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Abstract

Sixteen ply unidirectional zirconia coated single crystal A1203 fiber reinforced
polycrystalline A1203 was tested in uniaxial tension at temperatures to 1400°C in air.

Fiber volume fractions ranged from 26 to 31%. The matrix has primarily open porosity

of approximately 40%. Theories for predicting the Young's modulus, first matrix

cracking stress, and ultimate strength were applied and evaluated for suitability in

predicting the mechanical behavior of A1203/A1203 composites.

The composite exhibited pseudo tough behavior (increased area under the
stress/strain curve relative to monolithic alumina) from 22 ° to 1400°C. The

rule-of-mixtures provides a good estimate of the Young's modulus of the composite

using the constituent properties from room temperature to approximately 1200°C for

short term static tensile tests in air. The ACK theory provides the best approximation

of the first matrix cracking stress while accounting for residual stresses at room

temperature. Difficulties in determining the fiber/matrix interfacial shear stress at
high temperatures prevented the accurate prediction of the first matrix cracking

stress above room temperature. The theory of Cao and Thouless, based on Weibull

statistics, gave the best prediction for the composite ultimate tensile strength.

1. Introduction

Ceramics in general are extremely brittle, have low strain tolerance, and exhibit

a wide variation in ultimate strength. The observed scatter in strength is caused by an

abundance of imperfections, i.e., flaws, that are a result of material processing. Over

the years, the strength reliability of monolithic ceramics have improved as better

processing techniques have evolved. However, as Dev (1992), Taylor (1991), and
Zweben (1998) indicate, the brittle failure characteristics of these materials make

them acceptable in only a limited range of applications. Even in the limited structural

application of monolithic ceramics to turbines in automotive turbochargers, turbo

efficiency is sacrificed for structural reliability as noted by Yoshida and Kokji (1989).

In an effort to increase ceramic toughness and strength, ceramic matrix composites

with various reinforcements are being developed. These developments are covered

briefly by King (1989) and Levine (1992). These composites may include multiple
phases or matrices with particulates, whiskers, or continuous fibers.
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In the gas turbine industry, ceramic matrix composites (CMCs)are particularly
attractive since they have the potential to replace nickel based superalloys in various
hot section components (Dix and Petty (1990) and Constance (1990)). The primary
attribute of CMCs relative to nickel based superalloys is the ability of CMCs to be
used well beyond current turbine service temperatures, as well as to withstand more
severe operating environments. This would enable engines to be operated at higher
temperatures with near-stoichiometric combustion without cooling air requirement
penalties as noted by Drascovich (1993). Increasing operating temperature is a classic
approach for improving turbine efficiency. Zweben (1998) notes that the low density
and high temperature properties of CMCs make them potential materials in hot
structures and propulsion systems of reusable launch vehicles.

Another attraction of ceramic composites is their relative low density, which is,
as Holmes and Wu (1995) point out, typically 65% to 75% lower than conventional
superalloys. One can not overemphasize the fact that weight is a critical design facet
for gas turbines utilized in aeropropulsion. Lastly, CMCs offer the potential of
increased durability, relative to superalloys, at the high operating temperatures. This
would result in increased time between engine overhauls reducing operating costs.

In virtually all ceramic matrix composite systems the goal of the materials
scientist is to apply a closing pressure on existing matrix crack surfaces and to impart
a tortuous fracture path by crack deflection. This results in an increase in the
apparent toughness of the material as noted by Warren (1992). Unlike polymer and
metal matrix composites, the fiber/matrix interface in a fiber reinforced ceramic
composite must be relatively weak. Optimization of the interface prevents matrix
cracks from propagating through the fibers while still providing load transfer. As a
result, unbroken fibers bridge a propagating matrix crack, which increases the
composite work of fracture. In essence, the fiber/matrix interface has to be strong
enough to allow load transfer and retain acceptable strength in the transverse
direction, but the interface must also allow debonding as a crack passes around the
fiber.

There are many ceramic matrix composite systems being investigated and
developed, as indicated by Sheppard (1992) and Studt (1991). One of these systems
consists of zirconia coated continuous single crystal alumina fibers and an alumina
matrix (A12Oa/A12Oa).As an oxide, these composites don't have the oxidation problems
of silicon based ceramics.

The path to successful commercialization of the CMC systems mentioned above
must include the characterization and evaluation of engineering design properties. As
Duffy and Gyekenyesi (1995) point out this requires characterization of mechanical
and thermal properties. It is essential to characterize the creep behavior of these
materials as well as ascertain how temperature affects their fast fracture. Motivated
by the general lack of high quality test data required by the design engineer, this
paper presents high-temperature, fast fracture data of the aforementioned
A12Oa/A12Oacomposite. This data was acquired using a high temperature tensile
testing facility assembled by Gyekenyesi (1998) at NASA LeRC.The properties of these
material systems were obtained in the primary fiber direction.

The objective of this paper is to determine selected CMC mechanical properties
and predict the mechanical behavior with existing theoretical models. Flat
A12Oa/A12Oacomposite specimens were tested. The continuous monofilament fibers in
the composite were oriented in the primary direction, which presents an upper bound
for strength, stiffness, and work of fracture properties for this composite system.
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For this study unidirectional A12Oa/A12Oacomposites were tested from room
temperature to 1400°C (2550°F) in air. The experimental data were compared with
theoretical predictions for stiffness, proportional limit or first matrix cracking stress,
and ultimate strength.

2. Equipment

The tensile test equipment used for this experiment was setup to test fiat
ceramic matrix composites at temperatures to 1500°C (2730°F) in air. Most of the
equipment was previously described by Gyekenyesi (1998), with the exception of a
new furnace and grips that have been incorporated since then. A brief summary is
presented here.

The universal tensile testing frame has a mechanical central screw actuator.
The machine's actuator has a 100 kN (22 kip) load capacity and a displacement range
of 100 mm (4 in.). It is digitally controlled, allowing closed-loop control with load,
strain, or crosshead displacement.

A 50 kN (11 kip) load cell was used with the frame. The load cell's output was
calibrated such that 10 volts corresponded with a 20 kN (4.5 kips) load. This output
was used as input for the computerized data acquisition system.

Water cooled, hydraulically actuated wedge grips were used to hold the
specimen in the test frame. These grips are mounted to a rigid load train with a
permanent alignment device. The grip faces have a grit surface. Thermocouples are
fastened to the grip faces to monitor the temperature near the ends of the specimen.

A low contact force mechanical extensometer was utilized for the high
temperature tests to measure axial strain. This device employs a variable capacitor to
convert displacements into electrical signals. Low contact forces minimize the bending
in test specimens. The silicon carbide rods with knife edgesare gas cooled along with
the body of the extensometer. The gagelength is fixed at 25 mm (0.98 in.).

