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NOMENCLATURE

K = sample size tolerance factor

L = load, kips

N = probabilistic range factor

n = statistical sample number

R = reliability

S = stress, ksi

SF = conventional safety factor

x = specimen value

y = random variable component

Z = safety index

7/ = coefficient of variation, cr//z

_t = statistical mean
tr = standard deviation

Subscripts

A = applied stress
k = outcome

R = resistive stress

i = ith value

ty = tensile yield stress
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TECHNICAL PUBLICATION

QUASI-STATIC PROBABILISTIC STRUCTURAL
ANALYSES PROCESS AND CRITERIA

1. INTRODUCTION

Increasing emphasis on affordable access to space while maintaining high reliability is driving
designers to improved systems analyses and integration methods. These techniques often include design-
ing each substructure to a standard safety factor or specified reliability subjected to its maximum opera-
tional environment and then determining its reliability contribution to the total structural systems reliabil-
ity. Designers advancing these new methods must develop confidence and bridge the natural resistance to
change through similar skills, common culture, and verification schemes. The current level of technical
maturity and adequacy of reliability analyses techniques varies widely with different materials and failure
modes. One of the more mature areas is the quasi-static reliability analyses of polycrystalline materials.

This area often comprises the bulk of vehicle inert mass (such as wings, airframes, propellant tanks, skirts,
intertanks, etc.) to be optimized. This paper documents an engineering approach and analyses criteria for
bridging deterministic structural processes and safety factor assessment with probabilistic input-output
data to enable calculation of verifiable quasi-static reliability relationships for metallic substructures.

There was evidence in 1932 that components of successfully designed airplanes did not yield.
Since the common structural material was 17ST aluminum alloy having an ultimate-to-yield stress ratio of
1.5, the arbitrary 1.5 safety factor at fracture was universally accepted. 1 Using improved aluminum alloys,
and involving historically driven programmatic requirements for optimized performance, the 1.4 safety
factor at fracture and 1.0 at yield are now the official NASA standards. 2 These conventional deterministic
safety factors are expressed as the ratio of the minimum material resistive stress and maximum allowed
applied stress,

SF= Se
SA (1)

Deterministic safety factors may be typically defined at all stages of material degradations (yield,
fracture, fatigue, etc.), and at present, safety factors are commonly specified at the substructure level only.
This practice implies that if each substructure is designed to a safe margin, then their integrated margins
should also produce a safe structural system margin, though the level of system safety is not quantified. But
as structural systems become more complex and cost more important, the reliability of each substructure
must be defined to compute and optimize the system risk. Nevertheless, the resistance to change remains,

as deterministic safety factors are easily incorporated onto applied loads, and structural responses are
readily verified through static tests. Over time, structural analysts have developed many quasi-static deter-
ministic techniques and processes and have built great confidence in them. They have served the

aerostructural community very well through many years of progressive changes in associated technique.



However, a recent study 3revealed that current deterministic practices are inherently nonuniformly
conservative, while probabilistic structural methods produce leaner structural designs by distributing dis-
persions in a quantifiable and explicit manner. This discovery, the need to support system reliability with
challenging cost mandates, and adaptation of existing deterministic processes and verification methods
may provide sufficient inducement to change. Therefore, the emphasis in this study was to develop criteria
that implements probabilistic structural data in statistical format throughout the prevailing deterministic
process, quantifies substructural risk predictions, and then experimentally verifies the risk predictions with
measurable confidence. While many of the techniques previously have been developed and reported, they
are repeated here for process continuity, understanding, and convenience.
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2. DATA CHARACTERIZATION

Data modeling and handling is central to this study. Models are idealized into the simplest math-
ematical expressions within the physical phenomena of the data and its intended application. Not all data
are equally important, as noted by Pareto's principal 4 and as can be distinguished by sensitivity analyses.
Data deviations having negligible effect on performance may be reduced to deterministic values. Data

deviations having major consequences must be characterized and processed in statistical format through-
out the computational process with particular attention to combining their deviations.

Consider the minimum resistive and maximum applied stresses in equation (1), which are derived

from observed material and environmental raw data, respectively. The best approach to summarizing a
table of data of any distribution is to define the mean about which the data is scattered,

1 n

= n 2., xi (2)i=1

A measure of the actual variation in the set of data is the square root of the variance known as the standard
deviation,

1

1(_ = Xi ___)2 . (3)

The coefficient of variation is a relative variation or scatter among sets and is defined as the ratio of the
standard deviation and the mean,

t3r

r/ /_ (4)

The coefficient of variation is an effective technique for supporting judgment through comparison with
other known events. Coefficients of variation are known to be small for biological phenomena, but often
large for natural materials properties. Material property coefficients of variation are generally small for
highly controlled manmade materials but are larger for brittle materials. A knowledge of typical coeffi-
cients of recurring sources may serve as a guide for judging quality and acceptability of data. Estimates of
some common material structural properties characterized by coefficients of variations are 0.05 for metal
ultimate strengths and 0.07 for yield stress and for steel fracture toughness.

Another technique used to evaluate raw data is the population probability density distribution,
which defines the area shape of the distribution to estimate the probability of a desired value for an as-
signed range of probability. As shapes become more complex, distribution models become more difficult,



and skills and labor to apply them escalate. Normal distribution is the most widely used because it is the
easiest, is the most developed theory, and is representative of most metallic mechanical properties. The
normal distribution,

1 1 rx i - ltt] 2

f(x) - aa/_ exp- _-/--/ZLt_ j '

for x_>0 is noted to be completely defined by only two variables, #t and o-. The mean of "n" independent
observations is believed to approach a normal distribution as "n" approaches infinity (central limit theory).
Furthermore, for many design considerations only one side of an engineering data distribution is required,
and area shapes that are not normally distributed may be developed into a split normal distribution by

constructing a mirror image of the useful side about its peak frequency value. The standard deviation is
then readily calculated from the constructed symmetrical distribution. Hence, all structural data in this
study were assumed to be generalized into normal probability distributions to benefit from existing first
order techniques which simplify and expedite design solutions with negligible adverse consequences.

Analytical advantages in using normal probability distributions are the result of having many char-
acteristics well established. The area within a specified number of standard deviations of a probability
density plot represents the proportion of the data population captured. One standard deviation (occurring at
the inflection point) about the average of a normal distribution is calculated to capture 68.3 percent of the
distributed data tabulated and is illustrated in figure 1. Two standard deviations include 95.5 percent of the
data, and three standards include 99.7 percent.

