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ABSTRACT

High-resolution AMS (accelerator-mass-spectrometer)

radiocarbon dating was performed on late-glacial macrofossils in

lake sediments from Kodiak Island, Alaska, and on shells in

marine .sediments from southwest Sweden. In both records, a

dramatic drop in radiocarbon ages equivalent to a rise in the

atmospheric 14C by -70%0 coincides with the beginning of the

cold period at 11 000 yr B.P. (14C age). Thus our results show

that a close correlation between climatic records around the

globe is possible by using a global signature of changes in

atmospheric 14C content.

INTRODUCTION

Radiocarbon chronologies of the last deglaciation reveal that climatic

events of this period were accompanied by dramatic changes in atmospheric

content of the cosmogenic radioisotope of carbon. An abrupt increase in
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atmospheric 140 content marked the onset of the Younger Dryas, which

lasted from 11 000 to 10 000 yr B.P. (14C conventional age). This was

followed by a decrease in the atmospheric 14C content indicated by similar

radiocarbon ages obtained for stratigraphically different levels, i.e., the

"radiocarbon age plateau". German oak and pine chronologies (Kromer and

Becker, 1993) produced detailed reconstruction of the late Younger Dryas

and Preboreal plateaus at 10 000 and 9 500 yr B.P. Although short-term

fluctuations in atmospheric 14C content can also be caused by solar

variability (Beer et al., 1988), the origin of the changes observed in

atmospheric radiocarbon of the Younger Dryas period has been mainly

attributed to changes in late glacial ocean thermohaline ventilation and gas

exchange between the atmosphere and the deep ocean (Goslar et al., 1995;

Stocker and Wright, 1996; Hughen et al., 1998).

In order to understand mechanisms of climatic changes, we must be

able to reconstruct the timing of climatic events. Attempts at correlation

between various archives such as ice cores, deep-sea sediments, and

terrestrial records show a need for precise chronologies of climatic records

(Bond et al., 1993)o Although the nature of the late glacial radiocarbon time

scale might appear as problematic and the 14C method as not applicable to

the precise dating of the late glacial sites, variations in atmospheric 140 can

actually be used as a tool for a close correlation between records. In this

paper we present an example of synchronization based on reconstructing

atmospheric 14C variations in Alaskan and European records of the cooling

at 11 000 yr B.P.

CHRONOLOGY OF THE YOUNGER DRYAS ON KODIAK ISLAND, ALASKA

In their studies of lake sediments from Kodiak Island, Peteet and Mann

(1994) showed that this part of Alaska had a pattem of deglaciation similar to
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that of the North Atlantic region.After the Alaskan Peninsula was deglaciated

at ca. 14 000 yr B.P., the climate remained cold and moist. Vegetation of this

period consisted of herbs; heath was dominant. After 13 000 yr B.P. however,

the climate was warmer and moister, as demonstrated by the presence of

ferns and a higher organic content of lake sediments. Then around 11 000 yr

B.P., warming was interruptedby a cold and dry period. Low organic carbon

content coincides with a return of heath (Empetrum nigrum) and

disappearance of ferns. This "fern gap", as it has been termed by Peteet and

Mann (1994), lasted until 10 000 yr B.P. The original radiocarbon data

obtained on terrestrial macrofossils from sediments of Phalarope Pond and

Teich Section (Peteet and Mann, 1994) placed the timing of the fern gap

event on Kodiak very close to the Younger Dryas cold reversal of the North

Atlantic region.

Additional 140 ages (Table 1) obtained on terrestrial macrofossils

(seeds of Empetrum nigrum) on a core from Phalarope Pond, a small kettle,

show that the onset of the cold and dry period on Kodiak Island coincides

with a change in atmospheric 140 content. The sample selected above the

level corresponding to the cooling (i.e., at the beginning of the fern gap) is

14C dated at 11 080 + 90 yr B.P. (Fig. 1) whereas the next sample selected 3

cm above is only 10 470 + 65 yr B.P. These ages suggest that the drop in

radiocarbon ages of 600 140 yr occurred in less than 200 cal. yr. Throughout

the whole Kodiak cold event (640 to 583 cm depth) radiocarbon ages are

between 10 400 and 10 600 yr B.P., which is consistent with other findings of

a long radiocarbon plateau inside the Younger Dryas period (Bj6rck et al,

1996; Hughen et al., 1998). Because Empetrum disappears as the climate

warms up and no seeds were found (Peteet and Mann, 1994). the youngest

part of the fern gap was only dated by two data points, and the whole 10 000

yr B.P. plateau in radiocarbon ages at the beginning of the Holocene could
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not be reconstructed here. However, from these data it appears that the

warming at the end of the fern gap happened in the middle of the 10 000 140

plateau, which is synchronous with the Younger Dryas-Holocene transition

in Europe (Goslar et al., 1995; BjSrck et al., 1996).

