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A PARALLEL, FINITE-VOLUME ALGORITHM FOR LARGE-EDDY

SIMULATION OF 'IURBULENT FLOWS

Trong T. Bui*

NASA Dryden Flight Research Center
Edwards, California

Abstract CFD

CFL
A parallel, finite-volume algorithm has been

developed for large-eddy simulation (LES) of C s

compressible turbulent flows. This algorithm includes
piecewise linear least-square reconstruction, trilinear cv

finite-element interpolation, Roe flux-difference d

splitting, and second-order MacCormack time d+
marching. Parallel implementation is done using the

message-passing programming model. In this paper, the

numerical algorithm is described. To validate the
numerical method for turbulence simulation, LES of D

fully developed turbulent flow in a square duct is DH
performed for a Reynolds number of 320 based on the
average friction velocity and the hydraulic diameter of DNS
the duct. Direct numerical simulation (DNS) results are

d_
available for this test case, and the accuracy of this

algorithm for turbulence simulations can be ascertained
by comparing the LES solutions with the DNS results, dv

The effects of grid resolution, upwind numerical Et
dissipation, and subgrid-scale dissipation on the

accuracy of the LES are examined. Comparison with f
DNS results shows that the standard Roe flux-difference

splitting dissipation adversely affects the accuracy of the
turbulence simulation. For accurate turbulence

simulations, only 3-5 percent of the standard Roe flux-
difference splitting dissipation is needed.

Nomenclature

A area

lal Roe flux-difference splitting matrix

A s area of duct side walls

c local speed of sound

C SGS model constant
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FDS

G

I

J

J

k

K

LES

MPI

computational fluid dynamics

Courant number

Smagorinsky constant

specific heat at constant volume

normal distance from a solid wall

normal distance from a solid wall in wall

units, d ÷ = p_u_d
kt

entire flow domain

hydraulic diameter

direct numerical simulation

elemental surface area on the boundary of a
control volume

elemental volume of a control volume

total energy/unit volume

normal component of the inviscid flux
vector

flux vector of the Navier-Stokes equations

flux-difference splitting

inviscid flux vector

viscous flux vector

spatial filter used in the LES equations

total number of grid points in the
streamwise direction

Jacobian determinant

total number of grid points in the wall-
normal direction

conduction heat-transfer coefficient

total number of grid points in the spanwise
direction

large-eddy simulation

Message-Passing Interface
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U_
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x, y, z

8kt

Ats

E l
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(_kl
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"Cw

normal unit vector

static pressure

mean pressure gradient

Parallel Virtual Machine

trace of the SGS Reynolds stress tensor

SGS term in the LES energy equation

specific gas constant

total area on the boundary of a control
volume

subgrid scale

velocity gradient tensor

time

temperature

x-component velocity

mean streamwise velocity

mean Reynolds stress
/....,,...

friction velocity, ux = 5/_
l

state vector of the Navier-Stokes equations

y-component velocity

total volume of a control volume

z-component velocity

coordinates of the physical space

Kronecker delta

width of filter used in LES equations

sampling time

scaling factor for Roe flux-difference

splitting

molecular viscosity coefficient

coordinates of the computational space

static density

SGS term in the LES momentum equations
(the SGS Reynolds stress tensor)

viscous stress tensor

wall shear stress

Subscripts

a

L

node index

flow conditions to the left of a cell face

rms

R

Superscript

n

root mean square

flow conditions to the right of a cell face

time level

cell-averaged quantities in the Navier-
Stokes equations, or filtered or large-

scale quantities in the LES equations

Favre-filtered (density-weighted) variables

vector quantity

Introduction

Turbulence dominates the internal flows in aircraft jet

engine components such as inlets, ducts, and nozzles

and has been found to significantly influence engine

noise and performance. Analytical tools are therefore

needed to provide accurate predictions of these

turbulent t ows and allow engineers to explore the

underlying flow physics, which would allow better

aeropropuhion flow components to be designed and

used in the aerospace industry.

Direct numerical simulation (DNS) of the turbulent

flow inside of complete jet engines is presently not

possible b,_cause of the tremendous computational

resources required; however, technologies that

potentially :ould make such a feat possible in the future

are availab e today. These technologies include large-

eddy simulttion (LES) of turbulent flows, unstructured

computatioaal fluid dynamics (CFD) algorithms, and

parallel computer systems. Large-eddy simulation has

been shown to provide accurate turbulent flow
simulation tt a fraction of the cost of direct simulation.

With unsuuctured CFD algorithms, complex three-

dimensional aerodynamics shapes, including complete

aircraft gec metrics, have been modeled using a single

grid. Larg,'.-eddy simulation and unstructured CFD

algorithms require large computing resources that

potentially can be provided by the emerging parallel

computer systems. By linking together hundreds or even

thousands _f individual processor nodes, the parallel

computer systems can deliver significant advances in
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computational resources in terms of memory, storage,

and computing speed.

The above three technologies have been the subjects

of ongoing intensive research, and a large body of

knowledge has been separately accumulated on each of

these subjects. The objective of this research is to

develop a turbulence simulation tool using a

combination of all of these technologies. The accuracy

and efficiency of such a tool for turbulence simulations

are then examined in detail from the LES of fully

developed turbulent flow in a square duct.

Use of trade names or names of manufacturers in this

document does not constitute an official endorsement of

such products or manufacturers, either expressed or

implied, by the National Aeronautics and Space
Administration.

Numerical Algorithm

Development of the numerical algorithm has
previously been described in detail, l This algorithm has

previously been validated for time-accurate inviscid
Euler simulations 2 and three-dimensional viscous

Navier-Stokes simulations 3 with good results. To

describe the numerical algorithm, the Navier-Stokes

equations are used in this section. These equations can
be written in vector form as

_U
_--_ +_.1 _ = 0 (1)

where U is the state vector and II' is the flux vector of

the Navier-Stokes equations.

