for dialing
in or displaying values, as shown in Figure 1. The system supports the following four modes:
attitude control wheel steering (~ ~ T m o d e) , flight path angle selected FPAmode), altitude engage
(A~~mode) , and calibrated air speed (CASmode).

Only one of the first three modes can be engaged at any time. The mode CASmode can be
engaged at the same time as any of the other modes. The pilot engages a mode by pressing
the corresponding button on the panel. One of the three modes, ATTmode, FPAmode, or ALTmode
should be engaged at all times. Engaging any of the first three modes will automatically cause
the other two to be disengaged since only one of these three modes can be engaged at a time.

2. There are three displays on the panel: altitude (ALTdisplay), flight path angle (FPAdisplay),
and calibrated air speed (C~Sdisplay) . The displays usually show the current values of altitude
(ALTactual), flight path angle (FPAactual), and air speed (CASactual) of the aircraft. How-
ever, the pilot can enter a new value into a display by dialing in the value using the knob next
to the display (ALTdesired, FPAdesired, or CASdesired). This is the target or '%re-selectedn
value that the pilot wishes the aircraft to attain. For ezample, i f the pilot wishes to climb to
25,000 feet, he will dial 25,000 (using the knob ALTdesired) into ALTdisplay and then press
ALTsw to engage ALTmode. Once the target value is achieved or the mode is disengaged, the
display reverts to showing the 'currentn value.

3. If the pilot dials into ALTdesired an altitude that is more than 1,200 feet above the current
altitude (AL~actual) and then presses ALTsw, then ALTmode will not directly engage. Instead,
the altitude engage mode will change to 'armed" and FPAmode is engaged. The pilot must then
dial in, using the knob FPAdesired, the desired jlight-path angle into FPAdisplay, which will
be followed by the flight-control system until the aircraft attains the desired altitude. FPAmode
will remain engaged until the aircraft is within 1,200 feet of ALTactual, then ALTmode is auto-
matically engaged.

4. CASdesired and FPAdesired need not be pre-selected before the corresponding modes are en-
gaged - the current values displayed will be used. The pilot can dial-in a diflerent target value
after the mode is engaged. However, the altitude must be pre-selected before ALTsw is pressed.
Otherwise, the command is ignored.

5. CASsw and FPAsw toggle on and 08 every time they are pressed. For example, i f CASsw is
pressed while the system is already in CASmode, that mode will be disengaged. However, if
ATTsw is pressed while A m o d e is already engaged, the command is ignored. Likewise, pressing
ALTsw while the system is already in ALTmode has no egect.

6. Whenever a mode other than CASmode is engaged, all other pre-selected displays should return
to current.

7. If the pilot dials in a new altitude while ALTmode is engaged or the altitude engage mode is
"armed", then ALTmode is disengaged and ATTmode is engaged. If the altitude engage mode is
"armed" then FPAmode should be disengaged as well.

SEW Proceedings 365

B SCR Specfieation of the autopilot

Monitored Variables:
mALTactua1, mCASactual, mFPAac-t;ual : Integer initially all 0;
mALTsw, mATTsw, mCASsw, mFPAsw : {on, off) initidly all off;
mALTdesired, mCASdesired, mFPAdesired : Integer initially all 0;

Controlled Variables:
cALTdisplay, cCASdisplay, cFPAdisplay : Integer initially all 0;

Mode Class:
mcSt atus : { ALTmode, ATTmode, F~Arnode) initially ATTmode;

Terms:
tARMED : Boolean initially false;
tCASmode : Boolean initially false;
tALTprese1, tCASpresel, tFPAprese1 : Boolean initially all false;

tNear mA~~desired - mALTactual5 1200;

Figure 2: Variable Dependency Graph

SEW Proceedings 366 SEL-96-002

Node Transition Table for mcStatus
Source Mode

ALTmode

ALTmode

ATTmode

ATTmode

FPAmode

FPAmode

Events

@T(mATTsw = on) OR CHANGED(mALTdesired)
@T(mFPAsw = on)
@T(mALTsw = on) WHEN (tALTprese1 AND Wear)
(OT(mFPAsw = on) OR (OT(mALTsw = on) WHEN
(tALTprese1 AND NOT Wear)

(OT(mALTsw = on) WHEN (tALTprese1 AND tBear) OR
@T(tNear) WEER tARMED

@T(mATTsw = on) OR @T(mFPAsw = on) OR
CHARGED (mALTdesired) WEEN t ARMED

Destination Mode

ATTmode

FPAmode

ALTmode

FPAmode

ALTmode

ATTmode

I 1 (tALTprese1 AND NOT tNear) I I

Modes

ATTmode, FPAmode

Events

@T(mALTsw = on) WHEN I @F(mcStatus = FPAmode)

Events
@T(mCASsw = on) WHEN NOT
tCASmode
true

Modes

ALTmode

QT(mCASsw = on) WHEN
t CASmode
false

Events

SEW Proceedings

Events

CHANGED(mCASdesired)

true

Events

NEVER

W(tCASmode) OR @T(mCASdesired =
mCASactua1) WHEN tCASmode
false

CHANGED(mFPAdesired)

true

@T(mALTdesired =
mb.LTactua1) OR QF(IHH0DE)

QT(mcStatus = ATTmode) OR
@T(mcStatus = ALTmode) OR
(PT (mFPAdesired = mFPAactual) WHEN
(mcStatus = FPAmode)
false

SEW Proceedings

APPLYING THE SCR REQUIREMENTS
SPECIFICATION METHOD TO PRACTICAL

SYSTEMS: A CASE STUDY

Ramesh Bharadwaj and Connie Heitmeyer

Center for High Assurance Computer Systems
Naval Research Laboratory

Washington, DC 20375

December 5, 1996

e SCR Method: A ~w study 'I

l ~ h e NRL SCR ~roiectl

Initial goal. Document requirements of the Operational Flight
Program (OFP) for the US Navy's A-7 aircraft.

Recent work:

Formal state machine model for the SCR notation

Support tools for analysis and validation of SCR spdcations

a Application to practical systems

- Lockheed: G130J OFP
- US Navy: Torpedo Control Panel for new attack submarine

erh Bharadwaj aud Connie Hatmeyer

SEW Proceedings

f6he SCR Method: A Case Study \

iKmizEl
Effectiveness of the Software Ftequirements Specification (SRS)
depends on:

Precision
Correctness: Satisfies critical properties
Consistency: Parts are not contradictory
Completeness: Captures all required behavior
No Implementation Bias
Useabity:
- Modifiability: Ease of change
- Readability: Customers as well as developers
- Organization: Reference, review, answers to questions
Scalability

v e s h Bharadwaj md Connie Hatmeyer 3

fihe SCR M e t h d A Case Study \

lpvsl

Prototype Verification System from SRI International.

Expressive specification language (based on Higher-Order Logic)
Built-in and user-defined theories and strategies
Interactive theorem prover
- Automation of low-level proof steps
- Powerful decision procedures

, - Automatic rewriting
- Boolean similification

Is PVS an effective tool for requirements specScation and analysis?

e h Bhsradwaj and Connie Heitmeyer

SEW Proceedings 370 SEL-96-002

he SCR Methad: A Case Study ',

[~dealized Requirements Analysis ~rocessl

1. SRS Creation - Capturing requirements in a formal notation.
2. SRS C&C Checking - Syntax, type, missing cases, unwanted

nondeterminism, circular definitions.
3. SRS Validation - Inspection, simulation.
4. SRS Verification - Theorem proving or model checking.

y e s h Bharadwaj and Connie Heitmeyer -

SEW Proceedings 37 1 SEL-96-002

SCR Method: A Cape Study \

1 Phase 11 PVS 1 SCR
SRS Creation

SCR Method
First-Order Logic
Tables
High

Guidelines
Notation
Organization
Scalability

None
Higher-Order Logic
Theory
Low

SRS Checking
Automatic
C&C Checks

Tables ease review
Symbolic execution

Model Checking
Counterexample
Yes
Possible

Syntax and type
Consistency

esh Bbaradwaj and Conmc Heitmeyo /

Semi-automatic
Typechecking

SRS Validation
Inspection
Simulation

Little support
Not supported

SRS Verification
Checking properties
User feedback
Test case generation
Code generation

Theorem proving
None
No
No

fihe SCR Method: A h e Study \

So I would argue that if anything, we should be looking for ways to
make PVS more readable for specific problem domains. [. . .] I'd
rather see scarce resources going towards greater readability.

Steven P. Miller, Rockwell International.

If the primary intended users of PVS are logicians and
mathematicians, then keeping the current syntax [. . .] is a
reasonable approach. If the primary intended users of PVS are
practicing engineers, then neither the current syntax nor a
LISP-like one makes any sense.