ToleranceLimit
•_ SA=It,4+NIT,4

_ "_iSt CaseApPJiedStress

'_nflection

_'_I

, I _I I

I_ lb 2t_ 3_ x

Figure l. Normal probability density plot.

In structural analysis, normal tolerance limit is a convenient statistical format for specifying and pre-
dicting future single observations. The tolerance limit is extended in this study to specify computational
input and output data. It defines the normal distribution and specifies a statistical range of deviations about
the data's mean. The statistical tolerance limit of the worst case applied stress is noted in figure 1.
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3. RESISTIVE STRESS

The resistive stress probabilistic distribution is a data characterization of material strength from an

appropriate stress test. In many cases, this is a simple uniaxial stress test producing the random sample
mean, and standard deviation representing a small proportion of the total population. Given a proportion of
the population, the range factor k of the standard deviation is smaller and the tolerance limits are

S = l.t ++_k_r .

In practice, the population true values of/z and cr are not known and so the tolerance limits must be based

on the random sample. However, it is possible to determine a consistent K-factor to assert with a specified
confidence that the representation of the population identified in the tolerance limit is statistically valid. In
other words, to insure, with a certain percent confidence, that other data from material properties tests
conducted on the same number of specimens by different experimenters are contained in the statistically
assessed tolerance limit, a K-factor is specified in the resistive stress tolerance limit,

SR = lIAR -- K_R , (5)

for the lower half (worst case capability) of the distribution and it is plotted in figure 2 to account for the
sample size. The K-factor is shown to decrease as a function of sample size because the uncertainty about
the estimates of parameters has narrowed and more reliability can be verified with the same confidence.

This K-factor is controlled by the designer through the number of test samples specified and often

govemed by programmatic constraints. Test samples may range from standard uniaxial tensile specimens
through more expensive pressure bottles and subscale test articles. The sample size is traded between the

initial cost of extensive material sample testing and the recurring cost of lost performance of global struc-
tures designed to a larger K-factor to compensate for small sample property predictions.

5.5
95% ConfidenceLevel5 =

/.99 Probability
4.5 _ ,_ _..95 Probability

,,m3.5_ 4 _ _ _lt//.90 Probability

2.5 _
2 _

"1.5.
0 10 20 30 40 50 60 70 80

Numberof Samples,n

Figure 2. K-factors for one-sided normal distribution.
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Consistent with critical main structures and welds, the stress dispersion is often assumed as K=3,

requiring at least 32 test samples for an A-Basis material. The minimum proportion and degree of confi-

dence must always be designated. An A-Basis property allows that 99 percent of materials produced will

exceed the specified value with 95-percent confidence. The B-Basis allows 90 percent with the same

95-percent confidence. Figure 3 illustrates the probability and confidence plot for an A-Basis design.

LargeSample _ Go/ZR'mean
Size _ I ,_ _= _.

\ oi_ _," J"
_-'r-III t'_ :I_l
o_ ¢t5i

SmallSample_ o_,b _ l_f

s,ze\ \ : /,

95%Confidence_ t
II _-S

Tolerance/_ I, _5% RiskLimits

Figure 3. One-sided normal distribution with A-Basis.

Most normally distributed material properties are developed in tolerance limit format as in equa-

tion (5). However, they are more often reduced and published as deterministic (single) values that cannot

be decomposed again into tolerance limit format as required for reliability analyses. These published deter-

ministic properties are inapplicable for most reliability methods. A preliminary statistical material property
may be derived from deterministic data by assuming a typical K-factor and a common source coefficient of
variation.
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4. APPLIED STRESS

Aerospace loads modeling uses established computational structural dynamics principles and solu-

tion techniques 6 for multi degrees-of-freedom structures. Models assume the structural system to be repre-
sented by a network of elements designated along the body possessing mass, damping, and stiffness.
Natural and induced environments act as forcing functions at discrete grid points. Launch vehicle forcing

functions used to generate ascent generalized forces include: wind speed, shear, gust, and direction; pro-
pulsion thrust rise, oscillations, and thrust mismatch; thrust vector control angle and rate; vehicle accelera-
tion and angle of attack; mass distribution; other special trajectory-generated environments. The intensity
of these forcing functions vary with events (liftoff, max-q, max-qo_, etc.) and time. Static loads include

pressure, acoustics, and temperature. The motion of the total quasi-static structure is composed of a system
of substructures which are expressed by the linear matrix differential equation

[M]{X(t)} + [C]{_f(t)} + [K]{X(t)} = {F(t)}

The input environments to response analysis are time-dependent and should be statistically charac-
terized. The induced loads output is also time-dependent and of a statistical nature. The resulting internal
load,

Zg _-- ClF 1 .-1-c26 .-1-c3F 3 .-I- c4F 4 .-1-csF 5 .-]- ............ (6)

is the quasi-static response load at grid point "g" substructure, expressed with forcing functions Fi in
statistical format applied loads

F i = [Lti .-I- Nit7 i (7)

acting along the total structure. The influence coefficients, "'ci," are time consistent response gains trans-
mitted at grid point L_. The applied subjective range factor, Ni, is autonomously selected by the loads group
for each forcing function. The factor may range between 0 and 3, depending on the assumed quality of
data, loads sensitivity, and experience. The resulting equation (6) defines a linear combination of the ele-

ments of a random vector. An algebraic treatment of the statistical dispersions of equation (7),

(3rg ;_ n ciNi(_i,

i=1

typical within the deterministic method, is clearly a violation of the error propagation law and it poses an

inherent source of excessive conservatism. 3 The measure of excess in any region is unique to the types and
number of combined dispersions in that region. Conversely, statistically characterized variables that are

mutually exclusive may be appropriately defined as a multivariable function by combining their disper-
sions through the error propagation law. 7

7



In applying the error propagation law, let a system performance and its component variables be
defined by the formula

z = h(yl, ye, y3,y 4......... Yn) •

The problem is to obtain an estimate of the system mean, based on the component mean variables. The
method consists of expanding the function about each mean by the multivariable Taylor series. The system
mean is estimated from

]1z = h(]11, ]12, ]13, ]14 .......... ]in) , (8)

and the variance is approximated to the first order from

2 _-"_(_n 0h 2o ,9,
i=l k.o'yi J

Hence, when two or more independent variables are added or subtracted, their means are added or sub-
tracted, and their standard deviations are root-sum-squared (RSS). Applying this rule to the sum of a string
of tolerance limit loads encountered in equations (6) and (7) gives the combined mean,

1

ag - Z ciNi (cigiai) 2 .
" (lo)

i=1

and combined standard deviation

1

l_ 1 (ciNi_i) 2 .n

ag Z ciNi (111
i=l

This computational process is repeated for each substructure grid point and for each unique event
time, producing a free-body diagram of the included substructure experiencing maximum probabilistic
load response components. The end product of the structural response to environmental excitations is a set
of maximum probabilistic design loads, or "limit probabilistic loads," and event times for all the system

substructures. The probabilistic applied stress components

Sg, xy z = ]1i i + Ui(3ri , (12)

are computed at each grid, and a probabilistic failure criteria is derived.