The above equation is discretized using the finite-

volume approach. In this approach, equation (1) is

integrated over a finite volume. Assuming the grid does

not change with time and using the Gauss divergence

theorem, the resulting equation is

dt
s

where

(3)

and

_. dt = F. ads (4)

To numerically solve equation (2), the major steps of

the solution procedure are reconstruction, flux
computation, and evolution. This standard, finite-

volume solution procedure has been used in previous
works and has been described in detail by Barth. 4 The

steps are given below.

Step One: Reconstruction

For the first step, reconstruction, a cell-centered

scheme is used. The piecewise linear, least-square

reconstruction procedure used here is similar to those
used by Barth 4 and Coirier. 5 Each of the five primitive

variables p, u, v, w, and p is assumed to linearly vary
within a finite volume as:

U(x, y, z) = 0 + Ux(X - _) + Uy(y - ._)

+ Uz(Z - _)
(5)

where U can be any of the above variables. The bars in

equation (5) denote cell-averaged values as defined in

equation (3). When used for high-speed compressible

flow simulations, a gradient limiter is normally used in

equation (5) to ensure that the reconstruction

polynomial does not produce new extrema near a flow

discontinuity such as a shock wave. In this paper, the

gradient limiter is not used because the test case is low-

Mach number turbulent flow in a square duct.

Following Coirier, 5 the gradients U x , Uy, and U z in
the target cell are computed using a least-square

procedure that minimizes the sum of the squares of the

differences between the values computed using the

reconstruction polynomial from the target cell and the

cell averages of the support set. For a three-dimensional

hexahedron cell, the support set is the six neighboring

cells that share their faces with the target cell.

Algebraically, the minimization statement above can be

expressed as:

libbl JElb I a 2 b 3 Uy = co

2b3 a

(6)
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6

al = Y_ (_i-_O)2

i=1

6

a2 = Z (Yi-90)2

i=1

6

a3 = X (Zi-20)2

i=1

6

bl = _L (xi-Xo)(.9i-Yo)

i=1

6

b2 = Y_ (_i- _o)(_i- 20)

i=1

6

b3 = _ (Yi--90)(zi- 20)

i=1

6

Cl = X (Ui- Uo)(X i- x0)

i=1

6

C2 = Z (Oi- Uo)(y i-.YO)

i=l

6

C3 = X (Ui- U0)(z i- 20)

i=1

(7)

where i = 1-6 denotes the neighboring cells, and i = 0

denotes the target cell.

Step Two: Flux Computation

With the piecewise linear reconstruction, the

unknown variables are continuous and assumed to

linearly vary within a finite volume. However, no

guarantee exists that the variables will be continuous

across adjacent finite volumes because a different

polynomial is used in each finite volume. As a result, a

flux formula is needed to compute a single flux at a

finite-volume boundary using fluxes from the adjacent

volumes. In the numerical solution of the Navier-Stokes

equations, splitting the total flux vector into the inviscid

flux vector and viscous flux vector is convenient:

(8)_-fl = l_i.fl+l_v.fl

For the viscous flux, a simple arithmetic average is

used. The normal component of the inviscid flux

vector, 1_i . fl, is approximated using the Roe flux-

difference splitting (FDS) method without the entropy

correction. The entropy correction is normally used to

remove the nonphysical expansion shock at the sonic

transition pgint and is not needed here because of the

low-Mach lumber test cases.

Define tt e normal component of the inviscid flux

vector as

f = _i' fl (9)

Then f can be computed using the Roe FDS method

as

f = _(fL+fR)-_I'4I(UR-UL ) (10)

where the s.abscripts L and R denote the flow conditions

to the left aad right sides of the cell face.

Figure 1 shows the definitions used for the left and

right states Consider a cell, A, and its neighbor, B,

sharing a common face, 1-2. When the flux across face

1-2 is computed for cell A, the left state (L) of the face

1-2 is on tl'e side of cell A, and the right state (R) is on

the side of cell B. This definition of the left and right

states of a face is used because the face normal unit

vector t_, which also serves as the locally one-

dimensional coordinate system for the wave

propagation across face 1-2, points from cell A to cell

B. The L and R states are reversed when the flux is

computed for cell B.

/P\N A

,.,"", ,/_\

Figure 1. D ._finition of the left and right states of a face.

Step Three: Ev010tion

The twc-stage, second-order, MacCormack time-

marching algorithm is used to advance the solution in

time. This explicit predictor-corrector time-marching

method is _ccurate, efficient, and simple to implement

on parallel :omputer systems.

Equation (2) can be rewritten as

d--
---U = R (11)
dt

4
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When applied to equation (11), the MacCorrnack time-
marching method gives

_n+ 1 = _o + AtR n (12)

_!n+l = _(_n+l+_n+AtRn+l) (13)

In addition to the major solution steps outlined above,

describing how the volume and surface integrals in

equations (2) and (3) are evaluated is important.

Although the flow variables are approximated by
discontinuous piecewise linear polynomials, the spatial

coordinates x, y, and z of a finite volume are

approximated by a continuous trilinear hexahedral
element. 6 This approach is the same that finite-element

methods use to approximate the spatial coordinates. All

of the integrations are then numerically evaluated using

the one-point Gauss quadrature formula.

Each cell in the physical :t(x, y, z) space is mapped
to a trilinear hexahedral element in the _(_, rl, _) space

as shown in figure 2. The nodes, indexed 1 to 8, have the

nodal coordinates in the _ space shown in table 1.

_ = g(x,y,z)
n

_,= t (_,n, _) ,Bosoo

Figure 2. Local mapping between the physical finite-
volume and the trilinear hexahedral element.

Table 1. Nodal coordinates in the _ space.

