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Preface

The Seventh Summer Program of the Center for Turbulence Research took place
in the four-week period, July 5 to July 31, 1998. This was the largest CTR Sum-
mer Program to date, involving thirty-six participants from the U. S. and nine
other countries. Thirty-one Stanford and NASA-Ames staff members facilitated
and contributed to most of the Summer projects. A new feature, and perhaps a
preview of the future programs, was that many of the projects were executed on
non-NASA computers. These included supercomputers located in Europe as well
as those operated by the Departments of Defense and Energy in the United States.
In addition, several simulation programs developed by the visiting participants at
their home institutions were used. Another new feature was the prevalence of lap-
top personal computers which were used by several participants to carry out some
of the work that in the past were performed on desk-top workstations. We expect
these trends to continue as computing power is enhanced and as more researchers
(many of whom CTR alumni) use numerical simulations to study turbulent flows.
CTR’s main role continues to be in providing a forum for the study of turbulence
for engineering analysis and in facilitating intellectual exchange among the leading
researchers in the field.

Once again the combustion group was the largest. Turbulent combustion has en-
joyed remarkable progress in using simulations to address increasingly complex and
practically more relevant questions. The combustion group’s studies included such
challenging topics as fuel evaporation, soot chemistry, and thermonuclear reactions.
The latter study was one of three projects related to the Department of Energy’s
ASCI Program (www.lInl.gov/asci); the other two (rocket propulsion and fire safety)
were carried out in the turbulence modeling group. The flow control and acoustics
group demonstrated a successful application of the so-called evolution algorithms
which actually led to a previously unknown forcing strategy for jets yielding in-
creased spreading rate. A very efficient algorithm for flow in complex geometries
with moving boundaries based on the immersed boundary forcing technique was
tested with very encouraging results. Also a new strategy for the destruction of
aircraft trailing vortices was introduced and tested. The Reynolds Averaged Mod-
eling (RANS) group demonstrated that the elliptic relaxation concept for RANS
calculations is also applicable to transonic flows with shocks; however, prediction
of laminar/turbulent transition remains an important pacing item. A large fraction
of the LES effort was devoted to the development and testing of a new algorith-
mic procedure (as opposed to phenomenological model) for subgrid scale modeling
based on regularized de-filtering of the flow variables. This appears to be a very
promising approach, and a significant effort is currently underway to assess its ro-
bustness in high Reynolds number flows and in conjunction with numerical methods
for complex flows.

As part of the Summer Program two review tutorials were given on Turbulent
structures in hydrocarbon pool fires (Sheldon Tieszen), and Turbulent combustion
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modeling: from RANS to LES via DNS (Luc Vervisch); and two seminars entitled
Assessment of turbulence models for engineering applications (Paul Durbin) and
Subgrid-scale modeling for non-premized, turbulent reacting flows (James Riley)
were presented. A number of colleagues from universities, government agencies,
and industry attended the final presentations of the participants on July 31 and
participated in the discussions.

There are twenty-six papers in this volume grouped in five areas. Each group
is preceded with an overview by its coordinator. Early reporting of twelve of the
projects occurred at the Forty-Ninth Meeting of the Division of Fluid Dynamics of
the American Physical Society in Philadelphia, November 22-24, 1998.

Thanks are due to Debra Spinks for her diligent efforts in the organization of the
Program and compilation of this report. Her efforts in the administrative planning
and operation of the Summer Program is very much appreciated.

Parviz Moin
William C. Reynolds
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The combustion group

The 1998 Combustion group of the CTR summer program gathered more than
twenty scientists to work on seven projects. Summer combustion programs are
evolving rapidly from one year to another, exploring new fields of research in many
cases. In 1998, new tools were developed and tested while new applications fields
for existing tools were opened.

The main new tool studied by three groups in 1998 was Large Eddy Simulation
(LES) for reacting flows. Even though it is obvious that LES will be an impor-
tant tool to both study combustion on a fundamental level and address practical
applications in the near future, the status of LES for combustion is still far from
mature. Multiple questions linked to the fundamentals of LES in reacting flows
and to the practical feasibility of LES for such flows (in comparison with existing
Reynolds-averaged formulations) remain open. During this program, the fundamen-
tal aspects of LES for combustion were studied for premixed, partially premixed,
and diffusion flames. Cook and Bushe investigated one of the building blocks of all
LES models for diffusion flames: the modeling of the scalar dissipation which mea-
sures the rate at which fuel and oxidizer are mixed by turbulence. Using existing
CTR DNS data, they analyzed the validity of existing models. Trouvé and Vervisch
also addressed a central problem for LES of diffusion flames: most LES of such flows
are performed using infinitely fast chemistry assumptions which lead to nonphys-
ical results in many cases. Relaxing this assumption is a necessary but complex
task. Using DNS data, Trouvé and Vervisch developed a description of the igni-
tion zones of turbulent diffusion flames and proposed modeling approaches for such
simulations. In the field of premixed and partially premixed flames, Angelberger,
Poinsot, Veynante, and Egolfopoulos focused on the development of simplified real-
istic chemistry and its coupling with LES. A thickened flame model based on DNS
of flame vortex interactions was used to describe flame/turbulence interaction, and
the final LES tool was shown to be efficient in computing flame transfer functions
in combustion instabilities. The effect of pulsating equivalence ratio in lean flames
was also investigated.

New topics were also studied using DNS codes coupled to particle solvers: Réveillon
and Vervisch studied the importance of fuel vaporization on the variance of fuel mass
fraction, which is a crucial quantity for turbulent combustion models. They showed
that, in addition to fuel vapor, vaporizing droplets were also creating high levels of
fuel vapor variance, which must be included in LES or RANS models. Along the
same lines of research (coupling DNS solvers for gas with particle tracking codes),
Smith, Oefelein, Ruetsch, and Ferziger studied the formation of reactive particles in
a turbulent flow with a specific emphasis on soot formation, which is a key problem
in multiple diffusion burners.

New practical questions were also addressed using existing tools: for example,
the NTMIX CHEMKIN code, which can perform DNS with complex chemistry
and transport, was used by Haworth, Cuenot, Poinsot, and Blint to study flame
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propagation in direct injection engines. In these engines, gasoline is injected directly
inside the combustion chamber so that the flame propagates into a highly stratified
mixture, leading to multiple new fundamental challenges for combustion research.
Haworth et al. performed the first DNS of such propagation phenomena using a 29
species chemical scheme for propane air flames.

Finally, totally new fields for CTR were studied this year: DNS tools developed
for hydrocarbon flames at CTR were adapted by Niemeyer, Bushe, and Ruetsch
to investigate flame propagation in thermonuclear flames. These flames have many
common features with flames studied in the combustion community even though
the parameter range and the chemical mechanisms differ by orders of magnitude.
Using CTR DNS tools for such flames led to new insights into their physics and to
an efficient interaction between two communities which do not meet often.

Being able to introduce more realistic chemistry into DNS and LES is one nec-
essary ingredient of CFD for combustion. Interestingly, the collaboration between
chemists and CFD experts was very intensive and fruitful in 1998: Bowman, Blint,
and Egolfopoulos proposed and modified chemical schemes in direct interaction
with DNS or LES scientists to find the best compromises. This iterative procedure
demonstrated that the stiffness of these schemes may be decreased significantly while
preserving accuracy simply by promoting an efficient interaction between chemistry

experts and DNS/LES users.

Thierry Poinsot
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Numerical simulation of turbulent
propane-air combustion with
non-homogeneous reactants: initial results

By D. Haworth,' B. Cuenot,? T. Poinsot,> AND R. Blint!

High-resolution two-dimensional numerical simulations have been initiated for pre-

mixed turbulent propane-air flames propagating into regions of non-homogeneous
reactant stoichiometry. Simulations include complex chemical kinetics, realistic
molecular transport, and fully resolved hydrodynamics (no turbulence model). Aero-
thermochemical conditions (pressure, temperature, stoichiometry, and turbulence
velocity scale) approach those in an automotive gasoline direct-injection (GDI) en-
gine at a low-speed, light-load operating condition. Initial results suggest that: 1)
There is no leakage of the primary fuel (propane) behind an initial thin premixed
heat-release zone. This ‘primary premixed flame’ can be described using a mono-
tonic progress variable and laminar premixed flamelet concepts. 2) Following an
initial transient, global heat release with non-homogeneous reactants is lower than
with homogeneous reactants for the same overall reactant stoichiometry. Flame
area (length) is greater with non-homogeneous reactants. 3) Beyond three-to-four
flame thicknesses behind the primary flame, practically all hydrocarbon fuel has
broken down into CO and Hj. 4) The rate of heat release in the ‘secondary reaction
zone’ behind the primary premixed flame is governed by turbulent mixing and the
kinetics of CO, production. Mixture-fraction-conditioned secondary heat release,
CO, and CO; production rates are qualitatively similar to results from a first-order
conditional-moment-closure (CMC) model; CMC gives poor results for Ha, H;O,
and radical species. Description of the secondary heat release using simple lam-
inar diffusion flamelet concepts is problematic. 5) Computational considerations
demand modifications to chemical mechanisms involving C3H7; and CH3CO. Spe-
cific changes are proposed to strike a satisfactory balance between accuracy and
computational efficiency over a broad range of reactant stoichiometry.

1. Introduction

Stratification of the in-cylinder fuel-air mixture has the potential to reduce signif-
icantly the fuel consumption of automotive reciprocating internal-combustion (IC)
engines. As a result, both spark-ignition gasoline (Lai et al. 1997) and compression-
ignition Diesel (Krieger et al. 1997) direct-injection engines currently are subjects

1 GM R&D Center, Warren, M1
2 Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, Toulouse
3 Institut de Mécanique des Fluides de Toulouse, Toulouse
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of intense research. In a direct-injection engine, liquid fuel is injected directly into
the combustion chamber to generate a highly non-homogeneous fuel/air/residual
mixture at the time of ignition and flame propagation.

The motivation for the present research is to determine the effects of reactant
stratification on turbulent flame propagation, and to incorporate this new under-
standing into turbulent combustion models. The application of interest is the gaso-
line direct-injection (GDI) engine. Specifically, we seek: 1) to validate or invali-
date a conceptual framework initially adopted for modeling this combustion regime
(Fig. 1); 2) to quantify differences in the primary heat release process between
homogeneous and non-homogeneous reactants; and 3) to determine the chemical
composition and heat-release rates for the fuel fragments and oxidizer that pene-
trate behind the primary heat-release zone.

The tool selected is high-fidelity numerical simulation including turbulence, com-
plex chemical kinetics, and full multi-component molecular transport. Propane-air
(C3Hg/O2 /N, reactants) is the simplest hydrocarbon system that exhibits chemi-
cal behavior, laminar lame speeds and thicknesses, and extinction limits that are
comparable to those of heavier paraffin fuels (Turns 1996). It is probably the small-
est system from which quantitative information directly relevant to the oxidation
of heavier liquid gasoline and Diesel fuels can be extracted, and is therefore an
appropriate choice for this study.

In addition to addressing specific physics and modeling issues, this work also ad-
vances the state-of-the-art in ‘direct’ numerical simulation of turbulent combustion
(i.e., computations in which all spatial and temporal scales are resolved without
filtering or turbulence modeling). Simulation is extended to detailed propane-air
chemistry and transport and to high pressure and temperature reactants with ex-
treme fuel-lean and fuel-rich stoichiometry. Propane-air chemical kinetics is based
on a 29-species, 73-reaction mechanism originally published by Warnatz (1981) and
subsequently modified and extended to IC-engine conditions by Blint (1988, 1991).
Modifications to reaction steps involving C3H7 and CH3CO are introduced for com-
putational practicality. The chemical mechanism is implemented in the numerical
code NTMIX-CHEMKIN (Baum 1994), which has been used in a number of earlier
numerical turbulent combustion studies including hydrogen-oxygen flames (Baum
et al. 1994) and methane-air systems (Hilka et al. 1995). The formulation is similar
to that used by other researchers for turbulent hydrogen-air (Im et al. 1998) and
methane-air (Gran et al. 1996; Chen & Im 1998) combustion. Earlier numerical
studies of turbulent premixed flames with non-homogeneous reactants have used
one-step irreversible chemistry (Poinsot et al. 1996; Hélie and Trouvé 1998) and
have focused on the primary premixed burn. Here secondary reaction (heat release
occurring behind the primary flame) is emphasized.

2. Stratified Turbulent Combustion in a GDI Engine

2.1 Combustion regime

Many of the combustion issues to be resolved in GDI automotive engines arise
during low-speed light-load operation. At 2,000 r/min and 330 kPa NMEP (net
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FIGURE 1. A schematic of turbulent flame propagation into a region of non-

homogeneous reactants. The six mass fractions Y, correspond to the six streams
defined in the skeletal combustion model of Egs. (1) and (2).

mean effective pressure), the in-cylinder fuel/air mixture is globally fuel-lean. A
typical overall fuel-based equivalence ratio is ® = 0.3, where @ is reactant fuel-
to-air mass ratio, divided by the stoichiometric fuel-to-air mass ratio (Section 3.4).
Moreover, the mixture remains highly non-homogeneous at the time of ignition. The
local equivalence ratio ranges from below the lean flammability limit (® = 0.5) to
above the rich flammability limit (® ~ 3) over a distance of less than one centimeter.
The in-cylinder pressure and temperature at time of ignition are approximately four
atmospheres and 700 K, respectively. Global turbulence rms velocity u and integral
length scale I are estimated based on a number of experimental measurements and
computational studies (Haworth & Poinsot 1992): u/ ~ 6 m/s and lr = 2-4 mm.

The mixture is ignited via spark discharge at a location where the local equiva-
Jence ratio is close to unity. At four atmospheres and 700 K, a stoichiometric pre-
mixed laminar flame propagates at about 1.6 m/s (the steady unstrained laminar
flame speed, s?) and has a thickness of about 0.1 mm (the laminar flame thickness
based on maximum temperature gradient, 69). The initially healthy propagating
turbulent premixed flame soon encounters fuel-rich and fuel-lean extremes in reac-
tant stoichiometry.

The turbulent combustion regime is characterized by comparing turbulence (hy-
drodynamic) scales with laminar-flame (chemical) scales. Either velocity- and
length-scale ratios or equivalently, Reynolds and Damkohler numbers, can be used.
Values corresponding to this engine example are uf/ s) ~ 4 and I /8% ~ 20 — 40
(Rer = ufplr/v =~ 600—1,200 and Da = (Ip/ulp)-(s?/8]) =~ 5—10). The parameter
range corresponding to the rotational speeds, loads, and dilution levels of interest
in IC engines is u//s? =~ 0.5— 20 and Ir/62 ~ 3 — 50 (Haworth & Poinsot 1992). It
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is flame propagation into spatially varying reactant stoichiometry in this parameter
range that we seek to understand and to model. Of primary interest is the rate at
which chemical energy is converted to sensible energy (heat).

2.2 A conceptual framework for modeling heat release

We hypothesize a two-stage combustion process (Fig. 1). Fuel and oxidizer are
well mixed at the molecular level in the unburned reactants, but the mixture com-
position is spatially non-uniform. Fuel and oxidizer initially react to release heat
and form product in a primary premixed flame. Behind the premixed flame are
hot combustion products. In locally fuel-rich regions, excess fuel or fuel fragments
pass through the primary flame; in locally fuel-lean regions, there is excess oxidizer
behind the primary flame. Secondary heat release occurs as the post-flame fuel
(or fuel fragments) and oxidizer mix at the molecular level and react. A skeletal
model is constructed to provide a conceptual basis for analysis (El Tahry 1997). We
consider six ‘streams:’ (1) ‘reactant’ fuel Y, - that is, fuel in front of the primary
premixed flame; (2) reactant oxidizer Yo,; (3) ‘product’ fuel Y, ; (4) product ox-
idizer Yo,; (5) combustion product Yp; and (6) inert diluent Y. We denote by
b the stoichiometric mass of oxidizer per unit mass of fuel and by d the mass of
diluent per unit mass of oxidizer. The overall reaction then can be represented on
a per-unit-mass-of-fuel basis as,

FRr+b(Or +dD) - (1+b)P +bdD ; Fp +b(Op +dD) — (1 +b)P +bdD . (1)

The turbulent combustion model comprises partial differential equations (pde’s)
for the mean mass fractions (Y,),a = 1,...,6. An equation for the mean enthalpy
(h) and auxiliary relations (e.g., fluid properties; Kee et al. 1983) also are needed.
Here and in the following, angled brackets { ) denote ensemble mean quantities.
Pde’s for the mean mass fractions have the form:

DplY; Dp(Y,
pétFR) = Dpp — RpysP — SFp—pp ; —%ts)i) = Doy = bRpyp — Sop—0p ;
DplY, Dp(Y,
—%FL) = Dp, — Rppsp + Spparp ; —%to"—) = Do, — bRpp—p + S0r0p ;
Dp(Y, DplY,
% =Dp+ (1 +b)Rrysp + (1 +b)Rpposp ; —%-'L) = Dp

(2)
Here D/Dt denotes a material derivative following the mean fluid velocity and
D, is an effective (laminar-plus-turbulent) diffusion term. Reaction source terms
Rpgr—p and RF,_,p are the rates at which reactant and product fuel, respectively,
are converted to combustion product. Terms SrpoFp and So,0, are the rates
at which reactant fuel and oxidizer, respectively, are converted to product fuel
and oxidizer without participating in the primary heat release. These account for
locally fuel-rich or fuel-lean reactants, and phenomena including local quenching
of the primary flame or vaporization of liquid fuel that occurs behind the primary
flame.
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2.8 Modeling issues

In this preliminary report, we limit our attention to the reaction source terms.

2.3.1 Primary heat release

We consider first the primary flame (Rp,p). Here the goal is to determine to
what extent existing models for homogeneous turbulent premixed combustion must
be modified to account for reactant stratification (assuming, for the moment, that
they remain appropriate at all). Laminar premixed flamelet models have proven
successful in modeling the overall heat-release rate in homogeneous-charge IC en-
gines. For example, a model developed by El Tahry (1990) has been applied to
practical engine configurations (Khalighi et al. 1995). In this model, the reaction
source term is written as Rpyop = pu(YFg)Y(81/81), where p, is the unburned
gas density, s; is a laminar flame speed, 4; is a laminar flame thickness, and v is
the probability of encountering an active reaction zone. Equivalently, one can write
Rppop = pu(Yre)(s1)Z, where X is the flame surface-to-volume ratio (e.g., Boudier
et al. 1992).

Important issues include the time evolution of flame area (v or L), the global heat
release rate for non-homogeneous reactants compared to those for homogeneous
reactants having the same overall stoichiometry, and determination of the extent
to which the local structure of the primary premixed flame differs from that of a
steady one-dimensional laminar flame under the same thermochemical conditions.

2.3.2 Secondary reaction

It is less clear how to proceed in modeling the secondary heat release (Rrp—pP)-
One-step irreversible chemistry (fuel+oxidizer — product) implies that either fuel or
oxidizer must be depleted on passing through the primary flame (Poinsot et al. 1996;
Hélie & Trouvé 1998). However, in a hydrocarbon-air system, the fuel might be
partially or completely broken down into smaller fragments, all species are present
in non-zero concentrations behind the primary flame, and each species diffuses at
a different rate—resulting, for example, in segregation of hydrogen-containing and
carbon-containing species that originated in the fuel.

Important questions related to the secondary combustion include: Is there any
leakage of fuel (propane) behind the primary flame? What is the composition of fuel
fragments behind the primary flame? What is the rate-controlling process governing
secondary heat release and what type of turbulent combustion model is most appro-
priate (e.g., chemical-kinetics-controlled versus turbulent-mixing-controlled versus
laminar-diffusion-lamelet versus conditional-moment-closure (CMC) models)?

3. The model problem

3.1 Governing equations and configuration

The system considered is a compressible multi-component reacting ideal-gas mix-
ture. Principal equations express conservation of mass (mixture density p), linear
momentum (mixture velocity u), Ns chemical species (mass fractions Y,, a =
1,...,Ns), and energy (total energy density e;). Chemical production terms are
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expressed in Arrhenius form, and species molecular transport is modeled using a
multicomponent form of Fick’s law. Soret and Dufour effects are not included. All
fluid properties, molecular transport coefficients, and chemical production terms
are computed using the CHEMKIN and TRANSPORT packages (Kee et al. 1980,
1983). The full system of governing equations and assumptions can be found in
Baum (1994) and Baum et al. (1994).

Here the focus is on chemical reaction source terms. The pde governing the
evolution of species mass fraction Y, is,

0pYa | OpYau;  0pYoVy; .
ot + 6.’L‘j = 6:cj + Waw, (3)

where w,, is the molar chemical production rate of species a and W, is its molecular
weight. The quantity V4; is the diffusion velocity (j** Cartesian component) for
species a.. In terms of species production rates and formation enthalpies Ah , the
heat-release rate wq (the rate of conversion from chemical to sensible enthalpy) is,

Ns
—) waAhY, . (4)
a=1

All chemical source terms are specified functions of the local mixture composition
and temperature (Section 3.2): wq = Wa(Y,T); wg = wo(Y,T). The pressure is
approximately uniform.

The governing equations are solved in a Cartesian frame of reference using sixth-
order compact finite-differences (Lele 1992) for spatial derivatives and third-order
Runge-Kutta time integration. Computational considerations preclude carrying out
spatially three-dimensional simulations with realistic chemistry and transport in the
parameter range of interest. The available options are: spatially two-dimensional
computations with detailed chemistry and transport for hydrodynamic scales ap-
proaching relevant values; or spatially three-dimensional computations with simple
chemistry and transport at lower Re and Da. To address the issues of interest here,
we have chosen the former.

Calculations are initialized with reactants on one side of the computational do-
main and products on the other; these are separated by a stoichiometric planar
laminar premixed flame. The initial flame is a steady one-dimensional solution to
the full set of governing equations. Initially isotropic two-dimensional turbulence
is prescribed using a two-parameter turbulence energy spectrum E(k) (Haworth &
Poinsot 1992). The parameters correspond to the initial rms turbulence velocity
upq and to the wavenumber of the spectrum peak kpq,. Here the product pup is
uniform through the flame, so that the rms turbulence level uf, is higher in the hot
burned products than in the cooler reactants The initial turbulence integral length

are enforced while non- reﬂectmg boundary conditions are used on inflow/outflow
boundaries.
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FIGURE 2. Computed two-dimensional heat-release field for homogeneous stoi-
chiometric reactants (Table I) at time t/7y = 3.5. Black corresponds to minimum
heat release (0.0) and white to maximum (0.36). Iso-contours of reaction progress
variable (white lines: ¢ = 0.1 and ¢ = 0.9, Eq. 8) are superposed. The ¢ = 0.9
iso-contour is close to the peak heat release.

Reactant non-homogeneity is introduced by varying the mass fractions of C3Hg,
0., and Ny in the reactants. This is done in a manner that maintains the same total
quantity of fuel and oxidizer as for a baseline homogeneous stoichiometric case, and
maintains a uniform ratio of Ny to Oz (uniform air composition). Here we consider
a large-scale sinusoidal non-homogeneity where the variation in composition parallel
to the initially planar flame (the periodic y direction) is of the form sin(27y/L,),
L, being the y-direction length of the computational domain. The equivalence ratio
ranges from a minimum at y = 0 and y = L, to a maximum at y = L, /2. The
time required for the change in reactant stoichiometry to penetrate the primary
premixed flame is estimated as,

s =260 / (s7(1+ pu/pv)) - (5)

Here p, and pp refer to the unburned- and burned-gas mass density, respectively.
This chemical flame time accounts for the acceleration of gases as they pass from
the cooler reactants to the hotter products. To explore secondary reaction, it is
anticipated that one must integrate to times on the order of several 7;’s.

Key aerothermochemical parameters for the two cases considered in this report
are summarized in Table I. Reactant composition, temperature, and pressure are
selected to match the engine condition of Section 2.1. The initial rms turbulence
level is within the range of interest in IC-engine combustion. However, the turbu-
lence integral length scale is low by a factor of ten. This is, in part, a consequence
of the small box size chosen for these initial runs. The computed heat-release field
of Fig. 2 serves to illustrate the configuration.
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3.2 Base propane-air mechanism

The base 29-species 73-reaction chemical mechanism (Warnatz 1981; Blint 1988,
1991) will be referred to as mechanism M1. Mechanism M1 has been validated
against available experimental measurements of laminar flame speed for ambient-
pressure-and-temperature reactants (Blint & Tsai 1998). It has been used to explore
in-cylinder engine combustion issues including dilution (Blint 1988) and stretch
(Blint 1991) effects, and has been used to generate a laminar flame library (Blint
& Tsai 1998) that has been coupled with a turbulent combustion model similar
to that of Section 2.2 and applied both to homogeneous and non-homogeneous
spark-ignited combustion in practical engine configurations. For present purposes,
nitrogen is treated as an inert diluent. In all computations, reactant air is defined
on a volume basis as 21% Oz, 79% N2 ((Yx, /Yo, )reactants = 3.25).

Table 1. Parameters for initial M2 homogeneous-reactant and non-homogeneous-
reactant cases. Pressure is four atmospheres, reactant temperature is 700 K, and
the global reactant equivalence ratio is unity.

Case Le/te  Ly/ny  ®@pin/®mes oL 2o o Rerg
1dz1

TT0  S1¢z

Homogeneous 2mm/301 3mm/451 1.0/1.0 092 38 18 71
Non-homogeneous 2mm/301 3mm/451 0.0/4.0 092 38 1.8 71

3.3 Modified chemical mechanisms

The maximum allowable computational time step and mesh spacing are deter-
mined, respectively, by the shortest time and length scales encountered in solving
the coupled set of governing pde’s. In the absence of chemical reaction, the smallest
hydrodynamic length scale to be resolved is the Kolmogorov turbulence microscale.
In that case, the time step for the fully compressible numerical methodology is
limited by a CFL condition based on the local sound speed: At < Az/a, where
a = (kRT)'/? (k = ¢,/c,, the ratio of specific heats; R is the specific gas constant).
Chemical reaction introduces additional time and length scales. For a stoichiometric
four-atmosphere propane-air flame, mechanism M1 requires a computational time
step that is nearly 1,000 times smaller than the CFL limit.

Clearly, a judicious reduction of the chemical mechanism is needed. A modified
mechanism M2 incorporates two changes to M1 that together return the time-step
limitation to a CFL condition: two of the rate-limiting species C3H7(N) and C3Hq(I)
are removed; and an equilibrium assumption is introduced for the remaining rate-
limiting species CH3CO. Rate coefficients in several reaction steps are adjusted
accordingly.
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FIGURE 3. Computed variation of steady unstrained laminar flame speed s with
equivalence ratio ® at four atmospheres for 700 K reactants. Results are shown
for three versions of the propane-air chemical mechanism: M1, ---- M2;
—-— M3.

The changes from M1 to M2 degrade the mechanism’s performance on the
fuel-rich side of stoichiometric. Fig. 3 shows computed steady unstrained one-
dimensional laminar flame speed as a function of equivalence ratio for four-atmosphere,
700 K reactants. The two mechanisms behave similarly on the fuel-lean side of sto-
ichiometric; M2's peak laminar flame speed is 23% higher than M1’s; and on the
fuel-rich side, M2's decrease in flame speed with increasing equivalence ratio is too
slow: burning remains robust even at ® = 3.

A third mechanism that attempts to address the shortcomings of M2 on the
fuel-rich side is designated as M3. Mechanism M3 retains one isomer of C3Hr
(C3Hz(I)), and includes modified rate coefficients for several related reactions. The
resulting flame-speed-versus-equivalence ratio behavior is practically identical to
that of M1 (Fig. 3). Also, CH3CO no longer introduces a time-step-limiting time
scale. Unfortunately, while CsHz(I) is crucial to satisfactory fuel-rich behavior, it
requires a time step that is about a factor of ten smaller than CFL.

At the time of this writing, work continues towards a well-balanced (accuracy
versus computational efficiency) chemical mechanism, following along the lines of
M3. In the meantime, preliminary turbulent simulations using M2 were initiated
with the purpose of generating a ‘first look’ database for non-homogeneous turbulent
propane-air flames. For these initial simulations, a 2 mm X 3 mm computational
domain is discretized on a 301 x 451 node mesh (Table I). The computational time
step is limited by a sound-speed CFL condition. In spite of the known shortcomings
of M2, extreme fuel-lean and fuel-rich stoichiometry are included. This has been
done in the spirit of generating large effects that can be readily discerned, and to
facilitate diagnostics development.
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3.4 Diagnostics

Global quantities and primary-premixed-flame-front quantities of interest have
been introduced in the course of earlier numerical studies of propagating premixed
turbulent flames (Haworth & Poinsot 1992; Baum 1994; Baum et al. 1994; Poinsot
et al. 1996; Hélie & Trouvé 1998). Quantities related to specific secondary-
combustion models will be defined in Section 5. Here we discuss two quantities
that are particularly germane to mixed-mode (premixed/non-premixed) combus-
tion: mixture fraction and progress variable.

3.4.1 Mizture fraction

A mixture fraction field z = 2(z,t) in a reacting flow quantifies the local mass
fraction of material that originated from the reactant fuel (versus oxidizer or dilu-
ent); it is particularly useful in the analysis and modeling of laminar and turbulent
non-premixed systems (Turns 1996). Mixture fractions are defined in such a way
that they do not depend directly on chemical reaction. That is, the transport equa-
tion for z(z,t) contains no chemical source term. Element mass fractions serve for
this purpose. With subscript 3 referring to a chemical element (one of C or H here,
as there is no O or N in the propane fuel), a mixture fraction 2g is defined as,

Ns
g = ananYa/Wa . (6)

a=1

Here ng, is the number of atoms of element 3 in species a, and Wp is the molecular
weight of element 3.

Equations (3) and (6) guarantee that the pde governing 2p(z, t) is free of a chem-
ical source term. At the same time, the particular linear combination of species
mass fractions that yields wg = 0 cannot simultaneously cancel the diffusion term.
Except in unusual cases (e.g., equal and constant diffusivities for all species), zg
will vary through the reaction zone in a laminar premixed flame, even while it takes
on the same value in pure reactants as in equilibrium products. Moreover, while
the ratio z¢/zy is constant in homogeneous reactants, differential diffusion causes
this ratio to vary in a reacting flow.

To account for all local mass that originated in the fuel stream, a carbon-plus-
hydrogen mixture fraction 2c+H = zc + zy is used: in pure reactants, ZO0+H =
Yc,n,- This mixture fraction reduces to that introduced for one-step irreversible
chemistry by Poinsot et al. (1996) in their studies of non-homogeneous turbulent
premixed combustion.

For a hydrocarbon-air system, reactants are said to be in stoichiometric pro-
portion when there is exactly enough oxygen to oxidize all carbon in the fuel to
CO; and all hydrogen to Hy,O. For propane-air, this corresponds to five moles of
oxygen per mole of fuel. Corresponding stoichiometric mixture fraction values are:
2C st = 004980, ZH gt = 001115, and ZC+H st = 0.06095.

Closely related to mixture fraction are quantities including equivalence ratio and
air-fuel ratio that are widely used in the engineering combustion community. A fuel-
based equivalence ratio ®, for example, is defined as the reactant fuel-to-air mass
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ratio divided by the fuel-to-air mass ratio for stoichiometric reactants. Equivalence
ratio and mixture fraction are related by,
§ = _ZCtH 1—2c+Hat ’ (7)
1—-2¢c+H ZC+Hst
where it is understood that ® is defined only in pure reactants (well ahead of the
primary flame).

3.4.2 Progress variable

In the analysis and modeling of laminar or turbulent premixed flames, it is con-
venient to work with a quantity that increases monotonically from zero in fresh
reactants to unity in fully-burned products. For quantitative work, it is neces-
sary to associate this ‘reaction progress variable’ ¢ = ¢(z,t) with specific physical
quantities such as species mass fractions or temperature.

In their report on turbulent premixed flames with non-homogeneous reactants,
Poinsot et al. (1996) introduced a reaction progress variable defined in terms of
local mixture fraction. Their definition was appropriate for single-step irreversible
chemistry where either fuel (in fuel-lean regions) or oxidizer (in fuel-rich regions) is
completely depleted in passing through the primary premixed flame. With complex
chemistry, it is not clear a priori whether there exists any simple combination of
physical variables that unambiguously marks a primary flame zone. In the present
work, it is found that the primary fuel (propane) does not survive the initial heat-
release zone even in locally fuel-rich regions. Following Poinsot et al. (1996), we
therefore propose the following reaction progress variable:

c=1- YC3H3/ZC+H . (8)

In unburned reactants, zc4+x = Yc,H, 50 that c = 0; and at any point where there is
no propane, ¢ = 1. The appropriateness of this choice will become clear in Section 5.

4. One-dimensional unsteady laminar premixed flames

As a prelude to two-dimensional turbulent cases, computations were performed for
one-dimensional laminar premixed flames propagating into a step change in reactant
stoichiometry. Two cases are considered: an initially steady stoichiometric flame
propagating into fuel-lean (® = 0.5) reactants; and an initially steady stoichiometric
flame propagating into fuel-rich (® = 2.0) reactants.

Figure 4 shows the time evolution of computed heat-release profiles (mechanism
M2, four atmospheres, 700 K reactants). For the stoichiometric-to-lean case, peak
heat release drops monotonically as the heat-release profile shifts towards the prod-
uct side. The peak heat release for the steady-state ® = 0.5 laminar flame is 12%
that of the stoichiometric flame.

In the stoichiometric-to-rich case (Fig. 4b), the peak heat release initially increases
as the flame encounters excess fuel; it then decreases to a steady-state value that
is 53% of the initial ® = 1.0 peak. The heat-release profile develops a double-
peaked structure that persists to the ® = 2.0 steady state. For a stoichiometric-to-
rich transient to ® = 4.0, the heat-release ‘valley’ actually becomes negative (not
shown).
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FIGURE 4. Computed heat-release profiles at several instants of time for un-

steady unstrained laminar premixed propane-air flames propagating through a step
change in reactant stoichiometry: four-atmosphere 700 K reactants, mechanism
M2. Heat release is normalized by the peak value for the initial stoichiometric
flame: t/Tg = 0; oo t/rp = 1.4; -——- t/7; = 4.1; —— t/ty = 8.2;
—--—t/75 = 12.2. a) Stoichiometric to ® = 0.5. b) Stoichiometric to & = 2.0.

5. Two-dimensional turbulent flames

5.1 Global observations

Results at the latest available time (¢/7s = 3.5; t/770 = 3.2) are analyzed. A
single computed field (heat release) is shown for homogeneous stoichiometric reac-
tants (Fig. 2). Isocontours of progress variable are superposed. Figure 2 illustrates
visually the extent to which turbulence has perturbed the initially planar flame to
increase its surface area (length) by this time.

Figure 2 can be compared to the corresponding non-homogeneous-reactant case
at the same instant (Fig. 5a). The same initial ‘realization’ of a turbulent fow
field has been used in both cases, and the resulting overall shapes of the primary
reaction zone (progress variable iso-contours) are similar. This suggests that at early
times, turbulence determines the shape of the propagating primary premixed flame
sheet. At later times, it is anticipated that differences between the homogeneous
and non-homogeneous flames will be greater.

Examples of several other computed fields are shown in Fig. 5 for the non-
homogeneous-reactants case. Three important initial observations are made.

First, there is no leakage of propane fuel past the primary heat-release zone, even
in locally fuel-rich regions. As long as the flame does not completely quench, similar
behavior is expected even with improved fuel-rich mechanisms. To the extent that
this conclusion is general, it largely validates the two-stage conceptual framework
of Fig. 1.

Second, the disappearance of primary fuel (propane) coincides with the zone
of maximum heat release. This validates the specific choice of progress variable
adopted in Eq. (8) and suggests that classic premixed flamelet concepts might re-
main appropriate for modeling the primary heat release.
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Heat Release

FIGURE 5. Computed two-dimensional fields at time /75 = 3.5 for non-homogen-
eous reactants (Table I). Black corresponds to (0.0) within each frame and white
to the maximum value. Iso-contours of reaction progress variable (white lines:
c=0.1and ¢ = 0.9, Eq. 8) and stoichiometric mixture fraction (dark line: zc4n =
zo+n st = 0.06095, Eq. 6) are superposed. Heat release: wq (Eq. 4) (0.24 max).
Yo,: (0.233 max). Yco: (0.140 max). Yoo,: (0.142 max). Yu,: (0.00751 max).
Yn,o: (0.111 max). You: (0.00689 max). Ycu,: (0.000238 max).
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FIGURE 6. Time evolution of global heat release and flame length (¢ = 0.5 iso-
contour, Eq. 8) for homogeneous stoichiometric reactants and for non-homogeneous
reactants (Table I). Time is normalized by flame time 77 (Eq. 5). Heat release and
flame length are normalized by their initial values: heat release, homoge-
neous; ---- heat release, non-homogeneous; o ---- o flame length, homogeneous;
0 —-— o flame length, non-homogeneous.

And third, relatively short integration times suffice to observe effects of reactant
non-homogeneity behind the primary premixed flame. For example, already at
t/7; = 3.5 the product zone behind the fuel-rich reactants is largely depleted of
O3, O, and OH. This is a fortuitous result for numerical simulation: meaningful
results concerning the secondary combustion regime can be extracted earlier in the
simulations than initially thought.

The accelerating mechanism is turbulence. Counter-rotating vortex pairs pull
tongues of reactants into the hot burned product region, where they quickly are
consumed along their sides and highly curved tips to deposit products of rich or lean
combustion behind the primary flame. Several such tongues have already appeared
and burned out by the instant shown in Fig. 5, and one in the process of burning
out can be seen there. This effect is exacerbated by the spatial two-dimensionality
of the simulations.

5.2 The primary premized flame

Time evolution of global heat release and flame length are plotted in Fig. 6.
Flame length is computed as the length of a progress variable iso-contour (c=0.5,
Eq. 8); global heat release is the area integral over the entire computational box
of wg (Eq. 4). Time is reported in flame-time units (Eq. 5) and heat release and
flame length are normalized by their respective values for the initial one-dimensional
stoichiometric flame.

Flame length increases approximately linearly in time initially, and by the latest
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time shown is settling to a value corresponding to about twice the length of the
initial planar stoichiometric flame. If there is any systematic difference in flame
length between the homogeneous and non-homogeneous case, it is less than 10%,
with the non-homogeneous case being longer. This result seems reasonable for
the large-scale non-homogeneity studied here. Laminar flame speed is highest for
reactants just rich of stoichiometric. Those parts of the flame penetrate deepest into
the unburned reactants, while richer and leaner parts do not advance as rapidly as
in the stoichiometric case, yielding a longer active flame front.

Global heat release increases much less rapidly than flame length. This is at-
tributed to a combination of chemical kinetic and hydrodynamic strain effects. For
the homogeneous case, presumably the latter dominates. It is well established that
a propagating premixed flame tends to align itself with extensive strain in the tan-
gent plane (Poinsot & Haworth 1992): the net influence of turbulent staining is to
reduce the heat release per unit area of flame. This effect apparently is quite strong
for the conditions simulated. For the homogeneous case, the turbulent flame length
is twice that of the initial planar flame, while global heat release is only about 1.4
times the laminar value. This suggests a reduction of about 30% in the mean heat
release per unit flame length relative to the initial planar flame.

For non-homogeneous reactants, the global heat-release behavior combines tur-
bulent straining and chemical kinetic effects. Global heat release increases initially
at a rate that is systematically higher than that of the homogeneous stoichiometric
flame; this is consistent with the transient one-dimensional results of Section 4.3.
As the flame adjusts to the reactant non-homogeneity, global heat release drops
dramatically so that by the end of the simulation, it is below that of the initial
planar stoichiometric flame.

Heat-release profiles in the fuel-rich region are double-peaked along a direction
normal to a progress variable iso-contour (Fig. 5a); between the peaks, the local
heat-release rate is negative. The progress variable iso-contour ¢ = 0.9 neatly tracks
the heat-release valley through the fuel-rich region, and follows close to the heat-
release peak for locally lean-to-stoichiometric mixtures. The ¢ = 0.9 iso-contour
coincides roughly with the temperature iso-contour T =~ 1,700 K. Normalized tem-
perature is less satisfactory than propane mass fraction as a progress variable for
non-homogeneous reactants, as temperature does not increase monotonically.

5.8 Secondary reaction

To isolate information related to post-primary combustion, it suffices to condition
on a near-unity value of the reaction progress variable. Here ¢ > c* = 0.999 defines
the zone of secondary reaction. Turbulent combustion closures are assessed to
determine which have the most potential for modeling the secondary heat-release
process (R, in the skeletal model of Eq. 2). The approach is to analyze the mean
chemical source terms (Wa(Y, T)}esc and (wo(Y, T))e>c of Egs. (3) and (4).

5.8.1 Chemical composition

Qualitative insight can be gained by examining the computed two-dimensional
fields of Fig. 5. As for the steady stoichiometric one-dimensional laminar flame,
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FIGURE 7. Scatter plot of Yco, versus mixture fraction zc+n and dissipation rate
log(xc+n/(2D)) in the post-primary-flame gases (¢ > c* =0.999, Eq. 8). Dissipa-
tion is ‘binned’ into ten uniformly-spaced intervals from min{log(xc+u/ (2D))} to
max{log(Xc+H/(2D))}, 1 being the lowest values of xciu/(2D) and 10 being the
highest.

species HzO, and HO; appear along the leading edge of the turbulent flame. Pro-
gressively smaller hydrocarbon fragments mark the conversion from reactants to-
wards products in the fuel-rich region, with only the smallest (CH and CH,) pen-
etrating noticeably behind the ¢ = 0.9 iso-contour. Beyond three-to-four flame
thicknesses behind the primary premixed flame, the only remaining fuel fragments
are CO and H,.

5.3.2 Laminar diffusion flamelet model

Laminar flamelet theory (Peters 1984) provides an approach for decoupling de-
tailed chemical kinetics from hydrodynamics in modeling non-premixed turbulent
reacting flows. It is hypothesized that chemical reaction occurs primarily in a thin
sheet that is anchored at the stoichiometric surface z — zgt. Through a formal
transformation, the spatial and temporal variations of the chemical composition
fields in the turbulent flow are made implicit through their dependence on mixture
fraction z(z,t) and its dissipation rate x(z,t) = 2DVz - Vz (D being molecular
diffusivity of z). A necessary, but not sufficient, condition for flamelet combustion
can be expressed as,

Ya(z,t) = Ya(z(z, t), x(z, 1)) . (9)

That is, the local chemical composition should be a unique function of the local
mixture fraction and its dissipation rate. A second and more restrictive condition
is that the functional dependence expressed in Eq. (9) be the same in the turbulent
flame as in an archetypical laminar diffusion flame - usually taken to be a steady
laminar counterflow diffusion flame. Only the first condition is examined here.
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FIGURE 8. Quantities relevant to a first-order CMC model: (wa(Y, T)|z =
n); ---- wa((¥|z = 1), (T|z = n)). Mean quantities are conditioned on ¢ > ¢* =
0.999. The ordinate is normalized by the maximum value for each frame. a) Heat
release rate. b) Chemical production rate of CO2. ¢) Chemical production rate of
H,0. d) Chemical production rate of OH.

In Fig. 7, we plot the local mass fraction of a major product species (CO2) as a
function of the local mixture fraction zc4+p with xc+r/(2D) as a parameter. If
the combustion corresponded to a simple laminar diffusion flamelet regime, then for
a given value of 2¢+H, Yco, would increase monotonically with decreasing xc+Hx-
Figure 7 would display a ‘rainbow’ structure with xc4+n = 0 defining the upper
boundary; and moving downward, successive parallel bands would correspond to
increasing values of xc+x. No such pattern is evident. Nevertheless, there does
appear to be some structure to this scatter plot (e.g., the roughly horizontal stripes
with monotonic variation in xc4z). This suggests that more sophisticated flamelet
models that include conditioning variables, time-dependency (Haworth et al. 1988),
or partial premixing of fuel and oxidizer might be appropriate.

5.3.3 Conditional moment closure (CMC) model

In conditional moment closure (CMC) (Bilger 1993), one considers conditionally
averaged transport equations where the conditioning variable(s) is (are) chosen to
be one(s) on which the chemical production terms are expected to have a strong de-
pendence. Mixture fraction is, presumably, the single most appropriate conditioning
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variable for non-premixed combustion.

A ‘first-order’ CMC hypothesis is that the conditional average of a chemical
production term (wq (Y, T')|z = 7) is equal to the chemical production rate evaluated
using the conditionally averaged composition (Y |2z = ) and temperature (T|z = n):

<“.)a(X1 T)IZ = ") = wa((ZIZ = 77)» <T|Z = 77)) ) (10)

and similarly for heat release. Here the notation (Q|z = %) denotes the mean value
of  conditioned on the mixture fraction z having the value 7. The unconditional
mean is recovered by integrating over the probability density function (pdf) of z,

f=(n),

(o) = [ @a(¥,T)le = ) aln)dn (
11)
(a)ome = / Oal(Y]2 = 1), (T|z = 1)) fa(m)dn .

The first-order CMC model is evaluated by comparing the actual and CMC mixture-
fraction-conditioned means (left- and right-hand sides of Eq. 10, respectively; Fig. 8).
Here the mixture fraction z¢4 g has been used. First-order CMC captures the gen-
eral shapes of the mixture-fraction-conditioned mean production rates for CO, CO,,
and heat release but not for Hy, H>O, and most radical species. This is consistent
with the expectation that the kinetics of CO, production dominates the secondary
heat release. In classic turbulent diffusion flames, heat release and species pro-
duction rates peak close to the stoichiometric value of mixture fraction. That is
not the case here: most of the post-primary stoichiometric mixture in the present
configuration corresponds to products of stoichiometric premixed combustion.

6. Next steps

While all results reported herein must be regarded as preliminary, significant
progress has been made towards simulating non-homogeneous turbulent combustion
in a specific parameter range of interest and towards understanding and modeling
this combustion regime. Three principal issues remain to be addressed before defini-
tive conclusions can be drawn: further work is needed on the chemical mechanism
to strike a satisfactory balance between accuracy and computational efficiency on
the fuel-rich side of stoichiometric; computations must be extended to larger com-
putational domains (a minimum of one-centimeter square) to allow the simulation
of turbulence length scales up to 2 mm; and, computations should be integrated
longer in time (a minimum of five-to-ten 7¢’s) to ensure that results are free from
the influence of initial conditions.
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Accounting for spray vaporization
in turbulent combustion modeling

By J. Réveillon! AND L. Vervisch'

Three dimensional Direct Numerical Simulations (DNS) of droplet vaporization
in the presence of turbulent micromixing have been performed. The transport
equations for basic components of non-premixed turbulent combustion modeling,
namely the mean of the mixture fraction and its fluctuations, are presented for the
case of a dilute spray. The unclosed terms describing vaporization in the equation
for the fluctuations of mixture fraction are analyzed via the DNS data, and a One
Droplet Model (ODM) is proposed for those terms.

1. Introduction

Liquid fuel injection is one of the most common procedures in devices where non-
premixed turbulent flames are utilized (e.g. diesel engines, aeronautical combustion
chambers, and furnaces). Although much work has been devoted to gas-phase
turbulent combustion modeling (Borghi 1988, Poinsot et al. 1995, Bray 1996), rela-
tively few studies have focused on the development of combustion models accounting
for spray vaporization. Thus, when either Reynolds Averaged Navier Stokes Simu-
lation (RANS) or Large Eddy Simulation (LES) are considered for the calculation of
practical combustion chambers, turbulent combustion models accounting for spray
vaporization are strongly needed.

Nonpremixed combustion is usually approached using conserved scalars where the
mixture fraction, Z, and the magnitude of its gradient, |V Z], are used to parameter-
ize the flame in analytical studies (Lifian 1974). In RANS or LES of non-premixed
turbulent flames (Peters 1986, Pierce & Moin 1998), Z, the mean of the mixture

fraction, together with Z"2, its level of fluctuation, are used in most combustion
models. These quantities measure the extent of mixing between fuel and air, and
along with the mixture fraction dissipation rate px = pD|VZ"|? are used to es-
timate a micro-mixing time scale. When vaporization of fuel occurs, Z is not a
conserved scalar due to local sources of fuel, resulting in additional unclosed terms
appearing in the transport equations for Z and 22

We have used DNS to simulate a dilute spray for the study of the vaporization
terms found in the transport equation for Z"2. From the results, we discuss model-
ing of terms using the conditional mean value of the vaporization source of fuel, the
conditioning quantity being the mixture fraction. Analytical results characterizing
a dilute spray are utilized to derive an expression for this conditional mean value.

1 LMFN,UMR CNRS 6614-CORIA, University and INSA of Rouen.
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FIGURE 1. Classification of spray combustion regime. Group combustion diagram
of Chiu et al. (1982).

The results are based on exact solutions obtained for a single droplet vaporizing in
a given volume. Then, the accuracy of this One Droplet Model (ODM) is compared
against the DNS data. These problems involving a dilute spray mimic situations
that may be observed in aeronautical or rocket engines at a particular stage of the
combustion process (Borghi 1996).

At the end of this report, the case of a flame attached to a droplet laden jet is
also discussed as a challenging problem for DNS.

2. DNS of a turbulent spray

2.1 Introduction

Direct numerical simulation, in theory, allows for a model-free simulation; how-
ever, the resources required to perform the simulation of both the turbulent gas
phase and the detailed motion of the liquid phase are too great. In our simulations,
the flows around an individual drop and inside the drop are not fully resolved;
instead available closures are introduced for the liquid phase along with its vapor-
ization rate (Faeth 1983, Law 1982, Sirignano 1983). A Lagrangian description of
the spray with two-way coupling (Faeth 1983) is employed. These simulations are
restricted to droplets that are smaller than the Kolmogorov length scale. Therefore,
in the group combustion diagram of Chiu et al. (1982) classifying different combus-
tion regimes (Fig. 1), the present simulations are limited to problems observed in
external combustion around clusters of droplets.
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FIGURE 2. (a) Sketch of the initial repartition of the droplets. (b) 2D-snapshot of
clusters dispersion after one eddy turn over time. Isolines: vorticity; dot: droplets.

2.2 Governing equations and numerics
A Lagrangian description is adopted for modeling the spray of fuel. The properties
of the droplets are estimated by solving a system of three equations for each droplet:
its position X*, its diameter ©% and its velocity V*. This system (Faeth 1983, Kuo
1986) may be written for each droplet as:

dxE
i
k)3
d((jt) = —dwy
d(0%)° v}

J V4t

with the mass evaporation rate and drag force given by:

k _ #Sﬁc k k
wh = b7t (1+By )@ , (1)
T

D} = Zp (04 Ch|Ur -V (UF - V)
In the above equations, Cp is the drag force coefficient, S is the convective Sher-
wood number taking the value 2 in a quiescent flow, and A = 6/ (mp;) is a constant
parameter in which p; is the liquid constant density. The properties of the gas
(p viscosity, p density, and U; velocity) are obtained at the droplet position from
the grid nodes using a third order interpolation algorithm (Guichard et al. 1998).
These equations have been made dimensionless with R. as the acoustic Reynolds
number of the DNS problem, and S and P, are the Schmidt number of the fuel
and the Prandtl number, where Pr = Sc=0.7.
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To construct the thermal budget, we assume all the energy reaching the surface
contributes to the droplet skin vaporization without any transfer or accumulation
in the liquid core (thin skin approximation, Faeth 1983). With this description,
only an infinitely thin layer of fuel around the droplet is heated and vaporized while
the temperature and the liquid mass fraction of the droplet core remain constant
and equal to the conditions of injection.

The properties of vaporization are characterized by the species Spalding param-
eter, b= Yr/(Y# — 1), from which the Spalding number is defined: By = 5 — §° .
The fuel mass fractions Y} and Y2° are taken at the surface of the droplet and in
the pure gas respectively. Defined in this manner, By characterizes the diffusion
rate of the fuel and may be estimated with three different levels of complexity. In
a first approximation By is assumed constant, then the droplet diameter follows a
d-square law, ©%(t) = ©%(t = 0) — ft, where 3 is the vaporization coefficient. Other
possibilities are to consider By as linearly related to the gas temperature around
the droplet or to calculate By as a function of the saturation, the local pressure
and temperature, and, eventually, the gaseous fuel mass fraction. The simulations
of turbulent mixing have been performed with a constant Spalding number corre-
sponding to situations where the temperature of the spray is close to saturation,
whereas the second possibility (By = By (T)) is retained for the spray flame calcu-
lations.

The flow is described by solving the following equations accounting for the two-
way coupling:

9  OpU; 1

9p _1 k

3t ¥ ba, vzk:“’” !
OpUi  8pUU; 8P 1 do;; 1 k_ . kuk
ot + 623] = —317" Re azj - y (Dl wv‘/l ) ’

OpE, apEng_ a (pr _@1) LBO’,‘,‘U,’_I _]_. E(nE Evrk
3t+8mj = % - )+ - Zk:zV(D,- wkVF)

OpYr OpYrU; _ 0 u OYp 1 k
3t + 633] - '67" + ;wu ’

0pYo + OpYoU; 0 ([ %
ot dz; O, '

where V is the volume defined in the vicinity of the grid point. In this volume
we accumulate the vaporization source from each droplet in order to achieve the
coupling between the Eulerian and Lagrangian descriptions.
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A third order Runge-Kutta scheme with a minimal data storage method (Wray
1998) is used for time stepping. Spatial derivatives are estimated using the sixth or-
der Lele’s PADE scheme (Lele 1992). Non-reflecting boundary conditions of Poinsot
and Lele (1992) have been used for calculations with combustion.

2.8 DNS parameters

The droplets are organized in clusters (or clouds) homogeneously embedded in a
3D freely decaying turbulence with an initial integral length scale that is twice the
mean radius of these clusters (see Fig. 2). The density of droplets in the clusters is
chosen to reproduce, in the mean, a near-stoichiometric dilute spray of n-heptane
with the stoichiometric value Z, = 0.0625. Table 1 summarizes the parameters
used in the four different simulations with variable Spalding number and, therefore,
variable mean vaporization time. To allow comparison of micromixing with and
without droplet vaporization, we have also performed a simulation with an infinite
value for the Spalding number By (instantaneously vaporizing droplets).

Case By ©o /! T/TV v/ Tk Reys
™ 4 0.014 1.37 7.5 104
TV, 2.7 0.014 1.18 8.66 104
TV 1.9 0.014 0.94 10.97 104
TV lo's) 0.014 00 0 104

Table 1. Parameters of the simulations (65 x 65 x 65, 10800 droplets organized
in 9 clusters): The turbulence is characterized by its integral length scale Iy, the
eddy turnover time 7y, the Kolmogorov time 7%, and the Reynolds number Reys =
(u'l;/v) = (7¢/7k)?. The properties of the spray are: Oy the initial diameter of the
droplets, By the Spalding number, and its related vaporization time 7.

3. One Droplet Model (ODM)

As mentioned in Sig:ion 1, determining both the mean mixture fraction, Z,
and its fluctuations, Z"2, is a major issue of numerical modeling for nonpremixed
turbulent flames (Peters 1986). We will limit our discussion to closure for the
RANS/Lagrangian approach where the spray is modeled through a mean lagrangian
description (Lixing 1993). The RANS/Lagrangian approach brings an approxima-
tion of the mean vaporization rate W, entering the transport equation for Z, which
is then closed (Lixing 1993). Unfortunately, this method does not close many terms

found in the transport equation for Z"2, thus additional modeling is needed.

8.1 Budget equation for A

The mixture fraction is defined as Z = (®Yr/Yr,o — Yo/Yo,. + 1)/(® + 1).
The mass fractions in pure fuel and pure oxidizer are denoted by Yp, and Yo,
respectively, and the stoichiometric point is Zst = 1/(1 + ®). The equivalence ratio
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of the mixture is ® = (voM oYF,)/(vPM#Yo,,), with the molecular weights Mp,
My and the stoichiometric coefficients v, vp, vp corresponding to the reaction
vrYF + voYo — vpYp. The transport equation for Z is:

OpZ  OpZU; 09 0z 1 ®+Yr, ;
ot + 6:1,‘]' - Oz; (pDaxi (1 + @) Yro W,

where va = % > 1wk is the vaporization rate defined in Section 2.2. From this
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equation, the balance equation for the fluctuations Z"'2 may be written,

Dissipation

N
w02 a8z" az"

Turbulent convection
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Production
rrth 1 ¢+YF0 ” R
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2ZWo\ T3 @)\ Ve Pz W @)
Vaporization

in which the dissipation rate pX = 2pD|VZ"|? appears with two unclosed source
terms that are directly related to spray vaporization. The objective is to model
those two terms:

— — Yr, ~ —~ o’
pST = 22" W ((1 i %) (Q ;r’p 5 ) - Z) and  pS” = —pZ7 W,

The time evolution of 7" is considered first. Since the distributions of fuel and
oxidizer are homogeneous, the equation for Z"? reduces to o(pz"?)/ot = pSt +
pS— — px. Furthermore, in the case of pure gas mixing obtained for an Fé_r/lﬁnitely

small vaporization time (TV. in table 1), Z"? can be expressed as a(pZ2"?)/ot =
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—PX. As expected (Dopazo 1994), one observes in Fig. 3 the well-known exponential
decay of Z"2 for this reference situation.

When the liquid phase is present, Z"2 behaves diﬂ'ere/rﬁly. Fluctuations of mixture
fraction are generated by the local sources of fuel, and Z"2 increases quickly to reach
a maximum point. The value of Z"2 at this maximum depends on the characteristic
time of vaporization (Fig. 3), when the shorter the vaporization time, the larger this
value. After reaching this maximum, turbulent micro-mixing becomes the dominant
effect and the exponential decay is recovered.

A previous study had discussed how the mean turbulent mixing time and related
quantities are dramatically affected by the liquid phase (Réveillon et al. 1998). In
dilute spray, this is partly due to the impact of vaporization source on the small
scales of the fuel field. Because of the non-diffusing reservoir of fuel in the core of
the drop, the value taken by [VYr| when Yr — 1 tends to be larger in the case of
droplets than for a pocket of gas (Fig. 4). One consequence of this is the increase
in dissipation rate gy following the introduction of the spray (Fig. 3).

It is also observed in Fig. 5 that the production term pS¥ is positive and of the
same order as the dissipation rate, py, while pS— is small. This is expected since
vaporization first generates large positive value of Z", and pS¥ is linear in z",
whereas pS— is quadratic in Z".

3. ODM closure for pS* and pS-

The unknowns contained in the terms pS¥ and pS— are pZ"W, and pZ"2W,.
Introducing P(Z*), the probability density function (pdf) of Z, we will reduce the
modeling of pS* and pS— to the determination of W, | Z*), the mean of the
vaporization rate calculated for a particular value Z = Z* of the mixture fraction.
It turns out that this conditional mean can be approximated from the exact solution

of a dilute spray problem in a quiescent flow. In calculations of practical combustion
chambers, a beta function (Bray 1996) is usually utilized for presuming P(Z*) from

Z and Z"2. One may write,

1
pZ"W, = ,—,/(Z - 2) (W, | z*) P(z*)dz*
0

and
1

pZTW, = p/(z -2 (W | 27) B(z*)dz*

0

In the above equations, (W,, | Z*) = (% Y.k Z = Z*) depends on the statistics
of both the diameters O of the droplets and the Spalding number By, so we consider
the case of a constant By first.

In the class of two phase flow problems described with dilute spray, the droplets
are smaller than the Kolmogorov scale and tend to follow the turbulent structures
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(weak drag force). As a consequence, during vaporization large values of Z are
expected in zones where high vaporization rates exist. Moreover, one should observe

the largest values of (Wv | Z*) in the vicinity of Z* = Zma:, the maximum value
taken by the mixture fraction in the flow at a particular time. Hence, we anticipate
(Wv | Z*) as being a monotonic function of Z*,

(W.12%) = (a8, (®,2)2°)" 3)

where © and d are the mean diameter of the droplets and the mean spray den-
sity provided by the RANS/Lagrangian solver, and n is a parameter dynamically
determined and accounting for the effect of turbulence on the spray. The physical
properties of the liquid phase enter ODM through the function ap, (0, d). Consider-
ing the spray to be homogeneous, we estimate a g, (0,d) by replacing the collection
of droplets by a unique drop of initial diameter Oy, vaporizing in a quiescent flow of
volume 1/d where d is the mean spray density. From Eq. (1) giving the vaporization
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rate, we write for this unique drop:

pWo(8,d) = “5’"; In(1+By)8d |

ReS
* O N 1 ¢+YF,0 ——3_—3 —
pZ(G),d)—(l_HI))( T )pz(@o e)d.

One may then calculate a g, (9, d) by combining the behavior of the isolated droplet
with the proposed closure for the conditional source (Eq. (3)),

W.(8,d) = (ap,(9,d)2*@))" .
leading to:

1/n

(v 2in(1 + By)5 )

2+Yr, 33 _a3\3\
(i (%52) i (87 -) 2)
When using ODM, ©y is the initial mean diameter of the droplets, for instance,

their mean diameter at the exit of an injection system:.
The coupling between ODM and a CFD code is ske@ed in Fig. 6. Part of this

coupling is achieved via the mean vaporization rate W,. This rate is provided
by the RANS/Lagrangian solver, and the ODM approximation of (W|Z *) must

By (ﬁa a) =

—_—

capture W, resulting in the constraint:

W, =/(W | Z2*) P(2*) dz* =/(aBY(§)Z*)"13(z*) dz* (4)

0
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Equation 4 is then utilized to determine the parameter n. Here the DNS is used
to extract W, and n takes on values between 1.8 and 2.2. In practical problems,
we expect n to depend on the turbulent spray regime. From the DNS, (W,, | Z*)

features a parabolic shape which depends on time (Fig. 7). In Fig. 8 an interesting
agreement is observed when the function ap, (0,d) is measured from DNS and
compared with the estimation given by ODM (Eq. 4).

We have computed with ODM the two terms pS* and pS—, and the comparison
with DNS presented in Fig. 9 is satisfactory. Even though this does not appear as
a major shortcoming so far, notice that the fluctuations of W, for a given value of
7 are not directly introduced in this closure.

4. A challenging problem for DNS

We now discuss some preliminary results which represent a first step towards a
full DNS of turbulent spray combustion. Droplets of fuel have been injected in a
two-dimensional double-wake configuration, and a flame is stabilized on the liquid
jet while simple step chemistry is retained. The Spalding number By depends
on temperature; therefore, the stabilization of the flame results from the diffusion
of heat vaporizing the liquid. A diffusion flame develops, and its main body 1s
attached to the spray by a triple flame (Ruetsch et al. 1995) composed of a rich
premixed flame where the droplets are vaporizing and two lean premixed flames on
both sides of the jet (Fig. 10). The vorticity field shows that heat release affects
the flow through gas expansion even at the end of the core of the dilute spray.
Those simulations suggest that, despite the large number of physical parameters
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embedded in liquid fuel combustion, DNS will soon emerge as an efficient tool to

help understand and model turbulent spray combustion.

5. Conclusion

Direct numerical simulations of turbulent mixing of a vaporizing spray have been
performed. From the results, closures are proposed for the source terms appearing
in the transport equation for the fluctuations of the mixture fraction. They are

based on a simple One Droplet Model utilized to express the conditional mean of
the turbulent vaporization rate. In the same context, first DNS of a flame attached
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to liquid jet have been performed.
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Simulation and modeling of reacting particles
in turbulent nonpremixed combustion

By N. S. A. Smith!, G. R. Ruetsch, J. Oefelein, AND J. H. Ferziger

A conditional moment closure model is proposed for reacting particles in turbulent
nonpremixed combustion. The new model for particles differs significantly from the
traditional uniform diffusivity gas-phase conditional moment closure model. The
new features of the model and its effectiveness are examined against direct numerical
simulation data for soot-like and droplet-like particles in turbulent nonpremixed
combustion. The influence of differing particle sizes and types on the effectiveness
of the model closure is examined in detail.

1. Introduction

Condensed-phase particles are frequently present in turbulent combustion systems
and can have a profound influence on the thermochemical nature of their surround-
ings. Fuel droplets and soot particles are two examples of important condensed
phase species in combustion. The evaporation of the former largely determines the
distribution of the combustible gaseous fuel/air mixture, while the presence of the
latter impacts strongly on the degree of radiant heat transfer from the system. It is
thus desirable to be able to predict the mean behavior of these particles, in a turbu-
lent combusting environment, in response to their local thermochemical conditions.

A number of difficulties surround the modeling of the mean rate of particle reac-
tions in turbulent combustion. Perhaps the most significant difficulty is associated
with determining the mean influence of carrier fluid properties such as temperature
and chemical species concentrations upon the particle population. Wherever the
local properties of the carrier fluid fluctuate due to turbulence, the variations can
couple with the non-linear particle reactions to preclude first order closure of the
mean rates with mean properties. This type of closure problem is the same as that
encountered in modeling the mean rate of purely gas phase chemical reactions using
conventional averaging techniques.

The Conditional Moment Closure (CMC) method (see Klimenko 1990, Bilger
1993) for modeling turbulent gas phase nonpremixed combustion makes use of av-
erages which are conditional upon the local value of a conserved scalar (mixture
fraction), which is indicative of the state of mixing between fuel and air masses. Con-
ditional averaging upon mixture fraction captures much of the turbulence-induced
fluctuations, and a first order conditionally averaged closure is often possible. The
success of the CMC model in predicting gas phase combustion makes it of some
interest in modeling particle reactions in turbulent flow.

1 Aeronautical & Maritime Research Laboratory, DSTO, Australia
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The purpose of this study was to simulate the dynamics of reactive particle mass
and motion in a turbulent combusting environment in an attempt to model the
observed mean thermochemical behavior of the reacting particles using a derivative
of the CMC method. In this report, the simulation and modeling of pseudo-soot and
pseudo-droplet particles are described. The former type of particles were smaller
than the latter, and they were subject to relatively strong processes of growth and
consumption. These processes were meant to represent soot surface growth and
oxidation. The pseudo-droplet particles were subject to an evaporative process only.
In both the simulations and modeling, particle-particle interactions were disallowed,
thus rendering the results of this study valid only for low particle mass loadings of
the gas phase.

2. Simulation conditions

Direct numerical simulations were conducted using a pseudo-spectral solution
technique for forced isotropic turbulent flow on a 32-cubed grid. The flow was
incompressible in nature, but a passive scalar (mixture fraction) field was used
in conjunction with an equilibrium temperature profile in passive scalar space to
determine a false temperature map throughout the domain. This false temperature
was computed for the purpose of determining instantaneous particle reaction rates at
every step. The passive scalar field was forced at large scales through the interaction
of turbulent motions with an imposed mean scalar gradient in the z direction in the
same manner as the simulations of Overholt and Pope (1996). Cubic spline tensor-
products as described by Yeung and Pope (1988, 1989) were employed to determine
local fluid velocities and temperatures at all particle locations. Particle properties
were advanced in time using a fourth-order Adams-Bashforth timestepping routine.

The following Lagrangian equation for particle motion was solved,

— = —(m")7 (ui(z) - v) (1)

where v; denotes the particle velocity, ui(z) denotes the local fluid velocity at the
particle location, m* is the nondimensional particle mass, 7 is the Kolmogorov
timescale, and a* is the nondimensional characteristic particle rate given by,

o) ()

In the above, Ly is the Kolmogorov length scale, d is the reference particle diameter,
pp 1s the particle material density, and p 7 1s the fluid density.

The Stokes drag expression above (Eq. 1) strictly applies only in the limit of a
purely laminar flow around the particle. This assumption is valid for the smaller
soot particles but is not as well justified for the droplets. Empirical corrections for
changes in particle drag with higher slip Reynolds numbers are available but have
not been applied in the simulations reported here.
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For droplets, the rate of change of the mass of any particle was given by

dm‘__gﬁ *1/3 .
w2 P )

where f is a generic rate coefficient, nominally equal to a* for inertial particles,
and T* is a nondimensional temperature equivalent to the local Spalding transfer
number. The value of the temperature varied from zero in non-reactive regions of
passive scalar space to a peak value of 3.4 at stoichiometric conditions. The peak
value corresponds to the transfer number for kerosene droplets evaporating within
enveloping flames (see Kuo 1986).

The rate of change of mass for any given soot particle was given by

d *
I = L (for = f (m)) (@)

where § is a rate coefficient not directly related to o*, and f,, and fc, are normalized
functions of local mixture fraction (and thus an inferred reactive gas phase com-
position) which mimic surface growth and consumption respectively. The growth
and consumption reactions were designed to embody the basic features of the soot
processes they represent, but with one notable difference. Namely, the reaction rate
profiles were defined so as to be symmetric in mixture fraction space about the
mean mixture fraction. Particle surface growth was strongest at the mean mixture
fraction, and particle consumption was strongest somewhat to the lean and rich
sides of the mean mixture fraction. This symmetry of thermochemical properties
about the mean mixture fraction allowed conditional statistics on either side of the
mean to be combined to increase statistical significance in each half-plane of mixture
fraction space.

The reference particle rates (a*, 8) differed between simulations to reflect different
sizes and reactivity of the particles, while flow and mixing conditions were the same
for all cases. The details of the simulation cases studied are given in Table I. Some
inertial particle simulations were repeated with inertia-less particles (denoted by
i-suffixed case designations in Table I) to ascertain the influence of particle slip
velocity on the reactive particle statistics.

Table I. Parameters and durations for the reactive particle simulations.

Case Type a* B Taim/Teddy Tsim/Tpop
dl  droplet  0.014 0.014 193 34.7
dli droplet 00 0.014 96.1 15.0
sl soot 0.7 2.8 3.5 0.46

s2 soot 0.7 0.7 104 23.1
s2i  soot 00 0.7 104 23.1
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In the table, the ratios of the duration (7,m) of each case to both the large
eddy turnover time (7e4sy) and the mean time for total particle population change
through injection (7p,,) are given. Owing to explicit method time step limitations,
the cases with longer characteristic timescales such as the droplet and less-reactive
soot cases were less expensive to compute. These cases, therefore, could be contin-
ued for a larger number of eddy-turnover times for a given amount of real time.

In each case, 8192 particles were maintained in the domain at a constant mean
number density by continuous injection. Particle simulations commenced only after
the forcing had produced a statistically stationary flow field over a period of many
hundreds of eddy turnover times. The simulations were conducted at a Taylor
Reynolds number of ~ 24 with a value of approximately 0.22 for the ratio of integral
length scale to domain width and 2.4 for the product of Kolmogorov lengthscale
and maximum wavenumber in the simulation.

The actual size of the soot particles used in the inertial simulations of this study
were at the upper limit of realistic soot particles. In a sense, these simulation cases
embody a worst case scenario for modeling soot. In practical applications, the
bulk of soot particles are much smaller and follow the flow field much more closely.
These smaller reacting particles were better simulated using an inertia-less particle
tracking method in conjunction with the direct numerical simulations of turbulence.

2.1 Particle injection

The imposed mean scalar gradient in the z direction of the simulation domain
required that special consideration be given to particles which crossed the domain
boundaries in this direction. In the other directions, all properties were periodic
and particles were simply returned to the domain by a periodic mapping. The
same mapping was not applied in the z direction as that would allow particles to
transfer between very lean and very rich mixture conditions in crossing the domain
boundary.

Instead, any particle which crossed an z boundary was deemed to have left the
domain permanently, and was replaced via a periodic mapping by a fresh particle
with a velocity equal to the departing particle and mass equal to the injection mass.
This type of fresh particle injection allowed a statistically stationary particle state
to be reached as a balance between the processes of particle reaction, and transport
to and from the injection boundaries occurs.

Injection across the two z-bounding planes was characterized by a relatively weak
influence on conditional mean particle statistics at very rich and lean mixture frac-
tions. The source terms for the conditional mean and variance equations for particle
mass fraction which result from these injection schemes are described in Section 3.2.

2.2 Mizing and reaction statistics

Statistical data based on particle mass fractions were measured from the sim-
ulations for comparison with model predictions. These data were recorded only
after the statistical stationarity of the particle ensemble had been established by
monitoring initial transients in the data.



Simulation and modeling of reacting particles 43

As each particle, on average, occupied four grid cells to the exclusion of other
particles, it was not possible to determine meaningful spatial gradients in particle
properties within the carrier fluid. It was possible, however, to derive conditional
statistical information from the data by binning particles in mixture fraction space
according to their local value of mixture fraction. The particle density in each bin
allowed gradients of conditional quantities in mixture fraction space to be deter-
mined for comparison with modeled terms.

Mixing statistics such as conditional mean scalar dissipation rate, conditional
mean scalar diffusion rate, and the mixture fraction probability density function
(PDF) were determined from the statistically stationary simulation data.

The mean scalar dissipation rate (N, = (D(VEY | &(z,t) = 1)), conditional upon
the value (n) of the local instantaneous value of mixture fraction (¢), was found to
be independent of mixture fraction as reported by Overholt and Pope (1996) and
Pope and Ching (1993). Thus the significant simplification,

Ny=(N|n)=(N) , (5)

was employed in the modeling described below.

The mixture fraction PDF (P,) for the whole domain was found to agree closely
with a superposition of Gaussian PDFs with equal variance, but with mean values
varying with position in the z direction according to the imposed mean mixture
fraction gradient. Given values of mean mixture fraction on the z boundaries of £o
and ¢; and a spatially uniform mixture fraction variance o2, the mixture fraction
PDF can be written as,

gt (5 +(59) .

where ¢(...) is the integral of the Gaussian distribution between the given argument
and infinity.

The conditional mean scalar diffusion rate (M, = (DV2E | &(z,t) = 1)) is yielded
by,

0 0?
E" (PnMn) = 5’”—2 (PnNn) ’ (7)

which holds for homogeneous mixing conditions. The simplification afforded by
Eq. 5, thus gives M, as,

(N) 9P,
Py O

a (8)
The conditional diffusion profile given by the equation above was found to closely
agree with the simulation data.

The forms of the mixture fraction PDF and conditional diffusion rate profiles
given by the above equations are plotted in Fig. 1. The mixture fraction PDF is
somewhat broadened around the peak compared to any single Gaussian profile with
the same mean and variance. As a result, the conditional diffusion rate profile has
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FIGURE 1. Profiles for mixture fraction PDF (a ), conditional mean scalar dissi-
pation rate (¢ ), and conditional mean diffusion rate (o) expected and observed in
simulation data.

a mean slope which is about 35% shallower than that of the purely linear profile
which results from a single Gaussian PDF with an equivalent mean and variance,
and equivalent conditional mean dissipation rate.

All of the simulations exhibited profiles of the nature depicted in the figure since
they all shared exactly the same mixing characteristics. The spatially uniform value
of variance of mixture fraction was equal to ~ 0.34 in each case, with mean mixture
fractions on the z boundaries of zero and unity and an overall domain-averaged
mean mixture fraction of one half,

Notice from Fig. 1 that the quantity ¢, referred to here as mizrture fraction, is
normalized to have a unit value on the rich boundary of the domain and zero value
on the lean boundary, but this does not denote pure fuel and oxidizer states. It is
possible, and indeed required in the current simulation configuration, to have values
of { which are greater than unity and less than zero. Pure fuel and oxidizer states
can be considered to exist only in the limits of £ — too.

3. Modeling method

Application of the CMC model for gas phase turbulent combustion to the mod-
eling of condensed-phase fields requires some consideration of the differences in
behavior between the two phases. F irstly, it was assumed that the particles were,
in the mean, small enough to follow the smallest scales of motion. This was true in
the inertia-less particle simulations, but was somewhat less justified for the inertial
(particularly droplet) simulations.

Secondly, it is clear that the particle phase does not diffuse appreciably on a
molecular level, and thus the particle phase and the gas phase-based mixture frac-
tion are transported in a completely different manner at this level. The effect of
this differential diffusion must, therefore, be incorporated into the CMC model.
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Further, at the smallest scales a distinct difference between the distribution of
gaseous species and condensed phase species is expected (see Klimenko 1990). Sig-
nificant local structure can exist in the particle field at scales where gas phase fields
have been completely smeared by molecular diffusion. The existence of such local
structure implies that instantaneous local deviations of particle mass fractions from
means, conditional upon mixture fraction, can be large.

In the present study, particle effects upon the gas phase were neglected, leaving
the effect of gas phase fluctuations on particle evolution to be examined in isolation.
In reality, however, reciprocal interactions between gaseous and condensed-phase
species is likely to be very important. In the case of droplet evaporation, it is the
addition of vaporized fuel to the continuous phase which largely determines the
way in which combustion proceeds. In the case of soot particles, the removal of
sensible enthalpy from the continuous phase occurs as a result of proximity to soot,
which can strongly effect localized combustion dynamics. In both of these instances,
large conditional variance in particle properties could lead to similarly elevated
levels of conditional variance in sympathetic gas phase species and thereby increase
the difficulty of the chemical closure problem in the gas phase. This increase in
conditional variance for gas phase species can be viewed as arising from the different
gas phase behavior, at the same mixture fraction, which will result depending on
whether a parcel of gas is adjacent to a particle or not.

It is for this reason that it is important to be able to predict the level of conditional
variance of particle mass fraction. The CMC model proposed in this study made
use of a particle-specific differential diffusion variant of the second-order conditional
moment closure proposed by Li and Bilger (1996).

9.1 Model derivation

In the following, a CMC model for particle reactions in turbulent nonpremixed
combustion is derived for general flow and mixing conditions. The spatial and
temporal simplifications afforded by the simulation conditions of the present study
are introduced in Section 3.2.

The local instantaneous equations for mixture fraction and a particle mass frac-
tion continuum form the basis for the derivation of the model. The equation for
mixture fraction £ can be written as,

2
%—€—+u,-—(?£-—’Dg—§—=0, (9)
t Or; Oz 3
where the flow field is assumed to be incompressible, u; is the component of carrier
fluid velocity in the i-th direction, and D is the diffusivity of mixture fraction under
a Fickian transport assumption.

The equation for local instantaneous mass fraction of the particle continuum is
given by,

aYy ay o’y

o tUan  Dva (10)
' J
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where w is the local reaction rate of the particle continuum, D, is the effective
diffusivity of this continuum, and v; is the velocity component in the i-th direction
of the field of particles. The particle diffusivity D, is expected to be very much
smaller than the mixture fraction diffusivity; however, the term is retained in the
derivation for completeness. Multiplying Eq. 10 by the particle mass fraction yields,

oY? ay? %Y )
E‘+Uia—1:i—2py},ﬁ§-—2yw ) (11)

which is used in the derivation of the equation for conditional variance of particle
mass fraction.

The fine-grain probability density function (see Pope 1985) for mixture fraction
is defined as,

Y(z,t,n) =6(E(z,t)—n) (12)

and has an expectation over the statistical ensemble equal to the mixture fraction
PDF (P,) as given by,
Py(z,t,n) = (v) . (13)

The local instantaneous equation for the fine-grained PDF can be derived from the
differential properties of v and Eq. 9 so that,

0 J 0
o 5e; (49)+ 5, (DUVe) =0 . (14)

Klimenko and Bilger (1998) derived a conditional mean equation for the differen-
tial diffusion of gaseous species in turbulent combustion through the combination
of Egs. 11 and 14 given above. Their methodology is largely followed here except
that a conditional variance equation is also derived and some significant differences
in closure assumptions are made in the final stages. In the section immediately
following, derivation of the equation for the product of the square of particle mass
fraction and the fine grain PDF is described as a prerequisite to the derivation
of the conditional variance equation for particle mass fraction. The derivation of
the corresponding equation for conditional mean mass fraction is analogous except
where noted otherwise.

8.1.1. Derivation of )Y ? equation

The derivation proceeds by adding Eq. 11, multiplied by ¥, to Eq. 14, multiplied
by Y2. The resultant equation is given by,

Y2
% (szz) + 5‘3: (u,.zpyz) = (u; — vi)w% +2¥Yw + 4, — A, (15)

where 5
Y 3}
A, = 2Dyz/)Y¥? , Ae = YZ% (¢DV2§) ,
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are convenient groupings of the D and D, diffusive terms. The mixture fraction
diffusivity term, first expanded by using the inhomogeneous-flow form of Eq. 7, is

2 2
Ag=Y? (5‘3,7— (9D(Ve)) - D gy w)) . (16)

The latter right-hand side term appearing in Eq. 16 also appears in the full ex-
2

pansion of ’D%; (YWJ). Substitution of the expansion into Eq. 16 yields a final
J

expression for Ag,
& 9 2 0 o€ 9Y? 3 ., 0 aY?
= 3 (rom0) g (o 55 ) -2 079 P (V)
(17)

The particle diffusivity term Ay, as given above in connection with Eq. 15, appears
in the full expansion of ’Dngi—’, (z/)—gzlj). Expressing A, as the subject of this
expansion yields :

0 ot 9Y? a ay
Ay = — | Dyp——5— 2D, Y — | ¥=— | . 18
v 37] ( y¢6xj 01:]) t y ij ( a:t]) ( )

Rearrangement of the latter right-hand side term of the above equation via the
chain rule gives 4, in final form,

. a¢ 9Y? 8 ( oY? ay \?
=5 (Dy%:a;) *Pvos; ( ‘a?;) ~ 2Dy (55) > (19

The substitution of Eqgs. 7 and 19 into Eq. 15 yields,

) oYy \? OF
)+ Y2 Ry, (20)

0
o (BY?) + 5 (uipV?) = 2o — 2Dy (%) +%

where the flux of squared particle mass in mixture fraction space is given by,

oc v _ 0

Fy, =(D,,+D)z/)—ax—j 92, on
J

(v2yp(ve)) (21)

and the collected residual terms can be written as,

oY? d?
0,-D) e (v5 )+ P () - ()

ay?

Ry, = (ui — Ui)d)—a“;

J

$.1.2. Averaging and closure of Y equation

It is illustrative to average and close the simpler equation for conditional mean
particle mass fraction before employing the same approach on the conditional vari-
ance equation. The conditional mean equation is required before further derivation
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of the conditional variance equation can proceed. In this section, some of the key
closure assumptions of Klimenko and Bilger (1998) have been relaxed out of neces-
sity for the modeling of particles.

A set of equations similar to Eqs. 20-22 applies for the product of the fine-grain
PDF and particle mass fraction and can be written as,

%(wY) + 8iz, (uiY) = Y + %Eﬂ}: + Ry , (23)
here Fy=(D, +D)p 2% _ 0 (vep(vey?) (24)
dz; 0z;  on ’
and
Ry = (ui —v;) z/Jg—: +(Dy — D) 52—1 (1/)3—;;) + D% (Yy) . (25)

Averaging Eq. 23 over mixture fraction space yields the PDF-product form of the
conditional moment closure (CMC) equation for conditional mean particle mass
fraction,

3] 0 . 0Fg

ot (o) + g (¥ (WP = @I Py + T2+ Re ,  (26)
where @, = (Y | n) = (Yy) /P,, and Fq and Rq are the conditionally averaged
flux and residual terms. The averaged residual term can be written as follows,

oYy 0 oYy a2
Rq = <(u.‘~vi)5$—i l’?>Pn+(Dy _D)E (Pn<£j|'7>) +D5x_§(QPn) ;
(27)
and contains terms which are assumed to be small for high Reynolds number flow
with only small particle slip velocities. The conditional mean flux term, equal to

Fo= (D, +D)P, <§—5§—Y 1) - (PR (Y 1)) .

is approximated by Klimenko and Bilger (1998) after assuming that the gradient of
Y is well correlated with the gradient of mixture fraction and that there is only a
weak correlation between Y and (V§)2. In the following, the latter assumption is
relaxed, so that

ad 0 0
Fore P"N"a%" = Qg (PaVy) = = (PACy) (29)

where N, = <D(Vf)2 | n> is the scalar dissipation rate and C,, is the covariance

between scalar dissipation rate and particle mass fraction. The symbol ¢ denotes a
mazing mode variable which is equal to unity in the case of mixing in the absence of
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differential diffusion but is not known for the case of differentially diffusing scalars
(Klimenko & Bilger 1998). This variable is discussed in greater detail in Section
3.2.