DEGLACIATION CHRONOLOGY OF FENNOSCANDIA

The deglaciation of Fennoscandia occurred in steps with several

pauses and readvances of the Fennoscandian ice sheet during its retreat.

The Younger Dryas glacial pauses are evident as end moraines deposited

along the coast of Norway, in southern Sweden and Finland, and in

northwest Russia (Andersen et al., 1995, and references therein). A record of

oxygen isotopes on shallow benthic foraminifera from a core at Solberga, a

site close to the former ice sheet, shows an interval during which the

deglacial trend toward a decrease in 5180 was interrupted. Boden et al.

(1997) interpreted the interval to indicate reduced melting of the

Fennoscandian ice sheet during the cool Younger Dryas and 14C dated the

onset of the event to 11 150 yr B.P. Sediment accumulation rates in

southwest Sweden were high during the deglaciation, and the Solberga-2

core allowed for a new and more detailed dating of the Younger Dryas and a

reconstruction of the atmospheric 140 variability.

Benthic foraminifera and bivalve shells were used for radiocarbon

dating. Bivalve shells were leached to remove surface contamination. All

ages were corrected by 440 yr to compensate for the reservoir effect

(Mangerud and Gullikson, 1975) (Table 2). The age of 11 150 yr B.P. for the

onset of the Younger Dryas in the Solberga core was obtained at 2655 cm

depth (Boden et al., 1997). Our new results also show that ages in the

interval between 2665 and 2690 cm depth cluster around 11 000 yr B.P. (Fig.

2). The following drop from 11 000 yr B.P. to younger radiocarbon ages takes
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place shortly after the onset of the Younger Dryas as interpreted from the

oxygen isotope record (Boden et al., 1997). Similar to the Kodiak Island

record, the 14C ages yielded by the Solberga core level off to form a plateau

of 10 200 to 10 600 yr B.P. throughout the Younger Dryas. The cluster of

ages around 10 200 yr B.P., which occurs in the early stage of the Younger

Dryas coincides with the Baltic ice lake lowering (BILL-l, 2505 cm depth)

(Fig. 2).

DISCUSSION AND CONCLUSIONS

Results from both sites show a striking coincidence between the

cooling at 11 000 yr B.P. and a change in radiocarbon age of 11 000 to 10

500 yr B.P. (Figs. 1 and 2), which implies that within the dating error, the

cooling in Alaska was synchronous with the Younger Dryas in Europe. At 11

000 yr B.P., there is also evidence from different sites around the world of an

abrupt change in 14C age from 11 000 to 10 600 yr B.P. suggesting that this

marker is worldwide (Ammann and Lotter, 1989; Cwynar and Watts, 1989;

Hajdas, 1993; Goslar et al., 1995; Bj6rck et al., 1996; Maenza-Gmelch, 1997;

Hughen et al., 1998).

Although the changes in atmospheric 14C (A14C) are also observed

throughout the Holocene, their amplitudes are lower than 40%°and result in

changes in radiocarbon age of -300 yr. Part of these fluctuations could

possibly be explained by changes in production rate of cosmogenic isotopes

due to heliomagnetic modulation (Finkel and Nishiizumi, 1997). However,

our reconstruction of the late glacial A14C based on the Kodiak record show

that at 11 000 yr B.P. the radiocarbon content in the atmosphere increased

by as much as -70%o during -200 cal. yr (Figure 3). Similarly, results of

varve counting and radiocarbon dating from the Cariaco Basin record

indicate that the increase in &14 c of -50 to 80%o at the onset of the Younger
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Dryas appeared in a short periodof -200 cal. yr (Hughen et al., 1998). While