C. Michael Holloway, NASA Langley.

-ah Bharadwaj and Connie Heitmeyer J

hie SCR ~ethod: A case study 7

1 The SCR Approach to ~ e ~ u i r e m e n t s 1

Identify the system outputs (controlled variables)
Determine the system inputs (monitored variables)
Define auxiliary variables (mode classes and terms)
Specify ideal system behavior (functions defined by tables)

e Specify acceptable system behavior (timing and accuracy)

\e-glh Bharadwaj and Connie Heitmew /

SEW Proceedings

he SCR Method: A Case Study 7

ALTdisplay 71 @) ALTdesired

7 1 0 PPAdesid

71 O C A M u i d

esb Bharadwaj and C o ~ i e Heitmeyw

he SCR Method: A CMe Study 7

\Monitored variables 1
mALTactual, mCASactua1, mFPAactual : Integer;
mALTsw, mATTsw, mCASsw, mFPAsw : {on, of f);
mALTdesired, mCASdesired, mFPAdesired : Integer;

1 Controlled Variables (
cALTdisplay, cCASdisplay, cFPAdisplay : Integer;

pzxiizi
mcStatns : {ALTmode, ATTmode, FPAmode);

]Termsl
tArmed : Boolean;
tCASmode : Boolean;
tALTpresel, tCASprese1, tFPApresel : Boolean;
tNear : Boolean;

e e s h Bharadwaj and Connie Heitmeya J

SEW Proceedings 373 SEL-96-002

d h e SCR Method: A Case Study >

s h Bharadwaj and Connie Heitmeyer J

SEW Proceedings 374 SEL-96-002

Khe SCR Method A Care Study \

Mode Transition Table for mcStatus
Source Mode
ALTmode

ALTmode
ATTmode

ATTmode

FPAmode

FPAmode

s h Bharadwaj and Connie Heitmeyer

Events
@T(mATTsw = on) OR
CHANGED (mALTdesired)
@T(mFPAsw = on)
@T(mALTsw = on) WHEN
(tALTprese1 AND tNear)

@T(mFPAsw = on) OR @T(mALTsw
= on) WHEN (tALTprese1 AND
NOT tNear)
@T(rnALTsw = on) WHEN
(tALTprese1 AND tNear) OR
@T(tNear) WHEN taRMED
@T(mATTsw = on) OR QT(mFPAsw
= on) OR CHANGED(mALTdesired)
WHEN t ARMED

Dest. Mode
ATTmode

FPAmode
ALTmode

FPAmode

ALTmode

BTTmode

SCR Method: A Case Study

h e SCR Method: A Case Study 7

Mode Transition Table for mcStatus

SEW Proceedings 375

Source Mode
ALTmode

The pilot engages a mode by pressing the corresponding button
on the panel (paragraph 1) i.e., pressing ATTsw should engage
ATTmode OR If the palot dials in a new altitude while ALTmode
is engaged, then ALTmode e's disengaged and ATTmode as engaged
(paragraph 7).

h Bharadwaj and Connie Heitmeyer
1

Events
@T(mATTsw = on) OR
CHANGED (mALTdesired)

Destination Mode
ATTmode

fihe SCR Method: A Case Study \

The PVS language and prover are designed for defining a
mathematical model and reasoning about its properties
The SCR notation is a language for system requirements
- E.g., in a PVS specification, one cannot distinguish system

inputs and outputs from dependent variables
- Given a PVS specification, one cannot answer the question,

"What is the required behavior of the system?"

esh Bharadwaj and Connie Heitmeyer J

SEW Proceedings

Panel Discussion: Transferring Best Practices: Why Is It So
Complex?

,..r.i , ,

Moderator: Vic Basili, University of Maryland

Richard DeMillo, Bellcore

Michael Evangelist, Florida International University

Peter Freeman, Georgia Institute of Technology

Allan Willey, Motorola Corporation

SEW Proceedings

SEW Proceedings

SEL 21 Panel
Transferring Best Practices: Why is it so hard?

Panelists:

Richard OeMlllo Bellcore
Michael Evangelist Florida International University
Peter Freeman Georgia Tech
Allan Wllley Motorola

Premise:

Transfemng any technology is very hard. In fact it has been harder than
most people and organizations belie. For this reason, many organizations
are unwilling to admit how unsuccessful-they have been in transferring or
sustaining best practices. We would like the panel to react to this
premise.

SEL 21 Panel
Transferring Best Practices: Why is it so hard?

Each Panelist was asked to:

Give your background and experience with technology transfer.

Give one or two specific examples of transfer p r o m you have observed or
participated in:

what procedures were followed in the transfer,
w h a t ~ n s w e r e i m r o h r e d ,
what were the major problems,
what was the wst in time and schedule,
whatweretheresults,
whatwasthereactionofiheparticipants,
what aspects can you dmmsbate was successful,
whatwouldyoudodifferentlynow?

What can you share with the a u d i i in t e r n of k s m s learned?

SEW Proceedings

SEW Proceedings

SEL Panel

5 December 1996
NAS AIGoddard

Richard DeMillo, Bellcore

Contents
Bellcore background
Examples of Successful Transfer
- Adapt/XAdvertiser
- xATAC
- Programmability

Web speed and change
Carddiagram
Team vs Transfer
AdaptlXModel

SEW Proceedings

Bellcore background

Divestiture and Sale
Core customers and new customers
Product Lines and Development Processes
IS0 and CMM

Successful Transfer: Advertiser

Describe and Market
SSIAR team formation
AR led with business case
- advertising would be key
- scaleability
- right commercial model

SEW Proceedings

Successful Transfer: xATAC

AR advocate--top to bottom
Did not start from coverage--backing into it
Team formation--fear as the motivator

* AR led with business case
- third party validation
- cost-benefit
- scaleability

Successful Transfer:
Programmability

Long-term research on declarative
optimization
Competitive opportunity
LAURE was on the shelf
Scaleable technology

SEW Proceedings

Web Speed and Change

18 mos to 4 mos development cycles
75% solutions that can evolve quickly
Platforms and features

* Version 1.0 is part of requirements
definition
Ascendancy of architecture (eg availability,
scaleability
RAD and Card diagram

Team vs. Transfer

No time for transfer
Investment in inventory
Radar Screens and accountability
Impact of RAD
AdaptKModel

SEW Proceedings

Product vs. Process

P&L managers are easier to influence
Institutional change not needed
Adapt/XModel is a result of transfer

SEW Proceedings

SEW Proceedings

Transferring Research
Technology

Michael Evangelist
School of Computer Science

Florida International University
Miami, FLA

Personal Obsenla tion

Interest in TT

Research Jobs
and Funding

SEW Proceedings

When Do 1 Transfer Technology?

Need to believe that the new technology

- solves a problem
- works
- fits
- has low "cost"

Three Transfer Examples

VERDI, 1 985-90 (research prototype)

BAUSRW, 1990-92 (advanced development)

PC networking application, December 1 996 (product)

SEW Proceedings

Graphical tool for designing distributed systems

- does all the right things, simply

We did it the right way

Result: lots of interest, no serious use

- not commercial quality
- solved part of the problem
- didn't fit environment or culture
- platform and training costs high

BAUSR W

Workbench for re-engineering legacy BAL programs

- useful, graphical, status quo

We worked closely with users

Result: substantial use at a few clients

- much closer to product level
- solved urgent problem
- fit culture but not computing environment
- hardware cost high

SEW Proceedings

PC Networking Application

* Establishes PPP connection over phone line

* Numerous hard-to-find bugs, poor technical help

* Result: no limit on the amount of effort I'll put into it

- doesn't work, but we're optimistic
- solves important problem
- fits system and culture
- low long-term cost

Obsenla tions

Motivation of researchers now less of a problem

Education of software engineers a serious concern

TT model

- working engineers educated in standard practice
- research preps engineering years in advance
- if you're not inventing sliced bread, resign yourself

to incremental transfers

SEW Proceedings

Cellular lnf-re Gmup

Technology Transition
@ MOTOROLA

AUan Willey
Member of Technical Staff

December 5,1996

Topics

0 Introduction-WNSG
0 Fagan Inspections @ WNSG

Technology Transition Experience
Success stories--and "Laggards"
Lessons Learned

SEW Proceedings

WIu& lmnshwrure Gmup

Motorola Wireless Network Solutionls
Group (WWNSG)

Approximately 2,400 in the R & D Group
* Eight locations (today):

- Arlington Heights (Chicago), IL
- Scottsdale (Phoenix), AZ
- Ft. Worth, TX
- Cork, Ireland
- Tel Aviv, Israel

r @ M-m \
Cellular lksshrcrure Gmup

WNSG Products

Cellular Telephone Switches - 20+ million LOC
Base Stations for Radio-telephony - 300 KLOC to 500 KLOC
"Intelligent Networkn products
- from 35 KLOC to 500 KLOC

