
NASA/TM-1999-208767 _

The Thin Oil Film Equation

James L. Brown and Jonathan W. Naughton

Ames Research Center, Moffett Field, California

National Aeronautics and

Space Administration

Ames Research Center

Moffett Field, California 94035-1000

Ill

March 1999



Available from:

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

(301 ) 621-0390

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161
(703) 487-4650



THE THIN OIL FILM EQUATION
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SUMMARY

A thin film of oil on a surface responds primarily to the wall shear stress generated

on that surface by a three-dimensional flow. The oil film is also subject to wall pressure

gradients, surface tension effects and gravity. The partial differential equation governing

the oil film flow is shown to be related to Burgers' equation. Analytical and numerical

methods for solving the thin oil film equation are presented. A direct numerical solver is

developed where the wall shear stress variation on the surface is known and which solves

for the oil film thickness spatial and time variation on the surface. An inverse numerical

solver is also developed where the oil film thickness spatial variation over the surface at

two discrete times is known and which solves for the wall shear stress variation over the

test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical

solver provides a mathematically rigorous basis for an improved form of a wall shear stress

instrument suitable for application to complex three-dimensional flows. To demonstrate the

complexity of flows for which these oil film methods are now suitable, extensive examination

is accomplished for these analytical and numerical methods as applied to a thin oil film in

the vicinity of a three-dimensional saddle of separation.
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1. INTRODUCTION

The response of a thin oil film on a surface subjected to a three-dimensional (3D)

aerodynamic flow proves to be of interest to the fluid mechanics community for several

reasons. First, the study of thin oil films has led to new instrumentation which accurately

measures the wall shear stresses generated by 3D flows. Second, extensive use of oil flow

visualization on surfaces bounding 3D flows requires that we understand the limitations

of these oil flow techniques in the neighborhood of the complex topological features, in-

cluding singularities, of the limiting surface streamlines. Additionally, the study of thin

oil films provides an opportunity to consider the solution of nonlinear partial differential

equations with clear practical significance and which require minimal computational and

programming resources.

Instrumentation based on thin oil films has undergone sustained development (Tanner,

et al.l-a; Monson, et al.5-r; Mateer, Monson, and Menter s) to provide accurate measure-

ment of the wall shear stresses generated on a test surface by aerodynamic flows. Recent

improvements (Naughton and Brown°-11), particularly for 3D flow applications, in the

form of the oil film wall shear stress instrument have been made possible by the appli-

cation of Computational Fluid Dynamics (CFD) solution techniques to the thin oil film

equation. Experimental wall shear stress measurements guide development of turbulence

models to further improve CFD solvers. An important barrier to the accurate prediction

by Navier-Stokes CFD solvers of complex 3D flows is the accurate modeling of the flow-

field turbulent Reynolds stresses. Considerable effort has been expended over the past six

decades in turbulence modeling with advances in this difficult area being frustratingly slow.

The pace of improvement in turbulence modeling has improved recently, however, partly

due to a maturation in the numerical methods of Navier-Stokes solvers, and partly due to

enhanced instrumentation. Two instruments most relevant to improvements in turbulence

modeling are the laser Doppler velocimeter (LDV) and the laser interferometric skin fric-

tion (LISF) instruments. The LISF and related successor skin friction instruments deduce

the wall shear stress by analysis of either the thinning rate or the detailed shape of an oil

film which is initially spread on a test surface and which then responds to the aerodynamic

flow over that test surface. Prior to this study, self-similar 1D solutions for the oil film

response were used 1-s in the analysis for the oil-film based instruments. However, as these

oil-film based instruments are now being applied to complex 3D flow situations, a more

rigorous treatment of the oil film response is now required and is addressed by this present
work.

A further reason to study the thin oil flow equation is the utility of surface oil flow vi-

sualization technique (Maltby12). Surface oil flow visualization is one of several techniques

to discern the limiting streamline flow patterns on the surface. An aid to understand-

ing complex 3D flows is the topological analysis of these limiting streamlines (Tobak and

Peake13; Chapman and Yates14). Visualization, both of numerical solutions and experi-

mental flows, of these surface streamlines and associated singularities provides an overall



topological framework for categorizingand comprehendingthe complexflow patterns which
may arise. For 3D flows, the types of singularity points which may occur on surfacesare
the saddle of separation, the saddle of attachment, the node of separation, the node of
attachment, the focus of separation,and the focusof attachment. Limiting separation or
attachment lines connect thesepoint singularities. A further surface streamline topolog-
ical rule is that these singularity points appear in combinations such that for a simply
connectedclosedbody:

N-S=2

where N is the total number of nodal and focal points appearing in the flow and S is

the total number of saddle points appearing in the flow. Easily overlooked are the node

of attachment at the nose of an aerodynamic body and the node of separation at the

tail. Symmetry of the flow can also lead to an undercount since a singular point may then

actually appear twice. The flowfield need not be uniquely defined by the surface streamline

patterns observed.

The importance of the ability to correctly identify these singularity points and further

to predict with a Navier-Stokes solver the location of these singularity points is generally

underestimated. In particular, the saddle of separation and the saddle of attachment can

be difficult to identify and yet either can appear in some flows at a particular location with

significant impact on the flowfield pattern above the surface. To miscalculate a singularity

point for a turbulent flow may be the consequence of an improper grid or more importantly

an improperly constructed turbulence model.

Squire _5 provided the first theoretical study of the thin oil film equation. Numerical

solutions for the 1D thin oil film under a 2D aerodynamic flow were presented. In partic-

ular, the behavior of oil flow visualization in the vicinity of 2D separation was addressed.

Squire concluded that the thin oil film did not significantly alter the boundary layer and

that oil flow visualization would tend to indicate 2D separation slightly upstream of the

actual boundary layer separation due to pressure gradient effects. Part of the purpose of

this present work is to extend the earlier work of Squire to consider 2D thin oil films under

3D aerodynamic flows.

A third reason for the study of the thin oil film equation lies in its utility in the study

of numerical methods. The thin oil film equation is an extension of the familiar Burgers

equation often used to test CFD numerical methods. As with Burgers' equation 16, the thin

oil film equation is a scalar hyperbolic wave equation which may be solved by numerous

solution methods, including finite-difference, finite-volume, characteristic and Lagrangian

techniques. These thin oil film solutions can be accomplished in 1D or 2D on a workstation.

Additional advantages accrue to the study of the thin oil film equation, however, in that

for both the 1D and 2D forms the eigenvalue(s) and hence characteristic direction can be

forced to change sign at a particular location in a model problem. Further, in the present

article, we will demonstrate an inverse solution numerical method useful for the skin friction

instrument. Additionally, the thin oil film equation offers a context to study 1D and 2D
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model problemsboth numerically and experimentally which canprovide particular insight
when fluid mechanicsstudents are introduced to numerical methods.

Note that the 1D thin oil film problems are associatedwith 2D aerodynamic flows,
while 2D thin oil film problems are associatedwith 3D aerodynamic flows. Where clarity
in this paper requires, we will specifically state, for example, 2D thin oil problem or
2D aerodynamic flow. Also, the two fluids need not be restricted to oil and air, but to
clearly distinguish betweenthe flow of the two fluids, weshall usethe terms "oil flow"and
"aerodynamic flow" throughout the remainder of the paper.

In the present study, both direct and inverse numerical solution techniquesfor the
thin oil film equation are developed. The direct numerical solver considersthe casewhere
the wall shearstressfield on the surface, -_ (x, z), is known and the direct solver provides

the oil film thickness variation with time over the surface, h(x, z, t). The inverse numer-

ical solver considers the case where the oil film thickness variation at two discrete times,

h(x, z, tl) and h(x, z, t2), is known and the inverse solver then provides the wall shear stress

variation over the surface, -_w (x, z).

In the sections to follow, the thin oil film equation is first derived. Next, various

solutions are demonstrated including exact 1D and 2D self-similar cases. Then numerical

procedures for both the direct and inverse solutions are presented. These solvers are then

applied to several example practical problems. Programs to solve these example problems

are written in the c programming language for use on a Unix workstation and are available
from the first author.