A clip-on extensometer was used for the room temperature tests to measure
axial strain. The gageworks in conjunction with the frame's electronic controls. As a
result, the frame's controls are used to electronically calibrate the gage and process
its signal. The gage has a Fixedgage length of 12.7 mm (0.5 in.) with a 12.7 mm (0.5
in.) extender for a total gagelength of 25.4 mm (1.0 in.). The maximum extension of
this gage is +1.27 mm (+0.05 in.). This results in a maximum strain range of +5.0%.

Rubber bands were used to hold the gage to the specimen.

Specimen heating was accomplished with the use of an induction heating

system and a recrystalized silicon carbide cylindrical susceptor. The susceptor has a
51 mm (2.00 in.) inner diameter with a 60 mm (2.38 in.) outer diameter. The furnace

is similar to the system presented by Worthem and Lewinsohn (1991) with the

exception that the power supply is a slightly smaller bench top model. The specimen

is passed through open slots in the side of the susceptor. The extensometer rods pass

through another slot. The ends of the cylinder are plugged with silicon carbide disks.

A thermocouple, placed near the specimen surface is used to monitor the gage section

temperature.
Lastly, a computerized data acquisition and analysis system was used to collect

the test data. The software also was used to determine various material properties
from the collected data.
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3. Test Specimen Configuration

The A12Oa/A12Oacomposite specimens had a fiber volume fraction ranging from
26% to 31%. Fibers consisted of uniaxially aligned single crystal alumina fibers. The
matrix was polycrystalline alumina with primarily open porosity of 40%. The specimen
geometry consisted of 16 plies. The fabrication of the composite is summarized by
Jaskowiak, et al. (1997).

The C-axis sapphire fibers have a mean diameter of 132 microns (5.2 mils). An
unstabilized zirconia coating of 1.5 to 2.0 gm (59-79 gin.) was applied to the fibers to
act as an interface between the fibers and the matrix. The zirconia coating has a
similar porosity to that of the alumina of the matrix. The resulting volume fraction of
the interface is slightly greater than 1%of the composite.

The composite specimens used in this research were fiat, constant thickness,
straight sided coupons with bonded tabs on either end. Glass fiber/epoxy composite
tabs were used for room temperature tests, and carbon fiber/polyimide composite
tabs were utilized in high temperature tests. These tabs provided a compliant layer
between the specimen and the grip faces. The tabs were bonded to the specimen
using structural film adhesives. The structural film adhesives require curing
temperatures of 120°C (250°F) and 180°C (350°F) for the room temperature and high
temperature specimens, respectively.

Specimen lengths were 152 mm (6.0 in.). The specimen width was
approximately 13 mm (0.5 in.) for all tests. The thickness was approximately 1.7 mm
(0.07 in.). Tensile coupons were cut from a panel with a diamond impregnated
abrasive wheel.

The specimen geometry was designed based on the American Society for
Testing and Materials (ASTM)Standard C 1359-96. The specimen geometry is shown
in Figure 1. ASTM Standard C 1359-96 is a recently developed standard test method
for obtaining tensile properties of continuous fiber-reinforced ceramics with
rectangular cross-sections at high temperatures. The configuration has been used
successfully in the past with failures usually occurring within the gagesection. In this
research effort the carbon fiber/polyimide composite tabs were 32 mm (1.25 in.) long,
13 mm (0.5 in.) wide, and 1.5 mm (0.060 in.) thick.

In addition to the composite specimens, monolithic alumina coupons were
fabricated. These specimens had the same geometry as the composite coupons, that
is, straight sided fiat coupons with bonded tabs on each end. Each coupon was 152
mm (6.0 in.) long with a width of 13mm (0.5 in.).

4. Procedure

Due to the limited availability of ceramic
composite specimens, only two to four coupons
were used for each of the test conditions.

The room temperature tests utilized clip-on
gages. The clip-on gages were shunt calibrated

4.8 Composite

I

l

I I I
1' 152 ,It

using the tensile testing frame's controls. The Dimensions in millimetels

gage was calibrated such that 5.0 percent strain

resulted in a 10 volt output. The gage was used Figure 1. Flat straight sided specimen
with the 25 mm (1.0 in.) gage length. The high with bondedtabs.
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temperature tests used the capacitive extensometers. The mechanical extensometer
was manually calibrated such that 10volts corresponded to 1.0 percent strain.

Tests were performed on a universal, digitally controlled, tensile testing frame
with an electric actuator. They were conducted in the load control mode which
provides a constant change in load with respect to time. The loading rate was Fixedat
1.0 kN/min. (4.4 kips/min.). The 1.0 kN/min. (4.4 kips/min.) provides a fast enough
strain rate for the specimen to limit the effects of creep and oxidation, but slow
enough to manually monitor and respond to any problems (i.e. with gripping or
extensometry) that may arise during a test. The load cell output was shunt calibrated
with the output set at 20 kN equal to 10V.

The specimen was loaded by passing it through the slot in the furnace then
pulling the furnace between the grips while holding the specimen with tongs. The
grips were clamped onto the specimen and the frame was placed in load control to
maintain a no load condition. Next, the extensometer was inserted into the hot zone
without contacting the specimen. The furnace was brought up to the desired test
temperature at a rate of 30°C per minute (54°F/min.). Following stabilization of the
test coupon temperature, the extensometer was brought into contact with the sample
and the tensile test was started.

Once the tensile tests were completed several fractured composite specimens
were observed with a scanning electron microscope (SEM) to determine the average
matrix crack spacing. Matrix cracks and their locations within the gage length were
recorded. The mean crack spacing and its standard deviation were determined.

5. Theory

Considerable effort has been applied to the mathematical modeling of the
mechanical behavior of ceramic matrix composites. A complete understanding of the
mechanical behavior of these composites is necessary if designers are to make use of
them for high temperature engine applications. Important properties include the
stiffness, first matrix cracking stress, ultimate strength, and work of fracture from
room temperature to at least 1200°C.