Node index (a) _a _]a _a

1 -1 -1 -1

2 1 -1 -1

3 1 1 -1

4 -1 1 -1

5 -1 -1 1

6 1 -1 !

7 1 1 1

8 -1 1 1

This type of mapping is different from the mapping
used in generalized curvilinear finite-difference

methods. In the finite-difference methods, the mapping

applies to the entire computational block. In this

algorithm, the local mapping applies to the local cell

only. Each cell has its own mapping function, which is
similar to a finite-difference multiblock method in

which each cell is its own block. This ability gives

considerable flexibility in the grid topology that can be

used and is one of the strengths of this unstructured

finite-volume algorithm.

The mapping from the _ space to the :_ space is

given by:

8

x(_) = Z Na(_)Xa
a=l

8

y(¢) = y_ N a(_)y a (14)
a=l

8

z(_) = _' Na(_)z a
a=l

1
Na(_) = _(1 +_a_)(1 +rlarl)(1 +_a_) 15)

where the subscript a denotes the node index, rangmg

from 1 to 8. In the physical (x, y, z) coordinate system,

node a has the coordinate (Xa' Ya' za)' In the
computational (_,rl,_) space, node a has the

coordinate (_a' lqa' _a)" The coordinates (x a, Ya' Za)
vary from cell to cell, depending on the physical grid.

The coordinates (_a' 1"1o,_a) are the same for every cell
and are shown in table 1.

To evaluate the volume integral, the following
relation 6 is used:

If(x, y, z)dv
V

1 1 1

= I I I f(x(_, n, ;), Y(_, n, ;), z(_, q, 4))
-1-1-1

j({, I"1,;)d{drld;

(16)

where j is the Jacobian determinant, defined as

:y{ xq x 1
= det { Yn Y;

/z_ zn z

(17)
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The partial derivatives x_, Yn ' z;, and so forth can be
obtained by differentiating equation (141). Evaluating the

determinant in equation (17) results in the following:

j = x;y_z n - x_y;zq - x;y.qz_ + x.qy;z_

+ x_yqz; - xqy_z;
(18)

To evaluate the integral in equation (16), the one-

point Gauss quadrature formula is used. In one

dimension, the Gauss quadrature formulas are optimal,

which means that accuracy of order (2n) is achieved

using (n) integration points. Gaussian rules for integrals

in several dimensions are constructed by employing the
one-dimensional Gaussian rules on each coordinate

separately. In three dimensions, the one-point Gaussian

rule is given as

Ill

I I I f(_' n, ;)d_d_d;
-1-1 -I

= 8f({ = 0, r I = 0, ; = 0)

(19)

Using the tools described above, the volume of the cell

is computed as

V = I ldv (20)
V

l 1 l

v _- I I I J(_,n, ;)d_d_d;
-l -l-1

Using equation (19),

(21)

V = 8j(_=O,r I=O,_=O) (22)

so that the cell volume is approximately eight times the
Jacobian determinant evaluated at the center of the cell

= 0, rl = 0, _ = 0. Note that equation (22) contains

two approximations: the physical coordinates (x, y, z) in

the cell are approximated by equation (14), and the one-

point Gaussian rule given by equation (19) is used for

the numerical integration. Better approximation of the
cell volume can be obtained using a higher-order

approximation for the physical coordinates and a

Gaussian rule with more points.

Computing the centroid of the cell also requires the

evaluation of the volume integral. The coordinates of a

cell centroid are given by (L)', 2). The numerical

approximation for the x coordinate of the centroid is

developed below. Approximations for the y and z

coordinates are made exactly the same way.

xdv

V
(23)

Ill

J"I J"x(_,n, ;)J(_,n, ;)d_d;
= -l-l-l (24)

I I l

I I I j(_' rl, ¢)d_dlle;
-1-1-1

= 8x({=o,n=o,_=o)j({=o,n =0,_=0)(25)
8j({ = o, n = o, _ = o)

or

=x(_=o,n=o,;=o)

= y({ = o, n = o, ; = o)

= z({ = o, rl = o, ; = o)

From equat :on (14),

(26)

8
1

x(_.=o,n =o,;=o) = _ Z x.
a=l

8
1

y(_=O, rl=O,_=O) = _ _ Ya
a=l

8
!

z(_.=o,n=o,_=o)= _ y z.
a=l

(27)

With the approximations in this algorithm, the

coordinates of the cell centroid are simply the averages
of the coordinates of the eight nodes defining the three-
dimensionat hexahedron cell.

The tasl of evaluating the surface integrals is

described n _xt. The surface integrals on the right side of

equation (7) are of the form Il _. d_. To develop the
S

procedure, )ne face of the hexahedron shown in figure 2
is consider.'d. The results for the other faces can be

obtained us ng the same procedure.

Consider face 6-2-3-7 of the hexahedron in figure 2.

Figure 3 shows this face redrawn for convenience.

Because { = 1.0 for the nodes 6, 2, 3, 7 as well as any
other point on this face, equation (14) reduces to the

following:

6
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1

x = _¢ _ (l+qa_)(l+_a_)Xa
a=6, "_.,3,7

1

y = _ _" (l+llarl)(l+_a_)Ya
a =6,2,3,7

1 _ (1 +nan)(1 + _a_)Za
Z = 4a=6,2,3,7

so that x, y, and z are functions of 1"1 and _ only.

(28)

2_

_=g(x,y,z)

n

g

2_

x=t (_,n, 4) _,,o_o,,

Figure 3. Coordinate systems for surface integral

evaluation.

