
NASA/CR- 1999-208980

ICASE Report No. 99-4

A Practical Approach to Implementing Real-time
Semantics

Gerald Liittgen

ICASE, Hampton, Virginia

Girish Bhat

MakeLabs, Cary, North Carolina

Rance Cleaveland

State University of New York at Stony Brook, Stony Brook, New York

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-97046

January 1999

Available from the following:

NASA Center for AeroSpace Information (CASI)

7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical In:0rmation Service (NTIS)

5285 Port Royal Road

Springfield, VA 2216_-2171

(703) 487-4650

A PRACTICAL APPROACH TO IMPLEMENTING REAL-TIME SEMANTICS

(;ERAI,1)L("TT(;EN*, (;IRISH BItAT t, AND RANCE CLEAVELAND ++

Abstract. This t)al)er investigates imt)lenlentations of p_vcess algebras which are suitable fi)r modeling

concurrent _val-time systenls. It suggests an at)proaeh for efficiently iml)lementing real-tim(' semantics using

dynamic priorities. For this purl)ose a 1)ro('ess algebra with dynamic priority is defined, whose semantics

corresi)onds one-to-one to traditional real-time semantics. The advantage of the dynamic-t)riority al)l)roa('h

is that it drastically reduces the state-space sizes of the systems in question while t)reserving all properties

of their flmctional and real-time behavior.

The utility of the technique is demonstrated by a case study which deals with the formal modeling and

verification of the SCSI-2 bus-p_'otocol. The case study is carried out in the Concu_'ency Workbench of North

Carolina, an automated verificatioll tool in which the process algebra with dynmnic priority is iml)lemented.

It turns out that the state space of the bus-t)rotocol model is about an order of magnitude smaller than the

one resulting fi'oxn real-time semantics. The accuracy of the model is l)roved by applying model checking for

verifying several mandatory t)rol)erties of the bus proto('ol.

Key words, dynainic priority, process algebra, real-time semantics, SCSI-2 bus-protocol, verification

Subject classification. Computer Science

1. Introduction. A variety of formal approaches have l)een introduced for modeling and verifying

concurrent and distributed systems, many of which are based on a common scheme consisting of three basic

components, as det)icted in Figure 1.1: a specification language, a semantic model, and a veT"ification meth.od.

Specification languages provide a syntactic means for describing (abstractions of) real-world systems and

can be of graphical nature (e.g., Statecharts [19]), term-based (e.g., process algeb,'as [21, 27]), or variants of

logics (e.g., monadic logics [18]). Figure 1.1 illustrates the different looks and feels of these languages by a

small example modeling the 1)ehavior of a simple one-place buffer, which cyclically offers COlnmunieations

on ports in and out. Many specification languages have in common that their semantics is given in terms

of operational models. More precisely, syntactic models are compiled to (labeled) transition systems which

describe the real-world system's operational behavior. Transition systems provide a convenient structure

on which many verification methods, such as simple reachability aualyses which allow for analyzing, e.g.,

deadlock behavior and more advanced techniques, such as model-checking [10], work. However, only with

the advent of verification tools [15, 20, 22, 25] in the last decade have fl)rmal approaches emerged as practi(:al

aids for system designers [2, 14, 17].

"Institute for Computer Applications in Science and Engineering (1CASE), NASA Langley Research Center, tlampton,

VA 23681-2199, e-mail: luettgen:qiease.edu. This research was supported by the National Aeronautics and Space Administration

under NASA Contract No. NAS1-970,16 while the first author was in residence at the Institute for (?omputer Applications in

Science and Engineering, NASA Langley Research Center. t iampton, VA 23681-2199.

+MakeLabs, A Divisi<)n of Make Systems, Inc., 4000 Regency Parkway, Suite 150, Cary, N(I 27"511-8502, e-mail:

girish:.<_ ma kesys.eom.

{Department of Computer Sei(!n(:e, Stale University of New York at Stony Brook, Stony I_rook, NY 117.q4-4400. e-mail:

rance,a_cs.sunysb.edu. Research supported by NSF grants CCl1-9257963, (:Ct/-9505662, CC[1-980109l. and [NT-9603441.

AFOSR grant F49620-95-1-0508, and ARO grant P-:',8682-MA.

F

specification languages t

Statecharts process algebra monadic logic

B := in.out.B
Vt. in(t) _ out(t+l) /X

Vt. out(t) -> in(t+l)

mpiled

__semantic (operational_mod_

/ (finite)automata //_ out "_

ii beled) ansifionsystems in(\/ !

reachability analysis model checking

(formal verification meth__,ds_

FIG. 1.t. A typical verification framework.

This l)aper addresses the problem of modeling and verifying _:oncurrent systems where real-time plays an

important role for their functional behavior. On the one hand, real-time is often used to implement synchro-

nization constraints in distributed environments. As an example of a synchronization constraint, consider

a conmmnication protocol where the next protocol phase may only be entered if some or all components

agree. On the other hand, electric phenontena, e.g., wire glitches that may lead to malflmction, can be

avoide(1 using deskew delays. Thus, for accurately modeling th)se systems it is necessary to capture their

real-time aspects, therehy motivating the need for real-time sp,_cification languages, such as real-time pro-

cess algebras [28, 29], and for their efficient implementation. E) isting implementations of real-time process

algebras typi('ally ('ause state spaces to explode, thereby making many verification methods impracticable.

The reason for the state explosion is that time is considered as p:trt of the state, i.e., a new state is generated

for every oh)ok tick. Vfe tackle this problenl by using dynamic ;_riorities to model real-time. We introduce

a new process algebra, called COS dp (Calculus of Communicating. Systems with dynamic priority), which es-

sentially extends the Calculus of Communicating Systems (CCS) [27] by assigning priority values to actions.

Unlike conventional l)rt)cess algebras with priority [9, 11, 12], _ctions in our algebra do not have fixed or

static t)riority values; they may change as systems evolve. It i_ in this sense that we refer to CCS dp as a

process algel)ra with dynamic priority. In contrast to traditional real-time process algebras, e.g., a variation

of Temporal CCS [28] which we refer to as CCS rt (CCS with re.d-time), the semantics of CCS dp interprets

delays t)re('(,ding actions as priority values attached to these a::tions, i.e., the longer the delay prece(ting

anaction,theloweris its priority.CCSap semantics avoids tile unfolding of delay values into sequences of

elementary steps, each consuming one time unit, theret)y providing a formal finmdation for eJ_ciently imple-

menting real-tinw semantics. The soundness and completeness of this technique is prow_d by establishing a

one-to-one correspondence between CCS dp and CCS _t semantics in terms of bisimulation [27] and temporal

logics [10]. It is important to note that our approach does not abstract away any aspects of real-time. Thus,

all quantitative timing ext)licit in CCS _t semantics can still 1)e analyzed within CCS dp semantics.

The utility of our technique is shown by means of a real-world example, namely modeling and verifying

several aspects of the bus protocol of the Small Computer System htterface (SCSI), a protocol used in many

of today's computers. The protocol's model is derived from the official ANSI standard [1], where real-time

delays are recommended for implementing synchronization constraints as well as for ensuring correct behavior

in the presence of signal glitches. An accurate model of the SCSI-2 bus-protocol thus requires to consider

real-time. To this end, we model the t)rotoeol in the syntax common to both CCS 't mid CCS d°. We then

generate the state spaces according to both semantics and show that the size of our model is an order of

magnitude smaller in CCS o" semantics than in CCS _t semantics. The modeling of the protocol was carried OUt

in the Concurrency Workbench of North CaTvlina [16], CWB-NC, a tool for analyzing and verifying concurrent

systems. In order to testify to the accuracy of our modeling, we extract several mandatory properties of

the bus protocol and specify them in the modal p-caleuhts [24]. We then use the local model checker [4]

integrated in the CIgB-NC for automatically validating the prot)erties under consideration.

The remainder of this paper is organized as follows. The next section presents our process-algebraic

framework including the real-time process algebra QCS rt and the process algebra CCS dp with dynamic priority.

The one-to-one relationship between CCS do and CCS rt semantics is established in Section 3. An overview

of the SCSI-2 bus and its protocol is giwul in Section 4, whereas Section 5 describes its modeling in our

language. Some properties of the bus protocol are formalized and checked for our model in Section 6. The

following section discusses our approach and compares it to related work. Section 8 contains our conclusions

and directions for future work. Finally, the coml)lete model of the Ires protocol can be found in the appendix.

2. Process-Algebraic Framework. In this section we introduce the t)roeess algebra CCS _t inspired

1)y [28] and develop the t)rocess algebra CCS dp, which has the same syntax but different semantics. Whereas

CCS _t is an extension of CCS [27] in order to capture discrete quantitative timing aspects with respect to a

single, global clock, COS dp extends CCS I)y a concept of dynamic priority.

2.1. Syntax of our Language. The syntax of CCS _t and CCS do differs fi'om CCS by associating delay

and priority values with actions, respectively. Moreover, we include the disabling operator _, known from

LOTOS [5], which allows for a more compact notation of the bus-protocol model. Formally, let A be a

eountabh_ set of action labels or ports, not including the so-called internal or unobservable action r. With

every a E A we associate a complementary action ?7. Intuitively, an action a E A may be thought of as

representing the receipt of an int)ut on t)ort a, while ?7 constitutes the dei)osit of an output on a. We define

A =dr {?71 a E A } and take ,4 to denote the set of all actions A U A U {r}. In what follows, we let a, b.... range

over A U ,--_and (t, J over ,4. Complementation is lifted to actions in A U A, also called visible actions,

by defining a =df a. As in CCS an action r_ conmmnicates with its complement ?7 to l)roduce the internal

action T. In our syntax actions are associate(l with delay values, or priority values, taken from the set of

natural numbers N. More precisely, the notation (t : k, where o E .,4 and k E N. specifies that action o is

ready for execution after a minimum delay of k time units or. respectively, that actioIl (_ possesses (at most)

prim'ity k. In the priority interpretation, smaller numbers enco _le higher priority values; so 0 represents the

highest priority. Tile syntax of our language is defined by tile BNF

P ::= 0 I x I o:k.P [P+P I P_P [P[P] P[f] [P\L] ltx.p

where k E N, the mapping f : A _ A is a relabeling, L C A \ {T} is a restriction set, and a: is a variable

taken from some countable doInain V. A relabeling f satisfie, the t)roperties f(v) = r and f(_) = f(a).

If f(ai) = 3_ for 1 < i < n and n E N, an(t f(e_) = ct for 'all ct 76 ai, where 1 _< i < n, we also write

[/31/Ol,/32/r_ 2 i3,_/o,] for f. We adopt the usual definitions for free and bound variables, open and

closed terms, and guarded recursion, and refer to the closed and guarded terms as processes [27]. The

syntacti(' sul)stitution of all free occmTences of varial)le x by term Q in term P is symbolized by P[Q/x],

and syntactic equality by -. Finally, we let T _, ranged over by O, Q, R , denote the set of all t)rocesses.

2.2. Real-Time Semantics. This section introduces a real-time semantics to our language in this

context referred to as CCS _t semantics which explicitly repre_,ents timing behavior. Formally the seman-

ti('s of a process is defined by a labeled transitiou system whith contains exlfiicit clock transitions each

ret)resenting a delay of one time unit as well as action transi::ions. V¢ith respect to clock transitions, the

ol)erational semantics is set up such that processes willing to ::onununicate with some process running in

parallel are at)le to wait until the conmmnication partner is ready. However, as soon as it is available the

conununication has to take place, i.e., further idling is prohibit(d. This assumption is usualb" referred to as

maximal progress assumption [29] or synehvony hypothesis [3] m (1 employed in many successflfl specification

languages, including Statecharts [19] and Esterel [3].

Fornmlly, the labeled transition systenl for a process P is .t four-tuple (P, .,4 U {1}, _-_,, P} where T) is

the set of states. J4 U { 1} is the alphabet satisfying 1 _ ,4, _-+ is the transition relation, and P ret)resents the

start state. The transition relation _-_ C_ 72 x (.AU {1}) x P is d(fined in Tables 2.1 and 2.2 using ol)erational

rules. For the sake of simplicit'," let us use 7 as a representatixe of ,4 U {1} and write P _ P' instead of

(P, 2,, P') E _---+. We say that P may engage in transition 2, and thereafter behave like process P'. If 2' = 1

we speak of a dock transition, otherwise of an actioT_ trausitio't. Sometimes it is convenient to abbreviate

3P' E T'. P _ P' by P _-_. In or(let to ensure maximal progr(ss our semantics is set up in a way such that

P @ whenever P _L__, i.e., oh)ok transitions are prevented as long as P (:an engage in internal computation.