2. THE GOVERNING PARTIAL DIFFERENTIAL EQUATION

The Navier-Stokes equations describe the response of a thin film of viscous liquids

typically oil, which is initially spread on a surface and which then experiences a 3D flow

of a second fluid, typically air, over that surface. Simplifications to the Navier-Stokes

equations for such an oil film flow are possible which still result in an accurate description

of the oil flow while considerably reducing the difficulty of the solution method. The thin

oil film equation derived below is essentially the continuity equation integrated across the

thickness of the thin oil film, with additional information incorporated from simplifications

of the x- and z-momentum equations. The derivation of the thin oil film equation is quite

straightforward but is described below to establish the restrictions on the equation and to

clarify the numerical procedures used to solve the equation.

Consider a thin film of viscous liquid, such as a silicone oil, initially placed on a test

surface as shown in figure 1. Typically, the thickness of oil is a few microns in thickness

which varies with location and time. This test surface, and thus the oil film, is then

subjected to a 3D aerodynamic flow over the test surface. The 3D aerodynamic flow

generates on the test surface a wall shear stress vector, _ = (T_(X, z), Tz(X, Z)), acting

tangential to the surface, and a wall normal stress or pressure, P(x, z), acting normal to

the surface. The oil film will flow in response to these wall stresses and to the gravitational

body force acting on the oil. Additionally, the oil film will experience surface tension

effects related to the curvature of the oil film surface. For the purposes of this derivation

we assume the 3D aerodynamic flow is steady with time.

The thickness of the film, h(x, z, t), will vary with position on the surface and with

time. To derive the differential equation governing the oil film behavior, consider the

control volume of figure 1. The control volume encloses the full height of the oil film, h,

and is of finite length, Ax, and width, Az, aligned with the x and z axes, respectively.

Thus, the oil mass in the control volume at any time is given by racy = pohAxAz. A

change in film thickness, h, and, thus, mass in the control volume occurs during a time

interval, At, due to the differences in mass flux normal to the four sides of the control

volume through which oil may flow:

Ara_./At + A_F + A_G = 0

where

mc_ = pohAxAz

h
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Taking limits of Ax, Az and At :=_ 0, we obtain:

Oh/Ot + OUch/Ox + OWch/Oz -- 0

where we have defined:

/oh /ohUch - udy, and Wch =- wdy

The fluxes, F and G, can be evaluated by means of a low-Reynolds number simplifi-

cation of the x- and z-momentum equations. The film Reynolds number may be evaluated
as a ratio of inertial effects to vi'scous effects:

Re I = (poU2/L)/(#oUc/h 2) = (poUch/#o)(h/L)

To estimate the film Reynolds number we make use of Tanner's 1D self-similar solution

result, Uc = vh/2#o, along with estimates for h = 10-6m, L = 10-2m, 7 = 20N/m 2,

Po = lO00Kg/m _, and vo = 100 centiStokes to obtain:

Re.f ,_ Th3/2poV2o L = 10 -s

As a consequence of the low Reynolds number, we ignore the inertial terms in the x-

momentum equations, giving within the oil film:

0 = OTx,o/Oy - OPo/Oz + Pog_:

For the purposes of clarity in this derivation, we introduce the subscript, o, to signify the

shear stress and pressure within the oil film, and the subscript, a, to signify the aerodynamic

wall shear stress and wall pressure which are applied as boundary conditions to the oil film

at the air/film interface located at y -- h.

Integrating, from the air/film interface inward, for the shear stress variation through

the film layer:

hy OTx oey= ,x,o- = (°P°-• Ox pogx)(y-h)

Note, the y-momentum equation implies that the pressure, Po(x, z), may be assumed
constant across the oil film thickness.

Integrating again, but from the wall out into the film, gives:

foy foy Ou (OPor:r,ody = #o-'_ydy = ttoU = Tx,aY + -_x pogx)(y2/2 - hy)

Or, considering both the x and z components of velocity within the oil film:



OPo
u=(%,ay÷( Ox P°g_)(y2/2-hy))/#°

(OPow = (Tz,o_ + b-;z Po9_)(_2/2 - h_))/,o

(2.1a)

(2.1b)

Integrating yet again finally gives us an expression for the mean convective velocity:

h

Uch = fo udy = Tx,ah2/2#o -- (OPO__x

Similarly, from the z-momentum equation:

__ _ pog.)(h3/3#o)

_0 h
Wch = wdy = %,ah2/2po - (OPo

Oz P°gz)(h3/3#°)

To account for surface tension effects, note that the pressure, Po, within the film will be

altered from the aerodynamic wall pressure, Pa, due to the curvature (1/Rz and lIRa) of

the oil film surface, hence:

Po = Pa +a(1/R_ + 1/Rz) _ Pa-a(h_, + h_)

Summarizing, the differential equation governing the response of a thin film of oil to

a 3D aerodynamic flow is:

Oh OUch OWch

0--7+ o----U+ Oz -o (2.2a)

"rxh OP Oo'(h_x + h_z) _ pogx)(h2/3#o) (2.2b)
Uc-2#o (Oz Oz

%h OP Oa(hxx + h_) _ pogz)(h2/3#o) (2.2c)
Wc- 2#o ( Oz Oz

Equation 2.2, with slight rearrangement, was first given by Squire 15, and we refer to this

equation as "Squire's Form" of the thin oil film equation. Tanner 1 gave a different form

which we refer to as "Tanner's Form" of the thin oil film equation. In Appendix A, the

equivalence of the two forms of the thin oil film equation is demonstrated through a metric

transformation.

The issue of boundary conditions will be treated in the solution subsections below.

Note, we have dropped the subscript, a, on Tx, Tz and P in the equation above and for the

rest of the paper since this subscript was introduced for clarity to distinguish between the

values within the oil film and the values imposed from the aerodynamic flow. Henceforth,

the aerodynamic wall shear stress and wall pressure meanings for these terms are assumed.
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In the absenceof the surfacetensionterm, which for manyproblems is negligible,the
thin oil film equation is first-order hyperbolic or wave-like with the characteristic direc-
tion of information propagation being indicated by the mean convective velocity vector,
(Uc,Wc). With inclusion of the surfacetension term, the equation becomeselliptic.

Further observethat the v terms are multiplied by h 2 whereas the remaining terms

are multiplied by h 3. Thus, for h very small, the 7- terms typically dominate except near

singularities, where the shear stress approaches zero.

For the case where the pressure, gravity and surface tension terms are negligible

compared to the shear stress term, the thin oil film equation becomes:

Oh OTxh2 /2#o OTzh2 /2#o
-_ + Ox + Oz - 0 (2.3)

In a coordinate independent form, the above equation becomes:

_- + V-( -_) = 0 (2.4)



3. ANALYTICAL SOLUTIONS

Analytical solutions for the thin oil film equation are considered in this section. These

analytical solutions are for relatively simple test case conditions, but do include both 1D

and 2D thin oil film problems for 2D and 3D aerodynamic flows, respectively. These

analytical solutions can be instructive as to general thin oil film behavior as well as being

useful in their own right. More general cases, whether for 1D or 2D oil films, require

numerical solution procedures. Even for numerical procedures, the analytical solutions aid

in formulating boundary conditions. Furthermore, the analytical solutions considered in

this section then provide known test cases to assess the validity and accuracy of the more

general numerical solution procedures.

We start by establishing a self-similar form of the 2D oil film equation. Then, we

further reduce this equation to an ordinary differential equation for the 1D self-similar thin

oil film problem, and establish several self-similar relationships. Analytical 1D solutions

are then established. We then return to the 2D self-similar form, and: for special forms of

the wall shear stress under a 3D aerodynamic flow. establish 2D analytical solutions.

Consider the thin oil film equation where the pressure gradient, gravity and surface

tension terms are negligible:

Oh O_..(Tzh 2 ) 0 (Tzh 2 )
0-7+ ox 2.0 + = 0 (3.1)

We consider solutions which are self-similar in time of the form:

h(x,z,t) = H(x,z)/t (3.2)

Thus, Oh/Ot = -H/t 2, giving the 2D self-similar form of the thin oil film equation:

-H + 0----(7xH2) 0 (rzg 2) = 0 (3.3)
Ox 2#o ÷'_z 2#0

In coordinate independent form, the above equation becomes:

H 2

-H ÷ V • (_po-4_) -- 0 (3.4)

The self-similar solution, H(x, z), describes the asymptotic shape of the thin oil film at

large time.