In order that applied stress components acting at any grid point may be interfaced to the resistive
uniaxial stress in equation (1), the applied triaxial stress components must first be reduced into one dimen-
sional (resultant) stress and then indexed to an equivalent uniaxial strength. The complex state of stress at

8
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a point on an oblique surface of a solid may be readily derived 8 by modeling the three normal principal

stress components acting along the orthogonal principal axes of a tetrahedron. The sum of forces along
each axis provides three linear homogeneous equations to be solved simultaneously. A nontrivial solution
of stress on the oblique surface is obtained by setting the resulting determinant of the stress coefficients to
zero. The solution to the determinant is reduced to a cubic equation having three combinations of compo-

nent stresses as coefficients I i of the oblique normal stress,

S 3 = I1$2-12S-13 = 0 ,

known as invariants. The first invariant is the sum of the determinant diagonal which relates to the hydro-
static stress,

11 = S1 +$2 +S 3 ,

with a mean stress of Smean = I 1/3. The second invariant is the sum of the principal minors,

that relates to shear stress. The third invariant is the determinant of the whole matrix. These invariants of

the state of stress are defined in statistical format and are noted to be independent of material properties.

9
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5. FAILURE CRITERIA

Proceeding with the deterministic process, currently, there is no theory that directly relates multi-
axial stresses with uniaxial yield or ultimate stress. However, there are several criteria in which the elastic
limit of a multiaxial stress state is empirically related to the uniaxial tensile yielding, and results are reason-
ably consistent with experimental observations. The Mises yield criterion 9is based on the minimum strain
energy distortion theory which supposes that hydrostatic strain (change in volume) does not cause yield-
ing, but changing shape (shear strain) does cause permanent deformation. Hence, the yield criterion relates

the experimental uniaxial tensile elastic limit, S., to the principal shear stresses through the square root of
only the second invariant of the stress matrix. In using this second invariant, the Mises initiation of yield
criterion is expressed in its familiar form by

1
1

Sty : -_[(S1- $2) 2 +($2-$3) 2 + ($3 - S1)2] _ , (13)

which depends on a function of all three principal shear stresses. Because of squared terms, it is indepen-
dent of stress signs and, therefore, it is applicable to compression and tensile combinations of multiaxial

stresses. And because of isotropy, the second invariant implies that it is independent of selected axes and
may be expressed about any oblique plane

1
2 -

Sty = [S 2 + S2 + S2 - SxSy - SxS z - SyS z + 3(S 2 + S2z + Syz)]z . (14)

sty
Using equation (14), the pure shear yield stress reduces to Ssy = _ and is a good approximation

of test results. Having established the yield stress by equations (13) and (14), the criterion also expresses

the equivalent applied uniaxial tensile stress over the total elastic and inelastic range about that yield stress,

1

Seqiv" = Is 2 at- S 2 "1-S 2 - SxSy - SxS z - SyS z -I- 3(S2xy "-I-S2z "-t-S2z )]5. (15)

Recalling that the local multiaxial stresses are in statistical format,

Si : _i + Ni(Ti , (16)

the probabilistic Mises stress of equation (15) may be appropriately combined through the error propaga-
tion laws by expanding the functional relationship in a multivariable Taylor series about a design point
(mean) of the system. The mean of the Mises combined applied stresses is determined by substituting
equations (16) into (15) and adding the means

1

2 2 2 .
I_A : [_l_2 d- [.ly --I-1,1z -- _lx_lly -- _Lly/Ltz -- ].,tz[.lx -t- 3(I.t2 +/.ty z +/z2)]2 (a)

10
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The combined standard deviation is calculated from

1

z] C 'AoOA i_OSxx) +'--",' + ,= rosy ) taSz z) {tas. "j taS,z" tas_ _JJ] co)

and the controlled standard deviation is

_A =I(aSA mxo.x']2+(aSA Nyo.yl2+(aSA mzo.z'] 2

Lk aSx ) ( asy J k asz )

1

+9I(aSA gxy O'[_,asxy xy 12+(OSA gyzO'yzl2+(aSA gzxO'zxI2}] -__OSy z ) kOSz x . (c)

The probability range factor is calculated from equations (b) and (c)

t_ A

NA aA , (d)

and using equations (a) and (b) into (6), the coefficient of variation is

O"A
-- °

T/A fA (e)

The partials of each term under the radical of equation (15) are given by the chain rule,

d__d_rwdw_ 1 dw

dS i dw dS i 2_/w dS i " (f)

The resulting normal partials are

aSA _ 2fx - fly - fz aS A _ 2fy - fx - fz #SA _ 2fz - fly - fx

aS x 2S A , aSy 2S a ' aS z 2S a , (g)

11



and the shear partials are

tgSA _ 311xy tgSA _ 3llyz ,9SA _ 3_zx

t_Sxy SA , t_Sy z SA , t_Sz, x SA (h)

All partials are evaluated at the system mean. Applying equations (g) and (h) into equation (b) and then
into (b), (c), (d), and (e) provides the applied stress parameters of the system in tolerance limit format,

S a .= ],IA(1 "t- NASA) , (17)

or,

S A = ILla d-Nat7 a . (18)

Having experimentally obtained the probabilistic resistive stress of equation (5), and having calcu-
lated the probabilistic applied stress of equation (18), and substituting them into the current deterministic

safety factor of equation (1), produces the desired substructure deterministic safety factor in statistical
format,

SF - sR - llR - KerR
S A ]Lta -t- NA(Y A " (19)

If the final safety factor of a substructure experiencing maximum operational stress response, equa-
tion (19), turns out to be less than the NASA Std. 5001, the substructure must be modified and the proba-
bilistic analysis revised to comply with the specified safety factor. Where near submargins are indicated,
increasing the number of material tests to decrease the uncertainty of parameter estimates discussed earlier

about the resistive stress K-factor, may be a preferred option. The option selected would depend on the
initial cost of modification, and on recurring costs.