The final form of the equation for conditional mean particle mass fraction 1s
obtained by substituting Eq. 29 into Eq. 26, followed by subtraction of the mixture
fraction PDF equation (averaged form of Eq. 14) and normalization by the PDF to
give,

0Qn vy 1 m 291 _ (g Qo g, 09 L2
5t +{ui | n) Oz = (w | n)+clNy on? +(c—-1)M, an PnE]_z(P"C") . (30)

In the above expression, Rg has been neglected as has the conditional correlation
between velocity fluctuations and particle mass fraction. As in Eq. 7, the symbol
M, denotes the conditional mean diffusion rate.

3.1.9. Averaging and closure of YY? equation
The equation for the conditional variance of particle mass fraction, defined as

g = (y? |n) = <Y2d)> /Py — Q%, can be derived from Eq. 20 through several

stages. Averaging of Eq. 20 yields a mean-square-PDF product equation,

0 0 ) OF,
5t—(P,,<Y2 |n>)+-a—$—(<u,Y2 |17>P,7) =2(Yw|n)P,,+5;)l—P,,ey+Rq , (31)

where F,; denotes the flux of mean square mass in mixture fraction space, Ry is the
average of the Y? residual term of Eq. 22,

oY? 0 oY? d? 2
o= Py (5= 00 e 1) 40, =) - (P (52 1)) 405 (Po (1)
(32)
and ey is the conditional mean square mass dissipation rate, given by

ey = 2D, <(VY)2 | n> . (33)

Following the closure argument for fux of conditional mean mass in mixture fraction
space (Eq. 29), the flux of the conditional mean square particle mass fraction,

6{ 6Y2 0 2 2
£y =0, + D) B ( 200 1) - o (B (¥PD(TE7 ) o 9
is approximated by the following, where the mixing mode variable ¢ has a value
equal to that employed in Eq. 29,

dq? 0 3] 3]
Fy=~c P,,N,,—a;" - qua_n(PnNn) +2c Pncn—é%l "2Qn55 (PyCy)
Q> 0
+CPnNn‘E’l - ?;5‘6 (PyNyg) - (35)
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Following the substitution of Eq. 35 into Eq. 31, the decomposition of Y into
Qy + v, and the subtraction of the equation for the conditional mean mass fraction,
the equation for the product of conditional variance and mixture fraction PDF is
derived. The decomposition of this equation via the chain rule and subtraction of
the PDF equation multiplied by q;", yields the final form of the conditional variance
equation,

0g? Oq? . d%q? Oq}
# + (ui | n) 0_.7:’,’ =2 (y&' | n) + cN, 677; +(c— l)M,,—an—"+S'q—eq ,  (36)

where S, denotes the collected conditional source terms for particle mass fraction
variance,

o 0%Q, 2 9 0Q, Dy) 3Q,\’
Sy = 20y 5 +E(c—1)%(P,,c,,)W+2 = )V lZ) - 6D

and ¢, is the dissipation rate of conditional variance,

eg = 2D, <(vy)2 [ 7;> . (38)

Note that the conditional variance equation in the form given above neglects condi-
tional covariance between velocity and mass fraction and all of the terms associated
with the difference between Ry and 2Q, Rg which appear in the derivation.

The final forms of the equations for the conditional mean and variance of particle
mass fraction (Eqs. 30 and 36) contain two unclosed quantities, namely the mixing
mode variable ¢, which parameterizes the level of differential diffusion, and the co-
variance between scalar dissipation rate and particle mass fraction C,. A discussion
of these two quantities is provided in the following sections.

3.2 Solution of model equations

Equations 30 and 36 of the preceding section were solved to match the simulated
conditions of spatially homogeneous, steady conditional statistics. The statistically
stationary, spatially degenerate form of the conditional mean particle mass fraction
profile is given by,

o 22Q, 0Q, 1 o
0=(w|n)+cNy, o +(C_I)M"TW_E3—TF(P"C")+IQ y - (39)

where Ig is the conditional mean particle mass injection rate which results from
the injection process described in Section 2.1. The conditional variance of particle
mass fraction profile was found from,

y 0%q; 9¢;
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where I, is the conditional variance source due to particle injection. Note that the
effective diffusivity of the particle field (Dy) was assumed to be identically zero, thus
the absence of the €, term given in Eq. 36 from the above equation. The conditional
particle injection source terms included in the above (Ig & I;) are given by,

Io = 2L (1-Qy) (41)
pop
I; = il (1-Qn)?—4a3) (42)
Tpop

where P; is the PDF of particle injection mixture fraction and 7p,p is the time
required for the number of injections to equal the size of the particle population.
In the above it was assumed that particles were injected to replace those which
leave the system, and all freshly injected particles had unit mass as described in
Section 2.1. The form of the injection PDF consisted of the normalized sum of
two Gaussian distributions with variances equal to the domain variance and mean
mixture fraction values of zero and unity.

Chemical source terms in Eqgs. 39 and 40 were determined using instantaneous
local temperature (taken from an invariant chemical equilibrium profile) and the
conditional mean and variance of particle mass fraction in truncated Taylor series
expansions of the instantaneous reaction rate expressions.

The mizing mode variable c, included in the CMC equations above, provides a
means of accounting for differential diffusion effects. In the limit where mixing is
overwhelmingly due to turbulent stirring, the mixing mode variable tends to unity.
In cases where a larger proportion of the mixing is due to molecular mass transfer,
the mixing mode variable will vary substantially from unity. The greatest allowable
deviation of ¢ from unity is given by the ratio of the molecular diffusivity of the
species in question to that of the mixture fraction.

From a modeler’s perspective, it is highly desirable that ¢ be independent of @y,
qf,, and mixture fraction. In that eventuality, one could hypothesize that the degree
of departure from mixing that is dominated by strong turbulent stirring might be
expressed as,

c—1+<21—1>f‘ (43)

- D mizr

where fmir 1s a function which varies between zero and unity according to some
dependence on global properties of the flow field. One possibility for fmiz is some
power of the Kolmogorov scalar scale & appropriately normalized by the maximum
globally realizable range in mixture fraction. The Kolmogorov scalar scale is a
measure of the characteristic size of scalar fuctuations at dissipative scales. For
mixture fraction this scale varies between zero and unity for high and low intensity
turbulent mixing respectively. As this study consists of data from a single set of
mixing conditions, it is not possible to validate any model for variation in ¢ with
mixing conditions. It is, however, possible to examine whether a single value of ¢
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1s appropriate independently of local values of Qy, q,2,, and mixture fraction. This
issue is examined in the next section.

It should be noted that Kronenburg and Bilger (1997) successfully account for
differential diffusion in the CMC model through the use of an alternate treatment
to that proposed above. Their methodology has much to recommend it, but when
applied to multi-component reacting systems, it requires an additional conditional
moment equation to be solved for each species. The method presented here seeks
to avoid that added cost.

It was found that the profile shape and magnitude of the conditional covariance
between particle mass fraction and scalar dissipation rate (C,) was critical to the
transport of particles in mixture fraction space. While the form of this profile is,
in general, not known, its behavior at mixture fraction bounds is prescribed by the
integration of Eq. 26, with respect to mixture fraction, between these bounds. This
integration should yield the unconditional mean mixture fraction equation, which
implies that the bounding values of the mixture fraction flux term (Eq. 29) are zero.
It follows that the slope of the product P,C, must be zero at the bounding mixture
fractions.

Modeling of the C,, term was achieved using a simple heuristic approach to best
match the observed simulation profiles for Cy. This model took the form,

Cy = (aq VIgh) - aqQy + a) N, , (44)

where a4, ag, and a.,, were constants determined from the goodness of fit with the
C, profile observed from the corresponding simulation. The above fitting technique
1s similar to that employed by Li and Bilger (1996) except for the inclusion of the
conditional mean value (@) and the zero-boundary correction term Qcor- It was
found that it was necessary to include these terms to match the observed simulation
data. Due to the case-specific nature of the covariance profiles, they are discussed
in turn in the following section.

4. Results

In the following, the results from the modeling of soot particles and droplets are
discussed separately.

4.1 Soot

Examining the conditional covariance between scalar dissipation rate and particle
mass fraction (Cy), the simulation data revealed the characteristic form of the
covariance profile for soot as possessing a large negative spike near the mean mixture
fraction. The location of this spike in mixture fraction space corresponded with the
location of the peak conditional mean mass fraction. Through careful selection
of the coefficients in the Cy model equation (Eq. 44), it was possible to produce
the similar profile as was observed in the simulation data while producing good
predictions for @, and q,";.

The profile match derived for conditional covariance in soot case s! can be seen
in Fig. 2. Note that the observed simulation profile has been slightly smoothed
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FIGURE 2. Modeled and observed conditional covariance between mass fraction
and scalar dissipation rate for case sl. Symbols denote the following profiles: A -
prediction of covariance, and o - simulated covariance.

and averaged about the symmetry point at the mean mixture fraction to facilitate
comparison with the smooth symmetric model profile. It is evident that the model
profile agrees reasonably well with the observed profile, particularly in the vicinity
of the mean mixture fraction. The model profile does not match the observed
maximum value of the covariance at mixture fractions slightly leaner and richer
than the mean value. Unfortunately, it is the first and second derivatives of the
conditional covariance which appear in the model equations. The value of the slope
and curvature of the model C, profile are believed to reflect the general behavior
of the simulation data; however, it is difficult to make any stronger statement due
to the limited data available for statistical analysis. Future simulations with larger
particle populations will be used to better understand this behavior.

The characteristic effect on the conditional mean particle mass fraction of varying
the mixing mode variable, ¢, can be seen in Fig. 3 for case sl along with the
conditional mean profile which results from chemical reactions and particle injection
alone. It can be seen that the arbitrary increase of ¢ causes the predicted mean mass
fraction profile to simultaneously increase in peak value and decrease in minimum
value. Further, increases in ¢ tend to decrease the value of conditional mean mass
fraction at very rich and very lean mixture fractions.

The governing conditional mean particle mass fraction equation (Eq. 39) has the
property that increased values of ¢ tend to favor a mode of mass transfer in mizture
fraction space which is essentially diffusive in nature. Lower values of ¢ favor the
mode associated with the drift of particle mass in mazture fraction space which
results from gas phase species diffusing at a more rapid rate in physical space than
the particles they surround. Thus ¢ can be thought of as a measure of to what degree
particle mass diffuses against a mixture fraction coordinate instead of undergoing
an apparent convection-like process in mixture fraction space due to the differential
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FIGURE 3.  Predicted conditional mean mass fraction profiles for case sI with
arbitrarily varied levels of differential diffusion. Symbols denote the following pro-
files: A - prediction with ¢ = 0.05, o - prediction with ¢ = 1.00, and o - chemical
equilibrium with particle injection.
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FIGURE 4. Predicted conditional root mean square deviation (\/(q% )) mass frac-
tion profiles for case s! with arbitrarily varied levels of differential diffusion. Sym-
bols denote the following profiles: A - prediction with ¢ = 0.05, o - prediction with
¢ = 0.50, and ¢ - prediction with ¢ = 1.00.

diffusion of the coordinate and mass fraction fields in physical space. The tendency
towards smoother conditional mean profiles, in Fig. 3, with increased ¢ values is
indicative of this trend.

Variation in the predicted conditional mass fraction variance profiles with arbi-
trary variation in the mixing mode variable can be seen in F ig. 4 for case s1. It
1s apparent that increasing the value of ¢ leads to an increased peak value in the
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FIGURE 5. Modeled and observed conditional mean and variance of particle mass
fraction for case sI. Symbols denote the following profiles: A - Q. prediction, o -
simulated Q,, ¢ - g, prediction, and x - simulated gy-

conditional mean variance profiles and an increased value of variance at very rich
and lean mixture fractions. The elevated level of conditional variance in the high ¢
case is due to the source contribution from the last term of ¢ (see Eq. 37).

A low value of ¢ results in a dip in variance near the mean mixture fraction where
the model equations do not predict any variance production. This dip is not present
in higher ¢ cases where diffusive transport in mixture fraction space is strong enough
to smooth out sharp changes in gradient.

The result of matching the conditional covariance profile and minimizing the
mixing mode variable to ¢ = 0.05 (minimum numerically stable value) provided the
predicted conditional mean and variance profiles plotted in Fig. 5.

Employing the same value of ¢ and the same constants in the model for the
mass-dissipation covariance C, from Eq. 44 provided accurate predictions for the
conditional mean and variance of particle mass in soot case s2i. These predictions
are plotted against simulation data in Fig. 6.

It is evident that there is reasonable qualitative agreement between the predicted
and observed profiles in Figs. 5 and 6. The CMC model captures the essential
changes in profile shape in the more reactive case (Fig. 5) but appears to incor-
rectly predict rich and lean side behavior to greater extent in the less reactive case.
Good quantitative agreement is found near the mean mixture fraction in both cases;
however, the predicted profiles deviate substantially from the observed data at mix-
ture fractions away from the mean. This discrepancy may have been due to the poor
modeling of the conditional covariance term (C,) at those same mixture fractions.
It is difficult to be sure that the model fit to C;, provided by Eq. 44 provides accu-
rate C, gradients and curvatures as is required in the CMC equations. It is clear
that the modeling of the mass-dissipation covariance requires further attention.
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FIGURE 6. Modeled and observed conditional mean and variance of particle mass
fraction for case s2. Symbols denote the following profiles: a - @, prediction, o -
simulated @y, ¢ - ¢, prediction, and x - simulated dn.

4.1.1 Effect of particle slip velocity

Soot cases s2 and s2i were simulated to examine the effect of slip velocities be-
tween particles and their carrier fluid. The former simulated case took account
of particle inertia and the difference in local velocities which can arise from the
kinetic lag between fluid flow variations and particle response to those variations.
The latter simulation case (s21) did not account for particle inertia and thus no slip
velocities were present.

The differences in the conditional mean and variance particle mass fraction pro-
files between these two simulation cases can be seen in F ig. 7. It is evident that the
introduction of particle inertia, all else being equal, causes the conditional mean
particle field to behave in a more diffusive manner in mixture fraction space. Si-
multaneously, a rise in conditional variance results, particularly at mixture fractions
away from the mean mixture fraction. Although not plotted, there appeared to be
little change in the C, profiles between the simulation pair, indicating that the vee-
shaped form of the covariance profile is not a result of inertial particle transport.

Conditional source terms related to particle slip velocity appear in the neglected
residual groupings of Eqs. 39 and 40. The conditional mean equation contains the

slip transport term ((u; — v;) | n) % (Qy), whereas the variance equation contains a

transport term ((u] — v}) | n) a—aﬂ- (q,zl), and the source term ((u} — v})y | n) 2(Qy).
The difference in behavior observed in the above simulation cases corresponds with
the expected effect of the neglected slip velocity terms in the CMC equations. It
is clear that the introduction of larger inertial particles to the model problem gives
rise to a significant increase in the difficulty of modeling particle behavior.

4.2 Droplets
Unlike the soot particles, the droplet particle simulations exhibited very weak
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FIGURE 7. Observed conditional mean and variance of particle mass fraction for
inertial (32) and inertia-less (s2:) soot cases. Symbols denote the following profiles:
& - @y inertial, o - Qy inertia-less, o - g, inertial, and x - ¢y inertia-less.
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FIGURE 8. Modeled and observed conditional mean and variance of particle mass
fraction for case dli. Symbols denote the following profiles: a - Q, prediction, o -
simulated Q,, © - g, prediction, and x - simulated gy.

conditional covariance between scalar dissipation rate and particle mass fraction.
This distinction between the particle types suggests that the form of the covariance
(C,) profile is linked to the types of reactions which act upon the particles. It
would seem that strong reactions, as in the soot cases, give rise to sharp changes
in particle properties in mixture fraction space which in turn impact strongly upon

the transport statistics between adjacent mixture fractions. The weak reactions of
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FIGURE 9.  Observed conditional mean and variance of particle mass fraction

for inertial (d1) and inertia-less (d13) droplet cases. Symbols denote the following
profiles: a - @, inertial, o - @y inertia-less, o - g, inertial, and x - gy inertia-less.

the droplet cases do not impart sharp changes in value to the conditional statistical
profiles and thus do not seem to cause strong covariance between mass fraction and
scalar dissipation rate. Further investigation of this behavior is clearly warranted.

Due to the observed behavior in the droplet cases, the covariance profile was
modeled as being zero for all mixture fractions. As with the soot cases, the value of
the mixing mode parameter, which gave best predicted agreement with the observed
mass fraction profiles, was very low (¢ = 0.1). The degree of agreement between the
observed and predicted profiles for the inertia-less droplet case (d17) can be inferred
from Fig. 8. It is clear that the CMC model predicts the conditional mean and
variance of droplet mass fraction with a good degree of accuracy.

4.2.1 Effect of particle slip velocity

While it is clear that the CMC model can capture the behavior of very small
fuel droplets in the terminal stage of evaporation, the modeling of particles with
significant inertia is more problematic.

In Fig. 9, the conditional statistics from the simulation pair of df and dIi are
compared. It is evident that, as with the soot comparison of Fig. 7, the larger
inertial particles tend to exhibit a tendency towards conditional mean profiles which
have a lower level of curvature as though smoothed by enhanced diffusive transport.
The conditional variance profile exhibits virtually no change in slope in the case of
the inertial particles. The existence of slip velocities, larger than in the inertial
soot case, causes a great deal of conditional variance generation to occur at mixture
fractions away from the mean.

The noted inertial-particle behavior is even stronger in nature than that described
in Section 4.1.1 for smaller soot particles. This suggests that the larger the particles
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under consideration, the less effective a continuum model will be in describing their
behavior.

5. Remarks

The results of this preliminary study indicate that a tailored variant of the Condi-
tional Moment Closure (CMC) method can be applied successfully to modeling the
evolution of soot-like and droplet-like reacting particles in a turbulent combusting
environment. For the soot particle cases, a single set of constants were sufficient to
correctly predict particle evolution under for a variety of reaction intensities. This
finding suggests that it is appropriate to simultaneously model condensed and gas
phase reactions in turbulence using the CMC model within an Eulerian frame.

However, significant caveats apply to this modeling approach. Firstly, it is clear
that the conditional covariance between scalar dissipation rate and reactive scalar
mass fraction cannot, in general, be neglected. It is apparent that some species
can exhibit strong non-zero covariance profiles which play the foremost role, of
all transport terms, in transporting scalar properties in mixture fraction space. An
examination of simulation cases with different particle reactivities suggest that those
species subject to more intense reactions exhibit stronger covariance profiles. This
may be due to the establishment of large changes in scalar values and gradients
between adjacent mixture fractions, which can result from strong reactions taking
place. It was found that changes in particle inertia, while keeping all else constant,
had virtually no effect on the form of the conditional covariance profile. Further
work is obviously required to study the dependence of mixing covariance on particle
reactivity and to devise an improved model for predicting its profile shape in mixture
fraction space.

Secondly, it was found that the CMC model is not well suited to predicting the
behavior of particles with substantial levels of inertia. Relatively large particles such
as fuel droplets can develop significant slip velocities relative to their surrounding
fluid. These slip velocities appear as unclosed transport and variance production
terms in the CMC equations. They appear to enhance transport of particle proper-
ties in mixture fraction space over that exhibited by smaller particles with smaller
slip velocities but similar reactivity. Further, as one would expect, because the
larger particles are not transferred in space in the same way as gaseous mixture
fraction, the conditional variance of particle properties at any given mixture frac-
tion is higher than that for gaseous species. While it was found that the modeling of
inertial particle transport in mixture fraction space could largely be accounted for
by increasing the level of diffusive transport (through increasing c to unrealistically
high levels), the model could not account for the increased conditional variance
which was observed.

The mixing mode variable (c) approach to treating differential diffusion in the
CMC model deserves further attention. In varying the value of ¢ between the
extreme value given by the ratio of molecular diffusivities and unity, according to
changes in global mixing conditions, the CMC equations change in a natural way
to embody differential diffusion effects to a greater or lesser degree as required.
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A single value of ¢ was found to suffice for the prediction of particle behavior in
the cases studied here under uniform mixing conditions, but with widely different
reactive behavior. This suggests ¢ may well be independent of local variations
in mixture fraction and particle mass fraction and a function only of global mixing
parameters. Further work is required to properly test this hypothesis and the model
for ¢ proposed in Eq. 43.

Future work involving the CMC-particle model derived here will focus on val-
idation of the model against larger simulations which incorporate more realistic
chemistry, higher turbulence levels, and a more diverse set of mixing and reaction
conditions.
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Large eddy simulations of combustion
instabilities in premixed flames

By C. Angelberger’, D. Veynante?, F. Egolfopoulos® AND T. Poinsot?

Our objective is to build a complete tool, based on large eddy simulations, to deter-
mine the forced response of a turbulent premixed burner, which is the missing infor-
mation in models describing combustion instabilities. The developed code includes:
(1) a chemistry model based on a new reduction technique (ICC) for propane and
methane; (2) a flame thickening approach to handle flame turbulence interactions;
and (3) specific boundary conditions to control and measure acoustic wave reflec-
tions on inlets and outlets. The chemistry reduction is derived and validated by
comparison with full schemes /full transport results obtained from stagnation point
flame codes. The flame thickening approach requires subgrid scale parameterization
derived from flame/vortex interactions DNS. The code itself is a compressible paral-
lel finite volume solver able to handle hybrid grids. The combustor forced response
to acoustic wave excitations and to equivalence ratio modulations is compared in
the geometry where experimental data are available (Poinsot et al., 1987).

1. Motivations and objectives

Large eddy simulation (LES) is a promising tool to predict combustion instabili-
ties in practical systems and to numerically test passive or active control techniques
(McManus et al., 1993). Flows submitted to such instabilities are controlled by very
large eddies (Poinsot et al., 1987; Candel et al., 1996), and LES may be easier in
these situations than in usual turbulent reacting flows where an extended range of
eddies has to be incorporated to describe turbulence and chemistry interactions.

To satisfy emission regulations, modern gas turbines operate in very lean combus-
tion regimes. These flames are extremely sensitive to combustion oscillations, but
the exact phenomena leading to instabilities are still discussed. A central question
is to determine the phenomena inducing unsteady reaction rates, required to sus-
tain oscillations when an acoustic wave enters the combustion chamber. This effect
may be due (at least) to two main effects. First, vortices formed in the combustion
chamber may capture a large pocket of fresh gases burning only at later times in a
violent process leading to high reaction rates. An acoustic wave propagating into
feeding lines may also induce a local change of the equivalence ratio and, there-
fore, a modification of the burning rate. When the burner operates in a very lean
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mode, non-flammable mixture pockets may enter the combustion zone, leading to
extinction.

An important issue in combustion instabilities modeling is to choose between
these two mechanisms: the first one requires a detailed computation of the flow
field inside the chamber while the second one may be addressed with more global
tools. Both may be studied together or separately using large eddy simulations.
LES is used to examine which mechanism is predominant in the case of a backward
facing step premixed burner developed at Ecole Centrale Paris (ECP) for which an
extensive set of experimental results for the homogeneous case is available (Poinsot
et al., 1987). This configuration is also similar to many classical combustion insta-
bilities experiments (for example Keller et al., 1981) and multiple industrial devices.
To achieve this objective, several tools were integrated:

¢ (1) An LES solver able to handle complex geometries. Various techniques
have been previously proposed for LES in turbulent premixed combustion (see a
review in Veynante and Poinsot, 1997a), but few of them have been used in a
realistic configuration (see, for example, Kailasanath et al., 1991). Real combustion
chambers require meshes able to deal with highly complex geometries.

® (2) The choice of a proper chemical description remains a critical issue in
reacting flows. Reduced chemical schemes able to predict changes in equivalence
ratio for methane and propane are developed here using a new technique called ICC
(Integrated Complex Chemistry), described in section 3.

* (3) Thermal boundary conditions at the walls of the combustion chamber con-
trol flame stabilization and quenching (Veynante and Poinsot 1997b). In the ECP
burner, ceramic walls are assumed to be adiabatic (Poinsot et al., 1987).

® (4) Combustion is handled using the thickened flame (TF) approach (section 4)
initially proposed by O'Rourke and Bracco (1979) and tested by Veynante and
Poinsot (1997b). As the thickened flame is more sensitive to strain than the real
flame, TF approach and ICC methodology are coupled, requiring that the thickened
flame behaves dynamically like the real thin flame.

2. Configuration and scope of present study

The generic configuration is displayed in Fig. 1. An acoustic wave traveling
along the feeding line of a backward facing step combustor induces an air flow rate
perturbation rn; of the mean air flow rate 7, and a fluctuation % of the mean
fuel flow rate . The perturbation ¢’ of the mean equivalence ratio ¢ is given by:

A o

¢ mf Mg

This perturbation influences burning rate, but the hydrodynamic perturbation, m,
also induces the formation of a vortex near the chamber dump. These two effects
may be isolated by performing the following simulations:

* Case A: Aerodynamical (or acoustic) forcing of the chamber. In this case the
inlet flow rate fluctuates, keeping the equivalence ratio constant.
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Ficure 1. Configuration for simulations of combustion instabilities: the propane -
air burner used by Poinsot et al. (1987). Only one of the injection slots is computed
(the real system had five slots). The computational domain is 22.4 cm long and
2 cm high.

e Case C: Chemical forcing of the chamber (modulation of inlet equivalence ratio)
without hydrodynamic forcing.

e Case F: Full forcing of the chamber. Obviously the real situation corresponds
to a case where chemical and acoustic forcing are combined, but this case is not
investigated here where only cases A and C are compared.

3. Reducing chemistry for LES: the ICC technique

Simplified kinetic schemes closely matching several flame properties for variable
equivalence ratio are developed for lean methane/air and propane/air mixtures in
the operating conditions of the ECP experiment (pressure P =1 atm, fresh gases
temperature Tp = 300 K), using the ICC technique (Mantel et al., 1996; Bedat et
al., 1997). Usually, one-step chemistry simplified schemes have been derived by only
matching laminar flame speeds (Westbrook and Dryer, 1981). The ICC technique
adds the constraint to match strain rates effects and to achieve numerical goals such
as limitations of activation energies.

First, laminar flame speeds, flame structure, and the response to strain rate are
determined in one-dimensional configurations using Chemkin-based codes and a de-
tailed description of chemical kinetics and molecular transport to predict a reference
case. The laminar flame speeds and flame structure (e.g. thickness) are determined
through the one-dimensional PREMIX code (Kee et al., 1985). For premixed flames,
the response to strain rate includes the determination of extinction strain rates in
the symmetric, twin-flame, opposed-jet configuration (fresh mixture counterflow-
ing against an identical fresh mixture) and the variation of the spatially-integrated
heat release with strain rate in the opposed-jet, fresh mixture against equilibrium
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products configuration. This latter configuration is probably of dominant impor-
tance in turbulent premixed combustion, while the interaction of two streams of
fresh mixtures may be of reduced but still non-negligible importance. On the other
hand, experimental data are available for the twin-fame configuration (Law et al.,
1986) used as a data-base to test the ability of the detailed chemistry to predict
extinction. Extinction strain rates are accurately determined by the opposed-jet
code through the inclusion of one-point continuation (Egolfopoulos and Dimotakis,
1998), allowing for the description of turning-point behavior in the strain rate do-
main.

In a second part, similar simulations are conducting using simplified chemistry.
The main goal is to “tune” the kinetic parameters to closely mimic several flame
properties. Mantel et al. (1996) and Bedat et al. (1997) have shown that one-
step global chemistry can predict flame propagation as well as flame extinction for
a given fuel-to-air equivalence ratio, ¢, tuning independently the pre-exponential
factor A and the activation energy E,. An important element of the ICC technique,
compared to other reduction methods, is that the simplified chemistry is tested
by modified versions of Chemkin-based codes, allowing for the use of simplified
transport coefficients that are compatible with the ones used in the actual DNS
or LES simulations. It has been found that results obtained by using simplified
chemistry and detailed transport may be noticeably different compared to the ones
obtained with simplified chemistry and simplified transport. Furthermore, thermal
radiation from CO; and H,0 at the optically-thin limit (Egolfopoulos, 1994) are
included. Thermal losses may be of particular importance on flame propagation
and extinction (Law and Egolfopoulos, 1992; Egolfopoulos, 1994) in lean premixed
combustion applications, such as gas turbines. Finally, the ICC technique produces
kinetic schemes with relatively low level of stiffness, reducing thus the cost of DNS
or LES simulations.

In the previous ICC studies, simplified chemical mechanisms were derived for
a fixed equivalence ratio. The technique is extended here to account for variable
equivalence ratio as well as for flame thickening. A one-step global chemistry model
was derived, satisfactorily describing several flame properties of lean propane/air
mixtures at P = 1 atm and Ty = 300 K. The scheme is C3Hg+502 — 3CO,+4H,0
with the specific reaction rate given by:

w = A[C3Hg)*[02)Pexp(~E,/RT)

where [C3Hj) and [O;] are the reactants molar concentrations, a and b the corre-
sponding concentration exponents, A the pre-exponential factor, F, the activation
energy, i the gas constant, and 7' the absolute local gas temperature. The refer-
ence detailed chemistry for C3Hg was compiled by combining a C3 submechanism
(Pitz and Westbrook, 1986) with the well-established C1-C2 GRI 2.1 mechanism
(Bowman et al., 1996). Two sets of parameters were finally kept for propane:

Set 1: a = 1.0, b= 0.5, A = 1.60E09 (cgs units), E, = 14,000 (cal/mole).

Set 2: a = 1.0, b= 0.5, A = 1.50E10 (cgs units), E, = 20,000 (cal/mole).

The use of concentration exponents as fitting parameters was essential to better
describe variable equivalence ratio effects for a given set of Arrhenius parameters,
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as suggested by Westbrook and Dryer (1981). E, was kept at the lowest possible
values to assure low stiffness and a thicker reaction zone. Accordingly, the flame
thickening factor, F, required for LES is reduced compared to higher E, schemes.
For example, for Set 1 with E, = 14,000 cal/mole a flame thickening factor F=14
may be used in the LES while for Set 2 with E, = 20,000 cal/mole, F = 6 — 8
is required for the same level of flame resolution. Although the flame thickening
results in flames which are easily resolved by LES and with practically the same
laminar flame speed, the thicker flames will be more susceptible to strain rate effects
compared to the “real” thinner flames. Thus, by minimizing the flame thickening
factor F, the strain rate effect discrepancy is minimized.

Figure 2 depicts the experimental (Vagelopoulos and Egolfopoulos, 1998) laminar
flame speeds, s), for atmospheric, lean C3 Hg/air mixtures as well as the predictions
obtained by using detailed chemical kinetics and transport and the proposed sim-
plified scheme. The agreement is quite satisfactory. Extinction strain rates, Kest,
were also determined for the twin-flame, opposed-jet configuration (Fig. 3). As ex-
pected, the predictions of Kest with F = 4 were found to be quite low compared to
the F = 1 simulations, but still high compared to the E, = 14,000 cal/mole scheme
with F = 8. Representative comparison of the extinction response for F = 1 and
F = 4 for a $=0.9 flame is shown in Fig. 4 for the E, = 14,000 cal/mole scheme.
However, the flame response to strain rate for the fresh reactants against equilib-
rium products configuration, which is the prevailing one in the LES simulations, is
in quite favorable agreement between the detailed and simplified chemistry simu-
lations. The variation of the spatially integrated heat release rate with strain rate
is shown in Fig. 5 for the detailed chemistry simulations as well as the simplified
chemistry simulations with F' =1 and F = 4. Extinction is not possible for such a
configuration, and the overall response of the F = 4 flames appears to be in close
agreement with the detailed simulations.

4. Incorporating subgrid-scale effects into the thickened flame model

A complete description of the thickened flame (TF) model may be found for
RANS models in Butler and O'Rourke (1977) and for LES models in Veynante
and Poinsot (1997b). The key idea is to thicken the flame while maintaining its
propagation speed. Following classical premixed laminar flame theories, this may
be achieved simply by multiplying the thermal and molecular diffusivities a by a
thickening factor F and dividing the preexponential constant A by the same factor
F. With this transformation, the flame is thickened by a factor F and may be
explicitly resolved on the LES mesh for sufficiently large values of F'.

Unfortunately, when the flame is thickened from 69 to Fof, the chemical time,
estimated as 7. = 6? / s?, becomes Fr.. Accordingly, the interaction between turbu-
lence and chemistry may be modified because the Damkohler number, Da = 7¢/7c,
comparing turbulent and chemical time scales is also decreased by a factor F'. The
interaction between flame and turbulence is altered in two main ways. First, eddies
smaller than F§9 do not interact with the flame any more, and their effects have to
be incorporated in the modeling as a subgrid scale effect. Eddies larger than Fé7
interact with the flame front, but their efficiency may be affected.
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FIGURE 2. Variation of laminar flame speed with equivalence ratio for atmospheric

C3Hg/air mixtures (fresh gases initial temperature 7o = 300 K). 0: experiments; u:
predictions by detailed chemistry; s : predictions by proposed simplified chemistry.
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detailed chemistry; + : predictions by proposed simplified chemistry and F = 1.

4.1 DNS of flame/vortex interaction

Direct numerical simulation (DNS) of flame/vortex interactions is used to inves-
tigate how flame/turbulence interaction is affected by the thickening of the flame
front and to propose a subgrid scale model to compensate these effects. A pair of
counter-rotating vortices interacts with an initially planar laminar flame (Poinsot
et al., 1991). The ratio of the vortex size r to the initial flame thickness 42 is kept
constant whereas three values of the vortex to laminar flame speeds ratio, v'0/s?,



LES of combustion instabilities 67

2000

1800

1600+

1400

0 ogo

1200t s o

1000t a

Maximum Flame Temperature, K

800 ‘_L A L
10 100 1000 10000

Strain Rate, 1/s

FIGURE 4. Variation of maximum flame temperature with strain rate for an atmo-
spheric, ¢ = 0.9 C3Hg/air mixture (fresh gases initial temperature Tp = 300 K), in
the twin-flame, opposed-jet configuration. Predictions using the proposed simplified
chemistry for F=1 (o) and F =4 ().

- 1.0e+9
* [®]
N [ ]
E |
G g.oe+af Ll
W
20 A o
o A
o A
Q  6.00+BF P
3 ="
[
=4
w  4.0e+8[
Q
o]
)
L
< 2.0e+B[
Tt
50
|+
2
=
=
0.0e+0 L L
100 1000 10000 100000

Strain Rate, 1/s

FIGURE 5. Variation of integrated heat release rate with strain rate for an atmo-
spheric, ¢ = 0.9 C3 Hg/air mixture with reactants at initial temperature Tp = 300 K,
in the fresh reactants against equilibrium products, opposed-jet configuration. o :
predictions by detailed chemistry; = : predictions by the proposed simplified chem-
istry and F = 1; » : predictions by the proposed simplified chemistry and F' = 4.

are considered (cases A, B, and C). Five values of the thickening factor F' are in-
vestigated (F = 1.0, 2.5, 5., 10., and 25.). Two additive cases (D1 and D2) are
used to check the influence of the length scale ratio 7/6. Numerical parameters are
summarized in Table I.
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TABLE I: Flow conditions for DNS of flame/vortex interactions. For all flows:
the acoustic Reynolds number Re, is = coL/vo = 15000; the temperature change
through the flame front is T5/T) = 4 (o = (T — T})/T; = 0.75); the sound speed in
the fresh gas is cp; the activation temperature 7, is such that B =aT,/T, = 8; the
flame Mach number s7/co is 0.0159; 8} is the flame thickness after thickening (6} =
F 7). The initial flame thickness, 6°, estimated from 0ps) /v =4,is 67 /L = 0.0168.
The vortex size, 7, is estimated from the distance between the two vortex cores. o'
measures the vortices velocity. The computational domain is L, x L,, discretized
on N; x Ny grid points.

RUN r/& /sy F  ¢/§}  L/L LJL N, N,

Al 30. 8. 1.0 30. 3. 3. 1025 1025
A2 30. 8. 2.5 12. 6. 3. 801 401
A3 30. 8. 5.0 6. 3. 3. 201 201
A4 30. 8. 10. 3. 3. 3. 129 129
A5 30. 8. 25. 1.2 10. 3. 257 129
B1 30. 4. 1.0 30. 3. 3. 1025 1025
B2 30. 4. 2.5 12. 6. 3. 801 401
B3 30. 4. 5.0 6. 3. 3. 201 201
B4 30. 4. 10. 3. 3. 3. 129 129
B5 30. 4. 25. 1.2 10. 3. 257 129
C1 30. 0.8 1.0 30. 3. 3. 1025 1025
C2 30. 0.8 2.5 12. 6. 3. 801 401
C3 30. 0.8 5.0 6. 3. 3. 201 201
C4 30. 0.8 10. 3. 3. 3. 129 129
Cs 30. 0.8 25. 1.2 10. 3. 257 129
D1 60. 8. 10. 6. 6. 6. 257 257
D2 60. 1.6 10. 6. 6. 6. 257 257

The temporal evolution of the total reaction rate and the corresponding values of
the flame surface (estimated from the iso-surface ¢* = 0.8 of the reaction progress
variable) are plotted in Fig. 6 for Cases C1 to C5. As expected, as F is increased
the total reaction rate decreases. Reduced values of the total reaction rate and
total flame surface are in close agreement, showing that the local reaction rate is
not affected by the thickening process whereas the vortices become unable to create
flame surface by wrinkling.

Flame surface evolutions depend on the vortices-induced flame stretch (k),. Val-
ues of (k),, extracted from DNS as done by Meneveau and Poinsot (1991), are
displayed in Fig. 7. As expected, (k) s increases with the vortex-induced strain rate
v'/r and decreases with decreasing values of the length scale ratio r /68} because vor-
tices become inefficient (Poinsot et al., 1991). For cases D1 and D2, the length scale
ratio 7/87 corresponding to the actual flame is increased by a factor of 2 compared
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FIGURE 6. Total reaction rate versus time during flame vortex interaction for
different values of the thickening factor F: cases C1 ( ,F=1),C2( ,
F = 25), C3 (---- , F =5, C4 (reeeeeee , F =10)and C5 (——, F =
25.). Reaction rate values are made non-dimensional using the corresponding planar
laminar flame quantities. Reduced flame surfaces are also plotted (e ). Times are
reduced using the flame time 6} /3.
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FIGURE 7. Flame stretch (K) induced by the pair of vortices plotted as a function
of the length scale ratio r/8} for cases An (e ), Bn (a), Cn (s ), Dn (o ). The bold
solid line ( ) corresponds to the proposed efficiency function C, (Eq. 7). The
efficiency function Cpp (Eq. 6) proposed by Meneveau and Poinsot (1991) is also
plotted ( ). Stretches are reduced using the flame characteristic time 82 /s}.
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to previous cases. For case D1, the vortex-induced strain rate v’ /T corresponds
to cases B (whereas the maximum vortex velocity is the same as in cases A). The
length scale ratio r/8} is 6, and the stretch extracted from DNS corresponds to
case B3 despite an increased value of the thickening factor F by a factor of 2. A
similar result is found for case D2 having similar values of vortex induced strain
rate, length scale ratio r/é}, and flame stretch as case C3.

To summarize our results, an increase of the flame thickening leads to a decrease
of the flame front wrinkling because of a decreasing efficiency of vortices as length
scale ratio r/4} is decreased, as pointed out by Poinsot et al. (1991). The reduced
efficiency of a vortex to wrinkle a flame front depends mainly on the value of r/8}
and not on the actual value of F (compare cases D1/B3 and D2/C3).

4.2 Estimation of the wrinkling of the flame front

A model incorporating the effects previously described should be based on the
comparison between real and thickened flame wrinklings. Filtering the instanta-
neous flame surface density balance equation (Candel and Poinsot, 1990) leads to
(Piana et al., 1997; Boger et al., 1998):

ox = = =

B +V. [(u),X] + V. [(wn)sm =(V.u-nn:Vu) X+ (wV.n) T = (k) , L (2)
where T is the filtered flame surface density and corresponds to the subgrid scale
flame surface. w is the flame front displacement speed, assumed here to be equal
to the unstrained laminar flame speed sY. n is the unit vector normal to the flame
front pointing toward fresh gases, V.n denotes the flame surface curvature, ar =
V.u—nn : Vu corresponds to the strain rate induced by the flow field and acting on
the flame front, and « is the flame stretch. (Q), denotes averaging along the flame
surface at the subgrid scale level. A complete analysis would require modeling and
resolution of Eq. (2), but a simplified approach is proposed here. The subgrid scale
surface averaged curvature (V.n), may be estimated as:

1 12-1

Kv'n)s Lf ~ aT (3)
where Ly is the subgrid scale wrinkling length scale. Z is the wrinkling factor
(i.e. the subgrid scale flame surface divided by its projection in the propagating
direction) and A the filter size. « is a model constant of the order of unity. Assuming
a subgrid scale equilibrium between flame surface and turbulence ({x), = 0), the
wrinkling factor of the flame surface, Z, may be estimated as:

A

~1+ as—o(aT)s (4)
1

m

Estimating the subgrid scale strain rate as (az) s = Up /A, where !y is the subgrid
scale turbulent velocity, leads to:

A u’
Exlt+as-2=1+a-8 5
+ DA +a8?, (5)
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recovering the wrinkling function (corresponding to the ratio of the subgrid scale
turbulent flame speed St and the laminar flame speed s? used, for example, in
the G-equation approach (Im et al,, 1997). The limited ability of small vortices
to wrinkle the flame front must be parametrized and incorporated in a model for
the strain rate {ar), through an efficiency function as already done in RANS by
Meneveau and Poinsot (1991) to derive the ITNFS (Intermittent Turbulent Net
Flame Stretch) model.

4.3 Spectral analysis

Meneveau and Poinsot (1991) have modeled the effective strain rate induced by
a pair of vortices (size r, velocity v’} acting on a flame front as:

! '
S.,. = CMP (—Tl—) [’U_] = 10—c(s) [’U_] with C(S) — 0.545 (6)
/L r logso (4 ) +0.364
i

where the efficiency function Cp is only a function of the length scale ratio r/ 8}
whereas a clear dependence on the velocity ratio v’/ s? is observed in our DNS. For
example, cases Al to A4 exhibit almost the same temporal evolution of the total
reaction rate (not displayed here) whereas with a lower velocity ratio cases C1 to
C4 lead to large differences (Fig. 6). A new efficiency function, compared to DNS
data in Fig. 7, is then proposed:

r v 1 r 0.6
Cp (6}’3?)—2 l+erf O'GI”((;}) f{; (M
Cpp, also plotted on the figure, slightly underestimates the efficiency of small
vortices and tends slowly toward its asymptotic value.

The effective strain rate due to a pair of vortices now has to be integrated over
all length scales to estimate {(a¢),- Two cases are considered. First, a Heaviside
efficiency function Cy (r/6f) = H (r — 6}), assuming that vortices lower than the
cut-off length scale df are unable to affect the flame, leads to a simple analytic
solution. Then, the efficiency function Cy, is considered. Meneveau and Poinsot have
incorporated turbulence intermittency effects (various possible values of the velocity
v’ for a given vortex size r), but as these effects lead only to a weak modification
of the final results, compared to modeling uncertainties they are not considered
in the following to simplify numerical integrations. Assuming a homogeneous and
isotropic turbulence, velocity v’ and length r' scales are related:

1
A T3
v = (E) = (K) up (8)
where [; is the turbulence integral length scale, corresponding to the velocity u'.
Then, following Meneveau and Poinsot (1991):

0.28 r v\ v l;
(ar)s = 1y m,e.,c(a—;’s?>7d[‘" (?)] (©)
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leading to:
'I'L =§ﬂ e 1
(ar), = 0-282’13(9_)%/'"("*) o (s, (’_t)’“’%e—g e dp
(@) A \NL) Joadin() 0] & A) s

(10)
where 7, is the Kolmogorov length scale, and Re = l,u'/v ~ 4(1/8) (' /59) the
turbulence Reynolds number. The integration is performed on all length scales
lower than the filter size A.

For a Heaviside efficiency function Cy, (ar), has an analytical expression:

2
0.42 o’ AN?
e a) For 6f < ng: (ar), = W% (E) Rel/? - IJ (11)
. 0.42 uy [/a)}
Cb) For 'I’]kS(Sl SASlt (GT>3=H(2—)K' F -1 (12)
]

Of course, if A < &7, {ar), = 0. If A > I, A should be replaced by I; in the
previous expressions. In case b, corresponding to the general case, the strain rate
depends only on local quantities for a given cut-off scale of.

For the efficiency function C, (Eq. 7), the integration is performed numerically,
and the reduced strain rate I';, = (az),A/u/, is plotted in Fig. 8. T, increases with
A/8}, contrary to the result expected from expressions (11) and (12) (Heaviside
efficiency function), because A/d}, A/l and u)y/s? are related. An increase of
A/8} corresponds to an increase of the turbulence Reynolds number Re. As the
dependence of ', with [,/A is weak compared to the model uncertainties, Iy, may

be fitted by:
A 1.2 A
r, (—, —A> =0.75exp |- ——rz (—) (13)
i )\

which is in close agreement with the numerical integration of I',, as shown in Fig. 8.
For comparison, I'aprp estimated from the efficiency function Cpp (Eq. 6) is also
displayed. I'pp is almost independent of the velocity ratio u/y /s? (the only de-
pendence comes through the turbulence Reynolds number and remains weak, as
already pointed out by Meneveau and Poinsot, 1991) and depends weakly on the
length scale ratio {;/4}, as T,,.

N

4.4 Comments and practical implementation

Following the previous analysis, the wrinkling of the subgrid scale flame front
may be estimated as:
- A v\ o
::Har(_ _A)—A (14)
!
This expression may also be used in a G-equation formalism (Im et al., 1997) to esti-

mate the subgrid scale turbulent flame speed or in a flame surface density approach
(Boger et al., 1998). A dynamic formulation could also be derived.
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FIGURE 8. Reduced strain rate I', = (a7),A/u} versus the length scale ratio
A/8} estimated from the efficiency function Cp (Eq. 7). Tn is plotted for /8] =
100 with u/y/s) = 100 ( ), /s = 10 (---- ) and wph/s? =1 (—-—).
Bold lines are obtained from numerical integrations of Eq. (10) whereas thin lines
correspond to the proposed fit (Eq. 13). Iy is also plotted for case [;/8] = 20
and un/s) = 10 (- ). Tmp ( ), estimated from the efficiency function
Cup (Eq. 6) proposed by Meneveau and Poinsot, is displayed for comparison (o,
1,/8} = 100; uin/s{ = 10).

For a given turbulence and using Eq. (12), £ may be recast as:

1 2
- a o (A3 A)\?
2= 140420 (3) [(E) —1} (15)

For a thin flame front (i.e. A >> 6f), E increases linearly with A in a log-linear
diagram and reaches a constant value when A > [;. This finding is in agreement
with the experimental data obtained by Piana et al. (1997).

With a thickened flame, the actual wrinkling of the flame front is underestimated
by an efficiency factor E = = (5,0) /2 (6}) In practical applications, A is lower
than the thickness §}. Accordingly, the thickened flame will not be wrinkled by
subgrid scale turbulence and = (8}) ~ 1. The underestimation of the flame front
wrinkling by the thickened flame approach should be corrected by increasing the
flame speed by the efficiency factor E. This could be achieved by increasing the
pre-exponential factor by a factor E? as done here, but the flame thickness may
be kept constant by multiplying both the pre-exponential factor and the molecular
and thermal diffusivities by a factor E. In this case, a subgrid scale diffusivity,
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depending on the flame characteristics, is introduced. £ is estimated here from:
A uy\ o A A
EN._.(JI) ~1+al (E’ sﬂ> o ~1+al (50’ 0 ) Csso\/QSUSzJ
rSt 1 TS l
where Cj is a model constant used in the estimate of up from S

_ 1[0y 9,
SU - 5 (8:1:, + BIL‘,)

In the present preliminary tests, we use aI'C, = 0.1.

To summarize, the thickening of the flame has two main effects:

¢ eddies smaller than Fé? do not interact with the flame any more, and their
effects have to be incorporated at the subgrid scale level using an efficiency factor
E. Our preliminary results show that neglecting the efficiency function (i.e. F = 1,
assuming a plane laminar subgrid scale flame) leads to an unexpected blow-off. In
fact, the global reaction rate is underestimated, and the predicted lame becomes
unable to sustain the incoming fresh gases flow.

e eddies larger than 4] interact with the flame front, but their efficiency may also
be affected as described in Section 4.1. This effect was not incorporatgd here, but
could be corrected by estimating an efficiency function at a test level A ~ 10F 4%,
corresponding to the size of the larger vortices affected by the flame front (see Fig 7).

5. Full simulations of the Ecole Centrale burner with no acoustic forcing

Simulations of the unforced flow in the ECP burner are performed using the
AVBP code, a CFD package built on COUPL (CERFACS and Oxford University
Parallel Library). AVBP has been used for a variety of unsteady flows in DNS
and LES (Nicoud et al., 1996; Nicoud, 1997; Ducros et al., 1997). AVBP can
handle hybrid meshes and is fully parallel. The previous models for chemistry and
flame turbulence interaction were incorporated into this code and tested separately.
Then, computations for the ECP burner were started for the operating conditions
summarized in Table II. Propane combustion is modeled using chemistry parameters
described in Section 3 (Set 2 with a thickening factor F = 8).

Table II. Physical parameters for the Ecole Centrale Paris burner simulation

Inlet Equivalence Inlet Flame Adiabatic flame
temperature ratio velocity speed temperature
300 K 1 6.4 m/s 0.36 m/s 2190 K

All computations were performed in two dimensions since flow visualizations have
indicated that large scale structures produced in this chamber were indeed two-
dimensional. Common numerical parameters for all computations are described in
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Table II1. For all cases, the combustion chamber is computed as an amplifier system
(and not as a resonator): inlet and outlet boundary conditions are non reflecting,
and all acoustic waves produced in the combustor are allowed to leave the chamber
so that no self-induced low-frequency mode can occur. The combustor may be
forced to study its response. Forcing is introduced at the inlet of the combustor
by modulating the incoming acoustic wave or the incoming gas equivalence ratio
following the NSCBC technique (Poinsot and Lele, 1992).

Table III. Numerical parameters for the Ecole Centrale Paris burner simulation

Total number LES Time Range of CFL F

of points model Advancement Mesh size limit

41000 Filtered RK3 0.07-0.3 mm 0.5 8
Smagorinski

Typical simulations run during 500000 iterations, corresponding to 100 acoustic
travel times in the chamber and more than 4 convective times. Initialization of
computations in such cases is not simple since the LES code has very low levels of
dissipation. The overall procedure used here is the following:

e Starting phase: the computation starts from an initial state where a strip of
fresh gas is located in the combustion chamber and surrounded by two strips of
burnt gas on each side. To allow stabilization during this first phase, fourth-order
artificial viscosity is used.

e Transition phase: when the flow is established, artificial viscosity -levels are
reduced to negligible values, and the LES viscosity s picks up while the flow be-
comes unsteady. Maximum values of the ratio p. /tiam (Where figm is the laminar
viscosity in the fresh gases) are of the order of 20. The mean value of s/ tiam Over
the whole domain, however, is of the order of 0.3, showing that p, is distributed
very intermittently.

e Measurement phase: after a few transit times in the burner, the mean flow is
established, and measurements can be performed (with or without forcing).

In the absence of forcing, the flow stabilizes around a mean regime where two
types of oscillations are observed. Small scale vortices are shed on the jet and prop-
agate downstream. These vortices were also observed in the experiment (Zikikout,
1986). The frequency observed in the LES is of the order of 5 kHz while the mea-
surements gave values closer to 3.8 kHz. Large scale movements of the reacting jet
are also visible, both on the sinuous and varicose modes. These movements diminish
as time goes by because the acoustic activity in the cavity decreases.

A typical snapshot of the flow for this regime is given in Fig. 9. The flame is
only slightly corrugated and corresponds to the state observed in the experimental
set-up in the absence of instabilities (Fig. 6 in Poinsot et al., 1987).
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FIGURE 9. Instantaneous fields of temperature (a), reaction rate (b), and subgrid
scale turbulent velocity (c) for an unforced regime.

6. Forced response of the Ecole Centrale burner

6.1 Response to an acoustic perturbation (Case A)

The objective is to reproduce the combustor response to a 530 Hz excitation of the
inlet flow rate corresponding to one of the strongest instability modes observed in the
ECP burner. More precisely, LES is used to measure the time delay between inlet
flow rate perturbations and reaction rate oscillations. This delay was experimentally
found to be close to 0.9 ms (Fig. 12 in Poinsot et al., 1987). The wave amplitude
is chosen to induce a flow rate change equal to 50 percent of the mean flow rate.
Snapshots of temperature and reaction rate during one cycle of forcing are displayed
respectively in Figs. 10 and 11.

The general features observed in the LES match those observed in the experi-
ment: a large mushroom-shaped structure is produced (similar to vortices observed
in impulsively-started jets) and leads to a high increase of lame surface and reac-
tion rate. Fig. 12 displays time variations of inlet flow rate and heat release. The
reaction rate lags the inlet flow rate by approximately 0.9 ms as observed in the
experiment. The experimental heat release is also displayed, and a very good agree-
ment on phases is obtained. Note that amplitudes cannot be compared because the
experimental data contained only normalized values.

6.2 Response to a change in equivalence ratio (Case C)

In a second step, the combustor was forced by modulating the inlet equivalence
ratio ¢ between 0.3 and 1.7 using a sinusoidal function (frequency 530 Hz). A large
modulation amplitude is chosen to maximize the effects. To achieve such levels, both
fuel and air flow rates would have to be affected by the acoustic wave in opposite
directions. Since this is unlikely to happen in practice, the present simulations
provide a maximization of potential effects of unmixedness on combustor response.

As the overall mass flow rate was kept constant, no vortices were formed at the
inlet, and only the chemistry effects are observed. Fig. 13 (fuel mass fraction) and



LES of combustion instabilities 77

a)

s
3 %)
Y it
/(— e
X
¢

b)

jul
=

c)

L SN ANGT Yr,
» NG =

FIGURE 10. Temperature fields during one forcing cycle at 530 Hz. The time
separation between each picture corresponds to a quarter period (0.47 ms)
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FIGURE 11. Reaction rate fields during one forcing cycle at 530 Hz.The time
separation between each picture corresponds to a quarter period (0.47 ms)
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FIGURE 12. Time evolutions of inlet flow rate ( ), window-integrated reaction
rate in the LES ( ) and in the Poinsot et al. experiment (---- ).

FIGURE 13. Fuel mass fraction fields during one forcing cycle of the equivalence
ratio ¢ at 530 Hz. Dark and white regions correspond respectively to rich (¢ = 1.7)
and lean (¢ = 0.3) gases.

Fig. 14 (reaction rate) show how the lean and rich regions created at the inlet enter
the combustor and affect the flame front.

The total reaction rate is modified by the pulsation of the inlet fuel mass fraction
as shown in Fig. 15: the inlet fluctuations of fuel mass fraction are slightly damped
before entering the combustor (because they pass through the convergent), but
combustion is modulated by these perturbations.
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FIGURE 14. Reaction rate fields during one forcing cycle at 530 Hz (modulation
of equivalence ratio ¢).
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FIGURE 15. Fuel mass fraction at the inlet of the domain (premixing chamber)
( ), in the jet at the dump section ( ), and total reaction rate (---- ).

Finally, Fig. 16 compares the effects of acoustic forcing (case A) with those of
chemical forcing (Case C). The case without forcing is added for reference. Obvi-
ously, runs should be continued to confirm this analysis, but it appears that acoustic
forcing has a stronger effect on the total reaction rate than chemical forcing. Since
we chose a very large range of variations for the chemical forcing, it seems that
acoustic forcing is the main phenomenon to consider for combustion instabilities in
the present system.
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FIGURE 16. Total reaction rate vs time for unforced flow ( ), acoustic
forcing at 530 Hz with an amplitude of 50 percent ( ) and for a modulation of
equivalence ratio between 0.3 and 1.7 (---- )-

7. Conclusion

Large eddy simulations of the effects of acoustic waves and equivalence ratio
variations on flame response have been performed for a premixed turbulent flame
stabilized in a backward-facing step combustor. The developed code includes: (1)
a chemistry model based on a new reduction technique, ICC, for propane and
methane; (2) a flame thickening methodology, incorporating subgrid scale mod-
eling, to handle flame turbulence interactions; and (3) specific boundary conditions
to control and measure acoustic wave reflections on inlets and outlets. The code
itself is a compressible parallel finite volume solver able to handle hybrid grids
(AVBP).

Results indicate that the final tool was able to predict forced combustor response
over many excitation cycles and to reproduce the phenomena dbserved in the ex-
periment of Ecole Centrale Paris. The phase between flow rate oscillations and
unsteady heat release, for example, was recovered in the case of acoustic forcing.
Modulating the inlet equivalence ratio also led to unsteady heat release but with
lower amplitudes than with acoustic forcing.

Numerical simulations were carried out at IDRIS (Institut du Développement et
des Ressources en Informatique Scientifique, Orsay, France).
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LES modeling for lifted turbulent jet flames

By Luc Vervisch! AND Arnaud Trouvé’

The LES method is an attractive approach for the simulation of turbulent jet flames.
In this method, the effects of large scale structures controlling the mixing process
are resolved while small-scale effects such as the leading-edge flames involved in
the flame base dynamics are accounted for by the subgrid-scale models. The LES
approach is examined in this study with a particular emphasis on a simple formu-
lation for combustion based on the assumption of infinitely fast chemistry. When
applied to the problem of turbulent jet flames, this formulation is limited to the
description of a regime where the flame remains attached to the fuel injector. Using
DNS and LES databases, a modification of the infinitely fast chemistry formulation
is proposed in the present study with the objective of numerically capturing transi-
tions to the lifted flame regime and the flame blowout regime. The DNS database
corresponds to leading-edge flames evolving in isotropic turbulent flow and is used
to describe the structure of the flame base. The LES database corresponds to the
near-field region of plane turbulent jets and is used to describe the turbulent mixing
process. Preliminary results from a priori tests of the new subgrid-scale combustion
model are found to be encouraging.

1. Introduction

The model problem of a gaseous fuel jet flowing into a reservoir of air is a generic
configuration in combustion theory that has many of the ingredients found in prac-
tical non-premixed combustion systems. The numerical simulation of this config-
uration remains a difficult task, however, for standard Reynolds-Averaged Navier-
Stokes (RANS) methods. Indeed, RANS models have difficulties in describing the
complex coupling between mixing and chemical reaction that occurs in turbulent
jet flames. This coupling leads to 3 possible regimes for flame stabilization: (1) the
attached flame regime where the flame is anchored to the fuel injector; (2) the lifted
flame regime where the flame 1s stabilized further downstream at a finite distance
from the fuel injector; and (3) the flame blowout regime where the flame cannot
be stabilized. Liftoff heights and blowout velocities are quantities of practical en-
gineering interest, and their prediction remains a great challenge for current CFD
tools.

The difficulties of RANS models in describing the stabilization region of turbu-
lent jet flames is in part due to the conflicting underlying theories for this prob-
lem. The theories differ in the following important aspects (Pitts 1988): (1) the

1 INSA and UMR-CNRS-6614-CORIA, Rouen, France, vervisch@coria.fr
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degree of premixing upstream of the flame base (for instance Vanquickenborne &
van Tiggelen (1966) assume full premixing between fuel and air, whereas Peters &
Williams (1983) consider that fuel/air premixing remains negligible); (2) the con-
trolling mechanism for flame stabilization (turbulent premixed flame propagation
according to Vanquickenborne & van Tiggelen (1966); laminar diffusion flamelet
quenching according to Peters & Williams (1983); large scale turbulent mixing of
cold reactants with hot burnt products according to Broadwell et al. (1984); tur-
bulent propagation of triple flamelets in partially premixed reactants according to
Miiller et al. (1994)).

Consistent with some aspects of current theories, experimental evidence empha-
sizes the role of large-scale vortex structures that control the mixing process in the
turbulent jet. They also emphasize the role of small-scale, laminar-like, leading-
edge (triple) flames that control the flame base motion process (Muiiiz & Mungal
1997). Both RANS and large-eddy simulation (LES) approaches have difficulty in
capturing leading edge phenomena. In RANS formulations, however, these large-
and small-scale effects are not decoupled and remain in the models. It can be ar-
gued that this coupling accounts in part for the deficiencies of RANS models. In
contrast, the LES approach resolves the large scale structures and only small-scale
effects need to be modeled.

Therefore, the ability of LES methods to numerically capture the properties of the
unsteady large scales is an attractive feature that allows a new look on the problem
of simulating turbulent jet flames (Cook & Riley 1994, Réveillon & Vervisch 1996,
Pierce & Moin 1998, Réveillon & Vervisch 1998, Jaberi & James 1998). As far as
subgrid-scale modeling is concerned, the standard first step is to assume that the
chemical processes are infinitely fast. In this situation, the knowledge of the extent
of mixing between fuel and oxidizer is sufficient to fully describe the diffusion flame
(Burke & Schumann 1928). The mixing field is characterized using the classical
concept of a mixture fraction Z (Z = 1 in the fuel feeding stream, Z = 0 in the
oxidizer reservoir). The temperature and species mass fractions are known functions
of Z, and the Z-field is simply obtained in the LES computations from a presumed
statistical distribution (via for instance a beta-function probability density function
(pdf) ]B(Z), where ﬁ(Z) 1s parametrized in terms of the first and second moments
of the Z-distribution, see Libby and Williams 1994).

While the assumption of infinitely fast chemistry remains a valuable first step in
applying the LES approach to non-premixed flames, it has also some well-known
deficiencies. For instance, Fig. 1 shows that this assumption leads to a flame that is
always attached to the fuel injector. For problems where it is important to account
for phenomena such as ignition or flame stabilization, the infinitely fast chemistry
assumption cannot be invoked, and some alternative description of the turbulent
flame must be used.

In the following, we use DNS of leading-edge flames evolving in isotropic turbulent
flow and LES of the near-field region of plane turbulent jets. The DNS data are used
to describe the structure of the flame base (§2) and to propose a new subgrid-scale
combustion model for flame stabilization (83). The LES data are used to describe
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FIGURE 1. LES results of the near-field region of a plane turbulent jet flame.
Instantaneous snapshot showing isocontours of the LES-filtered temperature in a
constant z-plane. The LES formulation uses the assumption of infinitely fast chem-
istry, and the simulations are, therefore, limited to a description of the attached
flame regime. This simulation was performed using the LES code presented in §4.

the turbulent mixing process and to examine the behavior of the turbulent mixing
time scale that is used by the combustion sub-model (§4).

2. DNS of a turbulent edge-flame
2.1 Introduction

Focusing on the stabilization region of turbulent flames implies studying the point
where the transition from non-burning to burning occurs (Muiiz & Mungal 1997).
In a non-premixed situation, this transition is related to the appearance of edge-
flames (Vervisch & Poinsot 1998). Experimental studies of the structure of the edge
of diffusion flames have suggested that partially premixed combustion controls the
properties of those edges (Phillips 1965, Kioni et al. 1993, Plessing et al. 1998).
A possible model problem for partially premixed combustion is the triple flame
configuration composed of a curved partially premixed flame front followed by a
trailing diffusion flame. The triple flame analogy has been an effective tool to gain
some understanding on the properties of propagation of diffusion flames (Hartley
& Dold 1991, Veynante et al. 1994, Ruetsch et al. 1995, Ghosal & Vervisch 1998),
the role of partially premixed combustion in auto-ignition problems (Domingo &
Vervisch 1996), the chemical structure of the edge of diffusion flames (Echekki &
Chen 1998), and diffusion flame holding (Buckmaster & R. Weber 1996) together
with the effects of edge flames in liftoff situations (Favier & Vervisch 1998).

To increase our basic understanding and help the modeling of liftoff in non-
premixed jet flames, we use direct numerical simulations of the edge of a diffusion
flame interacting with freely decaying turbulence. The calculation starts with the
establishment of a fully compressible laminar triple flame, using one-step chemistry
and following the procedure proposed by Ruetsch et al. (1995) for unity Lewis
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FIGURE 2. Sketch of the DNS configuration corresponding to the edge of a diffusion
flame interacting with isotropic turbulence.

number. A three-dimensional initial condition for the mixture and the velocity field
is obtained by repeating the two-dimensional triple flame in the spanwise direction
z (Fig. 2). The flame is then allowed to interact with the turbulence. The DNS
solver follows the methodology of Poinsot et al. (1996). We refer the reader to
Domingo & Vervisch (1996) for more details on the solver. The DNS database
include two synthetic problems corresponding to different characteristic length and
time scales of the flame-flow interaction (see Table 1). Case I corresponds to the
edge of a diffusion flame interacting with vortices that are large compared to the
characteristic length of the flame, while case II is representative of an interaction
with a more energetic turbulence, in which more scales are present.

Case bm /1y or/l uI/S," u'/S%F Rey,
1 0.10 0.25 5.64 3.64 157
1I 0.20 0.40 11.3 7.30 125

Table 1. Parameters of the simulations (129 x 129 x 65). The initial laminar triple
flame propagates with a velocity S%p in a mixing zone of thickness §,,, while the
thickness of the reaction zone in the trailing diffusion flame is 6. The propagation
speed of the stoichiometric mixture is S7. The temperature ratio between fully burnt
stoichiometric mixture and fresh gases is set to 4, and the stoichiometric composition
corresponds to Z,; = 0.5. The turbulence is characterized by its integral length scale
Iy, the amplitude v’ of the velocity fluctuation, and the turbulent Reynolds number
Rey, = (u'l,/v).
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FIGURE 3. Instantaneous snapshots showing isocontours of the reaction rate in
different constant z-planes. Initial laminar triple flame: (a); Case I (b) - (c) - (d);

Case II: (e) - (f) - (g) - (h) - ().

2.2 Topology of the turbulent edge flame

After two eddy turn-over times, the turbulent mixing of the reactants is fully
developed, and the initially laminar triple flame has evolved into the edge of a
non-premixed turbulent flame. Instantaneous snapshots of the reaction zone re-
veal a complex structure (Fig. 3), showing that the partially premixed front and
the trailing diffusion flame have been strongly modified by the turbulence. This
is particularly true in case II (Figs. 3e-i) where the flame is exposed to intense
turbulence.

One basic effect of the turbulent flow is to produce a number of zones with high
values of the reaction rate at the extremity of the main body of the diffusion flame.
The multiplication of these chemically super-active regions appears as the result of
two mechanisms: (1) the development of a turbulent partially premixed front with a
fame surface that is wrinkled by the vorticity field; (2) the stretching of the diffusion
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flame due to local high levels of the scalar dissipation rate. Diffusion flame stretching
tends to locally increase the burning rate. It may also lead to local quenching of the
diffusion flame, generating new edges that are in turn associated with high burning
rates. The first mechanism above is illustrated in Fig. 3f, displaying a plane where
the edge of the reaction zone is composed of two stoichiometric points, each being
supported by a turbulent partially premixed front and followed by a trailing diffusion
flame. The possible increase of the burning rate in the trailing diffusion flame (the
second mechanism above) is visible in Fig. 3b where the diffusion flame is pinched by
a pair of vortices, also pushing the wings of the partially premixed front towards the
diffusion flame. The second mechanism with local quenching of the diffusion flame
may be observed in Fig. 3g, where the quenching is responsible for the development
of a partially premixed kernel isolated from the downstream diffusion flame.

Despite the complexity of the fine scale structure of these flames, it is important to
note that the turbulent edge of the reaction zone is always composed, in the mean,
of a turbulent partially premixed front followed by a turbulent trailing diffusion
flame. This fact becomes obvious when studying the flame structure in mixture
fraction space.

2.8 The structure of laminar and turbulent edge flames in mizture fraction space

We now analyze the flame structure at a given time by averaging all quantities in
the homogeneous spanwise direction z and considering that these averaged quanti-
ties are functions of the streamwise and cross-stream coordinates z and y. Profiles
of fuel mass fraction Yr(z,y), temperature T(z,y), and reaction rate (z,y) are
plotted versus the mixture fraction Z(z,y) in Figs. 4 and 5, for various streamwise
locations. Figure 4 corresponds to the analysis of the initial laminar triple flame;
Fig. 5 to the analysis of the turbulent flame.

In mixture fraction space, the fuel mass fraction profile Yr(Z) lies between the
limit of mixing without reaction, corresponding to Yr = Z, and the infinitely fast
chemistry limit, corresponding to Yr = 0 for Z SZgandYp =(Z~2Z4)/(1- Zg1)
for Z > Z,. Note that the reference problem for non-premixed combustion is
the strained counter-flowing fuel/oxidizer diffusion flame (Peters 1986). In this
model problem, the mixing of the reactants occurs together with their consumption,
and the pure mixing line Yr = Z cannot be observed (except under quenching
conditions). This is not the case when the edge of the diffusion flame is composed
of a partially premixed front where some cold premixing of the reactants must take
place prior to combustion. As a consequence, the structure in mixture fraction space
of the edge flame is expected to be different from that observed in a counter-flowing
fuel/oxidizer diffusion flame.

This is confirmed by the present DNS in both the laminar and the turbulent flame
configurations. First, we observe a preheating region (curves marked by circles in
Figs. 4 and 5) developing in the vicinity of the stoichiometric triple point. Then, as
we move downstream from the partially premixed front into the trailing diffusion
flame, we observe that for conditions close to stoichiometry, Z = Z,;, the fuel mass
fraction decays from Yp = Z,, to Y = 0. In this transition region, the fluid particles
coming from the oxidizer stream (Z = 0) always undergo some premixing with fuel
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FIGURE 4. Fuel mass fraction (a), temperature (b), and reaction rate (c) plotted
versus mixture fraction at various streamwise positions & of a laminar edge-flame
configuration (Fig. 3a). o: z is slightly upstream of the flame and serves to describe
the preheat zone; o : z is downstream of the triple point and serves to describe the
trailing diffusion flame. Temperature and reaction rate are respectively normalized
with the temperature of the fresh gases and with the maximum reaction rate in a
stoichiometric plane laminar flame.

before reaching the diffusion flame at Z = Z:. Similarly, the fluid particles coming
from the fuel stream (Z = 1) always undergo some premixing with oxidizer before
reaching the diffusion flame at Z = Zg.

When the triple flame interacts with the turbulent flow, large differences are
observed between the laminar and turbulent cases for the profiles of reaction rate
(compare Fig. 4 right with Fig. 5 bottom right). In contrast, the results show that
the profiles of fuel mass fraction are similar in the laminar and turbulent cases if
considered in Z—space. These profiles can be considered as more generic, and we
now use this result to propose a skeletal description of the turbulent edge-flame in
mixture fraction space.
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FIGURE 5. Fuel mass fraction in case I (a) and case II (b), temperature (c) and
reaction rate (d) plotted versus mixture fraction at various streamwise positions z
of a turbulent edge-flame configuration (Fig. 3). o : z is slightly upstream of the
flame and serves to describe the preheat zone; o : z is downstream of the triple
point and serves to describe the trailing diffusion flame. Temperature and reaction
rate are respectively normalized with the temperature of the fresh gases and with
the maximum reaction rate in a stoichiometric plane laminar flame.

3. Simple EDge Flame Model (SEDFM)

3.1 Introduction

Flame stabilization results from complex interactions between the edge flames
previously discussed and the large scale coherent structures present in the turbu-
lent flow. The state of the art in LES of combustion chambers is based on the use of
the Infinitely Fast Chemistry Model (IFCM) (Pierce & Moin 1998). With infinitely
fast chemistry, the fuel mass fraction is calculated by presuming the probability den-
sity function of the mixture fraction P(Z;z,t) from its first and second moments, Z

and ?i’, as obtained from the resolutign of the large eddy field. The LES-resolved
fuel mass fraction is then computed as Yp(z, t) = fol YEIFCM(ZVP(Z; 2, t)dZ, where
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YEFCM(Z) is the equilibrium structure of the flame in mixture fraction space (Fig. 6
top). To include finite rate chemistry effects in LES, we propose to conserve this
simple and attractive formalism by simply replacing YiF CM(Z) by a modified func-
tion accounting for the presence of edge flames. This new flame structure in mixture
fraction space is parametrized using a partially stirred reactor subgrid model.

9.2 Skeletal description of turbulent edge flames

The infinitely fast chemistry assumption makes Yz a piecewise linear function of
Z. In Fig. 6 (top figure), this function is constructed from three points A, C, and
E, defined by their (Z,YF) coordinates: A(0,0); C(Z4:,0); E(1,YF,) (the subscript
o denotes a concentration taken in the feeding stream of fuel or oxidizer).

We propose to improve this skeletal description of the flame by introducing two
additional points B and D located on the pure mixing line Yr = Z. We thereby
allow for variable, non-zero concentration of fuel at point C corresponding to sto-
ichiometric conditions (Fig. 6 bottom). In this new skeletal structure, the limit of
pure mixing is obtained when B, C, and D are such that Yrg = Yr. = Yip = .
(Fig. 6 bottom left); the limit of equilibrium chemistry is obtained when B = A,
D = E, and C is such that Yr, = 0. Finite rate chemistry effects with edge flames
are mimicked by letting the skeletal structure evolve from the pure mixing case
to the equilibrium chemistry case. In the SEDFM model, we choose to meet this
requirement by using the relations presented in Table 2. These relations give the
flame structure in mixture fraction space as a function of a single parameter Y.

7 Y%EDFM(Z) -
Z < Yr, Z
Yry < Z < Zy (Z - Yry)(Yee — Yro)/(Zot = Yrs) + Y
Zy < Z <Y (Z = Zo)(Yrp — Yre)/ (Yo — Zst) + YFc
Yr, < Z Z
Yr, = (22, - (Yre — Z,.)z)l/2 and Yp, = (1 — Za)NZst —Yrg)/Zst + Z gt

Table 2: Flame structure in mixture fraction space in the SEDFM model.

The fuel concentration at point C may be viewed as a measure of the conditional
mean value of fuel mass fraction at Z = Zst, Yre = (Yp | Z = Z,t) (Smith 1996).

Figure 7 shows a test of the model where Yz, has been extracted from the DNS.
The results indicate that this skeletal description is an acceptable compromise to
describe the flame in mixture fraction space including finite rate chemistry effects.
We now turn to the yet unspecified parameter of the model: the conditional fuel
mass fraction Yr..
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FIGURE 6. Skeletal description of the turbulent edge-flame in the SEDFM model.

8.3 Subgrid-scale reactor modeling to determine Yr,

Broadwell & Lutz (1998) have recently proposed a model for the production of
NO; in turbulent jet flames based on a description of chemical reaction at every
axial location by a partially stirred reactor. Along the same lines, Borghi (1988)
has proposed various turbulent combustion models using trajectories in composition
space, and Ravet & Vervisch (1998) have developed a multi-level pdf-generator
for RANS simulations of aeronautical engines. We follow the same approach for
determining Yr,, the key parameter of SEDFM.

At each LES mesh point and at every time step ¢, the conservation equation of
fuel mass evolving in a partially stirred reactor (PaSR) may be cast in the form:

—~

dYF _ (Yg- - YF) + 7tcb(YF, Z)

dz (Zt - 7)

, (1)

where }7} and Z! are respectively the known LES-filtered fuel mass fraction and
mixture fraction. The subgrid mixing time 7! is estimated from the resolved flow
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field (see §4), and finite rate chemistry effects enter the model via w(YF, Z) given
for instance by a one-step finite rate chemical scheme. .

The solution of the PaSR equation (1) gives YFeSR(Z), a fuel trajectory in Z-
space accounting for the interaction between subgrid-scale micro-mixing and chem-
ical reaction. Indeed when (F'w)/(YE — Yr) > 1, the solution of (1) approaches
the infinitely fast chemistry solution YiF CM(Z). In addition, when 7t — 0, the
solution of (1) approaches the mixing line solution, Y7 = Z. Since our objective is
to determine YF,, only half of the trajectory needs to be computed: for fuel rich
conditions (2 > Z,1) the PaSR equation is solved with the initial condition on the
fuel lean side (Z = 0,YF = 0), whereas for fuel lean conditions (Z < Z4¢) the initial
condition is taken on the fuel rich side (Z = 1,Yr = Yr,). In both cases the point
Ylf ‘ISR(Z“) determines Yp., and thereby the new fuel concentration )7If-.+6t using
the fame structure YEEPFM(Z) discussed above.

Note that Eq. (1) is similar to the equation solved for the trajectory of a Monte-
Carlo particle in Z-space as obtained from a pdf method using the LMSE mixing
closure (Pope 1985, Dopazo 1994). This equation can also be understood as a local
dynamic subgrid flamelet where the contribution of diffusion, DV?YF, is modeled

as a linear relaxation term: (Yr — Yr)/T.
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4. LES of the near-field region of plane turbulent jets

The LES simulations are performed using a three-dimensional, compressible Navier-
Stokes solver. The solver features a high-order finite difference scheme that is sixth-
order accurate in space (Lele 1992) and third-order in time. It is similar to the DNS
solver used for the direct simulations of turbulent leading-edge flames (§2). Bound-
ary conditions are specified with the NSCBC method proposed by Poinsot & Lele
(1992). The LES formulation corresponds to the subgrid-scale (SGS) models pro-
posed by Moin et al. (1991). The SGS models are variants of the Smagorinsky
model based on an eddy-diffusivity assumption for the momentum, heat and mass
SGS turbulent fluxes, and a variant of the Yoshizawa model for the SGS turbulent
kinetic energy. While the LES solver may be run using the dynamic procedure
proposed by Moin et al. (1991), the present simulations are performed using con-
stant model coefficients: Cs = 0.033; C; = 0.1; Pry = 0.6; Sc, = 0.8, where Cg
is the standard Smagorinsky coefficient, C; the Yoshizawa coefficient, Pr; the SGS
turbulent Prandt! number, and Se¢, the SGS turbulent Schmidt number.

The computational configuration corresponds to the near-field region of a three-
dimensional plane jet, 0 < x/H < 20, where H is the initial jet height. The jet
Reynolds number Re; = (U;H/v) is 6000, with U; the mean jet inlet velocity and v
the fluid kinematic viscosity. The left z-boundary corresponds to inflow conditions
with prescribed velocity and scalar values; the right z-boundary corresponds to
outflow conditions, the y-boundaries to non-reflecting conditions (-5 < y/H < 5),
and the z-boundaries to periodic conditions (0 £ 2z/H < 5). The mean inlet z-
velocity and scalar profiles are given by the following expressions:

~ Ui+Ue U; —U,, H/2 —

w0,,2) = ey Do Too o B2 ol @)
5 _ 11 H/2 ~ |y|
Z(0,y,2) = 5t3 tanh(T) (3)

where 6 is the LES-filtered initial thickness of the jet shear layers, U, is a co-
flow velocity that is added to maintain convective outflow conditions at the right
z-boundary, and Z is the LES-filtered mixture fraction. In the present study, we
use §/H = 0.1 and U, /U; = 1/6. The jet is also weakly forced at the inlet (left)
z-boundary using a NSCBC variant of the random fluctuation method of Lee et
al. (1992). The jet inlet velocity fluctuations are specified using an auxiliary field
corresponding to homogeneous isotropic turbulence and a prescribed model energy
spectrum (Passot-Pouquet). The perturbations are characterized by moderate levels
of the forcing intensity, v'/U; ~ 2%, and an integral length scale of I;/H =~ 0.5.
Note that the particular implementation of the forcing method used in the present
study also induces some weak scalar fluctuations at inlet (see Fig. 8 at =z = 0).
Furthermore, in the present study, the grid spacing is uniform and the resolution is
101 x 200 x 50.

The LES simulations describe the mixing dynamics occurring in the near-field
region of the turbulent jet. As shown in Fig. 8, the scalar field in the vicinity
of the injector features a dramatic transition from an early stage (0 < z/H <
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FIGURE 8. Mixing dynamics in the near-field region of a plane turbulent jet.
Instantaneous snapshot showing isocontours of the LES-filtered mixture fraction in
a constant z-plane.

7), where mixing remains confined within the jet shear layers, to a second stage
(z/H > 7) characterized by large scale stirring motions. These stirring motions are
associated with the jet coherent structures, resulting in faster spreading rates and
more distributed small scale mixing across the jet width.

This transition is also observed in Fig. 9 where the mean total and SGS scalar
dissipation rates, < X > and < Ysgs >, are plotted as a function of streamwise
Jocation. Following Pierce & Moin (1998), we write:

S_2 B g
~ 2 U 512
=2 £ \wvZ
Xsos = = 5o |V Z| (5)

where 7 is the LES-filtered mass density, 7 the LES-filtered molecular viscosity, Sc¢
the molecular Schmidt number, and p: the Smagorinsky turbulent eddy viscosity.
In Fig. 9, these quantities are both spatially averaged in (y — z) planes and time
averaged over a period of time: < X >= ([ X dydzdt)/(LyL.T), where Ly (L:)is
the y-size (z-size) of the computational domain, and T the averaging time period.
T corresponds approximately to twice the mean time of flight of a jet fluid particle
across the computational domain.

Figure 9 allows some refinement of the two-zone description of mixing presented
in Fig. 8. Figure 9 suggests that mixing in the near-field region of the turbulent jet
can in fact be described by a sequence of 3 stages: (1) an early stage (0<z/HLT)
where < ¥ > is approximately constant; (2) an intermediate stage (7<z/H <15)
where < ¥ > increases; and (3) a fully-developed stage (z/H > 15) where < X >
decreases. Note that < X > carries information on both the spatial extent of mixing
(on the jet thickness) and the local values of the rates of mixing (on the values of
X). The transition from the first to the second stage is related to the onset of
large scale turbulent mixing and a corresponding rapid increase in the turbulent



96 L. Vervisch & A. Trouvé

3.0e-03

2.0e-03

1.0e-03

mean scalar dissipation rate

0.0e+00 ! " L
0.0 5.0 10.0 15.0 20.0

x location

FIGURE 9.  Streamwise evolution of the mean total and SGS scalar dissipation
rates, < ¥ > ( ) and < Xsgs > (---- ) vs z. The mean scalar dissipation
rates are made non-dimensional with the initial jet time scale, (H/U;). z is made
non-dimensional with the initial jet height H.

jet thickness. The transition from the second to the third fully-developed stage is
related to the lower local instantaneous values of the scalar dissipation rate that are
found downstream, as the jet fluid is further decelerated and the turbulence levels
are progressively reduced.

The downstream evolution from fast to slow SGS mixing rates, as observed in
Fig. 9 for z/H > 15, is the key mechanism that controls flame stabilization in the
LES combustion sub-model proposed in §3. The corresponding key quantity in the
SEDFM model is the turbulent mixing time scale 7¢, and a basic requirement of
the model is that 7* increases (at least in a mean sense) with downstream distance.
Figure 10 shows that this requirement is correctly met using the local SGS turbulent
time scale as an estimate for 7*:

wo_ A 1 (6)
V ZSGS vCilS]
where A is the LES filter size, A = (AszAz)‘/"’, ESGS the SGS turbulent kinetic

energy, and |5| = (25;5,;)!/2, with 5; = (8i:/0z; + 0%, /62:)/2. Note that in
Fig. 10, the analysis is conditioned on being in the mixing zone: 7! is conditioned
on |V Z| being larger than a threshold value that corresponds to approximately 20%
of the maximum value of the mixture fraction gradient at z = 0.