5.1. Modulus

One of the basic properties of interest is the elastic modulus. The longitudinal
Young's modulus of the composite is related to the matrix and fiber moduli, and their
respective volume fractions by the rule of mixtures as presented in the following
equation

Ec= VfEf + VmEm (1)

where E is the modulus, V is the volume fraction, and subscripts c, f, and m refer to

the composite, fiber, and matrix, respectively.
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5.2. Matrix Cracking and Interfacial Shear Properties

In addition to studying the composite modulus, the proportional limit, in the
direction of the fibers, needs to be investigated. It is assumed that the proportional
limit on a stress/strain curve and the first matrix cracking stress are the same. This
is a common assumption, as noted by Woodford and his associates (1993). The first
matrix crack is taken by definition as the first through the cross section crack,
wherein only the fibers are left to carry the total composite load. Any minor cracking
within the composite before this condition or load is reached, is ignored in this
definition. It is assumed that the fiber failure stress and strain are greater than the
matrix failure stress and strain, respectively. The first matrix cracking stress is the
onset of permanent major damage in a composite making it a critical design
parameter. Shimansky (1989) describes the cracking process for CMCs with an
increasing load as usually initiating with microcracks within an amorphous region at
the fiber/matrix interface. The microcracks coalesce upon further increase in the
applied load, forming major matrix cracks perpendicular to the loading axis that
eventually traverse the whole composite cross-section. As the applied load continues
to increase the matrix cracks at other points along the load axis. Finally, the matrix
becomes saturated with regularly spaced parallel cracks. Once the composite matrix
is saturated with cracks the remaining fiber/matrix interface area with each matrix
segment is insufficient to transfer an adequate load to cause the matrix to fracture
into smaller segments.

The first matrix cracking stress is dependent on many parameters. A key
parameter is the fiber/matrix interfacial shear strength. Kerans (1989) has noted that
the interfacial shear strength is difficult to characterize and may vary with location. In
this work, the fiber/matrix interfacial shear strength is determined from matrix crack
spacing measurements in a composite that has been loaded to or near its ultimate
strength. Loading a specimen near the ultimate strength leads to matrix crack
saturation. The average crack spacing for each specimen is used to determine the
mean fiber/matrix interfacial shear strength, z, using the equation

/_ R Vm Em O-y
T = (2)

2VfEcx

where [3=1.337 from Kimber and Keer (1982), R is the fiber radius, qy is the composite

stress where matrix cracking initiates, and x is the length over which the additional
load sustained by the fibers at the crack is transferred back to the matrix. This

equation is derived from a summation of forces within the composite as presented by
Aveston, et al. (1971). Aveston, et al. showed that the crack spacing is between x and

2x. Kimber and Keer (1982) demonstrated analytically that the crack spacing was

closer to 1.337x. This equation is deterministic since it is assumed that the composite

stress where matrix cracking initiates, that is Gy, is constant.
In most composite systems there is a coefficient of thermal expansion (CTE)

mismatch between the fibers and the matrix. This results in residual stresses within

the composite at temperatures other than the processing temperature. The following

equation from Budiansky, et al. (1986) is used to determine the axial residual stress
within the matrix:
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where:

_T = (af aOAT (4)

AT = (T- Tproc) (5)

[1-2vi[i_ EclL (6)

(7)

The variables 0{f and 0{m are the coefficients of thermal expansion for the fiber and

matrix, respectively. The processing temperature is Tproc and the test temperature is

T. The Poisson's ratio, v, for the fiber and the matrix is assumed to be the same.

Aveston, et al. (1971) derived an equation for predicting the composite stress

where matrix cracking initiates in brittle matrix composites. This is commonly

referred to as the ACK theory and the result is presented in equation 8. The

parameters include the fiber/matrix interfacial shear strength _, the matrix fracture

surface energy 7m, the fiber radius R, the constituent volume fractions V, and
constituent moduli E.

1

12TYmEcEfV f
_y = {8}

2

EmVmR

Note that the above equation is independent of crack size. It is a discrete model that

was derived using an energy balance approach. The ACK theory uses the change in

energy states within the composite from just prior to matrix crack initiation to just
after the crack propagates completely through the matrix. Important assumptions

included are: (1) the fiber failure strain is greater than the matrix failure strain, (2) a
frictional interfacial bond between the fiber and the matrix exists, and (3) the fibers

can bear the load without any support from the matrix.

Chawla (1993) pointed out some limitations or problems with the ACK theory.

First, the theory indicates that the matrix strain to failure, or the first matrix cracking
stress in equation 8, goes to zero as the fiber volume fraction goes to zero, whereas,
the limit should be the strain or stress to failure of the monolithic matrix material.

The model predicts that the strain to failure increases with increasing fiber/matrix

interfacial shear strength. Unfortunately, the theory does not account for the

limitation where fiber/matrix interfacial debonding and/or sliding does not occur. The

lack of relative displacement at the fiber/matrix interface prevents fiber bridging of
the matrix crack, resulting in linear elastic behavior.
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Another equation for predicting the first matrix cracking stress was developed
by Marshall and Cox (1988) using the crack closure pressure suggestedby McCartney
(1987). This approach was applied by Chulya, et al. (1991) to SiC/RBSN to calculate
the first matrix cracking stress. Marshall and Cox (1988) used linear elastic fracture
mechanics and assumed a single crack, loaded in mode I, propagating through a
semi-infinite medium. The traction from the bridging fibers was superimposed on the
crack model as closing pressure. The resulting equation is similar to the ACK results.
Marshall and Cox also assumed a weak frictional fiber/matrix interface with bridging
fibers. The resultant equation for predicting the composite stress where steady state
matrix cracking begins within the lamina is

1

6Z'7m E cEf Vf
C_y = (9)

2

EmVmR

Combining equations 3 and 9 leads to an equation which predicts the composite

cracking stress with residual stress effects included. The result is

Ec (10)
O-y,_ = O-y - O-m,_ gm

Danchaivijit and Shetty (1993) and Budiansky, et al. (1986) have pointed out that the

ACK result, as well as equation 9 above, lead to lower bound predictions.

5.3. Fiber Properties

As mentioned earlier, ceramic matrix composites contain fibers that have a

higher failure strain than the matrix. As a result, the composite's mechanical

properties are fiber dominated near the material's ultimate strength. This section

discusses the behavior of ceramic fibers in preparation for analyzing the ultimate
strength of unidirectional composites.

Most brittle materials, including ceramic fibers, show a large variation in their

tensile strength. Therefore, it is appropriate to apply statistical techniques for

predicting their reliability and probability of failure. Statistical analysis allows the

designer to use data generated from a small sample to systematically predict the

stochastic response of complex structures.

Bergman (1984) reported that the cumulative distribution function proposed by
Weibull (1939) is the most useful for characterization of brittle materials. Weibull

analysis is based on the weakest link theory, where failure is assumed to occur at the

largest flaw within the material. The sapphire fibers in this study consist of single

crystals eliminating creep due to sliding grains but according to Bunsel and Berger

(1997) the fibers are not without defects. Bunsel and Berger (1997) observed bubbles

in the fibers most probably due to meniscus at the point of fiber growth and

convection in the melt during fiber production. The Weibull theory is purely statistical
in nature. It should be noted that a single flaw population and a strength that is

independent of time will be assumed. The three parameter Weibull cumulative

distribution function for the failure probability of ceramic fibers is
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r ¢o- o,F
pf = 1 - e J'_t_°° J dv (11)

where Pf is the probability of failure by fracture at a given stress, G, m is the shape

factor, known as the Weibull modulus, V is the stressed volume, Go is the scale factor,

and Gt is the location parameter defined as the threshold stress below which the

probability of failure is zero. The scale factor, Go, has the dimension of stress times

(volume)l/m for Pf to be dimensionless. The above equation can be simplified by taking
the conservative assumption of setting the threshold stress to zero, assuming uniaxial

fiber stress acting in a material volume with only internal imperfections.