3.1 1D ANALYTICAL SOLUTIONS

For a 1D thin oil film, the self-similar partial differential equation reduces to an ordi-

nary differential equation:
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d (TH 2
n - _xx -_-_o ) = 0 (3.5)

One 1D self-similar relation (Tanner and Blows 1) can be established by integrating

the above equation from the leading edge where H = 0 at x = xo:

T(X) = _ H dx = -_ h dx (3.6)
0 0

Another self-similar relation is found by defining _ = (T/#o)I/2H and substituting in

equation 3.5 giving:

¢(#o/r) 1/2 d x (¢2/2) = 0

or, rearranging

(/*o/7-) _/_ = d(/dx

Integrating, with ( = 0 at x = x0, and rearranging gives the 1D self-similar relation (also,

Tanner and Blows 1):

x
H = ht = (/,0/7) I/2 (/*o/T)l/2dx (3.7)

0

The relation given by equation 3.7 may be solved for H(x) given known T(X) by

numerical methods or, where suitable, in closed analytical form. Likewise, the relation

given by equation 3.6 may be solved for T(x) given known H(x). The studies of Tanner

and of Squire provide several such 1D solutions.

The simplest 1D self-similar thin oil film solution is for the case of constant wall shear

stress, 7(x), where:

HT=htT=/*o(X- Xo) (3.8)

Axisymmetric Analytical Solutions

For flows over axisymmetric bodies, the governing equation for a thin oil film becomes:

Oh 1 0 rTh 2

0--7 + (r)-_s ( 2/*0 )= 0 (3.9)

and the time self-similar form becomes:
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H (1 d rTH 2)
- = 0 (3.10)

Rearranging and integrating from So, where h -- 0, to s:

v-- ,rH2 ) rH ds = ( ) rh ds (3.11)
0 0

Alternatively, substituting _2 -- rTH2/_o into equation 3.10:

f8H = ht = (___oo)1/2 (_°r) 1/2 ds (3.12)
r7 ./so 7"

As one example of a closed form axisymmetric thin oil film solution, consider the case

where the aerodynamic flow consists of the region about an axisymmetric stagnation point

or node of attachment formed by placing a circular plate normal to the flow. For this

case, r = s. A laminar solution for this axisymmetric stagnation point has been given by

Homann 17, and is reported in both White !s and Churchill 19. The wall shear stress on the

plate varies linearly as:

T = _r, _ > 0 (3.13)

Assume the "leading edge" of the axisymmetric oil film is located some small distance,

to, from the stagnation point. Integrating equation 3.12 with the known wall shear stress,

equation 3.13, gives the oil film shape:

H = ht = (#o/_)(1 - ro/r), r > ro (3.14)

For distances far from the stagnation point the oil will tend toward a uniform thickness:

which varies inversely with time. For locations close to the stagnation point, pressure

gradient effects become important which then require a non-similar numerical solution.

For an axisymmetric node of separation, we may also assume that the local shear stress

varies according to T = _r, except /3 < 0. The oil film leading edge is applied at r = ro,

and the flow of oil is inward toward the node of separation. The solution then is:

H = ht = (#oll_l)(rolr- 1), r < r0 (3.15)

For the axisymmetric node of separation, the singularity at r = 0 is avoided due to

both surface tension and pressure gradient effects not included in this time self-similar

solution.
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3.2 2D ANALYTICAL SOLUTIONS

Closed form analytical solutions may also be found for a number of interesting cases

of a 2D thin oil film responding to a 3D aerodynamic flow. The flow of a 2D thin oil film

in the immediate vicinity of 3D surface streamline topological singularities, such as nodes

and saddles, leads to closed form solutions. Additional 2D thin oil film test cases suitable

for testing numerical 2D thin oil film solvers involve axisymmetry and are also treated in

this section. These closed form solutions serve as suitable test cases for the more general

numerical 2D thin oil solvers, both direct and inverse, discussed in following sections. In

this subsection, we develop several of these closed form analytical solutions.

Analytical Solutions for Saddles and Nodes

A linearized form of the flow field about surface streamline singularities in 3D aerody-

namic flows was developed by Perry and Fairlie 2°. In this section, we make use of relations

based on their work to provide appropriate surface shear and wall pressure fields which

may be generated by the flowfield so as to study the response of a thin oil film about

such surface streamline singularity points. Through a suitable coordinate rotation and

stretching 2°, a "canonical" form of the surface singularities may be obtained. Thus, in

this section, although we consider saddles located on a plane of symmetry, the results are

more general. The papers of Perry and Fairlie 2° and of Hung, Sung, and Chen 21 should

be referred to for a more extensive development of the shear field and pressure field in the

vicinity about a singularity or critical point in 3D aerodynamic flows.

Consider the case of a surface streamline singularity, either a saddle or a node, located

on a surface along a plane of symmetry. Figures 2a and 2b show the defining streamlines

about a saddle of attachment and a saddle of separation, respectively. The streamlines

depicted are either constrained to the surface or form in a symmetry plane for the aero-

dynamic flow above the saddle. Note for the saddle of separation, a streamline originates

from the singularity point and departs into the flow upward from the surface. For a saddle

of attachment this streamline will have flow toward the surface. Figures 3a and 3b further

depict the surface streamlines about a saddle of attachment and a saddle of separation,

respectively. Figures 3c and 3d depict the surface streamlines about a node of attachment

and a node of separation, respectively. For convenience, we place the origin of the coordi-

nate system at the location of the surface streamline singularity, (x, z) = (0, 0), with the

plane of symmetry occurring along z = 0. At the surface singularity point, both the x-

and z-component of the wall shear stress go to zero, ((rx, %) = (0, 0) at (x, z) = (0, 0)).

For some region locally about this singularity point, the wall shear stress varies ac-

cording to:

Tx = ax

Tz = bz _o.luj
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The relative valuesof a and b determine the characteristics of the singularity. The

saddles and nodes of separation and attachment may thus be distinguished by the values

of a and b:

a < 0, b < 0, a + b < 0 : node of separation

a < 0, b > 0, a + b < 0 " saddle of separation (3.17)
a < 0, b > 0, a + b > 0 : saddle of attachment

a > 0, b > 0, a + b > 0 : node of attachment

The pressure field on the surface may also be found, following the analysis of Perry

and Fairlie2°:

OP
- (3a+b)/tan0

ox (3.1s)
OP

Oz

where 0 is the departure angle of that limiting streamline which emanates from the singu-

larity point and which departs the surface into the flow above as depicted in figure 2b. As

an aside, equation 3.18 implies that for a given value of OT:_/OX ----a < 0, a lower pressure

gradient will be associated with a saddle of attachment than the pressure gradient associ-

ated with a saddle of separation. This may be of practical importance where a laminar flow

generates a saddle of attachment for a given geometry, while a turbulent flow generates a

saddle of separation for the same flow geometry.

For the two types of saddles and for the node of separation, we have a < 0. The oil

leading edge is applied as a straight edge at, for example, x0 < 0, and the oil flows toward

the saddle point or node. The solution domain for the thin oil film is then x0 < x < 0.

For the node of attachment, flow is away from the node, and we may chose the solution

domain as x <: x0 < 0. For the node of attachment, the leading edge of the oil film can

also be chosen to be at the node point (x0 = 0). Note that the special case of either the

axisymmetric node of separation or of attachment as treated in the previous section differs

in that a -- b and the oil leading edge is applied not as a straight line but at the circle

defined by r -- r0.

We first derive the shape of the surface streamlines, since along any given surface

streamline:

dz 7_ bz

dx "rx ax

If we assume the streamline passes through the arbitrary point, (xs, zs), we may integrate

the above streamline relation to obtain:

12



z (± b/a _)b/-oz--_ = x8 ) = ( (3.19)

Curves demonstrating the above streamline equation for several values of a/b are shown

in figures 3a-3d for the saddles and nodes of attachment and separation.