Following the development outlined in Greenberg, 7

the tangent vectors d_ 1 and d_ 2 are tangents on the

plane 6-2-3-7. d_ 1 is defined to be along the

11 = constant curve on the face, and d_ 2 is along the

= constant curve. The vector d] 1 may be expressed as

follows:

d_ 1 = dxt +dyj + dz_

dx = x_d_ + xrldrl + x;d_

dy = y_d_ + Yndrl + y;d_

dz = z_d_ + zndrl + z;d_

(29)

where d_ = 0 because the entire plane 6-2-3-7 is an

-constant plane, and dll= 0 because the vector d_t 1

is defined to be along the rl = constant curve. So

dg I = (x;_/+ y;j+ z;_)d_ (30)

and similarly

d_ 2 = (xrl_ + ynj + zrll_)d q (31)

The elemental area vector dg, denoted by the shaded

parallelogram, can be computed as

d]t = d_ 2 x d_ 1 (32)

or

dg = (yrlZ; - zny_)_ + (znx; - xnz;)j

+ (xrly; -ynx;)l_] drld_

(33)

Note that the order of the cross product in equation (32)

is chosen so that the elemental area vector d_ is positive

pointing out of the cell and negative pointing into the

cell. With the vector 1_ defined as

l,

1_ = Fx_+FyJ +Fz_ (34)

the dot product is

1_. d} = [(ynz;- zrlY;)F x + (znx ;- xrlz;)Fy (35)

+ (x_y; - y_lx;)Fz]dlqd_

Finally, using the one-point Gaussian rule, the surface

integral can be evaluated as

I _" dg = 4[(YrlZ ;-zny;)F x

(6237)

+ (zrlx; _ xrlZ;)Fy (36)

+ (x_Y;- Yrlx;)Fz]]{ = l,n =o,;=o

The surface integrals for the other faces can be

approximated in an analogous fashion. The results are

given below.

I 1_. dg= 4[(Zny ;-yrlz;)Fx

(1584)

+ (xrlz; _ zrlx_)Fy (37)

+ (ynx;-xnY;)Fz][_ =-l,n = 0,; =0

I l_.dg = 4[(z{y_-y{z;)F x
(8734)

+ (x_z_- z@;)Fy (38)

+ (Y{X;- x{y;)Fz]l{ = o,n = 1,; =o

I l_.dg = 4[(y{z;-z{y;)F x

(1265)

+ (z{x; - x{z_)Fy (39)

+ (x_Y;-Y@;)Fz]l_ = o,n =-1,; =o

7

American Institute of Aeronautics and Astronautics



I _' d_ = 4[(y_z_- z_yq)F x
(5678)

+ (z_x_ - x_z_)Fy (40)

+ (x_yq- y_xn)Fz]l_ = o,n = 0,; = i

I 1_. dg= 4[(z{yrl-y{zrl)F x
(2143)

+ (x_z_l _ Z@rl)Fy (41)

+ (Y{ x_l - x{ yn)Fz] l{ = 0, n = 0, ; =-1

Symbolically, the surface integrals of the opposite

faces are the negative of each other (for example, face

= 1 as given by equation (36) and face _ = -1 as

given by equation (37)). However, for actual numerical

values, each of the integrals will need to be separately

evaluated because the integrands depend on the

coordinates of the nodal points (x a, Ya' za) and the
Gaussian point coordinates.

To calculate the Jacobian determinant of the

coordinate transformation, equations (14) and (15) are

used. For example, the derivative x{ can be evaluated as
follows:

Z uo( )xo
a=l

8

X{ = Z Na,{Xa
a=l

(42)

Governing Equations for Large-Eddy Simulation

In LES, the large scale of turbulence is computed
directly in the numerical simulation, and the effects of

the small scale stresses are modeled using a subgrid-
scale (SGS) model. The governing equations for LES of

turbulent flows can be obtained from filtering (local

volume-averaging) the compressible Navier-Stokes

equations. From Moin et al., 8 the LES equations for

compressible flows (using tensor notation) are given by

the following:

+-----pu k = 0 (43)
-_P Ox k

= 0 (44)

O_:t 8 -- 0 _- 0 - -

; ÷"k-ggxt÷ -- o

(45)

The bar in the LES equations (43) to (45) denotes a

filtered or large-scale flow quantity, defined as

f = IG(_- i')f(_')di"
D

where G is a spatial filter and the integral is over the

flow domain, D. The tilde in the LES equations denotes

a Favre-filtered (density-weighted) variable, defined as

P

The filtered ideal gas equation of state is given by

Moin et al.8 used an internal energy equation in their

derivation of the LES equations. The LES total energy

equation, equation (45), is obtained from adding the dot

product of he LES momentum equation, equation (44),

and the fillered velocity field fik to the LES internal
energy equation in Moin et al. 8

The LES equations given by equations (43) to (45) are

essentially the Navier-Stokes equations written for the

filtered variables plus the additional subgrid terms in the

momentum and total energy equations. Thus, the

numerical _ Igorithm developed in the last section can be

used to sol ce the LES equations. The treatment of the

subgrid ten as are discussed in the next section.

Subgrid-Scale Models

Detailed studies have previously been performed to

assess the r, :lative importance of the subgrid terms in the

filtered total energy equation for compressible turbulent
shear flow; at different Mach numbers. 9' 10 These

studies led to the conclusion that the energy subgrid

terms may be neglected if the Mach number of the
simulation s low. Because of the low Mach number of

the turbule _t square duct test case, this assumption is
used.

8
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The subgridterm in the momentumequations,
equation(44),is

~

c_kt = _(uku t- ?_k_t)

To close the system of LES equations, this term needs to
be modeled. In Moin et al., 8 this term is approximated
as follows:

l"ok,-2c  21 l( k, Som k,) 12- _q Ski (46)

_-  47,0.01(1.0 - d÷ 3C

where d+ is the normal distance from the wall in wall

units, defined as

d + m
puzd

t.t

and the friction velocity is defined as

where

2
q = t_ii

is the trace of the SGS Reynolds stress tensor. The

filtered velocity gradient tensor is

Because the turbulent flow in the corner of the square
duct encounters walls in two different directions, d is
taken to be

and

l

IS[ = (2Sk/Sk/) 2

In equation (46), C is a constant to be determined

according to the particular SGS model used. For LES of

turbulent channel and duct flows using the Smagorinsky
SGS model, tl a value of C = 0.01 is commonly used

with good results. Note that the constant C in

equation (39) is the square of the Smagorinsky constant

C s =0.1.