there is no evidence for dramatic changes in production rates of cosmogenic

isotope of 10Be in the Younger Dryas section of GISP2, Greenland ice core

(Alley et al., 1995), models of atmosphere-ocean exchange can reproduce

such a rise in atmospheric 140 content by switching off North Atlantic Deep

Water formation and cutting down transport of 14 C to the deep ocean

(Edwards et al., 1993; Goslar et al., 1995; Bj6rck et al., 1996; Hughen et al.,

1998). Deep ventilation of the Southern Ocean (Mikolajewicz. 1996 ) and

increased ventilation of the North Atlantic Intermediate Water (Hughen et al.,

1998) have been proposed to reduce atmospheric 14 C content and produce

a long radiocarbon age plateau inside the Younger Dryas. Climatic response

to either of these scenarios can only be tested by studies of paleoclimatic

records. That involves chronological reconstruction of cooling and warming

events around the globe. For example, a warm Younger Dryas in Vostok ice

core from Antarctica (Sowers and Bender, 1996) and a warm Southern

Ocean (Charles et all, 1996) supports models which involve an increase in

deep-sea ventilation in the Southern Ocean at the time of a reduced North

Atlantic Deep Water formation (Broecker, 1998). On the other hand, new

sites add to the evidence of a Younger Dryas-like cold spell in the Southern

Hemisphere. Recently published radiocarbon and exposure ages of glacial

advances in New Zealand show that they were synchronous with the

Younger Dryas in Europe (Denton and Hendy, 1994; Ivy-Ochs et al., in

press).

Problems such as the question of the most southern sites that

experienced the cooling at 11 000 yr B.P. as well as occurrence of the

Younger Dryas in South America can be resolved by using radiocarbon

dating. Because of its global character, the increase in atmospheric 14 C at
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11 000 yr B.P. can be used as a marker for the onset of the Younger Dryas

event.
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FIGURE CAPTIONS
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Figure 1. Radiocarbon chronology of Younger Dryas section in sediments of

Phalarope Pond, Kodiak Island, Alaska. Seeds of Empetrum nigrum were

used for AMS 14 C dating (filled circles). Radiocarbon ages are plotted with

2G error bars. Open circles show 140 ages published by Peteet and Mann

(1993). Sediment depth was corrected for presence of "Purple volcanic

ash"(666 to 778 cm), the top of which is marked by dashed line. Solid lines

on depth scale show levels of Younger Dryas cooling (640 to 642 cm) and

warming at beginning of Holocene (583-584 cm). Solid lines on age axis

show radiocarbon ages for boundaries of Younger Dryas (11 000 to 10 000

yr B.P.). Hatched area shows interval (-200 cal. yr on the basis of

sedimentation rate and total duration of Younger Dryas of -1200 cal. yr

(Goslar et al., 1995)) in which change in atmospheric radiocarbon content

occurred.

Figure 2. Results of AMS 140 dating of Swedish marine record of

deglaciation plotted vs. depth in core. Benthic foraminifera and leached

bivalve shells were used (Table 2) (filled circles). Ages published by Bod_n

et al. (1997) are shown as open circles. All ages are shown with 2o error

bars. We subtracted 440 yr to compensate for reservoir effect observed in

this region (Mangerud and Gullikson, 1975). Some of corrected ages in first

half of Younger Dryas appear to be too young, which might be due to

changes in reservoir age after input of fresh water during the Baltic ice lake

lowering (BILL-1 2505 cm; marked by dashed line). Cooling observed as a

change in 8180 (2700 to 2650 cm; Boden et al., 1997) and the fauna change

at the end of the Younger Dryas (1905 to 1875 cm) (Knudsen, 1982) are

marked by solid lines. Radiocarbon ages of Younger Dryas boundaries (11

000 to 10 000 yr B.P.) are marked by horizontal solid lines. Hatched area

depicts change in atmospheric 140 content at beginning of Younger Dryas.
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Figure 3. Variations in atmospheric 14C content during Younger Dryas.

Radiocarbon ages of terrestrial macrofossils from Kodiak record (Table 1)

were used to calculate A14C, i.e., difference between 14C activity of sample

and the standard after corrections for fractionation and sample age (Stuiver

and Polach, 1977). Boundaries of Younger Dryas cold period are shown by

dashed lines: end of Younger Dryas was placed at 11 500 cal. yr B.P. with

the duration of 1200 yr (Goslar et al., 1995). Sedimentation rate of 4.7 mm/yr

(= 57.5 cm per 1200 cal. yr) was used.



TABLE 1. AMS 14C AGES OBTAINED FOR THE YOUNGER DRYAS SEDIMENTS IN PHALAROPE

POND, KODIAK ISLAND, ALASKA

Sample Depth 14 C age 513 C Material C

no. (cm) (yr B.P.) (%0) Empetrum seeds Twigs (rag)

ETH-14794 588-589 10 350:!:85 .25;3+12 9 1 1.6

ETH-14795 592-594 10 4,.'.'.'.'.'.'.'.'._80 -25.9-J:1,?. 20 &l

ETH-14796 596-598 10380:!:95 -22.9"_:1.2 9 1 12

ETH-14797 600-602 10220¢ 60 -23.9-J:1.0 20 3,3

ETH-14798 602-604 10 460::_95 -21.4+1.2 7 1 12.