To proceed toward a closed form solution for the thickness distribution for an oil film

near a surface streamline singularity point, first consider the saddle of separation. The

streamline flow along the surface in the plane of symmetry is toward the saddle, and thus:

a<0, and b>0

Consider that the wall shear stress effects predominate over the pressure gradient and

surface tension effects, except very close to x = 0. To more properly examine the inclusion

of these effects, we will later resort to numerical solvers. With the assumption of negligible

pressure and surface tension, the 2D thin oil film equation takes the form of equation 3.1,

which we repeat here:

Oh O (T_h_1 O__(_-zh_)
0-7 + Ox 2_o + Oz 2_o =0

First, apply the known shear field of _-_ = ax, and Tz = bz, and expand:

Oh 0 (xh2) T 0 h 2 h 2
o---i+ a_ 2uo + _(_.o)+b(7;-2.o )=°

Note that if the oil thickness, h, initially varies at most in x then there is no driving

force for h to subsequently acquire a variation in the z-direction. Thus, Oh/Oz = 0 not

only initially, but for all time. A variation in x must occur due to the leading edge. Thus,

h = h(x, t), which leads to:

Oh 0 xh _ h 2

0--7+ _(V_o ) + b(_,o) = o

Now, applying the self-similarity relation (h(x, t) = H(x)/t) and rearranging (b _ 0

avoids the trivial 1D case):

dH/(#o - (a + b)H/2) = dx/(ax) (3.20)

Excluding the special case where a + b = 0, we integrate from x0, where h = 0, to x:

a@b x ( a 4-b }g=( )[1-(--)xo -2o ], for 0<x<x0 (3.21)

This solution, also see Tanner 4, covers the interesting case of thin oil film response

in the vicinity of the surface singularities known as saddles of separation and saddles of
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attachment and is also valid for the nodeof separation,when suchsingularities are located
on a plane of symmetry. We will in later sections of this paper also obtain numerical
solutions and discussin greater depth.

A nodeof attachment(a + b > 0, a > 0, b > 0) has a different domain of solution and

thus different limits of integration for equation 3.20, resulting in:

H (a2--_+°b)[1 x0 (o_-b,= _ (____)_---_z-_], for 0 < xo < x (3.22)

Oddly, for a node of attachment with the "leading edge" located at Xo = 0, the only

allowable self-similar solution is:

H = 2#o/(a + b), for all x

The behavior of the oil film at the location of the saddle differs considerably for the

two types of saddles:

saddle ofseparation(a+b<0, a<0, b>0): H-+oc, as x-+0

saddle ofattachment(a+b>0, a<0, b>0): H=2#o/(a+b), for x=0

AI_o,

node ofseparation(a+b<0, a<0, b<0): H-+_c, as x-+0

For the special case where a + b -- 0, note that for oil to flow from the oil film leading

edge at x = xo to the singularity at x = 0, we must have a < 0. For this special case,

integration of the ODE above from x0 toward x = 0 yields:

ht=H=(-#o/a) lnxo/x, for x<x0, a<0, and a+b=0 (3.23)

Examination of the form of these solutions, equations 3.21 and 3.23, suggests that a

suitable plot of H vs log10 x should prove useful in determining the ratio of the wall shear

stress slopes b/a and thereby, for example, allow determining whether a saddle is a saddle

of attachment or saddle of separation.

Analytical 2D Thin Oil Film Relations

For somewhat more general 2D thin oil film cases we can establish useful relations.

Consider equation 3.1, where we further assume that Tz is a function of x only. and

"rz = bz + f(x):

Oh 0 . Txh 2 ) c3 h 2 h 2
o-/+ (V;2-.o+ "zOz + b(y;-2.o)=° (3.24)
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Note that h = h(x,t) is a possible solution. If the initial h is only a function of x,

(ho = ho(x)), then initially O(h2)/Oz = 0 and, consequentially, there is no driving force

for h to subsequently acquire a variation in the z-direction. Thus, we may seek solutions

for h where h is only a function of time and x.

Applying the self-similarity relation where h = H/t, noting O/Oz = O. and rearranging:

d (7"zH :_ (bH 2)
-_x "_po )= H- 2#o (3.25)

Integrating from x0, where h -- 0, to x:

S (bH).XH[1 _
T::='H2J zo _ ]

(3.26)
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4. NUMERICAL SOLUTIONS

Numerical procedures are required to solve for the general time-dependent response

of a thin oil film on a surface subjected to an aerodynamic flow. In the previous section,

we discussed special cases where time self-similar solutions of analytical form were pos-

sible. However, the inclusion of initial conditions, pressure gradient, gravity, centrifugal,

or surface tension effects, lead to a time-dependent oil film response which needs not be

self-similar in time. Also, the geometry of the oil film or the aerodynamic flow will not

typically lend itself to a known analytical solution. Fortunately, CFD methods are readily

available for application to the numerical solution of the general thin oil film problem. In

this section, we describe those methods which we have found most suitable.

Two primary numerical approaches were developed in the present studies. The first

approach we refer to as a direct solver, where the oil film thickness, h(x, z, t), is solved for

knowing the aerodynamic wall shear stress and wall pressure, and where gravity, centrifugal

and/or surface tension effects are included. The second approach we refer to as an inverse

solver, where the wall shear stress, -_(x, z), is deduced knowing the response of the oil film

thickness at several times, h(x, z, tl) and h(x, z, t2), and the surface flow direction, "_(x, z),

as well as known wall pressure, and where the gravity, centrifugal and/or surface tension

effects are included. The inverse solver, in particular, provides a rigorous foundation for

the oil film method of experimental measurement of wall shear stress.

The numerical method described is chosen for its simplicity for use with both the

direct and inverse solvers. For the direct solver, the h solution is advanced in time, with

repeated sweeps through the grid. For the inverse solver, the 7 solution is simply marched

once in space through the grid. The dominant physical phenomenon described by the thin

oil film equation is hyperbolic, having a known characteristic direction. The characteristic

direction may be thought of as the direction in which information propagates. Each point

in the thin oil film is only under the immediate influence of its upwind neighboring points.

Thus, the dominant hyperbolic nature of the thin oil film equation allows the direct solver

to advance the solution in time by means of a point-by-point implicit solution. Each point

is advanced in time once those neighbor points which are upwind are advanced in time.

Each time-advance sweep through the grid proceeds from the boundary points inward to

the interior points.

For the direct solver, addition of the surface tension term introduces an elliptic feature,

which allows information to propagate in all directions. However, the influence of the

surface tension effects on a thin oil film will occur over only a quite limited region. The

oil film is thin (typically a few microns) and is assumed to cover an extended region of the

test surface. For surface tension to be significant, the curvature of the film surface must

be significant. For the film to remain thin, this curvature cannot cover a large region. A

variety of elliptic solution methods may be applied to implement the surface tension terms.

Particularly in two directions, implicit methods unnecessarily complicate the solver. Due

to the large time scale associated with the surface tension terms, however, the simplest
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approach is to incorporate the surface tension explicitly and limit the time step. The time

scale for surface tension, (Ata ._ #oL4,,/ah3), is typically quite large (days rather than

seconds), particularly when compared to the time scale required for accurate solution of

the shear stress terms. Thus, explicit treatment of the complete surface tension terms in

an otherwise implicit point-wise direct solver should prove sufficient and quite practical

for most shear-driven applications. An example of a line-implicit treatment of the surface

tension term (for one predominant direction only) is included in the application section.

For the inverse solver, in contrast, the thin oil film equation remains hyperbolic, even

with the inclusion of the surface tension terms, which then are known source terms.

In the following subsections, we first describe the numerical procedures we use for an

interior node of the direct solver. A Box-Implicit numerical method is described. The as-

sociated numerical boundary conditions are then described. An alternative Finite-Volume

Upwind-Implicit numerical method is also presented. In the final subsection, the inverse

solver numerical methods are described.