Consequently, equation 11 can be expressed as

]III

v_

Pf = 1 -e o0 (12)

The above equation is linearized by taking the natural logarithm twice,
resulting in the following equation:

y:+/<)]:inky,+mln/ 0/ (13)

This equation can be plotted on a Weibull plot of y versus in G wherein the Weibull

modulus, m, is the slope of the plotted line. The Weibull characteristic strength may
be substituted for the volume and Weibull scale parameter to simplify the above

equations. The Weibull characteristic strength, Go, is a function of the Weibull scale

parameter, Go; the stressed volume, V; and the Weibull modulus, m; as shown in the

following equation:

O- °

Go - 1 (14)

V m

Equation 14 is valid for the condition where the stress is evenly distributed over the

volume, V, as is the case in uniaxial tension. Substituting equation 14 into equations

12 and 13 we get

O )Ill

Pf = 1 - e o0 (15)

n_ n_ i_-i_ipf ]] In_-_-e ]y= 1 1 =m (16)

Pai and Gyekenyesi (1988) and Mahfuz, et al. (1997) report that the least

squares analysis and maximum likelihood method are the most popular techniques
for estimating Weibull parameters from experimental data. The least squares method
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offers simplicity with the estimated Weibull modulus being the slope of the best fit

line by linear regression on a Weibull plot of y versus in(G). Bergman (1984) also

states that the use of the least squares method implies that the in e_ values follow a

Gaussian distribution around the line obtained from equation 13. The maximum

likelihood technique is a nonlinear model offering efficiency and is better suited to
model uniaxial strength data of brittle ceramics. ASTM (1995) has a standard

(Designation: C 1239-94a) utilizing the maximum likelihood technique for estimating

the Weibull parameters. The maximum likelihood method will be used for this work.

The likelihood function, from the ASTM (1995) standard, for the two-parameter

Weibull distribution, with a single-flaw population or uncensored data set is

ntotf Xf 5ml (_)m

L= hi--milan/ e to0J
t )t )

(17)

where n is the rank of a specimen and ntot is the total number of specimens in a

sample.

The estimates of the Weibull modulus and the characteristic strength are

determined by taking the partial derivatives of the natural logarithm of the likelihood

function, equation 17, with respect to m and Go and equating the resulting

expressions to zero. Following are the resulting equations, for an uncensored sample,

which are to be solved numerically.

Iltot

m 1EOnntOn)
ntot

Z O -mn
n 1

nt°t i
LI 4On) - 0 1181

ntot n 1 m

1

i-(,_o< _ 1 -Ira

.o: LtZ<jmj (19)

The ASTM (1995) standard, designation C 1239-94a, states that the estimated

Weibull modulus tends to be statistically biased. The bias is a function of the sample

size. The bias decreases as the sample size is increased. The ASTM (1995) standard,

designation C 1239-94a, provides a table of unbiasing factors as a function of sample
size.

A probability estimator is used to give the probability of failure for each failure

stress. These probability values are used to calculate y for a given corresponding

stress. The measured fracture strengths of the fibers are ranked in ascending order.

The following estimator is used to calculate the failure probability:

n-0.5
Pn(O-n) - (20)

ntot

where n is the rank of the specimen data point and ntot is the sample size. Other
common probability estimators were discussed by Bergman (1984). The above
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probability estimator, which gives an averagevalue of the empirical density function
about the corresponding stress, is most useful for small samples of less than 50 as
discussed by Bergman (1984). Also, the probability estimator of equation 20 is part of
the ASTM (1995) standard, mentioned above.

5.4. Ultimate Strength

The ultimate strength of the sapphire fiber reinforced polycrystalline alumina
composites is primarily dependent on fiber properties. The strength properties of
single crystal alumina fibers, as a function of temperature, were measured in separate
tests.

A simple approximation for predicting the composite ultimate tensile strength
utilizes the rule of mixtures and the mean fiber strength. For the unidirectional
lamina, assuming that the in-situ fiber and the independent fiber strengths are
identical and that the matrix carries no load, we have

C_ou = Vfc_f, (21)

where: Ocu - the composite ultimate strength

I_fu - the mean fiber ultimate strength

It is further assumed here that all the fibers are intact until just prior to the

composite ultimate loading.

The assumption of uniformly strong fibers would be the ideal situation, but in
practice the fibers tend to fail sequentially starting with the weakest fiber, until the

applied load cannot be supported leading to total fracture. Since the fibers are brittle

and exhibit stochastic behavior, it is more appropriate to apply statistics to determine

their ultimate strength. Duffy, et al. (1991) have pointed out that the strength

distribution of the fibers needs to be incorporated into an analytical model for

predicting the ultimate strength of the composite.
Equation 22 from Curtin, et al. (1993) and Curtin (1993) has been used to

determine the composite's ultimate strength in terms of fiber properties.

1

/ 2 _ m+l / m '_ 1 _F 0-_" Lf

Oc.--v k -%7+2j

1

m+l

(22)

where: Lf - fiber gage length at which the strength was determined
m - Weibull modulus of fiber

I_fu - mean fiber strength

It is of interest to compare the above result to that found for a "dry" bundle containing

only fibers and no matrix. The composite strength based on bundle ultimate strength,

Ocub, Can be calculated, per Evans, et al. (1995), from
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  )mlfO'cub = Vfo-f_ 1 e m (23)

where Lc is the fiber bundle gage length and Ix is the fiber length used to determine Gfu

and m. Equation 23 uses the rule of mixtures to estimate the composite strength, Gcub,

with the product of the fiber volume fraction and the fiber bundle strength, Gf_b.