\\
21s SEW P ~ - I Y 3 (9 6

SEW Proceedings 392 SEL-96-002

A Real-life Experience
Software Inspections

Adopted Fagan Inspection Process in mid-'92
- Many escaped defects
- Egtensiverepah costs
- Dissatisfiedcastomers

WNSG GM Sponsored Effort
- Hired Dr. Michael Fagan to train AIL engineers - Schedule relief offered to managers
- Set up special-purpose inspection room
- Added training and coverage goals to bonuses
- Provided mechanisms for data collection

-
Summary of Results

Benefits realized in first release cycle
Spectacular overall 10X reduction in
customer-found defects
Measured improvements in:

- productivity,
- on-time delivery, and - customer satrshrction

21as~wm-1~3196

SEW Proceedings

-&A
f- @ w*--m

Adopter Categorization*

X - 2 0 X- a .T X+O

- @ , ,
"Early Adoptersn

* SEI CMM Level 2+
Dissatisfied customers, thus perceived
need for change

* Mid-level manager buy-in to Fagan
inspections
Committed staff to address
implementation issues
Collected and shared metrics fkom the
start

SEW Proceedings

SEI CMM Level 1
Developing a new product with no
deliveries, thus no sense of urgency

0 Little mid-level management buy-in to
Fagan practices
No initial metrics tracking
No performance audits
Claimed not seeing forecasted results

Confmnations of
Conventional Wisdom

Senior management sponsorship is
needed, but that's not enough.
New technologies diffuse best where
there is a sense of urgency.

0 Receiving organizations must provide
resource support to assure success.

SEW Proceedings

@ MOTvR0L.A
WIular Inf-re G ~ w p

Transferring Best Practices is
Complex Because...

More than 70% of the U.S. software
industry is Level 1.
Most Technology Transition efforts are
themselves carried out by Level 1
organizations.

a Therefore, Technology Transition today is
done in an immature manner in
immature organizations ... ad hoe,
chaotic, non-repeatable, high-risk,
unnaeasured, uncontrolled, etc, etc...

@ M-m-
Cellular InfrasWuctura Gmup

Lessons Learned

* Immature receiving organizations
present higher risks and more barriers to
change.
The Technology Transition process can be
immature itself.
The Technology Transition process has to
be tailored to the receiving organization.

SEW Proceedings

Appendix A: Workshop Attendees

SEW Proceedings

SEW Proceedings

Appendix A: Workshop Attendees

Adams, Carleen, TRW
Agresti, Bill W., MITRETEK

Systems
Allen, Carmen L., Sandia

National Laboratories
Anderson, Barbara, Jet

Propulsion Lab
Anderson, Frances E., IIT
Angevine, Jim, ALTA

Systems, Inc.
Ayers, Everett, Ayers

Associates
Babchak, Joel, FAA

Technical Center
Bailey, John, Software

Metrics, Inc.
Barnette,

James,DISA/JIEO/JEBE
Basili, Victor R., University

of Maryland
Bassman, Mitchell J.,

Computer Sciences Corp.
Beall, Shelly, Social Security

Administration
Becker, Shirley, Q-Labs, Inc.
Bellinger, Dwight Q.,

Consultant
Berry, Christine E., TRW
Bharadwaj, Ramesh, Karnan

Sciences Corp.
Bhatia, Kiran, MITRETEK

Systems
Binkley, Nita S., Treasury

Financial Management
Service

Bismut, Noemie A.,
UnisysISATC

Blagrnon, Lowell E., Naval
Center For Cost Analysis

Blaney, Greg, NASA IV&V
Facility

Blue, Velrna D., DISA
Boland, Dillard, Computer

Sciences Corp.
Bollman, John, Unisys Corp.
Bond, Walt, The Aerospace

Corp.
Bozoki, George, Lockheed

Martin Missiles & Space
Branigan, Christopher S.,

DISNCFOS

Brugge, Lynda, Social
Security Administration

Burke, Steve, Computer
Sciences Corp.

Calavaro, Giuseppe F.,
Hughes Information
Technology Corp.

Caldiera, Gianluigi,
University of Maryland

Calhoun, Cynthia C., NASA
IV&V Facility

Camaioni, Joseph, FAA
Cantone, Giovanni,

University of Maryland
Carlson, Randall, NSWCDD
Celentano, Al, Social

Security Administration
Centafont, Noreen, DoD
Cernell, Lori, NASAlKSC
Chiverella, Ron,

Pennsylvania Blue Shield
Chu, Richard, Lockheed

Martin (SMS)
Cockrell, Jake, University of

Virginia
Coleman, Charles, Unisys

Corp.
Condon, Steven E.,

Computer Sciences Corp.
Corbin, Genie, Social

Security Administration
Corderman, Elizabeth,

NASNGSFC
Cuesta, Emesto, Computer

Sciences Corp.
Cusick, James, AT&T
Dandridge, Tondalya G.,

Treasury - Financial
Management Service

Dane, Batia, GTE
Daniele, Carl J.,

NASAneRC
Darby, Clifton, Computer

Sciences Corp.
Dawson, Jim, Bell Atlantic
DeMillo, Richard A.,

BELLCORE
Decker, William J.,

Computer Sciences Corp.
Den, Patricia K., PRC, Inc.
Deutsch, Michael S., HITS

Dudash, Ed, Naval Surface
Warfare Center

Duffy, Terry, McDonnell
Douglas

Duvall, Lorraine, Kaman
Sciences Corp.

Edelson, Robert, Jet
Propulsion Lab

Elliott, Frank, Social Security
Administration

Elliott, James, Lockheed
Martin SMS

Ellis, Walter J., Sohare
Process & Metrics

Evangelist, Michael, Florida
International University

Evans, Roger M., Unisys
Corp.

Ferguson, Frances, STeL
Fernandes, Vernon;

Computer Sciences Corp.
Fike, Sherri, Ball Aerospace
Filmore, Tom, SETA Corp.
Fitz, Rhonda S., Azimuth,

Inc.
Flynn, Margaret M., Treasury

Financial Management
Service

Forsythe, Ron,
NASA/Wallops Flight
Facility

Fountain, Elizabeth A.,
NASNJSC

Franklin, Jude E., PRC, Inc.
Freeman, Peter A., Georgia

Institute of Technology
Fuchs, Authur, NASNGSFC
Futcher, Joseph M., Naval

Surface Warfare Center
Gaddis, John B., VHTC

Foundation
Gallman, Paula J., DISA
Galloway, Mary, Computer

Sciences Corp.
Garris, Jason, Booz, Allen &

Hamilton, Inc.
Gender, Paul W., Mantech

International, Inc.
Getto, Gerhard, Daimler-

Benz AG
Gibson, Jr., Richard G.,

American University

SEW Proceedings 399 SEL-96-002

Gladden, Joycelyn M.,
Treasury - Financial
Management Service

Glass, Robert L., The
Software Practitioner

Glazer, Joel, Northrop
Grumman Corp.

Godfiey, Sally, NASNGSFC
Goel, Amrit L., Syracuse

University
Goodenough, John, Software

Engineering Institute
Gosnell, Bany, U.S. Army

MICOM
Gotterbarn, Donald, George

Washington
UniversityNirginia

Grasso, Gayle A., SECON,
Inc.

Gravitte, June A., Lockheed
Martin SMS

Green, David S., Computer
Sciences Corp.

Green, Scott, NASAIGSFC
Griffin, Robin, Lockheed

Martin SMS
Gwynn, Thomas R.,

Computer Sciences Corp.
Halterman, Karen,

NASNGSFC
Hammer, Theodore F.,

NASNGSFC
Hankinson, Al, UnisysISATC
Hanna, Frank, Unisys Corp.
Hayes, Karen, Computer

Sciences Corp.
Heasty, Richard, Computer

Sciences Corp.
Heitmeyer, Connie, Naval

Research Lab
Heller, Geny H., Computer

Sciences Corp.
Herrnann, Brian, U.S. Air

ForceIKAFB
Hientz, Horst, Q-Labs GmbH
Hinchliffe, Nancy, Computer

Sciences Corp.
Hirsch, Stephan J., DoD
Holmes, Glenda, [No

Organization Registered]
Hopkins, Susan, DSCI
Howland, John C., EMC

Corp.

Huffman, Lenore,
UnisysISATC

Hung, Chaw-Kwei, Jet
Propulsion Lab

Isicoff, Richard, AlliedSignal
Technical Services Corp.