4.1 DIRECT NUMERICAL SOLUTIONS

To simplify the derivation of the numerical method, we first neglect the pressure

gradient: gravity, centrifugal and surface tension effects and then add these effects later

in the section. Considering only the viscous terms in the oil flow, the partial differential

equation for an interior point of a thin oil film is given by a simplified version of equation
2.2:

0--7 + (Uch) + (Wch) = 0 (4.1a)

7_h

Uc- 2#---'_ (4.1b)

Tzh (4.1c)wc = 2,--:

The above partial differential equation is hyperbolic and at any point considered

the equation represents a specialized form of the continuity equation which depicts the

convection of the conserved variable h (related to the oil mass at a point) at a velocity

Uc in the x-direction and at a velocity Wc in the z-direction. Any numerical method to

be successful for application with this equation should be conservative and time-accurate,

with consideration given to the direction of the convective velocity.

First integrate the partial differential equation at an arbitrary point with respect to

time, between the two times, tl and t2, giving:

(h2 - hi) + Ox _ h2dt) + _z ( h2dt) = 0
1

(4.2)
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Note, the wall shearstresscomponents,_'x(x:z) and Tz(x, z), are assumed to be known

from the aerodynamic flow and are steady in time. We also assume the oil viscosity is

steady in time. We have seen in the prior section on analytical solutions that the oil film

thickness tends to vary inversely with time according to h _ t -1. Because of this inverse

time relation over much of the oil film, greater practical accuracy can be obtained by

evaluating the integral with the numerical quadrature given by:

ft t2 h2dt = hlh2(t2 - tl) (4.3)
1

The above quadrature is exact for h _ t -1 while only formally first-order accurate.

Use of a formally second-order accurate quadrature, such as (hi + h2)2(t2- tl)/4, actually

results in a reduction in time accuracy for many practical cases where the h -_ t -1 time-

similarity is approached. As a consequence of the time-integration, equation 4.2 becomes:

0 7x A" 0 (_ohlh2At) (4.4)( h 2 - hi) + -_x ( _--_o h l h _ t) + -_z

Box-Implicit Direct Solver: Interior Node

We now require spatial-discretization of the oil film into a 2D array of nodes, (i :

1,/max, and j = 1,jmax), with even spacing, Ax and Az in x and z, respectively. Thus,

xi,j = lax and z_,j = jAz. More complex gridding treatments can be accommodated but
are not treated here.

To develop the Box-Implicit numerical procedure, consider the solution molecule

shown in figure 4. It is assumed that we know the solution at the time level tl and

that we desire to advance the solution at node (i, j) to the new time level, t2. We assume

the Convective velocities are Uc > 0 and Wc > 0. Thus, to solve for h2,i,j : h(x_,j, zi,j, t2)

we require the solution at nodes (i - 1,j), (i,j - 1), and (i - 1,j - 1) to have already been

advanced to the new time level, t2. To achieve second-order accurate approximations to

the spatial derivatives, O/Ox and O/Oz, we evaluate at the midpoint of the control volume,

i- 1/2, j- 1/2:

and

O(_-xhlh2/#o)

Ox i-112,j-11_
= [(_'_hlh2/#o)i,j - (7_hlh2/#o)i-lj

+ (Txhlh2/#o)i,j-1 - (7zhlh2/#o)i-l,j-l]/(2Ax)
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O(Tzhlh2/#o)
=[(rzhlh2/#o)_,j - (rzhlh2/#o)id_l

OZ i--1/2,j--112

+ (rzhlh2/#o)i-l,j - (Tzhlh2/#o)i-ld-1]/(2Az)

where Ax = (xi,j -- x,-1,j) and Az = (z,d -- z_j_l). Substituting into equation 4.4 and

gathering terms:

T_ Tz
h2,i,J+ At( hl h2/ tto)i,J(-_T__ + -_z )_,j =

[hl,_,j + (hi - h2),-1,j-1 + (h_ - h_)__l,j + (hi - h2)i,j-1]

+ [(rxhlh2/tto)i-ld-1 + (Txhlh2/#o)i-l,j - (rxhlh2/#o)i,j_l](At/Ax)

+ [(rzhlh2/#o)i-ld-1 + (Tzhlh2/#o)id-1 - (T_hlh2/#o)i-l,j](At/Az)

Now solving for h2,i,j, the oil film thickness at the new time level:

(4.5)

h_,i,j ={[hl,_,j + (hi - h2)_-ld-1 + (hi - h2)i-l,j + (hi - h2)_,j-1]

+ [(ra=hlh2/po)i-l,j-1 + (_'xhlh2/#o)i-l,j - (rxhlh2/I-to)id-1](At/Ax)

+ [(rzhlh2/#o)i-Lj-1 + (Tzhlh2/#o)id-1 - (Tzhlh2/tto)i_l,j](At/Az)} (4"67

Tz
/[1 + At(hl/#o)i,j(-_x +

Equation 4.6 is the 2D Box-Implicit algebraic equation which allows us to numerically

solve the 2D thin oil film equation, equation 4.1, at an interior node. The Box-Implicit

node equation, as derived here, is second-order accurate in space, with "quasi"-higher-order

treatment of the time variation. The equation is conservative of the oil mass. The Box

method is known to be unconditionally stable. The related boundary condition treatment

required to solve a problem is dealt with in the next subsection.

The interior node equation, equation 4.6, clearly can be solved a single node at a time,

with each interior node being solved sequentially.

The form of the Box-Implicit interior node equation, as given by equation 4.6, is

incomplete in that it does not include additional effects, for example_ pressure gradient

effects. If the oil film is sufficiently thin, these additional effects are of minimal significance.

However, a more complete form of the interior node equation is:

h[k] (hi h2)i-Lj-1 (hi h2)i-Lj + (hi h2)i,j-_]+ - + - -

+ [(Tx - Hz)i-_,j-_ + (Tz - gx)i__,j - (T_ - H_)i,j__](At/Az)

+ [(T, - nz)i-lj-, + (rz - H,)i,j-1 - (Tz - H_)i__,j](At/Az)}

/[1 + At( Ax + Az )_'J]

(4.7)
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where

%

H_

IIz

hi0]
2,i,j

k

-Tzhlh2/#o = 7 cos('_)hlh2/#o

=-Tzhlh2/#o = 7sin(7)hlh2/#o

-(OP/Ox - pogx)hah2(h_ + h2)/3#o

-(OP/Oz - pogz)hlh2(hl + h2)/3#o

-  hlluo =  cos( )h /Uo

--Tzhl/#o = vsin('y)hl/#o

-(OP/Ox- pogx)hl(hl + h_k-1])/3#o

---(oP/Oz- pog.)h (h,+ h  -'l)/3uo

=hl,i,j

=1, ..., kmax = node iteration level

(4.8)

To derive equation 4.7, we have made use of the numerical quadrature given by:

ftl hi + h2)hlh2(t2 _ tl) (4.9)h3dt = ( 2

As with equation 4.3, equation 4.9 is first-order accurate in time, but is a quasi-higher-

order time variation treatment since the numerical quadrature is exact for the practical

case of h _ t-1

Due to the presence of h2 in the Hx and Hz terms, iteration at each node (k = 1, kmax)

is required to advance the solution to the new time level. Also, the (i, j, etc.) subscripts

are absorbed inside the parentheses as required to allow evaluation of each term of equation

4.7 at the proper locations.

An important property of the interior node equation (either equation 4.6 or 4.7)

is that the 1D self-similar problem solution for constant _- (eq. 3.8, hT-t = #oX) exactly

satisfies either of these algebraic relations. This property of consistency of the interior node

algebraic equations with the 1D self-similar problem considerably enhances the accuracy

of the solution method for most practical problems encountered.
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Surface Tension Terms

Equation 4.7, as shown, does not include surface tension effects, and, thus, the hyper-

bolic nature of the partial differential equation is exploited by requiring only a node-by-

node solution procedure. The inclusion of surface tension incorporates an elliptic feature

and the solution molecule at node (i,j) should then include, for the additional surface

tension terms, information from the nodes between (i - 2, j) and (i + 2, j) and between

(i,j- 2) and (i,j + 2).