TABLE 2.1

Operational semantics for CCS rt act ion transitions.

Act -- Suml p _k_ p' Sum2 Q _.2÷ Q, Rec
_:0.P_L+P p+Q_p, p+Q _Q,

Rel p _L+ p, p _2__ p, Q d2_. Q'Disl Dis2 Res
p[f] _ p,[f] p[_Q _Z+ p, pQ p_Q ___ Q,

P[l_x.P/x] #2-+ p'

tLx.P _ p'

p _--_ p'

P\L _ P'\L

Corn1 P _ P' Q'Corn2 Q __5__Q' p _ p'Com3 Q _

P[Q _ P'IQ PIQ _÷ PIQ' PIQ _ P'IQ'

Intuitively, process o:k.P, where k > 0, may engage in a c)ock transition and then l)ehave like process

o:(k - 1).P. Process _ :O.P perforuls all (_-transition to state P and, if a _ r. it nlay also idle t)y perfornung

TABLE2.2
Operational semantics for CCS rt clock transitions.

tNil tAct1 tAct2 k > 0
o _-_ o , :o.p _L, ,:o.p _ :k.P _-_ _,:(t. - 1).P

tSum e_-+ V' Q_---_Q' V_ V'tDis Q _ (2' tCom P _ P' Q _-_ (2' PIQ _-_

P+ (2 _ P' + Q' P _Q _ P' _Q' PIQ _ P'IQ'

tRec P[t_J"P/x] _ P' P _-_ P' P _-_ P'tRel tRes
I,.,-.P _ P' P[.f] _-_ P'[f] P\L _ P'\L

a clock transition to itself. Tile smnmation ot)erator + denotes non-deterministic choice, i.e., P + Q may

either behave like P or Q. However, time has to proceed equally on hoth sides of summation. Hence, P + Q

Cml engage in a clo(:k transition and delay the choice if and only if t)oth P and Q can engage in a clock tick.

Process P pQ, involving the disabling ot)erator), has the same semantics for clock transitions. For action

transitions it behaves like P and additionally, it is cat)able of disabling P by engaging in Q. The restriction

operator \L prohibits the execution of actions in L U L and thus permits the scoping of actions. P[f] behaves

exactly as P where actions are renamed by the relabeling f. Process PIQ stands for the parallel composition

of P and Q according to an interleaving semantics with synchronous communication on complementary

actions resulting in the internal action r. Similar to summation and disabling, P and Q must synchronize

on (:lock transitions according to Rule (tCom). Its side condition ensures maximal progress, i.e., there is no

pending commnnication between P and Q. Finally,]tx.P denotes a recursive process that is a distinguished

solution of the e(luation x = P. Our semantics satisfies the folh)wing t)roperties.

PROPOSlTff)N 2.1. Let P,P',P" E f'-. Then: (i) P _ implies P _ [idling], (ii) P _ implies

P @ [maximal progress], and (iii) P _ P' and P _ P" intplie.s P' -- P" [time determinacy].

The validity of Part (i) is a consequence of the idling capability of 0 and c_ : k.P, for k > 0 or a _ r.

Properties (ii) and (iii) can be checked by inductions on the structure of P and on the maximum of the

depths of the derivation trees of P _-_ P' and P _L+ p,,, respectively. For CCS _t a semantic theory based

on bisimulation [27] has been develot)ed. In this paper we restrict ourselves to strong bisimulation.

DEFINITION 2.2 (Temporal Bisimulation). A symmetric relatiou "R C_ P x 7a is called temporal

bisimulation g for every P' E 7_. (P,Q) E 7¢ and "_ E A U {1} the]ollowiug holds: P _ P' implies

3Q'. Q _z+ Q, and (P', Q') E TO. We write P _t Q if (P, Q) E T¢ for some temporal bisimulation _.

The behavioral relation "_t, which can be shown to I)e an equivalence, enjoys several pleasant properties.

The most important one is the congruence t)ropertv which gives rise to compositional reasoning since it

allows the substitution of "equals for equals" inside larger systems. Note that temporal t)isimulation requires

equivalent l)rocesses to match each others t)ehavior exactly, including their timing behavior.

Unfortunately CCS rt semantics unfolds delay values into sequences of elementary time units, thereby

creating many states. For example, process o::k.O has k + 2 states, namely 0 and o :/.0 where 0 < 1 < k (of.

Figure 3.1 in Section 3). It would be much inore efficient if one could represent (_ :k.0 by a single transition

labeled by (_: k leading to state 0. This COml)actification in the representation of state spaces of real-time

systelns can be implenmnted by viewing k as a pt-iority value ass gned to el. In other words, one may consider

the delay value k as the time stamp of action (,. In the followit g we elaborate on this idea.

2.3. Dynamic-Priority Semantics. In order to formaliz4, our intuition we present a new semantics for

our language that uses a notion of priority taken fi'om [11], generalized to a multi-level priority-scheme [26].

We refer to our t)rocess algebra as CC5 dp when interl)reted with respect to the new semantics which, in

('ontrast to classical at)preaches to priority, dynamically adju;ts priorities along transitions. Intuitively,

visit)le actions represent potential synchronizations that a t)r_cess may be willing to engage in with its

environment. Given a choice between a synchronization on a high priority and one on a low priority, a

process should choose the former. Thus, high-t)riority T-action_ pre-empt low-t)riority actions. The reason

that high-priority visible actions do not have pre-enq)tive power over low-priority actions is that visible

actions only indicate the potential of a synchronization, i.e., the potential of progress, whereas factions

describe comt)lete synchronizations, i.e., real progress, in our :nodel. Formally, the CCS ap semantics of a

process P is given by a labeled transition system (D,,,4 x IN,-_, P). The l)resentation of the operational

rules defining the transition relation ----+ re(luires two auxiliary definitions.

TABLE 2,3

Potential initial action sets.

It((_ :l.P) =dr {o I I <_ k} It'(#x-P) =dr Ik(P[l,x.P/z])

Ik(P+ Q) =df It'(P) U It'(Q) Ik(P_Q) =de It'(P) U Ik(Q)

It(PlQ) =dr It'(P) u It'(Q) u {r I It'(P) n Ik(Q) ¢ 0}

Ik(P[f]) =(if {f(a) I a E I_'(P)}

I_'(P\L) =,tf Ik(P) \ (L U L)

First, we introduce potential initial action sets which are (iefined to be the slnallest set satisfying the

equations in Tat)le 2.3. Intuitively, I_(P) denotes the set of all ;)otential initial actions of P having at least

priority k. For convenience, we abbreviate U{It(P) I I < k} ty I<_'(P). If k > 0, it is easy to see that

i<k(p) = i k t(p). It is also important that the potential initiai action sets are defined independently from

the transition relation ---), so _ is well-defined. The following proposition states that the definition of

the potential iifitial action sets is faithful for internal actions, which is fundanmlltal for encoding out desired

notion of pre-emption. Its proof is analogue to one in [26] w lere sitnilar definitions have I)een used for

encoding the saine notion of pre-einption within a nmlti-level st atic-priority framework.

7":1
PROPOSITION 2.3. For all P (:. 7_ and _ :k C M we have: r _ I<k(P) if and only if/31 < k. P --_.

TABLE 2.4

Priorito adjustment functi m.

[01k ----(If O, [dr]k =,If d" [p + Qlk ----,If [P]' + [Q]_' [P[f]]_' =dr [P]X'[f]

[,_:l.p]k =dr ,_:(l-k).P ifl>k [P_Q]" =dr [P]"D[Q]_' [P\L] k =dr [P]"\L

[(_:I.P]_' =dr (_:O.P if/ < k [PIQ]k =df [P]"I[Q] k [m'.P] x =,if [P[t,._.P/.,']] *

As second auxiliary for presenting the transition relation we define a priority adjustment function as

shown in Table 2.4. Intuitively our semantics is set up in a wuy such that if one parallel colnponent of a

process engages in an action with priority k, then the priority _Jalues of all initial actions at other parallel

components are decreased by k, i.e., these actions become "more important." Thus, the semantics of parallel

composition deploys a kind of fairness assumption, and priorities have a dynamic character. The priority

adjustment function applied to a process P and a natural number k, denoted as [p]k, returns a process

term which is "identical" to P except that the priorities of its inffial actions are decreased by k. The l)hrase

"identical" does not mean syntactic equality but syntacti(' equality up to unfolding of recursion. Formally,

we let - stand for the sinallest congruence which contains - and satisfies the axiom itx.P - P[itx.P/,r].

Our semantics respects --'. i.e., P - Q and P 2._ p_ implies Q 2/_ Qr for some Q' c D satisfying P' - Q_.

In the remainder we use this fact silently and write P _ P_ if Q 2z_ Q, for some Q - P and Q' "- P'.

TABI.E 2.5

Operational serna_Jtics for" CCS Or.

Act1 -- Sum1 P _ P' T ¢ I<_'(Q) Sum2 Q _ o' 7- ¢ I<_(P)

"r:k.P S._ p p +Q _ p, p +Q _ Q,

Act2 -- / > k Dis1 P _ P' T ¢ I<_(Q) Dis2 Q _ Q' 7- ¢ I<_(P)

a:k.P 22_ p - p_Q _ p, _[Q]X. p_Q 2_ (2'

Rec P[t'x'P/v] 2__ p, p __ p,Corn1 T ¢ I<_(PIQ) Com2 Q zL_ Q' 7- ¢ I<_(PIQ)

t tx.P _ P' PIQ _ P'I[Q] _ PIQ 2_ [P]_IQ'

Rel P _ P' P _ P'Res _rCLUL Com3 P_P' Q_Q' 7-¢I<k(PIQ)

p[f] f_ p'[f] P\L _ P'\L PIQ -_ P'IQ'

The operational rules in Table 2.5 capture the fi)llowing intuition. Process _t :k.P may engage in action

_ with t)riority / _> k yielding process P. The side condition / _> k reflects that k does not specify an

exact priority but the maximal priority of the initial transition of a : k.P. It may also be interpreted as

lower-bound "timing constraint." Due to the notion of pre-emption incorporated in CCS do, r : k.P may not

perform the r-transition with a lower priority than k. Process P + Q may 1)ehave like P (Q) if Q (P) does

not pre-empt it by being able to engage in a higher prioritized internal transition. Thus, pre-emt)tion reflects

implicit upper-bound "timing constraints." PIQ denotes the parallel composition of P and Q according to

an interleaving semanti(:s with synchronize(l comnmnication on (:omt)lementary actions of P and Q, both

having the same t)riority k, which results in the internal action 7- that is attached with priority value k

(cf. Rule (Corn3)). The interleavillg Rules (Corn1) and (Corn2) encode the dynamic t)ehavior of priority

values as explained above, with their side conditions implementing t)re-emption. The operational semantics

for disabling, restriction relabeling, arid recursion is as expected. The following prot)osition, which can 1)e

proved by structural induction, shows that our notion of pre-emption coincides with our intuition.

PI_OPOSITION 2.4. For all P E 79 o E A, and k C N satisfying P 2_ we have 7 __ I<k(P).

As for CCS rt,we may adapt a notion of strong t)isimulation, referred to as prioritized bisimulation here.

Prioritized bisimulation is an equivalence that contains -" : a property which will be used without mentioning.

DEFINITION 2.5 (Prioritized Bisinmlation). A symmetric relation 7¢, C_ 79 x 79 is called prioritized

bisimulation if for" every P' C 79 {P,Q) c _, c_ c A, and k C N the following holds: P 2_ p, implies

3Q'. Q 22_ Q, and (P', Q') c _. We write P "_ap Q if (P, Q) c _ for some prioritized bisimulatiort _.

2.4. Implementing CCS dp and CCS rt Semantics. For b)th process algebras, CCS dp and CCS rt, frotlt-

ends for the Concurrency Workb_nch of North Carolina (CWB-NC) [16] have been created by using the Proce,s.s

Algeb_n Compiler (PAt) [13]. a "meta-conq)iler" developed for iw erfacing the CWB-NC to new process algebras.