Unlike LES of isotropic turbulence, C is not constant

in wall-bounded flows and varies according to distance

from the wall. The dynamic SGS model developed by
Germano et al. t2 would correctly determine the value

for C using a dynamic procedure; however, this model is

computationally expensive because of the extra filtering

operations that must be done. Also, a question currently

exists on the mathematical well-posedness of this
model. 13 Finally, the dynamic model has been known to

compensate for the effects of numerical dissipation by

automatically varying the magnitude of the constant C.

One of the main objectives of this research is to

quantify the effects of the upwind numerical dissipation

on the accuracy of the turbulence simulations. Also, the

simpler Smagorinsky model has been found to work as

well as the dynamic SGS model for this simple test
case. 14 As the result, the Smagorinsky SGS model is

used in this study with the constant C given by the

following:

d = 9,,_:z (48)
1

y + z + (y2 + z2) 5

Equation (48) is frequently used in the turbulence

modeling of flows in the vicinity of a wall corner. The

variables y and z are the normal distances to the nearest

walls in the y and z directions. Note that d tends to y as

(y/z) tends to 0, and d tends to z as (z/y) tends to 0,
which are the intended results.

In LES, the width of the filter used in the process of

volume-averaging the Navier-Stokes equations, A, is

typically chosen to be the grid spacing size. This study

defined the grid spacing size to be 3_, where V is the
cell volume.

The term q2 in equation (46) is the isotropic part of

the SGS Reynolds stress tensor. Like the rest of this

tensor, the term cannot be calculated directly in an
LES and has to be modeled. A number of different

models for q2 has been proposed. 15-17 However,
results from recent studies indicated that this term is

not important for accurate LES of low-Mach number,

low-Reynolds number compressible turbulent flows.

An evidence in support of the above conclusion was
presented by Squires, 18 who compared two different

models ofq 2 in addition to setting q2 = 0. Squires found

essentially no difference in the results of LES of

compressible isotropic turbulence at a low Mach

number and, in fact, observed that neglecting q2 slightly

improved the agreement between the LES and DNS
results.

9
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Vremanet al.9 confirmedtheaboveresultswith
their simulationsof a three-dimensionaltemporal
compressiblemixinglayeratameanconvectiveMach
numberof 0.2.In a priori tests, the SGS model that
neglects q" was found to give a better correlation with

the DNS results. Furthermore, LESes conducted with
the dynamic SGS model for q were unstable for the
cases that were studied.

For low-Mach number turbulence LES, neglecting
2

the term q will not introduce large errors in the results

and is actually desirable in some cases, as the above
2.

findings showed. As a result, the term q is neglected

in this study. This assumption is analogous to the

Stokes assumption for the viscous stress tensor in the
2

Navier-Stokes equations. With the term q omitted, the
SGS stresses can be included in the Navier-Stokes

equations by simply replacing the laminar viscosity

coefficient I.t with where = Id + 12SGS and
 sGs -- C Amlsl•  eff }J'eff

Large-Eddy Simulation of

Turbulent Flow in a Square Duct

To validate the numerical method for turbulence

simulations of duct flows, LES of fully developed

turbulent flow in a square duct is performed. For the

purpose of comparison, a low-Reynolds number, square
duct DNS solution is available. This DNS database was

used by Mompean et al. 19 to evaluate nonlinear k-e
turbulence models. Another DNS solution of the fully

developed turbulent square duct flow at a slightly lower

Reynolds number is also available. 2°

Figure 4 shows the coordinate system and geometry

for the square duct flow. In this test case, the Reynolds
number based on the mean streamwise velocity and

hydraulic diameter is 4800. Based on the friction

velocity and hydraulic diameter, the Reynolds number
is 320.

Table 2 shows a summary of the flow properties for

the test case, assuming an average Mach number of 0.3

and standard sea level properties for air. The

computational domain size used in the LES is

12D/./ x D H ×Dit. In choosing the size of the
computational domain, care must be taken to ensure that

the length of the computation domain is large enough to

adequately contain the largest turbulence structure.

Two-point velocity correlations for three different
cross-stream positions in the duct were computed from

the DNS solution by Gavrilakis. 2° The correlations for

all three velocity components become essentially 0 at a

l_¢X

Wall ,,if
normal /I //
bisector / I //

',/
Corner ii I .....

980502DH_t_

Figure 4. Coordinate system and geometry for the

square duct flow.

duct length of approximately 6D H , so that a length of

12D H should be adequate to capture the streamwise
turbulence .qructures. Two different grids are used in the

present Lt',S, and table 3 shows the simulation

parameters. The sampling time for the turbulent

statistics is large compared to the time step size, but is

small compared to the eddy turnover time in order to

capture the unsteadiness of the turbulent flow.

Table 2. Flow properties for the turbulent square duct
test case.

