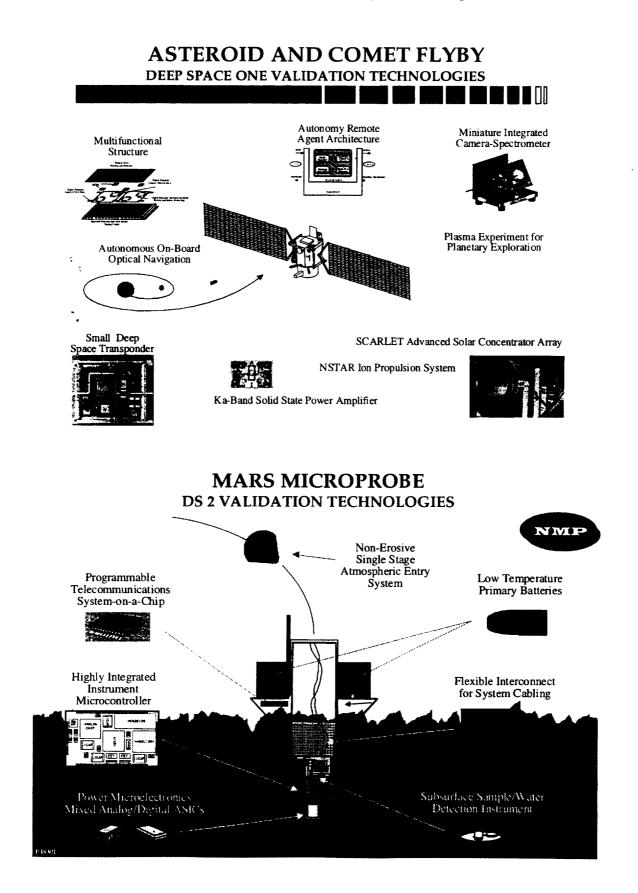
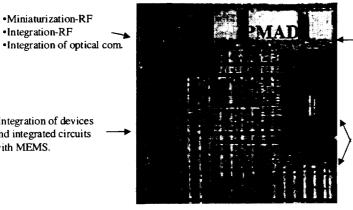
ADVANCED EXPLORATION TECHNOLOGIES MICRO AND NANO TECHNOLOGIES ENABLING SPACE MISSIONS IN THE 21ST CENTURY

59-91 016440

Timothy Krabach Jet Propulsion Laboratory Center for Space Microelectronics Technology

- NASA and ISAS have agreed to Collaborate on the MUSES C Mission.
- In Exchange for DSN, Navigation and Recovery Support, ISAS will carry a NASA/JPL Rover to the Asteroid.
- The Rover is enabled by NASA technology investments in robotics.


Pathfinder


Nano Rover

NASA New Millenium Program Technology Validation through Space Flight

System on a Chip **Technical Challenges**

 Miniaturization Passive components Low power

 Integration of processors and memory devices. Merging of individual designs

General challenges:

•Miniaturization-RF

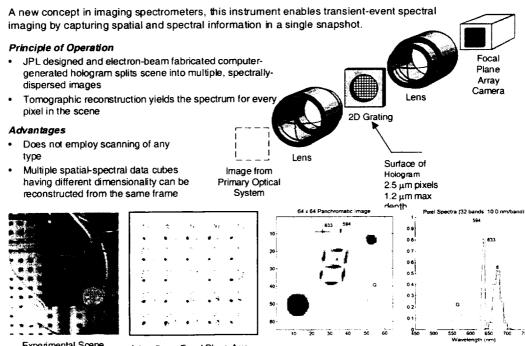
Integration-RF

Integration of devices

and integrated circuits

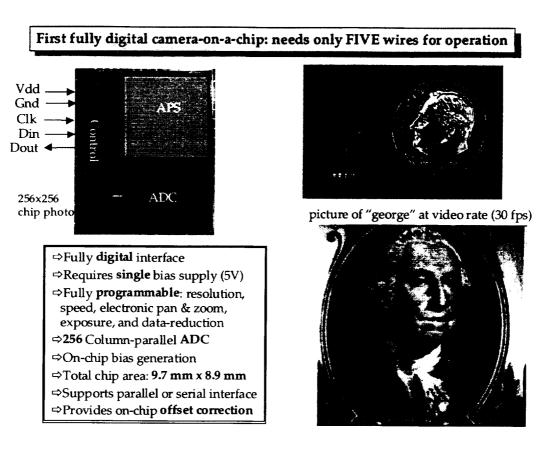
with MEMS.