Evans (1989), as well as Evans and Marshall (1989), presented a model for

predicting the composite ultimate strength based on weakest link statistics,

incorporating the fiber Weibull modulus, m. The model is a modified bundle failure

analysis which assumes failed fibers have no load bearing ability. The model of the

modified bundle failure theory is presented in the following equation:

k RO-fub )

O-c,lbm = Vfo-f,_b e k _ RO-fub) J (24)

The fiber bundle strength, Gfub, is determined by iteratively solving the following

equation:

Ro-fl_b/m+l A o /No-o/roll_(1 - "t'x )m 1r x / - 2rcRL c k,--_x / k Ro'fnb

(25)

where _ is the interfacial shear stress as defined by equation 2, x is the saturated

matrix crack spacing, R is the fiber radius, Lc is the composite gage length, and Ao is

an area normalizing factor. The scale parameter, Go, is defined, according to Chulya, et

al. (1991), by the following equation:

1
O-f_

o-o - (27r RLf ) m (26)

Here Lf is the fiber gage length and F is Euler's gamma function, defined as:

(1+1/ 1

= t _ mJ e tdt (27)

Cao and Thouless (1990) made an attempt to predict the ultimate strength of a

ceramic composite with the application of two parameter Weibull statistics. Their

theory assumed that the matrix is saturated with cracks. As a result, the initial linear

elastic behavior and the nonlinear deformation associated with matrix cracking are

not incorporated. Another simplifying assumption is that upon fracture of a fiber

anywhere within the gage length of the composite, the fiber is unable to carry any
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load. Given the assumptions, the
following equation is used to predict
the ultimate strength of a ceramic
composite:

1

/ /me1C_cu = VfZ m(m+l)vL c m

(28)

where:

1

- 111 1

AoO- o z'(m + 1) m+l

2/cR 2

(29)

As with the other theories in this

section, this theory is based on fiber

statistics, primarily the Weibull

modulus and the scale parameter,
and the variables are as defined in

the statistical failure theories above.

6. Results and Discussion

In this section the high

temperature tensile test results are

presented and compared with theory

to predict the mechanical behavior of
the unidirectional fiber reinforced

AlsO3/AlsO3 composite.

Table 1. High Temperature Mechanical Tensile Properties
for AbOJAbO3 Composites.

Specimen No. s= (%)

64a 22 146 274 0.190 425 0.400

64b 22 151 285 0.190 438 0.350

54a 22 167 308 0.190 362 0.320

54b 22 167 283 0.170 459 0.320

mean 22 158 288 0.185 421 0.348

std. dev. 11 14 0.010 42 0.038

SA167-1 800 168 142 0.080 149 0.082

SA167-2 800 138 206 0.135 206 0.135

SA167-3 800 152 147 0.092 147 0.092

mean 800 153 165 0.102 167 0.103

std. dev. 15 36 0.029 34 0.028

SA171-1 1000 108 47 0.452 89 0.047

SA171-2 1000 177 63 0.037 80 0.030

mean 1000 143 55 0.245 84 0.039

std. dev. 49 12 0.293 7 0.013

SA169-1 1200 128 84 0.054 84 0.054

SA169-2 1200 95 71 0.064 71 0.064

SA169-3 1200 110 103 0.080 103 0.080

mean 1200 111 86 0.066 86 0.066

std. dev. 17 16 0.013 16 0.013

SA180-1 1400 99 70 0.071 112 0.101

SA180-2 1400 106 74 0.071 120 0.097

SA180-3 1400 84 74 0.088 93 0.099

SA180-4 1400 106 52 0.047 95 0.027

mean 0.081

std. dev. 0.036

T - test temperature

Ec - Young's modulus of composite

Cyy- first matrix cracking stress

Sy - strain at first matrix cracking stress
%u - ultimate strength of composite

Sou- strain at ultimate strength of composite

A typical stress-strain curve for the composite specimens is presented in Figure

2. All the specimens exhibited pseudo-toughness, or an ability to sustain progressive

damage, from room temperature to 1400°C (2550°C) in air relative to monolithic

polycrystalline alumina. These temperatures were selected to represent potential

service conditions. All the specimens tested shared linear elastic behavior, followed by

matrix cracking producing a limited nonlinear stress versus strain region. The

measured mechanical properties for all the short term static tensile tests for the

composite are presented in Table 1.

6.1. Modulus

Figure 3 and Table 1 show the Young's modulus of the composite as a function

of temperature. The composite modulus decreases with increasing temperature. In
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addition, Figure 3 illustrates the constituent moduli. The fiber moduli at 22 °, 1000 °,

and 1400°C (72 °, 1830 °, and 2550°F) were provided by Dr. Ali Sayir (1998) of Case
Western Reserve University. The high temperature fiber modulus data was generated

using the system described by Sayir, et al. (1994). It can be observed in Figure 3 that

the single crystal alumina fiber modulus varies fairly linearly with respect to

temperature from room temperature to 1400°C (2550°F). This behavior is consistent

with the observation made by Wachtman Jr. and Lam (1959) for single crystal

alumina. Fiber moduli at 800 ° and 1200°C (1470 ° and 2190°F) were derived using

linear interpolation.
Monolithic polycrystalline alumina specimens were tested at room temperature

and 1200°C (2190°F). The room temperature results were reported by Jaskowiak and

Seflock (1994). The material is the same as the matrix in the A12Oa/A12Oa composite

used for this work. The measured and interpolated moduli are presented in Figure 3.

Wachtman Jr. and Lam (1959) showed that the modulus decreased linearly with

respect to temperature from room temperature to approximately 950°C (1740°F).
Above 950°C (1740°F) the modulus of the polycrystalline alumina dropped much more

rapidly due to grain boundary softening and sliding according to Wachtman Jr.

(1996). The percentage change in the modulus with respect to temperature presented

by Wachtman Jr. and Lam (1959) was used to extrapolate moduli for the alumina

used for the composite matrix at different temperatures.

The moduli of the constituents were used to determine the Young's modulus of
the composite using the rule-of-mixtures, equation 1. The measured composite

moduli and the calculated moduli are presented in Figure 3. There is excellent

correlation between the measured and predicted values for the composite Young's

modulus from room temperature to 1000°C (1830°F). At 1200°C (2190°F) the

predicted value is greater than the mean measured modulus but within one standard
deviation. Above 1400°C (2550°F) the rule of mixtures overestimates the modulus of

the composite. The lower value of the measured Young's modulus at 1400°C (2550°F)

may be due to changes in the zirconia interface between the fibers and the matrix. It

is noted by Ryshkewitch and Richerson (1985) that the crystal structure of the

zirconia starts to change from monoclinic to tetragonal at approximately 1000°C

(1830°F) resulting in a volume reduction of about 9%. The volume reduction of the

zirconia may be leading to debonding of the fiber/matrix interface. The fiber/matrix
interfacial debonding would decrease or prevent load transfer between the fibers and
the matrix which would reduce the fibers' contribution to the overall stiffness of the

composite. A more in depth investigation of the interfacial properties at high

temperatures may be a subject for future work.