Figure 10 shows a classical evolution from fast to slow time scales for mixing, with
< 7' > approximately twice as long at z /H = 20 compared to its initial value at
z/H = 0. This evolution is also observed in Fig. 11 where the pdf of 7! is presented




LES modeling for lifted turbulent jet flames 97

9.0 T T T

80

6.0

5.0

mean turbulent time scale

40} 1

3.0 1 L 1
0.0 5.0 10.0 15.0 20.0

x location

FIGURE 10. Streamwise evolution of the mean SGS turbulence time scale, < 7* >
vs . The mean SGS turbulence time scale is made non-dimensional with the initial
jet time scale (H/U;). = is made non-dimensional with the initial jet height H.
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FIGURE 11. Probability distribution of the SGS turbulence time scale, 7¢, at
z/H =18 ( )and ¢/H =178 (---- ). 7' is made non-dimensional with the
initial jet time scale, (H/U;).

at 2 streamwise locations. Figure 11 reveals a weak downstream trend towards wider
statistical distributions of mixing time scales. The 7t.distribution at z/H = 17.8
covers a range of time scales that can vary by an order of magnitude. It is expected
that the SEDFM model will be sensitive to the largest values in this distribution
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and will allow flame stabilization at grid locations where 7 is sufficiently large.

5. Conclusion

Direct numerical simulations of leading-edge flames evolving in isotropic turbu-
lent flow are used in the present study to propose a new subgrid-scale combustion
model (the SEDFM model) for large eddy simulations of the stabilization region of
turbulent jet flames. The SEDFM model is based on a skeletal description of the
flame structure in mixture fraction space and a transition in that description from
the pure mixing line solution to the equilibrium solution. The transition occurs at a
rate given by a simple analogy with a partially stirred reactor ( PaSR) configuration.
The PaSR model measures the relative speeds of subgrid-scale mixing and chemical
reaction. The key parameter in the SEDFM model is the turbulent mixing time
scale 7!,

Large eddy simulations of the near-field region of plane turbulent jets are also
used to describe the turbulent mixing process and to propose an estimate of the
turbulent mixing time scale 7. It is found that a simple estimate of 7! based on
the local subgrid-scale turbulent time scale, (A /(ksas)'/?), is sufficient to describe
the downstream evolution from fast to slow mixing rates.

Preliminary results from « priori tests of the SEDFM model are found to be
encouraging. A posteriori tests and a full evaluation of the performance of the
model in LES simulations are currently in progress.
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A subgrid-scale model for the scalar
dissipation rate in nonpremixed combustion

By A. W. Cook! AND W. K. Bushe

A subgrid-scale model is presented for the scalar dissipation rate in nonpremixed
turbulent reacting flows. Inputs to the model are the filtered density, the Favre-
filtered temperature, and the Favre-filtered mixture-fraction. The model contains a
coefficient which 1s determined by assuming a form for the scalar energy spectrum.
Inputs to the presumed spectrum are the integral and dissipation length scales of the
scalar field. These quantities are estimated locally from the Favre-filtered velocity
field, resulting in a model coefficient which is spatially and temporally dependent.
The model is tested a priori using data from a Direct Numerical Simulation (DNS)
of a temporal reacting mixing layer. Estimated values of the dissipation rate are
found in good agreement with dissipation rates computed directly from the DNS
data. Furthermore, the presumed spectrum methodology is found to accurately
predict the mean value of the model coefficient as well as its spatial and temporal
variations.

1. Introduction

The Large Eddy Simulation (LES) of chemically reacting turbulent flows has
become a topic of much interest in recent years. The application of LES to non-
premixed combustion is motivated by a large amount of evidence demonstrating
that mixing rates are controlled by large-scale eddies. Additional motivation is
provided by the need to simulate unsteady flows such as the combustion cycle in
a diesel engine; LES is well-suited to unsteady combustion problems since it yields
time-accurate information.

A common practice in the modeling of nonpremixed combustion is to relate the
various chemical mass fractions to a conserved scalar mixture-fraction (Bilger 1980).
Chemical reaction rates are known to be strong functions of the mixture fraction,
and several models of nonpremixed combustion such as the Laminar Flamelet Model
(LFM) (Peters 1985) and the Conditional Moment Closure (CMC) (Bilger 1993)
take advantage of this to achieve closure of the highly non-linear chemical source
terms. Application of such theories in LES involves characterizing the state of
mixing within each grid cell. A useful measure of subgrid-scale mixing is the scalar
variance, which can either be modeled or else computed by integrating its transport
equation.

An important term in the scalar variance equation is the scalar dissipation rate.
This term represents the rate at which reactants are brought together at the molec-
ular level. High rates of dissipation can, in the presence of cold reactants, cause

1 Lawrence Livermore National Laboratory
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flames to extinguish or else fail to ignite. Mixture-fraction-based models of turbu-
lent combustion usually express reaction rates as functions of the scalar dissipation
rate. The scalar dissipation rate is a highly intermittent phenomenon, exhibiting
large fluctuations associated with the smallest turbulent length scales; however, the
net dissipation is determined by the rate at which energy is fed to the turbulence
at large (resolvable) scales. Therefore, there is more information available for mod-
eling the scalar dissipation rate in an LES than there is in a Reynolds averaged
calculation.

De Bruyn Kops et al. (1998) proposed a model for the subgrid-scale scalar dis-
sipation rate which has the same form as the leading term in a model proposed by
Girimaji and Zhou (1996). The model contains a coefficient which can be spatially
and temporally dependent. The primary motivation for this work is to determine
whether an assumed spectrum methodology can be employed in determining the
model coefficient. Another goal is to investigate the accuracy of the model for a
flow with large density variations, due to heat release, and a temperature dependent
scalar diffusivity.

2. Definitions

Consider a turbulent reacting flow in which streams of fuel and oxidizer meet in
a combustion chamber where mixing and reaction take place. During the combus-
tion process, many chemical species may be produced and/or destroyed; however,
elemental mass fractions are conserved. Let Z = Z(x,t) be a conserved scalar
mixture-fraction, defined as

_(Zi-Zio) .
Z-m,z_l,Q,...,N (1)

where Z; is the mass fraction of element t, N is the total number of elements, and
the indices f and o refer to values in the fuel and oxidizer streams, respectively. It
can be seen that Z = 1 in the fuel stream and Z = 0 in the oxidant stream. Now
let the dissipation rate of scalar fluctuations be denoted by 2y, where

xX(xt) =Dy Z-vZ. (2)

Here D represents the scalar diffusivity, which may be a function of temperature,
ie.,, D = D(T). In order to characterize the mean scalar dissipation rate within an
LES grid cell, it is necessary to specify the spatial filter associated with the LES
mesh. The filter is defined by

Z(x) = /G(Ix —-x'|;A)Z(x")dx' , (3)

where the integral is taken over all 3-dimensional space (for brevity, the t dependence
has been dropped). The filter kernel G(|x — x'|; A) is normalized,

/00 G(r;A)dr =1, (4)

[s o]
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and has a characteristic width A which is directly related to the grid spacing of
the LES mesh. The goal is to derive a model for the filtered value of the density-
weighted scalar dissipation rate, i.e., px. Results of de Bruyn Kops et al. (1998)
suggest this term be modeled in the following way,

px=pDvZ vZ~CDT)VZ-VZ, (5)

where a tilde () is used to denote a Favre-filtered variable, e.g., Z = pZ/p. The
model contains a coefficient C which can be spatially and temporally dependent,
i.e., C = C(x,t). In the next section, a new method will be described for computing
C(x,t); such that (5) is correct on average. The method utilizes an assumed form
for the Z energy spectrum.

3. Determination of model coefficient

In order to relate C to an energy spectrum, Z must be transformable to wavenum-
ber space. Fourier’s integral theory assumes that [ |Z(x)|dx is bounded. For this
to be the case, Z(x) will be considered to be zero outside a very large box. The
box can be made arbitrarily large so that an assumption of homogeneity may also
be made. Forward and inverse Fourier transforms of Z are defined as

Z(k) = -21? / exp(—ik - X)Z(x) dx , - (6)

Z(x) = / exp(ik - x)Z (k) dk , (D)

where k is a wavevector given in redians per unit length. The Fourier transform of
0Z [0x; 1s
Z Y A 5

92 _ _ik,6(k0)2(K) ®)

Oz;
where G is a function only of the magnitude of k, i.e., k? = k-k = kjk;. Writing
dZ [0z as the inverse transform of (8) and squaring both sides (and summing on
j) leads to

oz

dz;

2
= / / exp(i(k + K') - x)(=k;k})G(k; A)G(K'; A)Z(K)Z(K' ) dkdk' . (9)

Since Z(x) is real, Z(k") = Z*(—k') where the asterisk denotes the complex conju-
gate. For homogeneous turbulence, the Fourier amplitudes Z(k) and Z*(-k') are
statistically orthogonal; hence, the ensemble average <2 (k)Z "(—k')> is zero unless
_k' = k (Batchelor 1953). The ensemble average of (9) thus becomes

<67 oz

oz, 9z,

> _ /kza:'(k; A) <2‘(k)2(k)> dk . (10)
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The integral in (10) may be cast as an integral over a spherical shell of radius k,
followed by integration over all shells. For example, if do denotes a differential
surface element of a shell, then (10) can be written

/k2@2(k;A)<2*(k)Z(k)> dk:/ k?@?(k;A)}( <Z*(k)2(k)> dodk . (11)
0
The shell integral in Eq. (11) is equal to twice the three-dimensional, scalar energy
spectrum, i.e., 2Ez(k); hence,
8z oz * oA
— ) =2 k*G*(k; A)Ez (k) dk .
Y RS INCR (12

Repeating the analysis for dZ/0z; leads to the result

9Z 8Z\ _ [0z dz\ _, [*,
(030,) = (5 =2 vt =

The coefficient C can be determined by taking the average of (5), 1.e.,

(PDVZ-vZ) (VZ-VZ) [Tk Eg(k)dk

C: ~ — ———— T — .
<pD(T)vZ-v2> (VZ-VZ) [ k2G2(k; A)Ez(k) dk

(14)

Here it has been assumed that pD approximately cancels in the numerator and
denominator and that <VZ - VZ> ~ <V7- v7>.

4. Assumed energy spectrum

In order to compute C using (14), it is necessary to specify the functions é(k; A)
and Ez(k). For the present analysis, the LES grid filter is assumed to be a ‘top-hat’
function, which, in Fourier space, is defined as

2sin(kA/2)

G="—x

(15)
The scalar energy spectrum is assumed to be that of isotropic turbulence at high
Reynolds number (Tennekes and Lumley 1972), i.e.,

Ez(k) = A exp[—1.73(kiz)™*/3]k =5 Pexp[-2.25(knz)*/3] (16)

which is applicable for fluids with Schmidt numbers near unity. For fluids with a
very low or very high Schmidt number, an inertial-diffusive or viscous-convective
subrange should be included in the assumed spectrum. Equation (16) contains three
unknown parameters: a constant A, a scalar integral scale 7, and a dissipation
scale nz (Corrsin 1951). The constant A divides out of Eq. (14) and, hence, is
irrelevant to the modeling. The length scales Iz and 7z determine roughly where
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the spectrum peaks and where it goes to zero. If iz and nz are estimated locally
and/or instantaneously, then C will be obtained as a function of space and/or time.
In the present analysis, [z and 7z are assumed to be related to the integral scale
! and Kolmogorov microscale 7 of the velocity field u;. This implies that the flow
is sufficiently developed such that the statistics of the velocity field are reflected in
the scalar field. The length scale estimates are as follows:

14

——————< 553/ 77 (17)

lzz ~

V= @), (18)
1 (w0

S” = 2 (3.’1,‘] + aft,) ’ (19)
nz ~nSc?, (20)
n = alRe,_:"/4 , (21)
Rei = IV/{v) , (22)

(v) = sc<D(:F)> : (23)

where Sc is the global Schmidt number and « is a constant.

In the present analysis, a was set to 2 in order to bring the model into agreement
with the DNS data (to be described in the next section). The estimates for nz and
n are strictly valid only at high Reynolds number. Due to the low Reynolds number
of DNS, the dissipation range makes up most of the energy spectrum; thus, in @
priori tests, C' can be sensitive to the estimate for 7z. In a high Reynolds numnber
flow, however, the energy in the dissipation range contributes only slightly to the
integral of the spectrum. Hence, there is good reason to expect that, at higher
Reynolds numbers, C(z,t) will be less sensitive to the estimate for nz so that a can
probably be set to 1 if the Reynolds number is high enough.

5. DNS data

The model was tested using data from DNS of a reacting temporal mixing layer
(Bushe et al. 1998). The DNS utilized a computational mesh consisting of 240 x
120 x 120 points in the z, y, and z directions, respectively. It was initialized with
a planar laminar flame centered in the domain. Isotropic turbulent velocity fluctu-
ations taken from a previous simulation of forced incompressible turbulence were
superimposed on the flow induced by the heat release of the flame. Periodic bound-
aries were imposed in the y and z directions. Outflow boundary conditions, as
described in Poinsot and Lele (1992), were employed in the « direction to allow for
expansion due to heat release. In order to avoid unphysical generation of vorticity
by the imposed outflow conditions, the velocity fluctuations were filtered to zero
at the r boundaries. A two-step reduced chemical kinetic mechanism for methane
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FIGURE 1. Grayscale plots of (a) Mixture-fraction, (b) Enstrophy, (c) Temperature
and (d) Logarithm of scalar dissipation rate on an z —y plane in the DNS flow field
at t = 15.

was used with a further step added to approximate NOy chemistry. The maximum
possible density ratio, based on the adiabatic flame temperature, was 7.4; the maxi-
mum density ratio achieved in the simulation was 6.3. The global acoustic Reynolds
number was Re, = 2000, and, for the case used here, the Schmidt number of all
species was set to Sc = 0.75. The ratio of specific heats was set to ¥ = 1.3, and the
scalar diffusivity was prescribed as the following function of temperature

[(y —1)T)078

b= ReSec

(24)

Figure la shows the mixture-fraction field on a slice in the three-dimensional
domain after the flow had evolved for 15.0 acoustic time units. The gas on the
right is fuel and the gas on the left is oxidant. The enstrophy field on the same
slice is shown in Fig. 1b. Figure lc shows the temperature field resulting from the
exothermicity of the reactions. The scalar dissipation rate is shown in Fig. 1d; it is
clear that this field has structures associated with fine length scales.

6. Results

In the a prior: tests, the DNS data were averaged onto a 24 x 12 x 12 point LES
grid such that each LES grid cell was comprised of 10° DNS data points. Ensemble
averages were approximated by averaging in the homogeneous directions, i.e., over
(y — 2) planes. The model coefficient C was thus computed as a function of the
inhomogeneous direction z and time ¢.

Figure 2 shows the true and modeled values of C as a function of z at four different
times in the simulation. At ¢t = 7.5, C is overpredicted. This is due to the fact that
insufficient time has elapsed for a turbulent spectrum to have developed for the Z
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FIGURE 2. Coefficient in model for py as a function of x and t from DNS of
temporal reacting mixing layer: o - DNS; o - assumed spectrum method.

field. However, as time elapses, the model for C (z,t) becomes increasingly more
accurate. Furthermore, it is encouraging that the model appears most accurate near
the middle of the domain where the bulk of the reactions are occurring. The large
oscillations in the DNS values of C(z,t) near the ends of the domain are due to
the fact that Z(x,t) is nearly constant close to the boundaries such that the scalar
dissipation rates are very small. Computation of the DNS values for C near the
boundaries involves taking the ratio of two very small numbers; hence, the results
are subject to numerical noise.

In Fig. 3, true versus estimated values of px are plotted for every point on the
LES grid. The model values were computed from (5) using C as shown in Fig. 1,
i.€., PXest = C(x,t)ﬁD(T) v Z. vZ The results show good agreement between the
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true and estimated values of px. Linear correlation coefficients for p¥.,,, and PXDNS
are: 0.911, 0.897, 0.898 and 0.913 for ¢ = 7.5, 15, 30 and 45, respectively.

7. Conclusions

A model has been presented for the scalar dissipation rate in nonpremixed tur-
bulent combustion. The model contains a coefficient which can be computed by
assuming a form for the scalar energy spectrum. The scalar integral scale Iz and
dissipation length scale nz appear as parameters in the assumed spectrum. The
model was evaluated a priori using DNS results for a turbulent reacting mixing
layer. It was found that the assumed spectrum, when combined with local esti-
mates for /z and 7z, gave accurate predictions of the model coefficient, including
its spatial and temporal variations. Furthermore, the tests revealed a high correla-
tion between true and modeled values of the scalar dissipation rate, which appears
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to validate the model for turbulent reacting flows in the presence of heat release.
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Approaches to modeling thermonuclear flames

By J. C. Niemeyer', W. K. Bushe, AND G. R. Ruetsch

Turbulence-flame interactions of thermonuclear fusion flames occurring in Type la
Supernovae were studied by means of incompressible DNS with a highly simplified
flame description. The flame is treated as a single diffusive scalar field with a non-
linear source term. It is characterized by its Prandtl number, Pr < 1, and laminar
flame speed, S1,. We find that if Sy 2 u', where u' is the rms amplitude of turbu-
lent velocity Auctuations, the local flame propagation speed does not significantly
deviate from Sy, even in the presence of velocity fluctuations on scales below the
laminar flame thickness. This result is interpreted in the context of subgrid-scale
modeling of supernova explosions.

i. Introduction

A class of astrophysical explosions, so-called Type Ia Supernovae (SN Ia’s), is
believed to involve the formation and propagation of thin thermonuclear fusion
fronts. These fronts are similar in many ways to premixed chemical flames and
are often referred to as “thermonuclear flames”. The issues addressed in this work
are motivated in the framework of supernova research, but the results obtained
apply equally well to premixed chemical flames with low Prandt] numbers and
small thermal expansion rates.

Type Ia Supernovae occur at a rate of approximately two per century per galaxy;
their observables include optical spectra indicating the compositional structure of
the explosion ejecta, the evolution of the total emitted light with time, and, in-
directly, their contribution to the isotopic abundances in the solar neighborhood.
Owing to their high optical luminosity, reaching the equivalent of approximately ten
billion suns at maximum light, SN Ia’s can be observed out to very large extragalac-
tical distances. Theoretically, they are associated with thermonuclear explosions of
white dwarf stars composed of carbon and oxygen and stabilized against gravi-
tational collapse by the degeneracy pressure of a relativistic electron gas (Arnett
1969). In one scenario which has been proposed to explain these explosions, a white
dwarf at the Chandrasekhar mass limit—the maximum equilibrium mass of a star
supported by electron degeneracy, M.y, ~ 1.4 solar masses—accretes matter from a
binary companion and eventually becomes gravitationally unstable. Compressional
heating of the core region leads to the ignition of thermonuclear fusion reactions
that “burn” carbon and oxygen to heavier nuclei. Slowly at first but with increasing

1 University of Chicago, Department of Astronomy and Astrophysics, 5640 S. Ellis Avenue,
Chicago, 1L 60637
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intensity as cooling by neutrino emission fails to keep up with the nuclear energy re-
lease, a thermonuclear runaway begins at the center of the white dwarf. As the core
reaches the critical temperature of T & 1.5 x 10° K (at a density of p ~ 2 — 3 x 10°
g cm™3), the time scale for nuclear energy release drops to ~ 10712 s, giving rise to
the formation of a highly localized burning front that propagates outward as either
a detonation or a deflagration (Woosley 1990). This marks the beginning of the
actual explosion, terminating in the complete disruption of the white dwarf.

Based on the observational evidence of intermediate elements in SN Ia spectra,
detonations can be ruled out as the initial mode of propagation, as they would
predict the complete incineration of the white dwarf to iron group nuclei. Defla-
grations, on the other hand, are hydrodynamically unstable to both flame intrinsic
(Landau-Darrieus) and buoyancy-driven (Rayleigh-Taylor, RT) instabilities. While
the former is stabilized in the nonlinear regime, the latter produces a growing, fully
turbulent RT-mixing region of hot burning products and cold “fuel” separated by
the thin thermonuclear flame (for a more detailed discussion of flame instabilities
in this context, see, e.g., Niemeyer & Woosley 1997). Driven predominantly by the
shear flow surrounding buoyant large-scale bubbles, turbulent velocity fluctuations
cascade down to the Kolmogorov scale Iy, which may, under certain conditions, be
smaller than the laminar flame thickness (Section 2).

As the explosion proceeds, the turbulence intensity grows while the flame slows
down and thickens as a consequence of the decreasing material density of the ex-
panding star. After some time, small scale turbulence must be expected to signif-
icantly alter the flame structure and its local propagation velocity with respect to
the laminar solution. On the other hand, most subgrid-scale models for the tur-
bulent thermonuclear flame brush in numerical simulations of supernovae depend
crucially on the assumption of a (nearly) laminar flame structure on small scales
(Niemeyer & Hillebrandt 1995, Khokhlov 1995). The intent of this work is to present
a first approach to study the regions of validity and the possible breakdown of this
“thermonuclear flamelet” assumption.

This paper is organized as follows: we shall summarize the most important pa-
rameters and dimensional relations of thermonuclear flames and buoyancy-driven
turbulence in Section 2, followed by a brief description of the numerical methods
employed for this work (Section 3). In Section 4, the results of a series of direct
simulations of a highly simplified flame propagating through a turbulent medium
are discussed and interpreted in the framework of SN Ia modeling,

2. Flame properties and model formulation

The laminar properties of thermonuclear flames in white dwarfs were investigated
in detail by Timmes & Woosley (1992), including all relevant nuclear reactions
and microscopic transport mechanisms. The authors found that the laminar flame
speed, 51, varies between 107 and 10* cm s~! as the density declines from 3 x 10°
to ~ 107 g cm™*. The thermal flame thickness, 6, grows from 10~% to 1 cm for the
same density variation. Microscopic transport is dominated entirely by electrons
close to the Fermi energy by virtue of their near-luminal velocity distribution and
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large mean-free-paths. As a consequence, jonic diffusion of nuclei is negligibly small
compared with heat transport and viscosity. Comparing the latter two, one finds
typical values for the Prandtl number of Pr & 1075 ...10~* (Nandkumar & Pethick
1984). Further, partial electron degeneracy in the burning products limits the
density contrast, p = Ap/p, between burned and unburned material to very small
values, p =~ 0.1...0.5.

To within reasonable accuracy, one may estimate the magnitude of large-scale
turbulent velocity fluctuations, u(L), from the rise velocity of buoyant bubbles with
diameter L, Urise ~ (0.5ugL)1/2, where ¢ is the gravitational acceleration. Inserting
typical values, L ~ 107 cm, g ~ 10% cm 572, and ¢ = 0.3, one finds u(L) ~ 107
em s-1. For a viscosity of v & 1 cm? s™! (Nandkumar & Pethick 1984), this yields
the integral-scale Reynolds number Re =~ 10' and a characteristic Kolmogorov
scale Iy ~ LRe™3/* ~ 10~* cm. Hence, it is clear that soon after the onset of the
explosion, turbulent eddies are present on scales smaller than the laminar flame
thickness. According to this length scale analysis alone, the flamelet assumption
cannot be justified.

However, the low Prandtl number of degenerate matter allows a situation in
which the eddy turn-over time on the Kolmogorov time scale, 7 ~ he/u(ly) ~ /v,
is larger than the reaction time scale 7, ~ w™!, where w is the fuel consumption
rate (Niemeyer & Kerstein 1997). This is readily seen by setting 7 equal to the
diffusion time scale 74 ~ 6%/k for stationary flames (where « is the microscopic

thermal diffusivity), yielding
2
™ _ p-1(h
= Pr ( 6) .

Even if the length scale ratio on the rhs is less than unity, the lhs can be large for
a sufficiently small Pr. In this case, small eddies are burned before their motion
can appreciably affect the flame structure.

An alternative, Pr-independent criterion for flamelet breakdown has been pro-
posed (Niemeyer & Kerstein 1997), based on the relative importance of eddy diffu-
sivity, ke ~ u(l)l, and microscopic heat conductivity on scales | < 8. As ke is, in
general, a growing function of scale, the condition ke(8) < & is sufficient and can be
invoked to define the flamelet burning regime. Using the relation S, ~ é/74, one
finds the more intuitive formulation u(é) < Si. In other words, the flame structure
on scales § and below is dominated by heat diffusion as long as the characteristic
velocity associated with eddies of a length scale the same order as the laminar flame
thickness is smaller than the laminar flame speed. If heat diffusion is the only rel-
evant microscopic transport process, the local flame speed is expected to remain
comparable to Si, despite the presence of eddies within the flame.

In order to be able to efficiently address this question, we make three assump-
tions that greatly simplify the problem without violating the underlying physics.
Firstly, we note that nuclear energy generation is dominated by a single reaction,
12C(12C,24S1), which is a strong function of temperature only (w ~ T?'). Therefore,
the flame dynamics can be well approximated by a single, diffusive progress variable
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c that is advected by the fluid and coupled to a strongly nonlinear source term that
mimics nuclear burning. Second, the small value of p suggests that dilatation effects
do not play a significant role and may be neglected for the purpose of this study.
This, together with the small Mach number of turbulent fluctuations on very small
scales, justifies the use of the incompressible Navier-Stokes equations. Finally, we
assume that the effect of the turbulent cascade from large scales can be adequately
modeled by forcing the flow field on the lowest wavenumbers of the simulation.

3. Numerical technique

The code used to simulate the thermonuclear flame used the pseudo-spectral ap-
proach where derivatives are taken in Fourier space but non-linear terms are evalu-
ated in real space (see Ruetsch and Maxey, 1991). The diffusive term is evaluated
implicitly such that the code provided stable, accurate solutions even for very small
Prandtl numbers. All boundary conditions were periodic, and energy was added
at every time step to the lowest wavenumbers by solving a Langevin equation as
described in Eswaran and Pope (1988a, 1988b). All of the simulations were carried
out in a 643 domain and were run for several eddy-turnover times so as to obtain
statistical stationarity.

As was mentioned in the previous section, the temperature dependence of the
main reaction participating in thermonuclear flame is roughly 72!, It was found
that a source term w = kc?!(1 — c) (where the (1 —c¢) arises from the dependence of
the reaction on reactant concentration) produced too narrow a reaction zone to be
easily resolved in space in a three-dimensional simulation. Instead, it was decided to
use a source term of 1w = ke*(1 — ¢), which is still strongly non-linear but produces
a reaction zone that can be resolved in a practical three-dimensional simulation.
One difficulty that arises in using a pseudo-spectral code to simulate premixed
combustion is that the scalar field—in this case, the progress variable—must be
periodic. This was achieved by separating the scalar field into two components: a
uniform gradient in the direction of propagation of the flame was subtracted such
that the remaining field was zero at each end of the periodic box in that direction.
Thus, where

Qc_+ 2 _ 0%c i
ot uzal‘i - aIL‘,‘a$,' “

1s the transport equation for the progress variable with constant properties, if a
uniform gradient £ in the z3 direction (the direction of propagation of the flame)
is subtracted,

c = ﬂl‘g + 6

then the transport equation for the periodic fluctuating component 8 is:

o6 o6 0%6
a7 Fuiz— + Pfuz = D—am,-ax,-

ot Or; tw.

So long as the reaction zone remained relatively thin and did not approach the
boundaries, ¢ remained bounded between 0 and 1. In order to keep the reaction
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FIGURE 1. a) Snapshot of the scalar field ¢ for Sy /u’ = 11.5 and Pr = 0.005 (color
scale is linear with ¢ = 1 being white and ¢ = 0 being black). b) Scalar dissipation
rate as a function of reaction progress variable at a fixed time. Superimposed is the
line corresponding to the laminar solution.

away from the boundaries, the mean velocity in the direction of propagation was set
to the propagation speed of the flame. This propagation speed was determined at
each time step from a volume integral of the source term. The need to keep reaction
away from the boundaries was found to restrict the simulation to a limited ratio of
Prandt] number to k—the flame speed could not be significantly lower than u' or
wrinkles in the flame would become too large to be contained in the domain.

3. Discussion of the results

The results of three simulations with varying laminar flame speeds and Prandtl
numbers are illustrated in Figs. (1), (2), and (3) (see figure captions for the model
parameters). Note that Sp/u’, with the root-mean-square velocity fluctuation u'
dominated in the simulation by eddies on the scale of the laminar flame thickness,
corresponds roughly to the parameter Si,/u(8) employed in Section (2) to describe
the validity of the flamelet assumption based on dimensional analysis. Therefore,
one may expect noticeable deviations from locally laminar flame propagation for
St /u' < 1. Conversely, the dimensional argument predicts that changes of the total
burning rate are exclusively due to the growth of the flame surface area by turbulent
wrinkling as long as St /u’ > 1.

We define the turbulent flame speed in terms of the volume integral of the source
term, St = A™? [, wd3 )\, where A is the grid length. The wrinkled flame surface
area, Ar, is measured by triangular discretization of the ¢ = 0.5 isosurface. For
the three cases with Sp/u' = 11.5, 1.15, and 0.95 we find S1/51, (ATt /A?) of 1.008
(1.008), 1.31 (1.27), and 1.51 (1.56), respectively. Hence, to within 5% accuracy
the ratio of turbulent and laminar flame speeds is identical to the increase of the
flame surface area with respect to the laminar surface, implying that the local flame
speed is, on average, equal to Sy, in all cases.
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FIGURE 2. a) Snapshot of the scalar field ¢ for S, /u’ = 1.15 and Pr = 0.05 (same
color scale as in figure la). b) Scalar dissipation rate as a function of reaction
progress variable at a fixed time. Superimposed is the line corresponding to the
laminar solution.
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FIGURE 3. a) Snapshot of the scalar fleld ¢ for St /u’ = 0.95 and Pr = 0.05 (same
color scale as in figure la). b) Scalar dissipation rate as a function of reaction
progress variable at a fixed time. Superimposed is the line corresponding to the
laminar solution.

In conclusion, we have confirmed, within the limitations of the simplified flame
description used, that the local propagation speed of turbulent low-Pr premixed
flames remains equal to Sy, if S1, > v(6) even if eddies exist on scales smaller than
the flame thickness. For smaller values of S /u’, large scale flame wrinkling forces
regions with nonvanishing w over the streamwise grid boundaries, violating the
requirement of periodicity of the non-linear component of the progress variable.
Further investigations using a different numerical technique are needed to observe
the breakdown of locally laminar propagation.
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In the framework of supernova modeling, this result helps to formulate a subgrid-
scale model for the turbulent thermonuclear flame brush in large-scale hydrody-
namical simulations. Specifically, it is possible to estimate St /v(6) from the filtered
density and velocity strain, using an assumed spectrum for the turbulent velocity
cascade. If St,/v(8) > 1, a subgrid-scale model based purely on the surface increase
by turbulent wrinkling can be employed (Niemeyer & Hillebrandt 1995). In prac-
tice, this is possible for densities above ~ 10" g cm™2 where most of the explosion
energy is released. For lower densities (in the late stages of the explosion) relevant
for the nucleosynthesis of intermediate mass elements and a possible deflagration-
detonation-transition (Niemeyer & Woosley 1997), a more detailed model account-
ing for small-scale turbulence flame interactions needs to be developed.
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The jet control group

Current jet control goals are mixing enhancement, flow tailoring for high-performance
aerodynamic applications, and noise reduction. The four projects in this group were
motivated by these broad objectives.

The first project took steps toward developing real-time closed-loop controls for
both mixing enhancement and flow tailoring applications. A necessary element of
this approach is a model for the jet which is accurate yet simple enough to be
able to predict the jet’s response to actuation in real time. Alan Cain of the Boeing
Company was assisted by Bewley, Freund, and Colonius in developing such a model.
Locally unstable linear modes were used to compute shear stresses which were then
used in a streamwise evolution equation for the shear layer thickness. The novel
aspect of this work was the use of analytically tractable approximate mean flow
profiles which provided closed-form analytical expressions for the stability problem.
Because of this, the entire model can, once optimized, be evaluated rapidly enough
for a real-time application.

Koumoutsakos, Freund, and Parekh tested evolution algorithms, which are moti-
vated by the well-known “mutate and compete” principles that govern the evolution
of biological systems, as a tool for optimizing nozzle actuation for jet mixing en-
hancement. An important advantage of this type of algorithm over many other
approaches is its portability. In this project, the same program subroutines were
used to optimize actuation in both a low Reynolds number DNS and a vortex
method simulation. Starting from a random initial guess for the actuation param-
eters in the DNS, the evolution strategy “found” parameters that had previously
been shown to be highly effective in both laboratory experiments and in simulations.
In the vortex method simulation, having also started from a random initial guess,
the evolution algorithm found parameters that produced the well-known bifurcating
jet flow. Surprisingly, the algorithm also found a previously unknown set of param-
eters that added a kink to the bifurcating flow pattern which further increased the
spreading rate of the jet.

It is well known that the downstream evolution of a jet is closely tied to large
turbulent structures in the flow. In an effort to understand these better with an
eventual goal of using them to improve controls, a study of the large scale dynamics
of jets was conducted by Danaila and Beorsma using a spherical coordinates DNS
code. Combinations of axisymmetric and n = 1 modes were excited in the jet
causing pulsing, flapping, and bifurcating jet flows. These results were analyzed in
detail, and a new mechanism leading to jet bifurcation was proposed. This is of
particular interest because bifurcation can greatly enhance the spreading of the jet
and thereby increase its mixing.

Using an existing DNS database of a Mach 1.92 jet, Colonius, Mohseni, Freund,
Lele, and Moin undertook an effort to study the mechanisms of jet noise. The
eventual goal of this effort is to develop new models and test existing models that
could be incorporated into a control scheme. An important result of this study was
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the successful computation of the Lighthill acoustic source and verification of its
ability to produce the correct acoustic radiation. In addition, an analysis based
upon the linear adjoint equations was completed, which will provide a means for
utilizing the available DNS databases to evaluate linear models for noise.

Jonathan Freund
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Evolution strategies for parameter
optimization in jet flow control

By P. Koumoutsakos, J. Freund! AND D. Parekh?

We present results from the application of evolution strategies for parameter opti-
mization in direct numerical simulations and vortex models of controlled jet flows.
It is shown that evolution strategies are a portable, highly parallel method that can
complement our physical intuition in the parameter optimization of such flows.

1. Introduction

For centuries engineers have taken inspiration from nature in designing efficient
aerodynamic configurations. It is no coincidence that the shape of an aircraft’s
wing resembles a bird’s. We wish to approach the problem of flow control, not
from the perspective of imitating existing natural forms, but from the perspective
of developing efficient control algorithms, by employing techniques inspired by bi-
ological processes. These techniques, which we will refer to as “machine learning
algorithms”, are gaining significance in the areas of modeling and optimization for
fluid dynamics problems as a technology that could help reduce cost and time to
market of new designs.

1.1 Evolution strategies

Some of the seminal work in this field (Rechenberg 1971, Schwefel 1974, Hoffmeis-
ter 1991) actually was aimed at improving aerodynamic shapes. As stated in
(Schwefel, 1974):

“In 1968 two students at the Technical University of Berlin met and were soon
collaborating on experiments which used the wind tunnel of the Institute of Flow
Engineering. During the search for the optimal shape of bodies in a flow, which
was then a matter of laborious intuitive ezperimentation, the idea was conceived of
proceeding strategically. However, attempts with the coordinate and simple gradi-
ent strategies were unsuccessful. Then one of the students, Ingo Rechenberg, now
professor of Bionics and Evolutionary Engineering, hit upon the idea of trying ran-
dom changes in the parameters defining the shape, following the ezample of natural
mutations. The evolution strategy was born. ” (The second student was Hans Paul
Schwefel).

Since this pioneering work, stochastic optimization techniques have gained recog-
nition and popularity in several fields of engineering, but this has not been the case

1 University of California, Los Angeles
2 Georgia Institute of Technology
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in the field of fluid dynamics in the last three decades. Recent work by Rechen-
berg (1994) focuses on the shape optimization approach with the construction and
experimental testing of shapes that have been produced via evolutionary strate-
gies using computer simulations. Evolution strategies have also been implemented
in order to optimize the motions of an artificial tuna (M. Triantafyllou, private
communication).

Here, we report preliminary results from the application of evolution strategies
in the optimization of actuator parameters in active Jet flow control and in the
optimization of bifurcating and blooming jets.

1.2 Jet flow control

It is desirable in many circumstances to enhance mixing in the exhaust from
aircraft engines. Applications include lift enhancement, signature reduction, and
temperature reduction on blown flaps. This work focuses on the latter case. The
blown flap on a C-17 (Fig. 1) is currently made out of titanium to avoid melting.
If mixing can be significantly enhanced so that the plume temperature is reduced,
the flap could be constructed from aluminum, a much less heavier and expensive
alternative.

FIGURE 1. Blown flap as on a C-17.

Recently, actuators have been developed and tested on a full-scale engine which
have the control authority to accomplish this objective. The goal of this work is to
optimize their parameters to maximize their effectiveness. This is being undertaken
as a joint experimental, numerical, and control theory effort. The discussion here is
limited to the simulations and the application of evolution strategies to the problem.

1.3 Optimization of bifurcating and blooming jets

The proper combination of axial and helical excitation at different frequencies
generates the unique class of flows known as bifurcating and blooming jets (Lee and
Reynolds 1985, Parekh et al. 1987). The axial forcing causes the shear layer to roll
up into distinct vortex rings at the forcing frequency. The helical excitation perturbs
the rings radially, producing a small eccentricity in the ring alignment. This initial
eccentricity is amplified by the mutual ring interactions leading to dramatic changes
in jet evolution. When the axial frequency is exactly twice that of the helical
excitation, the jet bifurcates into two distinct Jets, with successive rings moving
alternately on one of two separate trajectories. This Y-shaped jet spreads at angles
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over 80 degrees, depending on forcing frequency and amplitude. The relative phase,
#, between the axial and helical forcing signals determines the plane in which the
jet bifurcates. When the ratio, 3, of axial to helical excitation frequency is non-
integer, the vortex rings scatter along a conical trajectory. When viewed from
downstream, the vortex ring pattern often resembles a bouquet of flowers, hence
the name“blooming jet.”

In applying the evolution strategies to this class of flows, we are exploring whether
the phenomena discovered experimentally could also be obtained in our simulations
via an “evolutionary process” and whether new phenomena could be found. Here
a vortex model describes the jet dynamics. The optimization algorithm is tuned to
maximize jet spreading by varying the excitation parameters.

2. Evolution strategies for optimization

We discuss first the formulation of evolution strategies for the optimization of
N-dimensional functions:

F(x) = F(z1,Z2,.., M)

We define a vector in the parameter space as an individual. The whole discrete
parameter space can then be considered as a population of individuals. Evolution
strategies try to identify the best individual from this population based on the fitness
value, prescribed by the function F. The optimization proceeds by following to a
certain extent models of biological evolution.

2.1 Two membered evolution strategies

The simplest (and earliest) form of evolution strategies is based on populations
that consist of two competing individuals ( “a two-membered strategy”). The evo-
lution process consists of the two operations that Darwin (1859) considered as the
most important in natural evolution: mutation and selection. Each individual (i.e.
vector in the parameter space) is represented using a pair of floating point valued
vectors:

u = u(x,o)

where o is an M-dimensional vector of standard deviations.
Following Rechenberg (1971) and using terminology from biology, the optimiza-

tion algorithm may be described as follows:

a - Initialization: A parent genotype consisting of M-genes is specified initially (x9).
At each generation an individual uy = (xps op) is identified.

b - Mutation: The parent of generation-n produces a descendant, whose genotype
differs slightly from that of the parent. The operation of mutation is then realized
by modifying x according to:

x? = xj + N(0,07) 2.1

where NV (0, o) denotes an M-dimensional vector of random Gaussian numbers
with zero mean and standard deviations o.
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¢ - Selection: Due to their different genotypes the two individuals of the population
can have a different fitness for survival. This fitness is evaluated by the function
f. Only the fittest of the two individuals is allowed to produce descendants at
the following generation. Hence to minimize F we write:

L Xg, otherwise.

Note that in this two-membered algorithm the vector o of standard deviations
remains unchanged throughout the evolutionary process.

For regular optimization problems (see Michalewicz, 1996 for a definition) it is
possible to prove the convergence of the method to a global minimum. However,
this theorem does not provide a convergence rate of the method.

In this work we have implemented the 1/5 success rule proposed by Rechen-
berg (1971). According to this rule: During the optimum search the frequency
of successful mutations is checked periodically by counting the ratio of the number
of successes to the total number of trials. The variance is increased if this ratio is
greater than 1/5 and it is decreased if it is less than 1/5. The period over which this
performance is being checked depends on the number of parameters that are being
optimized. We refer to Schwefel (1995) for further details on the implementation of
the two-membered evolution strategies.

2.2 Multi-membered evolution strategies

One of the drawbacks of the 1/5 rule for the two-membered strategy is that it
may lead to premature convergence, as the step lengths can be reduced to zero, thus
not improving the progress towards a global optimum. There are several possible
remedies to this drawback. Of particular interest are those that can be constructed
by further developing the model of evolution to resemble natural processes. In that
context, a higher level of imitation of an evolutionary process can be achieved by
increasing the number of members in a population. Such multi-membered strategies
are usually formulated in terms of u-parents and A-descendants. The most common
strategies are then described as (u,A) and (u + A). In the (u,A) case at each
generation the p-fittest individuals are selected only among the A children of the
generation, whereas in the (44 ) case the parents are also included in the evaluation
process. Schwefel (1995) presents an extensive comparison of multi-membered and
two-membered evolution strategies for a series of optimization problems.

2.3 Handling of constraints

One of the advantages of evolution strategies is the ease and simplicity by which
they can handle problem constraints. Such constraints are usually formulated as
inequalities. For example in the case of q constraints of the parameters x we require
that:

Ci(x)>0 for all j=1,....q

Descendants of a certain parent that do not satisfy the constraints are accounted as
results of unsuccessful mutations. Occasionally the boundaries of the constrained
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()

FIGURE 2.  Schematic shows the nozzle (a) and actuators (b).

regions are smoothed out in order to facilitate the convergence of the method in
highly constrained problems.

3. Jet flow control

The compressible flow equations were solved with direct numerical simulation
using a combination of sixth order compact finite differences, spectral methods,
and fourth order Runge Kutta time advancement. Further details of the numerical
algorithm and techniques for including actuators into the calculations were recently
reported by Freund & Moin (1998). Naturally, in a direct numerical simulation we
are restricted to highly simplified geometries (Fig. 2); nevertheless, the actuators
were able to reproduce the effects observed in experiments by Parekh et al. (1996).
Figure 3 shows a visualization of a jet forced into a flapping mode and an unforced
jet. Clearly, the mixing is enhanced downstream.

For this preliminary study, only three types actuation parameters were varied:
the amplitude, frequency, and phase. The actuation was a simple waveform sum of
harmonic waveforms:

ad . (USt
vy = Z A;[1+sin D t + ¢; ) sgn(cos(9)) |, 3.1
i=1

where v, is the radial velocity at the actuator exit and A; are the amplitudes, St; are
the Strouhal numbers, and ¢; are the phases of the different modes. The sgn(cos(6))
causes each waveform to excite a flapping mode in the jet. Note that the phases,
$:, are the relative phases of the different modes setting the two actuators always
at 180° out of phase. The flow rate out of either actuator was constrained to be less
than U/2 where U is the jet velocity. This was accomplished by simply “clipping”
the velocities to be below this level.

The only constraint on A; was that they be non-negative. Strouhal numbers were
restricted to be 0 < St < 0.8 and the phases were constrained to be ¢; € [0, 2r].

A very low Reynolds number (Re = 500) jet at Mach 0.9 was simulated in this
preliminary effort to minimize the computational expense. The computational mesh
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FIGURE 3B. Forced turbulent jet. Visualization of vorticity magnitude.

was 112 x 42 x 16 in the streamwise, radial, and axial direction respectively and the
computational domain extended to 16 radii downstream and 5 radii in the radial
direction. A stretched-mesh boundary zone was positioned outside of the region to
cleanly absorb fluctuations convecting out of the domain. In each iteration of the
evolution strategy, the jet was simulated starting from an unforced case for several
periods of forcing after the passing of initial transients. Because the flow becomes
quasi-periodic, this was sufficient to provide a measure of the long-time actuator
effectiveness. Each iteration required approximately 10 minutes and in total 200
iterations were made (the best case was found after approximately 150 iterations).
Three wave forms (N = 3) where used and the initial control parameters were
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5 10 5 10
FIGURE 4B. Jet mixture fraction
with the best case parameters af-

ter 200 iterations.

FIGURE 4A.Jet mixture fraction
for the first guess parameters.

Ai/U St; ®i
0.45 0.5 0.0
0.40 0.2 0.7
0.35 0.5 1.0

The goal set for the evolution strategy was to maximize

0 27 8r,
Q = / / / virdrdfdz.
0 0 4r,

This metric Q, was increased by over a factor of 10 from the initial case by the best
case parameters:

Ai/U St; @i
0.04 0.33 0.54
0.42 0.17 0.31
0.07 0.45 1.57

It is interesting to note that the evolution strategy “chose” to reduce the amplitude
of two of the wave modes to a very low level. Effectively, it found the same ad
hoc scheme that was shown to be successful by Parekh et al. (1996) and Freund &
Moin (1998). A forced and unforced case are visualized in Fig. 4. The best case
clearly shows a high amplitude flapping mode which would greatly enhance mixing
downstream.

4. Vortex model of bifurcating and blooming jets

In this work we model a circular jet by the combination of discrete vortex filaments
and a semi-infinite cylindrical sheet of vorticity. The cylindrical sheet models the
nozzle source flow whereas the ring filaments model the vortex rings generated by
the axial excitation of the shear layer.

The semi-infinite sheet of vorticity extends from —oo to the origin. Its axis defines
the jet centerline, and the end of the sheet is identified with the jet exit. The
helical excitation used in the experiments of Lee and Reynolds (1985) is modeled
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by rotating the axis of the vortex cylinder about the nominal jet centerline. The
displacement, Ay, of the jet centerline from the nominal centerline corresponds to
the amplitude of excitation, and A, = A, /R. The rotation frequency is given by:

_ Ja
fh - Rf ) 41
where the orbital frequency is defined as:
f a = Sta%, 4.2

The frequency f, is the rate at which filaments are generated at the origin.

The interaction of the vortex sheet with the filaments is assumed to be such that
the sheet influences the motion of the filaments but the filaments do not influence
the sheet. The velocities induced by each filament and by the jet function are
superimposed to determine the trajectory of each filament. The Strouhal number
sets the time between creation of new ring filaments at the origin.

The circulation of each filament is identical and is determined from circulation
conservation constraints. Assuming the thickness of the cylindrical sheet to be
much smaller than its radius, the vorticity flux (per unit of circumference) within
the sheet through any plane perpendicular to the jet’s axis is given by U?/2. By the
assumption of a perfect fluid, the vorticity convected from the cylindrical sheet must
equal the vorticity convected by the discrete filaments. This conservation relation
can be expressed in terms of I' and v as

r ¥?

— =1 4.3
At 27

where I" is the circulation of each ring filament, 7 is the circulation per unit length of
the cylindrical vortex sheet, and At is the time between generation of ring filaments.
By Eqgs. 4.8 and 4.9, one obtains

r
Y= S ta-é. 4.4
Further details concerning the applicability of this model and its numerical im-
plementation are reported in Parekh et al. ( 1988).

4.1 Parameter optimization using evolution strategies

The primary parameters that govern the jet evolution Stq, B (frequency ratio of
axial and orbital excitation), A,, Ap, and ¢. The effect of the axial excitation, A,,
is approximated by generating distinct vortex rings at the axial forcing frequency.
The sensitivity to axial forcing amplitude is not modeled. In these simulations the
other four parameters are allowed to vary over the following ranges: 0 < A4, < 1,
01< 85t <1,02<8<5,0< ¢ < 2r. Different flow patterns can be observed
with variations in 8 for fixed values of the other parameters. The simulation is able
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FIGURE 4.1A. Blooming jets: Ex-

perimental Results of Lee and Reynolds FIGURE 4.1B. Blooming Jets: Sim-
(1985): 8 = 1.7, Ap = 0.04,St, = ulations 8 = 1.7, Ay = 0.05, St =
0.46, Re = 4300. 0.55.

to represent qualitatively the full range of jet phenomena observed in experiments,
including bifurcating and blooming jets (Fig. 4.1).

For the optimization, several metrics for jet spreading angle were considered,
including the average radial displacement of the vortex elements, jet spreading angle,
and ring trajectory angles. We also considered amplitude normalized formulations
of these metrics to account for the cost of excitation. The metrics were evaluated
over a broad range of test cases to check if they would be robust enough to provide
the proper relative rating over the parameter space considered. Some metrics are
artificially biased by the initial displacement of the rings or by normalization with
very small excitation amplitudes. One metric that is both simple and effective for
this simulation is the average angle of the nominal ring trajectories. For each case,
this metric is evaluated after the same number of periods (typically, eleven) of axial
excitation. The nominal ring trajectory angle, 6, is defined as the angle between
the jet centerline and the line that connects the center of the jet exit to the centroid
of the vortex ring nodes.

Starting with an initial guess for each of these parameters and constraints on
the range of values allowable for each parameter, the genetic algorithm searches
to optimize jet spreading. The scope of this work did not allow for an exhaustive
investigation of the parameter space and convergence characteristics, but even these
preliminary simulations yielded promising results. With all four parameters varied
simultaneously, the genetic algorithm selects a blooming jet similar to what has
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FIGURE 4.2A. Hybrid bifurcating FIGURE 4.2B. End view. Each
jet with St, = 0.28, A, = 0.63,8 = ring’s 32 nodes are plotted as solid
2,and ¢ = 0 (side view). circle.

been observed in experiments.

The most striking result was found when we constrained B = 2 and kept ¢ fixed.
Initially we expected the algorithm to select a bifurcating jet similar to Fig. 4.1A
with values of St,andA) that maximize the spreading angle. Instead, a unique jet
flow (Fig. 4.2) was found that had never been observed in previous experiments or
calculations. This jet flow initially resembles a bifurcating jet. Several diameters
downstream, however, the two branches of the jet exhibit a secondary bifurcation
in which the rings change direction along a path with an azimuthal angle about
7 /4 different from their original trajectory. This results in a wide spreading angle
as seen in Fig. 4.2B.

The simulation often has difficulty providing valid solutions for St, > 0.4 since the
initial ring filaments get tangled together and quickly degrade to an unrealistic state.
"This constraints were implemented in the evolution strategy by simply considering
these cases as unsuccessful tries for the optimization algorithm.

5. Summary and conclusions

These preliminary results from the application of evolution strategies to the prob-
lem of flow control suggest that stochastic optimization can be a valuable tool that
can complement physical understanding and deterministic optimization techniques.
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As a closing remark, we quote from Schwefel:

Since according to the “No-Free-Lunch” (NFL ) theorem (Wolpert and Macready,
1996) there cannot erist any algorithm for solving all optimization problems that
is on average superior to any competitor, the question of whether evolutionary al-
gorithms are inferior/superior to any alternative approach is senseless. The NFL
theorem can be corroborated in the case of EA versus many classical optimization
methods insofar as the latter are more efficient in solving linear, quadratic, strongly
convez, unimodal, separable, and many other problems. On the other hand, EA’s
do not give up so early when discontinuous, nondifferentiable, multimodal, noisy,
and otherwise unconventional response surfaces are involved. Their robustness thus
extends to a broader field of applications, of course with a corresponding loss of
efficiency when applied to the classes of simple problems classical procedures have
been specifically devised for.”

Hence, in the realm of flow control, the key issue is the identification of a suitable
optimization method for the specific problem in hand. The portability, ease of
parallelization, and the results reported herein and in (Miiller et al. 1999), suggest
that EA’s present a powerful technique for parameter optimization in problems of
flow control.
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An apprbach to systems modeling
for real-time control of jet flows

By A. B. Cain', T. Bewley?, J. B. Freund®, AND T. Colonius*

1. Introduction

The past 25 years have seen many examples of open-loop control of jet flows with
significant practical importance. During the same time, there have been tremen-
dous developments in the area of closed-loop feedback control strategies for linear
and nonlinear systems. It has been seen in many applications that coordination of
control application with state measurements in the closed-loop setting is essential
for optimum system performance. Thus, the possibility of feedback control of flow
systems such as turbulent jets should be carefully examined. However, such control
problems also pose technical difficulties as turbulent flow systems are multi-scale
and difficult to compute with a high degree of fidelity. Thus, the present work ex-
plores the development of low-order system models for use in the feedback control
framework for the jet control problem. The present work is part of a collabora-
tion involving Georgia Tech, Stanford University, UCLA, UCSD, and The Boeing
Company under the support of the Air Force Office of Scientific Research.

To design feedback control algorithms, it is very useful to have a simple model
that accurately captures the relevant physics of the phenomena under consideration.
Such a model, which should have sufficient simplicity to enable real-time state
estimation, is developed in the present work using linear stability theory to model
the initial development of the instabilities leading to the turbulent breakdown of
a jet. Direct numerical simulations of turbulent jets carried out by Freund et al.
(1998) will be used as validation for these models; when performed properly, such
simulations can capture the relevant flow physics “exactly”, albeit at a very large
computational expense.

System identification techniques may also be used (instead of linear stability
theory) to develop input-output system models of jets for use in the feedback control
setting, as explored by Ikeda (1998). Such models may be constructed without any
reference to the equations which govern or approximate the flow physics. The
present work is an intermediate-level approach that uses inviscid linear stability
theory to approximate the jet system. A key feature of the present work is a
piecewise quadratic approximation of the mean flow that permits rapid solution of
the equations. The authors acknowledge the careful work of Pal (1998) in deriving
the stability equations used.

1 Boeing Company

2 Current address: University of California, San Diego
3 University of California, Los Angeles

4 California Institute of Technology
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2. Large scale structures in inflectionally-dominated flows

It is well established that the inviscid inflectional instability characterized by
Kelvin and Helmholtz dominates the large-scale development of inflectionally-dominated
flows even into non-linear turbulent regimes. An excellent review discussing many
important aspects of this problem is given by Ho and Huerre (1984). Supporting
articles covering other aspects of the problem (including the nature of nonlinear
interaction and wall effects) are described in Cain and Thompson (1986) and Cain,
Roos, and Kegelmen (1990). The dominance of the inviscid inflectional instability in
the present flow motivates the use of the incompressible inviscid stability equations
as the system model.

A comparison between the prediction of linear theory and the nonlinear evolution
of the jet shear layers is given by Morris et al. (1990) and Viswanathan & Morris
(1992) for planar and round jets respectively. These works derive systems comprised
of parabolic equations for the mean flow development that depend upon the local
instability eigenproblem for the forcing. Solution of this eigensystem is generally the
most computationally-intensive aspect of generating the solution to the evolution
model for the jet. The need for very rapid solutions for real-time systems modeling
motivates our new approach to approximate solution of the disturbance eigenvalue
problem.

3. Linear stability analysis

Motivated by the need for rapid evaluation, piecewise linear and quadratic approx-
imations of the velocity profiles are used to simplify the inviscid linear disturbance
equations. In addition, mathematical solutions are somewhat easier to obtain for
the temporal evolution problem. All the work described here will use the temporal
analysis combined with Gaster’s relation to approximate the behavior of the spa-
tially evolving problem. The approach so describing an inflectionally dominated
flow is given by Drazen and Reid (1981). A few examples of the piecewise linear
analysis for planar flows will be presented before describing a piecewise quadratic
approximation that will be used as an approximation in the round jet geometry.

3.1 The piecewise linear approzimation for planar geometries

The simplest example of the piecewise linear approach is a three-segment rep-
resentation of the plane shear layer. This approach has been shown to provide
consistent and reasonable characterization of the stability behavior of this flow, and
it compares well with a more accurate (but more time consuming) analysis with a
hyperbolic tangent representation of the mean velocity profile. The characterization
of the disturbances is given by the exponential coefficient for temporal disturbance
growth rate and phase speed and is a function of the disturbance wavenumber. As
shown in Fig. 1, the phase speed computed using such an approach varies from U
to 3U, where U is the velocity of the slow stream. The complex wave speed comes
as complex conjugate pairs, and the actual phase velocity is the mean of the two
branches plotted. The imaginary part of the wave speed (which in product with the
wavenumber gives the exponential growth rate) vanishes at a wavenumber slightly
greater that 0.3.
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FIGURE 2. Phase speed
piecewise linear planar jet.

The next piecewise linear flow considered is the planar jet. Figure 2 shows the
Gaster transformed and scaled spatial growth rate and phase speed versus wavenum-
ber for the sinuous mode of a planar jet having a potential core of 18 jet radii (r0)
long, a shear layer of 1 unit width, and a free-stream velocity equal to 1/3 of the
jet velocity 1.5U,, where U, is the average of the jet and co-flow velocities. Note
that in this case the long wavelength (low wavenumber) disturbances have a phase
speed of the free-stream speed while shorter disturbances have a phase speed of the
mean shear layer speed. Figure 3 shows the behavior of the varicose mode. Note
that the varicose mode has a phase speed equal to that of the jet centerline for long
wavelength disturbances and the same phase speed as the sinuous mode for shorter
wavelength disturbances. When the shear layers are thin and separated by a large
region of potential flow, the stability of the planar jet is nearly the same as that
of the planar shear layer except at very long wave lengths. At smaller separation,
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FIGURE 3. Phase speed
piecewise linear planar jet.

1

0.8}

0.2 0.4 0.6 0.8 1 1.2 1.4
a/U;

FIGURE 4. Phase speed and growth rate ---- of a varicose mode in a

piecewise linear planar jet.

disturbances of the two shear layers exhibit a strong coupling. These behaviors for
both the varicose and the sinuous modes are characteristic of the actual physical
system.

3.2 The piecewise quadratic approzimation for cylindrical geometries

A piecewise representation of the mean velocity profile simplifies the round jet
stability problem to Bessel’s equation. The solutions are constrained by requiring
finite levels in the inner potential region and solutions that vanish at infinity in
the outer potential region. These inner and outer solutions (in terms of Bessel
functions) are coupled by matching conditions. The matching is achieved by a
combination of the inner and outer Bessel solutions (a linear combination of Bessel
functions is a valid solution within the finite thickness shear layer). This problem
was formulated by Pal (1998). This approach results in an involved complex-valued
quadratic dispersion relation that was solved using Mathematica.

The behavior of the axisymmetric disturbances for a round jet with a potential
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core diameter of 18r, and jet velocity U; with zero free stream velocity is given in
Fig. 4. Note that the appropriately-scaled growth rate and phase speed behave in a
manner which is qualitatively similar to the varicose mode of the analogous planar
jet.

4. Prediction of jet spreading

The formulation of Viswanathan and Morris (1992) was implemented using the
piecewise quadratic stability formulation. An example of the predicted evolution
of the shear layer edges using only the n = 0 axisymmetric disturbance is shown
in Fig. 5. Figure 6 shows the locally dominant wavenumber versus downstream
distance in jet radii. It is assumed that, when a disturbances saturates (due to the
thickening of the shear layer), the sub-harmonic will become dominant and evolve
until saturation, and so on. The results shown in Figs. 5 and 6 are for an initial
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shear layer thickness of 1% of the jet radius.

5. Conclusions

An approximate analytic solution to the appropriate linear stability problem,
and the role of this solution in the evolution of the round jet, has been investigated.
When fully implemented, such a formulation may model the physical behavior of
the jet with sufficient accuracy to be used as a state model in a feedback control
setting. Once programmed in an efficient manner, the computational expense of
this model should be manageable. The use of such a model as a state estimator in
a feedback control framework thus appears promising though the “real” problem
prediction must include at least the n = +1 modes in addition to the n = 0 mode
given here. In the case of a thin shear layer, the n = £1 modes behave similarly to
the n = 0 mode and may be analyzed with the n = 0 analysis. However, the solution
for n = +1 is required as the shear layer thickness becomes significant relative to
the jet radius. For the mixing problem it is likely that the solution near the end
of the potential core will need to be calculated. A transformation analogous to
the Squire reformulation (of the three-dimensional planar stability problem into an
equivalent two-dimensional problem in the transformed variables) will be pursued
in the round jet problem.

REFERENCES

CAIN, A. AND THOMPSON, M. 1986 Linear and Weakly Nonlinear Aspects of Free
Shear Layer Instability, Roll-Up, Subharmonic Interaction and Wall Influence.
AIAA Paper 86-1047. AIAA/ASME 4th Fluid Mechanics, Plasma Dynamics

and Lasers Conference, Atlanta, May.

CAIN, A., Roos, F., AND KEGELMAN, J. 1990 Computational and Experimental
Observations on Near Field Characteristics of an Excited Free Shear Layer.
Presented at the Twelfth Symposium on Turbulent Flows, Rolla, MO, Sept.

DRAZEN, P. G. AND REID, W. H. 1981 Hydrodynamic Stability, Cambridge Univ.
Press.

FrREUND, J. B. AND MoOIN, P. 1998 Mixing enhancement in jet exhaust using
fluidic actuators: direct numerical simulations. ASME FEDSM98-5285.

GASTER, M. 1962 A Note on the Relationship between Temporally Increasing and
Spatially Increasing Disturbances in Hydrodynamic Stability.. J. Fluid Mech.
14, 222-224.

Ho, C. M. AND HUERRE, P. 1984 Perturbed Free Shear Layers. Ann. Rev. Fluid
Mech. 365-424,

IKEDA, Y. 1998 Real-Time Active Flow Control Based on Modern Control The-
ory. AIAA Paper 98-2911. Presented at the AIAA Fluid Dynamics Meeting,
Albuquerque, NM.



Systems modeling for control of jet flows 139

MORRIS, P. J., GIRIDHARAN, M. G., AND LILLEY, G. M. 1990 On the turbulent
mixing of compressible free shear layers. Proceedings of the Royal Society of
London A. 431, 219-243.

PAL, A. 1998 Instability Modes of a Cylindrical Jet Based on Incompressible,
Inviscid Model; Piecewise Continuous Velocity Profile. Report to the Boeing
Company,April.

VISWANATHAN, K. AND MORRIS, P. J. 1992 Predictions of Turbulent Mixing in
Axisymmetric Compressible Shear Layers. AIAA J. 30(6), 1529-1536.






-

Center for Turbulence Research 141
Proceedings of the Summer Program 1998

Mode interaction in a forced homogeneous
jet at low Reynolds numbers

By I. Danaila! AND B. J. Boersma

The near-field evolution of a forced axisymmetric jet was investigated by means of
Direct Numerical Simulation (DNS). The numerical configuration simulated a low
Reynolds number jet (Rep = 1500) issuing from a circular orifice in a solid wall.
Periodic streamwise velocity disturbances were applied at the nozzle. Four modal
distributions of forcing were studied. The first and the second type of perturbation
contained only one of the two fundamental instability modes of the round jet: the
azisymmetric m = 0 mode and the helical m = 1 mode. A ‘classical’ evolution of
the jet flow was obtained for these cases. This provided a reference to the third
case, which consisted of forcing simultaneously the counter-rotating helical modes
m = +1 with the same amplitude and the same frequency (flapping mode). The jet
split into two branches, taking a distinct Y’ shape characteristic of the bifurcating
jets (cf. Lee & Reynolds, 1985). A different evolution of the bifurcating jet is
observed when superposing the axisymmetric mode, at the most amplified unstable
frequency, with the flapping mode, with the same amplitude but with subharmonic
frequency. This combination led to resonant growth of the jet with a spectacular

increase of the spreading angle up to 90°.

1. Introduction

Considering the many practical applications of round jets (aeroacoustic, combus-
tion, propulsion, mixing), numerous attempts have been made to control jet mixing
and entrainment. A full listing of the proposed control approaches would easily
exceed one hundred references.

All the control techniques use active or passive devices to alter the vortex dy-
namics close to the nozzle. From a theoretical point of view, the large coherent
structures characterizing the near field evolution can be assimilated with instability
modes, described by their azimuthal wavenumber m. Several fundamental results
derived from linear stability analysis and experimental observations offer a complete
picture of the mode selection in the near field of a natural (unforced) axisymmetric
jet:

(i) The two linearly dominating modes are the axisymmetric (or varicose, m =
0) and first helical (m = 1) modes. For jets with thin initial shear layer, the
linear amplification characteristics of these two fundamental modes are similar (e.g.
Batchelor & Gill 1962, Michalke 1982). This has been confirmed in experiments
(e.g. Cohen & Wygnanski 1987, Corke et al. 1991).

1 L R.P. H. E., 12 Av. Général Leclerc, 13003 Marseille, France.
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(ii) Higher helical modes (m > 2) are always less amplified than the fundamental
modes (Mattingly & Chang 1974, Plasko 1979) and were rarely (if ever) observed
in experiments.

(ii1) Although the linear characteristics of the fundamental modes are almost
identical, only one mode (m = 0 or m = 1) will dominate at the early stages
of the near field evolution. The dominant mode is selected by amplification of
coherent initial perturbations such as the pressure field at the lip (Morris 1976). In
most laboratory jets, only planar disturbances are emanating from the nozzle and,
consequently, the axisymmetric mode plays the dominant role (Cohen & Wygnanski
1987b). If the disturbances at the jet exit lip are stochastic, the switch from one
mode to the other can occur, but the two fundamental modes never exist together
(Corke et al. 1991).

(iv) Since the linear stability characteristics of the counter-rotating helical modes
m = 1 and m = -1 are indistinguishable (Batchelor & Gill 1962, Danaila et al.
1998), there is a greater likelihood to observe both m = 41 modes in the flow rather
than a single helical mode. The nonlinear interaction of these two modes lead to
characteristic flow patterns (Dimotakis et al., 1983, Danaila et al. 1997). When
the m = +1 modes have the same frequency and amplitude, the so-called flapping
mode is obtained (see, for example, Morrison & McLaughlin 1980). In conclusion,
the linear superpositions of the m = 41 modes (in particular the flapping mode)
can also be considered as fundamental modes.

In the light of these results, the jet control techniques can be watched as at-
tempts either to control the dynamics of a single fundamental mode or to force
simultaneously several of these modes:

(1) The evolution of the axisymmetric mode characterized by vortex ring roll-
up offers many possibilities of control. Many researchers have investigated the
effects of axial acoustic forcing on the vortex ring generation (Crow & Champagne
1971, Bouchard & Reynolds 1982), spacing and pairing (Hussain & Zaman 1980,
Hussain & Clark 1981, Ho & Huang 1982). The amplitude and frequency of the
forcing excitation can determine the number of pairings and their locations and,
consequently, the spreading rate of the jet. The azimuthal instability of rings and the
formation of streamwise vortex filaments were reported as an important entrainment
mechanism in jets (Liepmann & Gharib 1992). When combined with axial acoustic
disturbances, passive azimuthal forcing (obtained by using corrugated nozzles) could
be very effective in mixing and entrainment enhancement (Lasheras ef al. 1991).

(2) The helical modes m = +1 can be generated by controlled acoustic excitation
(Parekh & Reynolds 1988, Corke & Kusek 1993) or triggered by passive devices
which break the axial symmetry (e.g. tabs - Bradbury & Khadem 1975, sawtooth
nozzles - Longmire & Duong 1995). Although less studied than the axisymmetric
mode, the helical modes showed some interesting mixing properties. Mankbadi &
Liu (1981) showed that helical modes are more efficient than the axisymmetric one
in pumping energy into turbulent small scales due to its shorter streamwise lifespan.
The subharmonic resonance of the m = +1 modes can lead to a net increase (300%)
of the jet momentum thickness compared to the unforced jet (Corke & Kusek 1993).
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(3) The most interesting mixing and entrainment properties are obtained when
combined axial and helical forcing are used. Lee & Reynolds (1985) used axial
acoustic excitation to generate vortex rings and moved the nozzle in a circular path
perpendicular to the jet axis (orbital excitation). Neighboring generated rings are
radially shifted in different azimuthal planes and induce one another to move on
distinct branches. The ratio R between the axial and the orbital forcing frequency
set the number of branches. Bifurcating (R = 2), trifurcating (R = 3), and blooming
(1.6 < R < 3.2 and non-integer) jets are obtained with a spectacular increase of
the spreading angle (from 18° for the unforced jet up to 80° for the bifurcating jet).
Parekh, Leonard & Reynolds (1988) obtained high Reynolds bifurcating jets using
axial and flapping acoustic excitation produced by four speakers placed around
the perimeter of the nozzle exit. The bifurcation occurred above a critical forcing
amplitude, increasing with the Reynolds number. Higher forcing frequencies yielded
bifurcating jets with larger spreading angles.

Similar (albeit more distorted) bifurcating jets were reported in jet experiments
using axial forcing and passive control devices. Stepped or sawtooth trailing edges
attached at the nozzle exit (Longmire & Duong 1995) or inclined nozzles (Webster &
Longmire 1997) generated complex helical structures which altered the downstream
evolution of vortex rings. The bifurcating effect was found to be strongest when
low forcing frequencies were used, a trend opposite to that seen by Lee & Reynolds
(1985). Zaman, Reeder & Samimy (1996) used a combination of two diametrically
opposed tabs placed at the nozzle exit to obtain bifurcating supersonic jets. Further
work (Zaman & Raman 1997) showed that, in low Mach number jets, tabs and axial
excitation independently increased jet spreading while a combination of the two had
an opposite effect.

This study was especially inspired by the experiments of Parekh et al. (1988), who
studied the effects on the round jet evolution of four types of acoustic excitation:
axisymmetric, helical, flapping, and bifurcating (i.e. axial + flapping). The spectac-
ular increase in spreading of the bifurcating jet was compared to the reference cases
provided by the axially and helically excited jets. One of the main conclusions of this
study was the independence of the bifurcation phenomenon of the Reynolds num-
ber. For the explored range of high Reynolds numbers (10000 < Re < 100000), an
optimum set of parameters (frequency and amplitude of excitation) can be found in
order to obtain bifurcating jets similar to those reported by Lee & Reynolds (1985)
for low Reynolds numbers (2800 < Re < 10 000).

This observation suggests that bifurcating phenomena can be approached by Di-
rect Numerical Simulation (DNS). Recent DNS of spatially evolving low Reynolds
number jets proved very effective in investigating properties of the transitional
(Danaila et al. 1997) or turbulent (Boersma et al. 1998) regimes of free incom-
pressible jets. In this work we make use of DNS to assess the influence of the four
abovementioned excitations on the jet evolution. Although the vortex dynamics of
some bifurcating jets can be simulated by simpler numerical approaches, as the vor-
tex filaments method (see Parekh et al. 1988), DNS is expected to offer a complete
description of the underlying mechanisms involved in such flows.



144 1. Danaila & B. J. Boersma

convective

10D

FIGURE 1. Computational domain and boundary conditions.

2. Numerical details

The numerical solver simulates a free round jet issuing from a circular orifice
of diameter D in a solid wall. The solver solves the incompressible Navier-Stokes
equations in a spherical coordinate system with (1,6, ) denoting the radial, az-
imuthal, and tangential directions. Details of the numerical scheme can be found
in Boersma et al. (1998). The computational domain shown in Fig. 1 results from
the intersection between the shell defined by the surfaces r = 5D and r = 15D
and the cone starting from the center of the sphere with an opening angle of 36°.
The obtained geometry covers a domain with a streamwise extent of 15D and a
spanwise diameter of 3D for the inflow section and 10D for the outflow section.
Such a discretization is able to follow the streamwise spreading of the jet and al-
lows a well-balanced resolution of the flow field with a reasonable number of grid
points. For convenience, the cylindrical coordinates (re,0c, 2) with 7, the radial, 4.
the azimuthal, and z the axial directions will be used to analyze the results.

The boundary conditions are also illustrated in Fig. 1. At the inflow section, the
mean streamwise velocity profile is imposed as initial and boundary condition. We
used the ‘classical’ hyperbolic tangent (tanh) profile, which matches very well with
profiles measured in experiments (see Michalke 1984). In cylindrical coordinates it
reads:

Vao(re)/Vo = 0.5{1 + tanh[0.25D/00(D/(4r.) — r¢/D)]}, (1)

where Vj is the centerline velocity (at 7. = 0) and ©q the initial momentum thick-
ness. At the lateral boundary, traction-free boundary conditions are used (see, for
example, Gresho 1991): oy; - n; = 0, where oy; is the stress tensor and n; the
unit normal on the boundary. The main advantage of this traction-free condition
over the largely used free-slip or no-slip boundary conditions is that fluid exchange
across the boundary is allowed. This appeared to be very useful to properly simulate
the entrainment of ambient fluid in the spreading jet flow. A so-called convective
boundary condition (Orlanski 1976, Lowery & Reynolds 1986) was used to evac-
uate the vortex structures through the downstream boundary. This condition is
numerically stable but physically not very realistic in elliptic flows. However, the
convective nature of the homogeneous jet flow (Huerre & Monkewitz 1990) allows
it to eventually evacuate spurious reflections at the outflow boundary.
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3. Selection of physical parameters

The guidelines for the selection of physical parameters used in our spatial simula-
tion were found in Parekh et al. (1988). In their experiments, the Reynolds number
was varied in the range 10 < Rep = VyD/v < 108. The measured ratio between
the jet diameter and the momentum thickness of the inflow mean velocity profile
was D/6g = 66 for Rep = 10* and about seven times larger for Rep = 105. The
acoustic excitation was characterized by the axial Strouhal number St, = foD/Vo
when the axisymmetric mode was forced at the frequency f,. The corresponding
helical Strouhal number St, = fnD/Vo was defined for the helical or flapping mode
excitation. The dual-mode excitation was characterized in terms of the frequency
ratio Ry = fo/fr and the axial Strouhal number St,.

The bifurcating jet was obtained only if Ry = 2 and for a well defined range of
axial Strouhal numbers: 0.4 < St, < 0.7. Nevertheless, the maximum jet spreading
occurred around St, = 0.55 for all investigated Reynolds numbers. The same
optimum value for St, was reported by Lee & Reynolds (1985) for the bifurcating
jet at Rep = 3700. No satisfactory explanation of this phenomenon was provided.
We believe that the invariance of St, with the Reynolds number can be connected
to another unexplained phenomenon reported in free jets, which is the locking of the
jet preferred Strouhal number for large ratios D/6 (see Ho & Huerre 1984). Indeed,
it is well known that the most amplified frequency at the end of the potential core is
independent of the Reynolds number and results from nonlinear interactions (Crow
& Champagne 1971). The value of the Strouhal number based on this preferred
frequency and the jet diameter varies from one experiment to another between
0.2 and 0.5 (Gutmark & Ho 1983). The preferred Strouhal number scales with
the shear-layer frequency for small D/©p and ‘locks’ at a constant value of 0.44
for D/©y > 240 (Ho & Huerre 1984). A similar phenomenon can occur in high
Reynolds bifurcating jets, where collective interactions of vortex rings at the end of
the potential core cause the jet to split in two distinct branches. Consequently, the
value St, = 0.55 can be considered as the preferred axial Strouhal number of the
bifurcating jets characterized by large ratios D/©p.

In view of these experimental observations, we chose the following physical pa-
rameters to define the inflow velocity profile given by Eq. (1): D/©¢ = 60 and
Rep = 1500. For this low Reynolds number, a uniform mesh of (192 x 128 x 96)
grid-points in the (r, 8, ¢) directions is sufficient to resolve the smallest scales of the
motion in the considered computational domain (see Boersma et al. 1998). As a
result of this discretization, 12 grid-points are situated in the initial shear region at
the nozzle, offering a correct resolution of the instability waves.

The simulated jet is forced by superposing oscillating components on the mean
nozzle exit velocity. Only streamwise velocity disturbances are used. The analytical
form of the resulting inflow velocity profile is:

Vi(re,t) = Vaolre) [1 + Em: Am sin (21r Stg"% - mOC) (23) m'} )

where Vg is given by Eq. (1) and m is the azimuthal wavenumber of the excitation.
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VARICOSE EXCITATION

HELICAL EXCITATION

FLAPPING EXCITATION

FIGURE 2. Three-dimensional representation of the streamwise velocity profile at
the nozzle. Evolution during one cycle of excitation.

Four types of excitation were considered, as in experiments. The time evolution of
the inflow velocity profile during one cycle of excitation can be followed in Fig. 2.

[(A)-jet] Axisymmetric excitation (m = 0); St, = 0.55; A, = 0.15.

The up and down ‘movement’ of the velocity profile around the mean value
(Fig. 2) mimics the perturbation introduced by a speaker placed in the plenum
chamber of a laboratory jet. The excitation parameters (Ste, Ag) were fixed in
order to provide a reference case for the bifurcating jet (see below).

[(H)-jet] Helical excitation (m = 1); St = 0.55; A, = 0.15.

This perturbation approaches the disturbances produced by an azimuthal array

of acoustic drivers placed close to the jet lip and controlled by a helical input

(Parekh et al. 1988, Corke & Kusek 1993). The asymmetric velocity profile makes
a complete rotation during one period of excitation.
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((F)-jet] Flapping excitation [(m = 1) + (m = —1)]; Sty = 0.55; Ay = 0.15.

The flapping excitation results from the superposition of the counter-rotating
helical modes with the same amplitude and frequency. An equivalent form of the
inflow velocity profile (Eq. 2) is in this case:

Y‘;:(Or—(:—c%l = [1 + Ay sin (27r Stl’;vo t) cos(f.) (%)] (3)

Compared to the helical excitation, the time evolution of the velocity profile (Fig. 2)
is phase locked in the plane 6. = 0.

[(BF)-jet] Bifurcating excitation [(m = 0) + (m = 1) + (m = -1)}; Sty = 0.55;
Sty = Sta/2; Ag = Ay = 0.15.

The bifurcating perturbation is obtained by imposing a dual-mode (axisymmetric
+ flapping) and dual-frequency (R; = Sto/Sty = 2) excitation. Since both the ex-
periments of Lee & Reynolds (1985) and Parekh et al. (1988) indicated a maximum
spreading of the bifurcating jet for an axial Strouhal number of 0.55, the same value
is considered here. The large excitation amplitude (15%) is close to that used by
Lee & Reynolds (1985). Along with the amplitude, the relative phase (®) between
the axial and the flapping excitations is very important. Bifurcation occurs only if
the peak of the axial signal is approximately aligned with the peak of the flapping
signal (Parekh et al. 1988). The measured values were & = 47° £15° at Rep = 10°
and ® = 31°+15° at Rep = 50-10%. In our simulations, we imposed the theoretical
value ® = 45° to obtain the peak alignment (see the last frame of Fig. 2, with the
dashed line representing the flapping component of the perturbation). The final
form of the velocity profile can be written as:

Ve(re,t) . StaVo . St:Vo 27,
Vol [1 + A, sin (27r D t) + Afsin (21r D t+® ) cos(f.) . 5]
(4)

4. Results

The response of the jet flow to the excitations described above is analyzed both
instantaneously and statistically. As in experiments, flow visualization is empha-
sized. For this purpose, a passive scalar conservation equation with Fickian diffusion
assumption is solved with the same numerical scheme. Two different types of scalar
injection are considered. The first scalar (S1) has the same mean inflow profile as
the injection velocity (Eq. 1). This tracer marks all the jet fluid and provides a
qualitative estimation of the entrainment through the interface between ambient
and jet fluid. The second tracer (52) is injected with a mean profile corresponding
to the vorticity profile of the initial shear-layer (derivative of Eq. 1). This is useful to
mark the vorticity-bearing jet mixing-layer and to track large coherent structures.
For our numerical tracers, a very small diffusivity was chosen in order to avoid
rapid contamination of all the computational domain. This is good assumption for
water flow visualization, where the viscous diffusion of the (fluorescein) dye can be
neglected.
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FIGURE 3. (A)-jet (left) and (H)-jet (right). Instantaneous cross-section (. = 0)
in the (S1) passive scalar field.

4.1 Azisymmetric and helical excitations

Instantaneous cross-sections in the scalar field (S1) are displayed in Fig. 3 for
the axially (left) and helically (right) excited jets. The large forcing amplitude
expedites the transition of the the initially laminar jet mixing layers. In both cases
the transition consists of formation of coherent structures of Kelvin-Helmholtz type
(cat-eyes). These structures are spatially organized in toroidal vortex rings in case
(A) and helical patterns in case (H).

It should be noted that, for the hyperbolic tangent velocity profile (1) with
D/©y = 60, the linear stability analysis (Michalke 1984) showed that the axisym-
metric and the helical modes have almost the same ‘most amplified’ (or ‘natural’)
frequency (fy). In terms of Strouhal number based on the momentum thickness, its
theoretical value is: Stg, = f, ©¢/Vy = 0.017. The corresponding Strouhal number
based on the jet diameter will be Stp = 1.02. As a result, the forcing frequency
(St, = Stp = 0.55) is very close to the subharmonic ‘natural’ frequency and will
cause ‘collective interactions’ of vortex structures (Ho & Huang 1982). Figure 3
also captures the vortex rings pairing process in the axially excited jet. For the he-
lically excited jet, the coalescence of two neighboring vortex loops of the helix can
be observed (Fig. 3). This phenomenon was never reported in experiments with a
single helical mode input. A similar ‘helical pairing’ process was reported by Corke
& Kusek (1993) in their jet, simultaneously forced with m = +1 modes.

In both jets, vortex amalgamations generate larger coherent structures and in-
crease the local momentum thickness of the shear layer. The streamwise wavelength
is doubled by pairings as illustrated in Fig. 4 presenting a snapshot of the (S2) tracer
evolution near the nozzle. The vortex cores are easily identified by high tracer
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FIGURE 4. (A)-jet (left) and (H)-jet (right). Instantaneous cross-section (6. = 0)
in the (S2) passive scalar field. Zoom in the region close to the nozzle.

concentrations. From this visualization, the instability wavelength is estimated to
Aa/D =~ 1.03 for the case (A) and An/D = 0.86 for the case (H). As the forcing
frequency is higher than f,/2, the response frequency of the shear will be equal to
the forcing frequency (Ho & Huerre 1984). With this assumption, the convection
velocity of the unstable modes can be calculated as V./Vo = A/D Stp. The ob-
tained values (V/Vo)a = 0.56 and (V./Vo)n = 0.47 are very close to the theoretical
value of 0.5.

Different azimuthal sections offer similar images for both cases. Figure 5 presents
a three-dimensional picture of the large coherent structures dominating the near-
field. The fundamental (m = 0) and (m = 1) unstable modes are clearly identified
by means of iso-surfaces of low pressure (see Jeong & Hussain 1995).

However, the azimuthal symmetry of the axially forced jet is broken downstream
of the pairing location. Stretched lateral ejection of the passive scalar (Fig. 3) sug-
gests that secondary azimuthal instability develops and forms side-jets (see Liep-
mann & Gharib 1992). The azimuthally distorted structure of the last vortex ring
displayed in Fig. 5 confirms this observation. Subsequent simulation of the axially
forced jet with additional low amplitude (2%) white noise disturbances at the noz-
zle showed a more rapid breakup of the vortex rings into turbulent puffs beyond
z/D = 5 (pictures not shown here). On the other hand, the helical structure is less
stable and breaks up in small eddies without any additional disturbances (Fig. 3).
This observation matches the results of Mankbadi & Liu (1981), showing that he-
lical modes have a shorter streamwise lifespan than the axisymmetric mode. This
property makes the helical modes more effective in transferring energy into small
turbulent scales.
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FiGURE 5.  (A)-jet (left) and (H)-jet (right). Identification of large coherent
structures by instantaneous iso-surfaces of low pressure (p = 0.2 - ppin)-

4.2 Flapping and bifurcating excitations

The structure of the simulated jet changes dramatically when flapping or bifurcat-
ing excitation are applied at the nozzle. A spectacular increase of the jet spreading
angle is observed in the bifurcating plane. This plane of maximum spreading is
fixed by the azimuthal position where the flapping perturbation locks (. = 0 in
our case). The plane perpendicular to the bifurcation plane is also called bisecting
plane. Figure 6 depicts instantaneous pictures of the (S1) scalar evolution in the
bifurcating plane for the jet with flapping (left) and bifurcating (right) perturba-
tion. The same picture taken in the bisecting plane is presented in Fig. 7. Both
jets exhibit different behavior in the two planes.