12
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6. FAILURE CONCEPT

Having emerged as a critical design parameter, it should be instructive to note how this safety
factor plays into the failure concept. Failure occurs when the applied stress on a structure exceeds the

resistive stress of the structural material. This simple failure concept integrates the probabilistic interfaces
of the material resistive stress with the applied stresses induced from measured environmental data. The

probability nature of these interfaces is defined by probabilistic density distributions illustrated in figure 4.
Their tail overlap suggests the probability that a weak resistive material will encounter an excessively
applied stress to cause failure. The probability of failure is reduced as their tail overlap is reduced through
the distributions defined by their normal tolerance limits.

/_ttPlied _ /ZR--/ZA'--_'_-_ Resistive

tess _ , Z \_ Stress

Stress

I'_A SA SR TailOverlap

Figure 4. Failure probability concept.

The three-part safety factor expressed in equation (19) is noted to suggest three distinct zones in
the failure concept diagram:

• The resistive stress tolerance limit zone:

]'IR -- SR = _R -- (_R -- K(YR) = K_R , (20)

• The mid or safety factor zone:

Sit - SA = (SF)S A - SA = (SF-1)S a = (SF-1)(lLt A + Nt:rA) , (21)

• The applied stress tolerance limit zone:

S A - [.l A = ([1.1A "-I-N (_A) -- ]'IA = N O"A . (22)

13



The mid zone turns out to be an extension of the applied stress distribution tail produced by the safety
factor zone of equation (21),

SF

Thus, the primary role of the safety factor in the failure concept is to decrease the applied stress tail overlap
by effectively extending the applied stress design tolerance limit in figure 4, and arbitrarily redefining the
mean,/_A- Combining equations (21) and (22), the net effective dispersion of the applied stress is

geffty A = SR--ILt A = Nty A +(SF-1)(J.I A + Nor,,t) ,

from which the applied stress effective range factor is increased to

SF-1
- + N * SF (23)

Neff ylA

The effective range factor is noted to be interchangeable with the safety factor. It is also interesting
that the probability contributions of the three zones, independently selected by the three disciplines and as
defined by equations (20), (21), and (22), are integrated into the difference of the applied and resistive
stress distribution means,

laR - l.tA = Ktrg + Nit A + (SF - I)(l.l A + No"A) • (24)
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7. FIRST ORDER RELIABILITY

Many advanced techniques are being investigated and are evolving for providing lean, reliable
structural designs. In the meantime, assuming split normal probability distributions and defining the safety
factor resistive and applied stresses in statistical format as in equation (19) leads to the first order reliability
method which is compatible with prevailing practices, codes, and skills.

The concept of failure was introduced in figure 4, in which the distribution tails overlap suggests
the probability that a weak resistive material will encounter an excessively applied stress to cause failure.
This is to say that the probability of success is reliability and that the reliability is less than 100 percent.

Therefore, the probability of interference is the probability of failure and is governed by the difference of

their means,/tR--/t A. Increasing the difference of the means while holding probability density functions
constant decreases the tail interference area and increases the reliability.

Given that the applied and resistive stress probability density functions are independent, they may

be combined to form a third random variable density function 10 in y =SR-S A . If SR and SA are normally

distributed random variables, then y =SR--S a are also normally distributed,

] EXPI ]IY-'Y]I

ey - 0-yN/_ L--2L_jj , (25)

where lty =/tR - #A and O'y = 40 "2 + 0 -2 • The y-variable distribution is plotted in figure 5.

System

Probability _' ] _ofFailure_
•:_ _:_;

0 y>O

Figure 5. Density function of random variable y.
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The reliability of the third density function expressed in terms of y is

R = P(S R > SA) = P(y > O) = S Pydy , (26)
0

y - _/y

where Py is the y density function of equation (25). Letting Z = --, then 0-ydz = dy and the lower
_y

limit of Z is

Z = KaR + GANA + (SF - 1)(11A + NAGA)

+Oa

As y approaches infinity, Z approaches infinity, and the reliability of equation (26) is reduced to

R=--_I[expI-Z-_I]dZ . (27)

Given the reliability R, the safety index "Z" value is produced, which may then be translated into statisti-
cal design parameters through the safety index expression,

Z=-Z l - ]._R--]._A 2 (28)
40 -2 -t-0- A

Equation (28) formulates the probability concept. Increasing the safety index and the standard
deviations increases the means difference without otherwise affecting the distribution, which decreases tail
interference area and the probability of failure. Recognizing that the safety index from equation (28) shares
the same difference as of the applied and resistive stress distribution means expressed by equation (24),
then substituting it and simplifying reduces the safety index to the desired expression

Z = K0-R + 0-ANA + (SF- 1)(].t A + NA0-A)
2 (29)

_0-2 +O'a

The reliability relationship with the safety index is plotted in figure 6, and the reliability notation 0.9 n
represents n- 9's after the decimal.
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Figure 6. Reliability versus safety index.

This first order safety index provides the structural analysts the faculty of designing substructures
to specified reliability (risk) from region to region by adjusting the safety factor to compensate for materi-

als and environmental changes in different regions. It may be a uniform reliability or a series of selected
reliabilities associated with maximum levels of elected or systems required risks. It further preserves the
current practice to specify the range and safety factors autonomously by loads, materials, and stress spe-
cialist, respectively, and then integrates their contributions to the substructure reliability. It retains the
current option to design to a standard safety factor and then verifies it.

The reliability may be shown to be an order of magnitude more sensitive to the safety factor than
other included parameters,

SF( fla + NtrA ) °_SF

Z Ker R + Ntr A + (SF - 1)(l.t A + Ntr A) SF '

and its dominance should be a consideration in establishing a reliability criterion.
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8. RELIABILITY CRITERIA

Developing a reliability criterion is an ongoing concern in the aerostructural community. Arbi-

trarily selecting a standard reliability, while allowing a lighter-weight vehicle of equivalent system reliabil-
ity, has no better engineering basis than the current arbitrarily selected standard safety factor. The criterion,
ideally, should be based on some compelling physical or economic constraint that precludes debate such as
consequence of risk,

risk = _ PkCk
k

where Pk is the probability of the outcome and C k is the consequence of the outcome k. But risk-
consequence assessments have been attempted for decades, requiring great efforts, skills, and data. Results
have been too sensitive to simple changes in the course of failure, assumptions, and perceptions.

ff current safety factor processes are utilized, the reliability of a structural system for any event and
time may still be determined by calculating the probabilistic stresses and safety factor of each substructure
in the system for an event and time-consistent environment, and then using equation (29) to determine the
reliability contribution of each substructure to an event system reliability. It is expected that designing each
substructure to its unique maximum operational environments and to the specified NASA Std. 5001 will
result in different structural systems reliabilities at different events, leaving a vehicle with inherent, and
unintended, suboptimized weight penalties with respect to structural systems reliability.