F low properties Values

Uave

Averag_ Mach number,
C

Average st :eamwise velocity, Uav e

Averag4 friction velocity, u_

PUaveDH
Re-

_t

pUxDH
t!e_ -

_t

Hydr tulic diameter, D H

Mean | ressure gradient, Pg

0.5D H
Eddy turnover time, --

0.3

102.4 m/see

6.83 m/see

4800

320

7.37 x 10 -4 m

-289,646 Pa/m

5.4 x 10-5 sec
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Table 3. Parameters for the LES

Parameters Grid A Grid B

Grid size (I× Jx K) 129 x 90x 90 257x 100x 100

Number of cells 1,013,888 2,509,056

Minimum
resolution 30 x 1.88 x 1.88 15 x 1.69 x 1.69

(in wall units)

Maximum
resolution 30 x 4.86 x 4.86 15 x 4.37 x 4.37

(in wall units)

Sampling time,
6.0 x 10-7 5.0 x 10-7

At s (sec)

Time step size,
3.0 x 10 -9 2.5 × 10 -9

At (sec)

CFL number 0.98 0.93

The periodic boundary condition used for the inflow

and exit boundary of the square duct is similar to the one

used by Coleman et al. 21 With this boundary condition,

all of the flow conditions are periodic at the duct inlet

and exit planes. The driving pressure gradient in the

duct is specified in the flow equations as an extra body
force term.

To reduce the number of iterations required for

convergence, the initial conditions for the large eddy

simulations were obtained from interpolating a DNS

solution provided by Gavrilakis. The DNS was done

using a 768 x 127 × 127 grid. The current simulations

were done using two different grid sizes, 129 x 90 × 90

(grid A) and 257 x 100 x 100 (grid B). The finer LES

grid B, which gave good results, is approximately

20 percent of the total size of the DNS grid.

The convergence of the LES is determined by

monitoring the time history of the total wall shear stress.

For fully developed turbulent flow in a straight square
duct, conservation of the mean streamwise momentum

shows that the mean driving pressure gradient and the

total wall shear stress are related by the following:

J "cwdA = -VPg (49)
As

The surface integral is over the four side walls of the

square duct, so that A s =4× 12×DH 2. Pg is the

mean driving pressure gradient, and V is the total

volume of the duct, given by 12 x DH 3. Defining

zcw = XwdA and Pg = _--_, the familiar relation
SA s

between the mean pressure gradient and wall shear
stress in fully developed flow in a square duct can be
recovered.

_-
row k, 4 )dx (50)

Figure 5 shows the time history of the total side wall

shear force for the LES using grid B. The instantaneous
side wall shear force level from the LES, shown as a

solid line, is seen to fluctuate about a mean value,

indicating that flow equilibrium has been reached in the
current simulation. The time average of the computed
side wall shear force is 0.001387 N. This value is in

excellent agreement with the exact value of 0.001391 N,

computed from equation (50) and shown as the

horizontal dashed line (fig. 5). Because the time step is

constant, the number of iterations shown in figure 5 is

directly proportional to the time elapsed. The simulation

was conducted for 218,600 time iterations, which is

approximately t0 eddy turnover times (as defined in

table 2).

.oo15o

.00145 .............. !........... i

AS N .00140-__i! _ __--_-

.00135 .............

0 50 100 150 200
Numberof iterations(in thousands)

980503

Figure 5. Convergence history for the total wall shear
stress.

The parallel implementation and the results of the

parallel performance studies have previously been
published.l, 3 The code was implemented on parallel

computer systems using the message-passing

programming model and message-passing libraries such

as Message-Passing Interface (MPI) and Parallel Virtual

11
American Institute of Aeronautics and Astronautics



Machine (PVM). The parallel speedup was found to be
very good, especially for large numbers of grid points. 3

Using 128 processors on the T3D computer (Cray
Research, Inc.; Eagan, Minnesota), the simulation of
these 10 eddy turnover times (5.5 x 10--4 sec in physical

flow time) took 772 hr or approximately 1 month of
central processing unit time. The same simulation

would have taken approximately 150 hr on an SP2 (IBM

Corporation, Austin, Texas) or T3E (Cray Research,

Inc.) computer. Regardless of the computer platform

used, this computational time is a large cost and shows
that even with the parallel computer systems available

today, turbulence simulation is still a formidable task.

However, parallel CFD algorithms that can efficiently

scale up with extremely large numbers of processors

offer the only real hope that turbulence simulations can
be done in a reasonable amount of time in the future.

The LES results shown in figures 5 to 14 are obtained

using grid B and a modified Roe FDS with an e ! value
of 0.03. The modification to the Roe FDS and the

definition of the El parameter will be discussed below.

Figure 6 shows the mean streamwise velocity profile
along a wall bisector. The LES solution (solid line) is

compared with the DNS solution (diamond dots)
supplied by Gavrilakis. The mean velocity profile in the

LES was averaged both in time and space. The
agreement can be seen to be very good.

Y/O.5D H

1.0

.8

.6

.4

.2

-- LES

o DNI

0 .5 1.0 1.5

u/Uave _eo5o4

Figure 6. Mean streamwise velocity profile for fully

developed turbulent flow in a square duct along the wall
bisector.

Figure 7 shows the mean secondary velocity vectors
from the LES. In straight ducts of noncircular cross-

sections, turbulence-driven secondary flows are known

to exist. These flows are different from the pressure-
driven secondary flows found in curved ducts. In

1.0

Y/D H .5

i ":_[!i!: :'!i_ _:!i

.5 1.0

z/D H 98o_os

Figure 7. /V;ean secondary velocity vectors from LES

with a 257 _, 100 x 100 grid.

straight square ducts, the turbulence-driven secondary
flows are directed from the center of the duct toward the

corners along the corner bisectors, and have been found

to be produced by the anisotropy of the Reynolds
stresses in the cross-sectional plane of the square duct. 22

Although tl-e magnitudes of these secondary velocities

are extremt:ly small compared to the mean average
streamwise velocity (on the order of 2 percent in this
simulation) these velocities have been found to be

important ftatures of this flow.

Figure 7 shows that the corner vortices produced by

the secondary flows are captured in this simulation.

Although s,)me asymmetry is still evident in the plot,

the overall features of the secondary flows are well-
predicted b,.' the current simulation.