In the bifurcating plane, the flapping excitation causes the jet to split into two
distinct branches (Fig. 6-left). Approximately at the same downstream location
(2/D = 5), the jet with bifurcation excitation spreads in a wide-angle turbulent
structure (Fig. 6-right). In the bisecting plane, the scalar evolution is similar for
both jets. The tracer, organized in large axisymmetric structures, seems to disap-
pear downstream of z/D = 5 (Fig. 7). Practically no spreading is observed in this
plane.

This different evolution in two perpendicular planes is a characteristic of ex-
perimentally observed bifurcating jets. Nevertheless, only the (F)-jet displays the
Y-shaped structure, reported as the most striking feature of bifurcating jets at
low Reynolds numbers (Rep < 10000). On the other hand, the (BF)-jet shares
features of the higher Reynolds number experimental bifurcating jets (see Lee &
Reynolds 1985 and Parekh et al 1988). This is a surprising result, suggesting that
new mechanisms are involved in our simulated jets.
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FIGURE 6. (F)-jet (left) and (BF)-jet (right). Instantaneous snapshot of the (S1)
passive scalar field in the bifurcating plane (6. =0).

FIGURE 7. Same caption as in Fig. 6. Evolution in the bisecting plane (6. = 90).

In experimental bifurcating jets, the combined axial and flapping forcing created
a periodic array of vortex rings, which were alternatively shifted in the radial direc-
tion. The helical disturbances reached their maximum amplification at the end of
the potential core. As a result, the rings tilted and propagated along two different
trajectories. In our simulated jets, different ‘bifurcating’ mechanisms are revealed
by the analysis of the space-time evolution of vortex structures.



152 I. Danaila & B. J. Boersma

FIGURE 8. (F)-jet (left) and (BF)-jet (right). Instantaneous snapshot of the (S2)
passive scalar field in the bifurcating plane (6, = 0). Zoom near the nozzle.

Figures 8 and 9 offer a more detailed image of the large structures dominating the
simulated jet flows. The near-field evolution of the (S2) tracer shows that flapping
excitation delays the roll-up of the jet shear layer (Fig. 8-left). The first cat-eyes
are formed at z/D =~ 2.25, compared to z/D = 1.2 for the (H)-jet. A greater per-
centage of the tracer is captured at azimuthal locations corresponding to maxima
of the local velocity profile. At the diametrically opposite locations, weaker tracer
filaments connect the staggered vortices at the azimuthal maxima. This observation
is supported by the three-dimensional image of the coherent structures identified
by means of iso-surfaces of low pressure (Fig. 9-left). Ring-like vortical structures
roll up up in alternatively tilted planes every half-period of excitation. The core
of these structures progressively diminishes towards the region of minimum pertur-
bation amplitude. At this azimuthal location, the vortex ends do not merge in a
toroidal loop. They bend downstream and merge with the next vortex, generating
a large intertwined structure. This continuous structure breaks-up at z/D =~ 5.
As a result, vortex structures similar to distorted rings propagate along two dis-
tinct branches. This last phase of vortex evolution is similar to that observed in
experiments. However, the initial stages of formation of the involved ‘ring’ struc-
tures is different since we never observed the usual (see Fig. 5) toroidal rings in our
simulation.

The shear-layer of the (BF)-jet rolls up into coherent vortex rings (Fig. 8-right)
similar to those characterizing the axially excited jet (Fig. 4-left) except for the
slight tilt of the vortices. The vortex pairing occurs at approximately the same
downstream location. Farther downstream, the vortex ring undergoes strong az-
imuthal instabilities and finally break up into small and irregular vortex structures
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FiGURE 9.  (F)-jet (left) and (BF)-jet (right). Identification of large coherent
structures by instantaneous iso-surfaces of low pressure (p= 0.2 pmin)-

(Fig. 9-right). As observed from Figs. 6 and 8, the flow abruptly spreads in the
bifurcating plane before the complete destruction of the vortex rings. The tracer
is ejected directly from the vortex sheet connecting the rings (braid region). This
phenomenon can be explained by the excessive growth of streamwise filaments in
the braid region (see Liepmann & Gharib 1992). The streamwise filaments are
stretched by the high field strain and pulled outward from the jet by the moving
vortex rings. The streamwise component of the vorticity vector is dominant in these
regions (pictures not shown) and generates strong expulsion of passive tracer. In
conclusion, the ‘bifurcating’ mechanism for the (BF)-jet concerns mainly the evo-
lution of secondary streamwise vortice, rather than that of primary vortex rings.
It should also be noted that the phase difference (®) between the axial and the
flapping excitation (see Eq. 4) is essential to obtain bifurcation. The simulation
with ® = 0 revealed small spreading in the excitation plan similar to that obtained
for the (A)-jet.

4.3 Mean flow evolution

To assess if the behavior observed in the instantaneous pictures is highly repeat-
able, the mean flow fields were calculated. The statistical analysis is conducted
within the same time period T = 2D/(St, - Vo) for all the simulated cases. This
period corresponds to the lowest forcing frequency (~ Sto/2) used in the (BF)-case.
The average procedure uses the information at every time step in the considered
time interval. A converged mean flow field is obtained by averaging the mean data
calculated for 2T time periods in the (A) and (H)-case and 4T time periods in the
(F) and (BF)-case.

Figures 10 and 11 depict the mean fields of the (S1) scalar variable for all the
simulated cases. The (A) and (H) jets display a very small spreading rate in all
of the azimuthal planes. A dramatic increase of jet spreading in the bifurcating
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FIGURE 10. (A)-jet (left) and (H)-jet (right). Mean (S1) passive scalar field.

Ficure 11.  (F)-jet (left) and (BF)-jet (right). Mean (S1) passive scalar field in
the bifurcating plane.

plane is observed for the (F) and (BF) cases. The Y-shaped structure of the (F)-jet
(already observed in Fig. 6) is clearly displayed in this picture. Note the similarity
with the pictures provided by the product visualizations in the bifurcating jets of
Lee & Reynolds (1985). The (BF)-jet shows the greatest spreading rate. Although
two distinct branches can be identified, the tracer concentration near the jet axis
has a great value. The complicated tree-structure of the (BF)-jet can be generically
described as W-shaped. Based on these visualizations, we can speculate that the
rapid breaking of the large structures in this jet enhances mixing and entrainment.
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FIGURE 12. Mean streamwise velocity profiles for the (F) and (BF) jets.

Therefore, the (BF)-jet can be very interesting for practical applications.

The trends observed in the evolution of the (F) and (BF) jets can be summarized
by plotting the mean streamwise velocity profiles (Fig. 12). In the far-region of the
(F)-jet (z/D > 5), double-peak profiles can be observed in the bifurcating plane
and very flat profiles in the bisecting plane. This evolution indicates that the jet
flow splits into two distinct jets in the bifurcating plane and gradually vanishes
in the perpendicular plane. The splitting of the jet main column in two branches
directed in a well-defined azimuthal plane was reported as the most sticking feature
of experimental bifurcating jets. The (BF)-jet displays a different evolution of the
mean velocity. Bell-shaped profiles are observed in both bifurcating and bisecting
planes. Nevertheless, the wider profiles in the bifurcating plane demonstrate the
increased total momentum thickness and jet spreading in this plane.
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5. Summary and final discussion

The evolution of a low Reynolds number round jet under periodic forcing was
examined by means of DNS. The selection of the physical parameters of the spa-
tial simulation was guided by the experimental studies of Lee & Reynolds (1985)
and Parekh, Leonard & Reynolds (1988). The periodic forcing was numerically
modeled by superposing streamwise velocity perturbations on the mean inflow ve-
locity profile. The four considered types of perturbations represented linear com-
binations of the fundamental unstable modes in jets: (A) axisymmetric [m = 0],
(H) helical [m = 1], (F) flapping [(m = 1) + (m = —1)], and (BF) bifurcating
(m=0)+(m=1)+(m=-1)).

The evolution of the axially and helically forced jets is in very good qualitative
and quantitative agreement with previous theoretical and experimental studies. The
flapping and the bifurcating perturbations generate jets with a spectacular increase
of the spreading rate in the plane where the excitation locks (from 16° for the (A)-jet
to approximately. 90° for the (BF)-jet).

In their attempt to semantically define bifurcating jets, Parekh et al (1988) em-
phasized that a jet which spreads more rapidly in one plane than in the perpen-
dicular plane is not necessarily a bifurcating jet since elliptic jets exhibit the same
characteristic. Based on flow-visualizations, they proposed two criteria to define a
bifurcating jet: the jets split into two separate jets and/or the far-field streamwise
velocity profiles consist of two separate peaks. The first criterion is fulfilled when
the jet fluid disappears as one moves downstream in the plane perpendicular to the
excitation plane.

The surprising result displayed in our simulations was that only the (F)-jet ful-
filled the two criteria. The involved bifurcating mechanism was similar to that
experimentally reported except for the formation of coherent ring-like structures.
The (BF)-jet showed some similaritie, but also some clear differences when com-
pared to experimental bifurcating jets. A new bifurcating mechanism based on
the growth of secondary streamwise vortices was proposed to explain the observed
behavior. Consequently, we propose a more general definition classifying a jet as
bifurcating jet if it spreads rapidly in one plane but not in the perpendicular plane,
without axis switching. This definition will exclude Jets with non-circular nozzles
(elliptic, triangular) and will include indeterminate-origin bifurcating jets.
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Evaluation of noise radiation
mechanisms in a turbulent jet
By T. Colonius!, K. Mohseni', J. B. Freund?, S. K. Lele, AND P. Moin

Data from the direct numerical simulation (DNS) of a turbulent, compressible
(Mach=1.92) jet has been analyzed to investigate the process of sound generation.
The overall goals are to understand how the different scales of turbulence contribute
to the acoustic field and to understand the role that linear instability waves play
in the noise produced by supersonic turbulent jets. Lighthill’s acoustic analogy was
used to predict the radiated sound from turbulent source terms computed from the
DNS data. Preliminary computations (for the axisymmetric mode of the acoustic
field) show good agreement between the acoustic field determined from DNS and
acoustic analogy. Further work is needed to refine the calculations and investigate
the source terms. Work was also begun to test the validity of linear stability wave
models of sound generation in supersonic jets. An adjoint-based method was de-
veloped to project the DNS data onto the most unstable linear stability mode at
different streamwise positions. This will allow the evolution of the wave and its
radiated acoustic field, determined by solving the linear equations, to be compared
directly with the evolution of the near- and far-field fluctuations in the DNS.

1. Background

Jet noise prediction is a particularly difficult problem because the complexity of
turbulent flow permits only approximate experimental and theoretical description
of the acoustic sources. Meanwhile, aeroacoustic theory requires such a description
as input and attempts to predict jet noise a posteriori via solution of a linear wave
equation for the radiated sound. Despite many years of investigation of acoustic
sources in turbulent flows, fundamental questions persist which cannot be addressed
without access to very detailed measurements of the near field turbulence.

Fortunately, computer power has increased to the point where it is now possible
to simulate low Reynolds number turbulent jets without modeling approximations.
Because this approach provides full knowledge of the jet flow, it permits a detailed
examination of the acoustic sources.

Data from a Direct Numerical Simulation (DNS) of a Mach 1.92 (Freund, Lele &
Moin 1998) jet is used here to investigate several issues related to the mechanisms
of sound generation in turbulent jets:
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e What is the relative contribution of large and small scales to the acoustic sources
terms in turbulent jets?

e What role do linear instability waves play in the noise produced by supersonic
turbulent jets?

In order to investigate the first question, we use the DNS data to compute the
source terms for Lighthill’s acoustic analogy. The solution to the acoustic analogy
with these sources is then found and compared to the directly computed acoustic
field. The results of this calculation are presented in Section 2. Once the efficacy of
the acoustic analogy is established, the turbulent source terms can be investigated to
understand how different scales of motion contribute to the overall acoustic field—
we make some preliminary observations regarding the structure of the source in
Section 2. The relevance of different scales, and how accurately significant scales
may be represented on a hypothetical coarser mesh, has important implications for
subgrid scale modeling in LES applications.

In Section 3, we investigate the radiation of acoustic waves by instability waves
in supersonic jets. While it has been shown (e.g. Tam 1995) that the linear model
correctly predicts certain trends in turbulent mixing noise in supersonic jets, it
relies on an assumed distribution (and amplitude) of turbulence fluctuations at the
nozzle exit, and detailed measurements and comparisons with the theory have not
yet been made. In Section 3 we present a framework that we have developed to test
some of the underlying assumptions of the linear theory and to attempt to validate
its predictions against the directly computed acoustic field.

2. Acoustic analogy

An important issue in using an acoustic analogy to predict jet noise is the degree
to which an acoustic analogy can predict the sound field given an “exact” represen-
tation of the source terms from numerical simulation as input. This depends, on
one hand, to what extent discretization errors may affect the accustic sources and,
on the other hand, how reliable are the approximations made in separating source
terms from propagation terms in the acoustic analogy. These issues were addressed
in detail for vortex pairing in a two-dimensional mixing layer (Colontius, Lele &
Moin 1997), but it is unclear to what extent the conclusions may be extended to a
fully turbulent flow. To address these issues in the Mach 1.92 turbulent Jjet, we first
consider the well-known equation of Lighthill (1952):

p—aipii = Tijij, (1)
where,
Tij = puju; + (p — a2p)éi; (2)

with viscosity neglected. It is straightforward to compute the right-hand side of the
equation and then solve Eq. (1) for the radiated acoustic field.

2.1 The Mach 1.92 turbulent jet and post-processing of DNS database

In this section we briefly discuss some of the issues pertaining to how the DNS
database for the Mach 1.92 turbulent jet was analyzed. DNS of the fully compress-
ible, turbulent round jet were performed by Freund (1998) using a method which
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relies on 6th-order-accurate compact finite difference schemes in the axial and ra-
dial directions, Fourier spectral differentiation in the azimuthal direction, and 4th-
order-accurate explicit Runge-Kutta time advancement. The computational domain
extends to 31 jet radii downstream and 12 radii in the radial direction, and thus
includes the near acoustic field. 640 x 270 x 128 nodes were used in the axial, radial,
and azimuthal directions, respectively. The Reynolds number based on diameter
was 2000, and the temperature ratio Tj/overTo, was 1.12.

In order to simulate the turbulent jet inflow (thereby eliminating the need to
simulate the nozzle as well as the jet), data from a turbulent streamwise periodic
jet simulation (Freund, Moin & Lele 1997) was fed into the spatial computation.
The simulations used to generate the inflow turbulence had a streamwise period of
21 radii. The amplitudes at the inflow were “jittered” by up to 5% to break any
periodicity of the data.

The full instantaneous flow field was archived at roughly 7000 times (at increments
of 10 computational time steps). For practical reasons, the data was saved on a
mesh which consisted of every other computational node. Even at 1/8 of the full
resolution, this yields a database nearly a quarter of a terabyte in size. A principal
limitation in post-processing is the total amount of data that may be stored on disk
and read into memory.

A large number of terms are involved in computing Lighthill’s source term in
cylindrical coordinates (the transformations are straightforward but tedious, and
will not be reproduced here). Such terms involve second spatial derivatives of the
computational data, and a problem was encountered in computing source terms
smoothly through the coordinate singularity at r = 0. In this report we only
consider predictions for Lighthill’s equation for the axisymmetric (m = 0) mode, for
which there were no accuracy issues near the centerline. However, we have recently
devised a way to compute the sources on an interpolated Cartesian mesh, which
appears to alleviate the centerline difficulty-an example of the source computed in
this way is given in Section 2.3.

2.2 Numerical solution of the wave equation

In order to determine the acoustic field which results from a particular measured
source term, Eq. (1) must be inverted. A variety of methods are available for this
task. From a theoretical point of view, the simplest method would be to convolve the
source with the Green's function for the three-dimensional wave equation. However,
the resulting integrals depend on the source at retarded times. Given the enormous
amount of data which would have to be sorted and interpolated for every such
combination of source and observer location, this approach was deemed impractical.
Instead we employ the less computationally intensive method of solving the wave
equation directly in the time domain using finite differences. We discretize the
wave equation with the same 6th-order-accurate compact finite difference scheme
used in the jet computations, and integrate forward in time with a 4th order Runge-
Kutta time algorithm. The source is Fourier transformed in the azimuthal direction
since the wave equation is linear and each azimuthal mode may, in turn, be found
independently. The computational grid is chosen to be identical to that on which
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FIGURE 1. Contours of the instantaneous Ti;,i; in the plane 6 = 0, .

the source data was saved except that in the radial direction we interpolate the
source (using a 6th-order-accurate compact interpolation scheme) to a staggered
mesh where accurate differencing through the polar coordinate singularity may be
achieved (Mohseni & Colonius 1997). One-dimensional characteristic boundary
conditions are used together with a buffer region near the computational boundary
where the damping terms are added to the wave equation (Freund 1997).

The source terms at a given instant in time are found by performing a cubic spline
interpolation of the sources saved at discrete intervals in time. 'In order to avoid
sharp initial transients produced by turning on the source at t = 0, we ramp-up the
forcing over a time period which is long compared to the dominant frequencies in
the acoustic field.

2.8 Results

Figure 1 shows an instantaneous view of the Lighthill source term, T;j,ij, at the
plane § = 0,7 through the jet. It is clear that, instantaneously, small-scales are
dominant contributors to the source. As discussed below, one cannot conclude
that these are also dominant contributors to the acoustic field since the source field
is comprised of fluctuations whose wavenumber/frequency characteristics prohibit
radiation to the far field.

Nevertheless, it is interesting to see how accurately the acoustic field predicted
from the full instantaneous source agrees with the directly computed field. The
source field was computed (for the m = 0 mode only) for 500 of the archived DNS
fields and input into the wave equation solver. For the axisymmetric mode in the
acoustic field, the instantaneous prediction at the final time is compared in Fig. 2
with the directly computed acoustic field. The quantitative agreement is quite
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good, with the Lighthill solution accurately reproducing the major features of the
acoustic field such as the strong Mach wave radiation at angles between 45 and 55
degrees from the jet axis. Further work is needed to compute the solution for other
azimuthal modes.

Once the acoustic analogy has been validated in this way, we may proceed to
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analyze the sources to understand and, ultimately, model in a simple way the physics
of sound generation by the flow. An important first step in this process is to
(approximately) decompose the source term into its radiating and non-radiation
components. As noted above, small scales dominate the instantaneous value of
the source; however, physical space and real time are not the most natural space
in which to examine the acoustic sources. This is because a large portion of the
source is composed of wavenumber/frequency combinations which are not able to
radiate to the acoustic field. It can be shown that only those wavenumber /frequency
combinations whose phase speed is supersonic with respect to any ambient flow may
radiate to the far field (Crighton 1975).

An exact decomposition into wavenumber /frequency space requires strict peri-
odicity (or infinite extent) of the source. For spatially evolving flows on a finite
computational domain, this condition is not met, and further information regard-
ing the decay of the acoustic sources downstream of the computational boundary
must be supplied in order to accurately transform the source in the axial direction.
This can be done in a semi-analytical way if the acoustic source is simple enough
(e.g. Colonius et al. 1997, Mitchell, Lele & Moin 1995, Wang, Lele & Moin 1996).
It is likely, however, that such methods will fail for a fully turbulent source, and thus
we seek an alternative. We anticipate using approximate band-pass filters which
can be constructed in real space (e.g. Lele 1992) for non-periodic data.

3. Linear stability theory

For jets with sufficiently high Mach number (essentially with a convective Mach
number greater than 1), it is know that linear instability waves directly radiate
sound to the far fleld (e.g. Tam & Burton 1984). This observation gives rise to an
alternative to the acoustic analogy approach in this case. The near field and far field
are constructed simultaneously as a solution to linear equations, and the flow acts,
in essence, as an amplifier of some prescribed disturbances, with the amplification
and eventual decay giving rise to the production of acoustic waves.

Such linear modeling has been shown to produce trends in the radiated sound
pressure level similar to noise measurements at various frequencies and at angles
where the acoustic field is thought to be dominated by contributions from the large
scale structures (Tam 1995). However, the model cannot, without further ad-hoc
assumptions, predict the amplitude of the acoustic radiation (devoid of any measure-
ments of the turbulence incident from the nozzle), and a detailed computational or
experimental verification of the linear modeling has not previously been attempted.

In application of the linear model, the mean jet flow (from experiment or RANS
modeling) is assumed known, and initial amplitude for the eigenfunctions (at a
particular frequency) are specified according to an assumed frequency spectrum.
Typically only the most unstable mode is considered. The evolution of the mode
in the slightly non-parallel mean flow is then found by marching downstream at a
particular frequency. Unstable modes eventually stabilize and decay as the mean
flow spreads. The envelope function, which describes the growth, saturation, and
decay of the mode, can then be used to compute the radiated acoustic field using
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the method of matched asymptotic expansions. For details, the reader is referred
to Tam & Burton (1984).

We believe that the DNS data for the Mach 1.92 jet will be useful in testing the
validity of the linear theory. We present here a framework that we developed to
compare the linear stability predictions with the (nonlinear) DNS solution. Though
straightforward, the calculations are laborious and have not yet been completed.
We hope to give the results in a future publication.

At streamwise locations throughout the jet, we transform the DNS data into fre-
quency space and wavenumber space in the azimuthal direction. These fluctuations
are then the initial condition for the instability wave calculation. To determine the
initial amplitude of the most unstable wave, we observe that an arbitrary fluctua-
tion field can be completely decomposed into a discrete set of unstable waves plus
a continuous spectrum of stable modes of the linearized equations (e.g. Drazin &
Reid 1981). Furthermore, if the adjoint eigenfunctions corresponding to the most
unstable mode can be computed, the amplitude of the most unstable mode can be
found without computing the entire continuous spectrum of stable modes.

This approach may be unfamiliar to some readers, so we briefly discuss the deriva-
tion of the equations. We have a (locally) parallel base flow with streamwise veloc-
ity, @(r), density p(r), and pressure p =constant. Let ¢(z,r,0,t) = {u,v,w,p}T be
the velocity components (streamwise, radial, and azimuthal) and pressure, and let
d;(x, r,8,t) be the solution to the adjoint equations. Then, substituting #(z,r,0,t) =
¢(r)ei(@2+76=1 into the Euler equations linearized about the base flow, we obtain:

Ot :
at —w)pu + ﬁé%v +iap=0

(ot — w)pv + o =0
or
in (3)
(et — w)pw + —P= 0
(ot — w)ﬁ: + tau + 19(rv) +Zw=o0.
Yp r Or T

The corresponding adjoint equations may be found in a straightforward way:

i(G@ — ©)pi +i&p =0

el .. _Ou_ Op
z(au—w)pv-{-pgr-u-{——a—r—o
77 4
i(&1 — @)p + —p=0 )
r
. 8(ri -
i(Ga — o)L +iad - 10(r) g,
~D r Or r

where ¢(z,r,8,t) = d(r)eilaz+ro-ot)
One can easily check that the following Lagrange identity is satisfied
o~ x . O e P 10, . N
i(@—w)Z(r)—i(&—a){@Z(r) +pi +pu} — (A —n)—(pd +pw) = —;E;(T(vp—vp)%
(5)
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where Z(r) = p(uti + vo + wd) + 51:2

For the spatially evolving instablﬁty waves we have & = w and n = 7. Therefore
if ¢; and qz;j are the eigenfunctions to the flow equations (3) and the adjoint equa-
tions (4) corresponding to the eigenvalues a; and a;, we have the biorthogonality

relation 3
[¢a.’»¢‘aj] =0 if i #J (6)
where

(¢, d;] = Aw(ﬂZ(r) + pit + up)rdr. (7

Let us denote the DNS data (transformed into frequency and azimuthal wave
space at a particular streamwise location) by ¢pns. Then we expand dpns in
terms of the eigenfunctions:

N

épns(r) = Z c;#;(r) + Integral over continuous spectrum (8)
i=1

where N is the number of discrete spatial modes. Now multiply both sides of
Eq. (8) by the adjoint eigenfunction q;a,., and, using the biorthogonality relation
(6), we obtain

o= [#DN s, Ba]

1 [¢7a.'7 Qza.‘]

Of particular interest will be the evolution of the most unstable wave as a function
of streamwise location in the jet, and the acoustic field predicted from the (matched
asymptotic expansion of the) linear equations, as compared to the acoustic field from

the DNS.

(9)

4. Closing remarks

We have analyzed data from the DNS of a turbulent Mach=1.92 Jjet to address
several issues related to noise generation mechanisms. As a first step towards under-
standing the turbulent sources of sound, we have computed the full Lighthill source
terms and found solutions of the wave equation with these sources. We have found
a good agreement for the m = 0 mode, paving the way for a detailed analysis of
the sources to determine how various scales in the near field turbulence contribute
to the radiated acoustic field.

For supersonic jets, we have also developed a framework to test the validity of
the well-known linear stability wave model (e.g. Tam 1995) of sound generation by
the large-scale turbulence. By using the adjoint to the linear stability equations, we
are able to compute the projection of the DNS data onto the most unstable mode
at different streamwise positions. The amplitude of the stability wave thus set, we
may proceed to compute the evolution of the wave and its radiated acoustic field by
solving the linear equations and compare the resulting acoustic field with the DNS.
We hope to present the results of the analysis in a future publication.
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The fundamentals group

Four of the summer projects were put in a category called Fundamentals because
they involved fundamental ideas not clearly associated with any of the other project
groups. This does not imply that other projects were any less fundamental.

The project on LES in complex boundaries, by Verzicco, Mohd-Yusof, Orlandi,
and Haworth, was designed to test the immersed boundary method for representing
fixed and moving boundaries on a stationary Cartesian mesh as applied to flow in
a motored axisymmetric piston-cylinder system. Calculations were made assuming
axisymmetric flow (2D mesh) for the purposes of method development, followed by
DNS and LES with a full 3D concentric structured mesh initialized by a perturbation
on the axisymmetric initial field. The method was shown to be extremely effective
and relatively inexpensive compared to calculations on a deforming unstructured
mesh.

The DNS study of trailing vortices by Orlandi, Carnevale, Lele, and Shariff was
an exploration of some new ideas for accelerating the breakup of aircraft trailing
vortices. The group first studied a basic short-wavelength instability associated with
interaction of the two vortices and then turned their attention to an exploration of
how density variation along the axis of the vortices (perhaps produced by modulated
engine exhaust entrainment) might be used to accelerate the breakup. The work
showed that these density variations could indeed accelerate the rapid cross-diffusion
of vorticity between the primary vortices when they are close to one another and
thus opened the door to a possible new way of aircraft trailing vortex control.

A method for predicting the statistics of turbulence using a Rayleigh-Ritz varia-
tional formulation was explored by Eyink and Wray. This was an attempt to bring
ideas from non-linear dynamics to bear on study of turbulence. The theory provides
a procedure for calculating the evolution of the two-time velocity cospectra from
the evolution of k and ¢ as found from a k-¢ model, using a modeled Langevin
equation for the Fourier coefficients of the velocity fluctuations. The goal of the
project was to test this model and, if possible, to improve it. The k-¢e-RR model
appeared to work well for short time separations. A simple convection correction
seemed to improve things for longer time separations, suggesting to the authors
that a RANS-RR model could give much better long-time predictability.

Oberlack has been applying Lie Group Analysis to a variety of turbulent flow
problems, most recently flow in a channel being rotated about a streamwise axis.
This is a model flow for studying the effects of frame rotation in axial flow tur-
bomachinery. The group analysis predicts the scaling that one should find in this
flow, and the objective of the paper by Oberlack, Cabot, and Rogers was to test
this using DNS. The work confirms the basic linear mean streamwise and span-
wise velocity variations predicted by the group analysis. The DNS was limited by
the size of the computational domain, but it was sufficient to show that this is a
very interesting canonical test case. Common two-equation models do not account
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for rotation effects, so this flow is both a challenge to turbulence modeling and a
possible source for inspiration and calibration of new turbulence models.

W. C. Reynolds
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LES in complex geometries
using boundary body forces

By R. Verzicco', J. Mohd-Yusof, P. Orlandi! AND D. Haworth?

A numerical method is presented which can simulate flows in complex geometries
with moving boundaries while still retaining all the advantages and the efficiency of
solving the Navier-Stokes equations on cylindrical grids. The boundary conditions
are applied independently of the grid by assigning body forces over surfaces that
need not coincide with coordinate lines.

The method has been validated by a large-eddy simulation of the flow in a motored
axisymmetric piston-cylinder assembly for which experimental measurements are
available. The comparison of the results has shown a very good agreement for mean
and rms velocity profiles, thus confirming the accuracy of the present approach. This
numerical method, in addition, runson a small PC-like workstation ten times faster
than corresponding simulations on supercomputers.

In large-eddy simulations the dynamic subgrid-scale model is very efficient in
combination with the body force procedure because it automatically accounts for
the walls without requiring ad hoc damping functions. This feature is very useful
in the present approach since the body surface in general does not coincide with a
coordinate line and the computation of the wall distance is time consuming.

1. Introduction

Numerical simulations are extensively used by industries as a fundamental tool
in the design and test of prototypes. Computer simulations allow for the rapid
investigation of wide parameter ranges or the testing of novel technological solutions
without resorting to expensive experimental setups and measurements.

The most detailed numerical simulations up to now have been performed in ex-
tremely simple geometries since in these conditions the efficiency of the solution
procedures is maximized and the storage requirements of the computer codes are
the least. For example, homogeneous isotropic turbulence in a tri-periodic box has
been simulated using 512° nodes or more, and comparable high resolutions have
been achieved in the plane channel flow or in mixing layers.

Unfortunately, in the majority of industrial applications, the flow is strongly
dominated by the domain geometry, and even the simplest flow features can not
be reproduced if the shape of the boundary is not properly accounted for. In such

1 Universita di Roma “La Sapienza” Dipartimento di Meccanica e Aeronautica, via Eudossiana
18 00184 Roma, Italy.

2 Engine Research Department, GM R&D Center, 30500 Mound Road 106, Warren, MI 48090-
9055



172 R. Verzicco, J. Mohd-Yusof, P. Orlandi & D. Haworth

circumstances curvilinear coordinates fitted on the body are currently used even if
most of the efficiency of the solution procedure is lost. In addition, the complexity
of the computer code as well as the number of operations per node and storage
requirements are increased. Therefore, given the finite amount of memory available
on each computer, the maximum number of nodes over which the flow can be
computed is reduced.

Another factor increasing the complexity of the numerical simulations is the pres-
ence of moving boundaries. In fact, when boundary fitted meshes are employed, the
grid must be recomputed as the geometry changes, thus considerably increasing the

_computational time. Unfortunately in industrial flows the presence of boundaries
in relative motion is the rule rather than the exception, making the computations
very time consuming.

The last point to be considered is the Reynolds number, which in real applications
is usually far too high to make the flow affordable by direct numerical simulation
(DNS). Industrial flows, in fact, are usually turbulent, and their resolution must
rely on turbulence modeling such as the large-eddy simulation (LES) approach or
the Reynolds averaged Navier-Stokes equations (RANS).

From this scenario it appears that flows of practical interest, owing to the com-
bination of complex geometries, moving boundaries, and high Reynolds numbers,
make their computation extremely expensive, and the use of an alternative approach
is very much desirable.

In this report we illustrate an alternative procedure for simulating complex flows
while retaining the advantages of orthogonal fixed grids. Specifically, we will test
and validate a method in which boundary conditions are assigned independently
of the grid by prescribing suitable body forces. These forces are such as to yield
a desired velocity value V on a given surface, which in general will not coincide
with the coordinate lines and will move in time. Indeed this idea is not new since
Peskin (1972) already used a similar approach. More recently Goldstein, Handler &
Sirovich (1993) and Saiki & Biringen (1996), have shown further examples in which
complex boundaries were mimicked using body forces on a Cartesian mesh. The
main drawback of all these procedures was the largely reduced stability limit of the
time integration scheme. Goldstein Handler & Sirovich (1993), for example, point
out that when computing the flow around a circular cylinder their time step could
not be bigger than 5-107°-5-10~*, which yielded a C FL between 4-10~3-4.10~2, It
is clear that with this restriction this technique is mainly limited to two-dimensional
flows and its validity is largely compromised. A different expression for the forcing
was suggested by Mohd- Yusof (1996,1997) and Mohd- Yusof & Lumley (1994,1996),
who, by computing the laminar flow over a riblet and the flow around cylinders,
showed the stability limit of the integration scheme to be essentially unaffected by
the forcing. This new forcing was used by Fadlun, Verzicco & Orlandi (1998), who
showed that, though the results are essentially the same as those obtained by the old
method, the time step remains large enough to make three-dimensional simulations
affordable. In that work the results were validated by an ad hoc experiment.

Although the method is in principle very general, to our knowledge it was never
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applied before to a real flow of practical interest in which complex geometries,
moving boundaries, and turbulence models are required. The main aim of this
report is to show some results obtained for the computation of a motored piston-
cylinder assembly whose Reynolds number is high enough to require the use of an
LES approach. The results are compared with an experiment performed in exactly
the same conditions (Morse, Whitelaw & Yianneskis, 1978), indicating that the
present method is a good candidate to simulate industrial flows in an inexpensive
way.

2. The problem

The configuration chosen to validate the present numerical procedure is a sim-
plified axisymmetric piston-cylinder assembly with a fixed central valve. Both,
cylinder head and piston are flat (pancake chamber), and a sketch of the geometry
is given in Fig. 1.

piston motion

z(t)=s +5 cos(Qt)
P 1

Q=200 rpm = 21 rad/s bore b=2r, 75mm
stroke s 60 mm
Re= s I = 2000
v comp.rat. (s+c)ic  3:1
S=S+S$ valverad. r 16.8 mm
i 0 2 v
annul. rad. 1, 20.8 mm
seat angle o 60 deg.
h 6.5 mm
d 16.5 mm
g 40 mm
r 3 mm
3
(rw) 13 mm
| So L 33 mm
(sg) 11 mm
(¢) 30 mm

FIGURE 1. Sketch of the problem.

In the experiment the piston was externally motored so that the fluid flowed into
the cylinder from outside during the downward piston motion and vice-versa when
the piston was moved up. Since the valve was fixed and a tiny annular gap was left
open between the valve and the cylinder head, no compression phase was included
in the flow dynamics. The piston was driven by a simple harmonic motion at a
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speed of 200rpm ~ 21rad/s, which for the present geometry yields a mean piston
speed of V,, = 0.4m/s (when averaged over half cycle).

Experimental measurements were available for the validation of the numerical
results. In particular, Morse et al. (1978) used Laser-Doppler anemometry to mea-
sure phase-averaged mean and rms radial profiles of axial velocity. The profiles were
available at 10mm increments starting from the cylinder head for crank angles 36°
and 144° after top dead center.

3. Equations, solution procedure, and simulation set-up

The governing equations for the LES of the piston-cylinder assembly are the
filtered Navier-Stokes equations with the boundary body force f:
Du

57 = ~VP +V . {#[Va+ (Vu)T]} +f, (la)

V.u=0. (1b)

Here U is the filtered velocity, P is the sum of the filtered pressure and the trace of
the sub-grid scale stress tensor while its anisotropic part ¢,; has been parametrized
by the dynamic sub-grid scale model through ¢;; = —21,S;; with v, the turbulent
viscosity and S;; the filtered rate of strain tensor. With this notation & is defined
as U = vy + 1/Re, and the Reynolds number is Re = Qsry /v (see figure 1) with
v the kinematic viscosity of the fluid. The turbulent viscosity v; was determined
by a dynamic procedure (Germano et ¢l.1991 and Lilly 1992) that does not require
external constants. Since the flow is unsteady and inhomogeneous in time, the
averaging in the computation of the constant C in the expression of the turbulent
viscosity (v, = CA*(25,5,;)'/?, with A the local grid spacing) was performed only
in the azimuthal direction and among the closest neighbors in the radial and axial
directions. All the points with total viscosity # smaller than zero were then clipped,
and they never exceeded 3% of the total points.

The boundary body force f is prescribed at each time step on a given surface so
that the desired velocity ¥ is obtained on that boundary. As shown by Mohd-Yusof
(1996), considering the time-discretized version of Eq. (1a), one can write

o't — 0" = At(RHS + 1), (2)

where RH S contains the nonlinear, pressure, and viscous terms. If we want u*! =
V then f has to be .
V-1
f=—-RHS + - 3

A ®)
in the flow region where we want to mimic the body and zero elsewhere. Of course
in general the surface of the region where we want "' = ¥ will not coincide with
a coordinate line (Fig. 2); therefore, the value of f on the cell node closest to the
surface but outside the body is linearly interpolated between the actual value inside
the body and the zero value in the flow. The interpolation procedure is consistent
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r

FIGURE 2. Vertical section through the meridional planes § = 0 and § = 7 of
the computational grid (only 1 every 4 grid points are shown) and the body force
distribution to mimic the geometry of Fig. 1.

with the central finite-difference approximation since both of them are second-order
accurate. Further details will be given in a forthcoming paper where this procedure
is shown to be consistent with the second order accuracy of the scheme.

Equations (1) have been discretized in a cylindrical coordinate system by central
second-order accurate finite-difference approximations on a staggered grid. Details
of the numerical method are given in Verzicco & Orlandi (1996); therefore, only
the main features are summarized here. In the three-dimensional case, in the limit
of v — 0, the energy is conserved and this holds in the discretized equations.
The system is solved by a fractional-step method with the viscous terms computed
implicitly and the convective terms explicitly; the large sparse matrix resulting from
the implicit terms is inverted by an approximate factorization technique. At each
time step the momentum equations are provisionally advanced using the pressure at
the previous time step, giving an intermediate non-solenoidal velocity field. A scalar
quantity @ is then introduced to project the non-solenoidal field onto a solenoidal
one. The large band matrix associated with the elliptic equation for @ is reduced to
a penta-tridiagonal matrix using trigonometric expansions (FFTs) in the azimuthal
direction; the matrix is then inverted using the FISHPACK package. A hybrid
low-storage third-order Runge-Kutta scheme is used to advance the equations in
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time. Finally, in cylindrical coordinates the equations are singular at r = 0. The
advantage of using staggered quantities is that only the radial component of the
momentum equation needs to be evolved at the centerline (r = 0), and for this
component we calculate the evolution of ¢, = ru, instead of u, since the former
quantity clearly vanishes on the centerline.

The simulation set-up for the problem described in Section 1 is shown in Fig. 2.
The lower boundary of the domain is inflow or outflow with a prescribed velocity
profile depending on the phase of the piston motion. The upper boundary is also
inflow or outflow, but a convective boundary condition for the velocities has been
used. Thus if u; is the i-th velocity component, the equation

Oui
ot

Bu,-
+ C; % = 0 (3)
is solved at the boundary, and C; is explicitly determined from the previous time
step. The lateral wall of the computational domain is free-slip, and all of the no-slip
boundary conditions at the body surfaces are enforced by f.

The axisymmetric simulations have been started from rest, and the transient
(typically 2 cycles) has been discarded. In order to save computational time, the
three-dimensional DNS and LES were restarted from the corresponding axisym-
metric field, replicated in the azimuthal direction with a random azimuthal velocity
field (|ug|max = 0.25V,) superimposed. The initial transient was thus reduced to
one cycle. '

4. Results

Since the flow inside the piston engine is turbulent, unsteady, and fully three-
dimensional, the numerical simulation must cope with all of these aspects. Nev-
ertheless, in order to test the procedure, before considering the whole problem we
have simulated the flow at a lower Reynolds number with the hypothesis of axisym-
metry. This simulation served also as a guideline for the analysis of the large-scale
dynamics, which in the fully turbulent case become less clear. The results are given
in Fig. 3 where azimuthal vorticity maps at six instants within a cycle are shown.
At ¢t = 0 the piston starts its descent and the fluid is sucked from outside into the
cylinder through the annular gap between the central valve and the cylinder head.
This generates a high speed jet which impinges on the side wall and eventually
separates owing to viscous effects. At ¢ = x/2 the velocity of the jet is the highest,
and the flow is completely dominated by the toroidal vortex, which grows in size
as the piston moves down. It should be noted that if Vp(t) is the piston speed, on
account of mass conservation, the jet velocity should be about 10Vp(t); in reality,
the jet velocity is even higher since the boundary layers developing on the walls of
the annular gap reduce the effective area.

The interaction of the jet with the horizontal and vertical walls generates a variety
of smaller structures already visible at t = 7/2. Later on, when the piston decreases
its speed, the jet does not have enough momentum to penetrate the flow down to
the piston, but rather generates structures which remain localized close to the valve.
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t="Tr/4

t=23nr/2

FIGURE 3. Contour plots of azimuthal vorticity at Re = 625, (129 x 385 grid).
positive ---o-o- negative values (Aw = £2.5).

The complex flow structure emerging from the interaction of all the recirculating
vortices is shown at ¢ = 7 when the piston is at its lowest position. As the piston
starts moving up, the flow structures are pushed out of the cylinder through the
tiny channel again, generating a high speed jet but now in the exhaust region.
At t = Tw/4 the piston is slowly reaching the top-dead-center position, and only a
residual motion is left inside the cylinder; a new cycle will start with similar features
at ¢ = 27. Note that below the piston a secondary flow is generated by the piston
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“ t=m/4

FIGURE 4. Contour plots of azimuthal vorticity at Re = 315; three-dimensional
simulation without azimuthal perturbation (97 x 85 x 193 grid). positive
-------- negative values (Aw = +2.5).

motion and by the mass flow imposed at the lower boundary. This flow, however,
does not interact with the primary flow since the piston moves as a solid body as
confirmed by the absence of vorticity inside the body.

Very similar dynamics were observed by Eaton & Reynolds (1987, 1989), who by
smoke visualization and high-speed photography were able to capture the flow dy-
namics in an axisymmetric motored piston-cylinder assembly. In their description,
however, it is clearly stated that when the piston reaches the bottom-dead-center
(BDC) position, the flow is complex and very three-dimensional in nature. Ha-
worth & Jansen (1997) simulated the same flow described in this report and they
also found the flow to be fully three-dimensional and turbulent. These observations
motivated us to set as the ultimate goal the three-dimensional simulation at the
same Reynolds number as the experiment of Morse et al. (1978). However, before
proceeding to the full simulation a few intermediate steps are necessary.

The first is to verify that the boundary body forces do not introduce any unphys-
ical perturbation making the flow artificially three-dimensional. For this reason we
have performed a three-dimensional simulation without initial azimuthal perturba-
tion and we have verified that indeed the flow remains axisymmetric at least during
the first two cycles. In Fig. 4 two vertical sections are shown of the flow at Re = 315,
confirming that the symmetry about the central axis is preserved. Note that the
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t=20 t=n/4

FIGURE 5. Contour plots of azimuthal vorticity at Re = 315; three-dimensional
simulation with azimuthal perturbation (97x85x193 grid). positive -+ neg-
ative values (Aw = £2.5).

Reynolds number of this simulation has been halved with respect to the axisym-
metric case, and the reason is that the same radial and axial grid spacing could not
be maintained with 97 grid points in the azimuthal direction. Given the reduced
radial and axial resolution, we had to reduce the Reynolds number to fully resolve
all the flow scales without resorting to a turbulence model. It could be argued that
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FIGURE 6. (Left) Contour plots of azimuthal vorticity at Re = 2000 (65 x65x 151
grid). positive - negative values (Aw = +2.5). (Center) meridional
velocity vectors. (Right) horizontal velocity vectors in a section 15mm below the
cylinder head.

the reduced Reynolds number is the reason for the symmetry conservation; how-
ever, the same simulation with an initial azimuthal perturbation shows that indeed
this is not the case. In Fig. 5 six vorticity snapshots taken across two consecutive
cycles are reported showing that strong three-dimensionalities develop and that,
differently from the axisymmetric case, the flow does not repeat itself after each
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FIGURE 7. Time evolution of the azimuthal vorticity extrema for the large-
eddy simulation at Re = 2000. The dotted line shows the time law of the piston
displacement (in arbitrary units).

cycle. This implies that phase averages are needed to compute mean profiles and
higher-order moments, thus requiring the simulation of the flow over several cycles.
Additional information obtained by this simulation is that with this grid the DNS
at the present Re is already at the resolution limit; therefore, a turbulence model
is needed to simulate higher Re cases.

As stated in Section 2, the experiment performed by Morse et al. (1978) was
at Re = 2000, which is definitely too high to be affordable with DNS. For this
reason a large-eddy simulation with the dynamic subgrid-scale model was carried
out, and some representative results are given in Fig. 6. A computer animation of
the flow provided considerable information on the in-cylinder dynamics, which is
impossible to summarize with a limited number of snapshots. From Fig. 6, however,
it is already evident that the flow degenerates into small scale structures even if the
underlying large-scale flow, already evidenced in the axisymmetric simulations, is
still discernible from the meridional velocity vectors. The motion in the meridional
planes is coupled with intense azimuthal velocity fluctuations whose magnitude is
comparable with the vertical velocity. As already indicated by the DNS at low Re,
this flow is time periodic only in a statistical sense; therefore, the calculation of the
statistics requires phase averages in order to converge. This is confirmed by the
time evolution of the azimuthal vorticity extrema over few cycles given in Fig. 7
where the piston motion is shown for reference. It can be noted that, while the low
frequency dynamics follow the piston motion, the fluctuations are related to the
small scales, thus reflecting the turbulent character of the flow.

In Fig. 8 is shown the comparison between the numerical and experimental mean
and rms radial profiles of axial velocity at the crank angle 36° after TDC with the
profiles 10mm axially spaced starting from the cylinder head. The numerical results
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FIGURE 8. Mean (left) and rms (right) radial profiles of axial velocity at 36°
after TDC for the flow at Re = 2000. numerical simulation; symbols for the
experimental results.

are azimuthally and phase averaged over three piston cycles. While it is clear that
the rms profiles would certainly benefit from some additional averaging, the mean
profiles already show a good agreement with the experiment. Figure 9 shows the
same profiles as Fig. 8 but for a crank angle of 144° after TDC, and again the
results are very satisfactory. The same quality of agreement is obtained for the
other profiles at 144° respectively at 40, 50, 60, and 70mm below the cylinder head,
but they are not shown for the sake of conciseness.

As already mentioned the flow has very strong variation from cycle to cycle that
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FIGURE O. The same as Fig. 8 at 144° after TDC.

could be of some interest to engineers in determining how much the flow deviates
from its average properties. In order to show these fluctuations we report in Fig. 10
some profiles at 36° ATDC and 10mm below the cylinder head for three differ-
ent cycles. We can see that the mean profiles are quite smooth (note that these
profiles are already azimuthally averaged, the instantaneous azimuthal section is
less smooth); the radial shift of the peak is quite small and its intensity constant
within 20%. The rms profiles, on the other hand, fluctuate more with oscillations
up to 50%; these large fuctuations are likely to be the reason for the discrepancies
observed in Figs. 8 and 9 between numerical and experimental rms profiles.

Before concluding this section we wish to briefly summarize the results of some
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FIGURE 10. Mean (left) and rms (right) radial profiles of axial velocity at 36°

after TDC for the flow at Re = 2000, 10mm below the cylinder head. ~--- cycle
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FIGURE 11. mean (left) and rms (right) radial profiles of axial velocity at 36° after

TDC for the flow at Re = 2000, 10mm below the cylinder head. ---- dynamic

model and fine grid, dynamic model and coarse grid, -+ Smagorinsky
model and coarse grid. The symbols are the experimental results.

further comparisons. In particular, LES of this piston flow has also been carried out
on a coarser grid using both the dynamic and the Smagorinsky models. The results
for the same quantities as Fig. 10 are shown in Fig. 11. The profiles obtained by the
coarser grid show fairly good agreement with the experiments and the fine-grid case,
and the dynamic model behaves consistently with the expectations, i.e. it is more
active as the grid becomes coarser. The Smagorinsky model (with the constant
set equal to 0.2) shows bigger discrepancies with the experiments, yielding a more
peaked jet and reduced velocity fluctuations. This behavior is also consistent with
the more dissipative nature of this turbulence model, which tends to smooth all
velocity gradients independently of their laminar or turbulent character. It should
be noted that this result was obtained for one particular value of the constant C,
and a tuning of this constant could improve the results. However, Fig. 5 shows that



‘Immersed boundary’ simulations 185

the flow is very inhomogeneous in space, thus a single value of the constant might
not be sufficient for the description of the flow dynamics.

5. Conclusions

In this report we have described an alternative procedure for simulating complex
fow of industrial interest in a very inexpensive way. This technique is based on the
use of body forces which allow the assignment of boundary conditions independently
of the grid. The main advantage of this procedure is that the above forces can be
prescribed on a simple cylindrical mesh so that all the advantages and the efficiency
of solving the Navier-Stokes equations in simple constant-metric coordinates are
retained when dealing with complex geometries.

In order to validate this procedure the flow in a motored axisymmetric piston-
cylinder assembly has been simulated and the results have shown a very good agree-
ment with the experiments. The selected flow was particularly suitable for testing
the numerical procedure since it has complex geometries with moving boundaries
and its Reynolds number is high enough to require a turbulence model. These are
standard requirements for industrial lows and a robust numerical procedure must
efficiently cope with all of them.

Results have shown that the dynamic subgrid-scale model is particularly suitable;
in fact this model automatically switches off close to the walls without requiring ad
hoc damping functions (like the van Driest function for the Smagorinsky model).
This feature is very useful in the present numerical method since the body surface
in general is not a coordinate line and the computation of the wall distance becomes
difficult and time consuming. In addition, in the presence of moving boundaries this
distance should be recomputed every time step with a further increase of the CPU
time.

The efficiency of the proposed method can be illustrated by considering that most
of the results were obtained from simulations run on a PC workstation with 128MB
of RAM in about a week using a grid of about 6 - 10° gridpoints (about 24 hours
per engine cycle). Comparative results for the same flow were obtained by Haworth
& Jansen (1997), using the fully compressible formulation on an unstructured de-
forming mesh of about 1.5- 103 gridpoints running on a single processor Cray T-90,
or 8-processor SGI Origin 2000, occupying 600MB of RAM for a time of 30-40 CPU

hours per engine cycle.

We are indebted to M. Fatica for countless suggestions and for providing his help
in the numerical simulations and computer animations. We acknowledge W. H.
Cabot for the advice in the implementation of the LES model in the code. R. V.
wishes to acknowledge the ERO-US Army (European Research Office US Army) for
a partial support under contract n. N68171-98-M-5645.
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DNS study of stability of trailing vortices

By P. Orlandi!, G. F. Carnevale?, S. K. Lele AND K. Shariff

Three-dimensional numerical simulations are used to investigate the possibility of
diminishing the strength of trailing vortices. Direct numerical simulation is first
used to reproduce results of recent laboratory experiments on the short-wave co-
operative instability for two counter-rotating vortices. The effect of perturbing the
vortices by internal and external density perturbations is considered. It is found
that perturbing trailing vortices with temperature variations may be a useful means
of initiating the short-wave instability and ultimately causing the cross diffusion of
vorticity necessary to destroy the coherence and strength of the trailing vortices.

1. Introduction

Vortices in the wake of heavy aircraft pose a serious threat to following aircraft.
The danger is particularly severe during landings and take-offs for two reasons.
First, the extension of the flaps of the leading aircraft may create trailing vortices
that are even stronger than the wing tip vortices. Second, the proximity of the
following aircraft to the ground means that a small perturbation in its trajectory
may be disastrous. Thus sufficient separation between planes must be maintained
to allow time for the dispersal of trailing vortices. If it were not for this require-
ment, intervals between landings and take-offs could be reduced significantly with
obvious economic benefit. There are two strategies being pursued to ameliorate this
situation. One involves attempting to better quantify the time interval needed for
safety given current plane designs. The other considers the possibility of modifying
and controlling the vortices to accelerate their dispersal. In either case, an improved
knowledge of the possible instabilities of trailing vortices is essential. Thus, in an
age of jumbo jets and congested airports, the evolution of vortices shed from the air-
planes is a pressing issue and recently has received a great deal of attention. There
have been several experimental studies in real flight conditions and in wind tunnels,
as discussed in the review article by Spalart (1998). Also, in the last few years
direct numerical simulations have been performed to study aspects of this problem.
For example, the influence of atmospheric turbulence on creating instabilities with
a wavelength on the order of the diameter of the vortex cores was studied by Risso,
Corjon & Stoessel et al. (1996) in a relatively small computational domain. It is
also possible to simulate the Crow (1972) instability, which is of much longer scale.

1 Universita di Roma “La Sapienza” Dipartimento di Meccanica e Aeronautica, via Eudossiana
18 00184 Roma, Italy.

2 Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr., La
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FIGURE 1. Schematic diagram of a pair of counter-rotating trailing vortices. In
this configuration the mutual advection causes the vortices to move in the downward
direction (the negative x direction). The spanwise separation of the centers of the
vortices is b and the core size is a. The orientation of the axis is also displayed.
Note that the z axis points out of the page.

The effects of the Crow instability can be seen on clear days when airplanes fly at
high altitudes and their contrails are visible. As the instability unfolds, the contrails
merge at places to form elongated rings or loops.

Trailing vortices come in counter-rotating pairs (see Fig. 1). The wing tips of
the plane each shed one vortex in such a pair. Also the flaps when extended shed
pairs of vortices. The diagram in Fig. 1 shows the separation distance b between the
centers of the vortices, the core size or radius a, and the orientation of our coordinate
system. The y direction, pointing from the center of one vortex to the other, we
will call the spanwise direction. The direction along the core, the z direction, we
will refer to as axial. The signs associated with the centers of the vortices in the
figure refer to the sign of the z component of vorticity, w,. For the orientation of
the pair of counter-rotating vortices shown in the figure, the propagation by mutual
advection is in the negative z direction.

We can consider two relevant processes for decreasing the dangerous effects of
trailing vortices. The maximum velocity due to a vortex of given strength or circu-
lation I' scales as I'/a. Thus the dangerous effects of the vortex can be decreased
by increasing its core radius, which can be accomplished most efficiently by tur-
bulent diffusion. This will not, however, diminish the circulation. Decreasing the
circulation can be accomplished by cross diffusion and cancellation between the
two-counter rotating vortices. Although the Crow instability can lead to a decrease
in I by cross diffusion, it appears that it proceeds too slowly and over too long a
distance. We will focus here instead on the so called ‘elliptical cooperative insta-
bility, which has a length scale comparable to the vortex core size and a growth
rate that can exceed that of the Crow instability. This short-wavelength instability
has been the subject of a number of theoretical studies (c.f. Widnall et al.1974:
Pierrehumbert, 1986; Bayly, 1986; Landman and Saffman, 1987; and Waleffe 1990).
The basic mechanism involved in the instability is that strain produced by one of
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the vortices on the other amplifies bends in the vortex profile, creating a sinusoidal
modulation on the core shape and position along the axial direction. The instability
has been demonstrated in laboratory experiments by Thomas and Auerbach (1994)
and Leweke and Williamson (1998). These laboratory experiments verified many
of the predictions of linear instability theory. In these experiments, the Reynolds
number, Rer = I'/v, ranged from 2500 to 12000. At least at the lower end of this
range, the values of Rer are sufficiently low to permit direct numerical simulation
of the experimental flows with a reasonable number of grid points. Believing that
there will be many similarities between the instability as observed in the laboratory
and that which may occur for the much higher Reynolds number flows caused by
the trailing vortices in airplane wakes, we began our investigation with a numerical
study of the laboratory experiment. In Section 2, we describe simulations in which
we applied a random velocity perturbation to two counter-rotating vortices. The
evolution in these simulations showed a short-wave cooperative instability closely
reproducing that observed in the laboratory. In all of the simulations presented
here the initial Reynolds number was fixed at Rer = 3400.

Our investigation of the laboratory experiments leads to the conclusion that, in
order for the short-wave cooperative instability to be of practical use in dispersing
trailing vortices, the fastest growing mode of the instability should be selectively
and strongly forced. One method of forcing that may be feasible would be to apply
a strong temperature variation to the trailing vortices with a wavelength matched
to the faster growing cooperative instability. Following this idea, we performed a
series of simulations in which temperature perturbations were applied either in the
cores of the vortices or in the vicinity of the vortices. The results showed that
this method can indeed be used to force the destruction of the vortices much more
rapidly than by the application of random velocity perturbations. This is discussed
in Section 3.

2. Simulation of the laboratory experiments

The appropriate evolution equations are the Navier-Stokes equations for a uniform
density incompressible fluid. Our numerical model is based on the momentum
equation which can be written as

Ou; + Ouiu;  Op 0% u;
ot ax,- Or; Va:rﬂ’

(1)

with ¥V - u = 0. Our numerical scheme uses a staggered mesh with the velocity
components located on the faces of the cell and the pressure at the center, and 1t
uses a fractional step method (Kim & Moin 1985). This scheme is described in
detail in Verzicco and Orlandi (1996).

The complicated mechanism by which vortices are created in the laboratory would
be rather difficult to simulate and, in any case, not of prime concern in this study.
Thus we are content to perform simulations in which the initial state is a pair of
counter-rotating vortices. The choice of the structure of the initial vortices requires
some care. If one starts with vortices whose vorticity distributions in an z — ¥y
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cross section are radially symmetric, then there will be a transition period in which
fluid is shed in the wake of the vortices during the period in which the structure
of each vortex adjusts to the presence of the other vortex. This adjustment is a
purely two-dimensional process (cf. Carnevale & Kloosterziel 1994) and is of little
interest to the present study. We could wait for this adjustment period to pass and
then use the resulting adjusted vortices as the initial vortices for our study. As an
alternate approach, we found that the adjustment phase could be mostly eliminated
by using vortices whose structure is given by the analytical formula for the vortices
of the Lamb dipole (1945, section 165). This is a vortex structure in which there are
two counter-rotating vortices with the entire dipolar vorticity distribution confined
n a circular region whose radius we will denote by as. When unperturbed, the
Lamb dipole propagates at a constant speed Ug without change. For sufficiently
high resolution, this form-preserving motion can be readily simulated. Taking as an
initial condition the two semicircular halves of the Lamb dipole separated by some
distance, we found that in the subsequent evolution the two vortices adjusted the
presence of each other more smoothly and without the large amount of vorticity
shedding observed in the case initialized with two circularly symmetric vortices.
In all of the simulations presented below, the unperturbed basic state is taken as
the two halves of the Lamb dipole with the vorticity extrema separated by some
distance b, and the initial condition is prepared by adding perturbations to this.

To initialize our simulations of the laboratory experiments, the perturbation used
was a randomly generated three-dimensional velocity field. This perturbation was
localized to the region were the axial vorticity w,p was greater in magnitude than
a given threshold (set arbitrarily at 20% of the unperturbed vorticity maximum).
The random velocity thus generated was not solenoidal, but this defect is remedied
automatically by the first time step of the simulation, which projects the initial
velocity onto a solenoidal field. The perturbed field is then found to have pointwise
fluctuations in the cross vorticity components, w, and wy of at most 20% of |w20|maz-
The basic simulation then consisted of the interaction of the pair of the counter-
rotating vortices for a fixed period of time. Three different values were used for the
separation between the vortices to see how the growth of the instability varied with
separation. We began by comparing the results of a set of runs with resolution N =
Ny, = N, = 64 and domain size (L, Ly,L;) = (27,27, 1) where N, is the number
of grid points in the  direction and [ is the size of the computational domain
in the z-direction in units of the unperturbed Lamb dipole radius az. These runs
produced velocity fields that seemed under-resolved, lacking features evident in the
experimental visualizations. A further set of runs with N; = N, = N, = 128 was
then performed. These simulations resembled those in the laboratory experiments
very well, and it seemed that this resolution was sufficient to resolve the structures
that were important to the short-wave cooperative instability. However, when we
checked the speed of the dipole, we found it fell significantly short of the speed of
the theoretical dipole. We obtained some improvement by increasing the domain
size and resolution in the spanwise direction. This is because, in periodic geometry,
if the vortices are not sufficiently far from the boundaries in the spanwise direction,
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FIGURE 2. History of the positions of the vorticity maxima. The line with symbols
corresponds to the experimental data of Leweke and Williamson (1998). The other
curves correspond to the numerical simulations with —— b= 1.9, ---- b+ 1.4,
and - b=

they will strongly feel the presence of the periodic replicas. As discussed below, we
found that L, = 37 was a reasonable choice for our simulations. Also we found
that L, = 7 was sufficient to allow two full wavelengths of the most unstable mode.
Thus our final set of simulations was performed with (Nz, Ny, N .)=(128,192,128)
and (Lz, Ly, L) = (27,37, 7).

A theoretical estimate of the speed of the dipole can be made based on the speed
of a dipole composed of two line vortices. The azimuthal velocity field created by a
straight line vortex of circulation I' at a distance b from the vortex is vg = I'/(27b),
where 8 is taken as the azimuthal angular coordinate in a cylindrical coordinate
system centered on the vortex. Thus, two mutually advecting line vortices of equal
strength separated by a distance b will propagate at this speed. For the problem
of trailing vortices, it is often convenient to nondimensionalize length by b, the
separation between centers of the vortices, and time by 7 = 27b% /T, the time it
takes the dipole to travel a distance b. In these units, which we shall refer to as 7
units, the speed of the idealized dipole of line vortices is 1. This system of scaling
will be denoted by an asterisk superscript. Another system that is useful here is the
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advective time scaling based on the unperturbed Lamb dipole with zero separation
between the halves of the Lamb dipole. The length unit in this system is az and the
time unit is az /Uz. This system we will refer to as advective scaling. All quantities
without the asterisk superscript will be in these units.

In Fig. 2, we show histories of the position of the maximum of the vorticity for
three simulations with different values of 5. The circulation in advective units was
the same in each case: T' = 6.83. The values of b were measured a short time after
the initial adjustment of the dipole. In units of ac the values of b were 1.0, 1.4, and
1.9. In Fig. 2, the position is in units of b, and time is in units of 7. Also shown in the
diagram are the results from one of the laboratory experiments as given by Leweke
and Williamson (1998). The laboratory_ experiments for the early evolution show a
speed almost precisely equal to 1 in 7 units. Qur simulations, however, show speeds
of about 0.85. There are two reasons for the reduced speed. First of all, since the
vortices involved here are not circularly symmetric, there is some ambiguity about
how b should be chosen. We simply measured the distance between the extrema
of vorticity. For the Lamb dipole, with no separation between the halves of the
dipole, the theoretical speed in units of b and 7 is, in fact, approximately 0.87 (cf.
Carnevale, Kloosterziel and Philippe, 1993). Thus some of the error may be due to
our definition of b when b is close to 1. This cause for discrepancy should diminish as
b increases due to the fact that the vorticity distributions for each vortex would then
become more circularly symmetric. Unfortunately, in a periodic domain a second
problem then arises. As b increases, the effect of the periodic replica of the vortices
on the speed of the dipole increases. For example, on a domain with L, = 37 (in
units of ac) and with b = 2, there would be approximately a 15% decrease in speed
due to this effect. We had to make a decision about choosing the domain size that
would be large enough to give reasonable values for the speed and yet with a high
enough resolution to observe small structures during the breakdown of the vortices.
Some experimentation suggested that Ly = 37 was a reasonable compromise.

There are various quantities that can be used to measure the progress of the
cooperative instability. For the unperturbed pair of vortices, the only nonzero com-
ponent of the vorticity is the axial vorticity w,. Thus a good indicator of the growth
of an instability would be the evolution of the maximum value of the magnitude
of one of the other components of vorticity. In Fig. 3a we plot the evolution of
the maximum value of the spanwise vorticity w, for the three simulations with
different values of b. Vorticity and time have been nondimensionalized using T as
defined above. Also plotted is the history of the maximum value of the axial vor-
ticity (chain-dashed line) for one of the simulations. The curves for wy each have a
section that is roughly linear on this linear-logarithmic plot, indicating exponential
growth in time. In the inviscid theory, the growth rate for the short-wave instability
is constant when measured in 7 units. Thus, the approximate collapse of the data
for the three values of b also suggests that this exponential growth is the result of
the short-wave cooperative instability.

The viscous theory of the instability does introduce some dependence on b which
does not seem correctly reproduced in our simulations. As discussed above, there is



DNS study of stability of trailing vortices 193

1.1

1.0+=—
0.91
s o
i £ o
* > f—
3 0.71
0.67
T 0.5 T T T
15 20 0 5 10 15 20
tt
FIGURE 3. a) History of the maximum value of the spanwise vorticity wy for three
cases: b=19,---- b+14,and - b = 1.0. For comparison, the history
of the maximum value of w, (—-—) for b = 1 is also plotted. b) History of the

circulation normalized by its initial value. The line types for the different values of
b are as in panel (a)

some ambiguity in the definition of b especially when the vortices are close together.
For the case of the largest b represented (solid line), the growth rate is approximately
o* = 0.91 while the theoretical prediction, taking viscous decay into account, is
o* = 0.99. We found some improvement in the correspondence in a simulation in
which the spanwise domain size was increased to 4wac. In that case o = 0.96.
However, the viscous theory predicts that o* should decrease with b (cf. Leweke
and Williamson, 1998) while here we find just the opposite.

Note that the value of w, becomes comparable to w, for t* ~ 13. The evolution
of w; (not shown) is similar to that of w,. The vorticity components in z and y
directions becoming comparable in magnitude to the axial vorticity indicates that
the dipolar structure of the vortices may be breaking down. As we will see, the
wz and wy components produce strong deformations associated with small scales
as would occur in a transition to turbulent flow. One indication of the destruction
of the vortices is the history of the circulation which is shown in Fig. 3b. This
circulation T' was obtained by integrating the spanwise vorticity in each xy plane
for 0 < y < L,/2 and then separately for —L,/2 <y <0, and then finally averaging
over z. By t* = 13, in all cases, there is a significant drop in T, and this occurs
at approximately the same time as the values of w,; and wy become comparable to
that of w,. Actually, this I' is not an ideal measure of the circulation or strength of
the vortices. The circulation around a material circuit is changed by viscosity only,
but due to lack of symmetry of the sinuous mode, the decay of T as defined here is
not necessarily a measure of the destruction of circulation by viscosity. The present
measure could decrease even in the inviscid case: at a cross-section where there is
a rightward bend, the circulation in the right half decreases due to transport of
opposite sign vorticity from the left half; at a cross-section where there is a leftward
bend, the circulation in the right half also decreases because it is being transported
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into the left half. For future work, a better measure might be the circulation around
a suitable ensemble of material circuits.

To visualize the three-dimensional character of the shortwave instability, we pro-
duced isosurface plots of vorticity and velocity. For each of the three simulations
with different values of b, the vorticity structures observed were qualitatively similar
once time was scaled with 7. Visualization by this method shows some structures
that are very similar to those observed by dye visualization in the experiments by
Leweke & Williamson (see the top panel of Fig. 4). In Fig. 4, we show the isosur-
face plots of the magnitude of the vorticity |w| for the case b = 1.9. The isosurface
value is the same at each time shown and is |w/wo| = 0.4 where |wp| is the max-
imum magnitude of the unperturbed dipole vorticity field. Note that in both the
laboratory experiments and the simulations the instability is sinuous; that is, the
sinusoidal bending of the vortex cores are in phase. This is interesting because when
one considers the effect of one vortex upon the other to be a pure strain, there is
no mechanism for choosing the phase relationship between the distortions of each
vortex. The isosurface plot for t* = 9.0 represents the field at a time in the expo-
nentially growing phase indicated in F ig. 3a. As we will see below, the perturbation
vorticity and velocity flelds at this point match the predictions of linear theory
well. By time t* = 10.5, nonlinear effects are evident. The formation of ‘caps’
on the points where the isosurface is most curved results from vortex stretching in
the spanwise direction. This is followed by the production of the vortices seen at
t* = 12.0, which span the two original cores and which begin the cross-diffusion of
circulation.

It is interesting to consider the form of the perturbation during the exponential
phase of the growth. Theoretical predictions for the fastest growing unstable mode
can be found in Leweke and Williamson (1998) and Waleffe (1990). In Fig. 5 we
show contour plots of the axial velocity and vorticity perturbation fields in an z — Yy
cross section at time t* = 9.0. The cores of the vortices are marked by the thick
solid lines, which are vorticity magnitude contours at a level that is a factor of e—!
less than the instantaneous maximum. The perturbation fields are qualitatively
as predicted by the linear theory. The asymmetry here is probably due to the
asymmetry in the original random forcing. According to the theory, there should
be a +£45° angular difference in the orientation of the the dipolar perturbation
structures on the two vortices. In addition, the orientation of the dipolar velocity
perturbation field should be perpendicular to that of the perturbation vorticity field.
We see that these relationships hold approximately in this cross section.

As for the wavelength of the fastest growing mode, theory based on a Rankine
vortex (uniform vorticity core) predicts a wavelength A = 2.51ag, where ap is the
radius of the core. Unfortunately, since our vortices are not circularly symmetric
in cross section and do not have a uniform distribution of w,, it is not clear what
distance to use for ap in making a comparison with the theory. Since the Rankine
vortex achieves its maximum vorticity at the radial position ag, we can try to
substitute the radius where the maximum value of velocity is achieved along some
direction for the value of ag. At t, = 9.0, for the case b = 1.9 shown in Fig. 5, the
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FIGURE 4. Top: dye visualization of the short-wave instability in the laboratory
by Leweke & Williamson (1998). Four Jower panels: isosurface plots of |w/ wo| =0.4
for the case of the two vortices separated by b = 1.9. The times represented from
left to right, top to bottom, are t* = 1.5, 9.0, 10.5, and 12.0.
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FIGURE 5. Contours of !, (left) and of u; (right) in an z-y cross section of one
vortex in the dipole shown in Fig. 4 (b = 1.9). The time is #* = 9. The thick solid
curves indicate the contour of total vorticity magnitude |w| at a level of e~! times
the maximum value.

distance between the point of minimum velocity and maximum vy for one of the
vortices is approximately 0.69a.. This is an upper bound on the velocity induced
by the core given the elongation of the core in the z-direction. Substituting this
value for ap, the wavelength should be A = 1.73ac, whereas, in the simulation
the wavelength is A = 0.57a, & 1.57a, instead, which is within about 10% of the
predicted value. The wavelengths in the periodic domain are discrete and so the
instability cannot pick out a wavelength that is not one of the discrete set. We
tried varying L, by 10% to allow the wavelength to better match the theoretical
prediction and found the results to be substantially the same as those given above.

From a practical standpoint, it seems from Fig. 3a that random perturbations
applied to the vortices is an inefficient way of initiating the cooperative instability.
The initial perturbation has maximum vorticity amplitude of about 10% that of the
unperturbed vortices. However, this decays greatly in the initial transient period,
and importantly, we see that the larger the value of b, the more profound is the initial
decay. It took about 57 periods for the exponential growth to become evident. If
we imagine linearizing the equations of motion about the unperturbed vortices and
considering the eigenmodes of the resultant differential operator, it appears that
our initial perturbation is made of a superposition of eigenmodes, many of which
are decaying. The projection of the initial perturbation on the growing eigenmodes
must be very small. If a 10% perturbation could be applied in the pure fastest
growing normal mode, then the transient phase could be avoided. With an inviscid
theoretical maximum growth rate of o* = 9/8, the period of growth would only need
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to be 27. We attempted to initialize the flow field with the dipole perturbed by the
fastest growing eigenmode predicted by theory based on the Rankine vortex. This
reduced the transient period by about half, but that still left a significant period
of decay. Given the distortion of each vortex due to the presence of the other, it is
not surprising that the theoretical normal mode based on the Rankine vortex is not
a pure normal mode for the actual dipole. In addition, it is probably not practical
from the viewpoint of aircraft design to consider the application of a perturbation
exactly designed to match the velocity field of the pure normal mode. Thus, in the
next section, we turn to the question of finding a perturbation or forcing which is
more readily applied to the destruction of the dipole.

3. Density perturbations

As a practical method for strongly perturbing trailing vortices, we considered
the application of density perturbations both within and exterior to the vortex
cores. Such perturbations could be achieved through heating. If the perturbation is
applied with a variation in intensity along the axial direction, then a buoyancy force
of varying strength will be felt along the length of the vortex. If the wavelength
of the spatial variation of the perturbation is tuned to that of the cooperative
instability, then not only will the vortex be disturbed by the buoyancy forcing, but
also by the interaction of the neighboring vortex through the cooperative instability.

The simplest approximation that captures the buoyancy force due to small density
variations is the Boussinesq approximation. If the acceleration of gravity is taken
to be in the negative z-direction, which is the direction of our dipole motion, then
the Boussinesq approximation for the momentum equation can be written as

Oui  Ouju; op' 1 0%u;

5t B, = 8m tRedzE OO0 )
and the equation for the density is
96  O6u; 1 0%
Ll R (3)

6t a.’rj - ReS’c 83:,2'

The notation assumes the directions z,y, z are numbered sequentially from 1 to 3,
and §;; is the Kronecker delta. In these equations we nondimensionalize length by
ac and time by az /U, where ac and U are the radius and speed of the unperturbed
Lamb dipole. The dimensionless density 6 is given by

s pgac
0= y 4

where p' is the perturbation to the background density po and g is the acceleration
of gravity. Note that p' is the pressure less the background pressure —pggz. The
Reynolds number is given by Re = Ucac/v, and Sc is the Schmidt number given
by Sc = v/k where & is the thermal diffusivity.
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In deriving the Boussinesq approximation, one assumes that p'/p is sufficiently
small. In particular, a term equal to

(%) o)

P/ \po Oz

has been neglected. Thus the approximation is strictly valid only if this term is
small compared to the retained term 8. This can be translated into the statement
that the centripetal acceleration within the trailing vortex, which is on the order
of U?/a, should be much less than the acceleration due to gravity. Assuming a
vortex circulation of 100m?/s and a core radius of about 5m would make the ratio
of centripetal to gravitational acceleration about 1 /2. Thus it may be necessary to
use the full Navier Stokes equations for accurate predications, but we can get some
first insights by using the simpler Boussinesq approximation.

To see how buoyancy forcing affects a pair of counter-rotating vortices, we began
with a simple test. We used the same basic vorticity distributions as in the previous
section; that is, the vortices are initially taken as the separated halves of a Lamb
dipole. To these vortices we added an initial distribution of 6 that was taken to
be independent of the axial coordinate r and proportional to the magnitude of the
vorticity in each of the vortices with the maximum amplitude set at 8y. In one case
we took 8y = +1 and in the other ; = —1. Since there was no variation in the axial
direction, two-dimensional numerical simulations sufficed to show the evolution. In
Fig. 6, where we have plotted the trajectories of the extrema of vorticity for these
two simulations, we see the interesting effect of the temperature perturbation. As
predicted by Turner (1959), the speed of the ‘heavy’ vortices which are originally
moving in the —z direction decreases and the separation of the vortices increases. It
may seem counterintuitive that adding weight to the downward propagating vortices
can slow them down, but, in fact, the total momentum does increase as the vortices
separate and entrain more fluid in their motion. The tendency for the ’heavy’
vortices to slow and move apart and the ‘light’ vortices to move together and speed
up could be used to distort the vortices and perhaps destroy their coherence by
modulating the density distribution in the axial direction. Given the impracticality
of cooling trailing aircraft vortices and the advantage of light vortices being forced
to move closer together, we shall mainly consider perturbations with 8 < 0.

On the question of the size of the density perturbation to use, we can use some
order of magnitude estimates. First we must estimate the values to use for ac and
Uc in formula (4). The radius of the vortices in the unperturbed Lamb dipole cannot
be related easily to the radius of actual trailing vortices. Recall that in the case
of the randomly perturbed dipole with b = 1.9, we found a maximum velocity at a
distance of about 0.7a;. Thus if we take a core radius for a trailing vortex as say
a = 5m, then we would estimate a; to be somewhat larger, say az = a/0.7 ~ Tm.
The speed U¢ of a Lamb dipole in terms of the circulation of its vortices and ag is
given approximately by Uz = I'/(2.27a,) (see Kloosterziel and Carnevale, 1993).
Thus if we take I' = 100 m?/s, this would give U, ~ 2 m/s. Thus for |6;] = 1 the
magnitude to the density variation as a percentage of the background would be 6%
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FIGURE 6. Trajectories of the vorticity extrema for 6o = —1 (e Yand §p = +1 (»).
The vortices propagate in the negative z-direction.

according to formula (4). In terms of temperature, this would correspond to a 20%
variation on a background of 300°K.

It is interesting to consider how the temperature variation forces the growth of
the non-axial vorticity. Taking the curl of the momentum equation, we obtain the
vorticity equation,

aw.‘ 3w.' 6‘11..' 1 Bzw.- 39

'5t‘+u15;;—w15;;+§25;]‘,5—%155» (5)
from which we can see how the buoyancy term directly forces the vorticity compo-
nents wy, and w,. In particular, a modulation of 8 in the z direction will directly
force the growth of wy, which is the field that we used to monitor the progress of
the cooperative instability in the random initial velocity perturbation cases. There
we found that when w, became comparable to w., strong cross diffusion between
the counter-rotating vortices occurred. Thus if we can accelerate the growth of
wy through modulating 8 in the axial direction, we may achieve a more rapid de-
struction of the coherent vortices. Since the rate of growth of wy will be directly
proportional to 86/0z, we can expect that the early growth will be linear in time.
This linear growth will dominate the exponential growth of an eigenmode pertur-
bation of the cooperative instability if 8/9z is sufficiently large.

With the hope of combining both the effects of temperature forcing and the
cooperative instability, we decided to modulate the temperature field with the same
wavelength that was observed to be the wavelength of the fastest growing mode
in the experiments with random initial velocity perturbations. With the idea of
implementing this kind of perturbation by heating, we chose to modulate the density
by multiplying by a factor given by (1 — sin(kg27z/L;)) * 0.5. With L, = 7ag,
the appropriate wavenumber kg is 2. We performed a series of simulations with
different amplitudes for 8 (the maximum value of the initial perturbation). For
8, = 1, we found that the values of |wy|maz grew to the same levels as in the random
perturbations cases but in a much shorter time. This is shown in Fig. 7 where we
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FIGURE 7. History of |wy|ma: for the dipoles separated by 4 = 1.9 ,
b=14----andb=1- . The curves without symbols correspond to the

cases perturbed initially with the random velocity field, while those with circles
correspond to the cases initially perturbed with spatially-periodic density variations
(60 = —1).

plot the results for the same three values of the separation b as used in the previous
simulations. We also plot the results from the random velocity perturbation runs
for comparison. As before, the time scale is in 7 units. Thus we see that for 8o,
levels of |wy|ma: sufficient to destroy the coherence of the vortices are reached in a
period of a few 7 units. Also it is encouraging that as the distance b between the
vortices increases, the time at which the peak in |wy|maz is reached decreases. To
what extent this tendency will hold up for much larger values of b will be explored
below.

That the early evolution is dominated by the buoyancy forcing can be seen by
scaling the time differently. If we scale time according to # = /8t where t is in
advective time units, then we find that the vorticity perturbations grow nearly
linearly in { at early times, and the growth rate is independent of 8y. This is shown
in Fig. 8. We display the results for three different values of 8y. This linear growth
and scaling with the buoyancy time scale and not the 7 time scale indicates that
at early times the dynamics is dominated by buoyancy and not by the cooperative
instability.

In Fig. 9, we show the evolution an isosurface of vorticity magnitude of the
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FIGURE 8. History of a)|i:|masz and b) |5y |maz for different initial disturbances
( 6o = 1., ---- 8o =0.1,and -~ 6o = 0.01).

FIGURE 9. Plots of the iso-surface |w|/wo = 0.64 at t* = 1 (left) and t* = 2
(right).

thermally perturbed vortex pair for the case b = 1.9, 6 = —1. Note that since the
vortices will be drawn together where the density is lowest and since temperature is
distributed with the same phase on each vortex, the pair is forced into the varicose
mode. Recall that in the case of the random velocity perturbations, the fastest
growing mode appeared to be a sinuous mode. This suggested that it may be
possible to increase the growth rate of the instability by shifting the phase of the
temperature on one vortex relative to the other in the temperature modulation
in the axial direction. We performed two additional simulations with phase shifts
a = n/8 and 7/4. The resulting graphs of the evolution of |wy|maz are shown in
Fig. 10a along with the graph for the o = 0 case. Although there does not appear
to be much difference in the growth during the early phase, which is dominated by
buoyancy forcing, ultimately the shift by 7 /4 does yield an increase in the peak
amplitude by a factor greater than 2. Thus it seems that the phase shift does
enhance the growth in the period of the evolution that we suppose to be dominated
by cooperative instability. Figure 10b shows the history of I', which is calculated
by summing all of the axial vorticity separately for y < 0. This shows that the
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introduction of the phase shift causes the circulation to decay earlier and more
rapidly. Unfortunately, it does not seem possible by using heating alone to force
the two vortices into the sinuous mode that previous work indicates is the fastest
growing mode.

Before proceeding to larger values of the separation, we will introduce another
perturbation strategy. Although it is possible to construct heaters or burners near
the source of trailing vortices on a wing or to inject jet exhaust directly into them,
this may be inconvenient or impractical. As an alternative, with the idea of using
jet exhaust for heating, we also considered the effect of heating in between the two
vortices. Preliminary to performing simulations in three dimensions for larger values
of b, we ran a series of two-dimensional tests. The two-dimensional simulations
can show us the early effects of the thermal forcing and provide some idea of the
resolution that will be needed in the three-dimensional simulations. In Figs. 11 and
12, we compare the results from three simulations. The left-hand panels in Fig. 11
show contour plots of w, at two times during the evolution in which the density
distribution, with 8, = -1, was proportional to the magnitude of the vorticity as
in our earlier simulations. The initial density distribution is shown in the upper
left panel of Fig. 12. Here we have used a separation of approximately b = 6
and Ly = 6x. With this density distribution and such a large separation, the
vortices soon roll up into roughly circularly symmetric structures, and these tend
to move toward each other by the Turner (1959) effect. In the center panels of
Figs. 11 and 12, we illustrate the evolution in a case in which the heating (i.e. low
density) is introduced in between the two vortices. The density distributions are
initially exactly the same as in the simulation illustrated in the left-hand panels,
except that the density patches are displaced a distance a; away from the center
of the vortices. In the early evolution, the gradients of density produce vorticity
according to Eq. 5. Since the vorticity generated is proportional to 89/9y (in these
figures the y direction is toward the left), two dipolar vortices are formed. These
newly generated dipoles move downward both due to self advection and due to the
advection of the nearby primary vortices. Then from each secondary dipole, the
vortex that has the same sign vorticity as the nearer primary vortex soon merges
with the primary vortex. The remaining secondary vortex is partly sheared out
around the primary vortex and partly rolled up to form a dipolar vortex with the
primary. The case with 8, = +1 is shown in the right-hand panels in Figs. 11 and 12.
Here, the primary vortices again merge with the like signed secondary vortices, but
the surviving secondary vortices are entirely sheared out to surround the primary
vortices. Notice that in both cases, 83 = —1 and +1, the production of thin filaments
of density that are in some places parallel to the z-axis must be accompanied by the
production of even thinner filaments of vorticity. This poses a resolution problem.
Comparing grids with resolution 128 x 384 with 192 x 512, we found that there
was not a significant difference in the evolution of the vorticity fields except on the
smallest scales. Thus we were able to proceed with three-dimensional simulations
of these ‘experiments’ with resolutions 128 x 384 x 64. We were able to reduce the
number of grid points in the z direction by taking only one full wavelength for the
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FIGURE 11. Contours of the vorticity in the two-dimensional simulations with
the dipole halves separated by a distance of 8b. The top/bottom panels correspond
to early/late times. The left panels correspond to the case in which the density
perturbation with peak magnitude §y = —1is applied within the vortex. The middle
(right) panels correspond to the case in which the patches of density are outside the
initial vortices and are separated by 4b and have peak amplitude 8 = —1 (6o = +1).

modulation of 8 in that direction. This resolution is sufficient to observe the growth
of the instability and to follow the initial stages of cross diffusion, but is inadequate
to follow the evolution of fully developed turbulence. Hence, all of the runs to be
presented will end somewhat short of this stage.