6.2. Matrix Cracking and Interfacial Shear Properties

The effect of temperature on the proportional limit also was studied. It was

assumed that the proportional limit, on a stress/strain curve, and the first matrix

cracking stress were the same. The first matrix cracking stress is the onset of

permanent damage in a composite, making it a critical design parameter.
The first matrix cracking stress is affected by various parameters. One of these

parameters is the fiber/matrix interfacial shear strength. Other parameters are

addressed later in this section. It has been noted by Kerans, et. al. (1989) that the

interfacial shear strength is difficult to characterize with certainty. In this study the

fiber/matrix interfacial shear strength is taken from the work of Jaskowiak, et al.
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(1997) for room temperature. The high temperature
interfacial shear stress is determined as a function of

matrix crack spacing in a composite that has been

loaded to the ultimate strength of the composite. Figure

4 illustrates the average matrix crack spacing as a

function of temperature in air. Scatter was observed in

the matrix crack spacing as indicated by the first

standard deviation error bars in Figure 4. The matrix

crack spacing was measured using a scanning electron

microscope (SEM). It should be noted that it was very

difficult to locate through-the-composite, fiber bridged,

regularly spaced cracks within the A12Oa/A1203

composite. Next, the average crack spacing for each

specimen was used to determine the mean fiber/matrix

interfacial shear strength, _, using equation 2. It is

Table 2. Coefficients of Thermal

Expansion for Sapphire Fibers and

Polycrystalline A12Q Matrix.

T (°C)

22

800

100

1200

1400

o_f(10-6/°0)

6.26

8.43

8.72

8.89

9.02

O_m(10-6/°0)

6.03

7.90

8.14

8.30

8.43

- fiber coefficient of thermal

expansion

0% - matrix coefficient of thermal

expansion

assumed that the matrix is characterized by a single value for strength. Yang and

Knowles (1992) have made an attempt to apply Weibull statistics to characterize the

matrix crack spacing with limited success, but more in depth analysis is required.

Referring to Figure 4 it can be observed that matrix crack spacing decreases

with increasing temperatures up to approximately 1200°C (2190°F). At 1400°C

(2550°F) there is a significant increase in the matrix crack spacing. The large increase

in matrix crack spacing may be attributed to a volume reduction of the zirconia at the

fiber/matrix interface as discussed in the previous section, 6.1, on the modulus. The

resultant debonding between the fibers and the matrix prevents the fibers from

enhancing the matrix fracture stress relative to monolithic alumina. Figure 5 shows

the interfacial shear strength as a function of temperature in air. It is difficult to

conclude how the interfacial shear stress varies with temperature but there is a

general reduction going from room temperature to 1400°C (2550°F). In addition, it

may be noted that the interfacial shear strength is rather weak ranging from 55 to 3

MPa (8.0 to 0.4 ksi). The interfacial shear stress can vary significantly within a

composite due to variations in processing conditions and effects of neighboring fibers

as proposed by Chulya, Gyekenyesi, and Bhatt (1991). Research is continuing to

identify a test for accurately determining the interfacial shear strength between the

fiber and the matrix of various composite materials. This includes tensile tests of

single fibers coated with the matrix material by Morscher, Martinez-Fernandez, and

Purdy (1994) and fiber push-out tests by Eldridge, Bhatt, and Kiser (1991). Eldridge

and Ebihara (1994) and Eldridge (1995) developed a high temperature fiber push-out

system capable of testing specimens up to 1100°C (2010°F) in a vacuum environment.

The coefficient of thermal expansion (CTE) for the matrix and fibers are slightly
different as can be observed in Table 2. The CTE values were taken from the work of

Gitzen (1970) for 0 ° single crystal alumina and polycrystalline alumina. This results in

residual stresses within the composite at temperatures other than the processing

temperature. The processing temperature, assumed to be approximately 1300°C

(2400°F), is used as the reference temperature at which there are no residual stresses

due to the CTE mismatch within the composite. Equation 3 is used to determine the

residual stress within the matrix. The Poisson's ratio is taken from the work of Gitzen

(1970) and is assumed to be the same for the fiber and the matrix at a mean value of

v=V_Vm=0.22.
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The stress values at the proportional limit are illustrated in Figure 6 and Table

1. In addition, Figure 6 presents predicted values from the ACK theory and the
Marshall and Cox theory combined with the McCartney theory. The matrix fracture

surface energy, Tin, is assumed to be a conservative 5 J/m 2 (0.03 in.lbf/in2). The value

for the matrix crack surface energy is taken from Wachtman Jr. (1996) who showed

ceramics to typically vary from 5 to 50 J/m 2 (0.03 to 0.29 in.lbf/in2).

Looking at Figure 6 and Table 1 we find that the estimated values for the first
matrix cracking stress by the ACK theory (equation 8), and the Marshall and Cox

theory combined with the McCartney theory (equation 9) were conservative at room

temperature while not accounting for residual stresses and assuming a frictional

fiber/matrix interface. By accounting for residual stresses the ACK theory estimates

the room temperature first matrix cracking stress fairly accurately. On the other

hand, by accounting for the residual stresses the Marshall and Cox theory combined
with the McCartney theory still results in a conservative prediction for the first matrix

cracking stress. Above room temperature all the theories over estimate the first matrix

cracking stress. This is probably due to the difficulty in determining the fiber/matrix

interfacial shear stress. In addition, the matrix fracture surface energy may be

reduced slightly from the assumed value as temperature is increased. The ACK

theory, with the assumption of a frictional fiber/matrix interface and not accounting

for residual stresses, is recognized as a lower bound as pointed out by Danchaivijit
and Shetty (1993) and Budiansky, Hutchinson, and Evans (1986), although, the

Marshall-Cox theory combined with McCartney's theory, and not accounting for

residual stresses, results in a more conservative prediction.

It should be noted that this study is primarily concerned with the high

temperature behavior of these composites, that is, approximately at potential
operating temperatures up to 1400°C (2550°F). Wachtman Jr. (1996) has shown that

many researchers have observed a drop in strength between approximately 400 ° to

900°C (750 ° to 1650°F). Future studies of this composite system may be made in the

lower temperature regime.

6.3. Sapphire Fiber Properties

The single crystal alumina fibers were tested in an "as-received" condition. That

is, they were taken directly off the spool on which they were delivered and then tested.

The properties including the ultimate strength of individual fibers, mean

ultimate strength with a variance of one standard deviation, Weibull modulus, and
Weibull characteristic strength as a function of temperature for the sapphire fibers

are presented in Table 3. In addition, the mean fiber ultimate strengths with one

standard deviation are plotted as a function of temperature in Figure 7. Figure 8

presents a typical two-parameter Weibull plots with Ln(Ln(1/(1-Pf)) versus the fiber

ultimate strength for the 'as-received' sapphire fibers. The same figure illustrates the

90% confidence bounds as determined using the ASTM (1995) standard designation C

1239-94a. Figure 9 presents the Weibull modulus as a function of temperature with
90% confidence bounds for the sapphire fibers.

The Weibull modulus is determined by numerically solving equations 18 and

19, which are part of the maximum likelihood method.

The data from Table 3 and Figure 7 indicate a steady decrease in ultimate

strength with increasing temperature from room temperature to 1500°C (2730°F).