•Different design techniques and design tools (digital, analog, mixed, rf, optical, MEMS) •Ultra low power devices and architectures

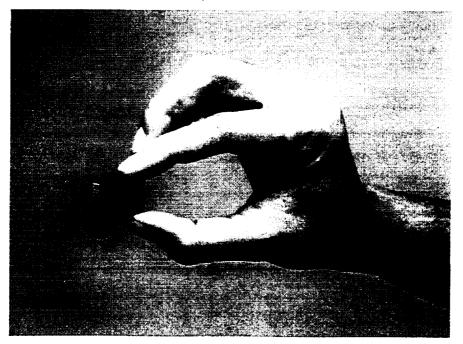

- •Unified device fabrication technology-SOI CMOS, SOI MOSFET, SOI SI based memories, SiGe
- •Testing of the system on a chip

•Reliability

- Intellectual Property related issues
- •Successful partnership with industry for system on a chip fabrication


NASA **Cross - Cutting Technology Program Examples**

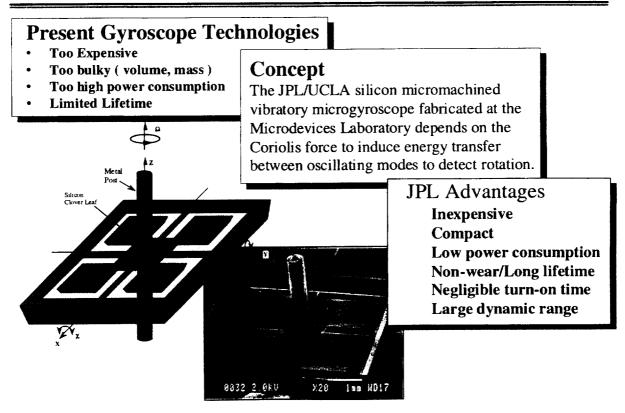
Computed-Tomography Imaging Spectrometer


Experimental Scene (633 nm and 594 nm laser spots not shown) Intensity on Focal Plane Array (Image taken in dark ambient)

Reconstructed Spatial-Spectral Scene

DIGITAL APS CAMERA-ON-A-CHIP

ULTRA-LOW POWER, MINIATURIZED FULLY DIGITAL, 256 x 256 APS CAMERA


Palmcorder size QWIP Infrared Camera

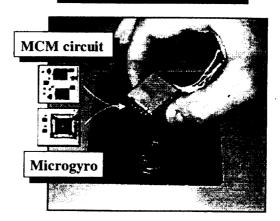
Low Cost Camera for Scientific, Defense, and Commercial Applications

	Detector Technology	Ŧ	QWIP
		-	
	Focal Plane Array Size	=	256 x 256
	Spectral Bandpass	=	8 - 9 mm
	Optics	=	f1.3 Ge
	Output	=	Standard
			Video-analog
	Power Requirements	=	5.5 Watts
	Battery Life	=	3 hours
			from Sony
			camcorder battery
COMPARISON WITH HAND HELD CAMERA	Weight	=	2.5 pounds
	Dimensions	=	5.3 in. x 9.7 in. x 2.5 in.
	(with 50 mm lens)		
WEIGHT - X4 LESS	NEDT	=	30 - 50 mK
VOLUME-X4LESS	MRTD	=	10.5 mK
POWER - X10 LESS	Instantaneous Dynamic	Ŧ	1024 (10 bits)
	Range		

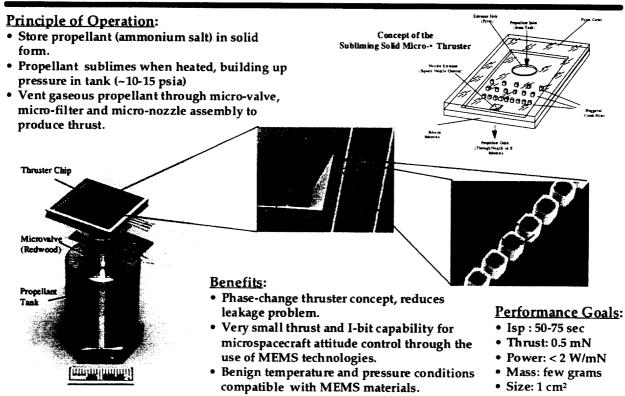
MEMS (Micro - Electro - Mechanical System) Technology for Space