VChel'eas the implementation of CCS rt is straightforwar(l, we he(ded some more effort regar(ling CCS do. The

tea.son is that Rule (Act2) of CCS do semantics gives rise to pot(ntially infinite-branching transition systems

since priority value I in its side condition ranges over all natural numbers greater or equal than k. Fortunately,

this problem can be eliminated for all practical purposes. ()i_e possibility is to provide an upper t)ound

upper reflecting the maximal priority value of any action occurring in the process under consideration. The

validity of this solution stems from the fact that a higher pric-rity value thml upper has no effect on the

process' semantics since priority values cannot l)e adjusted to a value below zero. This idea is refined in our

implementation of CC5 dp senlantics as follows. Instead of choosing a value upper with respect to the ove_ull

process, we determine this value with respect to tile particular system state in whicil the process under

consideration is ('urrently in. As a consequence, the number of transitions of a t)roeess according to CCS dp

s(,mantics is always tess than or equal to the number of transiti(ns with respect to CCS rt semantics. Finally,

we want to point out that these solutions somehow touch on tile compositionality of tile implemented CCS do

semantics. If a system is combiiled with another one having a groater upper priority value, additional system

behavior ix possible. However, ah'eady computed parts of the s(mantics need not to be re-coxnputed.

3. Relating CCS dp and CCS _t Semantics. In this section we show that CCS dp and CCS rt semantics are

closely related. The underlying intuition is best illustrated by ;l simple exaInple dealing with the prefixing

operator. Figure 3.1 depicts the dynamic-priority and real-time semantics of the process _ : k.0. Both

transition systems intuitively reflect that the process a:k.0 mus_ at least delay k times before it may engage

in an a-transition. According to CCS rt semantics, this process e, msecutively engages in k time steps t)a_ssing

the states _ : (/_: - i).0, fl)r 0 < i < /,'. before it may either continue idling in state _ : 0.0 or engage in an

_t-transition to the inaction process 0. Thus, time is ext)licitl., part of states an(1 made visil)le by clock

transitions each representing a step of one time unit. In contr_st, CCS do semantics encodes a delay of at

least k time units in transitions rather than in states. Hence, it just possesses the states a : k.0 and 0

c(mnected via transitions labeled by a:l, for 1 _> k. Although it seems at first sight that the t)rice for saving

interinediate states is to be forced to deal with infinite branching, an upper bound of l can be provided as

discussed in the previous section. In our exainple this upper bound is k itself, since a delay by more than

/,' time units only results in idling and does not enable new or (isable existing system behavior. Therefore,

the dynamic-priority transition system of a : k.0 just consists of the two states st : k.O and 0 and a .symbolic

transition labeled by a : k. whereas the real-time transition systel 1 possesses k + 2 states and k + 2 transitions.

This simple example clearly suggests that CCS dP semantics resul s in much more compact models than CCS _t

selllant its.

Tile following paragrat)hs aim at proving a oIle-to-olle eorr(spondence between tlle two semantics such

that CCS dp semantics can be understood as aIl efficient enco(ing of CCS rt semantics. To this end, one

also needs to make sure that tile notion of pre-eint)tion employed in CCS dP reflects the IlOtion of maximal

progress adopted in CCS ft. Before making the relationshi I) t)e' ween both semantics l)recise we first state

an imt)ortant leInma whose last part presents the connection between ch)ck transitions and the priority

adjustment function. In this lemma, the sylnbol _-+ t- stands re:"]_"consecutive clock transitions.

LEXIMA 3.1. For all P.P' E _ aud all k,l E 5t the]ollowi_.q hold.s: (i) [PI ° - P and [[p]/]k - [p],,+t

(ii) I*([P] t) = Ik+/(P), and (iii) P ___t.p, ,_ and ouly if P' - [p]k aud T _ I<k(P).

dynamic-priority semantics

a:k.O

/
a:k _ a:(k+i)

0

real-time semantics

a:k.O

II
a:(k-l).O

'1

11
a:O.O_ 1

FIe;. 3.1. Relating CC5 d° and CCS rt semantics.

Proof. Part (i) billows inunediately from the definitions of the adjustment flmction and of -. For the

other parts let P,P' C 79 and k,l E N.

• Part (ii) is proved by induction on the structure of P.

1. P = O: Ik([O] t) = Ik(O) = _ = It'+l(O) bv our definitions.

2. P = a:m.Q:

(definition of [-]')

(definition of I(.) and k > O)

(definition of I(.))

3. P- QIIQ_:

(definition of [.])

(definition of I(.))

(induction hypothesis)

(definition of I(.))

I_' (In :m.Q] I)

It'(a::(m-l).Q) ifm > 1

I t`(a :O.Q) otherwise

{a} if (m -l _< k and m >l) orm_<l

0 otherwise

{a} if m _< k + 1

0 otherwise

It'+l (a :re.Q)

I t. ([(-_110_]')

= Ik([Ol]'l[Q2] ')

= Ik ([(_)1] 1) [-I Ik ([(._2]/) U {7" I Ik([Ol] I) _ P([Qe]') ¢ O}

= I*+'(Q1) o I_+I(Q._,)to {r t It'+l((Ql) nP+t(Qe) ¢ O}

= It'+l(Qt tO_)

The other cases are easier to establish than the ones above and, therefore, are omitted. As a simple

corollary, which is needed in the proof of Part (iii) and immediately follows from the definition of

potential initial action sets, one may conclude I<k([P] t) = I <t'+t(P), whenever k > 0.

• We prove Part (iii) by induction on k. The case k = 0 is trivial. Therefore, we directly consider the

statement for k = 1. For the "only if" direction one may observe that P _ P' implies P @ by

Proposition 2.1(ii), i.e., r _ I <_ (P), by Proposition 2.3. Thus, it remains to establish that P' = [p]l

for which we use structural induction on P.

1. P = a : k.Q: _ :k.Q _-_ P' implies k > 0 or (k = 0 and (_ _g r) according to CCS rt semantics.

In the former case we have P' - a: :(k- 1).Q - [(r:k.Q] 1 by the definition of the adjustlnent

function. In the latter ('as(' we obtain P' -- a: : 0.Q - [o: k.Q] l , as desired.

2. P -- QIIQ,,: QIIQ2 _ P' implies (_1 _-+ QI, (_2 _-_ Q,,, and P' -- "_ll t:2I I ()t lOt for solne

(2'1,(2" e _. By induction hypothesis we may conclude Q'1 - [QI] 1 and Q" - [Q_]I Hence,

P'= Q'1]Q" - [Q1]ll[Qe]' = [Ol [O2] 1 t)Y the definition of the adjustment flmction.

Theothercasesfollowby similarreasoning.Forthe 'if" direction let r _ 1<I(P), i.e., P _+ by

Prot)osition 2.3. Hence. P _ P' for sonm P' E "P ac.:ording to Proposition 2.1(i). Moreover, we

have P' - [p]l by the "only if" direction of this proof part.

For the induction step let k > 1. Then, we have P _l _.+lp, if and only if P _ P" _L+ t.p, for

sonte P" E T'-. By induction hyl)othesis and Part (iii) t:)r /c = 1 this is exactly the case if and only

if P' - [p,,]a. r _ I<k(P"), P" - [p]l and r _ I<I(P), i.e., P' - [P]t'+' and r ¢ I<_'+1(P) by

Parts (i) and (ii). rest)ectively.

This finishes the proof of the lemma. 71

Now. we are able to state and prove a main result.

Pm)vosvI_,ON a.2 (Oue-to-one Correspondence). Let P, P_ C _- and _ : k E A x N. Then P LS_ p, g

and only if 3P" E "P-. P _L+ap,, _ p,.

Proof. Let P. P' E T'- and k E N. Ac,'ording to Lenmla 3.1(iii), it is sufficient to show that [p]k UL+ p'

and r _ I<_(P) if and only if P a:_ p,. The proof is done by il_du(:tion on the structure of P.

1. P = O: Here. our statement trivially holds since 0 canI ot engage in any transition.

2. P - ¢l:l.P': According to CCS _t semantics. [c_:/.P'] _ _L_ p, is valid if [a:/.P'] k - _:().P', which is

exactly the case if k _> 1. Since r _ I<_'(P) we know k ::/ ifo = r. Hence, a:l.P' _ P' by CCS dp

senlantics. Reversely, (,: l.P' 2_ p, implies k _> l, if _ _ r, and k = I, otherwise, according to

CCS dp semantics. Thus. let :I.P'] k - a. :0.P' and ct :0.P' _-+ P' t)3"the definitions of the adjustnlent

function and of CCS _t sent;rot its. Finally, r _ I<t'(_ :1.[') since o_= r inlplies/c = 1.

3. P = (_)l + (2'2: By COS 't semantics, tile definitions of tit(adjustment fllncti,)n and of potential initial

action sets, and Proposition 2.4 we obtain [Ql + Q2]_' -- [Q,]a. + [Q2]k _ p, and r _ I<a'(Q1 + Q2)

if and only if ([Q1] _' _ P' or [Q2] _' _ P') and r _ IVk(Q1) tOI<k(Q2). By induction hypothesis

and Prot)osition 2.4 this is exactly the case if (Ql a:__ttp, and r _ I<t'(Q2)) or (Q2 25_ p, and

r _ I<t'(Ql)), which holds if and only if Ql + Q'_, _ F' according to CCS dp semantics.

4. P =_ (2_ IQ-': Let [Qt IQe] _' - [Ql]t'][Q2] k _ P' (ah'ea(l:' exph)iting the definition of the adjustment

function) and r _ I<t(Ql IQ2). According to the sema ltics for parallel composition, we may split

this case into the following three sut)-cases.

(a) [Q_]k _ Q, for some Q' c T'- and P' = Q'][Q2] k. _¢ince r _ I<_'(Q_ [Q._,) implies r ¢ I<t'(Q_) I)y

the definition of potential initial action sets, we ma_" apply the induction hypothesis to conclude

QI _ Q'. This is exactly the case if Ql tQ'-' _ (,)'I[Q'2] a" = P' according to COS dp semantics

and the fact that r _ I<#(Ql]Q2).

(I,) [Q.,]k _ Q, for some Q' E T'- and P' - [Q1]t'[G '. This case can t)e shown in a symmetric

fashion to tile previous one.

(c) ,, - r. [O,]_ _, Q'_, an,t [Q._¢' _ Q" for so,,,, ,, _ A \ {,-} and Q'I,Q",. _ _- such that

P' - O'_1:",_'_,-Because of the premise r _ I<_'(Q1](,)._,) we know r _ I<_'(Q1) and r ¢ I <*'(2.,).(,,

Thus, the induction hypothesis implies Ql -_ Q'I and Q2 _ Q.', and also r ¢ I<k(Ql [Q:).

According to CCS do s,._mantics, this is equivalent t(, Qt [Q2 _ Q'I [Q" = P', as desired.

The remaining cases are easier to establish and, therefore, are o nitted. ['1

This prot)osition explicitly reflects our intuition of the meaning (f a natural nunlber attached to an action in

both cah'uli. Whereas in CCS rt we interpret _ :k as the action o which is enabled after a delay of (at least)

k time milts, the value L"indicates the level of utyeney of (_ in CCS do.

lO

3.1. Bisimulation Correspondence. Tile correspondence between CCSdp and CCS rt semantics re-

flected in Proposition 3.2 is the key for proving the next t heorenl.

THEOREM 3.3 (Bisimulation Correspondence). Let P. Q E 7_. Then P _,,_p Q if and only 'if P _t Q.

Proof. We first t)rove the "if" direction by showing _t to be a t)rioritized bisinmlafion. Let P. P', Q E _-,

(_ ¢ ,4, and k E N satisfying P _ P'. By Proposition 3.2 we may conclude the existence of some P" ¢ "P

such that P _ t.p,, _ p,. Sill(:(, P _t Q there exist some Q', (2" E T'- satisfying, Q _L+ kQ,, _+ Q,,

P" _t Q", and P' "_t Q', which can 1)e R)rmallv. derived by. a straightforward induction on k and the

definition of _t. Prot)osition 3.2 now iulplies O 25_ Q, as desired. For the "only if" direc.tion it is

sufficient to show that _t =dr {([P]*', [Q]k) I P "_ap Q, r _ I<_'(P), r _ I<_'(Q), and k E N} is a teml)oral

bisimulation. Note that (P,Q) E Rt by choosing k = 0 (of. Lemlna 3.10) an(1 the fact that I<°(.) = 0). Let

([p]a. [Q]k) E T4_ for some arbitrary k E N, i.e., P "_ap Q, v _ I<*'(P), an(t 7- _ I<_'(Q).