Weibull moduli range from a low of 10 to a high of 24 from room temperature to
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Table 3. The Ultimate Strength, Mean Ultimate Strength, Weibull Modulus, and Weibull Characteristic Strength

as a Function of Tern _erature of Sapphire Fibers.

1

2

3

4

5

6

7

8

9

10

22°C

_fu (GPa)

3.18

3.16

3.05

2.98

2.84

2.80

2.68

2.50

2.45

2.27

900°C

_fu (GPa)

1.02

1.02

1.02

0.97

0.94

0.93

1000°C

_fu (GPa)

0.97

0.94

0.93

0.89

0.88

0.82

0.82

0.70

0.69

1100°C

_fu (GPa)

0.86

0.82

0.79

0.77

0.77

0.76

0.76

0.73

0.73

0.70

1200°C

_fu (GPa)

0.88

0.82

0.81

0.80

0.75

0.74

0.73

0.73

0.72

0.70

1300°C

_fu (GPa)

0.75

0.73

0.71

0.70

0.69

0.69

0.68

0.67

0.67

0.65

1400°C

_fu (GPa)

0.67

0.64

0.62

0.61

0.60

0.59

0.58

0.55

0.53

0.48

1500°C

_fu (GPa)

0.64

0.63

0.62

0.62

0.62

0.62

0.57

0.56

0.56

0.55

mean _fu (GPa) = 2.79 0.99 0.85 0.77 0.77 0.69 0.59 0.60

standard deviation 0.31 0.04 0.10 0.05 0.06 0.03 0.06 0.04

*m = 9.7 23.9 9.5 14.3 12.0 20.4 11.4 18.8

5% bound for m 6.2 13.1 6.0 9.2 7.7 13.1 7.4 12.1

95% bound for m 15.4 45.8 15.6 22.6 18.9 32.4 18.1 29.8

*_e (GPa) = 2.91 1.00 0.89 0.79 0.79 0.71 0.61 0.61

environment: air

gage length: 25 mm

*Unbiased values derived by using maximum likelihood method
with probability estimator P=(n-0.5)/ntot as per ASTM standard

designation C 1239-94a

n - rank of the specimen data point

Lf - specimen gage length
m - Weibull modulus

or0 - characteristic strength

approximately 1500°C (2730°F) for the sapphire fibers. The scatter of the Weibull

moduli as a function of temperature with the wide confidence bounds may be an

indication that a larger sample of fibers is needed.

As noted in the section on matrix cracking, it should be pointed out that this

study is primarily concerned with the high temperature behavior of these composites,

that is, at potential operating temperatures up to approximately 1400°C (2550°F).

Wachtman ,Jr. (1996) has shown that many researchers have observed a drop in

strength between approximately 300 ° to 600°C (570 ° to 1110°F) for single crystal

alumina. Future studies of this composite system may be made in the lower

temperature regime.

7.1.4 Ultimate Tensile Strength of A1203/A1203

The ultimate strengths of these composites are primarily dependent on fiber

properties. As a result, the mechanical properties of the composite, near the ultimate

strength, will be effected by the environment in a similar manner as the fiber
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constituent. The strength properties of the single crystal alumina fibers as a function
of temperature were discussed in the previous section.

The ultimate tensile strengths of the composites are plotted as a function of
temperature in Figure 10. The plot includes the mean ultimate strength with one
standard deviation from tensile tests in air and theoretical curves using constituent
properties. The same properties are presented in Table 4. To reiterate, the test
temperatures were room temperature, 800°, 1000°, 1200°, and 1400°C.Figure 10 and
Table 4 indicate a steady drop in the ultimate strength of the composite from room
temperature to approximately 1000°C (1830°F). There is an almost insignificant
increase in the ultimate strength from 1000°C (1830°F) to 1400°C (2550°F).

It can be observed in Figure 10 and Table 4 that the rule of mixtures, equation
21, over-predicts the ultimate strength considerably. It is only at 1400°C (2550°F)
where the rule of mixtures prediction approaches the measured ultimate strength, but
it is still higher than the experimentally observed values and the other theoretical
predictions utilized in this section. It was mentioned in the previous chapter that this
approach assumes that all the fibers are intact just prior to the composite ultimate
strength. The rule of mixtures does not account for the brittle nature of the
reinforcing fibers and the corresponding variance in the strength of the fibers. As a
result, the rule of mixtures assumes ideal conditions, producing optimistic strength
values relative to the experimentally derived measurements of the composites. Lastly,
fiber damage, due to processing of the composite, may reduce the ultimate strength of
the composite also.

Table4. TheExperimentalandTheoreticalUltimateTensileStrengthof A1203/A1203asaFunctionof
Temperaturein Air.

T experimental

/°C) /MPa)
22 421 +42

800 167+34

1000 84+7

1200 86+16

1400 105+13

ROM

/MPa)
728

324

227

207

182

Curtin Evans 1995

/MPa)
704

311

209

205

159

{MPa)
656

3O3

2O5

190

167

Evans 1989

/MPa)
584

270

173

167

145

Cao & Thouless

/MPa)
523

262

170

162

142

experimental - mean and one standard deviation values from tensile tests
ROM - rule of mixtures

Curtin - Curtin's theory incorporating role of mixtures and Weibull statistics with L f--25 mm

Evans 1995 - Evans' theory using fiber bundle theory with no matrix material with Lf--Lc=25 mm except

Lc=38 mm at room temperature

Evans 1989 - Evans' theory based on a modified fiber bundle theory

Cao & Thouless - Theory incorporating role of mixtures and Weibull statistics

* Theoretical results using fiber properties in air

Since the fibers are brittle and exhibit linear elastic behavior with a significant

variance in strength, relative to metals or other common structural materials, it is

more appropriate to apply statistics to determine the ultimate strength. Curtin's

(1993) theory, equation 22, incorporates Weibull statistics to address the variance in

the strength of the fibers. Data from Figure 5 and Table 3 were used with Curtin's

theory. The fiber gage length, Ix, is 25 mm (0.98). The results are presented in Table 4

and Figure 10. Curtin's theory also produces optimistic values for the ultimate

strength. Unfortunately, the theory predicts strengths significantly over the measured
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ultimate strengths. Curtin's theory is only a slight improvement over the simple rule

of mixtures for predicting the ultimate strength of the brittle fiber reinforced A1203
composite system. As noted with the rule-of-mixtures, part of the discrepancy

between Curtin's theory and the measured ultimate strength may be due to fiber

damage during processing of the composites.