Metallic quasi-static structures offer the simplifying attribute of requiring capability only to sustain
maximum expected operational overloads environments to satisfy the current NASA Std. 5001 (and, hence,

remain traceable to historical practice). There are two potential ways to exploit this attribute and enable
leaner vehicle structures. The easiest is to size the structure using a probabilistic set of loads as discussed
above. Each substructure must be sized for the maximum operational environments occurring separately
on each substructure at different events and times. The reliability analysis then falls out of this sizing
technique, and optimization of the structure, consistent with the minimum reliability calculated, may

occur, potentially violating the existing NASA Std. 5001 but maintaining a verifiable system level mini-
mum reliability (perhaps consistent with MIL Std. 882C risk assessment considerations).

The other way is to allocate a reliability to the entire structural system, perhaps consistent with a
very large sigma no-fail situation. The various components would then have reliabilities allocated through
an indentured failure mode, effects, and criticality analysis or fault free approach to ensure system level
considerations. Through this approach, vehicle sizing is a function of the reliability attribution. Other
approaches and selected techniques have been promoted and demonstrated for specific systems. 11

While reliability allocation appears arbitrary, each substructure designed to the NASA Std. 5001
also assumes a reliability. However, the reliability represents an implicit and uncalculated design condi-

tion, not a design consideration. The range of reliabilities may be estimated from a parametric analysis.
Note that equation (29) consists primarily of applied and resistive stress range factors and coefficients
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of variation. Since the resistive stress parameters K and T/p are usually known from uniaxial test and the
applied stress parameters may be estimated from equations (d) and (e), a range of safety indices may be
determined from equation (29) for a range of applied and resistive stress parameters ratios. Their reliabilities
are obtain from figure 6.

A brief analysis indicated that reliability increases as N A increases and decreases as _A increases.
Given a maximum elastic standard safety factor of unity, the safety index expression reduces to

Z > KaR + NOrA

+ ,

and the corresponding reliability range of a structure to yield is around 0.94. The reliability of a substruc-
ture may be increased for special systems event and time by increasing the range factor N. Substructure

reliability to fracture is in excess of 0.910 but fracture reliability does not represent a design requirement.
However, designing to a 1.4 safety factor to fracture is a NASA Std. 5001 requirement.
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9. RELIABILITY VERIFICATION

Increasing size, complexity, and demand for more reliable and least-cost, high-performance

aerostructures are pressing design analyses, materials, and manufacturing processes to leaner and more
innovative methods that often invoke more reliance on experimental verification of their behavior and
safety. This compelling shift raises concerns on how thoroughly verification tests are implemented and
understood, such as to unknowingly reject a perfectly adequate design or accept a submarginal one, based
on a single pass-fail test event.

b

Fortuitously, the safety factor and reliability relationship of equation (29) allows the structural

response and resistive reliabilities to be verified to the same confidence and through the same static test
methods and tests as the prevailing deterministic methods. The load versus strain gauge test response
verifies that the mechanics model (force-motion) and material properties were properly predicted and that
sneak phenomena are screened out. The material response proportion, given by the ratio of equation (20)
and (24), and the test response intensity and rate correlation with the mechanics model predictions should
help corroborate the activating phenomena. Confirming the yield point verifies the Mises failure criteria
application, and assures that the maximum expected environment is operating within the elastic range to
satisfy the NASA Std. 5001. The fracture test load should confirm the specified ultimate safety factor of
NASA Std. 5001. The fractured surface pattern testifies to the normal, shear, or fatigue type failure mode.

Though safety factors generally are specified at all levels of abrupt material property changes, the
safety factor based on polycrystalline yield is difficult to verify. Plastic deformation starts in different
locations, numbers, and intensities, and it is hard to detect and determine where and how much deforma-

tion has progressed until large enough parts have been affected and detected at specific instrument sites.

This phenomenon explains why different gauge lengths in uniaxial tensile tests provide different elastic
limits, why yield coefficients of variations are higher than strength variations, and why the elastic limit is
more difficult to detect in brittle materials. Exceeding the yield point permanently changes the structural
boundary conditions and reduces fatigue life nonlinearly proportional with the exceedence. Therefore,
some levels and types of degradation acceptance should be contingent on the consequence of each specific
operational case. While the loading instant, location, and nature of yielding may be difficult to experimen-
tally detect, static testing to fracture leaves little doubt.

It should be recalled that the systems of applied static test loads used are the theoretically predicted

operational and fracture loads, in which the operational loads can be verified only through flight testing.
But real worst-case flight loads may not be realized until late in its flight history. Hence, the 1.4 ultimate
safety factor, initially specified to avoid operating in the plastic region of most aerostructural polycrystal-
line materials, has subsequently been rationalized to cover such rare operational events in which no statis-
tical design data exists. Its traditional and historical usage now exerts the greatest influence on design and
contractually binding acceptance criteria. Furthermore, a test not conducted to fracture provides little in-

formation no matter how well the complex structure performs thereafter.
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10. COST OF RELIABILITY

Reliability of aerostructures is in direct contention with initial and recurring life-cycle cost of all
systems engineering design functions, in which the structural designer must optimize the cost of integrat-
ing the implied cascading reliability requirements of performance, maintainability, manability, produceability,
and availability functions. But quasi-static structures often comprise the bulk of vehicle inert mass, which
makes excessive reliability a dominant loss of recurring payload performance, and worthy of a brief obser-
vation.