First, consider [P]_' _ P' for some P' E 7'-. Because of r q_ I<_'(P) we conclude P _L+_ [p]k _ p, by

Lemma 3.1(iii). Hence P 22_ p, according to Prot)osition 3.2. Since P _dp Q we know of t h(, existence of

some Q' E 7'- such that Q _ Q' and P' Q'. Now, we use Proposition 3.2 and Lemma 3.1(iii) again in
"_dp

or(ler to o[)tain [Q]k _2_ Q,. Moreover, ([p,]0 [Q,]0) ERt can be derived from P' Q'. as (lesired."_dp

Second, let [p]_' _L+ p, for some P' E "P. Hence, [P]_' _-_+ by Proposition 2.1(ii), i.e., r _ I<l([P] k) =

I<a'+l(P) by Proposition 2.3 and Lemma 3.1(iii), and P' --" [p],.+l by Lemmas 3.1(i) and 3.1(iii). From the

frst case we know [Q]_' _-_, i.e., r _ I <l ([Q]k) = I<a+_ (Q) according to Proposition 2.3 an(t Lemma 3.1(iii).

Now, Lemma 3.1(iii) is applicable, and [Q]_" _-_ [[Q]_']_ =' [Q]k+_ holds by Lemma 3.1(i). Moreover,

([p]_.+_ [Q]k+_) E T4_ by the definition of _t, which finistms the proof. [7

As a consequence of this result., prioritized and temt)oral bisimulation possess the same algebraic properties.

Especially, we ma.v conclude that prioritized bisimulation is a congruence.

3.2. Logical Correspondence. CCS do and CCS _t semantics are logically related, too. This correspon-

dence can be formally estat)lished by using a variant of the modal it-calculus [24] as temporal logic. Its syntax

is defined by the following BNF_ which uses a set. of variables Vi, with X E Fj,.

::= tt I X I _* I CA* I (_:_:)¢ I t'x.*

Formulas are also required to satisfy the following additional constraint: in ItX.O every occurrence of X

in 4) must be inside an even number of negations. Moreover, we define some dual operators: ff =(if _tt,

4)1 V qS., =dr -'(-'01 A -'_2), let:k]4) =dr -_(c_:k)(-_4)), and vX,(I, =dr -,#X.(-,O[-,X/X]), where [-_X/X]

denotes the substitution of all free occurrences of X t)3, _X. We also introduce the following abbreviations,

where L C ,/-I x l_: (L}4) ----dr V{((_:a')(I)] (t:/_" • L}, (-)¢ -----df (.,4 x _)¢, (-L)4) =-,If ((A × N)\i)4),

[L]_ff =de vX.(4) A [L]X), and (L}*4) =df lzX.((I' V (L)X). Finally, we let .T denote the set of all formulas.

Tile semantics {_I,} of a/t-calculus formula 4) is defined with respect to an environlnent cr : F,, --+ 2_

whi(:h maps variables to sets of processes. Intuitively {(I,1(o') denotes the set of all processes that satisfy 4)

under tile environment or. Formally, the semantic mapping {.} : (.7" x g') --+ 25_, where c stands for the set

of all environments, is inductively defined over tile structure of formulas, as shown in Table 3.1. If 4) is a

closed fornmla, its semantics is indet)endent of tim environment. In this case, we simply write {4)} instead

of {4)}(a). We say that the process P satisfies l)rol)erty 4) if P • {4)}. Intuitively, fornmla tt is satisfied bv

every process, and the Boolean operators are interpreted am usual. The fornnfla {_::k)(I) is satisfied t)y those

processes that have an _, : k successor for which 4) holds. Finally, pX.4) stands for tile least solution of the

TABLE3.1
Nemant, ics of the modal p-ca.!culus.

{tt](o') =(If _ {¢I)1A O2}((y) =df {_1}((') f"lf¢I)2}(O")

{XI(cr) =dr _(-\') {(a:k)¢}(a) =dr {P E ;:-'I 9P' E /'.P 2_ p, and P' E {_}(_r)}

{_+}(_) =at >"\ {+}(-1 {,,X._}(_) =dr N{_' - *' I |+}(_[,,'/x]) c_ p'}

equation X = 4_ with respect to the Boolean lattice where ff iF smaller than tt. On the basis of the above

definitions one can deduce that a process P satisfies [a :k]q) if alt its a : k-derivatives satisfy q,, and it satisfies

[L]_ (I' if along every process reachable from P via a sequence of transitions labeled with elenlents of L, the

fl)rmula (I) is valid. Similarly, (L)*(I) holds for a process if some sequence of transitions with labels drawn

fl'om L leads to a t)rocess satisfying (I). For CCS rt a version of the t_-calculus can be obtained by (tefining the

semanti('s of (_:k}_ as {P E T' [3P',P" E 7_.P _-_P" _-+ P and P' E {_}(a)}. As an imt)ortmit result

t)rocesses satisfy the salne formulas, independently if those are nterpreted for CCS dp or CCS _t semantics.

THEOREM 3.4 (Logical Correspondence). Let ¢ E ,Y and o E E. Then {_}dp(cr) = {@}.t(rr),

PTvof. The proof is done by induction on the structure of _rmula ¢. Tile induction base ¢I, = tt holds

trivially. In tim following, we consider tile case ¢ = (o:k}_ of tile induction step.

{<.: k)_,I,p(.)

(definition of {'tap) = {P E 7_ I 3P' E 7). P 2_ p, :rod P' E {_}dp(a)}

(induction hyt)othesis) = {P E /_ I 3P' E _-. P _ P' and P' E {_I/}rt(o)}

(Proposition 3.2) = {PE_PI3P',P"EtP. P_2-+_'p"_2-+P'andP'E{_}_t(a)}

(definition of {'}r,) _-- {(Ct : k)llJ}rt (o')

The other eases of the induction step are straightforward. [7

Hen('e, properties of processes interpreted with respect to CCS dp semantics also hold in the CCS _t interpreta-

t.ion, an(t vice versa. It is worth noting that by leaving out the fi (ed point ot)erator I*X we obtain versions of

the so called Hcnnessy-Milner logic which characterizes bisimul_ tion [27]. Since the logical characterizations

of our bisimulations are not of importance here, we do not inve:;tigate them further.

4. Case Study: The SCSI-2 Bus-Protocol. We (teinoltstrate the utility of our approach to imple-

menting real-tilne semantics using dynamic priorities by a case study dealing with the bus protocol of the

widely-used Small Computer System Interface [1], or SCSI for _llort. The SCSI bus is designed to t)rovi(te

an efficient peer-to-t)eer I/O connection for t)eripheral devices sach as disks, tapes, printers, etc. It usually

connects several of these devices with one host adapter which off ell resides on a computer's motherboard, hi

contrast to the host adapter, peripherals are not attacimd directlv to tile bus but via controllers, also called

logical units (LUNs). Thus, LUNs provide a physical and logical interface between the bus and the periph-

erals. Concel)tually, up to seven LUNs can be connected to one [)us, and one LUN can support up to seven

peripherals. However, in practice most peripherals contain their own SCSI controller (cf. Figure 4.1). The

SCSI-2 bus-protocol implements the logics regulating how perigherals and tile host adal)ter conmmnicate

with each other on the bus. Comnmnication on the SCSI bus is point-to-point, i.e., at any tim(, either none

or exactly two LUgs may communicate among each other. For easy addressing, each LUN is assigned a fixed

12

SCSI id in form of a number ranging fi'om zero to seven. Id 0 is reserved for the host adapter which is also.

conceptually, a LUN. C()mmunication on the hus is organized by tile use of eight signal lines whereas thc_

actual information, like messages, commands, data, an(1 status information, are transferred over a data bus.

Computer

J/

|:1(;. 4.], 7Opieal SCSI cortJiguration.

FIG. 4.2. Usual progression of the SCSI-2 bus-phases.

Tile SCSI-2 bus-protocol is organized in eight distinct phases: Bus Free, Arbitration, Selection,

Reselection, Command, Data, Status, anti Message phase. At any given time, the SCSI t)us is exactly ill

one phase. The usual progression of phases is shown in Figure 4.2. During the Bus Free phase no device

is ill possession of the hus, i.e., LUNs may request access. If more than one (levi(:(, competes for tile bus in

order to initiate a communication, the one with the highest SCSI id is granted access. In the Arbitration

phase, ever) LUN that has posed a request determines if it has won the competition. All LUNs which h)se may

compete for the [)us again later, whereas the winner, also referred to as initiator, proceeds to the Selection

phase. In this phase the initiator tries to connect to the desired destination, called target. When the link

t)etween initiator and target, has been estal)lished, the so-called infor_¢mtion transfer phases, including the

Command, the Data, the Status, and the Message phases are entered. In the Command phase the target may

request, a command fi'om the iifitiator. Data may be transferred I)etween target and initiator in tile Data

phase. During a Message phase information is exchanged between the initiator and the target concerning

the bus t)rotocol itself. Finally, the Status phase is used to transfer status information to the initiator

ut)on t:t)mpletion of a cominand executed I)y the target. The key idea for accelerating comnmnication on the

bus, which has significantly t:ontrit)uted to the success of SCSI, is that the target can free the bus whenever

it receives a time-intensive command fiom the initiator. As soon as the execution of such a (:ommand is

fin[she(t, the target competes for the bus in order to transntit the result to the forIner initiator. As a siInI)le

exalnple, one may think of the initiator as the host adapter, of the target as a hard disk, and of the command

as the request to read a certain [)lock froxn that har(t disk. Since accessing hard disks takes some time, the

bus can be used for other purposes until the requested block is found and its data is ready for transmission.

5. Modeling the SCSI-2 Bus-Protocol. In this section we model the SCSI-2 bus-protocol in our

language as implemente(t in the CWB-NC. Its syntax slightly departs from the one introduced in Section 2 I)y

writing nil for the inaction process 0, proc x = P for the ternt fix.P, anti 'a:k for ?7:k. Moreover, we use

the notation (_(obs):k which may be interpreted as (t::k in this section. Actions obs come into play in the

next sect[tin where they serve as "probes" for verification purposes.

13

For modeling the SCSI-2 bus-protocol we have imposed sore _ assumptions. First, we restrict ourselves to

modeling two LUNs, called LUN0 and LUN1, having id (I and id 1, r,_spectively. This is sufficient for dealing with

the aspects of the SCSI-2 bus-protocol we are interested in. Not _ that even in the situation of two LUNs there

exists competition for the luls. Moreover, we abstract from time(.ut t)rocedures and front tile (:ontents of most

messages, commands, and data. These abstractions are justified since they do not affect the conceptual parts

of the bus protocol's behavior. For example, the sole purpose of a timeout is to determine if a target is alive

or not. The contents of information sent over the bus, except froln messages representing the conq)letion of

some transmission, are only relevant for the device-specific parI of LUNs but not for the bus protocol itself.

Additionally, the I)us signals BSY (busy) and SEL (select) are wi;'ed-or signals in reality. However, we do not

need to model this "or"-behavior, since our model onh" deals with two LURs, and just one LUN at a time can

assert the BSY or SEL signal. Finally, all quantitative tinting inf(rmation occurring in the nlo(tel is measured

relative to a time unit of 5 ns, including aT"bitration delays (480 t me units), bus clear" delays (160 time units),

bus settle delays (80 time units), deskew delays (9 time units), and cable skew delays (9 time units).

The underlying structure of the bus protocol is explicitly reflected in our model. Each LUN connecte(l

to the bus is inodeled as a separate parallel component containing models of the different bus i)hases as

discuss(,d in the previous section. The logical behavior of the bus protocol is iml)lenmnted by bus signals.

Ea('h signal physically consists of a wire which we model as a separate process similar to a global Boolean

variable. Note that signal delays are not modeled in the wires but in the oi)erations used for transmitting

information over the SCSI bus. Since we abstract away the con:.ent of most information, we do not need to

model each bit of the data bus. Hence, arbitration is inodeled via a global variable which stores the highest

id of all LUNs requesting access to the bus. Accordingly, our m(,del, called SCSIBus, consists of the parallel

comt)osition of both LUNs, and the BusSignals, including the regular signals and ttle data path. Formally,

proc SCSIBus = (LUNO I BusSignals I LUNI) \ Restriction

where Restriction contains all actions that are internal to t ,e protocol, i.e., those concerned with set-

ling/releasing signals, requesting signal status, and placing/tea, ling information on/from tile data bus.