Evans, et al. (1995) tried to predict the ultimate strength of the composite

using the rule of mixtures, the fiber bundle strength with Weibull statistics, and with

the assumption that influence from the matrix was insignificant. The theory is

presented in Equation 23. The results are shown in Figure 10 and Table 4. The mean
fiber strengths and the fiber Weibull moduli were taken from Table 3. All gage lengths,

Lf and Lc, are 25 mm except at room temperature where the composite gage length, L_,

assumed to be the same as the bundle gage length, is 38 mm. The theory

overestimates the ultimate strength of the A1203/A1203 composite at all temperatures

but it shows a similar curve to Curtin's theory. The curves show a reduction in

ultimate strength from room temperature to approximately 1000°C (1830°F) with a
minimal change 1000°C (1830°F) to 1400°C (2550°F). Again, fiber damage due to

processing may add to the discrepancy between the theory of Evans, et al. (1995) and

the measured composite ultimate strengths.

Evans (1989) presented a model based on a modified fiber bundle theory. The

theory is presented in equation 24. The results are presented in Figure 10 and Table

4. The required parameters of the fiber bundle strength, Gfub, was solved iteratively

using equation 25 and the scale parameter, Go, was determined using equation 26.

The area normalizing factor, Ao, was equal to 1.0 m 2. All gage lengths, Lf and Lc, are
set at 25 mm (0.98 in.) except at room temperature where Lc=38 mm (1.5 in.). The

theory produces results which are better than Curtin's theory (1993); Evans', et al.

(1995) theory; and the rule of mixtures. At room temperature the prediction is 39%

greater than the experimentally derived data. Unfortunately, the Evans' modified fiber

bundle theory over predicts by up to 106% over the measured ultimate strength at

800°C (1470°F). Fiber degradation, due to the processing conditions of the composite,
may have added to the discrepancy between the theory and the measured composite

ultimate strength.

Cao and Thouless (1990) also presented a theory for predicting the ultimate

strength for a ceramic composite. It is based on two parameter Weibull statistics as

described in the previous section. The theory was applied to the A1203/A1203 system

with the results presented in Figure 10 and Table 4. The same scale parameters, Go,
calculated for the modified fiber bundle theory of Evans (1989), were used for this

theory. The composite gage length, Lc, is set at 38 mm (1.5 in.) for room temperature

and 25 mm (0.98 in.) for temperatures greater than room temperature. At room

temperature, the theory over predicted the composite ultimate strength by 24%. The

theoretical predictions over estimate the ultimate strength up to 102% at 1000°C

(1830°F). Of the theories evaluated in this paper, the theory from Cao and Thouless
(1990) does offer the best predictions for the composite ultimate strength but the

results are still overly optimistic relative to the experimentally derived ultimate

strengths. The theory provides similar predictions to the Evans' (1989) theory for

temperatures between 800°C (1470°F) to 1400°C (2550°F). Composite fabrication

induced fiber damage may have reduced the measured composite ultimate strength
also.

All the theories that were addressed in this section using the fiber properties

overestimated the ultimate strength of the A1203/A1203 composite. It was noted with

each of the theories that the lower values of the experimentally obtained ultimate
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strength measurements for the A12Oa/A12Oacomposite may be due to fiber damage
incurred during processing of the A12Oa/A12Oaor due to possible surface damage
produced upon matrix fracture during the tensile test. Although as the test
temperatures approach 1000°C (1830°F) and over, it is believed that the fiber strength
degrades due to dislocation microplasticity, twinning, stresses due to thermal
expansion anisotropy, and slow crack growth as noted by Wachtman Jr. (1996) for
single crystal alumina. This degradation of intrinsic strength becomes more
significant than the strength reduction due to surface damage. As a result, the
predicted composite ultimate tensile strength, based on fiber properties, becomes
more accurate when compared with the measured composite ultimate tensile
strength. The application of the mean fiber strength and the fiber Weibull modulus
does predict the ultimate strength of the composite with increased accuracy.
Increasing the number of specimens per test should show more accurate results when
applying statistics. In addition, a more accurate technique is needed to model the
fiber damage due to the processing of the composite. Lastly, the mean strengths and
Weibull moduli for the fibers were generated by testing individual fibers. Hill and
Okoroafor (1995) have observed a reduction in strength of fiber bundles due to
inter-fiber friction. This inter-fiber friction may be causing some of the reduction in
strength of the experimentally derived composite data relative to the theoretical values
derived from individually tested fibers. On an interesting note, Cox, Marshall, and
Thouless (1989) found that the fracture of composites is not greatly influenced by the
breadth of the fiber strength distribution. Although the theories incorporating the
scatter in fiber strength improved the predictions of the composite ultimate strength,
the conclusions of Cox, Marshall, and Thouless (1989) reinforces the idea that the
lower strength of composites is most likely due to damaged fibers caused by the
processing conditions of the composite.

7. Summary and Conclusion

The composite system studied includes uniaxial single crystal alumina fiber
reinforced polycrystalline alumina utilizing a porous ZrO2 fiber/matrix interface. The
Al2Oa/Al2Oacomposite was tensile tested at high temperatures in air from room
temperature to 1400°C (2550°F).

The composite exhibited progressive fracture at all the test temperatures of the
short term static tensile tests. The Young's modulus shows a slight decrease as the
test temperature was increased from room temperature to 1000°C (1830°F) but
decreased at a greater rate above 1000°C (1830°F).The rule of mixtures gives a good
approximation of the Al2Oa/Al2Oamodulus as function of temperature using the
constituent moduli up to approximately 1200°C (2190°F). More information is
required for predicting composite modulus above 1200°C (2190°F).

The characterization of the fiber/matrix interfacial shear strength requires
further study. The first matrix cracking stress decreaseswith respect to temperature
from room temperature to 1000°C (1830°F) followed by a slight increase up to
approximately 1200°C (2190°F).The first matrix cracking stress continues to decrease
as temperature is increased from 1200°C (2190°F) to 1400°C (2550°F). The ACK
theory (1971), with the assumption of a frictional fiber/matrix interface and
accounting for residual stresses, produces a good approximation for the composite
first matrix cracking stress at room temperature. Above the room temperature the
ACK theory and the Marshall and Cox theory combined with the McCartney theory
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significantly overestimate the first matrix cracking stress whether the residual
stresses are accounted for or not. This is believed to be, primarily, due to the difficulty
in characterizing the fiber/matrix interfacial sheer stress above room temperature.

The ultimate strength of the composite showed a drop from room temperature
to approximately 1000°C (1830°F) followed by a negligible increase in strength from
1000°C (1830°F) to 1400°C (2550°F).The theory of Cao and Thouless (1990) produced
the best estimates of the composite ultimate strength relative to the theories
evaluated in this work. Unfortunately, the Cao and Thouless theory over estimates the
composite ultimate strength from 24 to 102% relative to the experimental values.
There is a need to study the effectsof composite processing on the fiber properties.
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Figure 2. Typical tensile stress-strain curve for unidirectional A12OJA1203 composites with approximately 27%
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