Silicon Micromachined Microgyroscope

NASA X-33 Advanced Technology Demonstrator JPL Avionics Flight Experiment (AFE)


Present Performance:

- 1) ~17-29deg/hr bias stability, ~1.5 deg/root-hr ARW.
- 2) Electronics packaged in MCM format


Predicted Performance Goals:

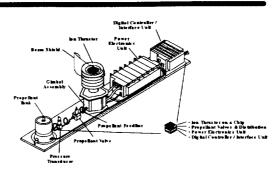
- 1) Bias stability: 1-10 deg/hr. ARW: <0.1 deg/root-hr.
- 2) Operate at matched frequencies condition.
- 3) Improved electronics.
- 4) Package: 3 yrs operation.
- 5) Qualification: shock, vibration, thermal.

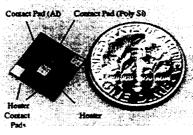
MICROGYROSCOPE

Subliming Solid Micro-Thruster

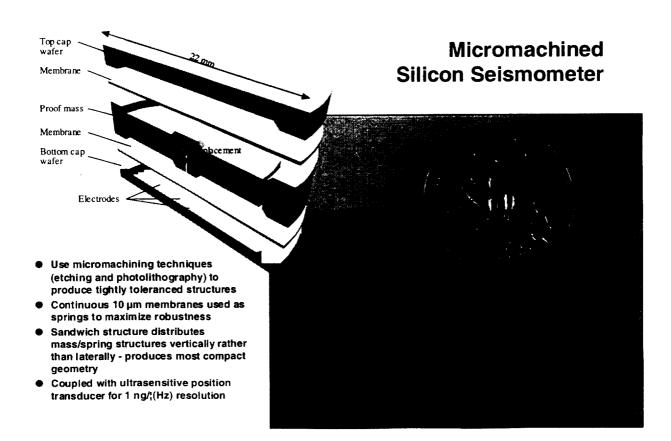
Micro - Ion Thruster

Principle of Operation:

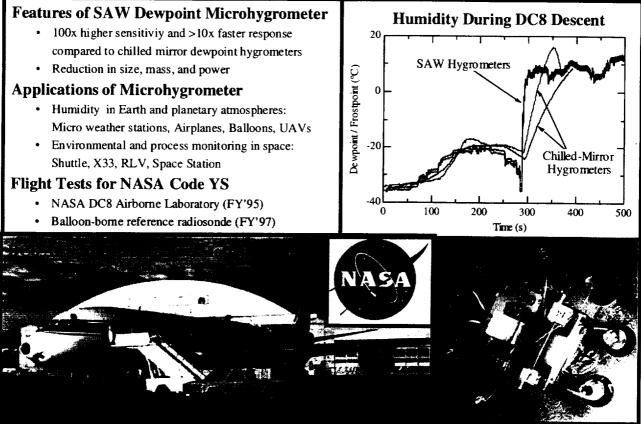

- Create micro-sized plasma to generate ions to be accelerated in micro grid accelerator system.
- Study feasibility of radio-frequency (RF) inductive coupling, cold cathode technology or hollow cathode discharges for plasma generation.
- Pursue miniature conventional and MEMS based approaches for micro-grid accelerator fabrication.

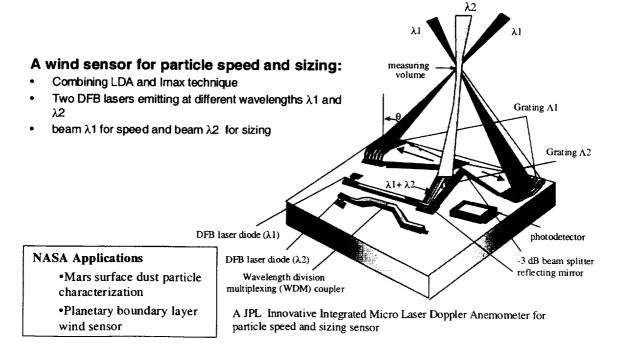

Benefits:

- Many interplanetary missions require large velocity increments, demanding large propellant masses using conventional propulsion technology.
- Ion engine technology provides high specific impulses, requiring less propellant for the same mission.
- Fuel-efficient micro-ion engine technology enables microsized spacecraft for demanding interplanetary missions.