5.1. Modeling the Bus Signals and the Data Bus. Conceptually, each bus signal is modeled as a

Boolean variable which is either true (signal on) or false (signal off). Thus, the processes rel)resenting the

signals BSY (busy), SEL (,select), C/D (command/data), I/0 (inp at/output), MSG (message), ATN (attention),

REQ (request), and ACK (acknowledgment) are generically created by relabeling the actions of the process Off

(cf. Table 5.1). Using the ports set and rel one can set or rel_ ase the signal and, hereby, switch the state

to 0n and 0ff, respectively. Actions 'off ('on) indicate that tt:e signal is currently in state Off (On). Note

that tile atom|city of actions in process algebras guarantees that conflicts, arising by setting several signals

simultaneously, are avoided.

In the following, we abstract away the contents of most i lessages. Only the distinguished messages

disconnect and complete are explicitly considered since the)" re quire to exit the infi)rmation transfer phases

an(t to switch to the initial state of the LUN. Accordingly, we u ay model the data bus as a variable which

can store and read out infl)rmation (actions placeXXX and readXXX, respectively). The labels obsXXX are

used to record the events of placing and reading messages on the, |)us.

For modeling arbitration we introduce the process hrbitra:or which models a variable that stores the

value of the highest id of all LUNs which compete for the bus. The situation in which no LIJN wants to a('cess

the bus is cat)tured bv a st)ecial "uildefined" state. Accordingly, the process Arbitrator possesses three

14

TABLE 5. t

Model of the bus signals, the data bus. and the arbitration, variable.

pro¢ BusSignals = DataBus

I Arbitrator

I Off[setBSY/set,relBSY/rel,isBSY/on,noBSY/off]

I Off[setSEL/set,relSEL/rel,isSEL/on,noSEL/off]

I . . .

proc Off

proc On

= 'off:0.0ff + set:O.0n + rel:O.0ff

= 'on:O.0n + set:O.0n + rel:O.0ff

proc DataBus

proc DataBus'

= DataBus' [> release(obsrelease):O.DataBus

= placemsgIn(obsplace):O.'readmsgIn(obsread):0.DataBus'

+ placemsg0ut(obsplace):0.'readmsg0ut(obsread):0.DataBus'

+ placefinished(obsplace):0.'readfinished(obsread):0.DataBus'

+ placedata(obsplace):0.'readdata(obsread):0.DataBus'

+ placecmd(obsplace):O.'readcmd(obsread):0.DataBus'

+ placestatus(obsplace):0.'readstatus(obsread):0.DataBus'

+ sentdisconnect(obssentdiscon):0.'readdisconnect(obsreaddiscon):O.DataBus'

+ sentcomplete(obssentcomplete):O.'readcomplete(obsreadcomplete):O.DataBus'

+ writetargetO(obswritetO):O.'readtargetO(obsreadtO):O.DataBus'

+ writetargetl(obswritetl):O.'readtargetl(obsreadtl):0.DataBus'

proc Arbitrator = Under [> clear:0.Arbitrator

proc Under = setid0:O.IdO + setidl:O.Idl + 'noidO:O.Undef + 'noidl:0.Undef

proc IdO = setidO:O.IdO + setidl:O.Idl + 'isidO:O.IdO + 'noidl:O.IdO

proc Idl = setid0:O.Idl + setidl:O.Idl + 'noidO:O.Idl + 'isidl:O.Idl

states as shown in Table 5.1, called Under, Id0, and Idl, respectively. One may set the variable to state

Idk via port setidk whenever the current state of Arbitrator is either Undef or Idj for j _< k. In other

words, the variable always maintains its maximum value. However, it may be reset to its initial state Undef

via port clear. In reality, the LUNs that want to compete for access broadcast their id on the data bus.

Before acquiring tile bus the LUN has to check if a higher id than its own is asserted. Modeling this technique

one-to-one requires to implement the 7_-bit wide data tms, where n corresponds to the maximal mmfl)er of

LUNs attached to the bus. This induces a complexity of 2 '* states, compared to n + 1 states by our technique.

5.2. Modeling the Bus Phases for Connection Establishment. Let us focus on modeling the

logical characteristics of the SCSI-2 bus-protocol (see Section 6 of [1]) for the initial bus phases handling

eo,mection establishment. In the Bus Free phase, no (tevice is in t)ossession of the bus; hence it is available

for arbitration. The SCSI i)us is defined to be in the Bus Free phase as soon as the signals SEL and BSY

}rove been off for at least a bus settle delay. Accordingly, the process BusFree0 of LUN0 detects the Bus Free

phase when the actions isBS¥ an(t isSEL are absent for 80 time units (cf. Table 5.2). If one of the actions

isBSY or isSEL is observed, the tins is occut)ied and LUN0 returns to tile start state. Otherwise, if the Ires

is free, the logical unit asserts the BSY signal (action 'setBSY) and sets the arbitration variable accordingly

(action 'setid0), before it performs an ar[)itration delay and switches to the Arbitration phas(,.

15

TABLE5.9
Bus Free, Arbitration, and Se_ec lion phase.

proc LUNO = t(startO):9.'rellO:O.(BusFreeO + Get_electedO) + t:9.LUNO

+ t(startO):9.'setIO(obs_setIO):O.(BusFreeO + GetSelectedO) + GetSelectedO

proc BusFreeO

proc ArbitrateO

= t(busfree):80.'setBSY(obs_setBSY):80.'setidO:O.ArbitrateO

+ isSEL(obs_isSEL):O.LUNO + isBSY(obs_isBSY):O.LUNO

= noidl(obs_winner_idO):480.'setSEL(obs_setSEL):O.SelectionO

+ isidl(obs_winner_idl):480.LUNO

proc SelectionO = 'writetargetl:240.'setATN:9.'relBSY(obs_relBSY):18.isBSY:80.

'relSEL(obs_relSEL):9.t(begin_ITP):O.(noIO:O.InitiatorO + isIO:O.TargetO)

proc GetSelectedO = isATN:O.(isSEL:O.noBSY:O.readtargetO:O.'setBSY(obs_setBSY):O.'release:O.

'clear:O.noSEL:O.(noIO:O.TarggtO + isIO:O.InitiatorO)

+ noSEL:O.LUNO)

proc InitiatorO

proc HO

proc TargetO

= HO [> noBSY(obs_noBSY):O.'relATN:O.LUNO

= t:9.'setATN(obs_sethTN):9.HO

+ isKEQ(obs_isKEQ):9.(noMSG:O.(noCD:O.(noIO:O.DataOutIO + isIO:O.DataInIO)

+ isCD:O.(noIO:O.CommandIO + isIO:O.StatusIO))

+ isMSG:O.isCD:O.(_oIO:O.MsgOutIO + isIO:O.MsgInIO))

= (noIO:O.MsgOutTO + isIO:O.'relATN:O.Msg[nTO) [> noBSY:O.'relATN:O.LUNO

In the Arbitration phase a LUN, which competes for access to the bus, looks up if it has won the

arl)itration by checking whether no device having a higher id has asserted its id on ttte bus. Before the

winner proceeds to the Selection phase, it asserts the SEL ,'ignah All LUNs that have lost art)itration

return to their initial states. The models of the Arbitration t hase as well as of the Selection phase are

presented in Table 5.2 for LUN0; the model of LUN1 is similar although the I)ehaviors of LUN0 and LUN1

are not completely symnletrie in the Arbitration phase. The _,symmetries arise from the different priority

values assigned to both devices. In the hrbitration phase, LUH0 has to check if LUN1 has set its id on the

bus. If so, LUN0 has lost ar|)itration. However, LUN1 does not need to check if LUN0 has set its id on the bus

since LUN0 is assigned to the lower SCSI id. Moreover, since w(are assuming only two devices, there is no

necessity for LUN1 to check any SCSI id asserted on the bus.

The Selection phase is distinguished froin the Reselect_on phase hy the de-asserted I/0 signal. In

the Selection phase the winning LUN, the initiator, tries to connect to the desired destination, the target,

which is the logical unit LUN1 in the case of Selection0. Therefore, it writes the id of the target on the

data bus (action 'writetarget 1) and asserts the ATN signal to :brce each device to check if it is the desired

target. The initiator then waits for some deskew delays and r _leases the BSY signal. After a short delay

it looks for a response from the target. If the BSY signal is as:,erted, the target has responded and taken

over control of the bus protocol. In this case the initiator releas,_s the SEL signal (action 'relSEL) and then

hehaves as Initiator0, or as Target0 in case of the Reselection phase. If the ATN signal is a_sserted, each

device verifies if the bus protocol is in the Selection or Reselection phase (cf. process GetSelected0).

Therefor(', it checks the SEL signal (action isSEL) and waits unti the initiator releases the BSY signal (action

16

proc CoranandlO = isKEQ:O.('placecmd:O.'setACK:9.noREQ:O.'release:O.'relACK:O.CommandIO

+ 'placefinished:O.'sethCK:9.noKEQ:O.'release:O.'relhCK:O.HO)

proc Con_nandTO = 'relMSG:O.'setCD:O.'relIO(begin_Comxnand):O.t(begin_Phase):O.ConmlandTO'

proc CommandTO' = 'setREQ:O.isACK(obs_isgCK):O.

(readcmd:O.'relRE_(obs_relKE_):O.noACK:O.CommandTO'

+ readfinished:O.'relREQ(obs_relREQ):O.noACK:O.t(end_Phase):O.

(MsgOutTO + MsgInTO + DataOutTO + DataInTO + StatusTO))

'relBSY). Then it asserts the BSY signal (action 'setBSY), releases tlle data bus (action 'release), and

re-initializes the arbitration variable (action 'clear) before behaving as Target0 or Initiator0.

After the Arbitration and (Re)Selection l)hases tile target tim master of the bus t)rotocol t)roceeds

to the Message0ut or MessageIn phase depending on whether it has been selected as target or whether it

wants to re-connect to a former initiator, as indicated by tile status of the I0 signal (of. Table 5.2). The

initiator the slave of the bus protocol - continuously checks the status of the signals MSG, C/D, and I/0 in

order to determine tim next phase selected by the target, lkloreover, it may indicate its wish to proceed to the

Message0ut phase by asserting the ATN signal (action 'setATN). Finally, upon detection of the de-assertion

of the BSY signal (action noBSY) caused by the target's expected or unexpected release of the SCSI bus, the

initiator de-asserts the ATN signal (action 'relhTN) and returns to its initial state.

5.3. Modeling the Information Transfer Phases. The processes Target0 and InitiatorO initiate

the Information Transfer Phases (ITP) which sul)sume the Command, Data, Status, and Message t)hases.

In those phases, information is exchanged between the initiator and the target. The Data and tile Message

phases are further divided in DataIn, Data0ut, MessageIn, and Message0ut t)hases according to the direction

of information flow. The "In" phases are concerned with transferring information from the target to the

initiator whereas the "Out" phases are concerned with transferring information in tile other direction. The

information transfer takes place using a byte-wise handshake mechanism. In the following, we only explain

the Command phase and its modeling (of. Table 5.3). The conlt)lete model can 1)e h)und in the at)l)endix.

The Command phase is entered if the target intends to request a command from the initiator. Tile target

indicates the Command phase 1)y de-asserting the MSG and I/0 signals and asserting the C/D signal. After

waiting for a (teskew delay the target requests a command from the initiator I)y setting the REQ signal

(action 'setREQ). In the meantinle, the initiator detects that the target has switched to the Command phase

by observing the status of the MSG, C/D, and I/0 signals (cf. process H0 in Table 5.2). Upon detection of

the asserted REQ signal (action isREQ) the initiator places tile first byte of the (:ommand on the data])us

(action 'placecmd), waits for a deskew delay, and asserts the ACK signal (action 'sethCK). After the target

detects the asserted ACK signal (action ±sACK) it reads the command from the data bus (action readcmd) and

releases the REQ signal (action 'relREQ). At this point the handshake procedure for receiving (the first byte

of) the comnland is completed. Now, the initiator may release the data bus (action 'release) and the ACK

signal (action 'relACK). If a command is longer than one byte, the bus may remain in the Command 1)hase,

and the handshake mechanism may be repeated, until the nlessage finished (action readfinished) has been

transferred. Note that in the real-world protocol the length of a command is encoded in its first byte.