The simplest surface tension thin oil film approach is to recognize that the time scale

which characterizes surface tension is typically much greater than the time scale which

characterizes a thin oil film acting under shear stress. Thus, the surface tension adjustment

to the wall pressure at each node will be essentially constant during the integration time

step, At. A sufficient treatment of surface tension for most thin oil film calculations would

be an explicit approach where the adjustment to pressure is made at the known time level,

tl, prior to each time step:

P= Pair + Pa, where Pa - -a[(hl)xx + (hl)zz] (4.10)

An example of an implicit elliptical surface tension treatment is given in the applica-

tion section for problems where surface tension acts only in the x direction. However, we

normally would take the above rather simplistic explicit approach due to the predominance

of the viscous terms over surface tension for the thin films which we likely will have an

interest in solving. This is done in order to maintain the simple to code node-by-node

solution procedure.
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Numerical Boundary Conditions

The solution at the interior nodes must be started with an initial condition, where an

initial value of oil film thickness h(x, z, to) is assigned, and then the solution is advanced to

the next time level starting at boundary nodes. Thus, numerical treatments of the initial

and boundary conditions are required. The types of boundary conditions required include

a leading edge case, a corner leading edge case, a plane of symmetry case, a general surface

streamline case and a boundary wall (no-flow) case. An important consideration for 2D

oil film problems is that the boundary condition treatment will depend on whether the

characteristics point into or out of the oil film domain at any particular location on the

boundary.

Leading Edge Boundary Condition

The leading edge of an oil film is the contact line separating the region of the test

surface covered by the oil film from the region of the test surface exposed directly to the

aerodynamic flow. The wall shear stress at the leading edge will cause oil to flow from the

leading edge into the region covered by the oil. A leading edge may be used as a boundary

condition since the oil film height at the leading edge is known (h = 0), and the direction of

the wall shear stress, T_ and Tz, suggests that the convective velocities, Uc and We, within

the oil film immediately adjacent to the leading edge allow solution at the interior nodes.

In contrast, at a trailing edge, the wall shear stress will have a direction pointing out of

the oil film region. The advancement of the oil film trailing edge over a fresh surface can

be a difficult subject, involving finger instabilities, and is not treated in this present work.

Therefore, the trailing edge is not a suitable boundary condition for a thin oil film solver.

Over an extended period of time for which air flow occurs past a thin oil film, the

leading edge of the thin oil film will eventually move in the direction of the aerodynamic

flow, uncovering the test surface. However, here we consider the use of oil films in aerody-

namics testing, and for moderate run times the oil film leading edge may be considered to

be stationary.

Further, a complete consideration of the fluid mechanics occurring at the leading

edge of a thin oil film will include surface tension effects. At the leading edge, a contact

line occurs which is defined by the juncture of the solid-air, solid-oil, oil-air interfaces as

depicted in figure 5. Discussion of surface tension effects at the leading edge will be deferred

to the applications section (Section 5). However, the amount of oil mass present in the

control volume associated with the boundary nodes is quite small and for many practical

cases, the simplified treatment of the leading edge presented here proves sufficient.

The simplest leading edge treatment is to align the grid so that either the i = 0 or

j =- 0 boundary nodes line up precisely along the actual oil film leading edge. The oil film

thickness for these boundary nodes is then simply held at h = 0, and the solution actually
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starts at the next row of interior nodes, i -- 1 or j --- 1, using a variant of the interior node

equation 4.6:

9 Tz
h2,1,j =[hl,l,j + (hi - h2)l,j-1 + (hlh2At/l_o)l,j-l('_ Az

2r_/[1 + (hlAt/#o)l,j(-7= + _-w-)l,j], j = 2,..,jmax
£-%x o/._z -

(4.11)

Equation 4.11 is the boundary condition equation for the i -- 1 row of interior node

points for a leading edge at i -- 0. Derivation of equation 4.11 is based on a control

volume analysis which makes use of the mass flux in the z-direction integrated over the

face between (l, j) and (0,j):

_tl _ ]0 Ax 7"zhl h2/#odxdt = (Tzhl h2/#o) 1,j AtAx/3 (4.12)

f

Note that at the leading edge the oil film thickness varies as h _ x/t between nodes

at i = 0 and i = 1. A similar node equation is easily derived for the case of a leading edge
atj =0.

The intersection of two leading edges, with the i = 0 row of boundary node points

forming one leading edge and the j = 0 row of boundary node points forming the other

leading edge, creates the natural place, (i = 1,j = 1), to start the process of solving for

interior nodes. Again, a control volume analysis for this corner node with h0,1 = hi,0 =

h0,0 = 0, and assuming a linear variation of oil film thickness toward the node at (1, 1)

leads to the corner leading edge node equation:

= + x + (4.13)

Plane of Symmetry Boundary Condition

A plane of symmetry for the aerodynamic flow may serve as a boundary condition

for the thin oil film equation. Consideration of the plane of symmetry (aligned with the

x-axis) leads to the following relations:

a. Oh/Oz = 0, but h _ 0.

b. 3" = 0. but 03"/0z _ 0, which implies rz = 0, but C%-z/OZ _ O.

c. Pogz = 0, but Opogz/Oz _ O.

d. OP/Oz = 0, but P _ 0, and 02P/Oz 2 _ O.

The surface streamline angle, tan(3,) = T_/7"_, may be derived from the known shear field.

We assume the row of boundary nodes, (i = 1,/max, and j = 0), is aligned along

the line of symmetry formed in the thin oil film. The numerical form of the symmetry

boundary conditions is based on equation A.3, repeated here as:
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Oh OTh2/2#o 0",/
+ ox + (Th2/2.o)-5-; = 00---[

Evaluating at (i - 1/2, 0) using the same numerical techniques leading to the interior

node equation 4.6 results in:

1

h_,i,o =[h:,i,o + (h: - h2)i-:,o + At(Txh:h2/,o)i-:,o( Ax

1 0_,..
/[1 + At('r_h:/,o)i,o( 2--_--"_ + _z)_,o]

(4.14)

Equation 4.14 applies in the absence of pressure and/or gravitational effects. For the

more general case where pressure and/or gravitational effects are included, we start with

the complete form of the plane of symmetry equation:

Oh 0 7_h 2) .Txh2) O'_ 0 OP h 3 h a (02P--or+ _( 2.0 + (-5--_.oOz _[(5-; - P°g_)-i-_.o] - (-2-_.o)
Opog,,) = 0 (4.15)

Oz

An equation similar to the interior node equation 4.7, but for the boundary nodes

located on the plane of symmetry can now be derived from equation 4.15:

where

h[a] =[h:,,,o + (h: - h2)i-:,o + At(T_? _"2,i,0

- _ fi[k] 1 _. C9_,
/[1 + At(T_Ax + 2 _zz + fi_]),,o]

2T:_o____10"), _ IIn)i-:,o]

%

IIn

h[O]
2,i,j

k

-Txh:h2/.o = v cos('y)h:h2/.o

=(OP/Ox- pogz)[h:h2(h: + h2)/3.o]

==.(02P/Oz 2 - Opogz/Oz)[h:h2(h: + h2)/6.o]

-r_h:/.o = r cos('y)h:/#o

=(OP/Ox- pogx)[h:(h: + @-'1)/3.o]

=(02P/Oz 2- Opogz/Oz)[h:(h: + h_k-:])/6.o]

=hi ,i,j

=1, ..., kmax = node iteration level

(4.16)

(4.17)
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The Opogz/OZ term may appear if the plane of symmetry of the body cuts vertically

through the body. The addition of the pressure and gravity terms requires an iteration

at each node as was done for the interior node equation 4.7. Further, as with the interior

node equation 4.7, if surface tension terms are to be included, we adjust the pressure using

equation 4.10 in a global iteration scheme.

Wall or No-Flow Boundary Condition

A wall boundary condition may be used if the thin oil film is bounded on one side by

a solid wall. The development is similar to the plane of symmetry boundary condition in

that there is no oil flow through the boundary. Indeed, in the absence of pressure gradient

or gravity effects, the plane of symmetry equations, equations A.3 and 4.14, may be used

for a solid wall boundary.