Jay, Elizabeth M.,
NASAIGSFC

Jeletic, Jim, NASAIGSFC
Jeletic, Kellyann,

NASNGSFC
Jing, Yin, Computer Sciences

Corp.
Jordano, Tony J., SAIC
Kacker, Raghu, NIST
Kassebaum, Kass, Consultant
Kay, Phyllis, Computer

Sciences Corp.
Kelley, Ken, DISA
Kelly, John C., Jet Propulsion

Lab
Kelly, Jr., Patrick, DISA
Kester, Rush W., Computer

Sciences Corp.
Kim, Yong-Mi, Q-Labs, Inc.
Knight, John ~. ,~ni ;ersi ty of

Virginia
Kontio, Jyrki, University of

Maryland
Kouchakdjian, Ara, Software

Engineering Technology,
Inc.

Krafi, Steve, NASNGSFC
Kronisch, Mark I., U.S.

Census Bureau
Kuhn, Rick, NIST
Landis, Linda C., Computer

Sciences Corp.
Lane, Allan C., AlliedSignal

Technical Services Corp.
Lane, Tricia P., U.S. Army

DSMC
Lanubile, Filippo, University

of Maryland
LeMire, Steven H., Northrop

Grumman Corp.
Letellier, Sandy, Treasury -

Financial Management
Service

Liebennann, Roxanne, U.S.
Census Bureau

Lipsett, Bill, IRS

Liu, Jean C., Computer
Sciences Corp.

Loesh, Bob E., Software
Engineering Sciences, Inc.

Lott, Christopher M.,
BELLCORE

Lucas, Janice P., U.S.
Treasury Department

Lydon, Tom, Raytheon
Lyle, William D.,The Analytic

Sciences Corp.
Machak, Tom, BTG, Inc.
Maddox, Bill A., GDE

Systems, Inc.
Mariano, Francisco C., IIT

Research Institute
Martin, Tracey, Treasury -

Financial Management
Service

Matthews, Paul, BELLCORE
Maury, Jesse, Omitron, Inc.
McCanne, Randy, U.S. Air

Force
McGarry, Frank E.,

Computer Sciences Corp.
McGuire, Eugene, American

University
McIlwraith, Isabel, IRS
McShany, Maureen, T.Rowe

Price Associates, Inc.
McTavish, Charles J.,

NASNGSFC
Melo, Walcelio L., CRIM
Mendonca, Manoel G.,

University of Maryland
Morgan, Elizabeth D.,

AlliedSignal Technical
Services Corp.

Morusiewicz, Linda M.,
Computer Sciences Corp.

Murray, Albert, RAM
Engineering Associates

Myers, Marguerite, Treasury
Financial Management
Service

Myers, Philip I., Computer
Sciences Corp.

Neal, Ralph D., West
Virginia University

Neil, Martin, City University
of London

Nestlerode, Howard, Unisys
Corp.

SEW Proceedings

New, Ronald, Compu-Think
O'Donnell, Charlie, ECA,

Inc.
O'Leary, Gerald, Treasury -

Financial Management
Service

OWeill, Don, Consultant
Ohlsson, Niclas, Linkoping

University, Sweden
Page, Gerald T., Computer

Sciences Corp.
Pailen, William, Pailen-

Johnson Associates, Inc.
Pajerski, Rose, NASAIGSFC
Panlilio-Yap, Nikki M.,

Lockheed Martin Corp.
Parra, Amy T., Computer

Sciences Corp.
Pavnica, Paul, Treasury -

Financial Management
Service

Pendergrass, Vicki,
NASNGSFC

Peny, Howard, Computer
Sciences Corp.

Pfister, Robin, NASAIGSFC
Pilch, Carol, GTE
Powers, Lany T., Unisys

Corp.
President, John, DISA
Quann, Eileen S., Fastrak

Training, Inc.
Ramsburg, M. C., DoD
Rauta, Constantin, Computer

Sciences Corp.
Redding, John L., Defense

Information Systems
Agency

Reed, Natalie, FAA
Technical Center

Regardie, Myrna L.,
Computer Sciences Corp.

Rico, David, SRA Corp.
Rinearson, Linda, GTE
Ritter, Sheila J.,

NASNGSFC
Robbins, Jr., Henry H.,

Hughes Training, Inc.
Roberts, Sharon, ALTA

Systems, Inc.
Robertson, Terry, CSCITMG
Rodriguez, Mario, U.S. Air

Force

Rodriguez, Roberto A.,
AlliedSignal Technical
Services Corp.

Rombach, H.Dieter,
University of Kaiserslauter

Rosenberg, Linda H.,
Unisys/SATC

Roy, Dan M., STP&P
Rudy, Jr., Paul L.,

Pennsylvania Blue Shield
Ruley, LaMont,

NASNGSFC
Russell, Christopher, Bureau

of National Affairs, Inc.
Ryder, Regina, USDA
Sample, Keith, Lockheed

Martin SMS
Samuels, George, Social

Security Administration
Scheirer, Jeana M., Q-Labs,

Inc.
Schneider, Laurie, General

Sciences Corp./SAIC
Schneidewind, Norman,

Naval Postgraduate School
Schuler, Mary P., -

NASAtLaRC
Schwartz, Benjamin L.,

Consultant
Schwarz, Henry, NASAKSC
Schweiss, Robert,

NASNGSFC
Scott, Hester, ALTA

Systems, Inc.
Seaman, Carolyn B.,

University of Maryland
Seamon, Dena C., [No

Organization Registered]
S h m a , Jagdish, NOAA
Shin, Mi-Young, Syracuse

University
Shull, Forrest, University of

Maryland
Simpson, Brenda, SETA
Siwiec, Lenore S., ALTA

Systems, Inc.
Slud, Eric V., University of

Maryland
Smidts, Carol, University of

Maryland
Smith, David, Computer

Sciences Corp.
Smith, Donald, NASNGSFC

Smith, George F., Space &
Naval Warfare Systems
Command

Smith, Len, Computer
Sciences Corp.

Smith, Vivian A., FAA
Sohmer, Robert, RAM

Engineering Associates
Soistman, Ed, Lockheed

Martin
Sorumgard, Sivert,

Norwegian Univeristy of
Science & Tech.

Spanno, Joe, NASNGSFC
Squires, Burton E.,

Consultant
Stapko, Ruth, Unisys/SATC
Stark, Michael, NASNGSFC
Sudermann, James E.,

NASAIKSC
Sullivan, Kevin J., University

of Virginia
Swann, Mark, DoD
Sykes, Mari, Computer

Sciences Corp.
Tepfenhart, William M.,

AT&T
Tesoriero, Roseanne,

University of Maryland
Thomas, Bill, MITRE Corp.
Thompson, Sid, Unisys Corp.
Tittle, John G., Computer

Sciences Corp.
Truong, Son H.,

NASAIGSFC
Ulery, Bradford T.,

MITRETEK Corp.
Valett, Jon, Q-Labs, Inc.
Valett, Susan, NASAIGSFC
VanMeter, Charlene L., DoD
Vargas, Sharon, Treasury -

Financial Management
Service

Waligora, Sharon R.,
Computer Sciences Corp.

Wallace, Dolores, NIST
Walsh, Chuck, RMS

Associates
Warner, Kenneth N., TRW
Watson, Jim, NASAnaRC
Wetherholt, Martha S.,

NASA/LeRC
Whisenand, Tom, Social

Security Administration

SEW Proceedings

Widmaier, James, DoD
Wiegand, Bob, NASAIGSFC
Willey, Allan L.,Motorola, Inc.
Wilson, Robert K., Jet

Repulsion Lab
Wilson, William,

UnisysISATC
Wilson, William R., DoD
Wong, Rapk~el, U.S.

Treasury
Woodyard, Charles E.,

NASAIGSFC
Wortman, Kristin, Computer

Sciences Corp.
Wu, James, Treasury -

Financial Management
Service

Yassini, Siamak, NASA
IV&V Facility

Zelkowitz, Marv, University
of Maryland

SEW Proceedings

Appendix B: Standard Bibliography of SEL Literature

SEW Proceedings

SEW Proceedings

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are organized into
two groups. The first group is composed of documents issued by the Software Engineering
Laboratory (SEL) during its research and development activities. The second group includes
materials that were published elsewhere but pertain to SEL activities. The Annotated

' Bibliography of Sofiare Engineering Laboratory Literature contains an abstract for each
document and is available via the SEL Products Page at http://fdd.gsfc.nasa.gov/selprods.html.