17

6. Verifying tile Bus-Protocol. In this section we st),,cify several safety and liveness properties,

which our model is ext)ected to satisfy, ill the modal ll-calcu us [24], and verify them by employing the

local model-checker [4] integrated in the CWB-NC. The (me-to-oI e correspondence between CCS dp and CCS _t

semantics ensures that the properties, once being verifie(l for 1he CCS dp model, hold for the CCS _t model,

too. In order to construct the state spaces of our model we rove run the CIdB-NC on a SUN SPARC 20

workstation. Wh(,reas the model has 62 400 states and 65 624 transitions according to CCS _t semantics, it

possesses only 8 391 states and 14 356 transitions with respect to CCS dp semantics. This drastic saving in

state space emphasizes the utility of using dynamic priorities for implementing discrete real-time semantics.

6.1. Properties of Interest. The following desired requ rements of the SCSI-2 Ires-protocol are ex-

tracted from the official ANSI docmnent [1].

• Property 1: All bus phases are always reachable. This replies that the model is free of (teadlocks.

• Property 2: Whenever a bus t)hase is entered, it is evel tually exited.

• PTvperty 3: The signals REQ and hCK do not change between two information transfer phases.

• Property 4: The signal BSY is on and the signal SEL is off during the information transfer phases.

• Property 5: Whenever a device sends a message, it is e:entually received by the intended LUN.

• Property 6: Whenever the hTN signal is set, the bus ew:ntually enters the Message0ut phase.

Note that the properties describe the functional behavior of the _CSI-2 bus-protocol rather than explicit real-

time issues concerned with hard deadlines or response times. Th 3refore, we may abstract from delay/priority

values in/t-calculus formulas by replacing the operators (¢_ : k} introduced in Section 3.2 by (a). Semantically,

we define {(o)42}_t(a) =dr {P ¢ 'PlSP',P" E T'.P _ *t"' _ P' and P' E {_}_t(a)} as well as

{(o)42}ap(a) =dr {P ¢ 'P I SP' ¢ P,k ¢ N.P _ P' and P' • {O}av(a)}. An adaptation of Theorem a.4

can easily he shown to hold for the modified temporal logics, too. Therefore, we can verify our properties

of the SCSI-2 bus-protocol within the more compact CCS dp m)del and conclude that these are also valid

for the CCS rt model. For notational convenience we introduce tlm following meta-formulas, where a,/_ • A,

L_CA, and42EF.

twe.n(, f3,_) =dr _x.[_](_:(_ A [/3IX A [-_l_')) A [-_]x

fair-follows(o, !:l, L, 42) =dr uX.[c_](ul'.ItZ.(_ A [/3]X A L]Y A [-({,'3} tO L)]Z)) A [-c_]X

The meta-fl)rmula between(a, f_, 42) states the following. On evelv path it is always the case that after _, the

fornmla 42 is true at every state until/3 is seen. Note that /3 nee t not occur after {_ since/3 only releases the

requirement that 42 be true at every state. The meta-formula f, dr-follows(a,/4, L, 42) encodes that on every

path it is always the ease that after c_ is seen, either 42 is always true until/3 is seen or 42 is always true, and

an action fi'om L occurs infinitely often on the path. Note that on paths on which actions from L do occur

infinitely often, action/4 has to appear eventually. Without this notion of fairness, which we use to encode,

e.g., that messages transferred over the SCSI bus have finite length, some properties cannot be validated.

Unfortunately, CCS °p and CCS 't turn ew_ry visihle action a ,,r _ into the internal action r when commu-

nicating on port a. However, in order to prove any interesting p "operty except deadlock, we have t.o observe

certain actions of the system, e.g., those modeling the assertion and de-assertion of bus signals. Therefore.

we attach to some actions a (either the input or the output ac;ion belonging to chmmel a) and the inter-

nal action 7" a visible action or probe o, thus leading to a comt,lex action a(o), ?i(o), or r(o), respectively.

Whenever a transition labeled by a(o) (?7(0)) synchronizes with a transition labeled by _ (a), t h(, resuhing

r is annotated by o. i.e., r(o) is t)roduced. Hen('e, a comnnmic _tion on t)ort a is immediately observed by

18

probeo,asintended.Ourmodelincludes(i) tileprobesbegin_Phase and end_Phase marking the beginning

and end of each information transfer phase, respectively, (ii) the probes begin_ph signaling the beginning

of some particular phase ph, (iii) the probes obs_place and obs_read observing the writing and reading of

information on/from tile data [)us, respectively, and (ix,) the probes obs_setSIG and obs_relSIG indicating

the assertion and de-assertion of some signal SIG, respectively. Now, the above properties can be formalized.

. Property 1: This property ensures that the model does not possess undesired livelocks, i.e.. fin" each

bus l)hase ph we consi(ter the fornmla [-]_ (-)*((begin_ph)tt).

• Property 2: We hax'e to check for every path that probe begin_Phase is eventually followed by probe

end_Phase before another begin_Phase is observed.

lair-follows(begin_Phase, end_Phase, {obs_setATN}, <-)tt) .

The fairness constraint ensures that the initiator does not ignore the target's wish to enter a new

t)hase forever by continuously asserting the ATN signal.

Property 3: We encode that on all paths the t)robes obs_setREQ, obs_relREO, obs_setACK, and

obs_relACK do not occur between end_Phase and begin_Phase.

between(end_Phase, begin_Phase, [obs_setREQ, obs_relREQ, obs_setACK, obs_relACK]f_ .

• Property 4: This formalization can be done along the lines of the one of Property 3.

between(begin_Phase, end_Phase, [obs_setBSY, obs_relBSY, obs_setSEL, obs_relSEL]/_ .

• Ptvperty 5: Here, one has to encode that obs_place is always followed by obs_vead. Tile incorpo-

rated fairness constraint corresponds to the one in Prot)erty 2.

fair_follows(obs_place, obs__read, {obs_setATN}, [obs_placelff) .

• Property 6: We have to formalize that every probe obs_setATN is always eventually followed by a

probe begin_Msg0ut. Note that this prot)erty does not require any fairness assumption.

fair_follows(obs_setATN, beginAlsg0ut, _, [obs_setATN]f]) .

6.2. Verification Results. We were able to validate ea<:h proI)erty in our model in no more than two

minutes when running the CWB-NC on a SUN SPARC 20 workstation. The model checker we used is a local

model checker for a fragment of the modal it-calculus [4]. Applying a local model checker in contrast to a

global one remarkably speeds-up the task of verification during the initial mo(teling attemt)ts. In fact, the

modeling of the SCSI-2 bus-protocol was done in several stages. At early modeling stages the model checker

invalidated most properties immediately. The encountered errors ranged from missed fairness constraints to

wrong timing information and were identified by examining the diagnostic information displayed in form

of failure traces as provided by the model checker. During the process of verification, we also realized that

the timing constraints of the bus protocol are not only imposed for avoiding wire glitches t)ut also in order to

implement necessary syn(:hronization constraints during the initial bus phases. Without these constraints,

two LUNs may gain access to the [)us for arbitration which leads to a deadlock. This eInt)hasizes the necessity

of dealing with real-time constraints in reactive systems, even if ext)lieit real-time behavior is not of interest.

i .9

7. Discussion and Related Work. One may wonder w_y CCS dp semantics does not consider actions

with minimal delays or priority values as labels of transitions only. In particular, one can avoid tile side

condition of Rule (Act2) by allowing conlmunication on different priority levels. The reason that we have

not folh)wed this approach is timt it iinposes an unsound ab,,.traction for CCS rt semantics. As a simple

example consider t)rocess P =dr (a:l.b:0.0 Ib:1.0 + c:2.0)\{b}. According to the modified CCS dp semantics,

P can ellgage in an a-transition with priority 1 to process (b : 0.0]b : 0.0 + c : 1.0)\{b}. Hence, after an

a-transition a c-transition is always pre-empted since a conmmnication on b with priority 0 is pending.

According to the original CCS d0 semantics, however, P may also engage in an el-transition with priority 2 to

(b:0.01 b:0.0 + c:0.0)\{b}. Thus. there exists a path starting ,,'ith an _-transition, after which a c may be

observed. Cutting off this path changes the behavior of P, when'e the modified CCS dp semantics is incorrect.

Regarding related work, a formal relationship between a quantitative real-time process algebra an(t

a process algebra with static priority, adapted fl'om [11], is t_stal)tished by Jeffrey in [23]. Jeffrey also

translates real-time to priority based on the idea of time stamping and presents a semantic correspondenc(,

based on bisinmlation. In contrast to CCS _t semantics, a proces; modeled in .]effrey's framework may either

immediately engage in an action or idle forever. However, this s,_mantics does not reflect out" intuition about

the behavior of reactive systeIns, i.e., a process should wait until a desired comnmnication partner becolnes

availabl(, instead of engaging in a "livelock." It is only because of this design decision that Jeffrey does

not need to choose a dyuamic-priority framework. In [6] a variant of CCSR [7], referred to as CCSR92,

is introduced. Since CCSR focuses on specifying and verifying concurrent real-time systems, an ability of

cal)turing scheduling behavior is iieeded. Conse(tuently, a no _ion of dynamic t)riority, such as occurs in

priority-inheritance and earliest-deadline-first scheduling algoritltms, is adopted for CCSR92. In [6] dynanfic

t)riorities are given as a function of the history of the system un(te' consideration. Accordingly, the of)erational

semantics of CCSR92 is re-defined to include historical context:. The authors show that dynamic priorities

(lo not always lead to a colnpositional semantics and give a sufiictent condition that ensures comt)ositionality.

8. Conclusions and _lture Work. We introduced the process algebra CCS dp with dynamic priority

whose semantics corresponds one-to-one to the (liscrete quantit_ tive real-time semantics of CCS ft. Its utility

stems from the fact CCS dp semanti,:s yields siglfificautly more co npact models than CCS n semantics without

abstracting away any aspects of real-time. Thus, CCS dp providc.s a means for efficiently implementing real-

time seInantics. The compactness of models can be improved filrther if one is not interested in verifying

properties involving quantitative time and in the semantics' ccmpositionality. In this case a CCS dp model

may be nfininfized according to standard I)isimulation after igl:oring the priority values in the labels. We

implem(,nted CCS dp and CCS _t in the Concurrency Workbench (f North Carolina which we used to formally

model and reason about the SCSI-2 bus-protocol. The size of our model is about an order of magnitude

smaller when constructed with CCS dp instead of CCS _t semartics and can be handled easily within the

Workt)ench. In addition, we specihed several desired properties of the bus protocol in the modal It-calculus

and validated them by using model checking. Regarding futuie work, the SCSI-2 bus-protocol shouhl t)e

modeled in more detail and, thereby, enable the verification of ;,dditional interesting properties.

REFERENCES

[1] AMERICAN NATIONAL STANDARD INSTITUTE, ANSI X3.13' 1994, Information Systems Small Com-

puter Systems luterJace ._2, ANSI, 1994.

2o

[2] J. BAETEN, ed., Applications of Process Algebra, Vol. 17 of Cambridge Tracts in Theoretical Computer

Science, Cambridge University Press, Cambridge, UK, 1990.

[3] G. BERRY AND G. GONTHIER, The ESTEREL synchronous programming language: Design, semantics,

implementation, Sci. Comput. Progranmling, 19 (1992), pp. 87 152.

[4] G. BrtAT, Tableau-based Approaches to Model CheckiT_,g, Ph.D. thesis, North Carolina State University,

Raleigh, NC, USA, December 1997.

[5] T. BOLOCNESI ANI) E. BRINNSMA, httroduetioTt to the ISO specification language LOTOS, Computer

Networks and ISDN Systems, 14 (1987), pp. 25 59.

[6] P. BREMOND-GRt;;(IOII{E, S. DAVIDSON. AN1) I. LEE, CCSR92: Calculus for" communicating shared

resources with, dynamic priorities, in First North Alnerican Process Algebra Workshot), P. Pu-

rushothanmn and A. Zwarico, e(ls., WorkshoI)s in Computing, Stony Brook, NY. USA, August

1992, Sl)ringer-\,_wlag, pp. 65 85.

[7] P. BREMONDE-GREGOIRE, I. LEE, AND R.. GErtBER, A prvcess algebra of communicating shared re-

so_tTves with dense time and priorities, Theoretical Computer Science, 189 (1997), pp. 179 219.

[8] E. BmNKSMA, W. CLEAVELAr_D, K. LAt¢SEN, T. MARCAmA, AND B. STEVFEN, eds., First Interna-

tional 14rorkshop on Tools and Algorithms for the Construction and Analysis of Systems TACAS '95,

Vol. 1019 of Lecture Notes in Computer Science, Aarhus, Denmark, May 1995, Springer-Verlag.

