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TEMPERATURE MEASUREMENT OF A MINIATURE CERAMIC HEATER IN THE PRESENCE OF AN
EXTENDED INTERFERING BACKGROUND RADIATION SOURCE

USING A MULTIWAVELENGTH PYROMETER

DANIEL NG
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio  44135

Introduction

Temperature measurement of small (millimeter size) objects is generally difficult and demanding. Measurement
involving ceramic materials using the traditional one- and two-color pyrometer is difficult because of their complex
optical properties, such as low emissivity which may vary with both temperature and wavelength. Pyrometry
applications in an environment with an interfering radiation source of extended dimension adds extra complexity to
the process. We show that the multiwavelength pyrometer successfully measured the temperatures of a millimeter
(mm) size ceramic heater under these demanding conditions.

Method

The multiwavelength pyrometer consists of a spectrometer and a computer(1).  The light (signal) gathering function
of the spectrometer is provided by a 3 meter (m) focal length parabolic mirror. When operated at a field of view of 1
milli-radian from 3 meters away, the spectrometer detects radiation coming from an area about 3 mm in diameter.
The ceramic heating element consists of a very fine (<75 µm) wire with an alumina bead (diameter 1 to 1.5 mm) at
its center. The ends of the heater element are supported from two electrodes protruding through a base plate encased
in a metal cylindrical tube about 10 mm in length and diameter. Heating action is accomplished by the passage of an
electric current conducted through the electrodes. Radiation detected by the spectrometer, therefore, comes not only
just from the bead of the ceramic heater, but also from its base plate. The computer controls the spectrometer to
acquire a spectrum, from which subsequent data analysis determines the temperature.  To measure temperatures
between 300 K and 1,300 K, the spectrometer was operated from 1.3 to 14.5 µm. Radiation detection is provided by
an indium antimonide detector and a mercury cadmium telluride detector. The intensity of emitted heater radiation,
Lλ, is given by the product of its emissivity and the equation describing Planck's law of black body radiation(2)

(Eqn. 1) where c1, c2 are the radiation constants, ελ is the emissivity, and  λ is the wavelength of the radiation source.

For data analysis, Eqn. 1 is rewritten as

This is the working equation of the traditional 1-color pyrometry method, which requires knowing the emissivity.
For the multiwavelength pyrometer, this quantity is not required to determine temperature. Because the quantity
(1-exp(-c2/λT)) is practically unity at short wavelengths, its logarithm would be zero. We observe from Eqn. 2 that
plotting the quantity y = Ln(c1/(λ5Lλ))/(c2/λ) as a function of λ would result in a straight line of slope Ln(ελ)/c2 if
Ln(ελ) is independent of wavelength. The quantity 1/y at each wavelength λ is often referred to as the radiant
temperature. The intercept of the straight line at λ=0 is 1/T, the reciprocal of the desired unknown temperature.
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Results

Spectra of the alumina bead from the ceramic heater (designated HPR) at different temperatures are recorded when
constant currents pass through it. The magnitude of the currents (to within 0.1 amp) and the voltages (to within 0.001
volt) were recorded. These experimental spectra are shown in Figs. 1 to 4 by the curves indicated by the "+" data
symbols. The other data curves will be explained later. Because the radiation of each spectrum contains a component
that does not originate from the alumina bead alone, if each spectrum is analyzed directly using Eqn. 2, the
determined temperature will be incorrect.

A radiation spectrum of the heater recorded by the spectrometer at time ti is represented by

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ∞∞ −−+−+−+=++=Σ L1)f1(1ftf)L(1tfLtRtStHt SHiSiHiiii εελλλ (3)

Hλ , Sλ and R∞ denote contributions from the heater, its surroundings, and the reflection from a source far away of
intensity L∞, respectively. f is the fraction of the spectrometer's field of view occupied by the heater surface. LH(ti),
LS(ti) and L∞ are the respective radiation intensities according to Eqn. 1 with their respective emissivities εH, εS and
ε∞=1 inserted. When TH(t0)= TS(t0)=T∞ , as it would be at ambient temperature, the heater and the surroundings are at
the same temperature, Σλ=LH= LS =L∞ which is a 300 K Planck curve. If only the heater is at an elevated
temperature, LS=L∞, then Σλ=fLH+(1-fεH)L∞. Increases in intensity at each wavelength of a spectrum at a temperature
above ambient is due to increased emission by the heater when a constant electric current is passing through. A
spectrum obtained from a wavelength channel by wavelength channel subtraction of the ambient spectrum from one
obtained at a higher temperature will be the intrinsic emission spectrum of the heater at that higher temperature.
Assuming that Sλ(ti) is almost constant, or varies only slightly, an assumption proven to be true from subsequent
analysis, successive subtraction will remove this quantity. The case in which Sλ(ti) varies rapidly will be investigated
at a different time. The temperature at t0 is 300 K. Spectra of the heater at increasingly higher temperatures are
systematically obtained from succeeding differences according to the following prescription:

( ) ( ) ( )011 tttH λλλ Σ−Σ= (4)

( ) ( ) ( ) ( )1-iH1-iii tfLtttH +Σ−Σ= λλλ (5)
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The intrinsic spectra so obtained are shown in Figs. 1 to 4, indicated by the square symbols. These are the spectra
used in Eqn. 2 or Eqn. 5 to obtain the heater temperatures produced by the different heater input power listed in the
figure captions. The analyses are shown in Figs. 5 to 8. It is immediately obvious from inspection of these figures
that at the short and long wavelength regions of the spectrum, the ceramic heater surface exhibits substantially
constant emissivities. The two straight lines of different slopes drawn to intersect at the same zero wavelength
intercept point determine the temperature of each spectrum. The temperatures of the heater for the four input power
settings shown in Figs. 5 to 8 are determined to be 575, 680, 925 and 1210 K, respectively. The quantities
controlling the slopes of these curves are related to the heater surface area f and emissivity εH in Eqn. 5.