If the effects of pressure gradients, gravity, and/or surface tension are to be included,

however, the OP/Oz and Oh/Oz gradients need not be zero for the wall boundary conditions.

As a consequence, a preferable form of the applicable governing differential equation for

the thin oil film along a wall boundary is:

Oh 0 (rxh 2. (r_h 2 0_
o--i+ ) + )2#0 Oz

h 3 (02p

0 .(cOP h 3
cOxt -

Opogz ( COPcoz )- -5-;z- p°gz)
h 2 Oh

-0
#o cOz

(4.18)

The following numerical quadrature should prove useful in deriving the wall boundary

node equation:

= cOz + "_z (t2 - tl) (4.19)

Since the wall boundary condition has not been tested in this present study, we defer

in presenting the form of the wall node equation which includes the pressure gradient
effects.

Other potentially useful boundary conditions include a plane of symmetry intersecting

a solid wall, a solid wall intersecting another solid wall, and a general surface streamline.

The general surface streamline boundary condition can be derived for the situation where

the oil streamline is known and the boundary is chosen so as to align with the known

surface streamline. The plane of symmetry boundary condition is a special case of the

general surface streamline boundary condition. The general surface streamline boundary

condition should prove most useful for a mapped grid and is based on equation A.3.
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Finite-Volume Upwind-Implicit Direct Solver: Interior Node

An alternate approach to the finite-difference Box-Implicit numerical method is the

Finite-Volume Upwind-Implicit numerical method. Here, we briefly develop only the in-

terior node equation for a 1D thin oil film case, with Uc > 0. The extension to 2D and

a change in sign of Uc is not considered here. Further, the pressure gradient, gravity,

centrifugal and surface tension terms are not included, since these terms may be treated

in a manner similar to that employed for the Box-Implicit numerical method.

Figure 6 shows a 1D interior node computational molecule for the Finite-Volume

Upwind-Implicit method. For the Finite-Volume method, hi represents the "average" oil
film thickness within the node volume which lies between xi and xi+l. When needed, we

may use the approximation that the height hi is located at the midpoint of the node, (xi +

xi+1)/2. In contrast, for the finite-difference method, hi represents the oil film thickness

at xi and the average oil film thickness between xi-1 and x_ is given by (hi + hi-l)�2.

A mass balance during the time interval between tl and t2 for the control volume

defined between xi and xi+l is:

( Amcv)i + ( Fi+l/2dt - Fi_l/2dt) -- 0

where ftt_ Fidt = (poT-xhlh2At/2#o)i. Observe that the mass flux, Fi, is evaluated at the

cell volume midpoint, xi+l/2 -- (xi + xi+l)/2. Thus, the value for (7x)_ is actually the

value for the wall shear stress at xi+w2.

We do not directly know the mass flux at the control faces (i.e., Fi+l/2), but rather

we know the state of the fluid at the midpoint of the control volume (i.e., hi and Fi).

The mass flux at the control volume face is obtained by a second-order upwind biased

extrapolation.

F_+1/2 = (3F_ - Fi-1)/2 (4.20)

A first-order flux limit relation is substituted to eliminate overshoots and oscillations

where OF�cOx changes sign:

Fi+l/2 = Fi, if (Fi - Fi-1)(Fi-1 - Fi-2) < 0 (4.21)

For most nodes the flux limiter is not applied and the mass balance for node i becomes,

with rearrangement:

(h2 - hl)iAx + -_[3( rxhlh2 )i _ 4(7xhlh2 )__l + (r_hlh2 )__2] = 0 (4.22)
#o #o #o
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Rearranging,weobtain the 1D Finite-Volume Upwind-Implicit interior nodeequation
(without Flux Limiter):

At (rzhlh2 At (7xhlh2)i_2]/[ 1 + 3At _o _(h2), = [(hi), + _xx "_--o )i-1 4Ax #o 4--_x ( ),] (4.23)

For comparison purposes, the 1D Box-Implicit interior node equation (eq. 4.6) is:

At _rxh_ h2 At ( 7"_h_ _ .1
(h2)i = [(hl)i + (hi - h_),__ + _xx( 2-fiPo ),-1]/[1 + Ax' 2#0 "J

Numerical boundary conditions are developed similar to the Box-Implicit method, but

the boundaries occur at the node faces, rather than where the node value for h is known.

For example, for a leading edge at x = Xo, hi=o _ 0 since (xl - xo)h,=o represents the

oil volume contained in the control volume associated with the i = 0 node. Rather, the

leading edge condition implies that F_I/_ - 0 for the control volume face located at x0.

Since, in the absence of surface tension, the partial differential equation is hyperbolic,

the ith node depends on only those nodes upwind (e.g., i - 1, etc., for Uc > 0) and the

nodes may be solved sequentially. Also, notice that the Finite-Volume Upwind-Implicit

method is mass conservative due to the consistent mass flux treatment at each face. The

method is second-order accurate in space, with a quasi-higher-order time variation treat-

ment. Further, the node equation 4.23 is consistent with the 1D time self-similar solution

for the case of constant Tz.

A favorable comparison of results from the Finite-Volume Upwind-Implicit method

with results from the finite-difference Box-Implicit method will be made in the application

section (Section 5) for a 1D test problem.

4.2 INVERSE NUMERICAL SOLUTIONS

Numerical techniques for the inverse solution of the 2D thin oil film partial differential

equation provide the basis for the experimental determination of the wall shear stress

distribution generated on a 2D surface by a 3D flow. Because the inverse method described

here is closely related to and derived from the Box-Implicit direct method described above,

a brief derivation is provided of the interior node equation and boundary conditions. In

the subsections below, we describe both a Two-Time-Level Box-Implicit inverse method

and a One-Time-Level Box-Implicit method. The Two-Time-Level method is useful for

experiments where sufficient optical access is available to view the test surface during the

experiment, while the One-Time-Level method is suited to those experiments where an

image of the oil film is acquired after the experimental wind tunnel run.
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Two-Time-Level Box-Implicit Inverse Method

To apply the numerical technique described here, the oil film thickness at two dis-

tinct times, h(x, z, tl) and h(x, z, t2), over the entire test surface region of interest is as-

sumed to be known from, for example, optical measurements 1-4's'9-n. Also required are

measurements 9-11 of the surface streamline direction, _(x, z), over the same region. The

aerodynamic flow over the surface is assumed to be steady between these two times. When

pressure gradient effects are important, it is necessary to know the wall pressures during

the same time interval, but the inclusion of pressure gradient, gravity or surface tension

effects does not alter the solution strategy.

In the context of understanding the solution of the 2D thin oil film equation for the

wall shear stress, -4_, equation 2.2 may be rewritten as:

0 Txh 2 0 Tz h2
+ + S = 0 (4.24)

Ox 2#0 Oz 2#0

Where S is a source term absorbing all those terms of equation 2.2 which do not

contain the wall shear stress, r.

Next, apply a coordinate rotation as given in Appendix A (see eq. A.3) to equation

4.24 by the angle _/from the (x, z) coordinate system to the (s, _) coordinate system aligned

locally with the wall shear stress:

___ Th 2 0_/cO 7h 2 +----+_=0 (4.25)
Os 2#0 2#00_

By examining equation 4.25, notice that we now have a first-order differential equation

for 7 that can be solved along the s-direction which lies aligned with the characteristic

direction, _. The form of equation 4.25 emphasizes the hyperbolic nature of the thin

oil film equation when solving for _-, and that the characteristic direction for the inverse

solver is given locally by % regardless of the nature of the source terms (including possible

pressure gradient, gravity or surface tension effects). In contrast, when equation 2.2 is

solved in the direct mode for h, inclusion of the pressure gradient and gravity terms can

significantly affect the characteristic direction (Uc, We). Further, if surface tension terms

are included when solving in the direct mode for h, the nature of the equation changes

from hyperbolic to elliptic. The consistent hyperbolic (upwind) nature of the thin oil film

equation when solving for _- enables the inverse solver to incorporate the pressure gradient,

gravity and surface tension effects in a more straightforward manner (without iteration)

than the direct solver.