[9] J. CAM ILLERI AND G. 'W1NSKEt,, CCS with priority choice, hfformation and Computation, 116 (1995),

pp. 26 37.

[10] E. CLARKE, E. EMERSON, AND A. SISTLA, Automatic verification of finite-state concurrent systems

using temporal logic specifications, ACM Transactions on Programming Languages and Systems, 8

(1986), pp. 244 263.

[11] R. CLEAVELAND AND .N.I. HENNESSY, Priorities in process algebra, Information and Comt)utation, 87

(1990), pp. 58 77.

[12] R. CLEAVELAND, G. L(['TTGEN, ANt) V. NATARAJAN, Priority in process algebra, in Handbook of

Process Algebra, J. Bergstra, A. Ponse, and S. Smolka, eds., Elsevier, 1999. To appear.

[13] R. CLEAVH.AND, E. MADELAINE, AND S. SIMS. Generating front-ends for verification tools, in

Brinksma et al. [8], pp. 153 173.

[14] R. CLEAVELANI), V. NATARAJAN, S. SIMS, AND G. LUTT(;EN, Modeling and verifying distributed

systems using priorities: A case study, Software Concepts and Tools, 17 (1996), pp. 50 62.

[15] R. CLEAVELAND, J. PARROW, AND B. STEFFEN, The Concurrerl_cy Workbench: A semantics-based

tool for" the verification of finite-state systems, ACM Transactions on Programming Languages and

Systems, 15 (1993), pp. 36 72.

[16] R. CLEAVELANI) AND S. SIMS, The NCSU Coneurrel_,cy Workbench, in Computer Aided Verification

(CAV '96), R. Alur and T. Henzinger, eds., Vol. 1102 of Lecture Notes in Computer Science, New

Brunswick, N J, USA, July 1996, Springer-_rlag, pp. 394 397.

[17] \V. ELSEAIDY, .l. BAUGH, AND R. CLEAVELAND, Verification of an active contrvl system using temporal

process algebra, Engineering with Comtmters, 12 (1996), pp. 46 61.

[18] J. GULMANN, .1. JENSEN, hi..}()f/GENSEN. N. KLARLUNI), T. RAI:HE, AND A. S:\NI)IIOI.Xl Mona:

Monadic second-order logic in practice, in Brinksma et al. [8], pp. 58 73.

[19] D. HAREL, Stateeh, arts: A visual formalism for complex systems, Sci. Comput. Programming, 8 1987),

t)t)- 231 274.

[20] T. HENZIN(;Ert, P.-H. Ho, AND H. \VoN(;-Tol, HyTcch: A model checker for hybrid systems. Software

2l

Tools for Technology Transfer, 1 (1997), pp. 110-122.

[21] C. HOARF.. Communicating Sequential Processes, Prentice-Hall, London, UK, 1985.

[221 G. HOLZ.XLXNN, Design and Validation of Computer Proto,'.ols, Prentice-Hall, 1991.

[23] A. J EI:FREY, Translating timed process algebra into prioriti.:ed process algebra, in Proceedings of Sympo-

sium on Real-Time and Fault-Tolerant Systems (FTRTFT '92), J. Vytopil, ed., Voh 571 of Lecture

Notes in Computer Science, Nijmegen. The Netherlan, ls, January 1992, Springer-Verlag, pp. 493

506.

[24] D. KozEN. Results on the propositional p-calculus, Theoretical Computer Science, 27 (1983), pp. 333

354.

[25] K. LARSEN, P. PETTERSSON, AND "_V. YI, UPPAAL i_ a nutshell, Software Tools fi)r Technology

Transfer, 1 (1997).

[26] G. L/'TT(;EN, Pre-emptive Modeling of CoT_curr'ent and Distributed Systems, Ph.D. thesis, University

of Passau, Germany, May 1998. Published by Shaker Verlag, Aachen, Germany.

[27] R. NhLNEr(, Communication and Concurrency, Prentice-Hall, London, UK, 1989.

[28] F. MOLLER AND C. TOFTS, A temporal calculus of communicating systems, in CONCUR '90 (Con-

currency Theory), J. Baeten and J. Klop, eds., Vol. 458 of Lecture Notes in Computer Science,

Amsterdam, The Netherlands, August 1990, Springer-Verlag, pp. 401- 415.

[29] W. Y,, CCS + time = an interleaving model for' real hme systems, in Automata, Languages and

Programming (ICALP '91), J. L. Albert, B. Monien, and M. R. Artalejo, eds., Voh 510 of Lecture

Notes in Computer Science, Madrid, Spain, July 1991, _pringer-Verlag, pp. 217 228.

Appendix A. Complete Model of the Bus Protocol.

proc SCSIBus = (LUNO I LUN1 I BusSignals) \{

setBSY, relBSY, isBSY, noBSY, setSEL, relSEL, isSEL, noSEL,

setCD, relCD, isCD, noCD, setIO, relIO, isIO, noIO,

setMSG, relMSG, isMSG, noMSG, setATN, relATN, isATN, noATN,

setREQ, relKEQ, isKEQ, noREQ, setgCK, relACK, isACK, noACK,

placemsgIn, readmsgIn, placemsgOut, readmsgOut,

placecmd, readcmd, placefinished, readfinished,

placedata, readdata, placestttus, readstatus,

sentdisconnect, readdisconnect, sentcom)lete, readcomplete,

writetargetO, readtargetO, writeta:'getl, readtargetl,

release, setidO, setidl, noidO,

noidl, isidO, isidl, clear

* LUNO

proc LUNO t(startO):9.'relIO:O.(BusFreeO + GetSelected(,)

+ t(startO):9.'setIO(obs_setIO):O.(BusFreeO + GetSelectedO)

+ t:9.LUNO + GetSelectedO

22

proc GetSelectedO = isATN:O.(isSEL:O.noBSY:O.readtargetO:O.'setBSY(obs_setBSY):O.'release:O.

'clear:O.noSEL:O.(noIO:O.TargetO + isIO:O.InitiatorO)

+ noSEL:O.LUNO

)

* BusFree Phase

proc BusFreeO = t(busfree):80.'setBSY(obs_setBSY):80.'setidO:O,ArbitrateO

+ isSEL(obs_isSEL):O.LUNO + isBSY(obs_isBSY):O.LUNO

* Arbitration Phase

proc krbitrateO = noidl(obs_winner_idO):480.'setSEL(obs_setSEL):O.SelectionO

+ isidl(obs_winner_idl):480.LUNO

* Selection Phase

proc SelectionO = 'writetargetl:240.'setATN:9.'relBSY(ohs_relBSY):18.isBSY:80.

'relSEL(obs_relSEL):9.t(begin_ITP):O.(noIO:O.InitiatorO + isIO:O.TargetO)

* Initiator

proc InitiatorO = HO [> noBSY(obs_noBSY):O.'relATN:O.LUNO

proc HO = t:9.'setkTN(obs_setATN):9.HO

+ isREQ(obs_isREQ):9.(noMSG:O.(noCD:O.(noIO:O.DataOutIO + isIO:O.DataInIO)

+ isCD:O.(noIO:O.CommandIO + isIO:O.StatusIO)

)

+ isMSG:O.isCD:O.(noIO:O,MsgOutIO + isIO:O.MsgInIO)

)

* Target

proc TargetO = (nolO:O.MsgOutTO + islO:O.'relATN:O.MsgInTO) [> noBSY:O.'relATN:O.LUNO

* MsgIn and MsgOut Phases

proc MsglnlO

proc MsglnTO

proc MsglnTO' =

= isREQ:O.(readmsgln:O.'setACK:O.noREQ:O.'relACK:O.MsglnlO

+ readfinished:O.'setACK:O.noREQ:O.'relACK:O.HO

+ readcomplete:O.'setACK:O.noREQ:O.'relACK:O.nil

+ readdisconnect:O.'setACK:O.noREQ:O.'relACK:O.nil

)

= 'setMSG:O.'setCD:O.'setlO(begin_Msgln):O.t(begin_Phase):O.MsglnTO'

'placemsgln:O.'setREQ(obs_setREQ):9.isACK(obs_isACK):O.'release:O.

'relREQ(obs_relREQ):O.noACK:O.MsglnTO'

+ 'placefinished:O.'setREQ(obs_setREQ):9.isACK(obs_isACK):O.

'release:O.'relREQ(obs_relREQ):O.noACK(end_Phase):O.

(MsgOutTO + DataOutTO + DatalnTO + Co=_andTO + StatusTO)

+ 'sentcomplete:O.'setREQ:9.isACK(obs_isAC_):O.'release:O.'relREQ(obs_relREQ):O.
noACK(end_Phase):O.t(end_ITP):O.'relBSY(cbs_relBSY):O.nil

+ ,sentdisc_nnect:_.,setREQ:9.isA_K(_bs-isACK):_.,re_ease:_.,re_RE_(_bs-re_REQ):_.
noACK(end_Phase):O.t(end_ITP):O.'relBSY(cbs_relBSY):O.nil

procMsgOutlO

procMsgOutTO
procMsgDutTO'

= isREQ:O.('placemsgOut:O.'setACK:9.noREQ:O.'release:O.'relACK:O.MsgOutIO
+ 'placefinished:O.'relATN:9.'setACK:O.noREQ:O.'release:O.'relACK:O.HO
)

= isATN:O.'setMSG:O.'setCD:O.'relIO(begin_MsgOut):O.t(begin_Phase):O.MsgOutTO'

= 'setREQ:O.isACK(obs_isACK):O.

(readmsgOut:O,'relREQ(obs_relREQ):O.noACK(obs_noACK):O.MsgOutTO'

+ readfinished:O.'relREQ(obs_relREQ):O.noACK:O.

(t(end_Phase):O.(MsgInTO + DataOutTO + DataInTO + CommandTO + StatusTO)

+ t:O.MsgOutTO'

)

)

* Command Phase

proc CommandlO

proc CommandTO =

proc CommandTO' =

= isREQ:O.('placecmd:O.'setACK:9.noREQ:O.'release:O.'relACK:O.CommandIO

+ 'placefinished:O.'setACK:9,noREQ:O.'release:O.'relACK:O.HO

)

'relMSG:O.'setCD:O.'rellO(begin_Command):).t(begin_Phase):O.CommandTO'

'setKEQ:O.isACK(obs_isACK):O.

(readcmd:O.'relREQ(obs_relREQ):O.noACK:O.CommandTO'

+ readfinished:O.'relREQ(obs relREQ):O.no_CK:O.t(end_Phase):O.

(MsgOutTO + MsgInTO + DataOutTO + DataInTO + StatusTO)

)

* DataIn and DataOut Phases

proc DatalnlO

proc DataInTO =

proc DataInTO' =

= isREQ:O.(readdata:O.'setACK:O.noREQ:O.'re[ACK:O.DataInIO

+ readfinished:O.'setACK:O.noREQ:O.'relACK:O.HO

)

'relMSG:O.'relCD:O.'setIO(begin_DataIn):O.;(begin_Phase):O.DataInTO'

'placedata:O.'setREQ:9.isACK(obs_isACK):).'release:O.'relREQ(obs_relREQ):O.

noACK:O.DataInTO'

+ 'placefinished:O.'setREQ:g.isACK(obs_isA_K):O.'release:O.'relREQ(obs_relREQ):O.

noACK(end_Phase):O.(MsgOutTO + MsgInTO + StatusTO)

proc DataOutlO

proc DataOutTO

proc DataOutTO'

= isRE_:O.('placedata:O.'setACK:9.noREQ:O.'release:O.'relACK:O.DataOutIO

+ 'placefinished:O.'setACK:9.noRE_:O.'release:O.'relACK:O.HO

)

= 'relMSG:O.'relCD:O.'relID(begin_DataOut):).t(begin_Phase):O.DataOutTO'

= 'setREQ:O.isACK(obs_isACK):O.

(readdata:O.'relREQ(obs_relREQ):O.noACK:O.

DataOutTO'

24

+ readfinished:O.'relKEQ(obs_relREQ):O.noACK(end_Phase):O.
(MsgOutTO+ MsgInTO+ StatusTO)

)

* Status Phase

proc StatusIO = readstatus:O.'setACK:O.noREQ:O.'relACK:O.HO

proc StatusTO = 'relMSG:O.'setCD:O.'setIO(begin_Status):O.t(begin_Phase):O.'placestatus:O.