In Fig. 13a, we show the growth of |wy|maz for the three-dimensional simulations
corresponding to the two-dimensional simulations just discussed. In order to make
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FIGURE 12. Density contours in two-dimensional simulations of the dipole with
vortices separated by a distance 65. The panels in the left (p = —1) column are
for the case with the distribution of density initially coincident with the vorticity.
In the cases represented by the center (6o = —1) and right (6, = +1) columns, the
initial density patches are separated by 4b. In each column, time advances from top
to bottom.

some comparisons with the amplitude of the perturbation vorticity |w,| and the un-
perturbed peak value w9, we will use advective time units in this and subsequent
graphs. In Fig. 13a, we find that in the case with the density variation internal to
the vortices, the peak for |wy| ey is reached by time ¢ = 2 in advective time units.
In 7 units this would be approximately t* = 0.06, which is remarkably short. This is
much earlier than the time for the peak to be reached for smaller values of b. Thus
the trend that we observed in Fig. 7 does continue for larger separations. Unfortu-
nately, the value reached by |wy|ma; is far short of the unperturbed vorticity value
w20, which is approximately 11.1 with advective time scaling. For smaller values of
b, the value of jw,| maz Peaked above w,g just before all vorticity components began
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FIGURE 13. History of (a) |wy|maez and (b) T'* for three cases. In both panels
the solid curve corresponds to the case in which the density perturbation with peak
amplitude §p = —1 is applied within the vortex, while the broken curves correspond
to the cases for which the density variations were applied in between the vortices
(---- 6 =—1and - 8o = +1). The evolution of I'" is represented by symbols
(w interior perturbation with 6 = —1, e exterior perturbation with 8y = —1, and
s exterior perturbation with 8y = +1). T'¢ is the sum of all + values of w, for y > 0.

to decay rapidly (see Fig. 7). For this case with b = 6, it seems that the values of the
perturbation w do not grow sufficiently to reach a point of strong turbulent mixing,
and hence the decay subsequent to |wylmaz reaching its peak is not strong. Also
from Fig. 13a, we learn that for the cases with b = 6 and the density perturbation
between the vortices, |wy],.,, grows much more rapidly and peaks at a much higher
value than in the case with internal density perturbation. In these cases {wyl,.,,
does surpass w;o. The time to peak is about 0.1 in 7 units. In advective time units,
the decay of the circulation appears rather slow.

Over the course of the three simulations discussed in the previous paragraph, we
computed the total circulation for each vortex; that is, we summed w, for ally >0
and for y < 0 separately. The circulation for each vortex was conserved over the
time span of these simulations. Also, for y > 0, we calculated 't (I'™), which is the
sum of all values of w, for whichw, >0 (w, < 0). The history of 't and '™ is shown
in Fig. 13b. For the case with internal heating, there is relatively less variation in
I+ and I~ over time than for the case with external heating. For the external
heating case there is significant growth of I't, indicating strong deformations of the
vortex. However, the fact that in each case the sum of 't and I'™ is conserved in
time tells us that the vortices are not so strongly deformed as to allow any mixing
between the two primary vortices by ¢ = 5 in advective time units. Due to lack of
computational resources, we were not able to run these cases to much longer times,
so we do not know how much the circulation would decay on the 7 time-scale. We
recall that for the cases with small b, a decay of about 25% of the circulation took
from about two to four 7 units. For b =6, 7 = 33 advective time units, which is
much longer than the timespan represented here. Thus it may be that the decay in
circulation has just not begun on the short timescale represented by Fig. 13.

To further compare the results for large and small separations, we plot the history
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FIGURE 14. History of the three vorticity components for two cases: for the case
with & = 6 with the density variation in between the vortices ( lwzlmaz ===-
lwy|maz s Wzl maz ), and for the case with b = 2 and density variation
in the interior of the vortices ( lwzlmez ®, [Wylmaz @, [ws|maz ).

of all three vorticity components in Fig. 14 for both b = 6 and b = 1.9. The unit of
time for this graph is taken as the advective time units. For b = 1.9, all vorticity
components rapidly decay after the perturbation vortices surpass the axial vorticity,
while for & = 6 all component remain relatively strong after peaking.

4. Conclusions

With the first series of simulations that we presented, we were able to reproduce
the results of the laboratory studies of the short-wave cooperative instability. The
numerical simulations provide the possibility of analyzing the evolution of the veloc-
ity and vorticity fields far more accurately than is possible with current diagnostic
techniques in the laboratory. In particular, measurement of the non-axial compo-
nents of vorticity, which are key to the instability, is very difficult in the laboratory.
Here we were able to analyze the growth of the non-axial vorticity components and
show how they led to the cross diffusion of circulation between the two primary
vortices. In addition, the degree of control over initial conditions in the simulations
allows far more precise testing of hypotheses than is possible in the laboratory. The
main drawback of the numerical simulations js the problem of insufficient resolution
for simulations in which the separation is large.
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Having analyzed the basic short-wave instability, we turned to the problem of
finding a practical way of perturbing the pair of counter rotating vortices so as to
accelerate the short-wave cooperative instability. We suggested that variations of
density along the axial direction may be used to excite the cooperative instability.
These density variations result in buoyancy forcing that persists beyond the initial
addition of the perturbation. There is an initial period dominated by the thermal
forcing in which the perturbation vorticity begins to grow. If the wavelength of the
axial modulation of the density perturbation is chosen to match that of the fastest
growing cooperative instability mode, then this proves an efficient mechanism for
initiating the short wave instability.

We were able to demonstrate the effectiveness of density perturbations in initi-
ating instability and producing rapid cross diffusion for separations up to about
b/a = 2. Beyond this, problems of numerical resolution make the situation less
clear. We presented some evidence at b/a = 6 that similar effect could be found,
but we were not able to simulate long enough at high enough resolution to see
whether the cross diffusion would occur on the same time scale in 7 units as at
smaller b. Thus we are led to suggest that this would be a fertile area for laboratory
experimentation.

As for the practicality of using density perturbations, we can say a few words here.
We imagine that the method of producing the density variation for aircraft trailing
vortices would be by heating either within the vortices or between them. This could
be accomplished either by redirecting and modulating the existing jet exhaust or by
adding auxiliary burners in the vicinity of the points where the vortices roll up (e.g.
wing tips, and flap edges). This heating would only be required during take-offs and
landings. Consider the problem of modulating the temperature of a vortex with a
sinusoidal perturbation of wavelength about twice the vortex core radius with an
amplitude 30°C over say a 10km span. If we take the estimates of a = 5m for the
core radius and 300km/hr for the plane speed, we calculate that the total amount
of kerosene that would need to be burned from such a perturbation would be only
about 140kg. This would seem a reasonable cost if the result were to minimize the
effect of the trailing vortices.
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Evaluation of the statistical Rayleigh-Ritz
method in isotropic turbulence decay

By G. L. Eyink ! AND A. Wray

A Rayleigh-Ritz method for calculating the statistics of nonlinear dynamical systems
is tested against LES data for homogeneous and isotropic decay of turbulence. The
comparisons in this work are of 2-point, 2-time Eulerian velocity correlators. At
this level, the Rayleigh-Ritz predictions are formally realized by a linear Langevin
model for the fluctuation variables. We study how well standard K-¢ models that
are adequate to describe the decay of ensemble means can also predict the decay
of fluctuations. In addition to such standard RANS closures, we also consider
some spatially nonlocal and temporally non-Markovian models, which include scale-
dependent eddy viscosities and convective sweeping in Fourier space.

1. Introduction

This work investigates a Rayleigh-Ritz variational method to solve for the statis-
tics of nonlinear dynamics, which was earlier proposed (Eyink, 1996). Formally,
the method provides an approximate solution of the Liouville-Hopf equation for the
time-evolution of probability distributions in phase-space by the method of weighted
residuals (Finlayson, 1972). The Rayleigh-Ritz method can be understood most
simply as the classical moment-closure method extended to give a description, not
merely of averages, but also of fluctuations. The ordinary moment-closure equation
for a set of ensemble-averages m;(t) = (1i(t)), which we may write as

can be obtained as an Euler-Lagrange equation in a variational solution of the
Liouville-Hopf equation by the method of weighted residuals. On the other hand,
the Euler-Lagrange equation for a constrained variation under a constraint on the
mean moment histories is a perturbed closure equation of the form

mit) = Vi(m, t) + ) Cij(m, t)h;(t). (2)
i

Here, hj(t) is a Lagrange multiplier function to incorporate the constraint. The
function C(m,t) represents the statistical covariance matriz of the closure vari-
ables at a single time ¢, or Cij(m,t) := (}(t)¥}(t))m, given as a function of the
moment averages m. As usual, ¥ = ; — m; represents a fluctuation variable.

1 University of Arizona
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Any of the closure schemes ordinarily applied to the modeling of Eq. (1) for the
averages can also be applied to Eq. (2), providing thereby predictions for fluctu-
ations. Intuitively, the imposition of constraints should give information about
fluctuations by the principle that the probability of a fluctuation is determined by
the cost to produce it under a constraint. This may be called the “Cramér princi-
ple”, see (Frisch, 1995). In fact, it may be shown (Eyink, 1996) that the solution
of Eq. (2) contains complete information about the statistical distribution of the
random histories }(t). In particular, it can be shown that the 2-time covariance
matriz Cij(t,t0) 1= ($}(t)¢}i(t0)) is obtained in the Rayleigh-Ritz method from a
simple fluctuation-response relation:

Cij(tvtﬂ) = Ri]'(t’to) + Rji(toat) (3)

where R(t,?o) is the response R;;(t,t,) := fh—":'(% o of the solution m;(t) of Eq. (2)
to an infinitesimal change of the control field h;(t), see (Eyink, 1998).

It is the purpose of this work to investigate the success of standard closures to
predict fluctuations when employed in the constrained variational equation (2). We
shall consider here only the simplest situation for a turbulent fluid governed by the
Navier-Stokes equations, namely, homogeneous, isotropic decay at high Reynolds
number. It is well-known that RANS closures such as the standard K-¢ model are
adequate to reproduce the ensemble-averages in such an equilibrium turbulence.
The main issue to be addressed here is the success of such closures to predict the
lowest-order statistic for the fluctuations, the 2-time covariance matrix of the clo-
sure variables. The Rayleigh-Ritz method also gives predictions for all higher-order
multi-time statistics, e.g. transition probabilities, but we shall confine ourselves
here to a check only at the lowest-order. The 2-time correlations already have some
direct interest in terms of the predictability problem for meteorology and climatology
since they give the statistical correlation between successive states, e.g. the corre-
lation between the weather today and weather tomorrow. In addition, information
about fluctuations is essential in engineering problems such as the turbulence control
problem or the LES-RANS matching problem for wall-bounded flows.

The method of our investigation is to compare the Rayleigh-Ritz predictions with
those of an Ensemble LES calculation for isotropic decay. The use of LES rather
than DNS allows our study to be made, in principle, at infinite Reynolds number
and, hence, to avoid the issue of viscous corrections to the closures. The Ensemble
LES method is discussed in detail in (Carati, 1997). Our study uses a dynamical
Smagorinsky subgrid stress model with the dynamical coefficient calculated for a
sharp spectral filter by an average over 64 different ensemble realizations on a 64°
lattice. The single-time spectrum is obtained for the resolved velocity fleld v(x,t)
by averaging over the space domain as well as the ensemble realizations. In addition
to the single-time statistics, we obtain the 2-time cospectra of the velocities v(x,t)
at each time t with the velocities v(X,tp) at the initial time 5. This allows us to
make a direct check on the Rayleigh-Ritz predictions. To avoid issues of modeling
the single-time correlations, we directly input the LES results for the single-time
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correlations at the initial time ;. Then, the Rayleigh-Ritz method is used to
integrate these input correlations forward in one time variable to obtain the 2-time
correlations at the pair of times t,ty. These predictions are finally compared with
the LES results for the same quantities as the basic check on the method. The
Rayleigh-Ritz calculations are carried out primarily for the K-¢ closure. It is a
main objective of this work to determine what temporal statistics may be correctly
predicted with such a standard 1-point closure. However, based upon the results of
the comparison of those predictions with the LES results, improved Rayleigh-Ritz
approximations are also developed exploiting more refined closure assumptions.

2. Comparison of Rayleigh-Ritz with LES
2.1 The single-time LES results

Let us first describe the results of our LES calculations for the velocity spectrum
E(k,t), which is graphed in Fig. 1 for several times t over the LES run, including
the initial time to = 0.2295. As may be seen, the peak wavenumber at the initial
time to is approximately kp = 9, but this decreases in time to a value of about
kp = 6 at the end of the run. At each time ¢, the spectrum beyond the peak is an
inertial-range power-law. Graphing compensated spectra reveals that the power-
law is, to a reasonably good approximation, given by the Kolmogorov % law. As
time advances, the spectra are degraded rapidly in the high wavenumber range,
while at wavenumbers well below the peak the spectrum is nearly unchanged in
time. The low-wavenumber range can also be reasonably well fit by a power-law
o« k™ with m = 6. This power-law is transient due to backscatter of energy into
the low-wavenumbers, which leads to a slow decrease in the effective m value over
time.

2.2 Comparison of the K -¢ Rayleigh-Ritz with LES

The most popular engineering closure for the ensemble-averages is 7, K,and € is
the K-¢ RANS model. As a reminder, its equations have the form:

i + (V- VYo, = —Vip— V7 + v AT, (4)
6J{_+(V-V)f= -—T,'jVﬂJ'.'—E—V,'J.‘-i-VA_X, (5)
0+ (V-VIE=vAE+VDi+P - 8. (6)

Here, 7;5 = Bz_vg— is the Reynolds stress. J; is the space transport of kinetic energy
by turbulent diffusion and molecular viscosity. Likewise, D; is the space transport
of dissipation, and P, ® are production and destruction of dissipation, respectively.
The equations are exact as written, but the terms 75, Ji, D;, P, and ® are all higher-
order moments that must be modeled. In the standard K-¢ closure, the Reynolds
stress is modeled as:

2
Tij = 5}&’5,‘1 — VT(VJ'ﬁ,' + V,‘ﬁj), (7)
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where the eddy viscosity is given by v = C# = with C;, = 0.09 the conventional
value of the constant. Similar gradient—dlffusmn models are made for the other
transport terms in the K-¢ closure equations, but these do not concern us here.

As reviewed in the Introduction, the Rayleigh-Ritz method gives predictions for
statistics of the fluctuations v} by means of a perturbation of the moment-equations
(4)-(6). At the level of 2nd-order statistics, the predictions are the same as those of a
linear Langevin model (Eyink, 1998). For the K-¢ Rayleigh- Ritz, the corresponding
Langevin equatxons are obtained by linearizing (4)-(6) around the homogeneous
state U; = 0,K(t),Z(t) and by then adding suitable white-noise forces. In the
case of 1sotrop1c decay, the Langevin models for the two sets of variables v and
K',¢' are completely uncoupled, and they can be analyzed separately. Results
on the K-¢ fluctuations will be given elsewhere. The equation for the velocity
fluctuations is 0w} = vr A vl + g;. Because all of the coefficients in the Langevin
model are independent of space, it is advantageous to take a Fourier transform. The
fluctuations at distinct wavenumbers then also completely decouple. In the Fourier
representation

%ﬁi(k,t) = —urk?5i(k, 1) + Gi(k, ¢), (8)

It is clear that this equation cannot be accurate at all wavenumbers. In particular,
K-¢ modeling is not intended to apply to inertial-range wavenumbers and higher.
The principle that the dynamics of fluctuations should be governed by the same
equations which determine the evolution of the mean values is known in statistical
physics as the “Onsager regression hypothesis” (Onsager, 1931). For the hydrody-
namic variables of molecular dynamical systems, the hypothesis is asymptotically
exact in the limit of wavenumbers small compared to the inverse mean-free-length
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and frequencies small compared to the inverse mean-free-time. Likewise, we antic-
ipate here that a K-¢ Rayleigh-Ritz can be accurate—at most—for some range of
low wavenumber modes.

In general, one should expect that a model superior to standard K -¢ will allow
for a wavenumber- and time-dependent dynamics as in the velocity sector

d
Without loss of generality, this may be represented by a scale-dependent eddy-
viscosity as A(k,t) = —vr(k,t)k?. Standard Kolmogorov dimensional reasoning

would give vp(k,t) €}/3(¢)k=*/3 in the inertial range. In fact, we may note that a
Langevin model for the velocity of the form of (24) was proposed by Kraichnan in his
“Distant-Interaction Algorithm” (DSTA) (Kraichnan, 1987). However, Kraichnan's
model was proposed for Lagrangian time-correlations rather than the Eulerian ones
considered here. There is nothing that prevents the Rayleigh-Ritz method being
applied to Lagrangian variables of the fluid system. However, for the moment we
wish to study the ability of the standard A'-¢ closure to make correct predictions
for Eulerian statistics within the variational apparatus.

Our basic test of the K-¢ Rayleigh-Ritz scheme is to calculate the 2-time spectrum
E(k;t,to). Although the predictions are the same as those of the Langevin model in
Eq. (8), we shall not calculate the 2-time correlations directly from that stochastic
equation. Instead, we make use of the fluctuation-response relation (3). A direct
application would involve calculating a numerical derivative with respect to the
h-field of the solution of the perturbed closure equation, for h(t) = hé(t — to).
However, this algorithm turns out to be numerically unstable, and its accuracy
degrades rapidly in time. Instead, our numerical procedure, for each wavenumber
k, is to solve in conjunction with the ODE for the ensemble-means a linearized
K -¢ closure equation for the 2-time cospectra with the LES 1-time cospectra at
time o as initial data. Although the Langevin equations are not directly employed
to calculate the 2-time cospectra, it is still important to determine whether these
Rayleigh-Ritz predictions have a model realization. To investigate this we have also
calculated the noise spectra of the Langevin white-noise forces Q(k,t). These are
obtained from a fluctuation-dissipation relation (Eyink, 1998)

Q(k,t) = vrk*E(k,t) + %E(k,t), (10)

by inputting for each time ¢ the single-time spectra discussed in Section 2.1. Real-
izability requires that Q(k,t) be nonnegative for each wavenumber k.

In Fig. 2 the 2-time spectra E(k;t,to) are graphed as functions of wavenumber k,
for both the LES and the K¢ Rayleigh-Ritz, at a sequence of times t starting with
to. Several points of comparison become immediately apparent. At wavenumbers
much less than the peak, the LES and Rayleigh-Ritz spectra are almost indistin-
guishable. Around the peak wavenumber there is a close agreement for a short time,
but later on the Rayleigh-Ritz spectrum decays slower than the LES. At wavenum-
bers higher than the peak, the opposite is initially true: the LES spectrum decays
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slower initially and persists at larger magnitude than the Rayleigh-Ritz spectrum.
However, as time passes, the decay rate of the LES spectrum increases, and it first
equals in magnitude and then dips below the Rayleigh-Ritz spectrum.

These observations are reasonably explained. At the low wavenumbers, the rate
of change of both spectra is very slight so that the close agreement is automatic.
The agreement at early times near the energy peak is presumably an indication
that the K-¢ model with the standard choice of constants is an excellent model of
the intrinsic dynamics at those scales. This is the range of wavenumbers in which
the “regression hypothesis” appears to be valid. In other words, for early times
the decay of correlations is due primarily to the space diffusion of fluctuations by
turbulent viscosity, well-described by the standard K-¢ model. However, since we
are dealing with Fulerian time-correlations, this decay mechanism is overwhelmed at
later times by convective dephasing (Kraichnan, 1964b). The phase shift e v k(t—to)
in Fourier amplitudes due to advection by a random velocity v leads to a decay rate
of correlations which goes roughly as ~ v3k?(t — to), where vy is an rms velocity.
This grows faster in k than an eddy-damping rate such as appears in Eq. (9), which
goes as v(k,t)k? ~ k?/° in the inertial range. At the same time, the decay rate
from convection grows in time proportional to t — #,. Hence, it is negligible at
short times but rapidly grows to dominate the intrinsic decay from eddy-damping,.
This leads to the later overestimation of the spectrum around the peak wavenumber
by K-¢ Rayleigh-Ritz since the latter incorporates no such convective effects. The
same physical considerations explain the observations in the high wavenumber range
beyond the peak. At early times when convective effects are negligible, the constant
eddy-viscosity in the standard K-¢ model overestimates the eddy-damping in the
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higher wavenumbers. Hence, the early decay of the Rayleigh-Ritz spectrum is too
rapid. At the same time, the K -¢ modeling includes no convective dephasing effects,
which rapidly grow to dominate the decay of the Eulerian time-correlations. Hence,
the early decay of the LES 2-time spectra lags behind the Rayleigh-Ritz predictions,
but at later times it exceeds the Rayleigh-Ritz decay.

We do not have space here for a complete discussion of the realizability of the
K-¢ Rayleigh-Ritz, but it is important to make a few remarks. The noise spec-
trum Q(k,t) of the Langevin force in Eq. (12) calculated from the FDT Eq. (10)
is not strictly realizable. Indeed, it takes on negative values for large wavenumbers
k > 36 and also slightly negative values for a range of small wavenumbers k = 5— 8.
The breakdown at large wavenumbers is not really a great surprise because the
K-¢ modeling is not expected to be valid there. However, the breakdown for the
wavenumbers k = 5 — 8 is more serious. The reason for the realizability violation,
as we shall see below, is the K-¢ model’s underestimation of the eddy-viscosity
in those wavenumber modes. On the other hand, the wavenumber which corre-
sponds to the spectral peak at the initial time, k = 9, has a marginally realizable
noise covariance. That is, to within numerical precision, the noise vanishes at that
wavenumber initially. This is not an accident, as we see below.

2.8 Improved Rayleigh-Ritz and comparison with LES

We now consider various strategies to develop an improved Rayleigh-Ritz. As a
first step, we shall carry out a POP analysis, which, as described in (Penland, 1989),
is a technique to obtain models for A(k,to) and Q(k, to) directly from empirical 2-
time data. The time-dependent POP method we use is a “zero-lag” prescription
discussed in (Eyink, 1998). In principle, the POP analysis gives the best possible
such linear Langevin model although there is an important issue about the “opti-
mum lag” to be used in this analysis. If it is realizable, then the best one could
hope is that the Rayleigh-Ritz Ansatz should reproduce the POP model. This
is always possible if the the Rayleigh-Ritz Ansatz goes beyond the standard A'-¢
model by allowing a wavenumber and time-dependent eddy-viscosity vr(k,t), as in
Eq. (9). In addition to the POP analysis, we shall also determine a “zero-lag K-¢
model” by insisting that the Rayleigh-Ritz produce Q(k,t) = 0 for all k,t. We may
enforce in this way some agreement with the zero-lag POP result since the latter
always has vanishing noise initially when the input 2-time covariance is continu-
ously differentiable (Eyink, 1998). Thus, we may use this condition as a means to
extract k,t-dependent values of the K-¢ closure constant C,(k,t). This “zero-lag”
Rayleigh-Ritz procedure differs from POP in using only single-time LES data.

We shall determine below both zero-lag POP models and “zero-lag” K -¢ Rayleigh-
Ritz models and compare these to one another. From the discussion in Section 3.2,
we may anticipate that these models should give a good short-time description of the
Eulerian 2-time correlations but a much better long-time description of Lagrangian
9_time correlations. Of course, there is nothing to prevent application of both the
POP and Rayleigh-Ritz methods to Lagrangian dynamical variables. Furthermore,
one should not expect the zero-lag POP models to differ substantially between the
two cases. The reason has to do with the physics of the convective dephasing,.



216 G. L. Eyink & A. Wray

We have seen above that the decay rate from convective dephasing should vanish
x (t — to) for short times. In that case, any difference in the time derivative of
Eulerian and Lagrangian correlators should vanish in the zero-lag limit ¢ — t,.
Needless to say, while the POP models are not expected to differ for the two sets of
variables, the validity of the POP models will depend upon the choice. In agreement
with earlier workers such as (Kraichnan, 1987), we expect the POP Langevin models
to give a much better representation of the Lagrangian dynamics.

In principle, therefore, we should compare the predictions of our POP and “zero-
lag” Rayleigh-Ritz models to Lagrangian 2-time data from the LES. We hope to
do so later on, but, at the moment, such data are not available. Below we have
attempted instead to add into the Rayleigh-Ritz equations the “convective dephas-
ing” in order to make a more meaningful comparison with the Eulerian 2-time data
at our disposal. We have added the convection effects in a relatively crude way by
supplying to the derivative of the 2-time correlations in each wavenumber shell a
new term

t k
OE(k;t to) = - — [20,,1:2/ ds/ dq E(q,s):l E(k;t,t0). (11)
to 0

Note that 2 fok dq E(q,t) represents the mean-square velocity v2ns(k,1) of all the
wavenumbers smaller than the given wavenumber. This is natural for a term to
represent advection by the larger eddies. The constant Cy represents the “efficiency”
of the dephasing. Clearly, this should in reality be wavenumber dependent. Because
the smaller eddies are more random and more rapidly evolving, the phase shifts
they induce in Fourier amplitudes will suffer much destructjve mterference before
averaging over the ensemble of velocities. Hence, their contribution to correlation
decay will be reduced. On the contrary, the larger eddies are 'much more coherent
and slowly evolving so that there will be mostly constructive addition to the Fourier
phase shift. The constant value Cy =1 would hold for perfect “efficiency” of the
dephasing, as is true for a frozen-in-time, uniform Gaussian velocity, with perfect
coherence in space-time (Kraichnan, 1964b). Thus, we adopt a value, somewhat
arbitrarily, of an order of magnitude less than unity: Cy, = 0.1. This is likely to be
an overestimate at high wavenumbers and an underestimate at low wavenumbers.
The above crude model can be regarded as a simplified form of the DIA model for
the convection effects as discussed in (Kraichnan, 1959), Section 5, and (Kraichnan,
1964a).

Our POP results are presented in the form of a “dimensionless eddy-viscosity”

Culk,to) = (bt
K" (to) /2(0) . ) ) . o
In agreement with our earlier observations, there is a “negative eddy-viscosity”

in the lowest wavenumbers k = 1 — 3, the most negative value —1.9333 occurring at
k = 1. Thereafter, the eddy viscosity grows to a maximum 1.1760 at wavenumber

= 6 and beyond the maximum decays in a roughly power-law fashion, consistent
with expectations for an inertial range. The value at the energy peak wavenumber
k = 9 is 0.0858, remarkably close to the standard K-¢ value of C, = 0.09. We
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FIGURE 3. Dimensionless eddy-viscosity spectrum C,(k,t) at several times.
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emphasize that this value is obtained here from the decay of fluctuations and not,
as usual, from the diffusive decay of mean values. The close agreement supports the
idea that something like the “regression hypothesis” should hold for wavenumbers
around the energy peak.

The results of the “zero-lag” Rayleigh-Ritz analysis are entirely consistent with
those for the zero-lag POP. In fact, the results for C,(k, o) are so close numerically
that a plot of them together would show no difference between them. The “zero-
lag” Rayleigh-Ritz values C,(k,t) are plotted in Fig. 3 for the low wavenumbers
k = 2—10 at a sequence of times. There is seen to be a slight drift to the left in time.
Remarkably, this is consistent with the slow decrease of the energy peak wavenumber
kp over that same time from kp = 9 initially to kp = 6 at the final time. The
wavenumber at which C,(k,t) = 0.09 tracks along with the peak wavenumber kp
over the whole period of the decay. This a further verification of the “regression
hypothesis” for the energy peak wavenumbers.

A realizability check on the POP model helps to explain the close agreement
of the POP and “zero-lag” Rayleigh-Ritz results at early times. Shown in Fig. 4
are the POP noise spectral values for the first fourteen nonzero wavenumber modes,
k = 1— 14, plotted as a function of time up to t = 1.4. It may be seen that the noise
spectra all start at zero at the initial time o, to numerical precision, and thereafter
rise to positive values. Most importantly, this result establishes the realizability
of the Langevin model with the POP coefficients. In agreement with the results
of the previous section, the standard value C, = 0.09 leads to a noise spectrum
indistinguishable from zero initially at the peak wavenumber.

We are now in possession of a fully realizable Langevin model of the form of Eq. (9)
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FIGURE 4. POP noise covariance Q(k,t) in low wavenumbers. k=1: o , k=2: o
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with the coefficients therein determined either from POP or “zero-lag” Rayleigh-
Ritz. The model is very similar in form to the DTSA model (Kraichnan, 1987). As
has been discussed earlier, the same model will presumably arise for either Eulerian
or Lagrangian variables. However, it is probably a much more accurate, long-term
predictor for Lagrangian time-correlations than it is for Eulerian. Unfortunately, we
have no such Lagrangian data with which to compare. Instead, we shall correct the
“zero-lag” Rayleigh-Ritz model to include convective dephasing effects as described
previously. In Fig. 5 we show plotted together as functions of wavenumber & the
LES results for the 2-time velocity spectrum E(k;t,tg) and those obtained from
the “zero-lag” Rayleigh-Ritz with the convective correction in Eq. (11), for several
times over the run. As may be seen, there is a much improved agreement for all
times. The only defect is at the later times when the Rayleigh-Ritz calculation gives
a slightly too great decay at high wavenumbers and a slightly too slow decay at low
wavenumbers. This is in agreement with our earlier remark that the “efficiency”
C, = 0.1 we used in the convective correction is likely too large at high wavenumbers
and too small at low wavenumbers.

4. Conclusions

The results of this work allow us to draw the following tentative, general conclu-
sions:

(i) The standard K-¢ model gives a very good quantitative account of fluctuations
at the energy peak wavenumber and a rather good one at lower wavenumbers. This
supports the idea that a proper application of Onsager’s “regression hypothesis”
for turbulent flow is to fluctuations in the peak wavenumber range. Presumably,
an “optimal” POP analysis would recover something very close to the standard
K-¢ model in that regime. Because this range of wavenumbers makes a dominant
contribution to integrations over k, the single-point, 2-times statistics will be rather
well captured by such modeling.

(ii) However, the agreement of the predicted and measured statistics is restricted
to a short time for Eulerian correlations. The success in reproducing those correla-
tions at longer time separations by making a simple convective correction suggests
that much better long-term predictability will be obtained for Lagrangian variables
with a standard RAN S-type model.

(iii) Further improved predictions can be obtained in the Rayleigh-Ritz frame-
work by going beyond the K-¢ modeling. Even the simple expedient of taking the
RANS model coefficients to be functions of wavenumber k—and thus nonlocal ker-
nels in physical space-—can give much better results. In the case of the velocity
sector, a “zero-lag” model of this type is very similar to the DSTA model of Kraich-
nan (1987). Such models can presumably give good long-term predictions for La-
grangian variables. To predict Eulerian time-correlations at large time-separations
seems to require a non-Markovian or history-dependent Ansatz in the Rayleigh-Ritz
formalism to properly capture the convective dephasing effects.

The final verification of these conclusions will require some more work. In particu-
lar, a POP analysis based upon a complete set of 2-time correlation functions ought
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to be performed. This would allow a systematic investigation of lag-dependence,
which is particularly important in the K-¢ sector. Furthermore, a proper com-
parison of the predictions with LES or other data would require Lagrangian time-
correlations.
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Group analysis, DNS and modeling of a
turbulent channel flow with streammwise rotation

By M. Oberlack!, W. Cabot, AND M. M. Rogers

The turbulent channel flow with streamwise rotation has been investigated by
means of several different analytical, numerical, and modeling approaches. Lie
group analysis of the two-point correlation equations led to linear scaling laws for
the streamwise mean velocity. In addition 1t was found that a cross flow in span-
wise direction is induced, which may also exhibit a linear region. By further anal-
ysis of the two-point correlation equation, it is shown that all six components of
the Reynolds stress tensor are non-zero. In addition certain symmetries and skew-
symmetries about the centerline have been established for all flow quantities. All
the latter findings of the analysis have been very well verified by means of direct
numerical calculations. The flow has also been tackled by LES and second-moment
closure models. The dynamic LES captured most of the theoretical and DNS find-
ings quantitatively. The second-moment closure model was able to capture most of
the basic trends, but any quantitative agreement could not be achieved.

1. Introduction

During the development of the symmetry theory in Oberlack (1997a), it was
noticed that there may be one additional turbulent scaling law which was not men-
tioned since no experimental or DNS data were available. This is the turbulent
channel flow rotating about the streamwise direction. A sketch of the flow geome-
try is given in Fig. 1.

The flow appears to have several common features with the classical rotating
channel flow (Johnston et al. 1972) but also has some very distinct characteristics.
The classical case considers the rotation of a turbulent channel flow about the
spanwise direction (z3). In this flow the mean stream lines follow plane spirals. In
contrast to this, mean stream lines of the present flow exhibit corkscrew-like spirals.
However, the most obvious difference between the two cases may be the induction
of a mean velocity in z3-direction. This cross flow can be deduced by investigating
the mean momentum equation and the Reynolds stress transport equation.

Tt is interesting to note that the induced cross flow is a property of the turbulent
flow and may not be deduced from the equations for laminar flows.

Similar to the classical case, it will be shown that the only self-similar mean
velocity profiles are linear functions

Uj = A,Mzo + By and uj = ANz + B2

1 Inst. fiir Technische Mechanik, RWTH-Aachen, Germany



222 M. Oberlack, W. Cabot, & M. M. Rogers

T

i3
Q] / Uy

Ve

FIGURE 1. Sketch of the flow geometry of a turbulent channel flow with streamwise
rotating.

to be derived in the subsequent sections. In both the present and the classical case,
the mean velocities scale on the rotation rate.

Nevertheless, it is anticipated that the general appearance of the mean velocity
profile in z;-direction is very different from the classical case. Since the reflection
symmetry about the center line is not broken, the mean velocity may stay symmet-
rical. In Oberlack (1997a) it was observed that, except for the log-law, the highest
degree of symmetry is usually obtained in flow regions with the weakest wall in-
fluence. Hence, it is expected that two linear regions may emerge near the center
region. To the best knowledge of the authors, it appears that the above mentioned
test case has never been described in the literature.

The paper is organized as follows. In the next section three different analyses are
presented. The one which actually initiated the project is Lie group analysis of the
present flow, which suggested the linear velocity profiles. Besides the latter analysis,
global time scales of the flow will be investigated which indicate the location of the
linear regions. In the final analysis, it will be examined which flow quantity is
symmetric or antisymmetric about the centerline of the channel. In the section
thereafter, a DNS of the rotating channel flow is presented. Mean velocities and
statistical quantities for different rotation rates will be established. Finally, the
present test case is to be tackled with turbulence models. Results from second-
moment closure models and LES are shown.

2. Analysis

The basis for the analysis of the present flow geometry in Subsections 2.2 and 2.3
is the mean momentum equation and the two-point velocity correlation equation in
a rotating frame of reference, which are given respectively by

1 8p aal—uz+ %,

0=t om Vo (1a)
__ 19 omm )
0——;%—‘5—291113 (lb)
6'U2‘U3 62123
0=~ % Tz (1)
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and
dﬁl(l‘z) dﬂ;;(.’l)z) dﬁ]($2 + 7‘2) dﬁ;;(l‘g + 'l”g)
= - ‘6,' - '6, - 1 11— < 1 3 . N
0 Raj0u dz, Rzjbis dzo Riabjn d(z2 +12) Rizbjs d(z2 + r2)
OR;; . _ _ OR;;
— [@1(z2 + 2) — ta(22)] -3711 — [as(z2 + r2) — da(x2)] 6r3]
_ 1 5. opu; _ opu; ou;p Y 62R,-, _9 32R.'j np 32R,'J'
p 2 B2, or; Or; Ozr201, 0207 OriOry,
= 5e, | ore [Reixy; — Ry — 28 [ersRyj + enj Ral (2)

(see, e.g., Rotta 1972 and Hinze 1959); 4, p, Uiy, v, {4, and e;;x are the re-
spectively the mean velocity, the mean pressure, the Reynolds stress tensor, the
dynamic viscosity, the rotation rate in z,-direction, and the alternation tensor.
The five two-point correlation tensor functions which appear in Eq. (2) are defined
as

Rij(z,m5t) = ui(z, t)uj(eM,t) , (3a)

575(z, 73 t) = p(z, ) uj(W,t) , GR(z,T5t) = uj(,t) peM,t) , (3b)

R(ik)j(z,'r;t) = u,-(a:,t)uk(a:,t) uj(a:(l),t) ,
Riiny(z,mit) = wi(, t) uj(z®, tyur(e,t) (3¢)

where u; and p correspond to the fluctuating quantities. The tensors (3a-c) are
functions of the physical and the correlation space coordinates z and r = z{1) —
@ respectively. For the present case all statistical quantities only depend on the
wall-normal coordinate z, and the correlation coordinate r. The double two-point
correlation tensor R;;, later on simply referred to as two-point correlation, converges
to the Reynolds stress tensor @;u; in the limit of zero separation |7}

() = lim Ris(a,7) - (4)

It should be noted that the two-point correlation equation only contains the triple
correlations as unknown terms. For both two-point velocity-pressure correlations,
u;p and pu; a Poisson equation may be derived (see, e.g., Oberlack 1994, 1995). In
addition, all dependent variables in (2) must satisfy the continuity conditions

3R,’j_3Ri]‘:0’ aR,-,»:O, 81_)11_1':0 and a_L,‘—p_aﬂ.‘_p-:
Oz; ori or; Or; Oz; or;

0. (5

For the understanding of the self-similarity of the two-point correlation equation
given further below, two identities may give some interesting insight in the structure
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of the two-point correlation function. They can easily be derived from a geometrical
consideration by interchanging the two points z and (1) = & +r:

Rij(®,r) = Rji(z +r,—-7) , wp(e,r) = pui(z + 7, —r) . (6)

The former is particularly interesting for the trace elements of R;; since it defines
a functional equation in real- and correlation-space. There exists a similar identity
to (6) for the triple correlation, which will not be utilized here.

Some fundamental properties of the flow can already be read from Eq. (1a-c).
For high Reynolds number flows, viscous transport terms are only significant in the
near-wall region. In regions sufficiently apart from solid walls, the viscous terms
may be neglected to leading order, and the balance is dominated by the pressure
and the turbulent stresses.

From Eq. (1a) the usual linear turbulent shear stress profile for ¥iu; may be
derived because the pressure-gradient in the streamwise (z1) direction is constant.
Since no pressure-gradient in the spanwise (z3) direction is present, it can be de-
duced from Eq. (1c) that the shear stress @zu3 is uniform., Equation (1b) only
determines the pressure-gradient in wall-normal direction. Though it is the only
mean momentum equation containing the Coriolis force, it has no influence on the
mean velocity. It will be seen later that the mean velocity is only determined by the
turbulent stresses. This is similar to the usual non-rotating channel flow in which
no information for the mean flow can be determined from the mean momentum
equation.

At this point it will be anticipated that besides the shear stress uzu3 the additional
shear stress @1u3 is induced due the rotation. This can be taken from Eq. (2) in
which a Coriolis term appears in the Rj3-equation. From the structure of the
“13” equation, it appears that the Coriolis term may not be solely balanced by
the pressure-velocity correlation and by the triple correlation. One may naturally
expect that the term [ug(zo + r2) — @k(x2)] OR13/0rc may also contribute to the
balance in the equation. Hence uyuz may be non-zero though this stress has no
counterpart in the mean velocities in an eddy-viscosity sense.

2.1 Time-scale analysis

In the present subsection the characteristic time scales of the viscous sublayer
and the universal logarithmic region will be compared with the characteristic time
scale of the rotation rate. The latter is defined as

Dl

to (7)
where (2 is the rotation rate about the z1-direction, also denoted by ;.

The characteristic time scale of the viscous sublayer and the universal logarithmic
region are

t, =

and  tog = 5’— (8)

&
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For

wall.
sufficiently high Reynolds number, ¢, is a fixed small quantity while #jog increases

with the distance from the wall. Comparing the ratio of the latter flow time scales
with the rotation time scale we respectively obtain

t, vl Ro

respectively where u, is the “friction velocity” defined as u, = /v —2—%’;

Th=—=—=—
'Ttq ul  2Re ©)
and
tio
T, = tos ¥ _RoY (10)
to Ur h

where Re, = hu,/2v and Ro = Qh/ur.

For zero rotation rate both quantities are exactly zero. However, assuming Ro of
the order O(1) and supposing Re to be a large parameter, the time scale ratio T, is
a small quantity. Hence it is concluded that the rotation only perturbs the viscous
sublayer, and a significant change may not be observed.

Considering the same order of magnitude assumptions for Ro as above, it can
be concluded that T, may only be a small parameter for small y/h. This is the
flow region close to the wall and next to the viscous sublayer. In contrast, if y /h
is of order O(1), T» may become an order O(1) parameter. Consequently, we
conclude that this is the flow region which is affected most by the system rotation.
In this region system rotation is a leading order effect. In addition we conclude
that the region which is affected most by the rotation extends further to the wall
with increasing rotation rate. The mean velocity of a turbulent channel flow is only
weakly affected by the system rotation in the near-wall region. However, system
rotation has a substantial effect on regions sufficiently far from the wall such as the
logarithmic region up to the centerline.

In fact this global effect has been observed both in experiments and in DNS for
the classical rotating channel flow with z3 as the rotation axis (see e.g. Johnston
et al. 1972, Kristoffersen & Andersson 1993). In contrast to the present case the
classical rotating channel case does not reveal a symmetric mean velocity profile
about the centerline. Instead a skewed mean velocity profile in the center part of
the channel is observed.

2.2 Reflection symmetry of statistical flow quantities about the centerline

_ Reflection symmetries can be obtained by finding transformations of the form
é = —¢ where ¢ may represent any dependent and independent variable. The
following is observed in a variety of different channel type of flows such as the usual
turbulent Poiseuille and the turbulent Couette flow. If the corresponding equations
and boundary conditions admit a certain reflection symmetry about the centerline,
this is also verified for all statistical quantities.

For the present problem the system (2) and (5) admits the reflection symme-
try where the variables are respectively separated as independent variables, mean

quantities, and statistical quantities

Fi=a , Fp=-T2, T3=-T3 , 1 =71, T2="T2, T35 773, (11a)
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ﬁl =Uup , aS =-u3, p=p, (llb)
Ry Ry Ru Ry —Riz —Rys
Rn Ry Rys |=|~Rn Ry Ry |, (11c)
R31 Rz Ra —R31  Rsz Ras
P pax up TP
piz | =|-pm | and (Gp|=|-mp| . (11d)
puz —pu3 u3p —u3p

The latter reflection symmetries can be generalized as such that any other statis-
tical one-, two-, and multi-point quantity can be determined from the fluctuation
quantities according to the transformation for the fluctuations

ﬂ]zul ) ﬁg:—Uz y a3=—'u,3 f [3=p . (12)

For example, the transformation of the two-point triple correlations Riry; and Ry,
which are not stated above can be determined in a similar manner.

From (11b) it can be determined that @, is symmetric about the centerline and
43 is antisymmetric about the centerline.

The transformation of the Reynolds stress tensor can also be obtained by em-
ploying Eq. (4) in the transformation (11c). The consequences for the stresses are
such that all normal stresses and ;w5 are symmetric about the centerline. In con-
trast uju; and u w3 are antisymmetric about the centerline. It should be noted
that the results for @yu; and wzus can also be obtained from the mean momentum
Egs. (1a) and (1c). The reflection properties of other one-point quantities such as
the pressure-strain correlation and the dissipation tensor can also be determined by

(12).

2.3 Lie group analysis of the two-point correlation equation

For simplicity it will be assumed in the following analysis that the Reynolds
number tends to infinity so that the viscous terms in the two-point correlation
equation (2) may be neglected. The basis for this assumption is the fact that, to
leading order only, the large scales determine the mean velocity. Viscosity only
affects the small scales of the order O(5) where n is the Kolmogorov length scale.
Hence neglecting viscosity is only valid for |r| > . If |r| < n, the last term of the
third line in Eq. (2) corresponds to the dissipation and cannot be neglected.

The general purpose of Lie group analysis, also called symmetry analysis, is two-
fold. First, the symmetry transformations are to be determined, which give pro-
found knowledge of the flow physics. Second, the symmetries may be used to achieve
self-similarity or reduction of the two-point correlation equation. The first step to
accomplish this objective is to find symmetry transformations which do not chany -
the form of the equation under investigation. In fact, this is analogous to the anal-
ysis presented in the previous subsection where reflection symmetries have been
investigated which do not alter the equations. However, the main difference in the
present subsection is that the transformations considered therein are finjte groups.
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In order to obtain a reduction, continuous groups of transformations need to be
considered. The method to find the desired continuous groups of transformations is
called Lie group analysis. A good introduction to this method is given in Bluman
and Kumei (1989) and Stephani (1989). In the present subsection only a heuristic
approach will be presented while some more mathematical details on group methods
are presented in Appendix B in Oberlack (1997a).

Self-similarity or reduction is always associated with the decrease of the number
of independent variables. It is important to note that the independent variables are
not necessarily restricted to the usual variables such as space and time. Instead any
parameter in the equation under investigation may be considered as independent
variable as long as it does not implicitly depend on any other independent parameter
in the problem.

Hence, in the first step a reduction will be achieved by rewriting the two-point
correlation equation as such that (1 = () is absorbed into all the remaining indepen-
dent and dependent variables. The most general form of transformation allowing

this reduction is

i =), ri=fy(Q), @@= uy()Q (13a)
Ri; = Rijv(Q)?Q* , poi= ()’ Q, wp= TLpy (0%, (13b)
Riity; = R(ik)j7(ﬂ)393 , Rign = Ri(jk)’Y(Q)aQs , (13¢)

where the new variables are denoted by tilde, and 7(Q) is an arbitrary function
of Q. After employing (13a-c) and imposing the high Reynolds number limit, the
two-point correlation equations read

= dli](.i'z) 5o d'ﬁg(.’fg) s dﬁ1(52+r2) 5 g dag(fz'f'rg)
0= R21611 di‘g R2]613 dj:2 - Rt26]1 d(fég +’I‘~‘2) Rt25]3 d(:ig -I'-fz)
L LBRy a= oy ORy
— [ (32 + F2) — ur(Z2)) _8711— — [fia(#2 + 72) — us(22)] af;
[, opn  opw; | Owp
o |0z, OF  OF,
Ry 0 12 o
- ——85—2i + 3 [R(ik)j - Rz’(jk)] -2 [ElliRu + elljRil] : (14)

Obviously the set of independent variables z2, ri, and Q has been reduced by one.
From group theory it follows (see Appendix B in Oberlack 1997a) that the latter
equation admits a further similarity reduction only for certain mean velocities which
obey the equations

dlztl(.’f?z + fz)

d(32 + 72) — a1ty (Z2 + 72)

[a1(22 + 72) + as + as)

diy(Z2)

dfz - alﬁl(i‘z) ) (150)

=[a1 %2 + as)
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d‘l:l;;(i'z + 7:2)

[a1(Z2 + 72) + a3 + as) — a1t3(E; + 7,)

d(i‘z + fz)
dis(F -
=[(11512 + a5]—u;—gi) - ay 77'3(5:2) ) (15b)
T2

The corresponding similarity variables are to be obtained from the invariant surface
condition (see e.g. Bluman & Kumei 1989)

aifi +a2  aifat+ay aifs +as  aréz + as
_dR; _ di _ dmp  dRuy; | dRy,
2a11~2,~j B 3a11%,~ B 3(11.17;;]3 B 3a11~2(,-,,)j B 3a11~i,~(,-k)
where the constants of integration are taken as the new variables. The equations
for the mean velocities above (15a,b) can only have a unique solution if

az = 0. (17)

Since each Eq. (15a-b) on the left-hand side depends on z; + r; and on the right-
hand side on z3, they can only be equal if they are both equal to a constant. Hence,
(15a,b) uniquely transfer to

(16)

dal(.’iz)
diq
diiz(& -
[alfz + a5]ud3*_(_‘%!—) - a1ﬁ3(:i'2) =c3 , (18b)
T2

[al.i‘g + a5] - alal(.'i‘g) =c , (18(1)

Each of the parameters a;-as have a distinct physical meaning. The parameter
a; corresponds to the scaling group; i.e. Eq. (14) admits a transformation of the
form

B=eha, F=eh, @ =evi (190
R?j =’ Ri; , o =eMpu; , WP =eNup (19b)
fzfik)j =eaa'R(ik)j ) R?(jk) =e3a‘Ri(1k) ) (19¢)

which does not alter the functional form of the equation written in the new coordi-
nates. The parameters aj-a5 correspond to the translation groups which conform
to the fact that (14) is autonomous with respect to £; and 7;. As a result (14) is
invariant under transformations such as
Ty =33 +as . (20)

However, for physical reasons the translation invariance of 7i 18 not meaningful,
and az-a4 must be zero. In order to understand the problem with these “artificial”
invariances, one has to call to mind that the translation invariance with respect to 7;
gives rise to a new solution where the correlation function is shifted in correlation
space. Since R;; reaches its finite maximum at |#| = 0 and tends to zero for
|#| — +o0, a shift in the correlation space cannot be a new solution.

Depending on the value of a;, two fundamentally different cases are to be distin-
guished for which a similarity reduction may be obtained.
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2.2.1 ay # 0

The present case corresponds to the fact that scaling with respect to space is not
inhibited and (18a,b) integrate to

l:l,l =C (fg + 25-) —_ a , (21(1.)

ai ay
fis = Cs (:Eg + %) - Z—j : (21b)

where €, and Cj are integration constants. If the transformation (13a) to the
original coordinates is inferred, the latter equations read

@y = Ci Ny + Qy(RQ) (clgjl - %) , (22a)
i3 = Cs Qz, + Q‘Y(Q) (Cg%i— — chil) . (22b)

It appears that the additive constants may depend on the rotation rate in an un-
known manner. In order to resolve this problem, it is helpful to investigate the
two-point correlation function.

Though a solid theoretical basis on first principles is still lacking, it appears
that to leading order the two-point correlation function does not scale with the
rotation rate . Hence it can be concluded from Eq. (13b) that, in order to have
no § dependence of R;j, the function y behaves as v ~ 1/§. As a result, the two
additive constants appearing in the scaling laws (22a,b) do not depend on Q either.
Only the slope of the linear scaling laws depends on the rotation rate.

The similarity variables for the case a; # 0 corresponding to the mean velocities
(21a,b) are to be obtained from the characteristic Egs. (16). Employing a; = a3 =
a4 = 0, the integration yields

T ) T3

Tll—z2+%’ 772_'5:2_*_:'?’ n3_5:2+%f_, (23a)

P ~ as 7~ . as\’ — . as\’

Ri; = Fij (l‘g + ——) , Pui = G; (xz + -—) , U;p= Hj (;1;2 + ._.) ,(23[))
a a) aj

2 ~ as ’ = - as 3

R(iny; = Finys (zz + a) ,  Rign = Fige (962 + E;) ) (23¢)

where the integration constants 7, Fij, Gi, Hi, Furyj) and Fyx) are the new
similarity variables. In order to verify the similarity reduction of Eq. (14), the
quantities Fy;, G, Hi, Flixyj, and Figjx) are introduced as new dependent variables
only depending on 7;.

In order to obtain a new identity in similarity space, the latter scaling is sub-
stituted into Eq. (6) for R;j. For this purpose the origin of ¥ may be chosen as
such

&, =32+ — (24)
al
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that the similarity variable simplifies to
Ti
ni = g (25)
Introducing the transformation (23) into Eq. (6), we obtain the relation Fj;(&, hn)-
(85)? = F5i(#5(1 4 n), —%3m)(%3)?. Since it was previously assumed that all two-
point correlation functions are solely functions of #, only the ratio of the first and
the second parameter can appear in F;;. Thus, we finally obtain

-n

Fin)=F; | —— ) . 26

i(n) ]!(1+n2) (26)

The latter relation gives valuable insight into the structure of the solution. Relation
(26) connects different # domains to each other.

Interestingly enough, relation (26) gives raise to a new symmetry transformation

« N

=T (27)
which is neither a reflection symmetry in the classical sense nor a continuous trans-
formation (Lie group) since it does not contain a continuous parameter. Its validity
can be verified by substituting (27) into Eq. (14) after the similarity coordinate ( 25)
and the linear profiles (21a,b) have been employed.

One interesting feature of (26) is that it can be considered as a algebraic functional
equation for the trace element of F}; or R;; in the following denoted as Fli) with
t = 1,2,3. The “equilibrium” plane for Eq. (26) is 5, = —2 with arbitrary n; and
13 where both the argument as well as the value of F;; are the same. In addition
1 = 0 is an “equilibrium” point. Apart from these two regions, Eq. (26) defines a
mapping between different -domains. There are two pairs of 7z-regions which map
into each other, namely

m2: (=00,-2) & (=2,-1) and (=1,0) & (0,00) . (28)

The latter nomenclature refers to the fact that, once the functional values for Fliyyin
the n; region (—2, —1) are known, the corresponding values in the region (—oo, -2)
are uniquely determined and vice versa. After a value for n2 1s chosen, the values
for n; and n3 map according to

- —3
T+ m —1m and T5m, — N3 (29)

A graphical mapping scheme is given in Fig. 2. For clarity only the n;-5; domain is
depicted where connected mapping-regions are indicated by arrows. The extension
to the entire #-domain is straightforward.

Besides the above symmetry relation for F;i) with i = 1,2,3, (26) provides so-
lutions for any off-diagonal Fij element with (¢ # j) if F}; is known. Of course,
similar features can be given for the pressure-velocity correlation and for the triple-
correlation.

For the present case a; # 0, the statistical variables scale with the wall distance.
This is different in the following subsection.
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FIGURE 2. Non-locally related correlations in the 71-72 plane according to Eq. (26).

222 ay = 0

The present subsection corresponds to the fact that scaling with respect to space
is broken as can also be read from Eq. (19). As a result Egs. (18a) and (18b) may
be integrated to

i =254+ C (27a)
as

s = 25+ Ch (27b)
as

where C3 and Cj are integration constants. The characteristic Eqgs. (16) can not be
integrated in the usual way. However, a reduction may still be possible since the
correlation equation is autonomous in 3. Due to the linear profile all statistical
functions in (14) may not depend on the spatial coordinate ;. Obviously, the
present case corresponds to a homogeneous shear flow. Even though this does not
appear to be a reduction in the usual sense from a group theoretical point of view,
this is similar to the case a; # 0. In Section 2.2.1 a reduction was conducted by the
scaling group (a1 ) while in the present case the reduction may be conducted by the
translation group (as). In both cases the dimensionality of the problem is reduced.

It should be noted that for physical reasons the case a3 # 0 appears to be more
likely to be applicable to the rotating channel flow for the following reason. One
of the key observations in Oberlack (1997a) was that turbulence has a tendency to
establish a maximum degree of symmetry transformations. For the different channel
flow cases, the highest degree of symmetry has been observed where the least wall
influence is present, namely in the core region of the channel. Hence it may be
expected that the same maximum principle applies for the present flow.

It is very important to note that the present analyses and, in particular, the one
in Subsections 2.2.2 and 2.2.3 are not limited to the two-point correlation equation.
The results regarding all the symmetries and scaling laws hold for all multi-point
correlation equations up to any arbitrary order. Hence the closure problem of
turbulence which usually precludes exact results do not form an obstacle for the
present analysis.

More mathematical details on group methods and how to obtain the latter results

can be found in appendix B of Oberlack (1997a).
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FIGURE 3. Streamwise mean velocity at Ro = 0 —— | Ro = 3.2 —-— and
Ro=10----,

To conclude from the analysis, it is to be expected that a cone-shaped mean
velocity in the streamwise direction will appear as such that the two flanks of the
cone are linear. Furthermore, linear profiles for the cross flow will also establish on
both sides of the centerline.

3. Direct numerical simulation of the flow

A DNS of the rotating channel flow has be conducted. The utilized numerical
technique is a standard spectral method with a Fourier decomposition in streamwise
and spanwise direction and a Chebyshev decomposition in wall-normal direction.
The flow quantities are non-dimensionalized by h/2 and u, where % is the channel
width and u., is the friction velocity of the non-rotating case, which is defined as

h
s -

r

h - p Oz,

The density p is set to unity. The definition of the Reynolds number and its nu-
merical value for all subsequent calculations below are

Re, = M¥r _ 1g0 .
2v

The rotation number is defined as

Qh
Ro= — .
Ur
The boundary conditions are non-slip at z = +1 and periodic in z;- and z3-

direction. The pressure-gradient is held constant for all computations. Further

details on the numerical scheme may be obtained in Kim, Moin & Moser (1987).
Two computations at rotation numbers of Ro = 3.2 and Ro = 10 have been

conducted. All presented results for Ro = 0 have been taken from Kim, Moin &
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FIGURE 5. Spanwise mean velocity at Ro = 3.2

Moser (1987). The domain sizes used in the z;, z3, and z3 directions are 47, 2, and
47 /3 on 128 x 129 x 128 grids, respectively, for the Ro = 0 and 3.2 cases, and 8, 2,
and 27 on a 256 x 129 x 128 grid for the Ro = 10 case. In Fig. 3 the streamwise mean
velocity profiles at Ro = 0, Ro = 3.2, and Ro = 10 are compared. As expected
from the global time scale analysis, the near-wall region up to z; = +0.9 1s only
marginally perturbed. Approaching the core region of the flow, a significant change
in the mean velocity profile is visible with a very pronounced shoulder at z2 = +0.8
for Ro = 10. In addition, a much flatter center region is noticeable. For the lower
rotation rate no linear region is noticeable. It is interesting to note that an increase
of mass flow is induced by the low rotation, which seems to disappear by increasing
the rotation rate.

As predicted by the group analysis, two linear regions emerge on each side of
the centerline for the high rotation rate. A more detailed perspective of the linear
region is given in Fig. 4 where only the “head” of the profile for Ro = 10 is depicted.
The linear regions cover the wide range z; = 0.2 — 0.6 on both sides of the center
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FIGURE 7. Normal stresses at Ro = 0 on the left and Ro = 10 on the right hand
side: wyul , Uglly ==—— , Ugug —-—.

line.

As already mentioned in Section 2, a mean cross flow denoted by %3 is induced
by the rotation. In Subsection 2.2 it was prognosticated that the flow is skew-
symmetric about the centerline as shown in Fig. 5.

Though a still clearer verification is still lacking, it appears that the predicted
linear profile is also visible in the induced crossflow. The location of the linear
region is slightly shifted towards the wall region compared to the linear region of
the streamwise velocity. One of the most interesting feature of the cross flow is the
region near the centerline. Therein the cross flow has opposite sign compared to
the flow regions closer to the channel walls. This large scale property of the flow
may correspond to certain coherent structures; however, no such flow pattern could
clearly be extracted from the flow so far.

From the statistical one-point quantities, only the Reynolds stress tensor has been
computed. In Fig. 6 the Reynolds shear stresses at Ro = 10 are displayed. Both the
linear and the constant curves for a7uz and w33 respectively can be derived from
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the Egs. (1a) and (1¢) by neglecting the viscous terms, which are only significant
in the near-wall region. One of the most intriguing features of the shear stresses is
the induced uyu; component. The two other cross stresses can both be interpreted
in terms of a simplified eddy-viscosity type of sense from its corresponding mean
velocities. However, this cannot be done for the uyus shear stress. Hence uyus can
only be modeled with the aid of more elaborate turbulence models such as LES or
Reynolds stress transport models, to be presented in the next subsection.

In a corresponding DNS at Ro = 0, only the Reynolds shear stress ujuz is non-
sero. The latter curve is not shown in Fig. 6 since both uyuy stress curves are
very close to each other and only differ slightly in the near-wall region where vis-
cosity is dominating the flow. All statistical curves exhibit the reflection symmetry
properties about the centerline as has been found in Subsection 2.2.

The normal stresses for both the rotating and the non-rotating case are depicted in
Fig. 7. Obviously, only very weak differences are noticeable compared to the strong
change in the mean streamwise mean velocity induced by the rotation. Though the
shape and magnitude of each set of curves for Ro = 0 and Ro = 10 are very similar,
there are some distinct qualitative differences in the core region of the flow. We
recall that the largest changes should be visible towards the core region of the flow
as to be expected from the time scale analysis.

Many of the DNS results have to be considered as preliminary. For both the
mean velocities and the stresses in Figs. 3-7, it 1s noticeable that the statistics is
not fully converged. All cases presented previously bear the problem that the curves
are not fully symmetric or skew-symmetric about the centerline. There are several
problems leading to this deficiency.

A general problem with rotating flows is the fact that in order to get good statis-
tics the required integration time of the computation is considerably longer than for
the corresponding non-rotating case. This also appears to be an important issue for
the present computation. Second, it is observed in the rotating pipe flow compu-
tation by Orlandi & Fatica (1998) and Eggels, Boersma & Nieuwstadt (1996) that
very long coherent structures in the streamwise direction appear. This requires a
very large computational box in order to ensure a sufficient decay to zero for the two-
point correlation functions. In fact, for the present computation it was also noticed
that the box in the spanwise direction needs to be larger than for the non-rotating
channel flow. In Figs. 8-10 two-point correlations in both the streamwise and span-
wise directions are shown. In Fig. 8 the two-point correlations in the streamwise
direction for all normal stresses are shown at mid-plane (z2 = 0). Particularly, the
spanwise component differs significantly from zero at z, = 57. In Figs. 9 and 10 a
wavy kind of two-point correlation is noticeable in the spanwise direction both at
mid-plane (z, = 0) as well as in the near-wall region at z = —0.71. Except for the
streamwise component at mid-plane, a substantial deviation from zero at r3 = 7 is
evident. From the latter findings it is apparent that a larger computation box both
in the streamwise as well as in the spanwise direction is imperative to obtain more
reliable, i.e. box independent results.
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4. LES and second-moment closure models

System rotation is not a singular influence on the flow, but belongs to a wider class
of benchmarks which mimics mean streamline curvature. This is very important
for almost any application. Since system rotation is a challenging measure for
turbulence models, we have investigated the response of two classes of turbulence
models on the influence of streamwise rotation on the turbulent channel flow. First,
LES of turbulence has be investigated. Thereafter, second-moment closure has been
employed to test its ability to model the flow. Classical two-equation models such
as the k-¢ or the k-w model have not been examined since they exhibit no reaction
on system rotation. This inability can directly read off from the model equations
since no Coriolis type of term appears in the transport equation for the statistical
quantities.

The first turbulence model to be investigated is the dynamic subgrid-scale model
(Germano et al. 1991, Lilly 1992) used in LES. Since the dynamic model is “2D
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material-frame indifferent” (see Speziale 1981 and Oberlack 1997b), one may expect
that at least in the limit of large rotation numbers the model should capture the
trends observed in the DNS. Interestingly enough, it will be seen subsequently
that the dynamic model captures very well most of the trends in the flow even
quantitatively except for the linear regions in the streamwise mean velocity. The
flow parameters and the numerical scheme are the same as for the DNS. The grid
sizes in 71, T3, and 4 direction are 48, 32, and 32 respectively for the Ro = 0 and
3.2 cases, and 96 x 33 x 48 for the Ro = 10 case.

In Fig. 11 the streamwise mean velocities from DNS and LES are compared. Even
though the LES profile changes significantly due to the system rotation it does not
exhibit a clear linear region as was observed in the DNS. In addition, the mass flux
is marginally smaller than in the DNS.

In Fig. 12 the shear stresses from the DNS are very well represented by the LES
calculation. Even quantitative results show close agreements with the DNS. The
normal stresses in Fig. 13 exhibit less good agreement with the DNS, but a correct
qualitative agreement is clearly visible. In particular, the near-wall peak of uyuy is
too low compared to the DNS. A general trend is that all Reynolds stress profiles
in the LES are somewhat lower than in the DNS. Apparently, the sub-grid scale
model produces slightly too much damping, which is particularly noticeable in the
u; and uyuz stress component.

The second turbulence model to be investigated for the present type of flow is a
second-moment closure model. The equations are based on the IP model (see Laun-
der, Reece & Rodi 1975) and the S5G model (see Speziale, Sarkar & Gatsi 1989)
for the pressure-strain term. The near-wall behavior of the pressure-strain term 1s
modeled by the elliptic-relaxation approach developed by Durbin (1991,1993). The
equation for the dissipation of turbulent kinetic energy is taken from the Launder-
Reece-Rodi model. Model parameters have been taken from the original publica-
tions and have not been altered for the present computation.

Some general remarks should be made before some results from the second-
moment model will be presented. Investigating the structure of the model equations,
it appears that the linear region of the mean velocities may lead to a reduction of
variables and hence to self-similarity. This is essentially due to the fact that the
model equations contain Coriolis type of terms. This is in clear contrast to classi-
cal two-equation models. Besides the usual Coriolis terms, the rotation rate only
appears in the pressure-strain model and not in the dissipation equation. Since the
cross flow and the stress components uzu3 and ujus are solely induced by the rota-
tion, it is the pressure-strain model in particular which determines these quantities.
As a result it will subsequently be seen that the cross flow is particularly sensitive
to the pressure-strain model though the general flow pattern is captured with all
models.

The turbulent diffusion terms have a very strong influence on the model resuits.
Hence the linear regions in the streamwise velocity are only visible at very high
rotation rates for which DNS results have not been obtained yet. In Fig. 14 the
streamwise velocity is shown for the very high rotation number Ro = 28 obtained
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with the IP model. Almost identical results are obtained with the SSG model not
presented here.

In contrast to this, the cross flow is extremely sensitive to the implemented
pressure-strain model. In Fig. 15 the spanwise velocities for the IP and the SSQ
model are compared at Ro = 3.2. Apparently the shape of the DNS curve in F ig. 5 is
represented by both models. However, both absolute values of the ug3 velocities are
very much underpredicted. Even the maximum of the SSG model is underpredicted
by a factor of two.

Much less sensitive to the pressure-strain model are the normal stresses. In Fig. 16
the normal stress from the SSG model are presented. It is interesting to note that
not only the overall property of the DNS data are modeled quite well represented,
but also that a quantitative agreement within 30% is obtained. This has been
obtained without adjusting any model coefficients.

In contrast to this, it can be seen in Fig. 17 that from the shear stresses only
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ujuz is obtained with reasonable agreement compared to the DNS results. Of
course, this is due to fact that uyuz is merely determined by the mean momentum
equation, which does not contain any modeled terms. Though an almost constant
773 component is obtained in the center region of the flow as predicted by the
DNS, its value is much too small. Regarding the W u; stress component, one has
to conclude that the model equation is not even able to model the proper tends of
the DNS results. The sign of @u3 disagrees with the result from the DNS.

5. Summary and conclusions

The general purpose of the present work is to establish a new but still very
simple canonical test case to study basic turbulence physics. It has been confirmed
by DNS that there are linear regions in both the streamwise and the spanwise
mean velocity as was suggested by Lie group analysis of the two-point correlation
equations. Additional scaling properties of the two-point correlation functions have
been established.

Beside the mean flow, all Reynolds stress quantities have been computed. It is
interesting to note that, in contrast to the classical rotating channel flow, all six
Reynolds stress components are non-zero. The stress components from the DNS
have the expected symmetry properties about the centerline as predicted by the
symmetry analysis.

The flow is very challenging for turbulence models since common two-equation
models can not account for the rotation effects. Both LES with the dynamic subgrid-
scale model and second-moment models have been tested for the present flow ge-
ometry. The LES captures most of the DNS results very well. Only the linear
regions in the streamwise velocity were not visible. Employing a second-moment
model, some basic trends of the flow have been captured. However, several serious
drawbacks have been encountered. This is, in particular, that the linear region in
the streamwise velocity was only visible for very high rotation rates. In addition,
the induced cross flow had the proper shape but was extremely sensitive to the
employed pressure-strain model. Finally, most of the qualitative tendencies in the
Reynolds stresses were captured except for the w3 component, which showed the
opposite sign to that obtained by the DNS.

Future extensions of the project may be manyfold. First, a larger computational
domain need to be utilized to obtain more reliable results for the two-point correla-
tion functions. Second, a much longer time integration time is mandatory in order
to obtain better turbulence statistics. In addition, a higher rotation rate may be
investigated to verify certain trends such as the linear scaling. Also, other scaling
and symmetry properties described in Section 2 may be verified by the numerical
data. Finally, other turbulence properties such as statistical quantities or coherent
structures can also be analyzed from the data.
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The RANS modeling group

There were four project areas: rocket motor internal flows (Cucci, Iaccarino,
Najjar, Moser); compressible and transitional flow (Lien, Kalitzin); buoyant heat
transfer (Tieszen, Ooi); and non-local pressure effects (Manceau, Wang).

The rocket internal flow is treated as duct flow with mass injection through the
wall. The regime of interest is high injection rate, so the near-wall region is far from
equilibrium. Turbulence in the injection flow is thought to have a significant effect.
RANS computations of channel flow with wall injection do a good job of predicting
the significant departures from equilibrium. RANS simulations of a nozzleless rocket
are complicated by the transitional nature of the flow.

The rocket group also preformed an initial DNS of channel flow with injection
through both walls. A force was added to the momentum equation to obtain stream-
wise homogeneity. High injection velocities were found to produce large near-wall
structures, that are not present with impermeable walls.

The question of whether elliptic relaxation is applicable to transonic flow with
shock waves was answered in the affirmative by Lien and Kalitzin. In the v? — f
model, the elliptic f-equation affects the mean flow only indirectly through the eddy
viscosity; so it is no more implausible to use elliptic relaxation than to use other
turbulence closures in transonic flow.

Transition from laminar to turbulent flow occurs in many experiments to which
RANS is applied. Lien and Kalitzin looked into modifications of the turbulence
model that might simulate transition. The idea is that the model bifurcates from
a laminar to a turbulent solution branch at some point in the flow. The model
coefficients control that locations. Transition is notoriously present in buoyancy
driven flows. Tieszen and Ooi have examined the effect of adding buoyant pro-
duction terms to the turbulent kinetic energy equation. In some cases the main
effect of such terms was to control the location of transition. Good predictions of
the boundary layer on a vertical plate and of recirculation in a closed cavity were
obtained — provided that transition occurred at the correct position.

Non-local pressure effects are associated with velocity-pressure gradient correla-
tions in the Reynolds stress transport equations. Closing these correlations is a
primary focus of Second Moment Closure. Elliptic relaxation is a non-local treat-
ment of such terms. There is a degree of arbitrariness in the derivation of the
Yukawa type of equation for elliptic relaxation. Manceau and Wang have exploited
a DNS database in order to evaluate the assumptions inherent in this derivation.
Although the basic method was found consistent with DNS data, it does not ac-
count for several sources of anisotropy. Modifications of elliptic relaxation that
might treat these effects are discussed.

Paul Durbin
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Simulation of rocket motor internal
flows with turbulent mass injection

By A. Ciucci’, G. Iaccarino, R. Moser?, F. Najjar? AND P. Durbin

A study of flows subject to strong, turbulent fluid injection has been conducted
in this work. The study included both RANS simulations of a nozzleless rocket
motor to investigate the applicability of closure models to this type of flows and a
DNS analysis aiming at gaining a better understanding of the flow structure near
a wall with strong blowing. For the nozzleless motor simulations, both a k-¢ and
the v? — f turbulence models were adopted. Results indicated a strong dependence
on turbulent transition; large overpredictions were obtained with free transition,
but a much better agreement with the experimental data was achieved when tran-
sition was fixed. Also, a parametric study indicated only a weak dependence of
the solution, in particular of the turbulent kinetic energy profiles, on the turbulent
fluctuations at the wall. The DNS analysis of a “periodic” motor with injection
from two opposite walls has revealed that the streaks dominant in the conventional
near-wall turbulence are not visible. Also, simulations of a channel flow with injec-
tion from one wall and suction from the other wall have been performed using the
v? — f turbulence model; comparison with available DNS data is very good.

1. Introduction

The internal flow development inside the combustion chamber of a solid rocket
plays a key role both in motor design and during motor operation. In particular, the
mean velocity field and the turbulence characteristics have a strong, direct impact on
many physical processes occurring within the motor such as the internal ballistics
and erosive burning, the convective heat transfer to the thermal protection, the
motion of alumina droplets and subsequent slag deposition at motor aft-end.

Turbulence effects significantly influence the flow processes in proximity of the
combustion surface. A full treatment of this region would include the modeling and
resolution of complex physical and chemical phenomena which take place during
the solid propellant combustion process. This process occurs in a very thin layer at
the grain surface and are usually the subject of dedicated, detailed investigations.
Therefore, both in experimental studies and in CFD simulations, the burning surface
is simply treated as a porous wall through which mass injection occurs at a given
total temperature.

Experimental studies of the boundary layer in pipes with uniform mass injection
were carried out by Olson and Eckert in 1966, by Simpson et al. in 1969 and, in the

1 CIRA, via Maiorise 81043 Capua (CE), Italy
2 University of Illinois at Urbana-Champaign, 1304 West Springfield Avenue, Urbana, IL 61801
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70’s, by Julien et al. (1971), Andersen et al. (1975), and Kays and Moffat (1975).
Mean velocity profiles, skin friction, and heat transfer measurements were performed
in turbulent boundary layers with and without acceleration. These measurements
showed good agreement with the theoretical results of Stevenson (1963), who derived
a modified law of the wall in which injection velocity effects were taken into account
through the definition of an “effective” velocity. In all these works, low values of
injection velocity were investigated.

The injection-driven flow in a cylindrical port rocket motor (i.e., with a closed
end) is significantly different from the flow in a pipe with or without porous walls.
Mass addition from the wall in injection-driven flows is usually quite large; as a
result, the velocity profile for an injection-driven flow comes essentially from a
balance between the pressure gradient and inertial forces, in contrast with a pipe
flow where the velocity profile is determined by a balance of viscous stresses and
pressure forces.

The experiments performed by Dunlap et al. (1974) and by Yamada et al. (1976)
showed that the mean flow field is accurately represented by a cosine distribution
for the axial velocity (Culick, 1996) in the forward region of a cylindrical port rocket
chamber; however, these investigations, performed at large injection rates, revealed
that the flow was highly turbulent over most of the chamber.

Later, Traineau et al. conducted cold flow simulations of a two-dimensional noz-
zleless motor, and Dunlap et al. (1990) investigated the internal flow in a cylindrical
port rocket chamber; in both cases, injection rates were considerably high.

Several numerical investigations of flows with fluid injection at the wall have been
performed in the past. Sabnis et al. (1989a) carried out a simulation of the test
motor geometry employed by Dunlap et al. (1974), using the k-¢ turbulence model
of Jones and Launder (1972); a large overprediction of the -turbulence intensity
profiles was obtained. Later, Sabnis et al. (1989b) adopted a modified form of the
same turbulence model and compared their results with the data of Traineau et al.
(1986); some improvements were achieved, but a considerable discrepancy in the
turbulence data remained.

Beddini (1986) performed numerical studies of the injection-driven flow in a duct
using a parabolic form of the Navier-Stokes equations together with a full Reynolds
stress turbulence model. In this work, turbulent fluctuations at the surface, de-
scribed as “pseudoturbulence”, were introduced for the first time.

With the increase in computer power and advancements in CFD in recent years,
both LES and DNS analyses of turbulent flows with wall transpiration have been
performed. Moin (1982) and Piomelli et al. (1989) applied LES to compute the
flow in a channel with a uniform injection at the lower wall and an equal suction
at the opposite wall, reproducing the experiment by Andersen et al. (1975); low
injection rates were considered.

In the DNS study of Nicoud et al. (1995), a somewhat similar geometry was

considered; instead of suction, a free-stream boundary condition with a fixed pres-
sure gradient was applied at the boundary opposite to the injecting wall. Strong
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(but uniform) injection rates were assumed in the attempt to reproduce flow con-
ditions representative of a solid rocket motor. Despite the high injection velocity,
the law-of-the-wall as modified by Stevenson (1963) was recovered.

Liou and Lien (1995) and Liou et al. (1998) performed a numerical simulation of
a more realistic geometry using an LES approach without sub-grid-scale modeling.
Although their results were in general in good agreement with the experimental data
of Traineau et al. (1986), turbulence intensities were somewhat underpredicted in
the second half of the channel.

The majority of the works on flows with mass injection through a porous wall has
involved the investigation of weak injection rates. The injection rate is commonly
characterized by the value of the dimensionless parameter Vin j+, defined as the
ratio between the injection velocity and the friction velocity.

For weak injection rates characterized by values of V,-nj+ up to O(1/10), the
two-layer structure of the turbulent boundary layer is retained and a (modified)
universal law-of the-wall seems to exist (Stevenson, 1963).

On the other hand, as the injection velocity increases to values of Vi, j+ of O(1),
the turbulent fluctuations of the injected fluid become probably appreciable and
should be taken into account. In this case, both the strong blowing and the velocity
fluctuations may induce a change in the structure of the boundary layer.

In the LES and DNS approaches to this type of turbulent flow, low injection rates
were considered by Piomelli et al. (1989) (Vin; T equal to 0.0516 and 0.154), and
Sumitani and Kasagi (1995) (Vin;t equal to 0.05). In the DNS study of Nicoud et al.
, strong injection rates were assumed (V,-,”-+ =1.4), but no velocity fluctuations were
‘ntroduced at the wall. Liou and Lien (1995) and Liou et al. (1998) adopted an LES
approach without SGS modeling to simulate the internal flow in a nozzleless motor
and compared their results with the experimental data of Traineau et al. (1986);
values of ij'*' were in the range 1.5-6. To the best of the authors’ knowledge, no
DNS work has taken into account the turbulent Auctuations of the injected fluid at
the wall; however, this approach seems the most promising to gather some physical
insights of the near wall physical processes for flows with strong injection.

Near-wall flow behavior is also an open issue in turbulence modeling for RANS ap-
plications. When low Reynolds number formulations are employed, suitable damp-
ing functions are employed to account for the attenuation of the turbulent effects
close to a solid wall. These functions should be appropriately modified to account
for the damping reduction due to fluid injection. Furthermore, the standard bound-
ary conditions adopted for no-slip walls (k=0) would be inappropriate for surfaces
with strong mass injection where velocity fluctuations seem to exist at the wall.

2. Approach

The main aim of this work was to investigate the flows subject to strong injection
from a porous wall. In particular, the objectives of the study were twofold: to assess
the applicability and potential accuracy improvement of advance turbulence models,
such as the v2f model, to the simulation of this class of flows; and to improve the
understanding of the fluid physics governing this turbulent flow and obtain some
physical insights on the near- wall turbulent structures.
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FIGURE 1. Nozzleless rocket motor. Broken lines indicate cross-sections where
experimental measurements are taken.

To this end, the research work has comprised two separate but complementary
activities. In the first activity, numerical simulations of a rocket chamber with
realistic flow conditions have been performed using the RANS equations and the
v?~ f turbulence model developed by Durbin (1991). The nozzleless motor geometry
tested by Traineau et al. (1986), for which experimental data were readily available,
has been selected for this computational investigation.

The second activity concerned a DNS analysis of a planar channel with mass
injection from both upper and lower walls, and periodic boundary conditions on the
four planes perpendicular to the walls, in the streamwise and transverse direction;
this configuration will be referred to as “periodic” motor. No DNS study of this
flow configuration has been performed thus far.

Finally, a third part of the work regarded the simulations of a channel flow with
injection from one wall and an equal suction at the opposite wall, for which DNS
data are available for comparison (Piomelli et al. , 1989; Sumitani and Kasagi,
1995). these three activities is given in the following.

2.1 Nozzleless motor

A schematic representation of the nozzleless rocket motor considered in this ac-
tivity is shown in Fig. 1. This is a 2-D planar, porous walled duct close at one
end and with a divergent section with impermeable walls at the other end. The
cylindrical port chamber has a length of 48 cm, a height of 2 cm, and wall porosity
equal to 50 micron; the diverging part has a length of 3.2 cm and a semi-angle equal
to 15 degrees; the expansion area ratio is 1.86. Air at a temperature of 260 K and a
pressure of 8 bar was used in the experiments of Traineau et al. Large injection flow
rates were attained in these tests: the injection mass flux was equal to 13 kg/sec/m?
while the injection Reynolds number was 7840; these represent typical values for
solid rocket motors; the mean flow Reynolds number based on throat conditions
was approximately 1.5 10°. Experimental data available at five axial stations along
the cylindrical duct (shown in F ig. 1) include: static pressure measurements, mean
velocity profiles, turbulence intensity, and Reynolds stress profiles.

Computations of the flow in this nozzleless duct were performed using the full
compressible Navier-Stokes equations together with the v? — f turbulence model;
simulations with a low Reynolds k-e model in standard form were also carried out for
comparison. The v2f turbulence model uses the standard k- € equations together
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FIGURE 2. Channel flow with injection and suction.

with a third transport equation for vZ?, which can be interpreted as the velocity
component normal to the streamlines, and an elliptic relaxation equation for 7,
representing the production of 22. More details on this model are available in the
literature (Durbin, 1991; Durbin, 1995). The v?— f model appears to be a promising
approach because it is based on elliptic relaxation rather than on algebraic damping
functions for predicting the near-wall turbulence. Wall turbulent injection can be
accounted for through assigned values of k and v? at the surface.

The computer code CFL3D has been used for the simulations. The value of
the mass flux as well as appropriate values of k and v? have been prescribed at
the porous wall together with a u = 0 condition; no-slip conditions have been
assigned on all solid walls, and symmetry conditions have been imposed at the
symmetry plane; extrapolation was employed at the outflow (supersonic) boundary.
It must be noted that a value of f must be specified at the boundaries; most of
the calculations have been performed imposing f=constant on both injecting and
impermeable walls. However, this condition is strictly applicable to solid walls.
Thus, some computations with the boundary condition df/dn=0 have also been
performed to check the effects of this condition of the flow solution. Furthermore,
all computations have been carried out using the standard values of the constants
which appear in the model.

A grid dependence study has been initially conducted to determine the grid res-
olution necessary to resolve the flow field with sufficient accuracy; three grid levels
have been used with 57x49, 113x97, and 233x165 grid points in the axial and radial
direction, respectively. Then, computations have been performed using both the k-e
and the v2f turbulence models and imposing different turbulent boundary condi-
tions at the porous wall, with free transition. Afterwards, some of the computations
have been repeated imposing a fixed transition, again with both turbulence models,
to investigate turbulent transition effects.

9.2 Channel flow with injection and suction

A analysis of the flow in a channel with injection from one wall and equal suction
on the other wall (Fig. 2) was carried out to test the v? — f turbulence model. A
1D channel flow code was used and no modifications to the original formulation
were employed to run the test cases except for the necessary changes to implement
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mass-injecting wall

FIGURE 3. Schematic representation of “periodic” motor with injection from both
walls.

the fluid transpiration boundary conditions. Cases with no wall transpiration and
with both weak (vt = 0.04) and strong (v* = 1.4) injection/suction have been
simulated.