Quasi-static structures are primarily constructed of plates and shell elements in which two of the

dimensions that envelop the structural element area are usually optimized for size and shape by the system's
operational requirements. The thickness, t, is controlled by material stress limitations and by the designer-
selected safety requirement either from the NASA Std. equation (1) or for a selected reliability specified by
equation (29). For example, applying the selected safety factor on the pressure load, p, a hypothetical tank
minimum thickness is approximated from the shape, material physics, and strength of materials theory,

p(SF) rt-
S,u

The shell weight is then related to the safety factor by

Ws - Cllr2p(SF)
Stu

The weight performance sensitivity to the safety factor is given by the change in weight to change in the
safety factor,

oTWs _ Cllr2 ptg(SF)Stu _ c9(SF)

Ws C_lr2p(SF)Stu (SF) "

resulting in a direct proportionality of 1-percent increase in weight for each percent increase in safety
factor. This sensitivity may be a useful rule of thumb for assessing the safety factor penalty to structural
element performance subjected to inplane normal stresses.

The ultimate ripple effect of excessive safety factors may be realized from fright performance
parameters. Using the well known rocket equation,

AV - AVloss = Ispgln Wp
Ws + Wp + WpL ,
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and assuming the orbital and propulsion parameters are constant, then the mass fraction remains a
constant,

A V- A Vloss

exp. lsPg : Wp _- C4 ,
we + + weL

and the propellant weight to orbit is

C4
Wp - 12-C4 (W s + WpL)

The payload and structural weights are interchangeable. The sensitivity of the propellant weight increase
to accommodate structural weight increase is

awp_
wp + wei

Using the weight-to-safety factor relationship developed above, the sensitivity of increased propellant
weight consumption to compensate the safety factor increase is

OWp _ Ws o3(SF)

wp + wet fSF)

The ripple effect continues in that increasing the propellant weight further increases the tank size
and tank weight, which necessitates more propellant weight, etc. The increased tank size and associated

propellant loading facilities represent the initial manufacturing costs. The increased tank and propellant
weights to accommodate excess reliability are the recurring costs of lost payload performance. Recogniz-
ing the penalties of excessive reliability and potential rippling effects, then it seems not enough for a senior
structural analyst to design a reliable structure. His hallmark should be a lean, reliable design such as to
create and shift the least excessive conservatism burden downstream onto the vehicle performance and

supporting disciplines.

Another source of performance loss is auditing. A static test should prove the article to not be
marginally or excessively safe for all the right reasons. A meaningful stress audit should present negative
and excessive positive margins and consequences for both cases. While the cause and consequences of

negative margins derived from tests are invariably modified, sources and consequences of excessive posi-
tive margins are often ignored to avoid design reiterations at the ultimate expense of payload recurring
performance loss.
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U. CONCLUSION

A probabilistic structural design method was developed using an engineering approach to charac-
terize and combine measured structural data into tolerance limit format. Then processing the tolerance
limit data through the prevailing deterministic method developed into a probability analysis that lead natu-
rally to a first order reliability technique for quasi-static structures that allows probabilistic optimization

and deterministic verification. The probability properties provided the leaner analyses to improve the
payload performance and cost. The reliability techniques provided the substructural risk value necessary to
calculate its total system reliability. The deterministic methods provided a process that is consistent with

current analytical skills, verification practices, and the culture of most structural designers. The complex
nature of the structural safety factor was illustrated, and criteria for implementing the probabilistic conver-
sion were developed throughout the process.
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APPENDIX A

The following programs are presented for the structural analysts' information and library. Recog-
nizing that programs are computer and software specific, these are coded in Quick-Basic for their
simplicity and application to pocket computers, and because of their easy translation to other languages.

A. 1. Normal probability density distribution program
A.2. Normality distribution test program
A.3. Normalizing skewed distribution (Split normal)

B. K-factor program
C. Safety index programs
D. Mises criterion program.

A.1. Normal Probability Density Distribution Program

' NORMAL PROBABILITY DENSITY CURVE

OPEN"CLIP:"FOR OUTPUT AS #1

INPUT "MEAN =",M
INPUT "STD DEVIATION =",SD
INPUT "START =",XS
INPUT "FINISH =",XF

INPUT "'INCREMENTS =",NX
DX=(XF-XS)/(NX- 1)

FOR I= 1 TO NX

X=XS + (I-1)*DX
F=EXP(-.5*((X-M)/SD)^2)
F=F/((2* 3.14159" SD)^.5)

WRITE #3,X,F

PRINT X,F
NEXT I
CLOSE #1
STOP

A.2. Normality Distribution Test Program

' NORMAL DISTRIBUTION TEST

' Kolmogorov-Smirnov (normality test)
' Critical values (n > 30): a=.10, d=.805;
' a=.05, d=.886; a=.01, d=l.03
OPEN"CLIP:"FOR OUTPUT AS #2
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' Input data
CLEAR:INPUT "N=";N
DIM A(N)_D(N),Z(N)
FOR I= 1 TO N

INPUT A(I)
NEXT I

" sort data

K=N-1
LINE180:FOR X=I TO K

B=A(X)

IF B<=A(X+I) GOTO line250

A(X)=A(X+I)
A(X+I)=B
Y=I
T=X- 1

line250:NEXT X

IF Y=0 GOTO line300
Y=0

K=T
GOTO LINE 180
line300:

PRINT "SORT DONE"

'mean and std. deviation

FOR I= 1 TO N

C=C+A(I)

D=D+A(I)*A(I)
NEXT I

M=C/N

SD=((D-N*M*M)/(N- 1))^.5
PRINT "MEAN=";M

PRINT "STD DEV=";SD

'standardized normal
FOR I= 1 TO N

Z(I)=(A(I)-M)/SD
NEXT I

'cumulative normal
FOR I= 1 TO N

X=Z(I):T=X

G=EXP(-X*X/2)/SQR(2*3.14159)
Al=.31938:A2=-.35656:A3=l.78147
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A4=-l.82125:A5=l.330427

IF X<0 THEN T=-X

Y=1/(1+.2316419"T)

P=((((A5*Y+A4)*Y+A3)*Y+A2)*Y+A1)*Y
F=I-G*P

IF X<0 THEN F=I-F

DI=I/N 'empirical cumulative
D(I)=ABS (F-DI)
IF DM<D(1) THEN DM=D(I):J=I
NEXT I

'results

FOR I= 1 TO N

PRIN D(I)
NEXT I

PRINT "WORST SAMPLE #";J
PRINT "ABS DIFFERENCE, D";DM
CLOSE #2
END

Figure 7 is a plot of the "D" critical values for a one-sided distribution. The distribution is not

normal if the program test result exceeds the "D" critical value. Most engineering data distributions are
one-sided, occurring in the lower or upper sides.
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Figure 7. One-sided test critical value of D.
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A.3. Normalizing Skewed Distribution (Split Normal)

Stress data are assumed to be based on a series of observed measurements reduced into a frequency
distribution, or probability histograms, shown in figure 8. The base of the histogram is bounded by succes-
sive and equal ranges of measured values, and the heights represent the number of observations
(frequency) in each range.

ix

8

e-

u_ 2

- _ xi
13 14 15 16

StressDistribution,xi

Figure 8. Stress frequency distributions.