ETH-14799 610-612 10 500d:95 -20.4+12 15 1A

ETH-14800 616-618 10 690"J:85 -24.1+1.2 20 2,_0

ETH-14801 620-622 10 570:J:100 -20.7+12 10 1 1.4

ETH-14802 624-626 10 350:_ 95 -26.2:t:1.2 16 1.5

ETH-14803 628-630 10 250¢100 -18.7+1.2 15 1.0

ETH-14804 632-634 10 470.L,-_65 -26.9+1.1 20 ?-9

ETH-14805 636-638 11 080_ 90 -23.R+12 17 1.7

ETH-14806 640-642 10 860_: 70 -22.£:d:1.1 20 2.9

ETH- 14807 668-670 10 990_ 70 -25:t:1.1 17 2.4

(780-782)

ETH-14808 672-674 11 340-__180 -15+_.2.1 14 1.9

(784-786)

ETH-14809 676-678 11 41_85 -25.6_:12 17 23

_788-790)

Note: Original depths for the samples on the bottom of the dated section are given in parentheses.

Errors are +lEt.



TABLE 2. RESULTS OF AMS 14C DATING OF BIVALVE SHELLS AND MIXED BENTHIC

FORAMINIFERS FROM SOLBERGA, SWEDEN.

Sample Depth 14 C corr age _ 13C M ate rial

no. (cm) (yr B.P.) (%o)

ETH-16275 1685-90 9 125+-150 6.5d:1 3 Bivalve, 36%

ETH-1 6278 1725-30 9 47(3:7 0 0.e,+l 2 Bivalve, 20%

ETH-15308 1730-35 9 600_110 3.O:t:l 2 Bivalve, 24%

ETH-15309 1770-75 9 750d:100 -1.0-J:l 2 Bivalve, 40%

ETH-15309 1770-75 9 290¢110 1.0:t:1.2 Bivalve outside*

ETH-15626 1785-90 9 370:1:100 1.9-&-_1.5 Bivalve, 28%

ETH-15627 1845-50 9 265d:110 0._-+0.9 Bivalve, 37%

ETH-15311 1985-90 10190:t:130 1.7_+1.1 loraminifera

ETH-15312 2045-50 10 190-J:100 -4.0-!-_1.2 foraminifera

ETH- 153 13 2120-30 10 460d:100 -3.0:1:1.2 foraminifera

ETH-15314 2255-60 10 030._ 90 .-3.0__1.2 Bivalve, 20%

ETH-15315 2305-10 9 990d: 80 0.F,+1.1 Bivalve, 26%

ETH-15316 2365-70 10 470-J:130 1.0:t:1.2 Bivalve, 15%

ETH- 15316 2365-70 10 280_:130 2.0_:1.1 Bivalve outside*

ETH-15317 2425,30 9 940_:100 1.0:t:l .5 Bivalve, 21%

ETH-15318 2480-85 9 870-J: 95 1.e:12 Bivalve, 35%

ETH- 153 19 251 0-15 10 1_ 95 1.1_+1.2 Bivalve, 57%

ETH-15319 251 0-15 9 920"J: 85 1.1+1.2 Bivalve outside"

ETH-1 5320 2540-45 10 0(X__ 95 0.(P.1 2 Bivalve, 30%

ETH-1 5322 2630-40 10 80(_:120 2.3d:1.1 foraminifera

ETH- 15323 2640-50 10 610d:150 1.0_1.2 foraminifera

ETH-15324 2660-65 10 100d:130 1.6:t:12 foraminifera

ETH-15325 2665-70 11 _ 95 -1.0-J:12 foraminifera

ETH-15326 2670-75 11 170:t:100 0.5,+1.2 foraminifera

ETH-1 5327 2675-80 10 810-J:100 -1.0:t:l. 1 foraminifera

ETH-15328 2680-90 11 030__150 1.£L+0.9 foraminifera

C

(mg)

12

2.6

1.1

1.8

1.1

13

0.6

O.5

1.0

0.9

4.9

23

2.4

0.4

2.0

1.7

3,0

2.2

2.2

O.8

1.0

1.0

1.4

1.6

1.2

0.6

Note: Bivalve shells were leached; percent given shows the amount of the shell (by weight)
removed before the inner part was dated.

*For three samples both inside and outside fra_ons have been dated. The outside "date" is

apparently as much as 400-500 yr F)un_ler than the inside date.
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