SEL-ORIGINATED DOCUMENTS
SEL-76-001, Proceedings From the First Summer SoJiwae Engineering Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer SoJiware Engineering Workshop, September
1977

SEL-78-005, Proceedings From the Third Summer S o w r e Engineering Workshop, September
1978

SEL-78-006, GSFC Sofiare Engineering Research Requirements Analysis Study, P. A. Scheffer
and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp, December
1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide (Revision 3),
W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The SoJtware Engineering Laboratory: Relationship Equations, K. Freburger and
V. R. Basili, May 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Program Design Language (PDL) in
the Goddard Space Flight Center (GSFC) Code 580 Softwae Design Environment,
C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer SoJiware Engineering Workshop, November
1979

SEL-80-002, Multi-Level Expression Design Language-Requirement Level (MEDL-R) System
Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-005, A Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the F@h Annual Sofiare Engineering Workshop, November
1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation Models for SoJiware Systems,
J. F. Cook and F. E. McGarry, December 1980

SEW Proceedings 405

SEL-80-008, Tutorial on Models and Metrics for Sofiware Management and Engineering,
V . R. Basili, 1980

SEL-8 1-01 1, Evaluating Sofiware Development by Analysis of Change Data, D. M. Weiss,
November 1 98 1

SEL-81-012, The RayIeigh Curve as a Model for Eflort Distribution Over the Life of Medium
Scale Sofiware Systems, G. O. Picasso, December 198 1

SEL-8 1-0 1 3, Proceedings of the Sixth Annual Sofiware Engineering Workshop, December 198 1

SEL-8 1-0 14, Automated Collection of Sofiware Engineering Data in the SoJiware Engineering
Laboratory (SEL), A. L. Green, W . J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V . E. Church, D. N. Card, F. E. McGany, et al., August
1982

SEL-8 1-1 10, Evaluation of an Independent VeriJication and Validation (N& Methodology for
Flight Dynamics, G. Page, F. E. McGarry, and D. N. Card, June 1985

SEL-81-305, Recommended Approach to Sofiware Development, L. Landis, S. Waligora, F. E.
McGarry, et al., June 1992

SEL-8 1 -305SP 1, Ada Developers ' Supplement to the Recommended Approach, R. Kester and
L. Landis, November 1993

SEL-82-00 1, Evaluation of Management Measures of Software Development, G. Page,
D. N. Card, and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Sojiware Engineering Papers: Volume I , July 1982

SEL-82-007, Proceedings of the Seventh Annual Sojiware Engineering Workshop, December
1982

SEL-82-008, Evaluating Sofiware Development by Analysis of Changes: The Data From the
Sofiware Engineering Laboratory, V . R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description
(Revision I), W. A. Taylor and W . J . Decker, April 1985

SEL-82-105, Glossary of SoJtware Engineering Laboratory Terms, T. A. Babst, M. G. Rohleder,
and F . E. McGarry, October 1983

SEL-82-1306, Annotated Bibliography of Sofiware Engineering Laboratory Literature, D. Kistler,.
J . Bristow, and D. Smith, November 1994

SEL-83-001, An Approach to Sofiware Cost Estimation, F. E. McGany, G. Page, D. N. Card, et
al., February 1984

SEL-83-002, Measures and Metrics for SoJtware Development, D. N. Card, F . E. McGarry,
G. Page, et al., March 1984

SEL-83-003, Collected SoJiware Engineering Papers: Volume II, November 1983

SEW Proceedings 406 SEL-96-002

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop, November 1983

SEL-83-106, Monitoring SoJiware Development Through Dynamic Variables (Revision I),
C. W . Doerflinger, November 1989

SEL-84-003, Investigation of Specijication Measures for the SoJiware Engineering Laboratory
(SEL), W. W. Agresti, V . E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual SoJiware Engineering Workshop, November 1984

SEL-84-101, Manager's Handbook for SoJiware Development (Revision I), L. Landis,
F. E. McGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D. N. Card, R. W. Selby, Jr.,
F. E. McGarry, et al., April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray Observatory
Ada Development Team, R. Murphy and M. Stark, October 1985

. SEL-85-003, Collected Software Engineering Papers: Volume 111, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and Metrics,
R. W. Selby, Jr., and V . R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, F. McGarry, and
C. Antle, December 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop, December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development, R. Wood
and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and M. Stark, August
1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE) Tutorial,
J . Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Sofhare Engineering Workshop, December
1986

SEL-87-001, Product Assurance Policies and Procedures for Night Dynamics Sofhare
Development, S. Perry et al., March 1987

SEL-87-002, ~ d a @ Style Guide (Version I.]), E. Seidewitr et al., May 1987

SEL-87-003, Guidelines for Applying the Composite SpeczJication Model (CSM), W. W. Agresti,
June 1987

SEW Proceedings

SEL-87-004, Assessing the ~ d a @ Design Process and Its Implications: A Case Study,
S . Godfiey, C. Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the TwelJih Annual Sofiare Engineering Workshop, December 1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle, L. Esker,
and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Volume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase Analysis,
K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual SoJiware Engineering Workshop, November
1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study, S. Godfrey and
C. Brophy, September 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation/Testing
Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry, November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASMGoddard,
C. Brophy, November 1989

SEL-89-006, Collected Sofiware Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop, November
1989

SEL-89-008, Proceedings of the Second NASA Ada Users ' Symposium, November 1 989

SEL-89- 103, Sofiwae Management Environment (SME) Concepts and Architecture (Revision I) ,
R. Hendrick, D. Kistler, and J. Valett, September 1992

SEL-89-301, Software Engineering Laborary (SEL) Database Organization and User's Guide
(Revision 3), L. Morusiewicz, February 1995

SEL-90-001, Database Access Manager for the Sofiware Engineering Laboratory (DAMSEL)
User's Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Shrdy in the Sofiware Engineering Laboratory: Project
Description and Early Analysis, S. Green et al., March 1990

SEL-90-003, A Study of the Portability of an Ada System in the SoJiware Engineering Laboratory
(SEL), L. 0. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experiment
Summary, T. McDermott and M. Stark, September 1990

SEW Proceedings 408

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the Fij?eenth Annual Sofiware Engineering Workshop, November
1990

SEL-9 1 -00 1, Sofiware Engineering Laboratory (SEL) Relationships, Models, and Management
Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

SEL-9 1-003, Sofiware Engineering Laboratory (SEL) Ada Performance Study Report,
E. W. Booth and M. E. Stark, July 1991

SEL-91-004, Sofiware Engineering Laboratory (SEL) Cleanroom Process Model, S. Green,
November 1 99 1

SEL-9 1-005, Collected Software Engineering Papers: Volume IX, November 199 1

SEL-9 1-006, Proceedings of the Szjeteenth Annual Software Engineering Workshop, December
1991

SEL-9 1 - 102, Software Engineering Laboratory (SEL) Data and Information Policy (Revision I),
F. McGarry, August 1 99 1

SEL-92-001, Sofiware Management Environment (SME) Installation Guide, D. Kistler and
K. Jeletic, January 1992

SEL-92-002, Data Collection Procedures for the - Software Engineering Laboratory (SEL)
Database, G. Heller, J . Valett, and M. Wild, March 1992

SEL-92-003, Collected SoJtwae Engineering Papers: Volume X, November 1992

SEL-92-004, Proceedings of the Seventeenth Annual Software Engineering Workshop, December
1992

SEL-93-00 1, Collected SoJ2ware Engineering Papers: Volume X, November 1993

SEL-93-002, Cost and Schedule Estimation Study Report, S. Condon, M. Regardie, M. Stark, et
al., November 1993

SEL-93-003, Proceedings of the Eighteenth Annual Software Engineering Workshop, December
1993

SEL-94-001, Sofiware Management Environment (SME) Components and Algorithms,
R. Hendrick, D. Kistler, and J. Valett, February 1994

SEL-94-003, C Style Guide, J. Doland and J. Valett, August 1994

SEL-94-004, Collected Sofiware Engineering Papers: Volume X I , November 1994

SEL-94-005, An Overview of the Sofiware Engineering Laboratory, F. McGarry, G. Page, V. R
Basili, et al., December 1994

SEL-94-006, Proceedings of the Nineteenth Annual Software Engineering Workshop, December
1994

SEW Proceedings 409

SEL-94- 102, Software Measurement Guidebook (Revision I), M. Bassman, F. McGarry ,
R. Pajerski, June 1995

SEL-95-001, Impact of Ada in the Flight Dynamics Division at Goddard Space Flight Center,
S. Waligora, J. Bailey, M. Stark, March 1995

SEL-95-003, Collected Sofiware Engineering Papers: Volume HII, November 1995

SEL-95-004, Proceedings of the Twentieth Annual Software Engineering Workshop, December
1995

SEL-95-102, Software Process Improvement Guidebook (Revision I), K. Jeletic, R. Pajerski, C.
Brown, March 1996