Discussion

Two Planck curves of the same temperature (obtained from the intercept) are scaled by multiplying to them the
surface area fraction, and the emissivities (at short and long wavelength). They are shown in Figs. 1 to 4 as
continuous curves to fit the extracted intrinsic ceramic heater spectra at their respective temperatures. In these
figures, a continuous curve, not drawn through any data points, is the 300 K Planck curve. The two same temperature
Planck curves fit the extracted intrinsic heater spectrum well at the short and long wavelength regions. The curve
which fits the spectrum well in the short wavelength region would underestimate it in the long wave region. Similarly
the other curve which fits the long wavelength region over estimates it in the short wavelength region. The sum of
each them in the regions where they are valid and the 300 K Planck curve fit the experimental data well. A
composite curve (the sum of the 300 K Planck curve and the curve fitting the long wavelength experimental data) is
shown in each figure to give an indication of the good agreement obtainable.
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The reason for the limited validity of the two Planck curves, and hence their inability to account for data at
intermediate wavelengths is the complexity of the ceramic heater's emissivity. By dividing the intrinsic spectrum by
the Planck function corresponding to its temperature, a quantity that is related to the ceramic's emissivity and its view
factor formed at the spectrometer is obtained. If the ceramic heater surface is extensive enough such that it would fill
the field of view of the spectrometer, this quantity will be the emissivity. The results are shown in Fig. 9. These
curves demonstrate the behavior of the ceramic's emissivity: quite constant and low at the short wavelength,
transitioning in a very complex manner to a very constant value at very long wavelengths. It is not clear whether the
apparent increase in emissivity at long wavelength with temperature is real or if it is due to a bigger portion of the
bead's surface contributing to thermal emission as the ceramic bead temperature increases. Assuming that the
radiation emitting region of the heater bead has an effective diameter < 1 mm, that the spectrometer field of view is >
3 mm, then the area fraction f is <1/9, and the constant heater emissivity in the 1 to 3 µm wavelength region in Fig. 9
is about 0.1, which is not an unreasonable number for alumina.

Because of the small diameter of the wire conducting electricity from the electrodes to the heating element, heat loss
by thermal conduction by the ceramic heater through these wires is negligible. The electrical energy after conversion
into heat energy is transported away mainly by radiation and convection. The heat generation is Q=IV, where I is the
electric current flowing through the heater, and V is the potential drop across its electrodes. The heat transport
equation is

( ) ( )∞∞ −+−= TThTTAQ 44εσ (7)

where σ = 5.7 x 10-8 w/m2 is the Stefan Boltzmann constant, A = 4πr2 is the area of the radiating surface, h is the
heat transfer coefficient, T is the radiating surface temperature, T∞ = 300 K is the temperature at far away. By
rewriting Eqn. 7 we obtain
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The quantity on the left when plotted against the quantity inside the square bracket is a straight line, whose slope
is the effective emissivity, and the intercept is the heat transfer coefficient. The result is shown in Fig. 10. From
the analysis, the average emissivity is 0.11 ± 0.03, agreeing reasonably with the pyrometer determined value. The
heat transfer coefficient is 0.00046 ± 0.00003 w.cm-2.K-1.

Conclusion

The multiwavelength pyrometer operating at the spectral region 1.3 to 14.5 µm was used to measure the
temperatures of a miniature electrically powered ceramic heater of dimension less than 2 mm in diameter.
Measurements were made at four heating levels. The field of view of the spectrometer is in excess of 3 mm. The
recorded radiation spectra included a contribution from a source extraneous of the heater. By subtracting the
successively recorded spectra, this extraneous contribution was eliminated to recover the intrinsic spectra for
temperature determination. A heat transfer analysis was performed using the electrical power input data and the
pyrometer measured temperatures to provide an estimate of an average ceramic emissivity. It agrees reasonable well
with the emissivity value obtained from pyrometry measurement. Also determined from the heat transfer analysis is
the ceramic heater heat transfer coefficient.
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Fig. 1 Spectrum of ceramic heater, current = 0.2 A, voltage = 0.620 V

Fig. 2 Spectrum of ceramic heater, current = 0.25 A, voltage = 0.788 V
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Fig. 3 Spectrum of ceramic heater, current = 0.3 A, voltage = 1.173 V

Fig. 4 Spectrum of ceramic heater, current = 0.35 A, voltage = 1.621 V
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Fig. 5 Transformed spectrum, current = 0.2 A, voltage = 0.620 V

Fig. 6 Transformed spectrum, current = 0.25 A, voltage = 0.788 V
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Fig. 7 Transformed spectrum, current = 0.3 A, voltage = 1.173 V

Fig. 8 Transformed spectrum, current = 0.35 A, voltage = 1.621 V
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Fig. 9 Plot of product of emissivity and view factor vs wavelength

Fig. 10 Plot of heat transfer calculation data
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