To deter nine the accuracy of the simulation in

capturing ttrbulence-driven secondary flows, the mean

secondary velocity profiles along the lines

z/(0.5D//)=0.15, 0.30, 0.50, 0.70, and 0.80 are

compared ,vith the DNS results in figures 8 to 12.

Generally, _ood agreement is obtained between the LES

and DNS m _.an secondary velocity profiles.

Figures 13 and 14 show the turbulence statistics. In

figure 13, tt e mean Reynolds stress profile along a wall

bisector is compared with the DNS solution, and in

figure 14, t_e mean turbulence intensities Urms, Vrms,

and Wrm s a'e plotted. These results have been quadrant-

averaged as well as averaged in space and time.
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Figure 8. Mean secondary

z/(0.5 D H ) = 0.15.

.1 ,2 .3
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velocity profiles along

Y/0.5D H

Y/0.5D H
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I
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.............................!.......:; .........i..........................
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_/Ux 980507

Figure 9. Mean secondary velocity profiles along

z/(0.5 Dr.t ) = 0.3).

Although the agreements between the LES and DNS

solutions are seen to be very good for this simulation,

the accuracy of the LES in capturing the turbulence

velocity fluctuations was found during the turbulence

simulations to be highly dependent on the numerical

dissipation and the grid size used. The effects of the Roe

FDS upwinding term and grid size on the computed

turbulence velocity fluctuations are examined next.

Effect of the Roe

Flux-Difference Splitting Term

Although the Roe FDS implemented in this code gave

good results for Euler 2 and laminar Navier-Stokes 3 test

cases, the full Roe FDS term was found to be too

dissipative for LES. Incorrect levels of turbulent

velocity fluctuations are obtained when the normal Roe

FDS term is used in turbulence simulations. This

problem was solved with a simple modification to the

Roe FDS algorithm. In equation (10), the inviscid fluxes

normal to a cell boundary is approximated as

1  IaI(uRf= _(fL + fR) - - UL)

This approximation can be interpreted to state that the

normal component of the inviscid flux at a cell boundary

is the sum of the central difference of the fluxes on the

1

left and right states, _(fL+fR), plus the Roe

upwinding dissipation term,-{_IXI(UR- EL)). If this

interpretation is used, then the amount of Roe

upwinding dissipation can be controlled using a

multiplying factor in front of the Roe FDS term, such
that

(51)

where E l can range between 0 and 1. E I = 0 corresponds

to central differencing only, and el = 1 corresponds to
the full Roe FDS.
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Figure 10. Mean secondary velocity profiles along

z/(0.5 D n ) = 0.5.

-- LES
DNS
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Figure 11. Mean secondary velocity profiles along

z/(0.5 D H _ = 0.7.
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Figure 13. Mean Reynolds stress profile along the wall

normal bisector.
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-- LES
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Wrms/U _ .6 .....................................................................................................................
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Figure 14. Turbulent intensities along the wall normal

bisector.

Note that Lin et al., using the same interpretation of

the Roe upwinding term as equation (51), also

concluded that the normal Roe upwinding term

produces too much numerical dissil_ation for
computational aeroacoustics applications. 2' Lin et al.

found that using e I values of approximately 0.1 gave

good results for acoustics computations. 23

In the LES conducted here, e I values of less than 0.1

are needed to give good turbulence results. Omitting the

Roe FDS term altogether (t; l = 0) causes all calculations

to be unstable, and the best turbulence solutions are

15
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obtained using the smallest possible values of EI that
can still provide stable calculations. In general, the finer

the grids, the smaller the minimum values of E l that can
be used. For a grid of 129 x 90 x 90, the minimum value

of E 1 for stable calculation is 0.05, and for the
257 x 100 x 100 grid, the minimum value is 0.03. The

LES results presented in the preceding section were

obtained using e 1= 0.03.

To study the effect of the Roe upwinding term on the
turbulence simulation, LES are made for the same grid

size of 129 x 90 x 90 but with different values of e I.
Figure 15 shows the effect of Roe FDS on the mean

streamwise velocity profile. Near the wall, using the full

Roe FDS term produces a mean velocity gradient that is
much less than both the DNS solution and the LES
solution with the reduced Roe FDS. A similar effect is

observed in figure 16, where the mean Reynolds stress

profile obtained with e I = 1.0 is much lower than
expected.

Figure 17 also shows the excessive numerical
dissipation of Roe FDS in the turbulence solution. In

this figure, the solution with E l = 1.0 gives a
significantly higher level of Urms and lower levels of

Vrm s and Wrm s . Although they did not use the Roe FDS,
Wang and Pletcher 24 reported the same problem in their

LES of fully developed turbulent channel flow using an

upwind CFD algorithm.

From studying the results shown in figures 15 to 17,
the full Roe FDS upwinding dissipation can be seen to
be detrimental to the turbulence solution, and an

Y/O.5D H

1.0

- - - LESwithC1 : 1.00
-- LESwith£1 []0.05

DNS

.8

.6

.4

.2

o .5 1.0 1.5

_/Uave 980513

Figure 15. Effect of Roe FDS on the mean streamwise

velocity profile.

--- LESwithE 1=1.00

-- LES with E1 = 0.05

o DNS

!
I

• ............. i..............i ............i....................I
I

.4

.2

f, .2 .4 .6 .8 1.0

Y/0"5DH 980514

Figure 16. Effect of Roe FDS on the mean Reynolds

stress profile.

improvement in the solution quality can be obtained by

reducing the contribution of the Roe upwinding term.
However, continuing to reduce the contribution of the

Roe term until a good agreement is achieved is not
possible. F,r a given grid size, a minimum amount of

Roe FDS upwinding dissipation is required for stability.

For the 129 x 90 x 90 grid, the minimum e I value for
numerical stability is 0.05, and values smaller than this
minimum will cause the calculation to be unstable. To

improve the accuracy of the turbulence simulation,

using a finer grid that in turn allows a smaller e 1 value
to be used is necessary. In the next section, the effect of

a finer grid on the quality of the turbulence solution will
be studied.