SEL-96-001, Collected Sofiware Engineering Papers: Volume XW, October 1996

SEL-RELATED LITERATURE

lo~bd-El-Hafiz, S. K., V. R. Basili, and G. Caldiera, "Towards Automated Support for
Extraction of Reusable Components," Proceedings of the IEEE Conference on Sofiware
Maintenance-1 991 (CSM 91), October 1 99 1

4~gresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for Satellite
Simulation: A Case Study," Proceedings of the First International Symposium on Ada for the
NASA Space Station, June 1986

ZAgresti, W. W., F. E. McGarry, D. N. Card, et al., "Measuring Software Technology," Program
Transformation and Programming Environments. New York: Springer-Verlag, 1984

*Bailey, J. W., and V. R. Basili, "A Meta-Model for Software Development Resource
Expenditures," Proceedings of the F$h International Conference on Sofiware Engineering. New
York: IEEE Computer Society Press, 1981

gBailey, J. W., and V. R. Basili, "Software Reclamation: Improving Post-Development
Reusability," Proceedings of the Eighth Annual National Conference on Ada Technology, March
1990

IOBailey, J. W., and V. R. Basili, "The Software-Cycle Model for Re-Engineering and Reuse,"
Proceedings of the ACM Tri-Ada 91 Conference, October 1991

IBasili, V. R., "Models and Metrics for ~oftw&e Management and Engineering," ASME
Advances in. Computer Technoloay, January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering. New
York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the First Pan-
PaciJic Computer Conference, September 1985

SEW Proceedings

7Basili, V. R., Maintenance = Reuse-Oriented Somare Development, University of Maryland,
Technical Report TR-2244, May 1989

7Basili, V. R., Software Development: A Paradigm for the Future, University of Maryland,
Technical Report TR-2263, June 1989

SBasili, V. R., "Viewing Maintenance of Reuse-Oriented Software Development," IEEE Sofiware,
January 1990

13Basili, V. R., "The Experience Factory and Its Relationship to Other Quality Approaches,"
Advances in Computers, vol. 4 1, Academic Press, incorporated, 1995

IBasili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution and
Resource Estimation Problems?," Journal of Systems and Sofiare, February 198 1, vol. 2, no. 1

13Basili, V. R., L. Briand, and W. L. Melo, A Validation of Object-Oriented Design Metrics,
University of Maryland, Computer Science Technical Report, CS-TR-3443, UMIACS-TR-95-
40, April 1995

13Basili, V. R., and G. Caldiera, The fiperience Factory Strategy and Practice, University of
Maryland, Computer Science Technical Report, CS-TR-3483, UMIACS-TR-95-67, May 1995

gBasili, V. R., G. Caldiera, and G. Cantone, "A Reference Architecture for the Component
Factory," ACM Transactions on Sofiware Engineering and Methodology, January 1992

loBasili, V. R., G. Caldiera, F. McGany, et al., "The Software Engineering Laboratory-An
Operational Software Experience Factory," Proceedings of the Fourteenth International
Conference on Somare Engineering (ICSE 92), May 1992

IBasili, V. R., and IS. Freburger, "Programming Measurement and Estimation in the Software
Engineering Laboratory," Journal of Systems and Sofiare, February 198 1, vol. 2, no. 1

12Basili, V. R., and S. Green, "Software Process Evolution at the SEL," IEEE Sofiware, July
1994, pp. 58-66

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relationships Between Effort and Other
Variables in the SEL," Proceedings of the International Computer So@are and Applications
Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction and Reliability Assessment in the SEL
Environment, University of Maryland, Technical Report TR-1699, August 1986

ZBasili, V. R., and B. T. Pemcone, "Software Errors and Complexity: An Empirical
Investigation," Communications of the ACM, January 1984, vol. 27, no. 1

IBasili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the Software
Engineering Laboratory," Proceedings of the ACMSIGMETRICS SyrnposiumlWorkshop: Quality
Metrics, March 1 98 1

SEW Proceedings

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P-A Prototype Expert System for
Software Engineering Management," Proceedings of the IEEE/MITRE m e r t Systems in
Government Symposium, October 1985

Basili, V. R, and J. Ramsey, Structural Coverage of Functional Testing, University of Maryland,
Technical Report TR- 1442, September 1984

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Development,"
Proceedings of the Workshop on Quantitative Software Models for Reliability, Complexity, and
Cost. New York: IEEE Computer Society Press, 1979

SBasili, V. R., and H. D. Rombach, "Tailoring the Software Process to Project Goals and
Environments," Proceedings of the 9th International Conference on Software Engineering, March
1987

SBasili, V. R., and H. D. Rombach, "TAME: Tailoring an Ada Measurement Environment,"
Proceedings of the Joint Ada Confeence, March 1987

SBasili, V. R., and H. D. Rombach, "TAME: Integrating Measurement Into Sofcware
Environments," University of Maryland, Technical Report TR-1764, June 1987

sBasili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-Oriented
Software Environments," IEEE Transactions on Software Engineering, June 1988

YBasili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: A Reuse-
Enabling Software Evolution Environment, University of Maryland, Technical Report TR-2 1 58,
December 1988

*Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse: Model-
Based Reuse Characterization Schemes, University of Maryland, Technical Report TR-2446,
April 1990

gBasili, V. R., and H. D. Rombach, "Support for Comprehensive Reuse," Soffware Engineering
Journal, September 1991

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Characteristic
Software Metric Set," Proceedings of the Eighth International Confrence on Sofiwae
Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W. Selby, "Comparing the Effectiveness of Software Testing Strategies,"
IEEE Transactions on Soffware Engineering, December 1987

3Basili, V. R., and R. W. Selby, Jr., "Four Applications of a Software Data Collection and
Analysis Methodology," Proceedings of the NATO Advanced Study Institute, August 1985

SBasili, V. R., and R. Selby, "Comparing the Effectiveness of Software Testing Strategies," EEE
Transactions on Soffware Engineering, December 1987

gBasili, V. R., and R. W. Selby, "Paradigms for Experimentation and Empirical Studies in
Software Engineering," Reliability Engineering and System Safety, January 199 1

SEW Proceedings 41 2

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software Engindg,"
IEEE Transactions on SoJiwae Engineering, July 1986

ZBasili, V. R, R. W. Selby, and T. Phillips, "Metric Analysis and Data Validation Across
FORTRAN Projects," IEEE Transactions on Sofiware Engineering, November 1983

*Basili, V. R., and D. M. Weiss, A Methodology for Collecting Valid Sofiware Engineering Data,
University of Maryland, Technical Report TR-123 5, December 1982

3Basili, V. R, and D. M. Weiss, "A Methodology for Collecting Valid Software Eqimehg
Data," IEEE Transactions on Sofiware Engineering, November 1984

*Bas& V. R., and M. V. Zelkowitz, "The Software Engin- Laboratory: Objectives,"
Proceedings of the Fifeenth Annual Conference on Computer Personnel Research, August 1977

Basili, V. R, and M. V. Zelkowitz, "Designing a Software Measurement Experiment,"
Proceedings of the Software Life Cycle Management Workshop, September 1977

IBasili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Laboratory,"
Proceedings of the Second Software Life Cycle Management Workshop, August 1978

IBasili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics in the
Local Environment," Computers and Structures, August 1978, vol. 1 0

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale Software Development,"
Proceedings of the Third International Conference on Softwme Engineering. New Y o k EEE
Computer Society Press, 1978

13Basili, V. R., M. Zelkowitz, F. McGarry, G. Page, S. Waligora, and R. Pajerski, "SEL's
Software Process-Improvement Program," IEEE Software, vol. 12, no. 6, November 1995, pp.
83-87

14Basili, V. R., S. Green, 0. Laitenberger, F. Shull, S. Sorumgard, and M. V. Zelkowitz, "The
Empirical Investigation of Perspective-Based Reading," University of Maryland, Computer
Science Technical Report, CS-TR-3585, UMIACS-TR-95-127, December 1995

14Basili, V. R., "Evolving and Packaging Reading Technologies," Proceedings of the Third
International Conference on Achieving Quality in Sofiware, January 1996

I4Basili, V. R., "The Role of Experimentation in Software Engineering: Past, Current, and
Future," Proceedings of the Eighteenth Annual Confeence on SoJSware Engineering (ICSE-181,
March 1996

*4Basili, V. R., G. F. Calavaro, G. Iazeolla, "Simulation Modeling of Software Development
Processes," 7th European Simulation Symposium (ESS '95), October 1995

Bassman, M. J., F. McGarry, and R. Pajerski, Software Measurement Guidebook, NASA-GB-
00 1-94, Software Engineering Program, July 1994

gBooth, E. W., and M. E. Stark, "Designing Configurable Software: COMPASS Implementation
Concepts," Proceedings of Tri-Ada 1991, October 1991