,setKE_:9.isACK(_bs_isA_K):_.,re_ease:_.,re_REQ(_bs_re_KEQ):_.n_A_K(end_hase):_.

(MsgOutTO + MsgInTO)

* LUNI

proc LUN1 t(startl):9.'relIO:O.(BusFreel + GetSelectedl)

+ t(startl):9.'setIO(obs_setIO):O.(BusFreel + GetSelectedl)

+ t:9.LUNI + GetSelectedl

proc GetSelectedl = isATN:O.(isSEL:O.noBSY:O.readtargetl:O.'setBSY(obs_setBSY):O.'release:O.

'clear:O.noSEL:O.(noIO:O.Targetl + isIO:O.Initiatorl)

+ noSEL:O.LUNI

)

* BusFree Phase

proc BusFreel = t(husfree):80.'setBSY(obs_setBSY):80.'setidl:O.Arbitratel

+ isSEL(ohs_isSEL):O.LUNI + isBSY(obs_isBSY):O.LUNI

* Arbitration Phase

proc Arbitratel = noSEL:80.'setSEL(obs_setSEL):O.Selectionl + isSEL:80.LUNI

* Selection Phase

proc Selectionl = 'writetargetO:240.'setATN:9.'relBSY(obs_relBSY):18.isBSY:80.

'relSEL(obs_relSEL):9.t(begin_ITP):O.(noIO:O.Initiatorl + isIO:O.Targetl)

* Initiator

proc Initiatorl = HI [> noBSY(obs_noBSYI):O.'relATN:O.LUNI

proc HI = t:9.'setATN(obs_setATN):9.Hl

+ isREQ(ohs_isREQl):9.(noMSG:O.(noCD:O.(noIO:O.DataOutI1 + isIO:O.DataInIl)

+ isCD:O.(noIO:O.CommandIl + isIO:O.StatusIl)

)

+ isMSG:O.isCD:O.(noIO:O.MsgOutI1 + isIO:O.MsgInIl)

)

2.%

* Target

proc Targetl = (noIO:O.MsgOutT1 + isID:O.'relATN:O.MsgInTJ) [> noBSY:O.'relATN:O.LUNI

* Msgln and MsgOut Phases

proc MsgInIl

proc MsgInTl

proc MsgInTl' =

= isREQ:O.(readmsgln:O.'setACK:O.noKEQ:O,'relACK:O.MsgInIl

+ readfinished:O.'setACK:O.noREQ:C.'relACK:O.Hl

+ readcemplete:O.'setACK:O.noKEQ:C.'relACK:O.nil

+ readdisconnect:O.'setACK:O.noRE_:O.'relACK:O.nil

)

= 'setMSG:O.'setCD:O.'setIO(begin_MsgIn):O.t(begin_Phase):O.MsgInTl'

'placemsgIn:O.'setREQ(obs_setKEQ):9.isAC_(obs_isACK):O.'release:O.

'relREQ(obs_relKEQ):O.noACK:O.MsgInT1'

+ 'placefinished:O.'setKE_(obs_setREQ):9.isACK(obs_isACK):O.'release:O.

'relKEQ(obs_relKEQ):O.noACK(end_Phase):O/

(MsgOutTl + DataOutTl + DataInTl + ConhmamdT1 + StatusTl)

+ 'sentcomplete:O.'setKE_:9.isACK(obs_isACK):O.'release:O.'relREQ(obs_relKE_):O.

noACK(end_Phase):O.t(end_ITP):O.'relBSY(obs_relBSY):O.nil

+ 'sentdisconnect:O.'setREQ:9.isACK(obs_isAZK):O.'release:O.relKE_(obs_relREQ):O.

noACK(end_Phase):O.t(end_ITP):O.'relBSY(obs_relBSY):O.nil

proc MsgOutIl = isREQ:O.('placemsgOut:O.'setACK:9.noKEQ:O.'release:O,'relACK:O.MsgOutIl

+ 'placefinished:O.'relATN:9.'setACK:O.noKEQ:O.'release:O.'relACK:O.Hl

)

proc MsgOutTl = isATN:O.'setMSG:O.'setCD:O.'relIO(begin_Ms_Out):O.t(begin_Phase):O.MsgOutTl'

proc MsgOutTl' = 'setKEO:O.isACK(obs_isACK):O.

(readmsgOut:O.'relREQ(obs_relKEQ):O.noACK(obs_noACK):O.MsgOutTl'

+ readfinished:O.'relREQ(obs_relKE_):O.noA_K:O.

(t(end_Phase):O.(MsgInTl + DataOutTl + DatalnTl + CommandTl + StatusT1)

+ t:O.MsgOutTl'

)

)

• Command Phase

proc CommandIl = isKEQ:O.('placecmd:O.'setACK:9.noKEQ:O.'celease:O.'relACK:O.CommandIl

+ 'placefinished:O.'setACK:9.noKE_:O.'release:O.'relACK:O.Hl

)

proc CommandTl = 'relMSG:O.'setCD:O.'relIO(begin_Command):).t(begin_Phase):O.CommandTl'

proc CommandTl' = 'setREQ:O.isACK(obs_isACK):O.

(readcmd:O.'relKEQ(obs_relKE_):O.noACK:O,CommandTl'

+ readfinished:O.'relKEQ(obs_relREQ):O.nokCK(end_Phase):O.

(MsgOutTl + MsgInTl + DataOutTl + DataI_Tl + StatusTl)

)

26

* DataInandData0utPhases

procDataInI1 = isKEQ:0.(readdata:O.'setACK:O.noKEQ:0.'relACK:0.DataInI1

+ readfinished:0.'setACK:O.noKEQ:0.'relACK:0.H1

)

proc DataInT1 = 'relMSG:O.'relCD:O.'setIO(begin_DataIn):O.t(begin_Phase):O.DataInTl'

proc DataInTl' = 'placedata:O.'setKEQ:9.isACK(obs_isACK):O.'release:0.'relREQ(obs_relKE_):0.

noACK:0.DataInTl'

+ 'placefinished:0.'setKEQ:9.isACK(obs_isACK):0.'release:0.'relKEQ(obs_relKEQ):0.

noACK(end_Phase):0.(MsgOutTl + MsgInTl + StatusTl)

proc Data0utIl = isKE_:0.('placedata:O.'setACK:9.noKEQ:O.'release:O.'relACK:O.DataOutIl

+ 'placefinished:O.'setACK:9.noREQ:O.'release:O.'relACK:O.Hl

)

proc Data0utT1 = 'relMSG:O.'relCD:O.'relIO(begin_DataOut):O.t(begin_Phase):O.DataOutTl'

proc Data0utTl' = 'setKE_:O.isACK(obs_isACK):O.

(readdata:O.'relREQ(obs_relREQ):O.noACK:0.

Data0utTl'

+ readfinished:0.'relKEQ(obs_relKEQ):0.noACK(end_Phase):0.

(Msg0utT1 + MsgInTl + StatusTl)

)

* Status Phase

proc StatusIl = readstatus:O.'setACK:O.noREQ:O.'relACK:O.Hl

proc StatusTl = 'relMSG:O.'setCD:0.'setI0(begin_Status):O.t(begin_Phase):O.'placestatus:0.

,setREQ:9.isACK(_bs_isA_K):_.,re_ease:_.,re_REQ(_bs_re_REQ):_.n_A_K(end-Phase):_.

(Msg0utTl + MsgInTl)

, ...

* Bus Signals, Data Bus, and Arbitration Variable

* ...

proc BusSignals = DataBus

Arbitrator

0ff[setBSY/set

0ff[setSEL/set

0ff[setCD /set

0ff[setI0 /set

0ff[setMSG/set

0ff[setATN/set

relBSY/rel,isBSY/on,noBSY/off]

relSEL/rel,isSEL/on,noSEL/off]

relCD /rel,isCD /on,noCD /off]

relI0 /rel,isI0 /on,noI0 /off]

relMSG/rel,isMSG/on,noMSG/off]

relATN/rel,isATN/on,noATN/off]

Off[setREQ/set,relREQ/rel,isKEO/on,noKE_/off]

Off[setACK/set,relACK/rel,isACK/on,noACK/off]

proc 0ff = 'off:0.0ff + set:O.0n + rel:0.0ff

proc 0n = 'on:0.0n + set:O.0n + rel:0.0ff

27

procDataBus= DataBus' [> release(obsrelease):O.DataBus

proc DataBus' = placemsgIn(obsplace):O.'readmsgIn(obsread,:O.DataBus'

+ placemsgOut(obsplace):O.'readmsgOut(obsreld):O.DataBus'

+ placefinished(obsplace):O.'readfinished(o)sread):O.DataBus'

+ placedata(obsplace):O.'readdata(obsread):).DataBus'

+ placecmd(obsplace):O.'readcmd(obsread):O.DataBus'

+ placestatus(obsplace):O.'readstatus(obsread):O.DataBus'

+ sentdisconnect(obssentdiscon):O.'readdisconnect(obsreaddiscon):O.DataBus'

+ sentcomplete(obssentcomplete):O.'readcomplete(obsreadcomplete):O.DataBus'

+ writetargetO(obswritetO):O.'readtargetO(oSsreadtO):O.DataBus'

+ writetargetl(obswritetl):O.'readtargetl(obsreadtl):O.DataBus'

proc Arbitrator = Undef [> clear:O.Arbitrator

proc Under = setidO:O.IdO + setid1:O.Idl + 'noidO:O.Un4ef + 'noidl:O.Undef

proc IdO = setidO:O.IdO + setidl:O.Idl + 'isidO:O.IdO + 'noidl:O.IdO

proc Idl = setidO:O.Idl + setidl:O.Idl + 'noidO:O.IdL + 'isid1:O.Idl

2_

REPORT DOCUMENTATION PAGE Forrn Approved
OMB No. 0704-0188

Pubilcreportingburdenfor this collectionof information is estimatedto average1hourper response,incl_dingthe time for reviewing instructions,searchingexistingdatasources,
gathering and maintainingthe data needed,andcompletingand reviewingthe collectionofinformation cend commentsregardingthis burdenestimateor anyother aspectof this
collectionof information,;ncludlngsuggestionsfor reducingth_sburden,to WashingtonHeadquartersSer=_ces,DirectorateForInformationOperationsand Reports,1215JefTerson
DavisHighway,Suite 1204, Arlington,VA 22202-4302,andto the Officeof Managementand Budget,P_perworkReductionProject(0704-0188),Washington,DC 20503.

l. AGENCY USE ONLY(Leave blank) 2. REPORT DATE I 3. REPORT TYPE AND DATES COVERED

January 1999 I Cont:actor Report

!4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A practical approach to implementing real-time semantics

6. AUTHOR(S)

Gerald Liittgen

Girish Bhat

Rance Cleaveland

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

C NAS1-97046

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 99-4

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-1999-208980

ICASE Report No. 99-4

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

To appear in Annals of Software Engineering.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified Unlimited

Subject Category 60, 61

Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

13, ABSTRACT (Maximum 200 words)

This paper investigates implementations of process algebras whic_ are suitable for modeling concurrent real-time

systems. It suggests an approach for efficiently implementing real-t me semantics using dynamic priorities. For this

purpose a proces algebra with dynamic priority is defined, whose _emantics corresponds one-to-one to traditional

real-time semantics. The advantage of the dynamic-priority appro_ch is that it drastically reduces the state-space

sizes of the systems in question while preserving all properties of t| eir functional and real-time behavior.

The utility of the technique is demonstrated by a case study which deals with the formal modeling and verifi-

cation of the SCSI-2 bus-protocol. The case study is carried out in the Concurrency Workbench of North Carolina,

an automated verification tool in which the process algebra with dynamic priority is implemented. It turns out

that the state space of the bus-protocol model is about an order o] magnitude smaller than the one resulting from

real-time semantics. The accuracy of the model is proved by applyin ,_model checking for verifying several mandatory

properties of the bus protocol.

14. SUBJECT TERMS

dynamic priority; process algebra; real-time semantics; SCSI-2 bus-t rotocol; verification

15. NUMBER OF PAGES

33

16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFtCATIOI_ 19. SECL, RITY CLASSIFICATIONI 20. LIMITATION

OF REPORT OF THIS PAGE OF AI3STRACT I OF ABSTRACT
Unclassified Unclassified I

M N 754 1- 5500 -- --_ ntandar¢l, o_n 98 Rev. 2.89

298-102