To illustrate the direct normalization of a skewed distribution, the stress frequency distribution data
of figure 8 is applied to equations (2) through (5). Because the greater stress side defines the worst demand
case (applied stress), only data from the shaded fight side is used to calculate the normalized distribution

variables. The distribution may be normalized by constructing a mirror image of the engaged side about its
peak frequency value and calculating the standard deviation from the constructed symmetrical distribu-
tion.

The peak frequency from figure 8 distribution is the mean, 11= 14 ksi.

Sample size is ___n = -n I + 2_._n i = - 8+2 (8+7+4+2+1) =36.

Sum of variations about the mean

V = 2_._ni(x i -- ll) 2

2 x 8 (14.0 - 14.0) 2 = 0

2 x 7 (14.5 - 14.0) 2 = 3.5
2 x 4 (15.0 - 14.0) 2 = 8.0

2 × 2 (15.5 - 14.0) 2 = 9.0
2 × 1 (16.0 - 14.0) 2 = 8.0

v = 28.5.
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The variance is ¢r2 - v _ 28.5 _ 0.81
_._n - 1 35

and the standard deviation from equation (3) is a = 0.90 ksi.

a 0.90
- - - 0.065

The coefficient of variation from equation (40) is 71 # 14

'SPLIT NORMAL DISTRIBUTION
'INPUT DATA

CLEAR: INPUT "PEAK FREQUENCY=",MU
INPUT "'NUMBER OF BARS=",N

DIM F(N), X(N)
FOR I= 1 TO N

INPUT F(I)
NEXT I

FOR I= 1 TO N

INPUT X(I)
NEXT I

'CACULATE

S=0:FOR 1=2 TO N

S=S+2 *F(I)
NEXT I

SS=S+F(1)
PR/NT"SAMPLE SIZE=",SS
VMU=0:FOR I=1 TO N

VMU=VMU+2*F(I)*(X(I)-MU)^2
NEXT I

PRINT"VAR/ATIONS FROM MEAN=",VMU

PRINT "MEAN=,',MU
SD=(VMU/(SS-1))^.5
PRINT "STD DEV=",SD
COF=SD/MU

PRINT"COEF OF VAR=",COF

28



B. K-Factor Program

'K- FACTOR

MARIO:
DEFDBL A-Z

INPUT'SAMPLE SIZE=";NS
INPUT "PROPORTION";P
INPUT "CONFIDENCE=";CL
IF NS>90 THEN PRINT'SAMPLE SIZE SHOULD

BE SMALLER THAN 90":WHILE INKEY$='"':WEND
START=TIMER

PI=3.141592654#

'INVERSE NORMAL

Q=I-P:T=SQR(-2*LOG(Q))
A0=2.30753 :A 1=.27061 :B 1=.99229:B2=.0481
NU=A0+A I*T:DE= 1+B I*T+B2*T*T

X=T-NU/DE

L0: Z=I/SQR(2*PI)*EXP(-X*X/2):IF X>2 GOTO L3
V=25-13*X*X

FOR N= 11 TO 0 STEP- 1

U=(2*N+I)+(-1)^(N+I)*(N+I)*X*X/V
V=U:NEXT N
F=.5-Z*X/V

W=Q-F:GOTO L2
L3:V=X+30
FOR N=29 TO 1 STEP -1

U=X+N/V
V=U :NEXT N

F=Z/V :W=Q-F :GOTO L2
L2:L=L+I
R=X:X=X-W/Z

E=ABS(R-X)
IF E>.00001 GOTO L0

'END OF INVERSE NORMAL

'CALCULATION OF FACTORIAL
N=NS:NU=N-1

MT=INT(NU/2):UT=NU-2*MT
GT=I

FOR I= 1 TO MT- 1+UT
KT=I

IF UT=0 GOTO L1
KT=I-.5

L1 :GT=GT*KT
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NEXT I

GT=GT*(1 +UT*(SQR(PI)- 1))

GF=GT*2"(NU/2-1)
'END OF FACTORIAL

'SECANT METHOD

KP=X:J= 1:K=KP
K0=K:GOSUB INTEGRATION:SF0=-SF

K=K*(1 +.0001):K1 =K:GOSUB
INTEGRATION:SFI=SF

BEGIN:K=K1-SFI*(K1-K0)/(SF 1-SF0)
IF ABS((K1-K)/K1)<.000001 GOTO RESULT
J=J+ 1:K0=K1 :KI=K:SF0=SF1
GOSUB INTEGRATION:SFI=SF:GOTO BEGIN

RESULT:FINISH=TIMER
BEEP:BEEP

PRINT "K =";USING"##.####";K

PRINT "TIMF_,=";FINIS H-START;"SECONDS"
'END OF SECANT METHOD

WHILE MOUSE(0)<>(1) :WEND
GOTO MARIO

INTEGRATION:L 1=0:L2= 10
IF N>40 THEN L2=20

DL=KP*SQR(N):TP=K*SQR(N)
Y=NU/2

M=2:E----0:H=(L2-L 1)/2
X=L1 :GOSUB FUNCTION

Y0=Y:X=L2:GOSUB FUNCTION

YN=Y:X=LI+H:GOSUB FUNCTION

U=Y:S=(Y0+YN+4*U)*I-1/3
START:M=2*M

D=S:H=H/2:E=E+U:U=0

FOR I= 1 TO M/2

X=LI+H*(2*I-1):GOSUB FUNCTION
U=U+Y

NEXT I

S=(Y0+YN+4*U+2*E)*H/3
IF ABS((S-D)/D)>.00001# GOTO START
SF=S/GF-CL
RETURN
'END OF SIMPSON
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FUNCTION: Z=TP*X/SQR(NU)-DL