SEW Proceedings 41 3 SEL-96-002

loBooth, E. W., and M. E. Stark, "Software Engineering Laboratory Ada Performance
Study-Results and Implications," Proceedings of the Fourth Annual NASA Ada User 's
Symposium, April 1992

loBriand, L. C., and V. R. Basili, "A Classification Procedure for the Effective Management of
Changes During the Maintenance Process," Proceedings of the 1992 IEEE Conference on
SoJiware Maintenance (CSM 92), November 1992

IOBriand, L. C., V. R. Basili, and C. J. Hetmanski, "Providing an Empirical Basis for Optimizing
the Verification and Testing Phases of Software Development," Proceedings of the Third IEEE
International Symposium on Sofiwae Reliability Engineering (ISSRE 92), October 1992

"Briand, L. C., V. R. Basili, and C. J. Hetmanski, Developing Interpretable Models with
Optimized Set Reduction for Identz3ing High Risk SoJiware Components, University of
Maryland, Technical Report TR-3048, March 1993

12Briand, L. C., V. R. Basili, Y. Kim, and D. R. Squier, "A Change Analysis Process to
Characterize Software Maintenance Projects," Proceedings of the International Conference on
Sofrware Maintenance, Victoria, British Columbia, Canada, September 19-23,1994, pp. 38-49

gBriand, L. C., V. R. Basili, and W. M. Thomas, A Pattern Recognition Approach for Software
Engineering Data Analysis, University of Maryland, Technical Report TR-2672, May 1991

13Briand, L., W. L. Melo, C. B. Seaman, and V. R. Bkili, "Characterizing and Assessing a Large-
Scale Software Maintenance Organization," Proceedings of the 17th International Conference on
Software Engineering, Seattle, Washington, U.S.A., April 23-30,1995

IlBriand, L. C., S. Morasca, and V. R. Basili, "Measuring and Assessing Maintainability at the
End of High Level Design," Proceedings of the I993 IEEE Conference on Sofiware Maintenance
(CSM 93), November 1993

12Briand, L., S. Morasca, and V. R. Basili, DeJining and Validating High-Level Design Metrics,
University of Maryland, Computer Science Technical Report, CS-TR-3301, UMIACS-TR-94-
75, June 1994

13Briand, L., S. Morasca, and V. R. Basili, Property-based Sofiware Engineering Measurement,
University of Maryland, Computer Science Technical Report, CS-TR-3368, UMIACS-TR-94-
1 1 9, November 1994

13Briand, L., S. Morasca, and V. R. Basili, Goal-Driven DeJinition of Product Metrics Based on
Properties, University of Maryland, Computer Science Technical Report, CS-TR-3346,
UMIACS-TR-94- 106, December 1994

IlBriand, L. C., W. M. Thomas, and C. J. Hetmanski, "Modeling and Managing Risk Early in
Software Development," Proceedings of the Fgeenth International Conference on Software
Engineering (ICSE 93), May 1 993

SEW Proceedings

14Briand, L., Y. Kim, W. L. Melo, C. B. Seaman, V. R. Basili, "Qualitative Analysis for
Maintenance Process Assessment," University of Maryland, Computer Science Technical
Report, CS-TR-3592, UMIACS-TR-96-7, January 1996

14Briand, L., V. R. Basili, S. Condon, Y. Kim, W. L. Melo and J. D. Valett, "Understanding and
Pre-
dicting the Process of Software Maintenance Releases," Proceedings of the Eighteenth Annual
Conference on Sofiare Engineering (ICSE-18), March 1996

SBrophy, C. E., W. W. Agresti, and V. R. Basili, "Lessons Learned in Use of Ada-Oriented
Design Methods," Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfiey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the
Implementation Phase of a Large Ada Project," Proceedings of the Washington Ada Technical
Conference, March 1988

*Card, D. N., "Early Estimation of Resource Expenditures and Program Size," Computer
Sciences Corporation, Technical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques for Resource' Estimation,"
Computer Sciences Corporation, Technical Memorandum, November 1982

3Card, D. N., "A Software Technology Evaluation Program," Annais do WIII Congresso
Nacional de Informatica, October 1985

SCard, D. N., and W. W. Agresti, "Resolving the Software Science Anomaly," Journal of Systems
and Sofiware, 1 987

D. N., and W. W. Agresti, "Measuring Software Design Complexity," Journal of Systems
and Sofiware, June 1988

4Card, D. N., V. E. Church, and W. W. Agresti, "An Empirical Study of Software Design
Practices," IEEE Transactions on Sofiwae Engineering, February 1986

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, "A Software Engineering View of
Flight Dynamics Analysis System," Parts I and 11, Computer Sciences Corporation, Technical
Memorandum, February 1984

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN Modules,"
Computer Sciences Corporation, Technical Memorandum, June 1984

SCard, D. N., F. E. McGarry , and G. T. Page, "Evaluating Software Engineering Technologies,"
IEEE Transactions on SoJiware Engineering, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for Software Modularization,"
Proceedings of the Eighth International Conference on Sofiare Engineering. New York: IEEE
Computer Society Press, 1985

SEW Proceedings

IChen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engineering
Methodologies," Proceedings of the FiJih International Confrence on SoMare Engineering.
New York: IEEE Computer Society Press, 198 E

4Church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan, "An Approach for Assessing
Software Prototypes," ACM Sofiare Engineering Notes, July 1986

*Doerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through Dynamic
Variables," Proceedings of the Seventh International Computer Sojware and Applications
Conference. New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of Maryland,
Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

GGodfrey, S., and C. Brophy, "Experiences in the Implementation of a Large Ada Project,"
Proceedings of the 1988 Washington Ada Symposium, June 1988

SJeffery, D. R., and V. R. Basili, Characterizing Resource Data: A Model for Logical Association
of Software Data, University of Maryland, Technical Report TR- 1848, May 1987

6Jeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model," Proceedings of
the Tenth Internationd Conference on Sofiware Engineering, April 1988

IILi, N. R., and M. V. Zelkowitz, "An Information Model for Use in Software Management
Estimation and Prediction," Proceedings of the Second International Conference on Information
Knowledge Management, November 1993

SMark, L., and H. D. Rombach, A Meta Information Base for Software Engineering, University
of Maryland, Technical Report TR- 1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Software Engineering Information
Bases From Software Process and Product Specifications," Proceedings of the 22nd Annual
Hawaii International Conference on System Sciences, January 1989

SMcGarry, F. E., and W. W. Agresti, "Measuring Ada for Software Development in the Software
Engineering Laboratory (SEL)," Proceedings of the 21st Annual Hawaii International Confrence
on System Sciences, January 1988

7McGarry, F., L. Esker, and K. Quimby, bbEvolution of Ada Technology in a Production
Software Envir~nrnent,~~ Proceedings of the Sixth Washington Ada Symposium (WADAS), June
1989

McGany, F., R. Pajerski, G. Page, et al., Software Process Improvement in the NASA So@are
Engineering Laboratory, Carnegie-Mellon University, Software Engineering Institute, Technical
Report CMUISEI-94-TR-22, ESC-TR-94-022, December 1994

3McGany, F. E., J. Valett, and D. Hall, "Measuring the Impact of Computer Resource Quality
on the Software Development Process and Product," Proceedings of the Hawaiian International
Conference on System Sciences, January 1985

SEW Proceedings 41 6

3Page, G., F. E. McGarry, and D. N. Card, "A Practical Experience With Independent
Verification and Validation," Proceedings of the Eighth International Computer SoJiware and
Applications Conference, November 1984

12Porter, A. A., L. G. Votta, Jr., and V. R. Basili, Comparing Detection Methods for Software
Requirements Inspections: A Replicated fiperiment, University of Maryland, Technical Report
TR-3327, July 1994

%imsey, C. L., and V. R Basili, "An Evaluation of Expert Systems for Software Engineering
Management," IEEE Transactions on Sofiware Engineering, June 1989

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process Using Structural Coverage,"
Proceedings of the Eighth International Conference on Sofiware Engineering. New York: IEEE
Computer Society Press, 1985

SRombach, H. D., "A Controlled Experiment on the Impact of Software Structure on
Maintainability," IEEE Transactions on SoJiware Engineering, March 1987

*Rombach, H. D., "Design Measurement: Some Lessons Learned," IEEE Software, March 1990

gRombach, H. D., "Software Reuse: A Key to the Maintenance Problem," Butterworth Journal
of Information and Software Technology, JanuaryEebruary 199 1

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An Industrial
Case Study," Proceedings From the Confrence on ofh hare Maintenance, September 1987

6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: A Basis for
Generating Customized SE Information Bases," Proceedings of the 22nd Annual Hawaii
International Conference on System Sciences, January 1989

'Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance
Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical Report
TR-2252, May 1989

IORombach, H. D., B. T. Ulery, and J. D. Valett, "Toward Full Life Cycle Control: Adding
Maintenance Measurement to the SEL," Journal of Systems and Software, May 1992

14Seaman, C. B., V. R. Basili, "Communication and Qrganization in SoJiware Development: An
Empirical Study," University of Maryland, Computer Science Technical Report, CS-TR-3619,
UMIACS-TR-96-23, April 1996

6Seidewitz, E., "Object-Oriented Programming in Smalltalk and Ada," Proceedings of the I987
Conference on Object-Oriented Programming Systems, Languages, and Applications, October
1987

SSeidewitz, E., "General Object-Oriented Software Development: Background and Experience,"
Proceedings of the 21st Hawaii International Confrence on System Sciences, January 1988

6Seidewitz, E., "General Object-Oriented Software Development with Ada: A Life Cycle
Approach," Proceedings of the CASE Technology Conference, April 1988

SEW Proceedings 41 7

gseidewitz, E., "Object-Oriented Programming Through Type Extension in Ada 9X," Ada
Letters, MarchlApril 1 99 1

IOSeidewitz, E., "Object-Oriented Programmhg With Mixins in Ada," Ada Letters, MarchlApril
1992

12Seidewitz, E., "Genericity versus Inheritance Reconsidered: Self-Reference Using Generics,"
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications, October 1994

4Seidewitz, E., and M. Stark, "Towards a General Object-Oriented Software Development
Methodology," Proceedings of the First International Symposium on Ada for the NASA Space
Station, June 1986

gseidewitz, E., and M. Stark, "An Object-Oriented Approach to Parameterized Software in
Ada," Proceedings of the Eighth Washington Ada Symposium, June 199 1

SStark, M., "On Designing Parametrized Systems Using Ada," Proceedings of the Seventh
Washington Ada Symposium, June 1990

11 Stark, M., "Impacts of Object-Oriented Technologies: Seven Years of SEL Studies,"
Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications, September 1993

7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse,"
Proceedings of TRI-Ada 1989, October 1989

SStark, M., and E. Seidewitz, "Towards a General Object-Oriented Ada Lifecycle," Proceedings
of the Joint Ada Conference, March 1987

13Stark, M., and E. Seidewitz, "Generalized Support Software: Domain Analysis and Implemen-
tation," Addendum to the Proceedings OOPSLA '94, Ninth Annual Conference, Portland, Oregon,
U.S.A., October 1994, pp. 8-13

IoStraub, P. A., and M. V. Zelkowitz, "On the Nature of Bias and Defects in the Software
Specification Process," Proceedings of the Sixteenth International Computer SoJtware and
Applications Conference (COMPSAC 92), September 1 992

SStraub, P. A., and M. V. Zelkowitz, "PUC: A Functional Specification Language for Ada,"
Proceedings of the Tenth International Conference of the Chilean Computer Science Society, July
1990

~Sunazuka, T., and V. R. Basili, Integrating Automated Supportfor a SoNare Management Cycle
Into the TAME System, University of Maryland, Technical Report TR-2289, July 1989

13Thomas, W. M., A. Delis, and V. R. Basili, An AnaIysis of Errors in a Reuse-Oriented
Development Environment, University of Maryland, Computer Science Technical Report,
CS-TR-3424, UMIACS-TR-95-24, February 1995

SEW Proceedings

IoTian, J., A. Porter, and M. V. Zelkowitz, "An Improved Classification Tree Analysis of High
Cost Modules Based Upon an Axiomatic Definition of Complexity," Proceedings of the Third
IEEE International Symposium on SoJtware Reliability Engineering (ISSRE 92), October 1992

Turner, C., and G. Caron, A Comparison of RADC and NAS'SEL Sofiare DeveIogment Data,
Data and Analysis Center for Software, Special Publication, May 198 1

IOValett, J. D., "Automated Support for Experience-Based Software Management," Proceedings
of the Second Irvine SoJtware Symposium (ISS -92), March 1992

SValett, J. D., and F. E. McGarry, "A Summary of Software Measurement Experiences in the
Software Engineering Laboratory," Proceedings of the 21st Annual Hawaii International
Conference on System Sciences, January 1988

IdWaligora, S., J. Bailey, and M. Stark, "The Impact of Ada and Object-Oriented Design in
NASA Goddard' s Flight Dynamics Division," Proceedings of the 13th Annual Washington Ada
Symposium, July 1996

3Weiss, D. M., and V. R. Basili, "Evaluating Software Development by Analysis of Changes:
Some Data From the Software Engineering Laboratory," IEEE Transactions on SoJtware
Engineering, February 1 985

~ W U , L., V. R. Basili, and K. Reed, "A Structure Coverage Tool for Ada Software Systems,"
Proceedings of the Joint Ada Conference, March 1987-

lzelkowitz, M. V., "Resource Estimation for Medium-Scale Software Projects," Proceedings of
the TweBh Conference on the Interface of Statistics and Computer Science. New York: IEEE
Computer Society Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation for Experimental Computer Science
Research," Empirical Foundations for Computer and Information Science (Proceedings),
November 1982

GZelkowitz, M. V., "The Effectiveness of Software Prototyping: A Case Study," Proceedings of
the 26th Annual Technical Symposium of the Washington, D.C., Chapter of the ACM, June 1987

6Zelkowitz, M. V., "Resource Utilization During Software Development," Journal of Systems
and SoJiware, 1 98 8

SZelkowitz, M. V., "Evolution Towards Specifications Environment: Experiences With Syntax
Editors," Information and Sofiare Technology, April 1990

14Zelkowitz, M. V., "Software Engineering Technology Infusion Within NASA," IEEE
Transactions On Engineering Management, vol. 43, no. 3, August 1996

SEW Proceedings

NOTES:
This article also appears in SEL-82-004, Collected Sofiware Engineering Papers: Volume I, July

1982.

2This article also appears in SEL-83-003, Collected Sofiware Engineering Papers: Volume 11,
November 1 983.

3This article also appears in SEL-85-003, Collected Sofiware Engineering Papers: Volume Ill,
November 1985.

4This article also appears in SEL-86-004, Collected Sofiwae Engineering Papers: Volume IV,
November 1986.

SThis article also appears in SEL-87-009, Collected Sofiware Engineering Papers: Volume
November 1 987.

6This article also appears in SEL-88-002, Collected Sofiware Engineering Papers: Volume VI,
November 1 988.

7This article also appears in SEL-89-006, Collected Sofiware Engineering Papers: Volume VII,
November 1989.

*This article also appears in SEL-90-005, Collected Sofiware Engineering Papers: Volume VII ,
November 1 990.

9This article also appears in SEL-91-005, Collected S o m e Engineering Papers: Volume IX,
November 1 99 1 .

lOThis article also appears in SEL-92-003, Collected SoJfwae Engineering Papers: Volume X,
November 1 992.

IlThis article also appears in SEL-93-001, Collected Sofiware Engineering Papers: Volume XI,
November 1993.

j2This article also appears in SEL-94-004, Collected Sofiware Engineering Papers: Volume XII,
November 1994.

13This article also appears in SEL-95-003, Collected Sofiware Engineering Papers: Volume XII ,
November 1995.

I4This article also appears in SEL-96-001, Collected Sofiware Engineering Papers: Volume XlV,
October 1996.

SEW Proceedings

REPORT DOCUMENTATION PAGE I Form Approved
OMB NO. 0704-0188

I
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Sewices, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 3. REPORT TYPE AND DATES COVERED
December 1996 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Software Engineering Laboratory Series
Proceedings of the 2 1 st Annual Software Engineering Workshop Code 55 1

I Flight Dynamics Systems Branch I
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES) 8. PEFORMING ORGANIZATION

REPORT NUMBER
Goddard Space Flight Center
Greenbelt, Maryland 2077 1

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS (ES) 10. SPONSORING I MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Washington, DC 20546-000 1 TM-1998-2086 17

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited
Subject Category: *$B
Report available from the NASA Center for Aerospace Information,
7 121 Standard Drive, Hanover, MD 21076-1 320. (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

The Software Engineering Laboratory (SEL) is an organization sponsored by NASNGSFC and created to
investigate the effectiveness of software engineering technologies when applied to the development of applica-
tion software.

The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory
Series, a continuing series of reports that includes this document.

14. SUBJECT TERMS

Software Engineering Laboratory, Proceedings
Application software, Documentation

1 15. NUMBER OF PAGES

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSlFlCATlON 20. LIMITATION OF ABSTRAC
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01 -280-5500 Standard Form 298 (Rev. 2-89)