2.8 DNS of “periodic” motor

Direct Numerical Simulations (DN S) of a turbulent channel flow with strong wall
injection are performed as a model for the flow in a solid rocket motor. The spec-
tral code of Kim et al. (1987), initially formulated for the turbulent channel flow
simulations, was modified to include mass injection on both walls. The spectral
formulation is based on Fourier series in the streamwise and spanwise directions
with Chebyshev polynomial expansions in the wall-normal direction. Since the
flow in a rocket motor accelerates in the axial (streamwise) direction due to the
mass injection, this results in streamwise inhomogeneity. To allow the use of pe-
riodic boundary conditions through the Fourier representation, the rocket problem
must be reformulated so that the streamwise homogeneity is preserved. This is
accomplished using a multiscale asymptotic representation of the streamwise ac-
celeration similar to the formulation used by Spalart (1988) for DNS of turbulent
boundary layers. To this end, we define the ratio of the injected mass flow rate
over the mass-averaged core flow rate, ¢ = Vinj/Um, to be a small parameter.
The mean velocity in the vicinity of a streamwise location z = 7 can be written
as U(z,y) = U(%,y)(1+ €(z — z)). Similarly, a multiscale representation of the
velocity fluctuations is given by ui(z,y,2,t) = A(X)i! (%,y,2,t) where @' is now
assumed to be homogeneous and 4 = 1 + €(z — ). The resulting equations for the
evolution of u; in the vicinity of z = # are then:

-%:—EU

8x,-

Ou; A Ou; _ Op 1 0%y,
ot + euy (u; —52'U2)+u'_6?g = f-a—m + EEW

In the derivation of the above equation, the following assumptions have been im-

posed dA/dz ~ ¢, A(X) =1, d?A/d2? = 0,and 1/4 4 dA/dz = 0.
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For each location of the rocket motor, a separate simulation is performed using the
above equations with periodic boundary conditions in the streamwise and spanwise
directions. Similar to Spalart (1988), the additional terms present in the fluctuating
continuity equation are set to zero (see the above mentioned assumptions), resulting
in the usual continuity equation, du’/dx; = 0. The flow variables have been non-
dimensionalized by the transverse (y) injection velocity, Vinj, and the channel half-
height, h, with the Reynolds number defined as Rein; = Vinjh/v.

Simulations are performed for two values of ¢, e = 0.04 and e = 0.1, representing
distinct regimes in the solid rocket motor and corresponding to non-dimensional
streamwise locations of 50 and 20, respectively. These two cases will be referred
to as Case A and Case B with the corresponding Reynolds numbers of 400 and
1000. A grid resolution study has shown that a 128 x 129 x 128 Fourier- Cheby-
shev representation is marginally adequate to capture the turbulence. The stream-
wise and spanwise computational domain periods are set at 4rh and 27h, respec-
tively. The resulting streamwise and spanwise grid spacings are Az = 0.0932
and Az = 0.0491, respectively. A non-uniform Gauss-Lobatto distribution ap-
plied in the transverse direction results in a minimum wall-normal grid spacing of
AYmin = 3.012 x 107* for the first point located away from the wall and a maxi-
mum value of Aymaez = 2.454 x 1072 at the channel centerline. The adequacy of
the grid resolution and the size of the computational domain have been assessed by
examining the two-point correlations and the one- dimensional energy spectra and
are found to be appropriate for the present study. Further, 3 /2-dealiasing is used in
the streamwise and spanwise directions while a variable time-stepping procedure is
applied to maintain a CFL number less than 2.8 (Spalart et al. ,1991). The compu-
tations are integrated in time until the flow reaches a statistical steady state. The
progress towards the steady state is identified by monitoring the temporal evolution
of the normal Reynolds stress components till they reach their stationary values.
Periodicity is applied in z and z while the boundary conditions in the transverse
direction are a uniform wall-normal velocity of v(y = £1) = F1 and no-slip for the
tangential velocity components.

3. Results

The results of the numerical simulations of the nozzleless motor, the channel flow
studies, and the DNS analysis of the “periodic” motor are reported in sections 3.1,
3.2, and 3.3, respectively. A synthesis of all results is provided in the subsequent
section 3.4.

3.1 Nozzleless motor

The results of the grid dependence analysis are shown in Fig. 4 both for the
k-¢ and v2f turbulence models. The velocity profiles of Figs. 4a and 4c clearly
indicate that the coarse grid does not provide enough spatial resolution to capture
the velocity field; both medium and fine grids give much better results even though
some small discrepancy is observed with the v* — f model. However, the analysis of
the turbulence kinetic energy profiles reveals a considerable increase of k values with
increasing grid spacing, indicating that grid independence is not achieved. It must
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FIGURE 4.  Grid dependence analysis, y/h = 30. —— : coarse grid (57x49);
----: medium grid (113x97); -------- : fine grid (233x165); o : experimental data.

be observed that no further refinement of the computational grid was performed
due to the extremely high computational time required. Therefore, all of the results
presented here have been obtained with the finer grid (233x165).

The computed pressure distributions along the motor centerline are compared
with the experimental values in Fig. 5; a strong pressure gradient is present in the
duct, and compressibility effects become relevant in the second half of the channel.
The small discrepancy observed in the pressure data is reflected in the » veloc-
ity axial distributions shown in Fig. 6. differences are observed between the two
turbulence models.

A comparison of the velocity profiles with the experimental data of Traincau et
al. (1986) is reported in Fig. 7a-e. The computed results are obtained under free
transition conditions and with no fluctuations at the wall, In the two initial stations,
predicted profiles lie below the experimental values: at z/h = 12 the computed
velocity profile approximates very well Culick’s inviscid distribution while at z Jh =
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FIGURE 6. Axial distribution of u velocity component.
o : experimental data.

24 the profiles start to transition toward a “fuller” profile; a full transition has
occurred at z/h = 30 and a turbulent velocity profile is attained more downstream.
The v2f model predicts slightly larger values than those computed with the k-¢
model.

Larger discrepancies are observed in the turbulent kinetic energy profiles illus-
trated in Fig. 8a-e. The higher experimental levels observed in the initial part of
the channel are probably due to the “pseudoturbulence” of the injected flow; as re-
ported by Traineau et al. (1986), transition to turbulence occurs between x/h = 20
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FIGURE 7.  Comparison of computed velocity profiles with experimental mea-
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z/h = 40; (e) z/h = 46. : k-6, ---- : v? — f; 0 : experimental data.

and z/h = 30, and the flow becomes fully turbulent beyond this location. The com-
putations predict a somewhat faster transition with higher k values within most of
the channel: an overprediction slightly less than 100% is observed in the middle of
the channel; this overprediction tends to decrease at locations more downstream.
The v? — f model predicts higher peak values and closer to the wall than the k-e
model.

The differences between computed and measured values may be due both to the
turbulence of the injected fluid and to transition effects. Fig. 9 shows the change
in the turbulent kinetic energy profile at z/h = 30 obtained with fuctuations at
the wall such that k = 75%V;‘:U-. The v2f prediction gives a reduction, although
rather limited, of the k peak; the levels predicted with the k-e model remain the
same, but the peak moves closer to the wall. The different results obtained with the
v?— f and k-e models may be related to the different transitional behavior of the two
models. A turbulent kinetic energy contour map is illustrated in Fig. 10; turbulence
transition is clearly revealed, indicating that the v2 — f model predicts an earlier
transition that the k-e model. This may explain the higher k values computed
with the »2f model. Computations were repeated fixing transition at z/h = 25;
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FIGURE 8. Comparison of computed turbulent kinetic energy profiles with ex-
perimental measurements at five axial stations - (a) ¢/h = 12; (b) z/h = 24; (c)
z/h = 30; (d) z/h = 40; (¢) z/h = 46. . k-¢;-—-- : v¥— f; o : experimental
data.

Fig. 11 shows the k profiles at two axial stations for the k = 75%V,-2nj injection case.
A much better agreement with the experimental data is now attained, indicating
that transition is indeed a major effect in the prediction of the turbulence levels.
Both turbulence models provide a rather good accuracy; it must be noted that the
values obtained in this work with the k-e model are considerably better than those
reported in the literature (Sabnis et al. , 1989a; Sabnis et al. , 1989b). This could
be related to a grid effect on the transitional behavior of this flow.

The effects of the turbulent boundary condition on the flow solution are illustrated
in Fig. 12. The fluctuations at the injection surface have some effects on the velocity
profile (Fig. 12a); however, the u velocity is basically the same regardless of the
fuctuation level. On the contrary, increasing the fluctuation level and, in particular,
the v? fluctuations tends to decrease the predicted k values, thus improving the
agreement with the experimental data (Fig. 12b). However, these effects are rather
limited. Also, the location of the k peak remains the same. Finally, Fig. 13 shows
the effects of the boundary condition imposed on the f variable, that is, f = 0 vs.
df /dn = 0; also in this case only small improvements are attained.
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FIGURE 10. Comparison of k-€ and v? — f turbulent kinetic energy contour maps.

3.2 “Periodic” motor with injection and suction

In Fig. 14a the flow in a channel with no wall transpiration is reported while
in Fig. 14b an injection/suction velocity corresponding to vt = 0.04 was applied
(the left side of the picture corresponds to the injection side while the right side
corresponds to the suction side). The agreement is remarkably good for both cases,
proving that the near-wall region is captured with a good accuracy by the v? — f
model in both cases. In particular, the strong asymmetry of the mean velocity
profile and the increased turbulent kinetic energy peak in the proximity of the
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FIGURE 12. Effects of turbulent boundary condition on v? — f computed results;
z/h = 30 - (a) velocity profiles; (b) turbulent kinetic energy profiles.
k = 0(nofluct.); === : k= 25%V,; vt = 2/3k; oo . k= 15%VE; v* = 2/3k;
—— k=T5%VE; vt = ko experimental data.

injecting wall are captured very well by the model.

9.9 “Periodic” motor with injection from both sides

As mentioned before, earlier experimental and numerical studies have shown that
the mean velocity does not differ significantly from the laminar inviscid similarity
profile obtained by Culick (1966). This solution is found to hold in the first half

portion of the rocket motor. In agreement with these previous results, the mean
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streamwise (Fig. 15a) and transverse (Fig. 15b) velocity profiles determined from
the DNS are seen to depart only mildly from the inviscid solution.

However, the departures from the analytical solution introduce inflection points
in the velocity profile located at y/h = 0.023 and y/h = 9.75 x 10~* for Cases
A and B, respectively; whereas the inflections in the similarity solution are at the
boundaries. The DNS computations performed by Nicoud (1997) reveal an inflection
point located at y/h ~ 0.07. This aspect may introduce stability consequence
though the presence of the wall injection makes it less clear.
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Dunlap et al. (1990) as well as several researchers (e.g. Liou & Lien, 1995) have
discussed the fact that, for injection-driven flows, the mean velocity distribution
is insensitive to the presence of turbulence and that the turbulent stresses have a
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second-order contribution to the mean momentum balance. Integrating the mean
streamwise momentum equation, we obtain:

————-W—VU~2/5U2dy= ap,
Y Az

Hence, the mean pressure gradient term is balanced by the Reynolds and viscous
shear stresses (similar to the turbulent channel flow) with two new terms: the
vertical convection, VU, and the streamwise acceleration, [ eU%dy. For the two
cases considered, the total shear stress is observed to make a small contribution (of
less than 20%) to the overall momentum transport balance, as is shown in Fig. 16.
This behavior is clearly different from that observed in turbulent channe] flows
where the mean flow is established from the balance between the turbulent shear
stress and the pressure gradient. Further, it is seen from Figs. 16a and 16b that the
magnitudes of the individual terms in the momentum balance are nearly twice as
large in Case A compared to those for Case B, signifying the increased contribution
of the convection and acceleration terms as the flow moves down the rocket motor.

Since the mean flow dynamics in the current injection-driven configuration have
been shown to be vastly different from those present in the turbulent channel flow,
it is not surprising that the distributions of the rms velocity fluctuations have signif-
icant departures from the channel, as seen in Fig. 17. Although the profiles for Case
A are similar to the ones found for the turbulent channel flow, the stresses reach
a peak farther from the channel walls, e.g. at a location of y/h ~ £0.83. Further,
it is observed that the cross-stream velocity rms, vym,, has the lowest magnitude
amongst the three components and has a peak value twice as high as that observed
for a turbulent channel flow, e.g 2.2 compared to 1.0. However, this behavior differs
significantly from the normal stresses obtained for Case B, where the peaks in the
streamwise and spanwise velocity rms are observed to move farther from the channel
walls at y/h = +0.63 while the cross-stream velocity rms shows a parabolic profile
with a peak in the channel core.

It is quite clear based on the results presented above that the statistical quantities
differ significantly from those of the turbulent channel low and are highly depen-
dent on the ratio of the injection to the axial velocity (i.e. the axial location in a
rocket) through the variable e. To gain further insight, the structural characteristics
dominant in the current flow configuration are mvestigated. It is observed that, for
the low injection ratio computed (€ = 0.04) corresponding to Case A, the flow has
a turbulent signature in which the small- scale structures are dominant, as seen
in Fig. 18a. However, at the higher injection ratio considered of ¢ = 0.1 for Case
B, the flow is characterized by near-wall large-scale coherent structures inclined at
an angle opposite to the mean flow direction, shown in F ig. 18b. These inclined
near-wall structures have a streamwise separation distance of 7, as computed from
the streamwise correlation coefficient, and are spanwise coherent. The coherence of
these spanwise structures is clearly captured in Fig. 19 where the contours of w, are
plotted in a zz-plane parallel to the wall at y/h = 40.96. It is quite evident that
the streaks dominant in conventional near-wall turbulence have been eradicated in
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the present flow. Instead, roller-like vortical structures dominate the near-wall sig-
nature. For Case A, although the near-wall streaks are also absent, the flow does
not reveal any near-wall coherent structures as in Case B. As a matter of fact, the
spanwise correlation coefficient is observed to drop sharply to zero for a location
close to the wall.

Another interesting flow feature observed in the high injection ratio case, Case B,
is the presence of two-dimensional convection cells captured in the span-averaged
stream-function, 1, contours, shown in Fig. 20. These cells are seen to alternate in
sign as they convect through the periodic computational domain. It is conjectured
that their presence is set up by a mechanism similar to the Benard convection cells
in buoyancy-driven flows since there is a large mean vertical acceleration at the
center of this flow.

3.4 Synthesis of results

In the attempt to perform a synthesis of the results, some comparisons among the
results obtained with the different methods have been made. Fig. 21a illustrates the
velocity profile in wall units at the injection surface for a strong injection parameter,
Vin J-+ = 1.4; the results computed with the v? — f turbulence model compare well
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contours represent clockwise (counter-clockwise) rotation with contours levels of
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FIGURE 19. Contours of instantaneous spanwise vorticity, w,, of the fluctuating
field at y = +0.96 for Case B. Dashed (solid) contours represent clockwise (counter-
clockwise) rotation with contours levels of (Wemin s Wrmas s Aw; ) = (=60, —5,5).

with the DNS data of Nicoud et al. (1995) while the values obtained in the present
DNS investigation appear to be somewhat lower. It must be remembered that this
flow geometry differs from that of the other two cases. All three curves differ from
the standard law-of-the-wall for no slip surfaces. The distribution of k+ along the
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(present results).

10°

height of the channel is shown in Fig. 21b. A rather good agreement in the peak
values is observed with a larger discrepancy in the peak distance from the wall
where blowing is applied. However, the model prediction is rather surprising.

A more comprehensive comparison of results is shown in Fig. 22, in which the
ratio of the skin friction coefficient with injection to the skin friction coefficient for
no slip conditions is plotted vs. a blowing parameter Bo. Three regions can be
identified on this plot; a low injection region (V,'nj+ = 0.05), a strong injection
region (VinjT = 1.4), and a very strong injection region (Vin;T = 4.). In all cases,
results follow the experimental correlation derived by Andersen et al. (1975); some
spreading of the present DNS data is observed. This correlation was indeed derived
from tests with very low blowing. These results seem to suggest that this correlation

may hold also for high injection rates.
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4. Conclusions

A study of internal flows with strong turbulent injection from the wall has been
performed. The work has comprised three main activities, RANS simulations of
a nozzleless rocket motor have been carried out using both a k-e¢ and the v? —
f turbulence models; results have been compared with the experimental data of
Traineau et ol. (1986). Both models largely overpredicted the measured values
when computations are performed with free transition. The correct capture of
transition explains most of the discrepancy observed as well as the difference in
the predictions of the two turbulence models. Compressibility effects also play a
non-trivial role. When transition is fixed (at z/h = 25) a much better agreement
is recovered. Furthermore, the present investigation has indicated a rather weak
effect of the turbulent fluctuations at the wall on the flow solution. The effects of
the f boundary condition for the v? — f model have also been investigated with
very small changes in the results. More extensive investigation of the applicability
of the v? — f turbulence model to this kind of flow is needed before any definite
conclusion may be drawn. 1-D simulations of a channel flow with injection from one
wall and equal suction from the opposite wall have also been performed. Results are
in very good agreement with the DNS data available for no or weak injection. The
results obtained for strong fluid injection appear to fall along the correlation curve
derived by Andersen et al. (1975). No fluctuations at the wall were introduced in
this channel flow study. Finally, a DNS analysis of a “periodic” motor with mass
addition from two opposite walls has been conducted with the aim of obtaining
some physical insights on the complex shear layer characteristics and turbulence
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structure near a wall with strong blowing. Results are presented for two cases
with diferent ratio of injection and centerline velocity. In both cases the near-
wall coherent structures present in channel flows without mass-injection have been
eradicated; in particular, at higher injection ratio the flow is characterized by large-
scale coherent structures inclined at an angle opposite to the mean flow direction.
Budgets of the streamwise momentum transport equation are also presented to shed
light on the role of the acceleration term (due to the mass-injection) on the flow field
establishment. The activities conducted in this work represent a first step toward
the understanding and improved modeling of the near-wall processes for this class of
flows. Results achieved are very encouraging, which should foster a more extensive
research in this field.
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RANS modeling for compressible
and transitional flows

By F. S. Lien!, G. Kalitzin AND P. A. Durbin

Recent LES suggested that the turbulence fluctuation in the wall-normal direction
v' plays an important role in the evolution of transition. This motivates the use
of v? — f model for turbomachinery flows, in which different types of transition
co-exist. An ‘ad hoc’ Reynolds-number-dependent term is added to C.; in the ¢-
equation in order to reduce the level of near-wall dissipation rate. As a result, the
onset and length of transition are greatly improved for a moderate level of free-
stream turbulence intensity. However, the peak of streamwise turbulence intensity
within the transition zone is underestimated. The implication of this is that the
intermittency effect needs to be incorporated into the model - for example, based
on the ‘conditioned Navier-Stokes equation’ which splits the equation into turbulent
and nonturbulent parts — in order to capture the correct physical mechanism of tran-
sition. Another objective of this study is to resolve the issue of whether the ‘elliptic
relaxation’ model can be used for supersonic flows. The results for the RAE2822
transonic airfoil will demonstrate that a good agreement with experimental data
has been achieved. This is because the pressure-strain term (~ f), though elliptic
in nature, acts simply as a source term in the vZ-equation, which is not associated
with the convection process.

1. Introduction

Turbomachinery flows, even in simple linear cascades, pose a range of physical, ge-
ometrical, and numerical challenges. The former includes the passing-wake/boundary-
layer interaction, shock/ boundary-layer interaction, rotation, tip and passage vor-
tices, impingement, separation, and transition. Because the turbulence level in com-
pressors and turbines is typically about 5 — 10% (except in the wakes, where the
turbulence level can be as high as 15— 20%), three types of transition are commonly
observed in gas turbine engines. The first is called ‘bypass transition’, in which
Tollmien-Schlichting waves are completely bypassed and turbulent spots are directly
produced within the boundary layer by the influence of free-stream turbulence. The
second, termed ‘separated-flow’ transition, often occurs in the free shear layer close
to the reattachment point of a laminar separation bubble. The third, caused by the
periodic passing of wakes from upstream airfoils, is called ‘wake-induced’ transition.
Moreover, pressure gradients due to curvatures of blade surfaces also influence the
evolution of transition. For example, favorable pressure gradient tends to delay
transition and, when the acceleration parameter K = v/U? (dUs /dz) > 3 X 107¢,

1 University of Waterloo, Canada
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results in ‘relaminarization’. On the other hand, adverse pressure gradient tends to
promote transition. Only the first two types of transition will be investigated here.

Modeling transition within the RANS approach was mostly based on the low-
Reynolds-number eddy-viscosity formulation. Examples include Launder & Sharma’s
k — ¢ model (1974) and Craft’s et al. k — ¢ — A; model (1995). Although these
two models can give credible results for a flow over a flat plate with a sharp lead-
ing edge at zero pressure gradient, the transition was predicted too early when the
flow is accelerated/decelerated, and in certain circumstances numerical instabilities
also occurred (see Chen et al., 1998a & 1998b, for details). In order to improve
these deficiencies, several researchers introduced the intermittency factor v into the
expression of turbulent viscosity:

vy = g, (1)

where v} is the turbulent viscosity from one of the conventional eddy-viscosity
models, in order to control the growth of transition through the level of turbulent
shear stress and, consequently, the production of turbulence. For example, Huang &
Xiong (1998) chose the v experimentally correlated by Dhawan & Narasimha (1958)
and combined it with Menter’s SST model (1993) for low-speed turbine flows. Stee-
land & Dick (1996), on the other hand, performed the ‘conditioned-averaging’ on
the Navier-Stokes equation, which was split into turbulent and nonturbulent parts.
Both parts together with a transport equation for v were solved simultaneously
for flows subjected to favorable/adverse pressure gradients. Recent LES for bypass
transitional flow (Yang et al., 1994) suggested that v' - the turbulence fluctuation
in the wall-normal direction — plays an important role within the transition process.
This motivates us to apply the v? — f model (Durbin, 1995), without the inclusion
of v at the present stage, to transitional flows, in which both bypass transition and
separated-flow transition involve.

The v? — f model consists of three transport equations for the turbulent kinetic
energy k, the dissipation of the turbulent kinetic energy €, and a transport equa-
tion for the energy of the fluctuations normal to the streamlines #2. In addition,
the model includes a Helmholz type equation for a quantity f which models the
pressure-strain term. This equation is elliptic in nature, and as a consequence in-
formation from all spatial directions is used to compute the variable f at a given
point. In regions of transonic flows where the velocity exceeds the speed of sound,
only information from the upstream direction is needed to compute mean flow pa-
rameters. In addition, any shock waves appearing in the flow may induce strong
spatial gradients in the source terms of the turbulent model. This raises the ques-
tions of whether the elliptic relaxation model is able to represent transonic flows and
how accurate it is in predicting the shock location in flows involving shock-boundary
layer interactions. This forms the second part of the present investigation.

2. Unified approach of v? — f model

The turbulent velocity and time scales, L and T, are determined from the stan-
dard k — ¢ equations:
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atk+U-Vk=Pk—6+V-[(u+-:—t)Vk], (2)
k

Celpk - Ce

B+ U Ve = - 25+v-[(u+§)v61. (3)

where T and L (to be used later) are:

372 3 1/4]

T = max [g,s(g)‘”], L = Cp max [—;—-,C,,(V?) (4)

In order to avoid the stagnation anomaly, the realizability constraints are imposed
on both scales (Durbin, 1996):

k3/2 1

k 1
T < — , L< = 5
~ V3 v2C, 1/25i;S;; V3 v2C, 1/25i;5i; ®)
where S;; = %(—g% + Z—lﬁ—). On no-slip boundaries, y — 0,
k
k=0, e—»2v;2—. (6)
The v2 transport equation is
3,55+U-vﬁ:kf—ﬁ%+v.[(u+—U"i)vzf], (7)
P— k
where
v?
kf =22 —€2+ 3¢ (8)

k

represents redistribution of turbulence energy from the streamwise component.
Non-locality is represented by solving an elliptic relazation equation for f:

[V - f = =(Ci- 1) {—,; - 2-] -G, ©)

The asymptotic behavior of ¢22 and €2 near a wall are (see, for example, Mansour
et al.,1988):

"2 52
$22 = —-22’6—6, E22 = 41—)’-‘:-5. (10)

where y is minimum distance to walls. This yields the boundary condition for f:

) 2,2
kf(0) — —5%5 or f(0) — _%_;’T (1)
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(Durbin, 1995)
The Boussinesq approximation is used for the stress-strain relation:

T2, w oV, o,
k 3V k0z + Oz; ) (12)

where the eddy viscosity is given by
ve = C,ov?T. (13)

The original boundary condition for f, ie. Eq. (11), involves £(0) in the de-
nominator, which is ill-defined in the laminar and transitional regions. This causes
oscillations for f(0) in those regions as illustrated in Fig. 1 for a boundary-layer
flow over a flat plate. As the flow becomes fully turbulent further downstream, f (0)
is well-defined and its distribution becomes fairly smooth. Note that the oscillatory
behavior of f(0) does not in any way influence the laminar flow solution, which is
governed mainly by the molecular viscosity of the fluid. This problem, most often
encountered when a segregated numerical procedure is adopted, can be overcome
by reformulating the underlined term of Eq. (7) as follows:

v2

k

ve

$22 —€22 + 6 ;

e

€—6—e¢, (14)

—

=kf

which changes slightly the definition of f. Important to know here is that such a
modification also ensures that vZ ~ y* as y— 0. Asy — oo, the kinematic blocking

effect arising from ‘elliptic relaxation’ should disappear, i.e. both k f — ';c—ze in Eq. (7)
and kf — 6-1—26 in Eq. (14) should be identical and equal to

—- 2
—c,%(vz - 3H - CoPs. (15)

Therefore, the use of kf — 6%6 requires the source term of Eq. (9) to be changed
to:
2 Py

1 v?
T [(Cl — 6)? - =(C; - l)jl - C, A (16)

3

To facilitate the coding, two variants of the v? — f model are combined into the
same set of equations:

1
T

Py

L*Vf—f= [(Cl - n)%; - ;(Cl - 1)} - Cy—, (18)
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FIGURE 1. Distribution of f(0) for a flow over a flat plate.

where n = 1 corresponds to the original v? — f model and n = 6 relates to the
variant of the model discussed in Lien & Durbin (1996). The constants of the

original model (i.e. n = 1) are:
C,=022, ox =1, 0, =13,
Cip=19, C1 =14, C,=03 (19)

Cer = 1.4(1 + 0.0454/ k/v?), C, = 0.25, Cy = 80. (20)

For n = 6, Ce1, CL, Cy needs a slight adjustment:

C. = 1.4(1 + 0.0501/k/v?) + 0.4exp(—0.1R,), Cr =023, Cp=70, (21)
n

where R, = k?/ev. The underlined term above is introduced to improve the predic-
tion of bypass transition (see Section 4.1 for details), and its effect on the solution in
the fully turbulent region is insignificant as illustrated in Fig. 2 for a fully-developed
channel flow at Re, = 395 (Kim et al., 1987).

3. Numerical method

All transitional flows in Sections 4.1 and 4.2 have been computed with the
STREAM general geometry, block-structured, finite-volume code (Lien et al., 1996).
Advection is approximated by a TVD scheme with the UMIST limiter (Lien &
Leschziner, 1994). To avoid checkerboard oscillations within the co-located storage
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FIGURE 2. Channel flow: (a) with 0.4exp(—0, 1R;)in C.;; (b) without 0.4 exp(—0,1R;)
in Cyy; kt(comp); —--— 10e*(comp); - --- 1)_2F(comp); = kT (DNS); e 10 *(DNS);
. v2' (DNS).

arrangement, the “Rhie and Chow” interpolation method (1983) is used. The solu-
tion is effected by an iterative pressure-correction SIMPLE algorithm applicable to
both subsonic and transonic conditions.

The transonic computations in Section 4.3 were performed with the CFL3D
computer code (Krist et al, 1998), which solves the time-dependent thin-layer
Reynolds-averaged Navier Stokes equations using multi-block structured grids. A
semi-discrete finite-volume approach is used for the spatial discretization. The con-
vective and diffusion terms are discretized with a third order upwind and a central
difference stencil, respectively. The code uses flux-difference splitting based on the
Roe-scheme. Time advancement is implicit. Approximate factorization is used to
invert the mean flow system of equations. The steady-state computations have
been performed by marching in time from an initial guess. Multigrid and local time
stepping are used for convergence acceleration.

The v? — f model is solved separately from the mean flow. The k and ¢ equations
as well as the v? and f equations are solved pairwise simultaneously. First-order
upwind discretization of the convective terms has been employed. The time in-
tegration of the equations is implicit. The boundary conditions are also treated
implicitly. Approximate Factorization (AF) and the Generalized Minimum Resid-
ual (GMRES) (Saad, 1986) algorithm are used to invert the resulting matrices.
While the latter is more robust, it requires more computational memory. The AF
method decomposes the matrices formed by the implicit operator into 1D tridi-
agonal matrices. This allows a very fast inversion of the matrices with very low
memory requirements. The splitting, however, is an approximation and introduces
error terms which necessitate smaller timesteps.
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4. Results and discussion

4.1 Flow over a flat plate with o sharp leading edge at zero pressure gradient

The first problem investigated here is the simplest (though fundamentally impor-
tant) transitional-flow test cases proposed in the European Research Community
On Flow Turbulence And Combustion (ERCOFTAC) Special Interest Group on
Transitional Modeling, which include cases T3A, T3A-, T3B, T3B+ and T3Bpns
(see Savill, 1993, for details). Two cases, namely T3A and T3A-, will be presented
and the corresponding initial conditions are given in the following table:

T3A| Tu=3% Us =19.6 m/s| lcoc =5.2 mm at x=-150 m
T3A] Tu=09%| Us =5.2m/s l,oo =10.4 mm| at x=-150 mm

The computation domain extends to 0.15 m upstream of leading edge, allowing the
free-stream turbulence quantities to be specified as the in-flow condition:

k32
mn (22)

leoo

kin = 1.5(Tu Uso)?, €in =

The computational mesh for T3A, containing 200 x 50 nodes, is employed here, in
which sufficient number of grid lines are clustered towards the leading edge. As the
turbulence transport plays an important role in triggering the bypass transition, it 1s
crucial to use a second-order convection scheme for both momentum and turbulence
quantities (Chen et al., 1998a).

Predicted skin-friction distributions for T3A and the corresponding profiles of
mean-velocity and turbulence-intensity u' at three locations across the laminar,
transitional, and fully-turbulent regions are given in Figs. 3-5. As seen from Fig. 3,
the introduction of the transition-correction term 0.4 exp(—0.1R;) to C.; signifi-
cantly improves the prediction of the onset of transition. As a result, the U-profile
within the transition zone (x=595 mm) is better predicted in comparison with the
original model. Although the new R,-dependent term in C,; does better predict
the location of the peak value of u', the level of turbulence intensity is too low,
particularly at x=595 mm. This discrepancy is partially due to the use of Boussi-
nesq stress-strain relation, in which turbulence intensities are assumed to be locally
isotropic (~ 2k). The new R,-dependent term also acts to further suppress the
u' level by increasing slightly the value of C.; near the wall, which suppresses the
generation of turbulence energy and, consequently, delays the onset of transition. It
is clear that the mechanisms of triggering and controlling the evolution of transition
process are different in the experiment and in the model. The LES work of Yang
et al. (1994) suggested that u' and v’ are not well correlated within the transition
region. So far only the LES results are able to predict the correct peak of u' within
the laminar and transition regions.

The skin-friction distribution for T3A- case, of which the level of free-stream
turbulence intensity and dissipation-rate length scale are lower than T3A, is given
in Fig. 6. As seen, the onset of transition is too early, and the sensitivity of the
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R;-dependent term to very low turbulence intensity is too weak. One possible rea-
son for this is that at Tu = 0.9% the influence of Tollmien-Schlichting waves might
not be entirely negligible. The results suggest that the dissipation equation and,
likely, the ‘elliptic relaxation’ equation, which is responsible for energy redistri-
bution among different Reynolds-stress components, require further re-calibration,
particularly within the transition region. The introduction of intermittency factor
7 into the model will increase the model’s sensitivity to a number of flow features
such as pressure gradients and free-stream turbulence level, depending on how v is
correlated. To pursue this modeling approach further, the provision of DNS data is
indispensable.
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4.2 Double-circular-arc (DCA) compressor blade

The experimental data for DCA compressor blade was obtained by Deutsch &
Zierke (1988) using one-component LDV system. The blade is formed by two circu-
lar arcs and has a 65° camber angle, a 20.5° stagger angle, a solidity of 2.14, and a
298.6 mm chord length. Three incidence angles were measured and only i = +5° —
the one with massive trailing-edge separation as illustrated in Fig. 7 — is considered
here. The Reynolds number, based on the inlet velocity and blade chord length, is
505,000. The turbulence intensity and length scale, recommended by Chen et al.
(1998b) and used herein, are Tu = 2% and l,.o= 4.5 mm, which give the correct
turbulence level at the edges of boundary layers in accord with the experimental
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F1IGURE 7. DCA compressor blade: massive trailing separation.

data. An 8-block computational mesh of 25,000 nodes, which surrounds the blade
and extends in the cross-stream direction from the middle of one passage to the
middle of the adjacent ones, is employed.

Experimental data suggests the existence of a large separation bubble near the
leading edge. To resolve this feature, it is important to impose the realizability con-
straint on turbulence time and length scales in order to reduce excessive turbulence
energy close to the stagnation region. The turbulence-energy contours obtained with
and without the realizability constraint are shown in Fig. 8, and its impact on the
size of leading-edge separation bubble are given in Fig. 9. As seen from Figs. 8 and
9, the separation bubble obtained with the realizability constraint is considerably
larger than that obtained without the constraint. This is because without the con-
straint the turbulent mixing along the curved shear layer is too high, which entrains
too much fluid into the bubble and, as a result, causes a too early reattachment.

The differences in the fluid displacement close to the leading edge also affect the
development of the boundary layer further downstream. This is illustrated by the
streamwise velocity profiles at two locations, z/¢ = 12.7% and z/c = 94.9%, given
in Fig. 10. The model without the realizability constraint appears to predict well
the velocity profile at z/c = 12.7%. However, the flow is too turbulent, which tends
to resist separation. As a result, the boundary layer at z/c = 94.9% is slightly too
thin. On the other hand, the use of realizability constraint overpredicts the size of
leading-edge separation bubble, which results in slightly too thick boundary layers
at both z/c = 12.7% and z/c = 94.9%.

The distributions of pressure coefficient C)p on both sides of the blade are given
in Fig. 11. The pressure plateau, clearly seen on the suction side beyond 80% of the
chord, indicates that a massive trailing-edge separation exists. The model without
including the realizability constraint predicts a too early pressure recovery on the
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suction side, which is consistent with a too thin boundary layer at z/c = 94.9%
observed in Fig. 10. Overall, it is fair to say that the results returned by the v2 — f
model variants agree reasonably well with the measurement even in this complex
flow involving impingement, transition, and massive separation.

4.3 RAE2822 transomic airfoil
Flow around the transonic RAE2822-airfoil has been chosen to study the perfor-

mance of the v2 — f model in predicting s
test cases, case 9 and case 10, from the ex

hock-boundary layer interaction. Two
periments by Cook et al. (1979) have

been considered. The flow conditions for these cases differ only slightly in Mach and
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FIGURE 12. RAE2822 airfoil: computational mesh 256x64.

Reynolds number. While in case 9 the shock is too weak to induce separation, for
case 10 the flow separates at the shock. The amount of separation and the position
of the shock is very dependent on the turbulence model used.

The experimental data was obtained in the wind tunnel for the flow conditions:
case 9: M = 0.73,Re = 6.50 108, = 3.19°; and case 10: M = 0.75,Re =
6.20 106, a = 3.19°. Transition has been tripped in the experiments near the leading
edge of the airfoil at z/c = 0.03 on both the upper and lower surface of the airfoil.

To compare the experimental data with the computed flow around the airfoil in
free-flight conditions, corrections to the tunnel data are required. Different wind
tunnel corrections have been used in the various studies published in the literature
(see Haase et al., 1992, Krist et al., 1998, and others). The flow conditions used in
the EUROVAL-project are adopted here. They are for case 9: M = 0.734, Re =
6.50 105, @ = 2.54; and for case 10: M = 0.754, Re = 6.20 10%, 0 = 2.57. Note that
for case 10 in particular, researchers tend to compute the flow with a slightly larger
angle of attack. Clearly, this influences the location of the shock. The shock location
and the pressure distribution, particularly on the suction side, are influenced by the
outer extent of the computational domain. The finite far field boundary causes a
lower circulation around the airfoil, leading to an underprediction of lift. A vortex
correction to the far-field boundary condition adjusts the circulation around the
airfoil and has, therefore, been employed for the present computations.

In addition, computations have been carried out with the Spalart-Allmaras (1992)
and Menter SST (1993) models to allow a comparison of results computed with the
same flow solver. Both these models are included in the standard release of CFL3D,
version 5.0. The v? — f model has been implemented in CFL3D in its original form.
This corresponds to setting n = 1 in Eqs. (17) and (18). Transition has been fixed by
switching of the production terms in the equations as described in Kalitzin (1997).
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FIGURE 13. RAE2822 airfoil: pressure and skin friction distribution; case 9,
: v? — f 256x64, ~—-- : v? — f 512x128, o : expt.
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FIGURE 14. RAE2822 airfoil: pressure and skin friction distribution; case 9,
: v? — f, ---- : Spalart-Allmaras, ------- : Menter SST, o : expt.
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FIGURE 15. RAE2822 airfoil: pressure and skin friction distribution; case 10,
R VL S Spalart-Allmaras, -------- : Menter SST, o : expt.
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The present computations were carried out using the EUROVAL mesh, which
consists of 256x64 cells. 192 cells are located on the airfoil surface. The far field is
about 15 cord lengths from the airfoil. The average y* value of the first cell above
the wall is about 1. The airfoil is represented in this mesh along the measured (not
the designed) airfoil contours. The mesh is shown in Fig. 12.

A grid dependency study has been carried out with the v? — f model for case
9 on a mesh with twice as many cells in each direction. The average y* value
of the first cell above the wall is for this mesh about 0.5. The pressure and skin
friction distribution is almost mesh independent as indicated by the results shown
in Fig. (13).

A comparison of the pressure and skin friction distribution computed with the
v? — f, the Spalart-Allmaras and the Menter SST models are shown in Figs. 14 and
15 for case 9 and 10, respectively. While the pressure distribution agrees quite well
with the experimental data for all models for case 9, the shock location is generally
too far downstream for case 10. The v? — f model predicts the shock location very
similarly to the Spalart-Allmaras model in both cases. It is, however, interesting
to note that the skin friction computed with the Spalart-Allmaras model for case
10 reveals a fully separated flow from the shock downstream to the trailing edge.
One would expect that this separation would lead to a thicker boundary layer with
the consequence of a shock location further upstream. The SST model, in contrast,
predicts the shock further upstream while the separation bubble is of similar size
as with the v2 — f model. It is also interesting to note the similarity in the skin
friction on the pressure side of the airfoil for the Menter SST and the Spalart-
Allmaras models. The skin friction predicted with the v? — f model is slightly
larger here than with the other two models.

The lift and drag coefficients for case 9 and 10 are given in the table below. For
the v — f model the predicted force coefficients lie somewhere in between the ones
obtained with the Menter SST and Spalart- Allmaras models.

v? — f (512x128) v? — f| Spalart-Allmaras| Menter SST [Expt
case 9
CL 7983 7995 .8066 7789 .803
Cp .01645 01733 .01738 .01611 .0168
case 10|
CyL 1570 7628 7262 743
Cp 02587 | .02645 .02407 0242

The convergence of all three models investigated for case 9 required about 1000
iterations for a 5-order magnitude drop in the L2 norm of the residual of the mean
flow and turbulence quantities. In the v? — f computation of case 10, however, small
unsteady oscillations in v? and f were observed between the shock and the trailing
edge. These oscillations are caused by the use of local timesteps for the turbulence
equations. The computation fully converged when a constant timestep was used
throughout the boundary layer. The results presented were achieved by using local
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timesteps for the mean flow and constant timesteps for the turbulence equations.
This finding requires further investigation.

5. Conclusions

A unified formulation of the v? — f model, which allows two types of boundary
conditions at walls depending on the value of integer ‘n’, is adopted here with
application to both transitional and compressible flows, the latter involving shock
waves. The outcome of the present study permits the following conclusions to be
drawn:

(1) In most cases (some of the results are not included here for brevity), both variants
have very similar performance. The ‘code-friendly’ version (i.e. n=6) is numeri-
cally more robust for transitional flows when an uncoupled solution procedure is
adopted.

(2) The performance of the v2 — f model for a flow over compressor-cascade blades,
involving both the leading-edge and trailing-edge separation, are very encourag-
ing. The imposition of realizability constraint on turbulence scales significantly
reduces the level of turbulence energy at the stagnation region. Although the
size of the resulting laminar separation bubble is slightly too large, the velocity
profiles close to the trailing edge are in good agreement with the experimental
data.

(3) In order to model the transition mechanism on the basis of physical ground, the
intermittency effect needs to be incorporated into RANS models. The DNS data,
once available, will provide detailed information in terms of the Reynolds-stress
budget and intermittency factor, which can be used to re-calibrate the pressure-
strain term and turbulence-dissipation equation within the transition region.

(4) Combining Dhawan & Narasimha’s intermittency factor with the v? — f model
based on the conditioned Navier-Stokes equation approach is currently under
investigation.

(5) The results obtained with the v2? — f model for the RAE2822 airfoil demonstrate
the capability of predicting transonic flows around airfoils. The present compu-
tations were carried out with the original model setting n = 1. Generally, the
model converges well even on the finer mesh. This is attributed to a pairwise im-
plicit solution of the model’s equations and an implicit treatment of the boundary
conditions.
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Modeling of natural convection heat transfer

By S. Tieszen, A. Ooi, P. Durbin AND M. Behnia

Results from two-dimensional calculations using the v? — f and a k — € model
are compared with data for two geometries, the vertical flat plate and the 5:1
height:width box with a constant temperature hot and cold side wall. The results
show that the v2 — f model is at least as good asa k —¢€ model with a two-layer wall
treatment. The nature of buoyancy/turbulence coupling is discussed, and three
different treatments of it are compared. Preliminary results show that all three
treatments have little effect on the heat transfer in fully turbulent conditions but
that the generalized gradient diffusion hypothesis can make a large difference in the
location of transition with the v? — f model.

1. Introduction

The progress reported in this study is part of a continuing effort to explore the
predictive capability of the v? — f elliptic relaxation approach (c.f. Durbin 1991,
Durbin 1993, and Lien & Durbin 1996) as a wall treatment. Of particular interest
to the current study is the determination of the usefulness of the v? — f approach in
predicting heat transfer in flows in which buoyancy plays a large role. The v~ f
approach has proven useful in predicting heat transfer in forced convective flows
(Durbin 1993, Behnia et al. 1996, 1997).

The prediction of heat transfer in buoyancy influenced flows is important for a
number of engineering applications, including cooling of electronics, heating and
cooling of buildings, process heat transfer (e.g., heat exchangers), and safety ap-
plications (e.g., heat transfer from fires). In many of these applications, mixed
convection exists in which both forced and free convection contribute to the heat
transfer. As a precursor to attempting the complexities of mixed convection heat
transfer, the current study will focus on heat transfer in purely buoyant flows. How-
ever, since our ultimate objective is mixed convection, we will limit our scope of
natural convection to those scenarios that are associated with some definable av-
erage mean flow. Thus, we will not look at turbulent natural convection in boxes
that are uniformly heated from below.

Buoyant flows differ from forced convective flows in some significant aspects. In
particular, in subsonic forced convective flows, the coupling between the momentum
and energy equations tends to be one-way with momentum affecting the advection
term in the energy equation. The energy equation typically does not feed back
into the momentum equation directly. In buoyant flows, the coupling is direct and
two-way with the density gradient in a gravity field appearing in the momentum
equations. There is little disagreement about the effect of buoyancy on the mean
flow.
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On the other hand, the nature of the coupling between buoyancy and turbulence
generation is a matter of considerable speculation (Tieszen et al. 1996). Take a
vertical plume as an example. Vortex dynamicists tend to view buoyancy in terms of
baroclinic vorticity generation (BVG). BVG is proportional to the density gradients
that are normal (perpendicular) to the pressure gradients. Hence, in a gravitational
field, temperature gradients perpendicular to gravity (i.e., horizontal) tend to result
in generation of vorticity. The resulting vorticity field is the gradient of velocity in
which the hot fluid rises and is replaced by transverse inflow. The interaction of
these vortical structures is chaotic and turbulence results. In the more traditional
perspective, density gradients produce vertical momentum. Conservation of mass
requires a transverse inflow to replace the vertically accelerating low-density (high
temperature) fluid. Large-scale instabilities occur as the flow accelerates and a
turbulent cascade results.

In either view, turbulence is not a direct result of buoyancy, but of instabil-
ities (traditional view) or chaotic interactions among vortical structures (vortex
dynamics view). The fundamental question underlying the effect of buoyancy on
turbulence is at what length scales does buoyancy express itself. If buoyancy ex-
presses itself at the global length scales, then it need only be represented in the
mean flow equations. If buoyancy is responsible (in part) for the large-scale insta-
bilities, then perhaps its coupling to the turbulence is present but weak since flow
instabilities will result in a cascade independent of buoyancy. On the other hand,
if buoyancy produces small-scale instabilities (or vortical structures, depending on
your viewpoint) then the buoyancy-produced structures interact directly with the
existing turbulence and the coupling may be strong. The length scales over which
buoyancy expresses itself are not currently well understood. Hence, the difficulty in
modeling their interaction with turbulent momentum.

Turbulence expresses itself in the Reynolds Averaged Navier Stokes (RAN S) equa-
tions as long time or ensemble averages of unresolved temporal fluctuations. In the
mean flow equations, these are the Reynold stresses in the momentum equations,
p (uiw;), and turbulent flux in the energy equation, p (uih). In either case, buoy-
ancy does not change this result, i.e., the buoyant term is linear so does not show
up as a non-linear cascade requiring an independent closure term. In RANS mod-
eling, buoyant-turbulence interaction expresses itself as a production term in the
turbulence equations. In the context of the current study, this is in the k, €, and
f equations. Therefore, in the current modeling strategy, the buoyancy/turbulence
interaction question becomes one of modeling the production term in these equa-
tions.

Hanjalic (1994) gives a good overview of the different levels of buoyancy modeling
that have been attempted. He begins with a second order closure and shows suc-
cessive simplifications that can be made through algebraic stress models to models
compatible with k — € level approaches. To represent flows without a steady mean
flow, such as the bottom heated box, it is necessary to include temperature fluctua-
tions as a source term. Hence a transport equation for temperature variance and, in
some cases, 1ts dissipation need to be modeled. Since this set of problems is beyond
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the current study’s interest, simpler closures (simple and generalized gradient) will
be adopted as well as leaving the buoyancy only in the mean flow equations. This
approach is more recently justified by the DNS study of Boudjemadi et al. (1998).
For studying heat transfer, the velocity and temperature gradients in the near wall
region are important. The velocity profile in a natural convection boundary layer
is somewhat similar to a wall jet (Tsuji & Nagano 1988). However, the natural
convection boundary layer has an interesting feature in the near wall region not
found in momentum driven flows. From the wall to the velocity maximum, buoyant
production offsets viscous production of ujuz so that in the near wall region the
absolute value of u;uz is lower than would be found in a wall jet — nearly zero. As a
result, ujuz is not correlated well with the mean velocity gradient (U /0z3). Hence
the gradient diffusion approximation for momentum (eddy viscosity) breaks down
in this region. The gradient diffusion approximation is still good for the turbulent
thermal flux, however, in the same region. In the outer flow, from the velocity
peak outward, the turbulence values are similar to those in a wall jet. This near
wall feature indicates that buoyancy does have an effect on the turbulence at small
length scales, sufficiently strong to cause a qualitative difference in the flow.

Since the near wall region is important to heat transfer, it has been found that
the wall treatment is very important to modeling the heat transfer (Ince & Launder
1989, Henkes 1990, Henkes & Hoogendoorn 1989, 1995). For example, Henkes
(1990) found that for a hot plate at Ra = 10!, standard k — e without a wall
treatment resulted in a prediction 52% over experimental values. With the wall
treatments he tried, the discrepancy was about =+ 17%.

Therefore, even though the v? — f approach for wall treatments has proven success-
ful, because of the physical differences between buoyant flow and forced convection
flows, and the sensitivity of heat transfer to wall treatments, it is necessary to test
the v? — f model in these flows. Two standard tests cases were chosen and will be
discussed in the next section. The models and numerics will be discussed following
the description of the test cases, followed by results and conclusions.

2. Benchmark problems

Two benchmark problems, shown schematically in Fig. 1, were chosen: the first is
the heated vertical plate; the second is the hot wall - cold wall box. These flows have
been studied both experimentally and numerically. As a consequence, COmMparisons
can be made with both the data and other models.

There are two difficulties with buoyant flows that affect to one degree or another
all the data. The first difficulty is that purely buoyant flows that have been studied
experimentally undergo a laminar to turbulent transition (other than the box heated
from below). Transition is not a challenge experimentally, but computationally it
is difficult because of the complex physics and small scale structures involved. In
the boundary layer problem, numerical transition is usually handled by artificially
tripping the boundary layer at the experimentally determined location. However,
in the box problem, which is elliptic in nature, it is difficult to artificially trip the
solution. Therefore, the comparison is complicated by uncertainties in both the
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FIGURE 1. Benchmark problems for comparison with v? — f results. (a) is a

schematic of the vertical flat plate boundary layer problem and (b) is the heated
rectangular box.

turbulent heat transfer prediction and the location of transition, which strongly
affects the flow pattern.

The second difficulty with natural convection flows is that they are generally
low velocity (low momentum) and coupled into the energy equation so they are
difficult to stabilize into a prescribed flow pattern. The experimental studies selected
for benchmarks all attempted to produce two-dimensional flow patterns so as to
facilitate comparison with numerical data. It has proved particularly difficult to
produce a truly two-dimensional flow in the box geometry. Numerically, the low
momentum and tight coupling with the energy equation expresses itself in long
iteration times to reach steady state.

The heated vertical plate is the simplest canonical flow for buoyant heat transfer.
As such it has been studied experimentally by a number of investigators including
Warner & Arpaci (1968), Cheesewright (1968), Pirovanov et al. (1970), Siebers,
Schwind & Moffat (1983), and Tsuji & Nagano (1988a, 1988b). Numerical simula-
tions of the heated plate include Lin & Churchill (1978), Henkes & Hoodendoorn
(1989), and Peeters & Henkes ( 1992).

The hot wall - cold wall box is more complex than the boundary layer in that it has
a temperature gradient along the vertical centerline and adverse pressure gradients
as the flows approach the corners. Data for box geometries include Cheesewright,
King & Ziai (1986), Cheesewright & Ziai (1986) and King (1989) for a 5:1 vertical to
horizontal aspect ratio and Betts & Bokhari (1995) and Dafa’Alla & Betts ( 1996)
for a 28.6:1 aspect ratio. Numerical simulations of the hot wall - cold wall box
include Henkes & Hoogendoorn (1995) for the 5:1 box and Bassina et al. (1998),
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for the 28.6:1 aspect ratio.

3. Computational models

For the problems studied, variable density was allowed only in the buoyancy
term (Boussinesq approximation). With this simplification, the RANS mean-flow
equations are:

9, v vy 2 (w2 Y28, O ot
gt_(pUi)+ax] (pU'UJ) - axJ (p’ (61:] + or; ))_az_' _g!ﬂ(e—eoo)+ axj(_p <u'u’J))
(1)

0 O (7]

2 (pey0) + po-(pUics®) = 5o (:32) + rrtust) @
where () denote ensemble averaging. © and @ are the mean temperature and its
fluctuating part respectively. All other symbols have their usual meaning. For the
vertical flat plate, the standard boundary layer approximations are used and the
parabolic equations are solved.

For the momentum equations, the Reynold stress term (u;u ;) is closed with the
usual simple gradient assumption.

I EAYYS ou; , 9U;
pluiuj) =p (:‘3‘) kéij — e (3:1:,' + 8:5,‘) (3)

This assumption is made for convenience only. The data of Tsuji & Nagano (1988b)
show that from y* of about 20 to 100 that (ujuz) is not correlated with the mean
velocity gradient (in this paper 1 & 2 are the streamwise and cross-stream indices
respectively). To correctly model this trend in the data, a more general algebraic
or second order closure model for momentum would be required (Peeters & Henkes
1992). It may be expected that ignoring this trend will produce a difference in the
calculated skin friction. However, for this study, we will assume that the effect of
modeling the momentum transfer in the boundary layer with the simple gradient
diffusion approximation will have little effect on the heat transfer predicted. To
validate this assumption, comparison with experimental data must be made.

The v? — f model of Durbin (1995) is used to obtain the eddy viscosity and
provide a wall treatment. The eddy viscosity is given by:

pe = pCu0®T (4)

where k, €, v2, and f are given by the solutions of

ov? dv? g € 0 v\ Ol
it ’Ea’kf—”EJrEE[("*LEZ)a—m;] (5)
o’ f [(2/3) — v*/k] il
2 — — . - p—
L 0z;0z; f=0-0) T ¢ k ©)
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Ok Ok 0 ve\ Ok
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with time and length scales given by
i3 3\ 1/2
k vy\1/2
T = max [;,6(;) ] (10)
The model constants are
Cu=022,C, =1.9,C; =14
C2=03,C1 =0.3,C, = 70 (11)
o =1.0,0,=1.3
In Egs. (6), (7), and (8) the production term is given by
_ ou; | U\ au;
P =y (_37.-'--37]) s +G (12)

where G is the buoyant production term and will be subject to several treatments
as described below.

The standard k — € model is given by Eqgs. (7) & (8) with time scale T = k/e.
The buoyant production term is not included in the € equation (Eq. (8)). The

eddy viscosity is given by
L2
#e = pCyu— (13)

The two-layer wall treatment is the one-equation model of Wolfstein (1969). In

the inner layer where

k! 2yp

ey = < 200,
the eddy viscosity is given by
e = pC,k 21, (14)

and
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k3/2

= (1o (-22)) -
a1 (-22)) o)

The constants used to simulate this model can be found in Chen & Patel (1988).

Specification of the turbulent thermal flux is required to close the mean energy
equation (Eq. (2)). In the current study, (u;6) is closed by the simple mean gradient
assumption consistent with the eddy viscosity closure for momentum. The ratio of
turbulent to thermal eddy viscosity is the turbulent Prandtl number, Pr,. Its value
is 0.9 for the current study. The closure term is

Vt 3@
(u:6) = Pr, Oz; (18)

Tsuji & Nagano (1988b) show that the cross-stream thermal flux is correlated with
the mean cross-stream temperature gradient (i.e., it remains positive with a negative
temperature gradient) for a large part of the boundary layer. The turbulent Prandtl
number ranges from 0.9 to about 1.1 before it becomes ill defined from the velocity
peak to the wall, suggesting that this assumption might not be valid in the inner
region of the boundary layer.

In keeping with the uncertainty in the physical coupling of buoyancy and tur-
bulence, several treatments are employed to close the buoyant production term in
Egs. (6), (7), and (8). In all cases, the buoyant production term is given by,

G = —Bg (u19), (19)

where 3 is the thermal expansion coefficient. B = 1/T for the cases studied here
(air as the fluid).

In the first level of treatment, G is set equal to zero. This level of treatment is
consistent with the assumption that buoyancy affects only the global length scales
of the problem and expresses itself in turbulence only through velocity gradients
that produce the Reynold stresses.

The second level of treatment is to employ the simple gradient diffusion ap-
proximation for (u;f) consistent with the approximations used in the mean flow
equations. This approximation gives

g v 00
T PT‘¢ 61‘1
This approximation is the most common, and perhaps its use is more for consistency

of approximation in all equations than in its physics representation. In Eq. (20),
the production term is proportional to the temperature gradient in the direction

G = (20)
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of gravity. Therefore, this mechanism only allows buoyancy to be represented by
streamwise temperature gradients. In stratified flows, clearly the vertical temper-
ature gradient will affect the flow (Rodi 1987). However, Eq. (20) suggests that
stratification strongly affects the length scale at which buoyancy expresses itself. If
the flows are not stratified, then buoyancy expresses itself only in the mean flow
equations (global problem length scales). If it is stratified, then buoyancy expresses
itself in turbulent production (length scales within the turbulent spectrum). Typi-
cally, the vertical stratification in many flow situations is small compared to cross-
stream gradients such as in the problems studied here. It is not clear how shallow
vertical temperature gradients could reduce the scale of the buoyant instabilities to
create turbulent production, yet sharp horizontal gradients express themselves only
at global problem length scales (i.e., no production from cross-stream derivatives).

The third level of treatment is to employ the generalized gradient diffusion ap-
proximation (Daly & Harlow 1970 and Ince & Launder 1989) for (u;0). This is
the simplest closure known to the authors for which temperature gradients perpen-
dicular to gravity result in buoyant production. The generalized gradient diffusion
hypothesis (GGDH) is

00

a.
Oz;

with the Reynold stresses given by Eq. (3). In the boundary layer implementation,
the streamwise derivatives are dropped.

For the vertical plate, a parabolic marching solver is used. The first mesh point
is located at y* ~ 1, with 200 mesh points in the cross-stream direction. The
mesh is not evenly distributed, but stretched in the cross-stream direction using
a hyperbolic tangent function. For selected calculations, the mesh was doubled
and no significant changes were found. For the box problem, a commercial code
(FLUENT 4.4) is used. The solver employed was uses the SIMPLE algorithm and
the QUICK second order interpolation scheme. The first mesh point was located at
y* =5 with a 150 x 150 mesh grid. The mesh is not evenly distributed. Fine mesh
is used close to the wall and gets coarser towards the center plane of the box. For
selected cases, a 75 x 75 mesh grid was employed and small changes were noted in
the solutions, so subsequent runs were all made at 150 x 150.

G = ~gifies” (uin;) (21)

4. Results

Solutions using the v% — f model are compared with experimental data in Figs. 2-4
for the vertical plate benchmark. F igure 2 shows the v — f model and data sets
for local Nusselt number versus Rayleigh number, where

_ gBAOL3Pr

ve

Ra, = Gr Pr (22)
and Gr; is the Grashof number. The calculation used the level 1 treatment for
buoyancy, i.e., it was not included in the production terms. The calculation was
started with a laminar profile as the inlet boundary condition and marched up
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Gr Pr

FIGURE 2. Nu, vs. Ra, for the vertical flat plate boundary layer. v:—~f
turbulence model, x Cheesewright (1968), #Pirvano et al. (1970), o Tsuji & Nagano
(1988), * Warner & Arpaci (1968).

the plate. At Gry = 10° the computation was deliberately tripped to turbulence
by initializing k, €, and »? to some small values, and Eqgs. (5)-(8) were solved to
simulate the development of the turbulence quantities in the boundary layer.

As is evident from Fig. 2, the v’ — f turbulence model agrees very well with
experimental data. The predictions are well within the scatter of the data from
various experiments. Note that the scatter of the data within each experiment is
less than between experiments. This error indicates that apparatus/measurement
technique dependency (bias error) dominates the uncertainty. Tsuji and Nagano,
(1988a), suspect small gradients in the ambient air temperature.

The mean streamwise velocity profiles at various Gr, are shown in Fig. 3. The
v? — f model calculation and the experiments of Tsuji & Nagano (1988) are shown.
Data have been non-dimensionalized by standard wall units. The v? — f calculation
used the level 3 treatment for buoyancy. As will be discussed below, little effect
was noted for the vertical plate problem for the different buoyancy treatments. The
comparison between the »? — f model and the data is again very good with the
velocity peak predicted in location and amplitude quite closely.

In general, the effect of the different buoyancy treatments was small. Figure 4
shows the comparison of level 1 and level 3 treatments on the thermal eddy viscosity



296 S. Tieszen, A. Ooi, P. Durbin & M. Behnia

15 — S — ——

FIGURE 3. U™ vs yt for the vertical flat plate boundary layer. Lines are data from
the v? — f numerical model ( Gry =1.56 x10!%, —-— Gr, = 1.80 x 10'!) and
symbols are from experimental data of Tsuji & Nagano (1988a) (o Gr, = 1.56x101°,
e Gr, = 1.80 x 1011).

as a function of non-dimensional distance from the wall. The GGDH model has an
adjustable constant that was set at 0.05 in Fig. 4. This value is about 1/3 that used
by Ince & Launder (1989). Further adjustment upward would result in a better
fit of the data in the outer part of the boundary layer from y* of 100 to 1000 but
would degrade the comparison in the inner part of the boundary layer from y* of
25 to 100. As will be noted later, the value at 0.05 resulted in a good comparison
with the box data. Hence, the constant was left at 0.05.

The small effect of the three treatments on the results that could be interpreted
to mean buoyancy is unimportant as a source of turbulence. However, there is still a
significant discrepancy in the thermal eddy viscosity between the v? — f results and
the data. Another interpretation is that the treatments attempted in this study
are insufficient to represent the effects of buoyancy, and perhaps a more general
treatment such as proposed by Hanjalic (1994), is required. It was reported by
Tsuji & Nagano (1988b) that the eddy viscosity, defined by

ve = — (uv) /9,U, (23)

has an unusual form (going to +o00) as a function of y+ for the thermal boundary
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FIGURE 4. Normalized turbulent thermal viscosity vs. y™. standard v? — f
model, —-— v? — f model with GGDH and €y = 0.05, o Tsuji & Nagano (1988).
Data compared at Gry = 9 X 10'0.

layer. This behavior cannot be represented with a simple gradient diffusion model
for eddy viscosity that has been used in the current study.

The v? — f model results are compared with data in Figs. 5-8 for the 5:1 vertical
box. Figure 5 shows streamlines of the flow in the box from the v? — f model
with level 1 buoyancy treatment. The flow pattern is basically two separate wall
boundary layers that are not interacting. In the experiment by Cheesewright, King
& TZiai (1986), it was noted that the effects of the hot and cold walls were not
symmetric and that there was re-laminarization as the flow passed across the floor
of the cavity followed by a new transition approximately 20% of the way up the hot
wall. In Fig. 5, the broadening of the boundary layers just past the mid-height of
the box indicated for the level 1 buoyancy treatment that the transition was delayed
in the calculation relative to the experiments.

Figure 6 shows the v? — f model with two levels of buoyancy treatment (1 and
3), the k — € model (buoyancy treatment 2) with a two layer wall treatment, and
data sets for Nu_n,E/Raxl/3 vs. z/H. Comparing the v? — f model with level 1
buoyancy and the k — ¢ model against the hot wall data (King 1989) shows that
the heat transfer is slightly underpredicted by the k — ¢ model and significantly
underpredicted by the v? — f model. However, the v? — f results with GGDH
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FIGURE 6. This figure shows the local Nusselt number divided by the cube root of
the local Rayleigh number vs. non-dimensional height up the wall. o Experimental
data (King 1989), ---- KEPS (level 2), — — 2 — f (level 1), v? — f (level
3).

buoyancy treatment provides the best comparison.

The underprediction by the v? — f model without the GGDH buoyancy treatment
is a result of a late transition to turbulence by the model. This can be seen by the
change in slope of the curve around a y/H = 0.6. It is seen more clearly in Fig. 7,
which shows the vertical velocity distribution in the horizontal (cross-stream) direc-
tion. The v? — f model with the level 1 treatment has a very narrow distribution,
which is characteristic of a laminar boundary layer. With the introduction of the
generalized gradient diffusion term (level 3 buoyancy) into the v? — f model, the
boundary layer transitions much earlier, thus broadening the profile as seen in Fig. 7
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FIGURE 7. Mean vertical velocity profiles at z = H/2. o Experimental data of
Cheesewright (1986), —-— level 1 treatment of the v? — f model, v: - f
model with GGDH.
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FIGURE 8. This figure shows the (© —©.)/AO vs. non-dimensional height up the
wall. o Experimental data (Cheesewright & Ziai, 1986), v? — f model with
GGDH, —-— level 1 treatment of the v? — f model.
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and matching the vertical heat transfer profile much better as seen in Fig. 6.

Experimental data for natural convection in a box is hard to obtain because small
amounts of heat loss have a large effect on the outcome. Figure 8 shows the center-
plane temperature profile versus elevation. The variables are non-dimensionalized
such that at mid-height the temperature should be 0.5. In both calculations it is,
but in the data it is lower. This is due to heat loss from the box. In general, the
slope of the curve with elevation is better predicted with the v? — f model with the
level 3 buoyancy treatment than the v? — f with level 1 buoyancy treatment.

5. Conclusions

The v? — f model compared well with the vertical flat plate data without changes.
However, in the hot-wall, cold-wall box, it had a delayed transition with respect to
the data and significantly underpredicted the heat transfer. With the addition of the
generalized gradient diffusion term to the model, the transition occurred near that in
the data and the overall heat transfer comparisons were excellent. Since a coefficient
was set in the generalized gradient diffusion term, substantially more comparisons
are needed to establish whether or not it is generally useful in transitionally buoyant
flows. From the vertical plate data, it seems to have little effect on the heat transfer
in fully developed turbulent flows.

The nature of buoyancy/turbulence interactions is not well known. Hence, the
ability to model it is not universally agreed upon. Of the three levels of treatment
of the buoyant production term tested, none produced any large effect (outside of
the location of transition) on the heat transfer. It is not clear whether this outcome
means that buoyancy has little effect, or a more sophisticated model is required to
delineate the effects. Certainly the good agreement between the models and the
test results indicate that if the effect is large, it is being masked by other modeled
terms.
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Assessment of non-local effect on pressure term
in RANS modeling using a DNS database

By R. Manceau', M. Wang AND P. Durbin

A DNS database for the channel flow at Re, = 590 is used to investigate the validity
of the hypotheses used to model the pressure term in the Reynolds stress transport
equations by elliptic relaxation. It is shown that the correlation function involving
the fluctuating velocity and the Laplacian of the pressure gradient, which is modeled
by an exponential function, is actually not isotropic. It is not only elongated in
the streamwise direction but also asymmetric in the direction normal to the wall.
This feature is the main cause for the slight amplification of the redistribution
between the Reynolds stress components in the log layer as predicted by the elliptic
relaxation operator. The expected reduction in redistribution is predicted by a new
formulation of the model, which can be derived by accounting for the asymmetry in
the correlation function, without using any wall echo correction terms. The belief
that this reduction is due to the wall echo effect is called into question through the
present DNS analysis.

1. Introduction

During the past few decades, turbulence modelers mainly focussed on the pressure
term in the Reynolds stress transport equations. In second moment closures, the
production is exact and, accordingly, the pressure term is one of the most important
terms to be modeled. Indeed, in a channel flow, this term is the main productive
term in the equations for the diagonal Reynolds stresses except for the component
in the streamwise direction, and balances the production term in the Reynolds shear
stress equation (Mansour, Kim & Moin 1988).

Chou (1945) was the first to derive the integral equation of the pressure term
from the Poisson equation for the pressure fluctuations and to distinguish between
the slow part, rapid part and surface term (even though he did not use this termi-
nology). For the rapid part, which involves the mean velocity gradient, he proposed
to consider that the latter is locally a constant in order to be taken outside the
integral. Since Chou’s pioneering work, this approach has become very popular in
the turbulence modeling community and the starting-point of all second moment
closure models (e.g. Launder, Reece & Rodi 1975).

Bradshaw, Mansour & Piomelli (1987) assessed the validity of this local appro-
ximation for the rapid pressure using a DNS database. They showed that in the
channel flow at Re, = 180 (Kim, Moin & Moser 1987), this hypothesis is valid only

1 Laboratoire National d’Hydraulique, Electricité de France, 6 quai Watier 78 401 Chatou, France
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for y* > 40. As a result, models based on it cannot be integrated down to the wall
without modifications such as the introduction of damping functions.

In order to avoid the ad hoc damping functions, which are usually calibrated on
experimental or DNS data with little theoretical basis, Durbin (1991) introduced
a novel method. He proposed to model directly the two-point correlation in the
integral equation of the pressure term, which preserves the non-local effect in the
Reynolds stress transport equations. Then, he introduced the so-called elliptic
relaxation approach, allowing the derivation of second moment closure models which
can be integrated down to the wall without any damping functions.

While this method has led to very encouraging results, some room for improve-
ment remains. One purpose of the present work is to assess the validity of the
two-point correlation approximation, which was originally derived on an intuitive
basis. Secondly, this work aims to assess the influence of the anisotropy of the two-
point correlation on the pressure term in order to support future modifications of
the model. Durbin’s model assumes an isotropic shape for the correlation function,
which may be the main improvable point of the method. These modeling issues
will be examined using a channel flow DNS database at Re, = 590 (Moser, Kim
& Mansour 1998). In particular, the anisotropy of the correlation function will be
explored, and the evolution of the length scale across the channel evaluated.

2. The pressure term in a channel

2.1. Integral equation of the pressure term

The pressure term which appears in the Reynolds stress equations is
.
bij = = (@75 + wipy;) (1)

where p is the density, p is the fluctuating pressure, u; are the fluctuating ve-
locity components and .,i denotes derivative with respect to the z; coordinate.
The overline indicates ensemble average. Usually, ¢;; is split into two terms: the
pressure-strain correlation and the pressure diffusion (Launder, Reece & Rodi 1975).
However, the original form (1) of ¢i; will be used for the following reasons: first,
Lumley (1975) showed that the decomposition is not unique and that this particular
one is not the best one ; secondly, in the vicinity of a wall, the asymptotic behavior
is not preserved for certain components. For instance, if 7 = 1 and 2 correspond
respectively to the streamwise direction and the direction normal to the wall, the
component ¢, behaves as y, whereas the pressure-strain and the pressure diffusion
take a non-zero value at the wall. Therefore, in order to model correctly the total
pressure term, it is necessary to model both terms of the decomposition such that
their sum decreases as y in the vicinity of the wall.

The pressure fluctuation is the solution of the Poisson equation obtained by taking
the divergence of the fluctuating part of the Navier-Stokes equations:

V2p = —2pUs,; u;,; +p (wriy — winj)ij (2)
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where V? denotes the Laplacian operator and U; the it* component of the mean
velocity. Since the differentiations are commutative, the gradient of the pressure
fluctuation is also the solution of a Poisson equation:

Vipk = =2p (Ui, ujni) ok +p (W05 — wivs) sijk - (3)
In the following, the gradient of the pressure fluctuation will be assumed to satisfy
the boundary condition dp,; /8n = 0, where n is the outgoing unit vector normal
to the wall. This condition is not exact, but Kim (1989) uses this type of hypothesis
for the pressure itself and showed that this is valid in the channel flow at Re, = 180.
In the present case, the same hypothesis can be applied to the pressure gradient,
considering that its “Stokes part”, i.e. the part produced by the inhomogeneous
boundary condition, can be neglected.

The general solution of Egs. (3) is

vzpvk (X') ' ' 0 1 '
L T = x| dV(x') — /aQ Pk (X) 55 (m) ds(x') , (4)

where bold letters x and x' denote position vectors, dV and dS the elementary
volume and surface and 92 the domain boundary.

Multiplying (4) by the fluctuating velocity and taking ensemble averaging, one
can derive an integral equation for u;p,; and hence ¢,

Psk (X) =

phis(x) = ‘/Q (5,00V2 () + w(X)V?p,; &) _dvix)

4r||x" — x||

[ (0 + @ ) g (g ) 4500 ©

4r||x’" — x||
This equation will henceforth be referred to as the integral equation of the pressure
term. It involves two-point correlations such as u;(x)V?2p,i (x'), which need to be
modeled and are the main concern of this work.
In some situations, the surface integral in (4) can be transformed into a volume

integral. For instance, in a semi-infinite space, bounded by an infinite plane, as
considered by Launder, Reece & Rodi (1975), Eq. (4) can be written as

, 1 1 , |
p0 =~ [ ) (o= * ) VO ©

where x'* is the image term of x' by symmetry with respect to the plane. The
function

1 1
dr||x’ — x| 4w|]x" — x|

Go(x,x") = (M)

is then called the Green function of the domain 2.

In more general geometries, the Green function is unknown. In the particular
case of a channel, the Green function is easy to derive only after taking Fourier
transforms in z- and z-directions (IKim 1989). This spectral Green function is not
useful for the present purpose: however, a form of (4) without surface integral will
be needed in the following analysis, especially in §5.1, where the question of the
wall echo effect will be investigated. The purpose of the next section is to derive a
sufficiently good approximation of (4) which does not involve any surface integral.
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FIGURE 1. Sketch of a channel (Cy) and its images.

2.2. Approzimation of the Green function in a channel

The simplest solution to eliminate the surface integral in (4) is to neglect it.
Chou (1945) used this approximation but emphasized that all the conclusions which
can be drawn are thus valid only at locations “not too close to the boundary of the
moving fluid” because, in the vicinity of the wall, the weight of the surface integral
has the same order of magnitude as the volume integral. This can be easily seen
in the case of a semi-infinite domain bounded by a plane. In this case, Eq. (4) can
be written as (6), which shows that if the fixed point x is sufficiently close to the
wall, the principal term and the image term are almost equal. If x is exactly on the
wall, the two terms are identical. Furthermore, Bradshaw (1973) noted that the
order of magnitude of the image term is still 15% of the total when the correlation
length scale is L = xy, where « is the Karman constant. The influence of this term
will be assessed in §5.1. At this point, the surface integral cannot be neglected and
therefore, in order to allow the following DNS analysis to be valid down to the wall,
a less crude approximation than that used by Chou is needed.

Let us consider a channel Cy bounded by two infinite planes Py and P; (Fig. 1).
In this domain, the problem to solve is

Vif=g, (8)

with f,n= 0 on 0Cq. Let us now consider the image channels C_; and C; shown
in Fig. 1, which are symmetrical to Cy with respect to Py and P, respectively.
Extending g by symmetry in C_; and C,, solving Eq. (8) in the domain C_; UC,UC,
and using all the symmetries, the solution can be shown to take the form

0H(x,x'y)

fx) = — [ H(x,x0) g(x's) dV(x's) X0) f(x10) dS(xs) ; (9)
Co 8Co On
with ) . ]
[ —
Hxxo) = o= T oo =x T o = 0 0

where x'_; and x; are the specular images of x'g in Py and P; (Fig. 1), respectively.
The surface integral in this expression can now be neglected. Indeed, on Py, the
derivative of H(x,x'y) can be evaluated:

—a—-H(x x'o) = Ix' -1 — x| - 0’ %o — x|} - n |x'y —x||-n'
on’ ’ 47r"x'_1 _ x”3 47!'”)(’0 _ x”3 41r”x'1 — x“3 .

(11)
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Since x'_; = X'y, the sum of the two first terms is zero and hence the surface
integral only involves the contribution of the image x'1, which is far from the point
x. Likewise, on the other wall Py, the surface integral only contains the contribution
of the image point on P_;. This is in contrast to Chou’s approximation, where the
derivative in the neglected surface integral is equal to the second term of (11). It
goes to infinity when x'y = x, giving to the surface integral the same weight as
the volume integral. In the following analysis, the function H (x,x'g) will be used,
considering it as a sufficiently good approximation of the Green function, even in
the vicinity of the walls.

3. The elliptic relaxation method

By using the approximate Green function, the integral equation of the pressure
term (5) can be written as

pois(X) = = /Q (6T ) + mEOV2p, (X)) Hxx) dV(x) . (12)

In this equation, two-point correlations between the fluctuating velocity and the
Laplacian of the pressure gradient appear. Following Durbin (1991), in order to
preserve the non-local effect, they can be modeled as

OV ) = e (-2 )

where L is the correlation length scale. The validity of this hypothesis will be
scrutinized in §5.2 using a DNS database. Here, the rationalization of the elliptic
relaxation equation is analyzed in the context of channel flow.

Durbin (1991) used Chou’s approximation, which excludes the image terms in
H(x,x'). The integral equation of the pressure term, combined with the model
(13), becomes

LS
quij(x) = - L(uj(x,)vzpai (X') + ui(x,)vzp’j (xl))\ 47r“xl — X“ Jd‘/(x’) :
Bxx)

(14)
The function E(x,x’') is the free-space Green function associated with the operator
—V? 4+ 1/L%. Hence, (14) is the solution of the following Yukawa equation™:

L‘Z
¢i; — L*V2¢ij = ——p—(uJ‘VZPn' + u;V2p,;) . (15)

* In 1935, Yukawa was the first to apply this inversion in physics to solve the equation of inter-

action potential between particles.
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Noting that in quasi-homogeneous situations, the second term on the LHS of this
equation vanishes, Durbin proposed to use a quasi-homogeneous model qS . instead
of the RHS. This leads to the following elliptic relaxation model for ¢;;:

i — L’V?¢y; = ¢l . (16)

Any quasi-homogeneous model, such as LRR model or SSG model, can be used for
45 thus allowing the extension of these models down to solid boundarles. Indeed,
(16) is valid down to the wall, when appropriate boundary conditions for ¢;; are
provided (Durbin 1993).

However, Eq. (14) does not give rigorously the solution of (15) in a plane channel.
Analogous to the Green function for the Laplacian operator, the Green function
associated with the Yukawa operator must at least be approximated using the image
points with respect to the walls. Thus, a better approximation to the solution of

(15) is

péij(x) = —/Q(u]'(X'o)VQP,f (x'0) + ui(x'0)V2p,; (x'0))

exp [IX= =Xl T o —xl) T X = x|
p 7 T 7

4r|lx’ = x|| 4r||x’'o — x|| 4rlx'y — x||

] dV(x'o) .

(17)
Now, using the approximation (13) for the two-point correlations, the integral equa-
tion of the pressure term (12) does not lead to (17) but to the following equation:

poij(x) = _/Q(uj(x'o)VQPn‘ (x'0) + ui(x'0)V?2p,; (x'0))

op [IKo=X] T %o =xl] T e x]
P L L P L

Al s — x| 4o — x| Inls — x|

} dV(x'o) .

(18)
Hence, the modeled pressure term (18) does not rigorously satisfy the Yukawa
Eq. (15). However, the main contribution of the image terms to the integral cor-
responds to point X'o near the walls. For instance, the weight of the first im-
age term is important when 1/4x||x'_; — x|| has the same order of magnitude as
1/4n||x'o — x]|, i.e., very close to the wall, where x'_; ~ x';. Then, the exponen-
tial factors exp(~||x'_; — x||/L) and exp(—||x'o — x||/L) are almost equal as well.
Therefore, even considering that the Green function in a channel must be at least
approximated by H(x,x'), rather than using Chou’s approximation, the elliptic re-
laxation model for the pressure term (16) can be considered as valid, as long as the
model for the two-point correlations (13) is valid itself.
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4. Focus and description of the DNS assessment

4.1 Issues to ezamine in the elliptic relazation method

The elliptic relaxation approach 1s based on a unique hypothesis, namely the
approximation (13) of the two-point correlations. This approximation was originally
introduced intuitively by Durbin (1991) in order to preserve the dependence of the
pressure term on all the points of the domain, leading to the well known non-local
effect in the Reynolds stress equations.

The standard way (Monin & Yaglom 1975) of defining a correlation function f
to be used in (12) is by writing the two-point correlations as

I ) + w0 () = (15,0970 (%) + GV 2P (1) fO6, )
(19)

In this expression, the one-point correlation is expressed in X, i.e., the point where
the velocities are evaluated in the two-point correlation. Then, it can be moved
outside the integral in (12), which leads to the loss of the non-locality of the pressure
term. However, this formulation allows the definition of the following length scale:

L(x)* =/Qf(x,x')H(x,x')dV(x') , (20)

which is an integral scale, since it provides the ratio between the integral and the
correlation at zero separation:

pdi; = —L*(u;(x)V2p,i (%) + ui(x)V?p,; (%)) - (21)

In order to preserve the non-local effect, the correlation function must be defined
in the following way:

GOV () + () V2p,; (X) = (uj(x)V2pyi (X)) + ui(X) V2P, (x) f(x,x') .

(22)
The only difference between (19) and (22) is the point where the one-point correla-
tion is evaluated. If (22) is used in (12), the single-point correlation cannot be taken
outside the integral. But the decomposition of the two-point correlation into the
one-point correlation evaluated at x' and the correlation function, and the modeling
of the latter as a function which solely depends on the difference x' — x, allows the
conversion of the integral to a convolution product. Thus, Eq. (12) can be inverted,
leading to (15). The feature which is used here is that —V2& + 6/L?, where § is the
Dirac function, is equal to the inverse of exp(—r/L)/r for the convolution product.
Hence, the non-local effect is preserved through the Yukawa operator.

The shape of the correlation function defined by (22) has never been assessed
before. The first purpose of this work is then to check if the approximation
f(x,x") = exp(—||x’ —x||/L) is consistent with the DNS data. For instance, the cor-
relation function in (22) is not prevented from being larger than 1. If the root-mean

square of the velocity fluctuation up, varies rapidly in one direction, un(X)V2p,m (X')
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can become larger than u,(x')V2p,,, (x'). On the other hand, the correlation bet-
ween the velocity and the Laplacian of the pressure gradient should decrease very
rapidly with increasing separations and hence, the correlation function should re-
main smaller or only slightly larger than one.

The length scale used in the approximation (13) is not rigorously an integral
scale because it does not satisfy (21). Nevertheless, it is the integral of the function
exp(—r/L) from zero to infinity. One may attempt to evaluate this length scale
as the integral of the correlation function f(x,x’). However, as will be shown in
§5.4, this definition is not satisfactory. Thus, another purpose of the present work
is to evaluate alternative definitions of the length scale, and compare it with the
turbulent length scale k%/2/¢, which is used in elliptic relaxation models.

The ultimate objective of the evaluations of the correlation function and the
length scale is to find ways to improve the elliptic relaxation approach. As pointed
out by Wizman et al. (1996), the elliptic relaxation equation does not act in the
right direction in the log layer. For instance, if the IP and Rotta models are used
as the source term in (16), since the anisotropy is fairly constant in the log layer,
¢ij has the same behavior in 1/y as € and P. Then, it can be easily shown that the

solution of (16) is

1 h

d’ij = m‘ﬁg ’ (23)

if the length scale is L = Cky, where & is the Karman constant. Hence, in the log

layer, the redistribution of energy between the components of the Reynolds stress

tensor is amplified, while a damping due to the presence of the wall is expected.
Therefore, Wizman et al. (1996) introduced other formulations of the elliptic

relaxation equation. The first one, the so-called neutral formulation, is defined as
$ij — V(L2 4ij) = ¢ . (24)

It produces neither amplification nor reduction of the redistribution in the log layer,
since it leads to ¢;; = d)f']-. The second one, which yields the best agreement with
DNS data, is given by

éi; — L2V (11—2V(L2¢;j)) = gh . (25)

It exhibits a damping of the redistribution in the log layer.

These empirically derived new formulations require further justifications. What
is suspected here is that the approximation of the correlation function f by an
exponential function is not appropriate. Indeed, the latter is isotropic, whereas
the former may decrease more rapidly when the point X’ is moving towards the
wall than when it is moving away from it. Experiments from Sabot (1976) in a
pipe show that the contours of the two-point correlations of velocities are tightly
packed between the point of zero separation and the wall. It is suspected that the
same phenomenon occurs for correlations between velocity and Laplacian of the
pressure gradient. Moreover, this feature is closely linked to the variation of the
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length scale in the near wall region. When the correlation function is modeled by
an isotropic function, the same weight is given to points towards the wall and those
away from it. Since the source term decreases in the log layer, it results in an
over-prediction of the integral. This phenomenon can be suspected to be the reason
for the erroneous behavior of the elliptic relaxation equation in the log layer. This
idea will be carefully explored in the following DNS analysis, in order to support
modifications of the model such as those proposed by Wizman et al. (1996).