Performance Goals:

- Isp: ~ 3000 sec
- Thrust: µN to mN
- Power: < 10 W
- Mass: few grams (MEMS) tens of grams (conventional)
- Size: 1-3 mm dia (MEMS) 1-3 cm dia. (conventional)




Grid Breakdown Test Chip

Micro Laser Doppler Anemometer

JPL Tunable Diode Laser (TDL) Sensors

New generation of TDL's operating at specific wavelengths to perform in-situ gas monitoring of Earth and planetary atmospheres Climate Surveyor (MVACS)

Typical laser diode package for instrument use

Vision:

Instrument features

Robust

· Toxic gas

monitoring

- High Sensitivity
- Gas discrimination
 Low mass
- Corrosion resistant
 Low power
 consumption

Applications

- Measurement of atmospheric species
 Mine safety
 monitors
- Medical (breath analysis)

mission (1999 launch)

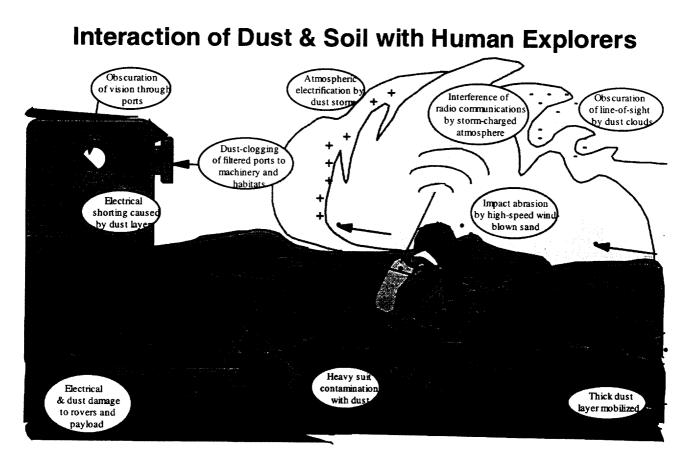
MVACS will carry four TDLs

- Metrology package to measure water content of Mars atmosphere
- Thermally Evolved Gas Analyzer (TEGA) package to measure volatile contents of the soil

REMOTE EXPLORATION AND EXPERIMENTATION

HPCC

Move Earth-based Scalable Supercomputing Technology into Space



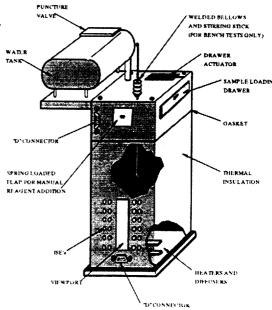
Background


Funded by Office of Space Science (Code S) as part of NASA's High Performance Computing and Communications Program Started in FY1996 Guidelined at \$102M over 8 years

REE Impact on NASA and DOD Missions by FY03

- Faster -Fly State-of-the-Art Commercial Computing Technologies within 18month of availability on the ground
- **Better** Onboard computer operating at > 300MOPS/watt scalable to mission requirements (> 100x Mars Pathfinder power performance)
- **Cheaper** No high cost radiation hardened processors or special purpose architectures

What's in MECA?


An imaging facility to observe the size, shape, and hardness of dust and soil which clings to selected targets. Particles such as quartz and asbestos can cause abrasion and lung damage. An Atomic Force Microscope (AFM) complements the optical microscope.

Also

- An Electrometer to measure Triboelectric Charging in the dry, irradiated Martian environment
- Material patches to measure wear and adhesion

CSMT Board of Governors, 1/27/98

A Wet Chemistry Laboratory (WCL) to measure what happens when the Martian soil is exposed to water in the human environment. The WCL measures pH, dissolved ions, and potential toxins.

Summary

Advanced Technology insertion is critical for NASA

- Decrease mass, volume, power, and mission cost
- Increase functionality, science potential, robustness

The Next Frontier