T0=Z:G0= 1/SQR(2*PI)*EXP(-Z*Z/2)
Al=.3193815:A2=-.3565638:A3=l.781478:
A4=- 1.821256:A5= 1.330274
IF Z<0 THEN T0=-Z

W= 1/(1 +.231649 *TO)
PI=((((A5*W+A4)*W+A3)*W+A2)*W+A1)*W
PH=!-G0*P1

IF Z<0 THEN PH= 1-PH

Y=PH*X^(NU -1)*EXP(-X*X/2)
RETURN

C. Safety Index Programs

'SAFETY INDEX FROM RELIABILITY

'NORMIN (.5,P,1)
DEFDBL A-Z

LL: INPUT"Probability=";P
PI=3.141593
PI=3.141593

Q=I-P:T=SQR(-2*LOG(Q))
A0=2.30753:al=.27061
B 1=.99229:B2=.0481

NU=A0+a 1*T
DE=I+BI*T+B2*T*T

X=T-NU/DE

'CUMULATIVE NORMAL

L0: Z= 1/SQR(2*PI)*EXP(-X*X/2)
IF X>2 GOTO L 1
V=25-13*X*X

FOR N= 11 TO 0 STEP- 1

U=(2*N+I)+(- 1)^(N+I)*(N+ 1)*X*X/V
V=U:NEXT N

F=.5-Z*X/V

W=Q-F
GOTO L2

L1 :V=X+30
FOR N=29 TO 1 STEP-1

U=X+N/V
V=U:NEXT N

F=Z/V:W=Q-F:GOTO L2
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L2:L=L+I

R=X:X=X-W/Z

E=ABS(R-X)
IF E>.001 GOTO L0

PRINT "SAFETY INDEX IS"

PRINT USING "##.####";X
GOTO LL
END

'RELIABILITY FROM SAFETY INDEX

'NORMIN (0.5,P,1)
DEFDBL A-Z

'INPUT"P=";P:PI=3.141593
PI=3.141593

'Q= 1-P:T=SQR(-2*LOG(Q))
'A0=2.30753:A 1=.27061
"B 1=.99229:B2=.0481

'NU=A0+a 1*T
'DE=I+B I*T+B2*T*T

'X=T-NU/DE

'CUMULATIVE NORMAL

INPUT"X=";X

Z=I/SQR(2*PI)*EXP(-X*X/2)
IF X>2 GOTO L 1

V=25-13*X*X
FOR N= 11 TO 0 STEP-1

U=(2*N+I)+(- 1)^(N+ 1)*(N+ 1)*X*X/V
V=U:NEXT N
F=.5-Z*X/V:F=I-F

GOTO L2
L1 :V=X+30

FOR N=29 TO 1 STEP-1
U=X+N/V
V=U:NEXT N

F=Z/V: F= 1-F

L2:
PRINT F

END
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D. Mises Criterion Program

'ERROR PROPAGATION METHOD;
' MISES CRITERION

DEFDBL A-Z

INPUT"NUMBER OF NORMAL STRESS=",NS

DIM STATIC NSM(3),NSSD(3),NSNF(3),

NSFD(3),LNS(3)

FOR I= 1 TO NS

PRINT "NORMAL LOAD MEAN(";I;")="

INPUT NSM(I)
PRINT'NORMAL LOAD STD. DEVIATION(";I;")="

INPUT NSSD(I)
PRINT'NORMAL LOAD N-FACTOR(";I;")="

INPUT NSNF(I)
NEXT I

INPUT "NUMBER OF SHEAR STRESSES=",MS

DIM STATIC SSM(3),SSSD(3),SSNF(3),SSFD(3),

LSS(3)
FOR I= 1 TO MS

PRINT "SHEAR LOAD MEAN(";I;")="

INPUT SSM(I)
PRINT "SHEAR LOAD STD. DEVIATION(";I;")="
INPUT SSSD(I)

PRINT "SHEAR LOAD N-FACTOR(";I;")="
INPUT SSNF(I)
NEXT I

'CALCULATION OF SYSTEM MEAN

S I=0:FOR I= 1 TO NS:S I=S 1+NSM(I)A2:NEXT I

S2=0:FOR I=1 TO MS:S2=S2+SSM(I)A2:NEXT I
MZ 1= S 1-NSM(1 )*NSM(2)-NSM(1 )*NSM(3)

MZ2=MZ1-NSM(2)*NSM(3)+3*S2

MZ= SQR(MZ2)
'CALCULATION OF DERIVATIVES

NSFD(1)=(2*NSM(1)-NSM(2)-NSM(3))/2/MZ
NSFD(2)=(2*NSM(2)-NSM(1)-NSM(3))/2/MZ

NSFD(3)=(2*NSM(3)-NSM(1)-NSM(2))/2/MZ
FOR I=1 TO MS:SSFD(I)=3*SSM(I)/MZ:NEXT I
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'CALCULATION OF SUM OF SQUARES OF
' NORMAL STRESSES

S3=0:S4=0:FOR I=1 TO NS

S3=S3 *NSSD(I))^2
S4=S4+(NSNF(I)*NSFD(I)*NSSD(I))^2
NEXT I

'CALCULATION OF SUM OF SQUARES OF
' SHEAR STRESSES

$5=0:$6=0: FOR I=1 TO MS

S5=S5+(SSFD(I)*SSSD(I))^2
S6=S6+(SSNF(I)*SSFD(I)*SSSD(I))^2
NEXT I

'CALCULATION OF SYSTEM STANDARD

'AND EFFECTIVE DEVIATIONS

SZ=SQR(S3+S5):SN=SQR(S4+S6)
NE=SN/SZ

'CALCULATION OF SYSTEM COEFFICIENT
' OF VARIATION

ETA=SZ/MZ

'CALCULATION OF SYSTEM TOLERANCE LIMIT

TL=MZ+(NE*SZ)

"CALCULATION OF MISES FUNCTION

FOR I= 1 TO NS

LNS(I)=(NSM(I)+NSNF(I)*NSSD(I))^2
NEXT I
FOR I= 1 TO MS

LSS(I)=(SSM(I)+SSNF(I)*SSSD(I))^2
NEXT I

FMI=0:FOR I=1 TO NS

FM I=FM 1+LNS (I) :NEXT I
FM2=0:FOR I=1 TO MS

FM2=FM2+LSS(I):NEXT I

FM= SQR(FM 1+3"FM2)

PRINT "COMBINED APPLIED STRESSS =";FM

PRI3qT "MEAN =";MZ
PRINT "'STANDARD DEVIATION ="SZ

PRINT "EFFECTIVE N =";NE
PRINT "COEFFICIENT OF VARIATION =";ETA

PRINT "TOLERANCE LIMIT =";TL
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