In addition, some general improvements of the model can be expected from such
reformulations. Because of the erroneous behavior described above, it is difficult
to reproduce accurately both the viscous sublayer and log layer. For instance,
the coefficients of the V2F model have been tuned as a compromise between the
boundary layer and the channel flow, since it is impossible to predict perfectly
both flows with the same set of coefficients. Furthermore, this type of compromise
limits the influence of the elliptic relaxation equation to a region very close to the
wall. Parneix, Laurence & Durbin (1998) showed that in the case of the backstep
flow, the turbulent force —uv,y in the mean streamwise velocity equation is over-
predicted in the backflow region, which acts to slow down the flow, leading to
an under-prediction of the intensity of the recirculation. All modifications of the
coefficients attempted by them proved ineffective, and they only managed to reduce
the error by 50% by including terms involving the gradient of the mean flow in the
turbulent transport term. In this case some improvement can be expected too by
extending the influence of the elliptic relaxation equation in the backflow region and
particularly by reformulating this equation in order to account for the variations of
the length scale.

4.2 Channel flow database and post-processing

Since the Laplacian of the pressure gradient, which involves three spatial deriva-
tives, will be calculated, a very accurate DNS database is needed. The database
used in this study is the most recent channel flow simulation of Moser, Kim & Man-
sour (1998) at Re, = 590. This flow was computed on a grid of 384 x 257 x 384
points in streamwise (x), wall normal (y) and spanwise (z) directions, respectively.
The computational domain is given by 276, 26 and 76 in z, y and z, where 6 denotes
the channel half-width. The simulation code employed a spectral method (Fourier
series in z and z, and Chebychev polynomial in y) for spatial derivatives, and a
semi-implicit scheme for time integration. A total of 75 fields (restart files) are
available for statistical averaging.

In order to assess the shape of the correlation function f defined by (22), the
two-point correlations between the fluctuating velocities and the Laplacian of the
pressure gradient must be calculated. They are evaluated in the following manner:
e First, the Laplacian of the total pressure gradient is evaluated directly from the

velocity field, V2p = —i;,; U;,; where ~ denotes total quantities. The spatial

derivatives are calculated using the same Fourier/Chebychev spectral method as
for the DNS.

¢ The one-point and two-point correlations between the gradient of the Laplacian of
the total pressure and the velocity components u;(x")V2p,i (x') and u;(x)V2p,i (x')
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are then computed. The gradient is calculated using Fourier spectral derivatives
in z and z, and fourth order finite differences in Y.

e The corresponding mean quantities involving U; and V2P,; are calculated. They
are finally subtracted out from correlations between total quantities in order to
obtain the correlations between fluctuating quantities.

The ensemble averages are replaced by averaging in the homogeneous directions and

over the 75 restart fields. The computations are very expensive. As a practical mat-

ter, calculations are performed at 7 representative y-locations only, for separations
in r-y, z-z, y-z planes.

5. Results and discussion

5.1 The wall echo

Since the paper of Launder, Reece & Rodi (1975), it has been widely accepted in
the turbulence community that, in a semi-infinite space bounded by a plane at y = 0,
the image term in the integral equation of ¢i; represents the so-called wall echo
effect, responsible for the reduction of the amplitude of the energy redistribution
between components of the Reynolds stress tensor. Consequently, in second moment
closure models, extra terms are frequently incorporated to account for this effect
(Gibson & Launder 1978). These wall echo terms depend on the distance to the
wall, which is often not well defined in complex geometries. The inclusion of wall
echo terms often worsen the predictions in engineering applications even though
they have proven to be effective in simple flows.

The physical reasoning behind this is that the pressure fluctuations are reflected
by the wall, introducing an “echo” contribution which can be considered as ins-
tantaneous in an incompressible flow. Considering each point of the domain as a
source of pressure fluctuations, the echo can be represented by an image source of
fluctuations. The contribution of this echo actually increases the pressure fluctu-
ations (in a closed room, the echo increases the noise). This feature is linked to
the homogeneous Neumann boundary condition at the wall. Mathematically, this
can be related to the fact that the presence of the wall induces the presence of an
image term in the Green function (7). On account of the homogeneous Neumann
boundary condition, the image term appears with the same sign as the principal
term, whereas if a homogeneous Dirichlet boundary condition was satisfied at the
wall, it should have an opposite sign.

Thus, the wall echo effect cannot be responsible for the damping of the energy
redistribution. Figure 2 shows a comparison among the three source terms in the
integral Eq. (12) of the pressure term, corresponding to the three parts in H(x,x'q)
(cf. (10)), for the components $11 and ¢32. The magnitudes of these source terms
have been arbitrarily normalized such that the maximum of the first image term

(n = —1) is 1. The solid line, representing the principal term (n = 0), has been
truncated because it approaches infinity at y* = y't = 30. It is clear that the first
image term (n = —1), associated with the closer wall located at yt =0, is always

of the same sign as the principal term. It can also be noticed that this term gives
more weight to the region very close to the wall, where it becomes equal to the
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(a) |
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FIGURE 2. Comparisons of the different source terms in the integral Eq. (12) of the
pressure term with H(x,x'y) given by (10) at location yt = 30. Separations in z-

and z-directions are zero. (a) ¢11; (b) ¢22. n=0 (principal term); ---- n=-
1 (first image term); — — n=1 (second image term). The vertical coordinate is
arbitrarily normalized such that the maximum of n = —1 term is 1.

principal term and the two-point correlation changes sign for the component ¢22,
as shown in Fig. 2b. However, this feature is not present in Fig. 2a and, moreover,
the contribution of this part of the domain to the integral is rather small. It must
be emphasized that even though the n = —1 source term appears negligible near
the point of zero separation relative to the n = 0 term, which goes to infinity, its
contribution to the integral is significant. Indeed, the value of the volume integral
of 1/r between r =0 and r =1 is only 2. Thus, Figs. 2a and 2b clearly show
that the contributions of the image terms to the integral are of the same sign as
the contribution of the principal term. Unfortunately, it is not possible here to
evaluate quantitatively the relative weight of each term because it involves two-
point correlations with separations in the whole 3D-domain, which have not been
calculated.

At this point a very interesting conclusion can be drawn. The image terms in
the integral Eq. (12) with H(x,x') defined by (10), which account for the wall
echo, actually have an amplification effect on the redistribution of turbulent en-
ergy between the different component of the Reynolds stress. Thus, it is time to
abandon the traditional way of modeling the damping of the redistribution, which
consists of introducing Gibson & Launder (1978) type terms involving functions of
the geometry. This damping can only be caused by the damping of the two-point
correlation itself, which is a consequence of the no-slip boundary conditions and the
wall-blocking effect.

This phenomenon is an inhomogeneity effect, which can only be accounted for
by non-local models, such as the elliptic relaxation model. However, it has been
shown in §4.1 that the behavior of the latter is not satisfactory in the log layer. The
following sections will show that this flaw is due to the fact that the model does
not account for the asymmetry of the correlation function in the direction normal
to the wall, which is a consequence of the variation of the length scale in inhomo-
geneous regions. By reformulating the elliptic relaxation equation, the damping of



314 R. Manceau, M. Wang & P. Durbin

A A * (a)
% ! ! ! !
# | | | |
= | | l I
1 | , L

B ' A - (b)

0 100 200 300 400 500 600
y'
FIGURE 3. Correlation function defined by (26) calculated from the DNS data
at different y locations: y* = 4; y* = 14; y* = 30 yt = 80; yt = 150;
yt = 400; y* = 590. Separations in z- and z-directions are zero. (a) f(x,x’) =
ur(x)V2poy (x')/ur (x')V2p,y (x); (b) f(x, %) = uz(x)V2p,z (X)/u2(x")V2p,5 (x').

the redistribution in the log layer can be reproduced, without introducing any “wall
echo” correction term (§6.2).

5.2 Asymmetry of the correlation function in y-direction

The main purpose of this study is to investigate through DNS data the shape
of the correlation function defined by (22), which is modeled by an exponential
function in the elliptic relaxation method. First, it must be emphasized that this
model function is unique, i.e., it does not depend on the component of ¢;;. This
feature is not supported by any theoretical result, but is necessary to warrant the
frame independence of the model. On the other hand, using DNS data, a correlation
function f(x,x’) can be calculated for each component of ¢;;:

fx,x') = uo‘(x)v2p’ﬂ (x') + ug(x)V2p,q (x') (26)
’ ua(X")V2p,5 (') + up(x')V2p,q (x')
without summation over Greek indices. It is obviously impossible to derive a model
of f which matches the DNS results for all the components. Hence, the following
analysis should be interpreted in a qualitative rather than quantitative sense.
Figure 3 shows the correlation function f(x, x') corresponding to components ¢;;
(Fig. 3a) and ¢2; (Fig. 3b) for 7 different y locations, at zero z- and z-separation.
Each curve has been truncated for clarity, since the ratio (26) becomes rather
“noisy” for large separations. Several observations can be made from the figure:
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FIGURE 4. Comparison of shapes of the correlation function corresponding to
$22 for separations in the 3 principal directions at different locations. (a) y* = 14,
(b) y* = 30, (c) y* = 80, (d) y* = 150, (e) y* = 590. Separations: —-— , z-
direction, (Ay = Az = 0); —— , y-direction, (Az = Az =0); ----, z-direction,
(Az = Ay =0).
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e The correlation functions corresponding to @11 and ¢;; are quite different. In
particular, the correlation length scale appears to be significantly larger at every
location for the 11 component than for the 22 component.

e The correlation function becomes negative at certain separations, particularly for
the 22 component.

o The correlation length scale varies with location. It increases rapidly when the
fixed point x moves away from the wall. Then, it seems to reach a maximum level
and decreases slightly as the center of the channel is approached. This behavior
seems to be qualitatively the same for both components.

o These functions have asymmetrical shapes, particularly in the log layer. As
pointed out in §4.1, the correlation function defined by (26) is not restricted
to values less than or equal to 1. It can be observed in Fig. 3b that this is indeed
the case. For instance, the correlation function at y* = 400 reaches a maximum
value of approximately 1.15 at y'* ~ 405.

The main conclusion which can be drawn from the figures is that the correlation

function is very asymmetric. This feature is linked to the rapid variation of the

length scale, which increases with distance from the wall. Modeling the correlation
function by an exponential function leads to too much weight being placed in the
region between the point and the wall. Therefore, as will be described below, the
over-estimation of the pressure term in the log layer can be corrected by introducing
some asymmetry in the model for f(x,x').

5.8 Anisotropy of the correlation function

Figure 4 shows the correlation function corresponding to ¢22, evaluated from
(26) with & = B = 2, for separations in the principal directions. Note that for
separations in y-direction the correlation function goes to —oo when the point y'
approaches the wall, as can be seen in Figs. 4a and 4b. This is because in the
ratio (26), the one-point correlation involves uz(y'), which behaves as y'? in the
vicinity of the wall, whereas the two-point correlation only contains uz(y) which is
constant with respect to y'. Accordingly, the ratio behaves as y’ ~2 near the wall.
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FIGURE §. Correlation function corresponding to ¢,2 at y* = 80 for separations
in the z-y plane (Az = 0). (a) f(x,x'), (b) Iso-correlation contours. Contour levels
from —0.5 to 1 are separated by 0.1.

All the Figs. 4a-e show that the velocity u; and the y-derivative of the Laplacian of
the pressure are correlated over a longer distance in the streamwise direction than
in other two principal directions. This feature is consistent with the streamwise
elongation of the turbulent structures observed in the experiments. This anisotropy
Is very important near the wall (Fig. 4a) and becomes less pronounced away from
it (Figs. 4b-e). Note that at the center of the channel, the correlation function is
still anisotropic.

The anisotropy of the correlation function at location y+ = 80, corresponding
to Fig. 4c, can also be observed in Fig. 5. In 5a, f(x,x') is plotted as a function
of separation in the z-y plane (Az = 0). Figure 5b shows the contour levels of
this surface. One can observe that near the point of zero separation, the highest
contour, which corresponds to f(x,x') = 1, is almost round. The shape of the
contours becomes more elongated in the z-direction as the level decreases.

The asymmetry of the correlation function in y-direction, emphasized in §5.2,
appears in Fig. 5b as well. When looking only at the spacing between consecutive
contours, the function may seem somewhat symmetric. But it must be noted that
the contours are not centered at the point of zero separation. Actually, the highest
contour level plotted, f(x,x') = 1, contains this point. This asymmetry is clearly
observed as well in the regions of negative contour values. First, they are not
symmetrical with respect to zero, since they are approximately centered at Ay+ =
—25 and Ayt = 35. Secondly, the extremum of the region corresponding to positive
separations is much lower than the other one.

The above observations demonstrate that the correlation function is not only
asymmetric in the y-direction but also anisotropic, especially in the very near-wall
region (y* < 30). Consequently, it calls into question the use of the exponential
function, which does not distinguish between streamwise, wall-normal and spanwise
directions. However, this anisotropy cannot be considered as being responsible for
the defects noted in §4.1, since in the case of channel flow, the non-local effect
obviously does not act in the homogeneous directions. Nevertheless, this points out
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FIGURE 6. Length scales based on curves in Fig. 4. (a) Comparison of the different
length scales in y-direction: « Left length scale; o Central length scale; - Right length
scale; ---- L = Cp max (k3/25—‘,C,,V3/45‘1/4) with €1 = 0.045;C, = 80.0. (b)
Comparison of the length scale in the 3 directions: ¢ Central length scale in y-
direction; o Length scale in z-direction; a Length scale in z-direction.

a feature of the correlation function which can become important in more complex
flows.

5.4 The correlation length scale

The length scale L entering the model of the two-point correlations (13) is not
easy to determine in DNS data. As emphasized in §4.1, it does not correspond
rigorously to the integral scale (20).

It is noted that L is the integral of the function exp(—r/L) from zero to infinity.
This property allows one to evaluate a length scale in each direction, but it is
unfortunately not satisfactory. Since the z-direction is homogeneous, the integral
over z of quantities involving z-derivatives is zero. Hence, the evaluation of the
length scale in z-direction of the correlation function associated to ¢11, i.e., the
function defined by (26) with a = 8 =1, gives exactly zero. This is due to the fact
that it does not give the right weights to the different regions. Indeed, considering
isotropic turbulence and ignoring the image terms, it can be seen that the 3-D
integral (20) reduces to the 1-D integral [~ rf(x,r)dr, which increases the relative
weight of the large separations.

The method which will be used in the following is not an integral method. It
can be noted that the function exp(—r/L) takes the value 1/e for r = L. Thus, a
length scale can be defined by the separation where the correlation function takes
this value. Although this method is very simple, it provides a measure of the width
of the function in each direction. The drawback is that it only characterizes the
shape of the function at small separations and, in particular, it does not account
for the negative excursions.

Nevertheless, this method allows the evaluation of the qualitative behavior of the
length scale across the channel and distinguishes between the length scales evaluated
at the left and right of the zero separation point, characterizing the asymmetry of
the function. Figure 6 shows the different length scales which can be evaluated from
the correlation functions depicted in Fig. 4. Figure 6a compares the different length
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scales defined in the y-direction: the left (right) length scale corresponds to the
value of negative (positive) separation at which the correlation function js equal to
1/e, and the “central” length scale is the mean of the left and right length scales. It
can be observed that, except for the peculiar behavior at yt = 14, the asymimetry
is weak close to the wall and becomes more pronounced away from it. This trend
is reversed when the center of the channel is approached.

The growth of the central length scale with y is nearly linear up to y* = 200. In
Fig. 6a, the length scale used in the elliptic relaxation model is also plotted. It can
be seen that the global shape is very satisfactory, although the coefficient C; has
been reduced by a factor of 4. This value of Cf cannot be considered as the value
which must be used in the model, since it only corresponds to the component ¢q;.

Figure 6b shows the evolution across the channel of the length scale in the 3
principal directions. Although their amplitudes are different, their behaviors appear
quite similar, except for y* < 100, where a spike appears in the streamwise length
scale.

These results indicate that the length scale used in the model, which is the stan-
dard turbulent length scale bounded by the Kolmogorov length scale, represents
quite satisfactorily the variations of the correlation length in the channel. The
coeflicient Cp is likely over-estimated, but the results presented here are mainly
qualitative and therefore, the coefficient tuned by computer optimization must be
preferred. Overall, these results justify the way the length scale is modeled in the el-
liptic relaxation method. The use of the Kolmogorov length scale as a lower bound,
which was originally introduced only to avoid singularities in the model, has proved
important to improving the predictions of the model. This is due to the behavior of
the correlation length described above, which does not go to zero and varies linearly
in the vicinity of the wall.

6. Proposed modification to the model

6.1 Correction to the model of the correlation function

The results presented in the previous section show that the model of the corre-
lation function can be improved. For the present study, whose main purpose is to
find ways to correct the wrong behavior in the log layer as detailed in §4.1, the most
noteworthy feature of the correlation function is its asymmetry in the y-direction.
Indeed, Fig. 7 shows that, when the original correlation function model is used, the
two-point correlation obtained by multiplying the model function by the one-point
correlation from the DNS data (cf. (26)), is larger toward the wall than away from
it. This is very different from the two-point correlation computed directly from the
DNS fields, which is quite symmetrical. Consequently, the integral of the two-point
correlation is over-estimated, leading to the incorrect amplification of the pressure
term pointed out in §4.1.

This work does not attempt to find the best way to modify the model. Rather,
it presents a direction in which an improvement of the model can be sought. An
example of modification is presented in Fig. 7. The asymmetrical correlation func-
tion shown in 7b is obtained by introducing a dependence on the gradient of the
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FIGURE 7. A priori test of the two-point correlation obtained using two different
correlation functions. (a) One- and two-point correlations. All quantities are nor-
malized by the value of the two-point correlation at zero separation. o One-point
correlation from DNS (x = x'); o Two-point correlation from DNS; Two-
point correlation obtained using the symmetrical exponential correlation function
shown in (b) and the one-point correlation from DNS; ---~ Two-point correla-
tion obtained using the asymmetrical exponential correlation function shown in (b)
and the one-point correlation from DNS. (b) Model of the correlation function.
Symmetrical correlation function: f(y,y") = exp(—|y' = yl/L); ===~ Asym-
metrical correlation function: f(y,y') = exp(=ly' —yl/(L + (y' —y)dL/dy).

length scale: f(y,y') = exp(—ly' — yl/(L+(y' —y)dL/dy). The resulting two-point
correlation, shown in 7a, is much closer to the DNS value than the one obtained
using the original model. In particular, the new function corrects the erroneous
shape observed between the point and the wall. The next section will detail the
consequence of this new model on the form of the elliptic relaxation equation.

6.2 Reformulation of the elliptic relazation equation
The simple modification of the correlation function model proposed above can
easily lead to a new form of the elliptic relaxation model. The correlation function
is henceforth modeled by

f(xax') = exp (‘ L—+_1‘:T_VT) 3 (27)

where r and u denote respectively ||x’ — x|| and (x' — x)/||x' — x||. Considering
the new term ru - VL as a small correction, a Taylor expansion of (27) leads to the
following expression:

2

f(x,x") =exp (—%) + %Eexp (—%) u-VL . (28)
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Using (28), the integral equation of the pressure term leads to two terms #{; and
f-’j. The first term is the same as the original one and satisfies

a 272 4a L2
i — LV = ——p—gij ; (29)
where g;; denotes the one-point correlation u iV2p,i + u;V2p,;. The second term
I3
e = 87VL - Vgij (30)

is a correction term. Following Durbin (1991), the RHS of (29) can be replaced
by any quasi-homogeneous model, which corresponds to modeling ¢;; by p¢,’~'j /L2
There are two possible ways to take into account the correction term in the model.
First, it can be considered as an explicit correction as
?j - L*V? ?,‘ = ¢?j ) (31)
a

b =8LVL. vL—ij . (32)

Here, (31) gives exactly the same solution as the original model, while (32) provides
an explicit correction. The second possibility is to introduce the correction directly
into the elliptic relaxation equation in the following manner:

¢ij — L*V2¢;; — 8L3VL . v% = ¢£'j i (33)

The same analysis as in §4.1 can be conducted in the log layer, which yields the
following results:

; - : ch = 1=24C%2 .
(a) with the explicit formulation (31) and (32): ¢45 = —1_—202?-(;5”. ;

(b) with the implicit formulation (33): $ij = m(ﬁu.

Both new formulations give a reduction of the redistribution, in contrast to the
original one, which gave an amplification, as pointed out in §4.1. Note that the
reductions are identical up to the third order in the small parameter Ck.

Thus, the simple modification of the model for the correlation function proposed
above overcomes the deficiencies of the original model in the log layer. The so-called
“wall echo effect”, called into question in §5.1, can be obtained only by accounting
for the asymmetry of the correlation function in the direction normal to the wall,
i.e., by introducing a dependence on the gradient of the length scale in the model.
This can be compared to the correction applied by Launder & Tselepidakis (1991),
who sought to avoid the use of wall echo terms by introducing an “effective velocity
gradient” in their pressure term model, defined as

VU = VU, + T L(VL - V)V, (34)

(see Wizman et al. (1996) for more details). This approach accounts for the inho-
mogeneity of the flow in the near-wall region, which is very similar to the present
work.
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7. Conclusions

A DNS database for a channel flow at Re, = 590 has been used to assess the valid-
ity of the model assumptions in the elliptic relaxation method. Several conclusions
can be drawn: '
e The method, which is based on the approximation of the correlation function

(26) by an exponential function, is consistent with DNS data, although some

refinements are necessary. In particular, the length scale used in the model,

defined by the standard turbulent length scale bounded by the Kolmogorov length
scale, reproduces rather surprisingly the overall shape of that obtained from DNS
data.

¢ The shape of the correlation function depends on the component of the two-point
correlation tensor used to evaluate it. Therefore, one can not expect an accurate
reproduction of all the two-point correlations. Only a global accounting of the
non-local effect is possible.

e An analysis of the image terms entering the approximate Green function of the
channel shows that they actually lead to an amplification, rather than reduction,
of the redistribution between the components of the Reynolds stress, in contrast
to the common belief. The reduction can only be due to the damping of the source
term in the integral equation, especially for the diagonal component normal to
the wall. Accordingly, this is not a wall echo effect, but a wall blocking effect.

e The correlation function computed from DNS data is strongly asymmetric in
the direction normal to the wall, particularly in the log layer. Modeling it by
a simple exponential function gives too much weight to the region between the
point and the wall. Since the one-point correlation increases rapidly toward the
wall, it yields an over-estimation of the pressure term. This is the reason for the
observed erroneous amplification of the redistribution in the log layer.

e The correlation function is anisotropic. In particular, very close to the wall, the
iso-correlation contours are strongly elongated in the streamwise direction. This
feature has no influence on the channel flow, and its effect on complex flows
cannot be determined in the present study.

e A simple modification to the correlation function model, accounting for the ob-
served asymmetry in the direction normal to the wall, allows the derivation of
a new formulation of the elliptic relaxation equation which does not possess the
same defect as the original version. This result shows that the reduction of the
redistribution in the log layer can be reproduced by introducing inhomogeneity
effects and avoiding the use of any wall echo correction terms.

Based on the physical insight gained through this study, effort will continue to be
directed toward the improvement of the elliptic relaxation method. Different formu-
lations of the model will be tested in simple flows, in order to assess the improvement
of the predictions. The new model will be calibrated on the channel flow and the
boundary layer flow to allow its application in more complex configurations.
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The LES group

The 1998 Summer Program contained seven projects in LES involving fifteen
scientists. The interest in LES continues to grow, and the findings from the Summer
Programs have found increased utility in setting the direction for research in LES.

The project by Carati and Rogers was the first application of the ‘Ensemble Av-
eraged LES’ concept developed at the 1996 Summer Program to an inhomogeneous
flow, the time evolving plane wake. In this procedure, one executes several realiza-
tions of a turbulent flow on the same number of computer processors simultaneously.
Thus, at each time step the ensemble averaged field is available, which could be used
in parameterization of the subgrid scale stresses. Such parameterization can lead
to improved and economical models as well as being useful for building a bridge be-
tween LES and Reynolds averaged approach, RANS. As with homogeneous flows, it
appears that only about sixteen realizations are sufficient. Interestingly, the three
models tested led to similar results for low order turbulence statistics which were
in good agreement with the DNS data.

One of the important and relatively unattended areas for research in subgrid
scale modeling is for high speed compressible flows. The LES equations contain
several terms without counterparts in incompressible flows. Adams et al used DNS
data of a M = 3 compression corner with a shock to compute and evaluate the
relative importance of the subgrid scale terms. In addition, as with numerous other
studies, they demonstrated that scale similarity type models perform better in a
priori tests. An important issue addressed in this report is the treatment of shock
wave as a subgrid scale entity. A new and very promising approach for subgrid scale
modeling, in general, and for the treatment of shocks, in particular, was introduced.
This is an algorithmic procedure, as opposed to phenomenological modeling, which
uses regularized deconvolution of the velocity field to estimate the unfiltered flow
field. If this methodology turns out to be robust, especially when applied to high
Reynolds number flows, it will have far reaching consequences in the development
of modern LES in the years to come.

The deconvolution strategy is very similar to Domaradzki’s subgrid scale estima-
tion model and is also related to Leonard’s (ATAA Paper 97-0204) estimate of the fil-
tered advection term in the Navier Stokes equations. Domaradzki’s approach, which
was extended to compressible turbulence during the Summer Program, appears to
be a bit more involved than the deconvolution approach and has an adjustable
model parameter, but its results appear to be equally impressive. Like the scale
similarity models, the estimation model yields high correlations with the DNS data
and, additionally, appears to provide correct level of subgrid scale dissipation which
the scale similarity models tend to be incapable of. Winckelmans et. al conducted
a thorough evaluation of Leonard’s model in both the isotropic decay problem and
turbulent channel flow. It was quickly discovered that the model does not provide
sufficient dissipation, and hence the Smagorinsky model was added to the model.
The model coefficient was computed using the dynamic procedure, which is now
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much better behaved in terms of lower variability in space and positive values. The
principal deficiency of the Leonard model without the Smagorinsky component is
manifested in incorrect distribution in the energy spectrum. Another improved fea-
ture of the Leonard model is the higher values of subgrid scale shear stress near
walls. Cottet & Vasilyev implemented an integral formulation of Leonard’s model.
This formulation allows for a simple method to distinguish forward and backscatter
of energy and allows for a more rigorous control of backscatter, which is essential
for stabilization of the computations. Apparently, the backscatter control feature
is the reason for not requiring additional dissipation through added Smagorinsky
model or other means.

An important pacing item for application of LES to complex flows is the resolution
of the wall layer. For high Reynolds number attached boundary layers, the resolution
of the wall layer is too demanding of computer resources, and development of lower
dimensional modeling approaches for this region is an active area of research in
LES. The wall modeling problem is divided into two parts: the actual modeling
of the wall layer by a lower dimensional dynamic system, and the transfer of the
appropriate information to the outer layer LES. In an attempt to focus on the
mathematical boundary condition aspect of the problem and to avoid the particular
complications of the wall region, Jiménez and Vasco considered a novel simulation of
a channel half by prescribing boundary conditions on the centerline. They confirmed
the earlier results by Baggett and the previous experience from the prescription
of inflow conditions in LES, that prescription of random fluctuations, even with
correct second order statistics, is inadequate as boundary conditions. They attribute
the difficulty to large pressure fluctuations at the boundary which induce artificial
energy fluxes across it. Nicoud et al. use the scaled velocity field at an interior
plane in LES of channel flow to supply turbulence structures at the boundary. A
dynamic procedure was developed to relate the time scales of the velocity in the
interior plane and at the boundary. The ratio of the two time scales appear to
be near one rather than that deduced from the log layer scaling. The results are
encouraging, but further refinements are needed.

Parviz Moin
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Ensemble-averaged LES of
a time-evolving plane wake

By D. Carati’ AND M. M. Rogers

The ensemble-averaged dynamic procedure (EADP) introduced during the 1996
CTR Summer Program is tested on a time-evolving plane wake, an inhomogeneous
fow that is statistically non-stationary. Convergence of the results with respect to
the LES ensemble size is investigated, and it is found that an ensemble of as few as
16 realizations yields accurate converged results. New modeling concepts are tested
in which quantities that explicitly require the knowledge of several realizations of
the same flow are included.

1. Introduction

The idea of using a set of LES’s for developing new concepts in subgrid-scale
modeling was introduced during the 1996 CTR Summer Program (Carati, Wray
& Cabot 1996). This method consists of generating several statistically equivalent
LES’s simultaneously, evaluating the subgrid-scale model constant by using infor-
mation derived from the set of resolved velocity fields. Each of these fields evolves
according to

Oy + 0;uul = — P+ Vi - 0T r=1,...,R, (1.1)

where 7 is an index corresponding to the realization being considered and R is the
total number of realizations. Utilizing these R realizations, an ensemble-averaged
dynamic procedure (EADP) can be developed as an alternative to the volume-
averaged (or plane-averaged) dynamic procedure. There are several advantages of
the EADP. Foremost of these is that the method does not rely on any homogeneous
fow directions for the computation of model terms. Hence, there is no theoretical
limitation preventing its use in a fully inhomogeneous and non-stationary flow. Also,
the EADP is well suited for parallel computing since the R simulations only interact
through the computation of the subgrid-scale model (see Fig. 1). The other terms
in the equation can then be computed independently from the other realizations.
It should also be noted that for statistically stationary flows the EADP is not more
expensive than traditional LES because the ensemble greatly reduces the averaging
time period required for converged statistics. In fact, if the different realizations
are really independent, the CPU time required for collecting the statistics could
even be reduced by using an ensemble of LES’s. Finally, the EADP is theoretically

1 Université Libre de Bruxelles, (Brussels, Belgium).
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appealing because it could provide useful information on the statistics of resolved
velocity fields that might be used for building a bridge between LES and RANS.

Prior to this work, the EADP had only been tested in detail on homogeneous
turbulence (both forced and decaying) with the Smagorinsky (1963) model. The
feasibility of the method has been demonstrated, but its robustness for more com-
plex flows and its potential advantages were not explored thoroughly. For homoge-
neous turbulence it was shown that good results were obtained with only R = 16
realizations. It is, of course, crucial to show that the number of realizations re-
quired for implementing this method does not increase dramatically for flows of
greater complexity. Also, the knowledge of several realizations could be used not
only to compute the Smagorinsky constant through the EADP, but also to ex-
plore new subgrid-scale models. The motivations for this work are thus to check
the robustness of the method in an inhomogeneous flow and to demonstrate that
new ensemble-based modeling concepts can be proposed and tested easily with the
EADP.

The flow considered here is a time-evolving plane wake for which data from both
direct numerical simulations (Moser & Rogers 1994, Moser, Rogers & Ewing 1997)
and large-eddy simulations (Ghosal & Rogers 1997) are available. This flow is
both statistically non-stationary and inhomogeneous and should thus be a more
demanding test of the EADP than the homogeneous flows studied previously.

2. Subgrid-scale modeling

Subgrid-scale modeling for an ensemble of LES’s is not more complicated than
that for a single LES. As usual in LES, the model terms are assumed to depend
both on instantaneous local quantities (such as the resolved strain-rate tensor) and
universal parameters. In the context of an ensemble of LES’s, it is natural to suppose
that the instantaneous and local dependence of the model will also be realization
dependent, while the universal parameter should be independent of the realization.
Thus the model for the subgrid-scale tensor in each realization, ] = ulul -} uj,
can be expressed as

r 1 r r(=T, 77
Tij - ETkk(S,‘J‘ ~ C?;][UI;G] s (21)

where 77 is a tensorial functional of both the resolved field corresponding to the
same realization index r and the LES filter G. In contrast, the parameter C should
be the same for all the realizations in the ensemble. The EADP prediction (Carati,

Wray & Cabot 1996) Cy for the parameter C is given by

Co= S5, (2.2)
2 MM
/\_ ~r = —— ~rr =
where Mj; = T7[u}; G| - T;7[w;; G] and Li; = uiuj — u;u;. Here, G is the filter

obtained by successively applying the LES filter and a test filter G. In the present
study, we have investigated three different models, all based on the eddy-viscosity
concept. The first one is the classical Smagorinsky model.
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FIGURE 1. When a set of LES’s are generated simultaneously, the different LES’s
are advanced in time through two types of terms. The first type, like in DNS
(top) and traditional LES (middle), is given by the right-hand-side of the Navier-
Stokes equation. For these terms no information is needed from the other fields.
Information from the other fields is only required for the subgrid-scale model terms
(bottom).
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T

I Y
Smagorinsky model: 7;5[a}; G| = —2A° (25k,sk,) 5. (2.3)

In the Smagorinsky model (2.3), the inertial range scaling for the eddy-viscosity

v ~ T/a'él/ % has been expressed in terms of the resolved strain-rate tensor by
using the approximation for the dissipation rate & ~ 1¢S5 S This approximation
1s required in traditional LES because a separate equation for the dissipation rate
is not usually computed. However, in LES based on the dynamic procedure, the
product of C' and &'/ can be predicted through the expression (2.2). This has
motivated the use of models directly based on the inertial range scaling such as
Model A:  T[a};G) = —2A*° 37, (2.4)

2

The model parameter predicted by the dynamic procedure with model A (2.4) is not
dimensionless, but this does not cause any difficulties. Finally, we have considered
a third model for which the tensorial functional T ar; G] not only depends on the
particular realization u}, but also on the ensemble-averaged velocity field.

Model B: T;}[a};G) = —2A*" (?fj - (‘S’,-,-)) , (2.5)
where the brackets indicate ensemble-averaging over all realizations. The advan-
tage of this last model is that it can represent the effects of backscatter in some
realizations while maintaining an overall average dissipative effect (provided that
the parameter C is positive). In each realization the subgrid-scale dissipation is
proportional to Sy,;(5;; — (Sw1)), which can be either positive or negative. However,
the mean of this quantity is (5}, — (Sw))?, which is always positive.

Of course, the sign of C will also determine the sign of the subgrid-scale dissipa-
tion since a negative C corresponds to a negative eddy-viscosity. In order to avoid
numerical instabilities, C' must then be set equal to a minimal positive value (clip-
ping procedure, see Ghosal et al., 1995) at points where the total viscosity (eddy
plus molecular) is negative. For the Smagorinsky model, the stability condition

& (25354)" + 10 > 0 (2.6)
depends on the realization. This is an undesirable property since C' is supposed to
be a universal flow characteristic for all members of the ensemble. An alternative
formulation in which C is indeed the same for all realizations results from the
following stability condition

~ —=r =r \1/2
cA’ max { (2sk,5k,) } >0, (2.7)

In the limit of an infinite number of realizations, the maximum of the resolved strain-
rate tensor amplitude would be almost unbounded. Hence, for the Smagorinsky
model, it is reasonable to simply impose C > 0. For model A, however, the situation
1s different. The stability condition is the same in each realization

CR* 40y >0, (2.8)
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resulting in the model parameter C being given by C = max{Ca, —VOZ_4/3}. For
simplicity, the same condition has been used for model B.

3. Application of the EADP to a time-evolving plane wake

In a previous study, the EADP has been successfully implemented for homoge-
neous turbulence in both forced (stationary) and decaying (non-stationary) situa-
tions. Here, we propose to investigate a flow with the added complexity of an inho-
mogeneous direction. The pseudospectral direct numerical simulation of the plane
wake considered here has been described in detail by Moser & Rogers (1994) and
Moser, Rogers & Ewing (1997). The spatial dependence of the independent vari-
ables is represented in the periodic streamwise and spanwise directions by Fourier
basis functions and the cross-stream dependence is represented by a class of Jacobi
polynomials on a mapped infinite domain. Up to 512 x 195 x 128 modes are required
to accurately resolve the turbulence. The Reynolds number based on the integrated
mass flux deficit,

+o0
p=- [ (W) - Ui (3.1)
— 00
is R, = p/v = 2000. In a time-evolving plane wake, the integrated mass flux deficit
is constant.

LES’s of the same flow using the dynamic procedure and a filtered DNS field as
an initial condition have been reported by Ghosal & Rogers (1997). The simulations
were pseudospectral like the DNS, but the spatial dependence of the vorticity in
the inhomogeneous cross-stream direction is represented in terms of Fourier modes
on a finite domain. The appropriate non-periodic velocity field 1s then calculated
using the method of Corral & Jimenez (1995). The number of modes used in the
LES’s was 64 x 48 x 16 and the same number of modes and same numerical method
have been adopted for the LES’s examined here. Thus each LES mode represents
up to 260 DNS modes.

9.1 The initial conditions

In order to justify ensemble-averaging, the R velocity fields should be statistically
equivalent and statistically independent. Carati et al. (1996) have proposed that
acceptable initial conditions for LES v(x,0) = vo(x;wi) should be generated using
random numbers w; and should satisfy some constraints: PJvo) =ps, s=1,... S.
For example, the constraints could be obtained by matching the mean velocity pro-
file, the energy spectrum, etc. Proposed definitions for “statistically equivalent” and
“statistically independent” were also given. Two LES’s are statistically equivalent if
the domain of the flow and the boundary conditions are exactly the same and if the
initial conditions satisfy the same set of constraints. Two LES’s are statistically in-
dependent if the initial conditions are generated with uncorrelated random numbers
w;. For the time-evolving plane wake, a large number of quantities are measured,
and any number of them might be considered as constraints that need to be main-
tained by all realizations (e.g. profiles of mean velocity, turbulent kinetic energy,
enstrophy, etc.). The question then becomes: is it possible to create R independent
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FIGURE 2. Maximum grid-point value of the z-component of the resolved vorticity,
Wzmax» @8 a function of time for each of the 16 realizations.

mitial LES fields that maintain all the relevant quantities in the plane wake from
one single filtered DNS field? Since the observed quantities of interest are obtained
through (z — z)-plane averaging, they are invariant under the transformation

Ui, Y, 2,t0) — Ui(T + 8,4, 2 + 65, 8) . (3.2)
Thus by using R values of (67,67), R different (but statistically identical) initial

velocity fields can be produced from the filtered DNS field by shifting in the (z — z)
plane. These initial fields clearly satisfy the requirement that the LES realizations
be statistically equivalent because the initial values of any plane-averaged quantity
are identical. However, this procedure does not produce statistically independent
initial conditions, even with random choices for (87,67), because the two fields
are identical and simply shifted in space. Without the subgrid model terms, this
correlation would maintain itself in time. However, the model terms will have
the desirable effect of de-correlating the different members of the ensemble. This
results because the universal model terms act at the same (z — 2z) location in all
the realizations, not at the same relative position in the shifted flows. An example
of this de-correlation is given in Fig. 2, where the maximum grid-point value of the
streamwise vorticity component w,”,,  for each of the 16 realizations is plotted as
a function of time (model A has been used to generate this plot). Because this
maximum is computed on a grid that has been shifted by a random (nonintegral
multiple of the grid-spacing) shift, Wrmax 1S DOt the same for all the realizations,
even at ¢t = 0. The fairly rapid spreading of the values associated with the different
realizations suggests that the different LES fields de-correlate fairly quickly.

If a very large number of realizations is used, the coefficient C obtained through
the EADP is independent of z and z. It reduces to the value of C obtained by the
plane-averaged dynamic procedure. In this limit, the various realizations will not
diverge and the EADP, with the peculiar construction of the initial conditions pre-
sented above, will degenerate into a collection of LES based on the plane-averaged
dynamic procedure. A more sophisticated procedure for building the initial con-
ditions would then be needed if a large number of realizations were required for
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FIGURE 3. Convergence of the ensemble-averaged evolutions of the wake width
(top-left), resolved turbulent kinetic energy density integrated in y (top-right) and
resolved turbulent kinetic energy dissipation integrated in y (bottom). Various
ensemble sizes are compared: R =4, 0; R=80; R=16,0;and R=32, 4.

statistical convergence. However, it will be seen that R = 16 realizations are ade-
quate for satisfactorily converged statistics, and this issue is irrelevant in the present

study.
3.8 Tests of convergence

In order to test the convergence of the EADP results for increasing values of R,
two types of tests were performed. First, the ensemble-averaged values of several
relevant quantities in the time-evolving wake flow have been compared for various
ensemble sizes. In particular, the results for i) the wake width, i1) the turbulent
kinetic energy density integrated in y, and #i1) the turbulent kinetic energy dissi-
pation integrated in y are compared for R = 4, 8, 16, and 32. As can be seen from
Fig. 3, the values obtained with 16 and 32 realizations are almost indistinguishable
for all three quantities.

Second, the influence of the ensemble size on the computed eddy-viscosity has
been examined. The profile of the mean eddy-viscosity and the fraction of grid
points for which the eddy-viscosity has been clipped according to the criterion (2.8)
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are compared for the same values of R in Figs. 4 and 5. As seen in Fig. 4, the
eddy-viscosity profile depends only weakly on the number of realizations for values
of R between 4 and 32, and the profiles are nearly identical for R = 16 and R — 32.
As expected, the fraction of grid points requiring clipping of the model coefficient
C rapidly decreases with R (Fig. 5). The total fraction of clipped points integrated
in y is less than 1% for R = 16 during the entire simulation. This, combined with
the very small change in most of the ensemble-averaged quantities as R is increased
from 16 to 32, supports the adoption of R = 16 as a reasonable ensemble size for
both model testing and production LES. Because this value of R is the same as
that required for the simulation of homogeneous turbulence, it seems reasonable to
hope that R = 16 provides an adequate ensemble size for the EADP in even more
complicated geometries.

The comparison between various ensemble sizes is presented here only for model
A (2.4). However, the same conclusions concerning the convergence of the results
and the appropriate value of R are obtained when either the Smagorinsky model or
model] B (2.5) is used as well.

3.8 Comparison of models

As mentioned in the introduction, an important motivation for developing the
EADP is the possibility of investigating new concepts in subgrid-scale modeling.
Here, the filtered DNS of Moser, Rogers, & Ewing (1997) is compared with the LES
predictions of Ghosal & Rogers (1997) and the predictions of the models presented
in Section 2. We have also added the results of a LES without a subgrid-scale
model. In all cases, and in agreement with the conclusion of the preceding section,
the simulations for the EADP have been performed with R = 16.

The first important conclusion is that the plane-averaged and ensemble-averaged
dynamic procedures lead to indistinguishable results when they are applied with
the same model. For instance, in the LES of Ghosal & Rogers (1997), the plane-
averaged dynamic procedure has been implemented with the standard Smagorinsky
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FIGURE 5. Profile of the fraction of grid points requiring clipping of the coeflicient
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FIGURE 6. The wake width evolution obtained from the filtered DNS, o; the
Smagorinsky model, —; Model A, o; Model B, +; and no model, x.

model. Their results are identical to those obtained when the Smagorinsky model is
used with the EADP. In the following comparison, the Smagorinsky case will refer
to both the EADP and the plane-averaged LES of Ghosal & Rogers.

The evolution of the wake width is illustrated in Fig. 6. This quantity is domi-
nated by large-scale flow features and consequently is not strongly affected by the
models. Actually, the prediction of the LES without a subgrid-scale model (an
under-resolved DNS) provides a reasonable approximation to the value obtained by
filtering the DNS data.

The turbulent kinetic energy density integrated in y 1s more difficult to predict
using LES. As can be seen in Fig. 7, not using a subgrid-scale model results in
poor prediction of resolved energy density. Model A leads to almost the same result
as the Smagorinsky model. This is a general feature of the dynamic procedure
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integrated in y obtained from the filtered DNS o; the Smagorinsky model, —;:
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that has been noted previously (Wong & Lilly 1994; Carati, Jansen & Lund 1995).
However, within the dynamic procedure approach the model A is computationally
much cheaper to implement than the Smagorinsky model, and this motivates the
use of the scaling (2.4) for the eddy-viscosity instead of (2.3). The model B, from
which the ensemble-averaged resolved strain-rate has been removed, leads to results
that better fit the DNS data in the early stages of the simulation. At later times,
however, this model is further from the filtered DNS values than model A and the
Smagorinsky model. In general the predictions of all three models seem comparable.

The evolution of the turbulent kinetic energy production integrated in y is pre-
sented in Fig. 8. The no-model LES prediction for the resolved energy production
is much too high in the early stage and too low at later times. Again, model A



Ensemble-averaged LES of a time-evolving plane wake 335

leads to almost the same result as the Smagorinsky model. Model B systematically
over-predicts the energy production. However, it would be rather speculative to
draw any definitive conclusion regarding which model (A or B) is better from the
results presented here.

4. Conclusions

The motivations for the present study were ) the determination of the required
number of realizations for ensemble-averaged determination of subgrid LES terms
and ii) the demonstration of new modeling concepts than can be implemented
within the framework of the EADP.

Simulations with R = 16 lead to results that do not differ significantly from those
obtained with R = 32. Hence, R = 16 is a reasonable choice for the ensemble
size. This is the same value recommended by Carati et al. (1996) for homogeneous
turbulence, suggesting that this might be an adequate ensemble size for converged
results even in more complex flows. This is, of course, a major encouragement for
further developing the EADP methodology.

All three subgrid-scale models employed with the EADP procedure resulted in
comparable predictions of various filtered DNS statistics, whereas not using any
model provided inadequate estimates of quantities other than the mean velocity
profile. Predictions using the Smagorinsky model and the EADP procedure are
identical to those made by conventional plane-averaged evaluation of the Smagorin-
sky model terms. Model A leads to results that are very similar to those predicted
by the Smagorinsky model. Hence the present study suggests that, in the con-
text of the dynamic procedure, the Smagorinsky model should be abandoned in
favor of model A, which is computationally much cheaper. We have also introduced
a new model (model B), which explicitly requires ensemble-averaged statistics to
predict the subgrid terms (although the same model could be implemented with-
out an ensemble if the flow has a homogeneous direction for averaging). Having
an ensemble of LES’s opens up many new possibilities for subgrid-scale modeling.
The subgrid-scale tensor has traditionally been modeled in terms of the resolved
strain-rate tensor ?; With an ensemble of LES realizations, it is possible to build
up new models based on quantities that explicitly require an averaging procedure
such as the ensemble-averaged resolved strain-rate tensor {?:j) (as in model B).
Another tensor that could be an interesting ingredient in subgrid-scale modeling is
the second-order velocity correlation (@} — (&]) )@} — @)

Considering the rapid development of parallel computers, the use of an ensemble
of statistically equivalent and independent LES’s can be regarded as a very promis-
ing technique. This technique can be implemented with fairly small ensemble sizes.
Original modeling concepts that cannot be implemented in fully inhomogeneous
flows by conventional LES techniques are possible within the framework of the
EADP and warrant further examination.
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Analysis and subgrid modeling of
shock-wave/boundary-layer interaction

By N. A. Adams', S. Stolz!, A. Honein AND K. Mahesh

This paper considers two different issues that arise in LES of supersonic wall
bounded flows. First, an a priori analysis of subgrid-scale models in a highly com-
pressible environment is conducted. DNS data from a Mach 3 compression-corner
are used for this purpose. Models of the scale-similarity type correlate best with
fltered DNS data. Lower correlations are obtained with the dynarnic mixed model,
the dynamic Smagorinsky model, and the fixed-coefficient Smagorinsky model. Sec-
ond, the possibility of treating the shock as a subgrid scale is investigated. It is
found that a straightforward application of dynamic eddy-viscosity models is unsuc-
cessful. A direct deconvolution is found to give a proper agreement between a 6th
order spectral-like finite-difference scheme and a 5th order ENO shock-capturing
scheme for the simple case of a 1D convected M =3 shock.

1. Introduction

Large-eddy simulation (LES) is now a viable tool for studying moderately complex
turbulent ows at Reynolds numbers for which direct numerical simulation (DNS)
is infeasible. Most LES performed have been in incompressible flows. This paper
considers LES of a highly compressible flow — the interaction of a shock wave with a
Mach 3 turbulent boundary layer along a compression corner. Two issues relevant
to the LES of this flow are studied: the accuracy of subgrid models, and the eftect
of subgrid models on the shock, which itself can be a subgrid-scale entity.

In this paper we conduct an a prior: analysis of DNS data for supersonic com-
pression ramp flow. Several models are considered. Of particular concern are SGS
terms in the energy equation, where compressibility effects are significant. Next,
we briefly address the question of whether and how a shock can be treated as a
subgrid-scale structure.

2. Part 1: Analysis of compression-corner data

In this section, we focus on a prior: analysis of data from DNS of a compression
ramp at M = 3, Reg = 1685 and a deflection angle of 18°. The numerical method
used in the DNS is described by Adams (1998; results are analyzed and reported
by Adams & Kleiser (1998).

1 ETH Zirich, Institute of Fluid Dynamics, CH-8092 Zirich, Switzerland.
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2.1 Mathematical model

Considering the conservative Navier-Stokes equations in curvilinear coordinates,
we apply a filter operation with filter width A in computational space ¢ to the
dependent variables

36 =GE - &)@ o) = /ﬂ G(E - €)9(E')de

We obtain the fundamental equations for the resolved conservative variables
{p, i, E}. Favre-filtered quantities are denoted by “s”, They are computed
from a mass-weighted filtering operation

i=2
p

The nomenclature of the following equations may be found in Vreman (1995) and

Adams (1998). The filtered continuity equation becomes

(1)
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Yc1 is an O(A?) error term, which results from the non-identity mapping between
computational space ¢; and physical space z;. Yc2 is an error due to a variable filter
width (commutation error). This error vanishes since in our case the filter G is not
an explicit function of £; and filtering is peformed in computational space.
The filtered momentum equations are
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The term j3; arises from the non-linearity of the viscous stresses. yn1 and v, are
error terms analogous to yc; and yca.

The resolved-energy equation is obtained by filtering the enthalpy equation and
by adding the filtered momentum equation, multiplied by u;:

8E | 8 (EB4py 06 ) _ 8 (&iid&e) y 8 (4 %) -
EI3Y J 7J0oz; I J Odz; EIN J oz )] —

= —a; —az — a3 + a4 + a5 — ag + YE1+ VE2

- ._#__Eéﬁiﬁl'_
95 = (3=1)RePrM? xz; 0t

' 3
a 18 (Puj—pi; 86
27 186 J 9z;

dz;
_ 9 ﬁ..’&.‘!'—ﬁ.‘ﬁ','!‘ [I3% (3)
a5 = Fg, J Bz
- _0 g —4j 8
as = o (450 5
_ 8 pu 1 8 Il pu 1 8 1 _Bu; 8
TH1 = g, [(T-% +€b) 75“] ~ % [(7—_% +‘11) 75%} + P e -

_pOY; 96k | Tij Gu; Ok L, . 0ui O
J 9y Oz; J O&k Oz; J 711 9, Ox;

YE1 = %iYI1i + YH1

YE2 = UiYI2i + YH2

A “¢” indicates that the respective quantities are computed according to their
definition but with resolved primitive variables, e.g., E = p/(y — 1) + puiti/2,
which we call the total resolved energy. Note that the filtered Jacobian 9¢;/0z;
has been replaced by the unfiltered 9¢;/0z;. This contributes another error of
order O(A?), which is on the order of the leading error terms. Whereas subgrid-
scale stresses formally are analogous to the incompressible case, additional terms
appear in Egs. (1) - (3) due to the non-vanishing velocity-field divergence and due
to variable viscosity. Some of these additional subgrid-scale terms have an intuitive
physical interpretation as shown in Table 1.
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SGS —term | physical interpretation

aq SGS-dissipation.
Qg Pressure-velocity correlation;

reversible transfer between internal and kinetic energy; by re-
arrangement an expression similar to the turbulent heat flux

in RANS-modeling is found:

. 1 E) pTu; —pTi; 8
@ = et i (2545 H5e) .
as Pressure-dilatation correlation.
ay SGS-molecular dissipation.
TABLE 1. Physical interpretation of SGS-terms.

2.2 A priori analysis

For an assessment of the correlation between modeled and exact data, an a prior:
analysis of a DNS data base for a turbulent supersonic compression ramp (Adams
and Kleiser, 1998) was performed. The filter used here is a Padé filter of 2" order
(Lele, 1992) where the advantage of having a continuous parameter to change the
effective filter width is used to tune the filter in order to best approximate a Gauf
transfer function in wavenumber space. The cut-off wavenumber is k. = n/4 for the
grid filter and k. = /8 for the test filter where required. The filter formula is

afici+ fi+afiyr = af; + g(fi_l + fit1) (4)

where b = a = 1/2+ a. The effective cutoff wavenumber is given by A in the exact

Gauf} transfer function
G(£) = e (2€/2)°/8

where £ is the wavenumber normalized with the grid-spacing h. By approximating
the Gau} transfer function by the transfer function of filter (4), one finds the best
matches for « = —0.2 for an effective filter width A = 44 and a = —0.43 for an
effective filter width A = 8h.

We refer to three different subdomains of the compression corner geometry, the
locations of which are indicated in Fig. 1. The first (A) is located ahead of the
shock, the second (B) around the corner, and the last (C) behind the shock. All
blocks span the domain in y-direction. The streamwise extent of block A is about
2.7 mean-boundary-layer thicknesses (at inflow) &y, and it has a height of about
1.2é9. Block B is about 28, long and is about 1.260 high (above the plate); the
extents of block C are about 2.78, and 1.44¢, respectively.

By a comparison of the L,-norms (see Table 2) of the SGS-terms in the momentum
equation, the subgrid-scale stresses r; ; and related terms in the energy equation are
found to be dominant.
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A B C

FIGURE 1.  Location of subdomains for the compression corner geometry.
SGS- L,-norm SGS- Lo-norm
term global A B C term | global A B C
7.+ 10% | 5908 3.611 10.297 14.769 | o1 5.190 0.885 4.497 7.401
Tey- 10 1.330  0.424 3.124  3.143 o 3.255 0.694 3.329 5.535
1., -10%] 1.745 0.338 2.363 4.293 a3 1.901 0.430 2.254 3.430
Tyy - 103 | 2.615  0.708 5.955 6.202 Q4 0.480 0.113 0.717 1.407
Ty.-10% [ 0.753  0.219 1.613 1.786 as 0.070 0.038 0.092 0.206
7., -10% | 2.512 0.507 4.637 5.149 ag 0.114 0.127 0.181 0.229
%}’4 17.123 1.132 16.336 54.340 | B 0.033 0.013 0.055 0.079
S 4980 1.297 9.599 12.960 | B, | 0.049 0.045 0.105 0.099
%}?— 16.254 1.167 13.089 51.517 | fs 0.536 0.230 1.188 1.238

TABLE 2. L,-norms of SGS-terms calculated from DNS-data.

The terms B; (see Eq. 2) are smaller by at least a factor of 5 in subdomain A
than the respective components of the divergence of the SGS-stress tensor. In the
subdomains B and C the §; are even smaller. They vanish in an isothermal flow
since there i = 1 = u(T) = const and accordingly @ = 5. The most significant
terms in the energy equation are o through asy. The magnitude of as and as is
about one to two orders of magnitude smaller.

In order to evaluate the performance of the models, a correlation coefficient C
and a ratio A between model predictions and filtered DNS data are computed:

C(E,M) =

(EM) — (E)(M)

VIE?) —(E)?/(M?) — (M)?



342 N. A. Adams, S. Stolz, A. Honein & K. Mahesh

and
2
Ay = LB
((M(x))")
Herein, (-) denotes an average over all points of the subdomain; E is the filtered DNS

data and M is the SGS model data. If C is 1, both filtered DNS and approximation
are perfectly correlated. Their magnitude is the same if A = 1.

2.2.1 Momentum equation

In Table 3 we show A and C for =; ; and a; for subdomain B and different subgrid
models. The different models used are the Smagorinsky model with Yoshizawa’s
extension (Yoshizawa, 1986)

_ 1 2 Oug 2 1
m;; = —pC'g-A%I 55{;‘3.‘,‘ (S.'j - 56;,-6—“) + §Ck6;’jA2‘/ 55;,-.5';,-
Qui | Ou;
6x,~ 31:,' ’
the dynamic mixed model (DMM, Zang et al., 1993, Vreman et al., 1994)

s p— _— = = — 1 2 aUk
i = P U3 [ P = P pu; [ B~ PCaA®|[55:Si; (S‘f‘ﬁé"'%)

where Cy is a dynamic coefficient, the scale-similarity model (SSM, Bardina et al.,
1983)

with S = Cs=0.16 and Ci=0.0886 ,

mij = p; pu; [ p— P o5 [ B

and the resolved turbulent stresses with r = A/A = 2 (Pruett, 1997)

1 e ey A S a
m;’j=ﬁ((pu,- pu; [ P)" — pu; puj/p)

model Trr Tz:y Trz Tyy Tyz Tzz ay
Smagorinsky/| C| 0.813 0.514 -0.227 0.721 -0.092 0.660 0.215
Yoshizawa A| 2113 7.430 2470 1.160 4.328 1.280 2.116
dynamic C| 0947 0.850 0.696 0.849 0.578 0.695 0.592
mixed-model | A| 1.481 1364 1.055 2.186 1542 1.827 0.934
scale-simi- C| 0.967 0.918 0.862 0.949 0.846 0.945 0.854
larity model A}l 1.554 1906 1.628 2943 2509 2.902 2.875
resolved C| 0914 0.78¢ 0.632 0.907 0.694 0.904 0.670

A 2872 4731 3326 6.509 6.775 5961 9515

TABLE 3. Correlation coefficient C' and ratio A of the L,-norms over subdomain

B for different SGS models.
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FIGURE 2A. 7, ., filtered DNS data

FIGURE 2B. 7., scale - similarity FIGURE 2C. 7,., dynamic mixed
model model

FIGURE 2D. 7;,, resolved turbu- FIGURE 2E. 7., Smagorinsky /
lent stress Yoshizawa

The correlation coefficient C and the ratio A show that the Smagorinsky model
correlates poorly with the filtered DNS data, see also Fig. 2E. The correlation of
the turbulent resolved stresses is good for A/A = 2 (Fig. 2D), but the magnitude
is considerably under-predicted. For A/ A = 1, which coincides with the SSM,
correlation and magnitude are improved (Fig. 2B). This agrees with the analytical
predictions of Pruett (1997), who showed that the SSM should approximate SGS-
stresses better than the turbulent resolved stresses with A/A = 2. The DMM
performs reasonably well (Fig. 2C, Table 3), but not as well as the SSM.

2.22 Energy equation

Three different models have been tested for the most significant SGS-terms of the
energy equation. These models are the full dynamic mixed model (FDMM, Vreman,
1995), a scale-similarity-approach (SSM), and the resolved SGS quantities.

The SSM-approach for M; amounts to computing the SGS-terms from the filtered
variables,

a; = F(w), Bi = F(w) ,
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M; = F(W)
with  w = (p, pu, pv, pw, p)T .

The resolved SGS quantities M; of the respective a; are computed in the following
way, using resolved and test-filtered data:

a; = f,(W) - fl(W) ’
M = = (£ - 1)

Figure 4C shows that a4 of the FDMM does not agree well with filtered DNS
data. az + a3, as predicted by FDMM, correlates better with the filtered DNS data,
since it contains a scale-similarity part, Fig. 3D. The agreement between resolved
SGS quantities and filtered DNS data is moderate, Fig. 3C. The SSM-approach
gives much better correlation with filtered DNS data, Figs. 3B and 4B, and can
furthermore provide predictions for all other SGS-terms as well, see Table 4.

model as as @y as ag B B2 B3
dynamic C 0.510 0137 — — -
mixed model | A 0.762 0.628 — — — — —
scale-simi- C| 0838 0781 0.944 0.805 0.573 0.836 0.830 0.924
larity-model | A| 3.001 2.926 5.127 2.981 0.932 3.320 1.847 3.467
resolved Cl 0330 0.552 — — — — — —

A{ 5759 10.754 — — — _ - —

TABLE 4. Correlation coefficient C and ratio A of the L,-norms over subdomain

B for different SGS-terms of the energy equation and for B; of the
momentum equations.

3. Part 2: Treatment of shock wave

The numerical diffusion introduced by shock-capturing schemes interacts with
subgrid-scale turbulence. In the recent past it has been attempted to make use
of this feature by so-called MILES (monotonically integrated LES, i.e. using a
monotone scheme which suppresses subgrid-scales) to model turbulent subgrid cor-
relations, see Boris et al. (1992).

The question arises whether one can model non-turbulent subgrid-scales such as
shocks by appropriate subgrid-scale models. This would allow for a unified approach
to LES of shock-turbulence interaction similarly as with MILES but with full control
of subgrid-scale modeling. Also the conservation equations could be advanced with
a non-dissipative scheme such as spectral collocation or central finite-differences.

In this section, we briefly report on ongoing work on how to properly treat a
shock as subgrid-scale entity in LES.
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FIGURE 3A. az+az3, filtered DNS FIGURE 3B. a;+as, scale-similarity
data model

FIGURE 3C. az+a3, resolved tur- FIGURE 3D. a; + a3, dynamic

bulent quantities mixed model

FIGURE 4C. a4, dynamic mixed
model

FIGURE 4B. a4, scale - similarity
model
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3.1 Shock as a sub-grid scale

If the filtering concept is interpreted strictly, then a shock, which is a discontinuity
for an inviscid fluid, becomes a subgrid scale. Its resolved form can be represented
by a filtered Heavyside function which is the error function. For simplicity we
consider the one-dimensional filtered Euler equations

QE + OF(u)
ot Oz

=& (5)

with oF@) I
F(a F(u
T o Oz (6)

where @ = {p, 4, E} and F(@) = {pi, pi? + p, (E + p)i}. The right-hand side
term € which is introduced by the filtering we will here call the error term. The
filtered solution satisfies the modified differential Eq. (5), and £ can have dissipative
and dispersive character. If (5) could be solved exactly with an exact &£, then at
any (t,z) the solution of (5) would correspond to the filtered solution of the unfil-
tered equation. The nonlinearity in both the filtered and the unfiltered equation is
responsible for the wave steepening which generates the shock. The approximation
of £ needs be to sufficiently accurate in order to avoid that SGS-structures appear
(it needs to “dissipate” the small scales generated by the nonlinearity) and to en-
sure the correct shock convection (it needs to compensate for the dispersive error to
some extent). Concerning subgrid-scale approximation theory, a shock is a generic
subgrid-scale with the advantage that one knows the exact and the filtered solution
analytically.

£

3.2 Dynamic model

An obvious attempt is to approximate £ by a standard SGS-model. Here we
chose the dynamic Smagorinsky model since it has the basic form of a diffusion
term, which benefits stabilization of the nonlinear term in Eq. (5). On the other
hand it should be kept in mind that, as we have seen in Part 1, this model gives
a poor approximation to £. In our case the modeled term in the one-dimensional
momentum equation is
Ou| du

ozl o

mo = —AaCﬁ -

and in the energy equation it is

Opma AL 9 [ ,0u0T
0z (y—1)M23z \*" 3z 6z |

m3=&

The constants C and C' are computed dynamically from a comparison with the
test filtered Leonard expression for £. A, is the filter width. The main ingredients
of standard dynamic modeling are the hypotheses of same SGS structure on grid
and test filter levels and a dynamic constant being unaffected by the filtering. The
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constants are filtered with the test filter of width Ay to avoid subgrid-scale contri-
butions stemming from the ill-posedness of the coefficient-determination procedure.
Several variants of the dynamic procedure have been tried, also a form that
emerges when the non-linear terms are explicitly filtered. It turned out, however,
that if the explicit filtering formulation is applied consistently, terms of different
character are forced to match by the dynamic procedure. A Taylor-series expansion
shows that to leading order the approximation for the second component of &,

Ly = Afpgua”

is forced to match
my = Ajpla'|u’

where the primes denote partial derivatives with respect to , and py is the second
moment of the filter kernel. For the generic filtered shock solution, it was shown
that these terms have different character.

The test case where the model has been applied is the 1D M = 3 test case of
Adams & Shariff (1996) without incoming perturbations. As underlying numerical
schemes, an explicit 2" order finite difference scheme with 3rd order Runge-Kutta
time integration and a 6th order Padé scheme (Lele, 1992) with same time inte-
gration were used. The former scheme can be stabilized by using a von Neumann-
Richtmyer artificial viscosity for £ (Hirsch, 1988) but not so the latter. None of the
dynamic formulations we tried gave a stable solution of Eq. (5), so the concept of a
standard dynamic model for shock computation was not pursued.

3.3 Deconvolution

From the notion that £ can be understood not as a term to be modeled but as
an error term which requires proper approximation, one can try to recover £ by a
deconvolution of the filter operation at each time instant to obtain u from . If
this could be done exactly, £ of Eq. (6) would vanish. Since a regularization of the
deconvolution operation is required, a small error remains in practice. The filter
used here is the same 2™ order Padé filter as in section 3.2. The parameter « is
chosen as a = —0.2 in order to resemble a GauB filter with effective width A = 4h
(h is the grid spacing) and & = —0.43 for A = 8h. Note that the the smallest
resolved wave number is assumed to be half the Nyquist wave number. It cannot
be expected that at A = 2h a finite-difference scheme has any useful resolution
properties and even a spectral scheme’s error is of order one at this wave number.

For the abovementioned test case, a simple deconvolution by inverting the filter
operation (4) has shown remarkably good agreement with filtered data obtained
from a direct simulation with a high-order shock-capturing scheme, Fig. 5. Due to
the ill-conditioned character of the deconvolution procedure the non-regularized de-
convolution became unstable when perturbations were added to the shock-convection
problem as in Adams & Shariff (1996). Indeed, the filter operation (4) is only in-
vertible in its discretized form, a continuous Gauf filter is not invertible as can be
shown by a brief argument in Fourier dual-space. Extending the work on deconvo-
lution approaches for shock-turbulence interaction regularization procedures will be
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FIGURE 5. Shock simulation, velocity distribution, : filtered 5th order ENO
scheme, o——o : deconvolved 6th order Padé scheme, +——+ : artificial viscosity
and 2nd order central scheme.

considered. It is expected that with regularized deconvolution methods an efficient
treatment of any subgrid-scale entity, such as shocks or turbulent eddies, will be
possible,

4. Concluding remarks and outlook

We have shown that standard subgrid-scale models require improvement before
they can be expected to reliably represent subgrid-scale effects in physically com-
plex flow. Nor did a straightforward application of a standard dynamic modeling
procedure to treat a generic non-turbulent subgrid-scale, in our case a shock, prove
to be applicable. A promising alternative appears to be (approximate) deconvolu-
tion strategies, also called de-filtering or estimation models (see the contribution of
A. Domaradzki in this volume). They show in a priori tests a considerably higher
correlation with filtered DNS data. Also often deemed misleading, in our under-
standing a prior: tests constitute a necessary criterion for a SGS approximation
to work, very much as a finite-difference discretization is supposed to give a good
approximation to the, say, spatial derivatives in a PDE before anyone would expect
that time-integration would make any sense. The traditional dynamic procedure,
in fact, tries to alleviate some of these problems by making the Smagorinsky model
more variable and by measuring this variability by a term of scale-similarity type
(the test filtered Leonard term). The brief treatise on LES shock-treatment sug-
gests that regularized deconvolution can be considered as a promising way for an
accurate representation of subgrid-scales. It seems that many problems in the ap-
plication of LES models come from the fact that LES practically always operates
at the numerical resolution limits of the underlying schemes. An LES model needs
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to correct what is not resolved numerically, and, obviously, then an LES model
becomes related to the numerical scheme.
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A subgrid-scale estimation model applied to large
eddy simulations of compressible turbulence

By J. A. Domaradzki', T. Dubois AND A. Honein

A subgrid-scale estimation procedure investigated previously for incompressible
turbulence is extended to compressible flows. The procedure provides an estimate
of the unfiltered velocity field and temperature appearing in the expressions for
the subgrid-scale stress tensor and heat flux. The procedure in the physical space
representation is applied to the compressible equations, which are written in a
conservative form using sixth-order finite difference compact schemes for the ap-
proximation of the spatial derivatives. Two compressible flows are considered in
this investigation: spatially decaying turbulence and shock/turbulence interaction.
A priori analysis and actual large eddy simulations for both flows have been per-
formed and a good agreement with filtered direct numerical simulations results has

been obtained.

1. Introduction

Subgrid-scale (SGS) models commonly used in large eddy simulations (LES) of
turbulent flows fall into three general categories: eddy viscosity models, similarity
models, and so-called mixed models which combine eddy viscosity and similarity
expressions. For review see Lesieur and Métais (1995) and Galperin and Orszag
(1993). In recent years major advances in SGS modeling were made using the dy-
namic procedure (Germano et al. 1991, Lilly 1992, and Ghosal et al. 1995), which
allows computation of model coefficients from a resolved LES field rather than pre-
scribing them as constants. Despite evident progress in the field of SGS modeling,
the existing models fail to capture some physical features of the actual SGS inter-
actions. For instance, the eddy viscosity models properly model global SGS dissi-
pation, i.e. the net energy flux from the resolved to the unresolved subgrid-scales,
but predict very low correlations between the actual and modeled SGS quantities
(Clark et al. 1979, Lund 1991, Kerr et al. 1996, O’Neil and Meneveau 1997). On
the other hand, the similarity models correlate very well with the exact stressesin a
priori analyses but significantly under predict SGS dissipation in actual large eddy
simulations. Such difficulties motivate continuing search for better SGS models,
and this effort is reflected in several articles in these Proceedings.

One such alternative approach to SGS modeling was proposed recently by Do-
maradzki et al. (1997, 1998). The proposed approach provides an estimate of the
unfiltered velocity field appearing in the definition of the subgrid-scale stress tensor.

1 Department of Aerospace and Mechanical Engineering, University of Southern California, Los
Angeles, California 90089-1191
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Once the unfiltered velocity is found, it is used to compute all SGS quantities di-
rectly from the definitions. The estimation model was implemented and evaluated
for incompressible channel flow at low and moderate Reynolds numbers, providing
very good agreement with the DNS and experimental results. However, further
work is needed to evaluate, document, and improve the performance of the model
for higher Reynolds numbers and different flows. In this report we extend the SGS
estimation model to compressible flows and evaluate its performance for spatially
decaying compressible turbulence and shock/turbulence interaction.

2. Formulation

2.1 The large eddy simulation equations

The LES equations are obtained by spatial filtering of Navier-Stokes equations for
compressible flows. The result is rewritten in terms of Fayre (or density-weighted)
filtering, which for a function f is defined as

where the overbar denotes spatial filtering with a top-hat filter with the filter width
Ay and p is the density. We follow Moin et al. (1991) and Erlebacher et al. (1992) in
neglecting several terms in the equations that are considered small. Resulting con-
tinuity and momentum equations for spatially filtered density 5 and Favre filtered
velocity 1; are

% 9 .

at t g, (PU) =0, (1a)
Opa; O . 3, O
W’Lﬁ,(’m'u’wé”)_—ax—j*E' (15)

In Eq. (1) 65 is the viscous stress, that is

. _(0d; Ou; 20uy
Oij "”(%Jrah:ci-:?bx—k&”)’ (2)

where g is the viscosity and Tij represents the subgrid-scale (SGS) stress,
mii = Pl ~ did;) = pu; — 5 o/ . (3)

According to Lee (1992), a conservative formulation for the energy equation is
required in the computation of shock/turbulence interaction. Following Mahesh
(1998), the conservative energy equation is written as,

OFEr 5 _ 9 . 9 Bl
W + ‘az [(ET + p)u,] - %j(ulo’!]) - axi (Kalr,‘) ’ (4)

where the total energy is given by Ep = pC,T + puru/2, & is the thermal conduc-
tivity, and C, is the specific heat at constant volume.
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Using the definition of the Favre filtering and of the total energy, the term Ervy;
in (4) can be rewritten as

—_— oy e 1 . 1_ P

Eru; = pCuTii + Cogi + 5purtrii + 5P (W - ukuwi)
5)
_ 1 R (
= Eri;+ Cvgi + 5,5 (m - Ukukui) )

where the subgrid-scale heat flux ¢; is

¢i = p (T - Ts) = pwiT — 7w T/ (6)

The last term in (5), corresponding to convection of SGS kinetic energy by SGS
velocity, is expected to be small and is neglected. The other nonlinear term on the
left-hand side of (4), involving pu;, is rewritten after filtering as follows,

pu; = pRTu; = ﬁRﬁ = ﬁRTﬁ,'-{—Rq,',

In the last formula the equation of state for ideal gas p = pRT was used, where R
is the gas constant. The filtered r.h.s. of Eq. (4) is treated as in Moin et al. (1991),
leading to the final form of the filtered total energy equation

0Er | 0 (,: - 9
Ty ((ET + ﬁRT)u,') = T om (Cpas)

ot Oz
+._a_ —_a_T; +_ﬁ_("<.~. (7)
Oz; Ka:c,' Oz; Gijii).

In deriving (7) the filtered equation of state was used, p = ﬁRT, and the relation
Cp = Cy + R, where C, is the specific heat at constant pressure. Finally, note that
the resolved temperature and total energy are related by

_ - 1 1

Er = ﬁCvT-}- éﬁukuk + ‘2‘7'kk- (8)
To close the above equations for the primitive variables p,@;, T, the SGS stress (3)
and the SGS heat flux (6) must be expressed in terms of those variables using an

SGS model.

2.2 The subgrid scale estimation procedure

Consider a velocity field u; which is a continuous function of variable z on the
interval {0, L;]. For the purpose of numerical simulations, u; may be approximated
in terms of its values at discrete points using sufficiently small mesh size Apns.
Assume that the continuous function u; 1s filtered with a top hat filter Aj. In
general, the filtered velocity ; is smoother than the unfiltered field u;, and it can
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be accurately represented by sampling it on a coarser mesh A LEs ~ Af € Apns.
Specifically, we will choose AL gs = A f/2.

The SGS estimation procedure consists of two steps. In the kinematic step we
seek a function u?(z) such that

ud(zn) = Ti(zn), (9)

on the LES mesh points z,, = nApgg, (n=0,1,... ,N). Note that the right-hand
side of Eq. (9) are the values of the resolved field, assumed to be known on the
LES mesh. Clearly, without additional assumptions the above condition does not
provide a unique solution for u?(z). To further specify the problem we assume that
u)(x) may be accurately represented by N nodal values, u{(zn). Then, the filtering
on the left-hand side of Eq. (9) involves integration over interval A f spanning three
neighboring points. We use the Simpson’s rule for the integration, which results in
a tridiagonal system of equations for the values of ul(z,)

[} (2n-1) + 4ud(20) + ul(2ns1)] = T (20). (10)

[= Y

The system can be solved if values for the end points are provided. In this work we
apply the procedure to periodic functions only.
The subgrid scales are generated in the nonlinear step on a fine mesh with the
mesh size Apgs/2
zj =jALes/2, (j =0,1,... ,2N). (11)

First, we interpolate previously computed u‘} from the coarse LES mesh to the
fine mesh using cubic splines. Next, the small scales are produced as a result of
nonlinear interactions among large scales. To this end the advection effects by the
large scales are removed from the nonlinear term

0

0 _ 00 0
Ny = —(u; —u2)5x—jui,

4 J

(12)

and the growth rate of subgrid scales by the nonlinear interactions among resolved
scales is obtained as -
N{ =N} - N?. (13)

If the nonlinear interactions are maintained over time 6, the small scales become
ul = 6N/, (14)
and the estimated velocity field is
uf = uf + ul. (15)

To fully determine the small scales using the nonlinear correction term Eq. (14), the
time scale 6 is needed. Physically 6 can be interpreted as the large eddy turnover
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time. Its value may vary with the position in a flow to reflect local conditions of
turbulence. We estimate 6, assuming that locally in space the energy of subgrid
scales Eq. (14) is proportional to the energy of the smallest resolved scales. This
provides the following expression

§=Cyf (16)

where the constant of proportionality C is found to be approximately 1/2 for the
inertial range spectral form.

For applications to compressible flows the following changes are made. First, the
deconvolution for p is performed providing unfiltered p°. To avoid violating the
conservation of mass, no attempt is made to use the nonlinear correction for SGS
density scales. Next the deconvolution is performed for spatially filtered velocities,
pu; = pil;. The resulting quantities are divided by p° to provide u? for use in the
nonlinear correction step as described above. Similarly, the deconvolution for E7 is
performed, and the relation for EY. in terms of p°, u?, and T° is solved for the tem-
perature 7. The nonlinear correction to T° is found as for the velocity by replacing
the nonlinear term for the velocity by the nonlinear term for the temperature. Es-
timated density p¢ = p°, velocity uf = uY + u!, and temperature T = T° + T' are
used to calculate the SGS stress and the SGS heat flux from formulas (3) and (6),
respectively.

3. Numerical implementation

Two test cases have been considered, namely spatially decaying turbulence and
the interaction of isotropic turbulence with a shock wave. For both cases, DNS
data are available and were used for a priori tests and comparisons with large eddy
simulations. The DNS code uses modified sixth-order Padé (compact) scheme for
discretization of the spatial derivatives and a third order (low storage) Runge-Kutta
scheme for the time discretization. In the shock/turbulence interaction case, a sixth-
order ENO scheme is used in the vicinity of the shock wave, i.e. z > 2;it is applied
only in the streamwise (shock-normal) direction.

The cubic computational domain has dimensions L., Ly, and L; in three Carte-
sian directions. The grid points are clustered around the shock in the streamwise
direction while a uniform mesh is used in the cross-stream directions y and z. Ap-
proximately non-reflecting boundary conditions are specified at the exit, i.e. x ~ L.
In the cross-stream directions periodic boundary conditions are imposed. The mean
flow is in the z direction. In spatial simulation, a uniform mesh is used in all spa-
tial directions. Moreover, the flow is supersonic so that the primitive variables are
specified at the inflow boundary z = 0 and no boundary conditions are needed at
the outflow z = L.

The generation of inflow conditions is described in Mahesh et al. (1996). First, a
temporal (decaying) simulation of isotropic turbulence is conducted. The resolution
and domain size are the same as used for the spatial simulation and are listed in
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Table 1. The Reynolds number based on the Taylor microscale and the turbulent
Mach number at the initial time are Rey = 30 and M, = 0.17, respectively. The
simulation is advanced until a state of fully developed turbulence is reached. Turbu-
lent fluctuations obtained in such a simulation are then superimposed on spatially
uniform mean values of the velocity, pressure, and density at the inflow. Inflow tur-
bulence is advected through the computational domain by the mean velocity and
decays with the increasing distance from the inflow plane.

The estimation model was implemented only in the cross-stream directions y and
z, and the full DNS resolution was used in the streamwise z direction. Parameters
for all simulated cases are summarized in Table 1 for the spatial simulations (prefix
SP) and in Table 2 for the shock/turbulence interaction case (prefix SH). For both
flows a priori tests were performed using high resolution DNS databases hiDNS.
After that the model was implemented in time evolving large eddy simulations, cases
SPLES-1 and SHLES-1, for the respective spanwise resolutions in each direction a
factor of three and four less than the full DNS resolution. Additionally, for the
compressible turbulence case a simulation without a model was performed (case
SPloDNS ) with the same low resolution as the case SPLES-1. Comparing these
two cases allows assessment of the relative importance of the model in the flow
evolution.

Table 1. Parameters of the spatially decaying turbulence.

Case Grid L, xLyxL, Rexn M,
SPhiDNS 97 x97x97 27 x2rx2r 30 0.17
SPloDNS 97 x33x33 27r x27r x27r 30 0.17
SPLES-1 97x33x33 27r x27x2r 30 0.17

Table 2. Parameters of the simulations of shock/turbulence interaction.

Case Grid L, xLyxL, Rex M M,
SHhiDNS 231 x81 x81 10x2rx27r 19.1 1.29 0.14
SHLES-1 231 x21x21 10x2rx27 19.1 1.29 0.14

A number of physical quantities are available from the numerical simulation re-
sults. In addition to SGS stress (3) and SGS heat flux (6), an important quantity
is the SGS dissipation per unit mass

1 ou;
=~ —7i3 ) 1
€SGS = ﬁTJBx,- (17

which affects the resolved kinetic energy K = %'&,-ﬁ,'. The SGS kinetic energy is
Ksgs = %(u,-u,- — #;i;). For plotting purposes all computed fields are reduced
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FIGURE 1. The plane average component of the streamwise component of the
SGS stress tensor (711). . case SPhiDNS; ------ : value predicted by the

estimation procedure.

to functions of the streamwise variable z by averaging over spanwise planes and
over several realizations. Such averages are signified by brackets < ... >. To
assess predictions of the backscatter by the model, the SGS dissipation is de-
composed in each cross-stream plane into forward transfer (negative values, <
€565 >=< (esgs— lesgs|)/2 >) and inverse transfer or backscatter (positive values,
< €cgg >=< (Escs + |65@5|)/2 >).

8.1 Spatially decaying turbulence

In a priori tests the exact SGS quantities computed from the fully resolved DNS
fields were compared with the SGS quantities predicted by the estimation model.
Spanwise resolution was reduced from 97 X 97 mesh points in DNS to 33 x 33
points for the model. Calculated correlation coefficients between the exact and the
modeled SGS quantities were found to always exceed 90%. These values are much
higher than for the eddy viscosity based models and comparable to values observed
for the similarity models.

In Fig. 1 we plot the averaged 711 component of the SGS stress tensor computed
exactly and using the estimation model. The error in the model prediction is about
95% at the inflow, decreasing to 15% at the outflow. It is well known that a success
of a SGS model critically depends on its ability to correctly predict the SGS dissi-
pation. In Fig. 2 we plot the actual and the model SGS dissipation decomposed into
forward transfer (negative curves) and backscatter (positive curves). The agreement
between the exact and the modeled quantities is now much better than for the SGS
stresses. However, the forward transfer is slightly under predicted by the model.
This may be a cause for concern because even small errors in the SGS dissipation
may accumulate in actual LES, leading to incorrect long time dynamics. This is
the problem commonly encountered by pure similarity models. In order to fully
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assess a SGS model, actual LES must be performed over sufficiently long evolution
times. Such LES with the estimation model have been performed, and the results
are reported below.

In Fig. 3 we compare the exact value of 71; component of the SGS stress tensor
with the value it has in the well developed large eddy simulation run SPLES-1. It is
interesting to note that the agreement is now better than in a priori test. We offer
the following explanation. If SGS quantities are under predicted by the model at
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SPhiDNS;

: case SPhiDNS;

the initial time, the energy levels of the resolved scales will start increasing in the
simulations. Because of the dependence of the estimation procedure on the resolved
scales, this will lead to the increase of the SGS quantities until a balance is reached.

The total SGS dissipation for the run SPLES-1 averaged over time is plotted in
Fig. 4 where it is compared with the exact SGS dissipation in the run SPhiDNS.
There is more variability present in the DNS results because fewer fields were avail-
able for time averaging than for the LES run. The model appears to slightly under



360 J. A. Domaradzki, T. Dubois & A. Honein

3.0e-02 T T r

2.0e-02

(T11)

1.0e-02

0.0e+00 . . :
1.0 1.5 2.0 2.5 3.0

FIGURE 6. The plane averaged component of the streamwise component of the
SGS stress tensor (r11). : case SHhiDNS; ------ : value predicted by the
estimation procedure.

predict the exact quantity in the vicinity of the inlet z < 2, but the prediction be-
comes progressively better as the flow evolves away from the inlet. These results are
entirely consistent with the results of the a prior: analysis. We thus conclude that
the estimation model maintains correct levels of the SGS dissipation in the actual
LES. This feature clearly differentiates it from the classical similarity models. It
should also allow proper prediction of the evolution of the turbulent kinetic energy.