Effect of the Grid Size

The pre_6ous section showed that reducing the

contributio]L of the Roe FDS term will improve the

quality of t ie solution. But using a 129 x 90 x 90 grid,
reducing e to the minimum value of 0.05 still does not
give a goo_l agreement with the DNS solution. In this

section, a fiaer grid with 257 x 100 × 100 points is used,

and the minimum value of El that can be used is
lowered to.).03.

Figure 8 shows a comparison of the mean

streamwise velocity profiles. Using the finer grid in the

LES produzes an almost perfect agreement with the

DNS solution. Figures 19 and 20 show the same

improveme at in the profiles of the turbulence intensities

and the me;_n Reynolds stress, respectively.
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Figure 17. Effect of Roe FDS on the turbulent

intensities.

Another effect of grid size can be observed by

examining the mean secondary velocity vectors in a

cross section of the square duct. Figure 21 shows the

solution obtained using grid A and e I = 0.05. The

secondary turbulence-induced velocity field is captured

by the coarser grid. However, comparing this result with

the finer grid B result in figure 7 shows that the corner

vortices in figure 7 are somewhat smaller than those in

figure 21. Figure 22 shows the streamwise-averaged

--- LES with 129 x 90 x 90 grid

-- LES with 257 x 100 x 100 grid
o DNS

1.0 j-

.8 ....................... ........... i .....
..... /

11

.6 - i

Y/O'5DH .4 ......

.2

0 .5 1.0 1.5

U/Uave 980518

Figure 18. Effect of grid size on the mean streamwise

velocity profile.

instantaneous secondary velocity vectors from the DNS

solution for reference. For the DNS grid, the near wall

vortical structures are even smaller than either of the

LES grids. This comparison shows that the near wall

turbulent structures are better resolved with finer grids.

Effect of the Subgrid-Scale Model

The previous section showed that the LES solution

with the fine grid gives the best agreement with the DNS

solution. Although the LES fine grid is only 20 percent

of the size of the DNS grid, the LES grid density in the

crossflow plane is 60 percent of the DNS crossflow

plane density. As the LES grid resolution in the

crossflow plane approaches the DNS resolution, the

effect of the SGS model on the turbulence solution for

this particular LES grid is interesting to see. An

additional simulation was performed using grid B, the

finer LES grid, with no SGS model. This simulation is

effectively a coarse grid DNS. Figure 23 shows a

comparison of the mean streamwise velocity profiles.

The use of the SGS model makes essentially no

difference in the mean streamwise velocity solution.

Small differences are also observed in the turbulent

velocity fluctuations shown in figure 24. Figure 25

shows a comparison of the mean Reynolds stress

profiles. The biggest difference is at the peak of the

Reynolds stress profile, where the LES solution with no

SGS model predicts a slightly higher peak than the

DNS, and the LES solution with the SGS model predicts
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Figure 19. Effect of grid size on the turbulent intensities.
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Figure 20. Effect of grid size on the mean Reynolds

stress profil,;.
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Figure 2]. Mean secondary ve]ocity vectors from LES

with a 129 > : 90 x 90 grid.
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Figure 22. Streamwise-averaged secondary velocity

vectors from the DNS solution.
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Figure 23. Effect of the SGS model on the mean

streamwise velocity profile.
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Figure 24. Effect of the SGS model on the turbulent

intensities.

a slightly lower peak than the DNS. Note that the LES

turbulence statistics were only computed for the

resolved velocity field. As a result, the LES Reynolds

stress profile with the SGS model should be lower than

the DNS solution because the SGS contribution was

not included.

These results indicate that an SGS model is not

needed for an accurate simulation of this test case. As

discussed earlier, the grid resolution in the near wall

region has to be very fine to resolve the small energy-

producing structures there. The fine grid LES conducted

here has effectively approached the DNS in the near
wall limit.

19

American Institute of Aeronautics and Astronautics



--- No SGSmodel
WithSGSmodel

o DNS
1.0

Z

.8

.6

.4

.2

0 .2 .4 .6 .8 1.0
Y/0"5DH 980523

Figure 25. Effect of the SGS model on the mean

Reynolds stress profile.

Conclusion

A new, parallel, finite-volume computational fluid

dynamics algorithm was developed for large-eddy

simulation (LES) of turbulent flows using parallel

computer systems. Major components of the algorithm

included piecewise linear least-square reconstruction of
the unknown variables, trilinear finite-element

interpolation for the spatial coordinates, Roe flux-

difference splitting (FDS), and second-order

MacCormack explicit time marching. The parallel

implementation was accomplished using the message-

passing programming model.

For the first time, a parallel, unstructured, finite-

volume numerical algorithm was used for LES of

turbulent flow in a square duct, and several conclusions
have been drawn regarding the accuracy and efficiency

of this numerical algorithm. Comparison with the direct
numerical simulation (DNS) solution showed that the

standard Roe FDS upwind dissipation adversely affects
the accuracy of the turbulence simulations. A
modification to the standard Roe FDS method was

proposed in which the inviscid flux is computed as the

arithmetic average of the right and left fluxes plus

the product of the Roe FDS dissipation term and a
reduction factor. For accurate turbulence simulations,

only 3-5 percent of the normal Roe FDS dissipation
was found to be needed.

The finer, 257 x 100 x 100 LES grid required less Roe
FDS upwind dissipation for stability and produced a

more accurate solution than the 129 × 90 × 90 LES grid.
The near wall vortical structures were better simulated

by the finer grid LES, and the effect of the subgrid-scale

model on t ae accuracy of the results was found to be
small for th ._fine grid LES, which is nearly as fine as the

DNS grid ilt the near wall region.
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