In Fig. 5 we plot the dependence of the kinetic energy on the streamwise distance
from the inlet. The resolved kinetic energy in LES decays somewhat more slowly
than the corresponding quantity obtained from high resolution DNS, consistent
with the under prediction of the SGS dissipation by the estimation model in run
SPLES-1. However, if no model is used the energy prediction deteriorates markedly
(case SPloDNS), indicating that the estimation model has a significant effect on the
simulations. This conclusion is further confirmed by noting that in the simulation
the SGS kinetic energy is not negligible and constitutes about 25% of the total
kinetic energy in DNS.

3.2 Shock/turbulence interaction

For the shock/turbulence interaction problem, the low spanwise resolution of
21 x 21 mesh points provides a more severe test of the model since a run without
the model at this resolution quickly became unstable. All SGS quantities for this
problem have much larger values in the vicinity of the shock location z = 2 than
away from the shock, and that region is emphasized in the plots. In Figs. 6, 7, and
8 we compare the exact and modeled SGS stress component 711, SGS heat flux q,
and SGS dissipation esgs, respectively, obtained in a priori analysis. We observe
that all SGS quantities are predicted in a qualitative agreement with the exact
data, in particular the peak locations, but the model values are not quantitatively
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the cross-stream directions <6:§GS>. : case SHDNS; ------ : value predicted
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accurate. We also find that for this problem the backscatter component of the
SGS dissipation is negligible compared with the forward transfer (Fig. 8). When
the estimation model is implemented in time evolving LES, the agreement between
the LES and exact SGS data improves. This is illustrated in Figs. 9 - 11 and is
consistent with the similar behavior observed for the decaying turbulence case.

While good predictions of SGS quantities are an important test of an SGS model,
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SGS heat flux (g, ). : case SHhiDNS; ------ : case SHLES-1.

the LES practice is concerned with predictions of physical quantities that are acces-
sible to experimental measurements. Two such quantities are the turbulent kinetic
energy and the mean velocity. In Fig. 12 we compare the mean velocity obtained
in the LES case SHLES-1 with the mean velocity for the case SHhiDNS. The com-
parison is very good though the location of the shock in LES is slightly shifted
upstream. A similar shift is observed for the kinetic energy in Fig. 13 (see the
inset). The resolved energy decays before and after the shock, and the estimation
model is clearly capable of capturing that decay though it over estimates the energy
levels in those regions. In the shock region, magnified in the inset, the energy levels
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FIGURE 12. Mean velocity profile (a1}
SHLES-1.

in LES are in excellent agreement with the resolved energy in DNS. Overall, for all
= the SGS energy component is of the same order as the resolved energy, pointing
to a significant effect of the model on the LES. Similar behavior was observed for
other LES quantities such as density, pressure, and temperature, i.e. uniformly
good agreement with the DNS results and a slight upstream shift of the LES curves
with respect to the DNS curves.
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FIGURE 13. Plane averaged resolved kinetic energy %(ﬁiﬁi). . case
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4. Conclusions

The subgrid-scale estimation model developed previously for incompressible flows
was extended to compressible turbulence. The basic modeling principle is to recover
unfiltered, resolved scales from a filtered LES field using the deconvolution proce-
dure and to generate a range of smaller subgrid-scales through nonlinear interactions
among resolved ones. In principle, the technique should be applicable to filtered
evolution equations for any system whose dynamics are governed by nonlinear in-
teractions which produce local energy cascade. In compressible turbulence both the
velocity and temperature (or energy) dynamics have this property. Consequently,
the estimation procedure used for incompressible turbulence could be applied with
only minor modifications to the velocity and temperature fields in compressible tur-
bulence. The performance of the estimation procedure was evaluated by comparing
model results with high resolution DNS databases for two fows: spatially decay-
ing compressible turbulence and shock/turbulence interaction. In both cases SGS
quantities obtained using the estimation model showed high correlations with the
exact DNS results in a prior: tests. However, the values of the modeled quantities
were generally less than the exact values. This feature of a priori tests indicates
that either the modeled SGS scales do not provide a perfect approximation to the
actual SGS scales or that more nonlocal interactions than accounted for by the
model should be included. At low Reynolds numbers considered here, the latter
explanation is unlikely. Therefore, we believe that further work on improving the
quality of the estimated SGS scales is needed. Deficiencies of the modeled scales
had negligible effect on the quality of the results in actual LES, which showed much
better agreement with the DNS results than « priori tests. This was explained by
the dynamic coupling between the model and the resolved scales, which in the time
evolving LES increases the SGS quantities over their a priori values.
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Overall, the results presented in this report strongly support the claim that the
estimation model accounts properly for the SGS interactions in compressible tur-
bulence. However, it must be noted that only low Reynolds number flows were
considered. We cannot exclude a possibility that any deficiencies of the estimated
scales, which did not appear to be significant at low Reynolds numbers, will become
amplified at high Reynolds numbers. Also, neglecting the nonlocal transfers may
no longer be a valid approximation at high Reynolds numbers. The former deficien-
cies would need to be corrected by developing better approximations to the subgrid
scales at high Reynolds numbers while the latter effects are amenable to eddy vis-
cosity modeling. Moreover, because of the particular geometry for both problems,
the model could be applied only in two cross-stream directions. For more general
problems, e.g. flows with more complex shock patterns, the model will have to be
applied in all three spatial directions. An extension of the procedure to incorporate
filtering in all three directions is straigthforward and is currently being tested on
the channel flow problem.
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Testing of a new mixed model for
LES: the Leonard model supplemented
by a dynamic Smagorinsky term

By G. S. Winckelmans!, A. A. Wray AND O. V. Vasilyev’

A new mixed model which uses the Leonard expansion (truncated to one term)
supplemented by a purely dissipative term (dynamic Smagorinsky) has been devel-
oped and tested in actual Large Eddy Simulations (LES) of decaying homogeneous
turbulence and of channel flow. This model assumes that the LES filter is smooth in
wave space, which is the case of most filters defined in physical space (e.g., top hat,
Gaussian, discrete filters). The dynamic procedure has been extended for the mixed
model. It is used to determine the model coefficient, C, for the added Smagorinsky
term. The one-term Leonard model provides significant local backscatter while re-
maining globally dissipative. In a priori testing, its correlation with DNS is greater
than 0.9. However, when used on its own in actual LES, this model is found to
provide too little dissipation. Hence the need for added dissipation, here provided
by the dynamic Smagorinsky term. In 643 LES of decaying homogeneous turbu-
lence started from Gaussian filtered 2563 DNS at Rey ~ 90, the new mixed dynamic
model performs significantly better than the dynamic Smagorinsky model with same
Gaussian filtering; it also outperforms the dynamic Smagorinsky model with sharp
cutoff filtering: much better energy spectra, much better energy and enstrophy de-
cay. For the preliminary 48* LES runs on the channel flow at Re, = 395 done with
smooth LES filtering (Gaussian in the homogeneous directions, top hat in the non-
homogeneous direction), the mixed dynamic model is also superior to the dynamic
Smagorinsky model. However, the dynamic Smagorinsky model with sharp cutoff
test filtering in the homogeneous directions still produces a better mean velocity
profile. This result calls for further investigations.

1. Introduction and model development
We consider incompressible flows (8;u; = 0). Upon applying a spatial filter, G,

7= [Gix -y sy (1
to the Navier-Stokes (NS) equations written in the velocity-pressure formulation,
one obtains the evolution equation for the filtered velocity field (with 8;u; = 0):

Out; + 8; (Wi u;) + 8; P = 9; (2vS;;) — 875 (2)
1 Mechanical Engineering, Center for Systems Engineering and Applied Mechanics, Université

catholique de Louvain, Belgium.

9 Current address: Mechanical and Aerospace Engineering, University of Missouri-Columbia.
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with P = p/p the pressure divided by the density, Si; = (05ui + 0;u;) /2 the sym-
metric rate of strain tensor, and 7;; = @; u; —U; u; the symmetric stress tensor due to
the filtering. This tensor is often called “subgrid-scales” stress tensor. This name is
misleading because the filtering above is defined independently of a numerical grid.
A better term would be “filtered-scales” stress tensor.

We here consider non-linear models of the family derived from Leonard (1974,

1997). Consider the Gaussian filter, AG(z) = exp (—m2/232) /V2r, G(k) =
exp (—k2 A’ / 2). The Leonard expansion is then obtained as:

—4 —6

— g A - A -
FoxFg+8 0. 0.+ o 0:0:f 0:0:9 + 57 0:0:0:f 0:0.0.5+ ... . (3)

This result is remarkable because, at least in principle, it provides a means of
evaluating the filter of a product of variables from the filtered variables and their
derivatives. In 3-D, the filter is taken as the product of 1-D filters. One then obtains
for the stress (Leonard, 1997):

At A°
Tij = Zz ", 6k‘sz + ? OO, akagﬂj + ? 0,0, T; akalamﬂj + ..., (4)

For 3-D LES, it would be very expensive (both in terms of memory and CPU
requirements) to keep many terms in this expansion. In that respect, an already
very interesting candidate model for LES is the one corresponding to truncation of
the expansion to the first term:

Tg[ = ZQ o akﬁj . (5)

This non-linear isotropic model was not included in the LES models evaluated in
a priori tests in Clark et al. (1979), McMillan & Ferziger (1979), Bardina et al.
(1983), Lund & Novikov (1992), Salvetti & Banerjee (1995), some of which were
revisited in Winckelmans et al. (1996). It has, however, already been tested a
prior: against experimental data (unfortunately, 2-D cuts) in Liu et al. (1994)
with correlation levels of about 0.7, and against DNS data in Borue & Orszag
(1998) with correlation levels between 0.83 and 0.97 (i.e., very high!) depending
on the type of smooth filter used and on the filter size. It is also argued in Liu et
al. (1994) that this model has some ties with the Bardina (1983) scale-similarity
model, T,-I;-l = L;j = wu; — u;t;. The link also appears in an appendix in Horiuti
(1997) where we observe that the first term in the approximate expansion of L;; is
indeed the same as the first term in the exact Leonard expansion. The other terms
are, however, very different. The Leonard model (truncated to one term or more)
is thus not identical to the Bardina model. Nevertheless, we recall that, for smooth
filtering such as the Gaussian or the top hat, the Bardina model also exhibits a
high level of correlation with the exact stress: e.g., 0.8 in Liu et al. (1994), 0.7 in
Gaussian filtered DNS in Winckelmans et al. (1996), but only 0.5-0.6 in Liu et al.
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(1994) when “approximating” the Bardina model by using T,-I;fl ~ Li; = Ut — uiu;
where the second filter width, 3, is now taken as twice the original filter width,
A. In a priori tests with smooth filters, it thus appears that the one-term Leonard
model consistently produces higher levels of correlation than the Bardina model.

Finally, it can also be shown (Carati et al., 1998) that, for all filters that are C>°
in wave space and have non-zero second moment (that is most of the filters defined
in physical space, such as the Gaussian, the top hat, all discrete filters, etc.), there
exists a generalized Leonard expansion that always starts with

Tij = —A_z hu; hu; + ... - (6)
where the filter width is normalized as follows:
— Sl &G
A =/ 2 B(a)de = — 7 k=0 7
o0

Hence, the present investigation (theoretical and numerical) using the one-term
Leonard model is not limited to the Gaussian filter; this model is truly generic.
An important exception (because it is still used so often in spectral LES) is the
sharp cutoff “filter” applied in wave space. This “filter” has very poor properties in
physical space; it doesn’t even have a second order moment. It does not allow for
any kind of generalized Leonard expansion, or even any kind of one-term Leonard
model, because it totally removes all information beyond the sharp cutoff. We also
recall that no significant correlation with DNS data are obtained when testing the
Bardina model with the sharp cutoff filter.

It should also be noted that an original integral formulation of the one-term
Leonard model has been developed and tested by Cottet (1997a,b), following devel-
opments in vortex methods (Cottet, 1996). Its further investigation was the object
of parallel study during this Summer Program.

When used in the filtered NS equations, the one-term Leonard model behaves as
a non-linear diffusion/antidiffusion model. Indeed, it is easily seen (Leonard, 1997)
that o

—6,'1'34 =—-A" Sjk ajakﬂ; , (8)

so that S, plays the role of & tensorial viscosity for the filtered velocity field. This
tensor is not positive-definite. Transforming to the principal coordinates, x', of Sjk,
one obtains (Leonard 1997):

;4 0;00F = — (o OBy + a3 BBy + 3 By dy) f - (9)

Since the eigenvalues of ?,-k, (a1,a2,a3), satisfy a; + a2 + a3 = 0, one has effec-
tively negative diffusion along the stretching direction(s). This corresponds to local
directional backscatter.

Let’s examine the energy transfer and the dissipation. One easily obtains:

O (E'z—ﬁi) + 0j ((?4— ﬁ-—';i) wj + i (rij — 2V§ij)) = —€, (10)
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with € = —-T,'jg,'j +2v ?g,-g,-,'. The term 9;(- - -) represents the convective contribu-
tion to the energy flux, while ¢ represents the local energy flux: (1) the flux from
large (and less filtered) scales to small (and more filtered) scales: effective dissi-
pation if positive, effective backscatter if negative; and (2) the dissipation due to
the molecular viscosity: clearly always positive. For homogeneous turbulence, the
convective contribution has no net effect. We then write, for the global dissipation
rate, _

dE  d wu;

=y = (o). (1)

For uniform v, the global dissipation due to viscosity is also obtained as

(") =v (2?;‘_,’5.’,‘) = 2v(

Wy

2

£

y=2¢& (12)

where @; = €% 0jUx (with €i;x the permutation tensor) is the filtered vorticity field
and € is the global enstrophy.

The contribution of the Leonard model to the local energy flux (dissipation or
backscatter) is (Leonard, 1997; Borue & Orszag, 1998):

M = —1'34 g,'j = —Z2 OLU; 6kﬁj§.‘j
= —&" (851i5:;5;k — Rei5:;54) (13)
-—2 (1_ - _ —3
=A (Zw,-S,-,wj —tr (S )) .
where ﬁ,-,- = (0;5; — 8iuj) /2 = —€;;kWx /2 is the antisymmetric rate of rotation

tensor. This contribution is not necessarily positive, hence the natural backscatter
provided by the model.

For homogeneous turbulence, the global contribution of the model is, however,
dissipative as (M) is proportional to the negative of the global skewness. A suffi-
cient condition to ensure global dissipation is thus that the global skewness of the
LES field remains negative (the necessary condition being that (¢ +eM) > 0). The
skewness is indeed negative in homogeneous turbulence and its DN S. It should also
be negative in good LES. It was indeed found to remain negative in all LES’s of de-
caying homogeneous turbulence that we conducted during the present investigation,
these LES’s being started from a filtered DNS field and thus having a negative global
skewness initially. If one starts a DNS or a LES from a random field with Gaussian
statistics, then the skewness is initially zero. However, as the simulation proceeds,
it quickly becomes negative because the flow develops into “real” turbulence.

The one-term Leonard model could be constrained locally by putting a limiter
on the directional negative diffusion: find the eigenvalues and eigenvectors of the

local strain rate tensor, express the forcing term, —C A’ Sx0;0:; in this system
of coordinates, and ignore (i.e., clip) the direction(s) corresponding to negative
diffusion. This certainly makes the model anisotropic. Notice that there is now a
need for a new unknown parameter C. Indeed, since this “clipping” corresponds to a
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major alteration of the original Leonard model, there is no reason to expect, a priori,
that C = 1. Of course, this clipping approach can be refined further by enforcing
that the total forcing term (uaj 0, -C A’ S k0; Bk) %; be clipped in the direction(s)
corresponding to net negative diffusion. We notice, in passing, that the integral
formulation developed by Cottet (1996, 1997a,b) essentially allows for convenient
directional clipping without having to compute eigenvalues and eigenvectors.
Alternatively, one could clip the Leonard model isotropically by enforcing that

. . -2 - _ .
eM > 0 at each point. Defining m;; = A" 8;1;0xu;, the model could be written as

il =Cmy  if - mi;Si; 20,
Skt) = 14
i =C |mi; - M Si; otherwise . (14)
(SkiSki)

Again, there is a parameter C, and one can also refine this approach. For both
clipping approaches, the determination of the parameter could be done using a
dynamic procedure.

In any case, “clipping” guarantees pure dissipation (and hence numerical sta-
bility), but it isn’t justified theoretically. Here, we wish to first investigate the
unaltered model: no clipping. With good numerics, and assuming that the com-
putation doesn’t blow up, the hope is that such a model could indeed provide for
reasonable local backscatter while remaining globally sufficiently dissipative. One
could argue that, in principle, the unclipped one-term Leonard model is numerically
ill-conditioned. Our numerical experience so far (decaying homogeneous turbulence
and channel flow) is that the simulations do not blow up, confirming our hope that
LES’s with that model and without limiter (i.e., with local backscatter) can in-
deed be carried out successfully. This is very good news. This result is probably
due, in part, to the fact that the direction(s) of negative diffusion evolve in space
and time while the simulation proceeds. The negative diffusion (which is certainly
numerically unstable if applied forever) here constantly changes direction and is
counterbalanced by positive diffusion. In a way, the simulation corresponds to dy-
namic dissipation events happening together with dynamic backscatter events, the
mean remaining globally dissipative.

However, in our pseudo-spectral LES of decaying isotropic turbulence at high
Re,, the one-term Leonard model, when used on its own, is found to provide too
little global dissipation, see Figs. 3 to 5 (even though the simulation doesn’t blow
up). This is seen even more clearly when comparing the evolution of the LES energy
spectrum with the DNS, see Figs. 7 to 9. Thus, we find that the one-term Leonard
model does not suffice in actual LES runs. Hence, it was decided to develop and
test a mixed model: add to the one-term Leonard model a purely dissipative term
such as the dynamic Smagorinsky term:

T,-I;/l = Kz ;i Bkﬁ,» -2 CZZ (2§k1§k1)1/2 g,‘j . (15)

This is done in the same spirit as Zang et al. (1993) for the mixed model con-
tructed by adding a dynamic Smagorinsky term to the Bardina model. See also
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Horiuti (1997) for yet another two-parameter dynamic mixed model. This mixed
model proposed here is still isotropic as opposed to non-isotropic models such as
Carati & Cabot (1996) or Cottet (1997a,b). The first term is expected to be “the
good filtered-scales model” because (1) it has some solid mathematical basis (see
above) and (2) it naturally provides for local backscatter (as LES models should,
see also Carati et al., 1995a). On its own, however, it does not provide for enough
dissipation. Conversely, the second term (with the classical Smagorinsky, 1963, 1/T

scaling, (2§k1§k1)1/2, such as above; or with the Kolmogorov scaling proposed by
Carati et al., 1995b, and tested in actual LES, e.g., Dantinne et al., 1998; or with
other scalings,e.g., see a review in Winckelmans et al., 1996) has long been known
to be a poor model that always produces local dissipation (when C is constrained
to remain positive). For the proposed mixed model, we now have:

eM = -—Tgig,'j = —Zz oL akﬂj g,‘j + sz (2§ij§ij)3/2 . (16)

When the Smagorinsky term is used on its own as a LES model together with
the dynamic procedure (Germano et al., 1991; Ghosal et al., 1992, 1995; Moin et
al., 1994), it doesn’t necessarily lead to the correct dissipation as compared to the
DNS; it very much depends on the filter used, see the results below, Figs. 3 to 5.
We here wish to stress that, in the present approach, we really consider the one-
term Leonard model as “the filtered-scales model” and the dynamic Smagorinsky
term as an added numerical aid for enhancing the local dissipation. Although there
is some similarity between the second possible clipped model presented above and
the present mixed model, there are significant differences. The formulation of the
mixed model is continuous (no “if” statement). Moreover, in the mixed model,
the added term with dynamic C is not a clipping of the first term as C does not
multiply both terms. As a consequence, the new mixed model is still isotropic, and
it still allows for local backscatter; e is not necessarily positive. Of course, the
amount of local backscatter allowed is now less than for the pure Leonard model,
and the dissipation is now more. Notice that the first term (the “model”) still has
the known coefficient coming from the Leonard expansion with the chosen smooth
LES filter (e.g., Gaussian). In all we do here, it is with that same chosen LES filter
that we filter the DNS results in order to compare them with the LES results (or,
conversely, that we de-filter the LES results to compare them with the DNS results).

Whether the dynamically obtained C in this new mixed model will lead to the
proper amount of dissipation as compared to DN, remains to be seen (see the results
section). In that respect, for identical LES filters, it had better be that the dynamic
C obtained in the mixed model turns out to be smaller than the dynamic C obtained
when using the Smagorinsky term on its own as LES model. As mentioned above,
C is here obtained through the dynamic procedure (Germano et al., 1991; Ghosal et
al., 1992, 1995; Moin et al., 1994) by (1) applying an additional test filter, G, which

is such that the combined “LES + test” filter, G, is similar the original LES filter,
G; (2) assuming similarity of the LES models at both levels, T,%’[ similar to T-IJ” , with

?
r— ~ o~

the same C; and (3) satisfying Germano’s identity, Tij -7 = Lij = u;u; — U;U;, in
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the least-square sense: (E;;E;;), where E;j = (TM - 7M) — Lij, is minimized, with
integration {(...) done over the homogeneous direction(s). C is thus uniform along
the homogeneous direction(s). Moreover, along the non-homogeneous direction(s)
(if any), it is also assumed that the spatial variation of C with respect to the test
filter can be factored out, i.e., that C/a\,-j ~ Cdji;. This requirement is trivially
satisfied if the test filter is only applied along the homogeneous direction(s), as is
often the case in practice (but then the assumed similarity between the LES and
LES-test filters is not strictly correct). Otherwise, it is only a (poor) assumption
that should be validated a posterior: (at least statistically, when averaged over
time).

Here, working in wave space, we take —a_(k) = exp (—a2 k232/2), i.e., E/Z =
a > 1, which is indeed similar to G(k) = exp (—k2Z2 / 2). The required test filter
is also Gaussian: é(k) = _Ev'_(k)/a(k) = exp (— (a? —1) kZZZ/Q), ie, AJA =
Vo —1. Typically, we use & = 2. Another filter is the top hat filter: G(k) =
sin(\/§ kz) / (\/§ km, and thus 6(1:) = sin (\/§ kﬁ) / (\/5 ki) If we choose

a = 2, the test filter becomes G(k) = G(k)/G(k) = cos (\/5 k-A_) (Carati, 1997).
This test filter is also easily applied in physical space using only grid values as it
is the discrete “arithmetic mean”: G(z) = (6 (z+ V3A) +6(z - V3A)) /2. Of
course, one needs to choose A so that /3 A is a multiple of the grid size A.

The dynamic procedure for the mixed model is summarized here as:

mij; = A’ Ok; Ok, aij = 2Z2 (2§kl_s_kl)l/2 —S_,-]- , 1".1;4 =m;; — Caij,

1/2 ~

2 o~ =
(25k15k1) Sij Til}l = M;; —CA;j,

~2 ~

M,'J‘ =A akﬁ,‘ Bkﬁj y A,‘j =2A

pij = Lij + (Muj — Mij) , @iy = (@5 — Aiy) , C= ———ipfj_ q'.].> : (17)
95 9ij)

For homogeneous turbulence, all three directions are homogeneous so that C' =
C(t). For the channel flow, two directions are homogeneous so that C = C(y,1).
Since the channel flow dynamical LES eventually reaches statistical equilibrium,
time averaging can also be done at some point, and one ends up with a profile,
C = C(y). Then the dynamic procedure assumption above is statistically better
verified.

Notice that the added dissipative term in the mixed model is formally of the same
order as the one-term Leonard model: both involve product of first derivatives of
the LES field. Since dynamic hyper-viscosity models such as

Tgl = QCZ4 (2§k1_5_kl)1/2 amam—b‘i,- (18)
have also been used with some success in LES (e.g., Winckelmans et al., 1996, in

a priori tests; Dantinne et al., 1998, in actual LES with sharp cutoff test filtering),
we also investigated the following possibility of mixed model:

T,vl}d = EZ o 3kﬁj + QCF (2§kl§kl)l/2 6,,.6,,,?,-,' s (19)
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FIGURE 1. Re,(t) for the reference 256° DNS.

where the added term now clearly involves higher order derivatives and is thus ex-
pected to only affect the high-end of the energy spectrum. When tested numerically
with Gaussian filtering, this mixed model did not dissipate enough energy.

2. Results for decaying homogeneous turbulence

For the LES tests on decaying homogeneous turbulence, the solver is a dealiased
pseudo-spectral code. The reference data is a 2563 DNS at high Rey that was run
using the same spectral code. The DNS was started using a field with given spectra
and random phases. This initial condition then evolved into real turbulence. The
usable reference DNS data then covers the window of Re A shown in Fig. 1. At the
begining (¢t = 4.17, Rey = 90), the Kolmogorov scale, n = (1/3/<E))1/4, is such that
kmax 1 & 2; the DNS is thus well-resolved. At the end (t =13.32), kyax 7 = 4. The
t = 4.17 DNS was Gaussian filtered using A = 2\/§A256, and was then further
truncated to 64% (ie., A = A64/\/§) to be used as an initial condition for the
LES runs. Hence, at the maximum wavenumber of the truncated set, we have
G = exp (—n2/4) = 0.085; the 643 grid used to resolve the LES thus covers well
the range where the LES filter is significant while not overkilling it. At half the
maximum wavenumber, we have G = 0.54. For the dynamic procedure, we used
the classical value @ = 2. We also tried o = \/ﬁ, but the results were consistently
slightly better with & = 2.

As a first test of the one-term Leonard model, the correlation between the model,
Tf]‘-” = Zfak'a,-amj, and the exact stress, Tij, was evaluated using the filtered DNS
data. It came out very high, 0.92, in good agreement with correlations in Borue &
Orszag (1998). That is certainly a victory for the one-term Leonard model, at least
in such @ priori testing. It shows that the expansion truncated to one term already
contains most of the stress.

Notice that the correlation measures the alignement between the two stresses.
It doesn’t say anything about the “best” coefficient to use in front of the model.
Since the original Leonard expansion has been truncated to one term, it is valid
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to ask if this term shouldn’t be rescaled somehow. Hence, as a second test of
the one-term Leonard model, the dynamic procedure was applied to an assumed

T,M =C Zzakmam,-. The result came out to be C = 1.0050, pretty close to
C =1 indeed (difference of 0.5%). This is a double victory: one for the theoretical
developments that claim that the good value is C = 1, and one for the dynamic
procedure that indeed finds that value.

Filtering the DNS even more was also considered. With A twice as large as
above, the correlation came out as 0.89 and the dynamic C came out as C = 0.9536
(difference of 5%: not as good, but still very close. This filter size is probably too

large with respect to the Kolmogorov scale of this high Re turbulence.
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[
g~}
o
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FIGURE 2. Pdf of the model coefficient, C: dynamic Leonard model, Gaussian:
-------- : Leonard model + dynamic Smagorinsky term, Gaussian: ; dynamic
Smagorinsky model, Gaussian: ---- ; dynamic Smagorinsky model, sharp cutoff:
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Finally, as a third test of the one-term Leonard model, the dynamic procedure was
applied but this time locally (i.e., no averaging over the homogeneous directions).
The obtained pdf of C is given in Fig. 2. The striking result is that the pdf is
extremely sharp, with prefered value: C' ~ 1. Notice that the pdf is not symmetric;
it is skewed to the left. Notice also that there are no negative C. Again, this is
a victory of the model and of the local dynamic procedure. For comparison, we
also provide the pdf of the Smagorinsky term when used as the LES model. Two
cases are examined: Gaussian filtering and sharp cutoff filtering. In both cases,
the obtained pdf is very wide with many negative C values, confirming that the
Smagorinsky term is indeed a poor LES model.

From this a prior: study, it certainly appears that there is no point in having
something other than C =1 in front of the one-term Leonard model. This is why
the mixed model presented above only has one parameter: the one in front of the
added dynamic Smagorinsky term. Notice that Fig. 2 also provides the pdf of that
C; as expected, it is very wide, even wider than when the Smagorinsky term is
used as LES model. This is to be expected since the Leonard term in the hybrid
model is “the LES model”, the remainder dynamic Smagorinsky term being added
for enhancing dissipation with little pretention on actual LES modeling.

The results obtained when using the mixed model (Leonard model + dynamic
Smagorinsky term) with Gaussian filtering are presented in Figs. 3 to 10. They
are compared with (1) the DNS, (2) the Leonard model with Gaussian filtering,
(3) the dynamic Smagorinsky model with Gaussian filtering, and (4) the dynamic
Smagorinsky model with sharp cutoff filtering (often used in spectral LES). For fair
comparison (quality versus computational cost), all LES’s are run using the same
resolution: 64°. Moreover, for the LES’s with Gaussian filtering, the quantities such
as resolved energy spectra, E(k), resolved energy, E = fuk"'“ E(k)dk, and resolved

enstrophy, £ = fuk"“" k* E(k)dk, are evaluated by “defiltering” the LES results, i.e.,
by using E(k) = E(k) exp (k252). This allows for straighforward comparison with

the DNS and the sharp cutoff Smagorinsky LES. (Of course, another way would be
to Gaussian filter the DNS and the sharp cutoff LES.)

The Leonard model with Gaussian filtering, when used on its own, does not blow
up. However, it provides too little dissipation, see Figs. 3 and 5, even at the start.
Thus, although the initial correlation between 7'1-1}/1 and 7;; is very high (0.92), the
global model dissipation, —<T£~/[ Si;), is substantially lower than the exact filtered-
scales dissipation, -(T,-jg,-j) (here, at the start, 4.112 versus 6.773). As expected,
the global model dissipation is positive since the global skewness of the LES fields
is initially negative and remains so. The dynamic sharp cutoff Smagorinsky model
leads to too much energy dissipation from the start, see Figs. 3 and 6. The dynamic
Smagorinsky model with Gaussian filtering starts off with the correct slope, but it
then quickly underdissipates, see Figs. 3 and 5. The mixed model starts off with the
correct slope and follows well the energy decay curve, see Figs. 3 and 5. Initially, the
total dissipation of the LES, model + viscous, is (4.112+2.887)41.5944 = 8.593, to
be compared to 8.367 for the 256 filtered DNS: only a 2.7% difference. Notice also
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FIGURE 3. Resolved energy, E(): truncated DNS: e ; Leonard model, Gaussian:

-------- : Leonard model + dynamic Smagorinsky term, Gaussian: ; dynamic
Smagorinsky model, Gaussian: ---- dynamic Smagorinsky model, sharp cutoff:
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FIGURE 4. Resolved enstrophy, £(t): truncated DNS: e ; Leonard model, Gaussian:
-------- : Leonard model + dynamic Smagorinsky term, Gaussian: ; dynamic
Smagorinsky model, Gaussian: ---- ; dynamic Smagorinsky model, sharp cutoff:

the significant contribution of the Leonard term to the model global dissipation;
it is larger than the contribution of the dynamic Smagorinsky term: 4.112 versus
2.887. As expected, it is positive since the global skewness of the LES fields is
initially negative and remains so.

The differences between the investigated models are even more dramatic when
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FIGURE 5. Dissipation of resolved energy, —dF/dt = —(rMSii) + 2v (8;55;):
truncated DNS, Gaussian: e ; Leonard model, Gaussian: -------- ; Leonard model +
dynamic Smagorinsky term, Gaussian: (Leonard: (thin), Smagorinsky:
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FIGURE 6. Dissipation of resolved energy, —dE/dt: truncated DNS, sharp cutoff:
¢ ; dynamic Smagorinsky model, sharp cutoff: —-— .

considering the decay of the enstrophy (which puts more weight on the high-end of
the spectrum), see Fig. 4: the dynamic sharp cutoff Smagorinsky model badly misses
the initial slope of enstrophy decay (too much decay). Its Gaussian version also
misses the initial slope, but on the other side (not enough decay). The mixed model
performs very well not only initially, but for the whole course of the simulation; the
LES decay curve is almost identical to the DNS curve.

The energy spectra produced by the mixed model are also clearly superior, see
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10 T

FIGURE 7. Resolved spectrum, E(k), at t = 4.5: truncated DNS: ¢ ; Leonard
model, Gaussian: -+~ : Leonard model + dynamic Smagorinsky term, Gaus-
sian: . dynamic Smagorinsky model, Gaussian: ---- ; dynamic Smagorinsky

model, sharp cutofl: —-—.

FIGURE 8. Resolved spectrum, E(k), at t = 7.5: truncated DNS: o ; Leonard
model, Gaussian: - : Leonard model + dynamic Smagorinsky term, Gaus-
sian: . dynamic Smagorinsky model, Gaussian: ---- ; dynamic Smagorinsky

model, sharp cutoff: —-—.
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FIGURE 9. Resolved spectrum, E(k), at ¢t ~ 9.0: truncated DNS: o ; Leonard
model, Gaussian: -------- ; Leonard model + dynamic Smagorinsky term, Gaus-
sian: ; dynamic Smagorinsky model, Gaussian: ---- : dynamic Smagorinsky
model, sharp cutoff: —-— .
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FIGURE 10.  Model coefficient, C(t): Leonard model + dynamic Smagorinsky
term, Gaussian: ; dynamic Smagorinsky model, Gaussian: ---- ; dynamic
Smagorinsky model, sharp cutoff: —-— .

Figs. 7 to 9; they closely match the DNS spectra over most of the range and for the
whole course of the simulation except for the few last wavenumbers (that are here
artificially enhanced on the graph because of the “defiltering” mentioned above).
The sharp cutoff Smagorinsky model shows some discrepancy in the spectrum, start-
ing at fairly low wavenumbers. Its Gaussian version doesn’t perform significantly
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better. As to the dynamic model coefficient, Fig. 10, it is seen that the C of the
Smagorinsky term in the mixed model is indeed smaller than the C of the Smagorin-
sky model; the one-term Leonard model thus contributes significantly to the success
of the mixed model.

3. Results for the channel flow

For the channel flow investigation, the solver is a fourth order finite difference
code. The reference DNS is the AGARD database at Re, = hu,/v = 395 of Man-
sour et al. (1996) (see also Rodi & Mansour, 1993), where  is half the channel width
and u, = |/Tw is the friction velocity with 7, the mean wall friction. The computa-
tional domain is (Lz, Ly, Lz) = (27,2,27/3)h. The LES filter is chosen as Gaussian
in the homogeneous directions, z and z, and top hat in the non-homogeneous di-
rection, y:

sin (\/§ ky_A—y)
(VahA,)

Hence, the mixed model here becomes

G = exp (——kiZi/Q) exp (—kui/Q) . (20)

Tgl = _A_i 0.7, 0: 4 +Zz 0yu; O0yu; +Ei 0,u; 0;u; —2 sz (2?1;1—5_“)1/2 g,‘j , (21)

where the “effective” A for the added dynamic Smagorinsky term is simply taken as

(ZI Ay AL) /3 Notice here another nice feature of the Leonard model: as opposed

to the Smagorinsky model, there is no need to define an effective A. The dynamic
procedure is done with o = 2. Hence, the test filter here becomes:

G = exp (—3 kiZi/2> cos (\/5 kyzy) exp (—3 kE—A_Z/2> . (22)

The test filter is applied in wave space in z and z and in physical space in y (using
the arithmetic mean of the two neighbor grid points as explained previously).

For the preliminary runs done so far, the ratios of LES numerical grid to LES
filter size are Az /A, =2, Ay/zy = 3and A,/A, =2. The LES grid is 48x49x48.

Results on normalized mean profiles as a function of normalized distance to
the wall are provided in Figs. 11 to 13: velocity, model stress and model dissi-
pation. With the same smooth filtering, the mixed model outperforms the dynamic
Smagorinky model: better mean velocity profile. Notice that the contribution of
the Leonard part to the mixed model is significant; for the mean stress, it is higher
than the contribution of the dynamic Smagorinsky term; for the mean dissipation,
its contribution is higher close to the wall and slightly lower in the core flow. Notice
also that the Leonard term contribution to the mean dissipation is indeed positive
for all y although it is not necessarily positive locally because of the model backscat-
ter. It is also found that the Leonard fraction of the model stress is essentially linear

from the beginning of the log region to the channel center. This behavior is similar
to what was obtained by Domaradzki & Saiki (1997) and Domaradzki & Loh (1998)
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FIGURE 11. Mean velocity profile: DNS: o ; Leonard model + dynamic Smagorin-
sky term, 48x49x48, Gaussian and top hat: ; dynamic Smagorinsky model,
48x49x48, Gaussian and top hat: —--- ; dynamic Smagorinsky model, 32x33x32,
sharp cutoff: —-— ; dynamic Smagorinsky model, 48x49x48, sharp cutoff: .- .

using their LES subgrid-scale estimation model and comparing with filtered DNS
data. This behavior is different from the behavior of the dynamic Smagorinky term
(when used in the mixed model) or model (when used on its own), see Fig. 12.

However, when running a 48x49x48 LES using the Smagorinsky model with sharp
cutoff test filtering in z and z and no test-filtering in y, the obtained mean velocity
profile is closer to the DNS than for the mixed model with the smooth filtering and
filter size used so far. That doesn’t necessarily mean that the Smagorinsky model
with sharp cutoff is superior. But it certainly calls for further study of the mixed
model by investigating other ratios of numerical grid to filter size, other filters, and
the effect of the y-grid non-uniformity (see, e.g., Ghosal & Moin, 1995). It also calls
for further a priori testing of the Leonard and mixed models using DNS of channel
flows. This work is 'still in progress.

We provide in Fig. 14 the mean stress profile for the LES done using the mixed
model. The different terms add up to the linear profile for the total stress as
expected. Close to the wall, the main contribution is the one due to the viscous
stress. Away from the wall, the main contribution is the “Reynolds” stress: (7)(7)—
(@T). For the remainder (total stress minus Reynolds stress), the model contribution
away from the wall is significantly higher than the viscous contribution, the Leonard
contribution being itself higher than the Smagorinsky contribution. For comparison,
Fig. 15 provides the mean stress profile when using the Smagorinsky model with
same smooth filtering. Again, the model contribution is higher than the viscous
contribution in the core flow.

Figures 16 and 17 provide the mean dissipation profiles: model contribution and
viscous contribution. The viscous contribution is dominant close to the wall but is
dominated by the model in the core flow. There are significant differences between
the mixed model and the Smagorinky model as far as profiles of model versus viscous
dissipation are concerned.
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FIGURE 12. Mean model stress profile: Leonard model + dynamic Smagorinsky

term, 48x49x48, Gaussian and top hat (Leonard: , Smagorinsky: );
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FIGURE 13. Mean model dissipation profile: Leonard model + dynamic Smagorin-

sky term, 48x49x48, Gaussian and top hat (Leonard: , Smagorinsky: );
dynamic Smagorinsky model, 48x49x48, Gaussian and top hat: ---- ; dynamic
Smagorinsky model, 32x33x32, sharp cutoff: — — ; dynamic Smagorinsky model,
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4. Conclusions

A new mixed model which uses the one-term Leonard model supplemented by
a purely dissipative dynamic Smagorinsky term has been developed and tested in
LES of decaying homogeneous turbulence and of channel flow. The dynamic pro-
cedure has been used to determine the coefficient of the Smagorinsky term. The
one-term Leonard model provides for significant local backscatter while remaining
globally dissipative. In a priori testing, its correlation with DNS was greater than
0.9. However, this model was found to provide too little dissipation in actual LES
although it didn’t blow up. Hence the need for the added dissipation provided by
the dynamic Smagorinsky term in the mixed model. In 643 LES of decaying homo-
geneous turbulence started from Gaussian filtered 2563 DNS at Rey ~ 90, the new
mixed dynamic model performed significantly better than the dynamic Smagorinsky
model with same filtering; it also outperformed the dynamic Smagorinsky model
with sharp cutoff filtering: much better energy spectra, energy decay, and enstro-
phy decay. For the preliminary 483 LES runs on the channel flow at Re, = 395,
the LES filter was Gaussian in the homogeneous directions and top hat in the non-
homogeneous direction. The mixed dynamic model also outperformed the dynamic
Smagorinsky model in that case. However, the dynamic Smagorinsky model with
sharp cutoff test filtering in the homogeneous directions and no test filtering in the
non-homogeneous direction still produced a better mean velocity profile. This result
calls for further investigations.
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Comparison of dynamic Smagorinsky
and anisotropic subgrid-scale models

By Georges-Henri Cottet! AND Oleg V. Vasilyev?

1. Introduction

LES models using dynamically computed coefficient values have been extensively
used since the pioneering work of Germano (Germano et al. 1991). Starting from
the Smagorinsky subgrid-scale model, the common idea to all these models is to
extrapolate the information on the resolved fields at two scale levels to compute
optimal coeflicient values.

A simple solution to the integral equations which follow from this approach can be
obtained by restricting the test filter action to certain directions and assuming that
the model coefficient only varies along the orthogonal directions. The coefficient
values are then derived from simple least-square formulas.

The resulting global dynamic model has been successfully used for a number of
flows having at least one direction of homogeneity. For more general flows, the brute
force solution of the integral equations may lead to persistent local negative values,
which have a destabilizing effect on the numerical solver. Clipping these values lead
to discard up to 50% of the coeflicients. Moreover, local large values of the coefficient
require an implicit treatment of the eddy viscosity term to avoid prohibitively small
time-steps. Ghosal et al. (1995) have proposed two models to address this issue. In
the first one the positivity of the coefficient is rigorously constrained in the integral
equation. In the second one, negative coefficient values are allowed, but the model
is supplemented by a transport equation for the subgrid-scale kinetic energy. These
techniques do alleviate the restrictions of the global dynamic model, but at the
expanse of a significant computational overhead (Cabot, 1994).

Our work here has been motivated by practical considerations. It seems clear
that the difficulties associated with the solution of integral equations in the dynamic
Smagorinsky model would be avoided if the variations of the coefficient over a scale
of the order of the grid-size could be assumed to be small. This, in turn, requires that
the underlying subgrid-scale model is well-conditioned for the dynamic procedure,
or, in other words, has good correlation properties. It is well known that this
is not the case for the Smagorinsky model. Leonard’s expansion of the subgrid-
scale residual stress, by contrast, is known to have very good correlation properties.
Its drawback in actual implementations is that it contains backscatter as well as
dissipation. The backscatter control strategies which have been proposed so far do

1 LMC-IMAG, Université Joseph Fourier, BP 53 Grenoble Cédex 9, France
2 Present address: Department of Mechanical and Aerospace Engineering, University of Missouri,
Columbia, MO 65211
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not allow it to retain its anisotropic features and thus are inefficient (Vreman et al.
1997). This explains why this model is in general complemented by Smagorinsky
model in so-called mixed models.

In Cottet (1997) we have proposed a simple grid-implementation of Leonard’s
expansion which enables a truly anisotropic backscatter control. Tests with con-
stant coefficients for homogeneous 1sotropic turbulence as well as in channel flow
geometry (Cottet and Wray, 1997) showed that this model performs better than the
Smagorinsky model. In particular, unlike the Smagorinsky model, it has the prop-
erty of vanishing in laminar regimes and solid boundaries, Moreover, the specific
backscatter control enabled by the grid formulas overcomes the lack of dissipation
in general observed in the implementation of Leonard’s expansion (Vreman et al.
1997).

In view of these results, we believe that this model is a good candidate for simple
local dynamic implementations. In the following section we summarize the key
properties of the anisotropic subgrid scale formulas and present our approach for
dynamic coefficient calculations. In Section 3 we then discuss results obtained for
channel flows and draw some preliminary conclusions.

2. The dynamic anisotropic model

2.1 Anisotropic formulas

They are derived from Leonard’s expansion of the self-similarity model, using
integral approximations. Let ¢ be a filter function satisfying

/mkng’(x)dxzék; y k,l= 1,...,3. (1)
If A is the filter width, then the formal Taylor series expansion gives
A2D,-kﬁ(x)Djkﬁ(x) =
1 _ _ _ _ Yy—x
o { 500 w0l - meoi S ay + 0w}, @

where the notation D;;q stands for g—z‘;—. Differentiating this expression we obtain
the following SGS formula:

0i(0 = ~ 57 [l - willesty) - wolo Ly, (3

For the details of derivation we refer to Cottet (1997). The final SGS model is
obtained by approximating Eq. (3), using numerical integration over the grid points
close to x. In other words, the filter function ¢ is approximated by a discrete grid-
based filter.

In the case of a non-uniform grid, a discrete grid-based filter cannot have the same
filter widths in all three directions, and thus Eq. (2) can not be formally derived.
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FIGURE 1. Flow around an hyperbolic point and production of small or large scale
along the strain directions.

However, the integral in the right-hand side of Eq. (2) can be derived directly from
the similarity model. It can be easily shown that

—Al—3 /[UJ(Y) —g;(x)][@(y) - ﬁi(K)]C(LK)—() dy = i, — u, + [ — W -,
where (/\) denotes the filtering operation with the filter function (. This observation,
which shows that the anisotropic formulas are O(A*) corrections over the similarity
model, is true for any anisotropic discrete grid-based filter.

A nice feature of the integral formulas (2) and (3) is that they give a simple way
to distinguish the backscatter and dissipation subgrid contributions. Multiplying
Eq. (3) by U leads to

/ 073 (X )i(x) dx %A-‘* / [a(y) - 5] Y TIm(y) T dxdy. (4)

We illustrate the meaning of the Eq. (4) by considering spherically symmetric filters.
In this case, V{(x) = x('(|x|) with ¢' < 0. Therefore, dissipation or backscatter
in the subgrid-scale model occurs respectively in the directions of compression or
dilatation. The sketch in Fig. 1 shows the distinction among strain directions in
the flow and illustrates the mechanism of small scales production. As a result, the
following clipped model prevents backscatter and only dissipates in the direction of
flow compression:

oyry = a7 [ Lo ) 9eZN) o0 w0y, 9

where a4 = max(0, a).
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FIGURE 2. LES of plane channel flow at Re, = 650. Subgrid-scale dissipation.
— - —: global dynamic Smagorinsky model; ——: global dynamic anisotropic model.

2.2 Dynamic procedure

Given their relationshif) with the similarity model, it is natural to view our
subgrid-scale formulas as a model of the energy transfer between the scales A and
A/2. Note that this scale range is in general recognized to contain the essential part
of the transfer between resolved and unresolved scales. Thus, in order to determine
the model coefficient C, it is natural to compute the residual stress between the
scales A = 2A and A explicitly and to match it with the model evaluated on the
filtered field U. In other words, the coeflicient C should satisfy

Wiy — iy = C{ ) [5(y) — % (x))[(y) — w())¢ (L

y~x

-x
<) (6)
Following the standard dynamic formulation, a least square solution has to be sought
to solve this system of six equations and, if one desired, to constrain variations of the
coefficients only along specific directions. Note, that the approach we just described
bypasses the Germano identity and instead uses the assumption that the models
act in a limited scale range. One may object that replacing an exact identity by an
assumption is not satisfactory. However, in our view the subgrid-scale models can
never be expected to be very accurate (not speaking of the least square procedure
used to adjust the coefficient to a number of equations); therefore, the exactness of
the Germano identity is not of crucial importance in the dynamic determination of
the coeflicient.
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FIGURE 3. LES of plane channel flow at Re, = 650. (a) Mean streamwise veloc-
ity; (b) Turbulence intensities. -~ : no-model; — + —: global dynamic Smagorin-
sky model; ——: global dynamic anisotropic model; +: experiment (Hussain and
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FIGURE 4. LES of plane channel flow at Re, = 650. Subgrid-scale dissipation.
— - —: global dynamic Smagorinsky model; : local dynamic anisotropic model.

3. Preliminary results

To validate our dynamic procedure, we have first implemented a global dynamic
model. In this case the coefficient is constrained to vary only along the direction
normal to the channel walls. A least square solution of Eq. (6) under this additional

constraint is then given by
(Li; M;j)

T (Mg M)

where L;;, M;; receptively denote the left- and right-hand side of Eq. (6), (- ,-)
means averaging in the wall parallel directions, and repeated indices mean the sum-
mation. This model has been compared to the classical global dynamic Smagorin-
sky model for a channel flow at Reynolds number of 650. The grid resolution is
48 x 49 x 48. The numerical method is a fourth order finite-difference scheme on
a staggered grid system; the grid is refined in the wall normal direction according
to a hyperbolic tangent law (see Morinishi et al., 1998, for details). In both meth-
ods, a sharp cut-off test filter was used along the homogeneous directions. Figure 2
shows the subgrid-scale dissipation produced by the models. They peak at about
the same value. However, the anisotropic model seems to dissipate in a narrower
region around the walls.

Figure 3a shows the mean velocity profiles. Both methods give a fair agreement
with the experimental data when compared to the case where no-model is used.
The similar fair agreement of the two models for the turbulent intensity profiles is
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FIGURE 5. LES of plane channel flow at Re, = 650. (a) Mean streamwise velocity;
(b) Turbulence intensities. -~ . no-model; ——: local dynamic anisotropic model;
« . experiment (Hussain and Reynolds, 1970).
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observed in Fig. 3b.

Next we will discuss the implementation of local dynamic procedure for the
anisotropic subgrid-scale model. There are several ways to implement local dy-
namic procedure. We decided to focus on the following approach: compute local
coefficient C' using Eq. (6), discard negative values of C, and use clipped formula
(5) to evaluate subgrid-scale contribution.

Our first observation is that this model does not produce large local values of C
and thus does not require an implicit treatment of the eddy viscosity term. This
already contrasts with the behavior of local dynamic Smagorinsky model where the
local model coefficient is found without solving an integral equation. In this case
an explicit treatment of the eddy-viscosity term would lead to prohibitively small
time-steps.

Figure 4 shows the comparison of the subgrid-scale dissipation of the local dy-
namic anisotropic model and global dynamic Smagorinsky model. Mean velocity
and turbulence intensity profiles for local dynamic anisotropic model are presented
in Fig. 5. The results of Fig. 5 show a reasonable agreement between the local
dynamic anisotropic model and the experimental results. However, the excess dis-
sipation in the near wall region causes the velocity profile to be overestimated in
the middle of the channel.

We have also implemented a local dynamic model with a test filter in the physi-
cal space identical to the discrete grid-based filter. This option proved to produce
too much dissipation. However, this model practically did not require any clipping:
less then 1% of the model coefficients had negative values. This somehow substan-
tiates our expectations that the anisotropic formulas are better conditioned than
the Smagorinsky model for local dynamic coefficient calculations. However, more
numerical experiments are certainly needed to fully assess the usefulness of these
models in general geometries. In particular, we believe that a local model with a
test filter adapted to the computational grid is the most natural extension of the
method. It is well known that the choice of the test filter is a critical parameter in
all dynamic formulations and has to be taken into account in the definition of the
filter width. Note that even global dynamic models fail to give good results if the
filter width issue is not properly defined (Lund 1997). This issue and its impact on
local dynamic anisotropic calculations will be more systematically addressed in a
future work.
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Approximate lateral boundary
conditions for turbulent simulations

By J. Jiménez AND C. Vasco!

Several synthetic lateral boundary conditions are tested on a direct numerical
simulation in which only half of a turbulent channel is computed, with the boundary
conditions being imposed at the central plane. This is motivated by the problem
of matching large-eddy simulations to wall models. When the boundary contains
no turbulent structure, a thin layer is created which decorrelates it from the flow,
and the mean and fluctuating velocities are poorly represented. Introducing more
structure, obtained by modifying velocity planes copied from the interior of the
flow, improves the fluctuations, but the mean velocity profiles are still poor. This
is traced to spurious pressure fluctuations which induce artificial energy fluxes, and
can be partially avoided by approximately taking into account continuity in the
generation of the boundary conditions. This third boundary condition gives good
results for the velocity fluctuations, but some pressure and the mean velocity errors
persist.

It is argued that the problem is related to that of imposing boundary conditions
along characteristics in a hyperbolic system, and possible avenues for improvement
are suggested.

1. Introduction

One of the problems of large-eddy simulations of complex flows is the high resolu-
tion required in the proximity of walls. The Reynolds shear stresses that determine
the mean velocities are carried by the non-universal large turbulent scales. Sub-grid
stresses in LES should be provided by the sub-grid model, but most present models
do not reproduce the shear stresses well (Jiménez & Moser 1998). The simulations
should therefore be designed so that most of the shear stresses are carried by the re-
solved eddies, and this implies that the filters should not be wider than a fixed small
fraction of the local integral eddy scale. As the wall is approached the integral scale
decreases and so does the necessary filter width. Baggett, J iménez & Kravchenko
(1997) estimated that the number of points required for a grid satisfying those
requirements scales as N ~ Re?, and increases without limit with the Reynolds
number. Most of those points are concentrated in the near-wall region, and the
resulting resolution requirements have for some time been the main roadblock for
the practical application of LES (Chapman 1979).

To decrease the number of points, one possibility would be to use fully anisotropic
subgrid models correctly representing the Reynolds stresses in all the regions of the

1 School of Aeronautics, U. Politécnica de Madrid.
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flow, but, as mentioned above, such models are not available at present. Another
possibility is to compute the wall region by some separate technique, usually RANS,
while solving the LES equations only in an interior domain away from the wall.
Variants of this approach are the various proposals to use subgrid models which
smoothly merge into RANS near the wall (Schumann 1975, Sullivan et al. 1994,
Spalart et al. 1997).

In implementing this second class of approximations, two problems arise. The first
1s to provide a good model for the wall region, while the second is to transfer to the
outer simulation the information obtained in this way. This implies synthesizing
instantaneous boundary conditions for which only a few low-order statistics are
known, but which are realistic enough to minimize the formation of spurious layers
as the simulated flow adapts to the synthetic boundary. Both problems are different
and essentially independent of one another. Only the second one is addressed in
this paper.

To separate our investigation as completely as possible from the particular re-
quirements of modeling wall turbulence, we restrict our computations to the lower
half of a plane channel and impose our boundary conditions at the central plane,
trying to mimic the information coming from the other half of the channel. Within
the limits of the summer program we also restrict ourselves to direct numerical sim-
ulations, thus making our conclusions independent of the particular sub-grid model
used in real LES computations.

Our problem is then to find boundary conditions that can be imposed at a fully
turbulent domain boundary, using only low order statistics of the flow outside the
domain, such that a direct numerical simulation approximates the statistics of the
turbulent flow within. Well-known subsets of this problem are the formulations of
inflow and outflow boundary conditions for turbulent flows, which have been treated
often. The techniques used are different for each of them and, while outflows are
usually treated by advective boundary conditions in which information is allowed to
leave the domain as smoothly as possible, inflows require information coming from
outside, and therefore Dirichlet conditions. A general discussion of the boundary
conditions required for incompressible viscous flows is Kreiss & Lorentz (1989), and
examples of particular techniques used to generate synthetic incoming turbulence
at inflows are Lee, Lele & Moin (1992), Le, Moin & Kim (1997), and Na & Moin
(1998).

By choosing as our boundary the center of the channel we focus on the harder
problem of lateral conditions, in which the average normal velocity is either zero or
small with respect to the intensity of the turbulent fluctuations, and where weak
inflows and outflows coexist at locations which are not known a-priori. This is also
the problem relevant to imposing conditions near walls, where information, be it
provided by a separate model running in the wall layer or by the smooth merging
of LES and RANS, has to flow in both directions.

Baggett (1997) studied the same problem and tried several types of boundary
conditions in which the three velocity components were prescribed at an off-wall
plane in a channel. The information contained in his velocities ranged from purely
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random numbers to fairly complete sets of structures corresponding to real channel
turbulence at the same location. His experiments were in general not successful, but
the location of his boundary plane was inside the near-wall region, where turbulence
dynamics is known to be most complicated, and his numerical scheme was a low-
order finite-difference scheme. It was not clear whether his lack of success was due
to inappropriate boundary conditions or to any of those complicating factors. In
this note we largely repeat, and extend, his experiments using higher order numerics
and staying away from the wall region, in order to clarify the reasons for any failure.

The note is organized as follows. The numerical technique is described first,
followed in §3 by a description of the results of three different synthetic boundary
conditions. That section also contains a discussion of the errors introduced in the
pressure field, and of their influence on other errors in the simulation. Finally the
results and their relation to the general theory of hyperbolic equations are briefly
discussed and suggestions for future work are offered.

2. Simulations

2.1 Flow description

The flow simulated is the lower half of a plane turbulent channel, between the
lower wall at y = 0 and the central plane at y = 1. The Reynolds number is
Re, = 190, based on the friction velocity and on the half channel width. Since the
full channel is nominally symmetric, all of the energy and momentum fluxes (i.e.
the mean shear stress) should be zero at the central boundary. Other properties
at the boundary, when needed, are taken from the comparable simulation by Kim,
Moin & Moser (1987). Wall units are defined in the usual way in terms of the
friction velocity at the wall, u,, and used throughout the paper.

2.2 Numerical scheme

The numerical method is essentially the one used by Kim, Moin & Moser (1987).
The equations are integrated in a box which is doubly periodic in the streamwise
and spanwise directions, of size L, x L, = 2.7 x 1.58, and bounded by the cen-
ter of the channel and by one wall. The spatial discretization is Fourier spectral
in z and z, and fourth-order B-splines in the wall-normal direction y (Jiménez,
Pinelli & Uhlmann, 1998). The nonlinear terms are dealiased in the two Fourier
directions by the 2/3 rule, but there is no dealiasing in y. Time discretization is
third-order Runge-Kutta for the nonlinear convective terms and implicit Euler for
the dissipative ones.

The numerical resolution in z, y, and z is 48 x 97 x 64 before dealiasing, and
the viscosity coefficient is v = 1/3250. The grid is stretched in the wall-normal
direction according to the mapping

tanh[27 k(27 /N — 1)]
2tanh(27k) ’

1
vi=5t

where j = 0...N and & = 0.22. This grid is stretched both at the wall and at
the central plane, which was found necessary to accommodate the spurious thin
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viscous layers generated by the boundary conditions. The stretching at the central
boundary could probably be relaxed if better boundary conditions are found.

The equations are written in terms of the wall-normal vorticity w, and of the
Laplacian of the wall-normal velocity, = V2v. The evolution equations to be

solved are 5% )
Bt— = hv + szz(p, (1)
o 1 ‘
% = hy + 7=V, (2)

where h, and hy are the nonlinear terms, as defined by Kim, Moin & Moser (1987).
Continuity is imposed when obtaining the velocities from the evolution variables.
Pressure is not used in the evolution of the flow and is obtained only as a post-
processed variable. Nonlinear terms are discretized in the y-direction by means of
a collocation method, and the linear ones by Galerkin projection.

The boundary conditions in the non-periodic direction are imposed at each time
substep in the elliptic dissipative substep,

(1 -~ %w) wyt! = wp 4 AthT, (3)
(1 - %v?) "1 = " 4 At A", (4)
V2vn+1 — q)n-}-l' (5)

At the wall, y = 0, the non-slip boundary conditions can be reduced to
V= =wp = 0. (6)

We give the boundary conditions at the center of the channel in the form of instan-
taneous planes of the three velocity components, which can be reduced to v, Ov/dy,
and w; using continuity. The boundary conditions for (3) are therefore Dirichlet
but, for (4)-(5), they are given in terms of v and dv/8y rather than &. They are im-
posed by expressing the solution as a linear combination of the following Helmholtz
problems, which refer only to the boundary condition at y=1.

1) A particular solution (®,, v,) of the full system (4)-(5), with homogeneous
Neumann boundary conditions for ®, and v, at the central plane.

2) A solution ®; of (4) with a homogeneous right-hand-side and ® =1 at
¥ = 1, plus the associated solution for v;, with &, as the right-hand side of (5) and
Ov/0y=1aty=1.

3) A solution v, of (5) with &; in the right-hand-side and vy = 1 at y=1

The solution of (4)—(5) is then

v=vp+a1v1 +(12‘U2, (7)
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FIGURE 1. Validation of the code. , full channel; ----, half channel.

Statistics taken over 2,000 time steps (t* = 22).

o= Qp + (a1 + az)‘I’l, (8)

where a; and a; are chosen to satisfy the boundary conditions.
Pressure is obtained, whenever statistics are needed, by solving (Kim, 1989)

V2p: _V'H7 (9)

where H is the nonlinear term of the Navier-Stokes equations. The boundary con-
ditions for (9) are obtained from the y component of the momentum equation. At

=0
dp 1 8%

By~ Redoy’ (10

and at the center of the channel

2
QE = __I_)_v + _1_9_3 (11)
dy Dt = Re 0y?
These manipulations are done in Fourier space, where each coefficient is a function
of two wavenumbers and of the physical location, y. To simplify the notation
the dependence on the wavenumbers will not be made explicit in the following.
Subindices refer to position in y and superindices to the time step.

The boundary condition for the mean streamwise velocity U at the center of the
channel is either Dirichlet, taken from the full-channel DNS velocity profiles, or
homogeneous Neumann, which uses the condition of symmetry. In all cases the
mean spanwise velocity is set to zero.
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The code was validated by running first a full channel, storing a time sequence
of velocities at the central plane, and then running the half-channel code, using the
previously saved planes as boundary conditions at y = 1. Very good agreement was
obtained as shown in Fig. 1, even if the grids used in both cases were very different.

3. Approximate boundary conditions

The “exact” boundary conditions at the center of the channel were then replaced
by several synthetic approximations.

3.1 Case A

The first approximate boundary condition was constructed as follows. We gen-
erated a plane of the velocity component u, with the same power spectrum and
intensity as those in the interior plane y ~ 0.9 but with random phases. The v
velocity component was generated using its own power spectrum from the same
plane with phases such that the shear stress |uv* + u*v| vanished for each Fourier
mode. The asterisk stands for complex conjugation. The third velocity component
was generated in a similar way, satisfying Jow* + v*w| = 0. This velocity plane
was computed once at the beginning of the simulation and used at each time step
after applying a translation by Ut where U is the mean velocity at the center of
the channel, fixed through a Dirichlet boundary condition, and set equal to the
constant mean value obtained in full-channel simulations,

Unsurprisingly, the results are bad (Fig. 2a). This case is similar to the severely
scrambled one of Baggett (1997). The phases of his velocity fields were also random,
and a linear combination was used to obtain the correct shear stress. The main
difference was that his velocities were obtained from a full-channel run and then
modified, thus maintaining the correct time scales. In both his and our cases the
boundary conditions are completely uncorrelated from the rest of the domain, and
a strong boundary layer is created between them and the first interior plane. This
is due to the lack of turbulent structure of this boundary condition as will be shown
by the next experiment.

Similar results were obtained in a previous test in which the boundary condition
was built in the same way, but in which the phases of the velocities were regenerated
independently for each time step.

3.2 Case B

In order to provide some turbulent structure for the boundary velocities, we used
a velocity plane copied directly from the previous time step in the plane y 2 0.9.
The velocity u was rescaled to have the same r.m.s, fluctuation u' as in the statistics
of the complete channel, and the other two velocities were linearly combined to have
the correct intensities v/, w' and shear stresses 75 — 0 and vw = 0,

n+1
Upe = = Yo0Uy=g.g, (12)
+1 _ n+1
Ul:lc - 711ubc + 7121);:0.9? (13)

1 1
wl:lc+ = ’)’212)::’ +722w;::0.9' (14)
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increasing its slope in the vicinity of the center of the channel. This experiment
was not run long enough to achieve fully converged statistics since it was clear that
it was evolving in the wrong direction, especially for the mean velocity profile.

8.3 Pressure fluctuations

An interesting observation was that, in the last two cases, the structure of the
pressure fluctuations was very different from that in a regular turbulent channel. A
large peak appears near the center line (Fig. 3a), while the fluctuations of the full
channel are minimum there (Kim, 1989). This was traced to large values of dv /Oy
near the boundary, which enter the right-hand side of (9) as random delta-function
pressure sources. Essentially this is a failure of continuity, which was not taken into
account in any way in the previous experiments.

While it is clear that continuity cannot be imposed on a single plane and that the
flow will react to any combination of boundary conditions for u and w by adjusting
Ov /0y, this derivative can conflict with the one implied by our boundary condition
for v, resulting in very large values for the effective 0?v/8%y, and in large pressures.
The problem can be visualized by thinking of the boundary condition as an artificial
wall, moving randomly and forcing the flow at the boundary. Whenever the moving
wall and an interior eddy collide, high pressures are generated.

To further clarify the origin of the spurious pressure fluctuations, we present in
Fig. 3b the pressure for an instantaneous fow field computed in three different
ways. First we use the full equation, next we zero the right-hand side of (9) in the
first eight planes near the center of the channel, and finally we keep the right-hand
side but zero the boundary condition (11). The main contribution to the spurious
pressure 1s seen to be the peak of the right-hand side of (9), and once it is removed
the pressure fluctuations become consistent with those of a natural channel.

Since the spurious pressure derives from the solution of a Poisson equation, it
permeates the channel to a depth which is of the order of the size of the largest
eddies and has a global effect on the velocity profile.

Consider the integrated equation for the kinetic energy k of the velocity fluctua-
tions

y
80) = 60) = ['(P~ e va%k /047 ay, (15)
0
where P = —wvdU [y is the turbulent production, ¢ is the dissipation, and
¢(y) = v(p + k), (16)

1s the diffusion energy flux. If an error Ap is made in the estimation of the pressure
fluctuations at the boundary, it induces an error in the energy flux which is of order
A¢ = O(vAp) = O(u-Ap). This extra energy has to be compensated in (15) by a
change in the production since the dissipation is controlled by the turbulent cascade
and is difficult to change. Since the stress @ is fixed by the momentum equation,
only the velocity gradient S = aU /0y is available to compensate the extra energy
and its error is determined by the balance

;m/As dy = u2O(AU) = O(Ag). (17)
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The result is that AU = O(Ap*). Note that the effect on the mean profile can be
expected to be largest near the center of the channel where the mean shear stress
vanishes.

In case A where Ap™ = 20, this gives errors comparable to the maximum velocity,
as observed in Fig. 4a. In case B the errors in the pressure and in the mean profile,
while milder, are still considerable. Note that in this figure as well as in Fig. 3,
the different simulations have different values of Re,, both because of the errors
introduced by the boundary conditions and because cases A and B were not run to
full statistical convergence.

3.4 Case C

In an effort to decrease the velocity gradients at the boundary and, therefore,
the magnitude of the spurious pressures and fluxes, a new condition was tried in
which v at the boundary was obtained using an approximate continuity equation
involving the velocities from the previous time step,

vgtt — o} _ Oup  Ouf 18

Ay = Oz 0z’ (18)
where the subindex j = 0 refers to the boundary plane and j = 1 to the first interior
one. In this test u and w were copied from the plane j = 1 and then modified in the
same way as in (12)-(14), using v in place of u and vice-versa. Previous tests had
shown that the behavior of the boundary conditions was not very sensitive to the
exact location of the plane from where the velocities were extracted. In this case
the absolute values of the r.m.s. fluctuations were not given, and the intensities
were forced to be equal in j = 1 and j = 0. This has the advantage that the correct
intensities do not have to be known a-priori and is approximately equivalent to
imposing zero derivatives for the intensities at the central plane and, therefore, to
the condition of symmetry, but it should be emphasized that a Neumann condition
was not imposed on individual Fourier components. A symmetry condition was also
used for U, and the case was run to statistical equilibrium.

The results given in Fig. 5 are better than in the previous cases, with an agreement
in the fluctuations which is particularly impressive given that their absolute values
were not explicitly used at the boundary. The spurious peak pressure is also lower
than before, but it is still substantial, and the Karmaéan constant of the mean velocity
(Fig. 4a) is too low.

Figure 4b includes the energy flux for this case, which, contrary to the previous
ones, is underestimated and becomes negative near the center. This means that
energy is drained from the flow by the boundary condition rather than being injected
as in the previous cases. It is interesting that, corresponding to this, the velocity
overshoots the maximum near the central plane and then decreases slightly as the
flow loses energy to the boundary. Note that the energy diffusion flux at the center
of a full channel should be zero by symmetry.

4. Discussion and conclusions

We have tested several synthetic lateral boundary conditions at the central plane
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of a channel flow with variable success. All of them are Dirichlet conditions for the
three velocity components.

Conditions with no structure, even if they have an approximately correct power
spectrum but random phases, develop a sharp boundary layer and become uncor-
related with the rest of the channel. Introducing information about the turbulent
structure, which was done in our case by processing data from a different plane of
the same computation, considerably decreases the intensity of the spurious bound-
ary layer and leads to reasonably good results for some of the low order statistics,
namely the r.m.s. intensities of the fluctuations of u, v, and w. This is especially
true when the boundary conditions are tailored to take approximately into account
the continuity constraint among the three velocity components.

Nevertheless the mean velocity profiles are poorly represented. This was traced
to large errors in the pressure field and in the associated energy fluxes which, even
if not explicitly used in our simulation code, have fluctuations near the boundary
that are an order of magnitude larger than in regular channels. This is the result
of a sharp peak in the right-hand side of the Poisson equation for the pressure, and
derives from the attempts of the boundary conditions to locally violate continu-
ity. Artificially removing that local peak restores the pressure fluctuations to their
proper value. The peak in the source term is confined to the first few planes near
the artificial boundary (Ay &~ 0.04), and can be approximated as B(z, z)é(y — 1),
where 6 is Dirac’s delta function. The Poisson equation for the pressure sees this
forcing as a spurious boundary condition for 0p/0y, which overwhelms the real
boundary condition (11). The errors in the pressure decay exponentially away from
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the boundary with a scale length which is of the order of the energy-containing
scales of the intensity B. That the scale length here is of the order of the chan-
nel width shows that the errors in the boundary condition are associated with the
representation of the largest eddies.

The mathematical basis for the difficulty is easy to understand. For fully tur-
bulent boundaries away from walls, viscosity can be neglected, and it is enough to
analyze the problem for the Euler equations. Note that this would also be true in
LES since the eddy viscosity of the subgrid terms would in that case be at most
O(u'Az), and the Reynolds number based on it and on the macroscopic scales would
still be large. The incompressible Euler equations, except for the pressure term, are
hyperbolic with characteristics which coincide with the streamlines, and this fact is
widely used in the design of inflow and outflow boundary conditions (see e.g. the
discussion in Kreiss & Lorentz, 1989). Incoming flow needs Dirichlet conditions be-
cause the information is brought by the characteristics entering the domain, while
outgoing flow does not for similar reasons. Lateral boundaries such as the one which
occupies us here coincide with characteristics implied by the mean flow, and in that
approximation no boundary conditions are needed or allowed along them.

Consider for example a two-dimensional flow in which the velocity is (U +u1, v1),
where |u3], [v1| € U, and where the mean velocity U is constant. The equation for
the perturbation is

Ou du dp

5t U+ a—i = O(u?/L), (19)
where L is a characteristic eddy size, with a similar equation for v;. Continuity
is preserved automatically to lowest order, and in that approximation the pressure
satisfies Laplace’s equation and can be set to zero. The resulting equation for u;
is hyperbolic and has no explicit dependence on y. Along boundaries on which y
is constant, the solution is fully determined by the inflow at z = 0, and no further
boundary condition is needed. In fact, a Galilean transformation to a frame of

reference nioving with the constant velocity U reduces (19) to
8u1 Bp
L+ ZE = 0(ui/L). 20
This is an interesting equation which shows at once that the pressure fluctuations
are O(u?) and that the Lagrangian accelerations are of the same order. It suggests
that better boundary conditions for the general case could be constructed in the
form

aa—lz-l—u—g—gﬁ—w%g:u?,gu, at y=1, (21)
where u, acts simply as a scale for the velocity fluctuations. The information in the
boundary condition, including the external statistics and length scales, is contained
in gu, which should be O(1), and it is easy to see that it can be interpreted as an

applied stress. Such boundary conditions are presently being tested.
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Boundary conditions for LES away from the wall

By F. Nicoud, G. Winckelmans!, D. Carati’, J. Baggett AND W. Cabot

Artificial boundary conditions for LES away from the wall have been developed with

the hope of avoiding the problem of grid refinement in the wall region of the LES. In
the particular example of channel flow, the main idea is to replace the natural no-slip
boundary conditions (at y = 0) by artificial boundary conditions at y = y1 > 0. The
one-point statistics (mean velocity and turbulence intensities) of the flow at y; are
supposed to be provided externally. In practice, this information could be obtained
from a RANS for the same flow. However, it is known that supplying only the
one-point statistics of the velocity field is not sufficient for obtaining a reasonable
core flow. The method developed here consists of building two-point statistics at
the artificial boundary by using information from the core flow at y = y2 > ¥1.
In particular, the time evolution of the velocity fields at y = 1 and y = y2 are
assumed to be self-similar with a time scale ratio determined dynamically during
the simulation. Encouraging results for the channel flow at Re, = 1000 have been
obtained when the domain removed from the simulation (0 < y < y1) contains half
of the grid points used in “full domain” LES of the channel flow.

1. Introduction

The grid refinement required in the near wall region has severely slowed the
development of large-eddy simulation (LES) for flows of practical interest. Several
techniques aimed at keeping the grid coarse in the near wall region have been
investigated. Most of them supply artificial boundary conditions, either at the
physical wall or inside the flow. In the latter case, the boundary conditions must
compensate for the total absence of knowledge of the dynamics inside the unresolved
wall region. In this preliminary study, we will only consider this type of off-wall
boundary condition.

Previous studies (Baggett, 1997) have shown that providing the correct one-point
statistics at the artificial boundary is not sufficient. Imposing only the mean velocity
values and the mean turbulent stresses at the artificial boundary has been shown
to lead to very poor results even in the simple geometry of the channel flow. Some
information regarding the structure of turbulence should be imposed at the artificial
boundary as well. In other words, at least the two-point statistics should have a
reasonably correct value at the artificial boundary.

It is sometimes considered that going further than the second order statistics and
trying to impose, for instance, third order moments of the velocity fluctuation is

1 Université catholique de Louvain, Louvain-la-Neuve, Belgium.

2 Université Libre de Bruxelles, Brussels, Belgium.
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not necessary. As noted by Jiménez & Vasco (1998), this statement is debatable
since some of the third order statistics of the velocity fluctuations correspond to the
energy flux through the boundary. It might turn out that imposing this energy flux
could be as important as imposing the wall stress. However, imposing the energy
flux at the boundary is certainly quite difficult.

The purpose of this study is to investigate some new and very simple ideas for
extrapolating from the core flow some information on the two-point statistics that
should be imposed at the boundary. The artificial boundary conditions that we
consider here only impose the first and second order statistics of the velocity fluc-
tuations. In this first stage, we only consider LES of the channel flow for which
we have a reference LES at Reynolds number Re, = 1000 (Kravchenko, Moin &
Moser, 1996).

2. Artificial boundary conditions

The underlying idea is to use some scaling law for reconstructing the velocity
field at a certain distance from the solid boundary from the known velocity field in
the core flow. For this reason, in this first study, we have focused on the channel
flow for which a logarithmic profile is known to exist. In this domain, the size of
the structures is supposed to grow linearly with the distance to the wall. In the
channel flow at Re, = 1000, both y; = 100 and ¥s = 200 are in the log-layer. We
have thus considered several possibilities for reconstructing the velocity at y; from
the velocity at y;. First, we have considered the possibility of imposing a linear
scaling law on the characteristic length scale for the velocity. However, we found
that imposing the time scale of the velocity fluctuation is much easier and leads to
better results. In practice, we have thus first assumed that the typical time-scale
of the velocity fluctuation év; also follows a linear law in the log-layer. This can be

expressed by:
1 dbv; \ 2 —9
(GDB) <( ) >°‘y | @1)

This assumption is reasonable but it only relates statistical quantities at different
values of y*. The main assumption of our approach is to use this relation for
connecting every point in the artificial boundary (y,) with a point in another plane
(y2) which lies within the computed part of the fow:

1 85'0,‘(1/1) _ 1 6511,‘(?]2)

=7
V(évi(yr))2) 0t V{(8vi(y2))?) Ot
where the v; should be equal to y2/y1 = 2 if the scaling law (2.1) were correct. In
practice, v;(y1) = v/((6vi(y1))?) is unknown and has to be provided as part of the
boundary conditions while vi(y2) = V/((6vi(y2))?) is directly measured from the

computed part of the flow. Hence, the second order statistics must be provided at
the boundary, as expected. The condition (2.2) will thus read:

9bvi(y1) _  vilyr) Bbvi(yz)
ot ' vi(y2) Ot .

(2.2)

(2.3)
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FIGURE 1. Schematic representation of the plane yi, Y}, y2, and yy.

In actual simulations, the condition has been implemented as follows:

Soily1, ¢ + At) = bvily1,t) + i (y:) (Builyat) — Svslynt — AD) . (2.3)

!

1
vi(y2)
Since the scaling (2.1) is not necessarily correct, we have also considered the pos-
sibility of estimating the value of the parameters v; during the course of the sim-
ulation. This dynamical estimation is done by using two additional planes inside
the computed flow (see Fig. 1): plane y, just above y; and plane y4, just above y2
(y;=vy;+ Ay;, where Ay; is the mesh size at plane j). The v; parameters measured
for the pair (y},ys) are used for connecting the planes (y1,Y2)-

Clearly, the artificial boundary conditions (2.3) do not determine the mean ve-
locity value (first order statistics) which also needs to be supplied externally. The
underlying idea of this approach is to connect the LES with an alternative and
cheaper approach for the wall region. For instance, the mean velocity at the bound-
ary (vi(y1)) and the turbulence intensities v!(y1) could be derived from a RANS.
In the tests presented here, we have used the LES value from the other side of the
channel when the other wall was treated classically. This is thus an asymmetric
simulation. When both walls have been treated with the artificial boundary condi-
tions described before (symmetric simulation), the first order statistics (vi(y1)) and
the second order statistics v}(y1) have been taken from the LES of Kravchenko.

It must be noted that, in their present form, the artificial boundary conditions do
not impose the stress (u(y1)év(y1)). Since this stress is perhaps the most important
quantity in the wall region of a turbulent flow, it must be verified a posterior: that
the predicted value is indeed correct.

The simulations that are presented in this report correspond to n; = 48, ny = 65,
and n, = 48. When the artificial boundary conditions are placed at yt = 100, 25%
of the grid points are removed from the simulation in the asymmetric simulation
and 50% in the symmetric one.

3. Numerical results

The first results we obtained were very disappointing. Trying to impose the
linear law for the typical time scale of the velocity fluctuations (yu = Yv = Tw = 2
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FIGURE 2. Mean velocity profile for the asymmetric computation. v, =y, = 7, =
2. : lower half, artificial boundary conditions; ~--- : upper half, classical
boundary conditions. Non-dimensionalization is based on the mean friction velocity.

leads to very poor results for all the relevant quantities. For instance, the mean
velocity profile (Fig. 2) for the asymmetric computation was totally different in
the upper half and the lower half of the channel. This shows that the artificial
boundary conditions (2.3) with v, = v, = Yw = 2 are not able to correctly mimic
the dynamics of the flow between 0 < y+ < yi.

This has strongly motivated the use of the dynamic evaluation of the parameters
7i- As can be seen in Fig. 3a, when measured on the wall with classical boundary
conditions, the dynamic values for these parameters are very close to 1.

This result is somewhat puzzling because it shows that the scaling argument used
for motivating the artificial boundary conditions is not valid. In particular, the time
scales (and the length scales) do not grow linearly in the log-layer of our LES. A
possible reason for that is the lack of resolution in our coarse LES at Re, = 1000,
not only in y, but also in z and z; even on the “resolved” wall, the mean velocity
profile does not fall on the curve u* = 2.44 In(y*) + 5.0, see Figs. 2 and 3. Recall
that LES’s of the channel flow using structured grids (i.e., uniform Az and Az)
are often quite coarse in z and 2 in the log region close to the wall; structures are
not completely resolved there. Thus, the grid used here is not sufficient to capture
the wide range of scales necessary for the expected scaling v; = 2 to hold. Another
possibility is that the proposed scaling v; = 2 should not hold anyway because
the dominant integral scale (in the streamwise direction) does not scale with the
distance to the wall. This point should certainly be addressed further in a follow
up of this work, using both DNS data and resolved LES data such as Kravchenko,
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Moin & Moser (1996).

Proceeding nevertheless, using the dynamic values of the «; into the artificial
boundary conditions, leads to very interesting results. As shown in Fig. 3b, the
computed values for 7y; near the wall with artificial boundary conditions remain
close to unity although slightly greater than near the top ‘resolved’ wall. We present
hereafter the results for the first and second order statistics through the channel.

Remarkably, all these quantities are almost symmetric although the boundaries
on the two sides of the channel are treated very differently. This shows that the
artificial boundary conditions with the dynamic computation of the parameters 7v;
give a good representation of the velocity field at y;. Note that the stress (6udv)
has the correct behavior although it is not prescribed explicitly by the boundary
conditions.

The turbulence intensities and the stress show some fluctuations with respect to
the expected values very close to the artificial boundary. This is due, in part, to
the fact that the velocity fluctuations imposed by the artificial boundary condi-
tions require rather severe fluctuations in the pressure field in order to enforce the
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incompressibility conditions. These pressure fluctuations might then propagate in
the near boundary region and affect the velocity field (see Jiménez & Vasco, this
volume).

The two-point correlations of the velocity field are not directly imposed by the
conditions (2.3), but, of course, the velocity components produced by these bound-
ary conditions are not random and do include some structures (see Fig. 7). However,
the two-point statistics show that the turbulence structure is affected by the artificial
boundary conditions (too large spanwise correlation near the artificial boundary).

These results remain, however, very encouraging. The fact that the low remains
almost perfectly symmetric even when the walls are treated differently shows at least
that this approach should be investigated further. Unfortunately, the next step in
the evaluation of the peculiar boundary conditions (2.3) is less conclusive. Indeed,
we have tried to use the same conditions on both sides of the channel; the results
for the mean profile are, of course, symmetric, but they differ strongly from the
reference LES of Kravchenko. In general, it is found that the second order statistics
are much better predicted than the mean velocity profile. A possible explanation
could be that the energy flux through the boundary is not at all controlled by the
conditions (2.3). A badly predicted energy flux could indeed affect the mean profile
more than the second order statistics.

4. Conclusion

It is very difficult to draw any definitive conclusion from the the preliminary study
presented here. However, we have shown that simple artificial boundary conditions
can be built with many desirable properties. In particular, we have developed
and partially tested a simple procedure to easily impose the correct amplitude for
the first and second order statistics of the velocity field at the artificial boundary,
while some information regarding the structure of the turbulent flow is fed to the
boundary from the computed neighboring core flow.

This procedure has been very successful when used only on one side of the chan-
nel flow. This result is encouraging. Unfortunately, when used on both sides, the
obtained mean velocity profile is substantially different from the reference profile
(here, the one obtained when running the coarse LES with the classical no-slip
boundary condition on both walls). Most probably, in the asymmetric computa-
tions, the upper channel with the classical no-slip boundary conditions imposes
enough constraint to keep the velocity profile close enough to the reference.

The coarse LES used in this preliminary study is quite poor; the resolution is too
coarse for this high Re, = 1000 channel. A follow up of this work would certainly
require repeating some of the investigations with a better resolution: either rerun the
high Re, investigations, with and without the approximate boundary conditions,
but with finer resolution (possibly requiring embedded grids close to the wall), or
run lower Re, investigations.

Thus, it remains to be shown that good quality results can indeed be obtained
with the type of artificial boundary conditions presented here when the reference
numerics are better. In particular, further development could require adaptations
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that enforce additional constraints on the various fluxes at the artificial boundary
(e.g., stress and /or energy fluxes).
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