Although a possible solution strategy would be to solve equation 4.25 along identifiable

surface streamlines, the approach here is to solve equation 2.2 on a 2D grid in a manner

related to the direct solver described earlier. Such an approach is easier to implement for

the general experimental case. A particular advantage to the chosen approach is that the
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difficulty alluded to in Appendix A of finding the s-n coordinate system is thereby avoided.

Knowledge of % the surface streamline direction, allows us to define the proper domain of

influence, and, thus, which grid points are required to be included in the solution molecule.

The same solution molecule used to describe the interior node for the direct solver

is also used to describe the inverse solver (see fig. 4). The domain of influence shown in

figure 4 assumes 0 < "_ < 7r/2. A rectangular 2D grid is assumed, with even spacing of Ax

and Az. Such a 2D array of grid points might, for example, correspond to the 2D pixel

arrangement for experimental data obtained from a series of digital camera images of a
thin oil film on the test surface.

The control volume analysis which leads to the Box-Implicit direct solver interior

node equation still applies for the Box-Implicit inverse solver. Thus, the interior node

equation which forms the basis of the 2D inverse thin oil film solver is a straightforward

rearrangement of the interior node equation for the Box-Implicit direct solver, equation

4.6:

(_-)_d ={[(hi - h2)i,j + (hi - h2)i-l,j-1 -t- (hi - h_)_-15 + (hi - h2)i,j_l]/At

+ [(rxhlh2/#o)_-l,j-1 + (T_hlh2/#o)i-ld - (rxhlh2/#o)i,j-1]/Az

+ [(rzhlh2/#o)i-l,j-_ + (rzhlh2/#o)_,j-1 - (rzhlh2/#o)i_ld]/Az}

( cos 7 sin 7
/[(hlh2/#o)i,j Az + --_-z )i'j]

(4.26)

Although the size of the time step between the two images, (t2 - tl), may influence

the accuracy of a solution, the stability of the inverse solver, which marches in space, is

not dependent on the time step size.

A more complete form of equation 4.26 may be derived by rearrangement of equation

4.7 (rather than eq. 4.6) so as to include the pressure gradient, gravity and/or surface

tension effects. The inverse solver, even with the inclusion of these terms, does not require

either global or node iteration, unlike the direct solver.

Boundary conditions for the inverse solver may be derived from related boundary con-

ditions for the direct solver, generally by rearrangement. For a leading edge, the boundary

condition for the inverse solver is analogous to equation 4.11:

7z
rl,j =[(hi - h2)l,j + (hi - h2)_d-1 + (hlh2At/tto)l,j-l( 3 Az

/[(hlh2At/#o),,j(cos'y, 2sin_+ ---7---)1,j], J = 2,...jmax
Ax 3 _z - •

Ax
(4.27)

For a plane of symmetry, the boundary condition for the inverse solver is analogous

to equation 4.14:
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1
ri,o =[(hi - h2)i,o + (hi - h2)_-1,o + (7hlh2At/#o)i-l,o( Ax

1 O'y -
/[(hlh2At/#o)i,o( _-_ + _zz)i,0]

(4.28)

The inverse solver then solves on a node-by-node basis, starting with the boundary

nodes and then proceeding to each of the interior nodes as the information for each neigh-

boring upwind node becomes complete. For example, provided 0 < "_ < 7r/2, the nodes

would be swept according to the following simple row-column strategy:

a. For i = 1, and j = 0, advance the plane of symmetry/leading edge boundary node.

b. For i = 1, and j = 1,jmax, advance each node in the leading edge boundary.

c. For j = 0, and i = 2,/max, advance each node in the plane of symmetry boundary.

d. For an outer loop of i = 2,/max, and an inner loop ofj = 1,jmax, advance each of the

interior nodes.

The rectangular 2D grid array described above is a somewhat limiting feature of

the present treatment of thin oil films. A more general grid mapping transformation of

irregularly spaced nodes located at (xi,j, zi,j) to evenly spaced coordinate system (_i,j, rl_,j)

may be accomplished, but is not treated here.

One-Time-Level Box-Implicit Inverse Method

Optical access to the test surface may be limited during an actual wind tunnel run.

Thus, some researchers prefer to acquire a single image of the oil film taken immediately

at the finish of the wind tunnel run. In this subsection, we derive an inversion method

suitable for analyzing such a One-Time-Level 2D oil film thickness distribution.

The wind tunnel is assumed to have run sufficiently long and the oil film is thin enough

that pressure gradient, gravity and surface tension effects are negligible. Further assume

the oil film distribution has achieved time self-similarity, where h(x,z,t) = H(x,z)/t.

Thus, we start our derivation with equation 3.3, rewritten here as:

cO (TzH 2 ) 0 (rzH 2)+ -H=O
2Uo 7z 2Uo

Wind tunnels seldom start immediately at the desired run conditions. Presumably,

the oil film is applied before the wind tunnel starts. Some initial time must occur to

establish the desired run condition, the tunnel then is held at the desired run conditions

for a period of time, and then the tunnel takes a small amount of time to shut down.

During the entire time of the oil flow, the wall shear stress varies, as does the dynamic

head, q_. Following the suggestion of Monson, Mateer: and Menter 7's, it seems best to

consider that C I - 7-/q_ is likely to vary less during the time of the oil flow than will 7.
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We, therefore, rewrite the 2D self-similar equation aboveas:

fts q_ (t) dt0 (Cfzh2) _ 2hi = 0 (4.29)(Ci h2) + Jts ,o(t)

where C! -- T/qno_, Clx - Cf cos _, CIz _ C I sin % and qnom is the nominal or desired

wind tunnel dynamic head. The measured wind tunnel dynamic head during the wind

tunnel run varies and is given by q_(t). Additionally, the oil viscosity is temperature

sensitive and may vary during the wind tunnel run, which requires that the oil viscosity

variation with wind tunnel time be determined, #o(t). This can be done by measuring the

test surface temperature and then using a temperature calibration for the oil.

The derivation of equation 4.29 from equation 3.3 is not strictly rigorous in that we

integrate equation 3.3 over the time interval from ts to t f, and approximate the integral:

qoz(t)H2/#o(t)dt H 2 ts._ q_(t)/#o(t)dt

The difficulty with this is that the oil will not initially have been time self-similar, and

H = hit will actually vary with time. For the purposes of this single time level scheme,

however, we consider this error source acceptable. The success of the overall method will

be considered in the applications section.

A One-Time-Level Box-Implicit numerical inverse equation form of equation 4.29 suit-

able for interior nodes may be derived in a manner similar to equation 4.26 which solves

the interior node for the Two-Time-Level numerical inverse scheme. The One-Time-Level

interior node equation is:

(Cl)i,j ={[hi,j + hi-l,j-1 + hi,j-1 + hi-lj]_

+ [(Cfh 2 cos_)i-l,j_l + (Cfh 2 cos_),_lj - (Clh 2 cos'_)i,j_l]/Ax

+ [(Clh 2 sin_')i-l,j_l + (Clh 2 sin_')i,j_l - (Clh 2 sin_/)i_l,j]/Az}

/[hi2,j ( cos _ sin _/Ax + -h-i-z

(4.30)

where _ - 1/f:/q_(t)/#o(t)dt. Further, because the oil film distribution for only one

time level is used, the time level subscript on h is dropped.

Leading edge and plane of symmetry numerical boundary conditions for the One-

Time-Level Box-Implicit method may be derived in a manner similar to that of equations
4.27 and 4.28.
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5. APPLICATIONS

An understanding of the behavior of thin viscous oil films can be achieved through

the study of selected 1D and 2D model problems. Selection of these model problems

is made so as to emphasize those physical, mathematical and numerical features which

might arise in considering the use of the methods described in this paper. The relative

influence of wall shear stress, wall pressure, gravity, centrifugal and surface tension effects

can be determined. Comparison between numerical solutions_ both direct and inverse, for

those 1D and 2D thin oil films for which closed form solutions can be found will reveal

the suitability of the numerical methods for more general problems. The accuracy of

approximate solution methods used by others in the analysis of experimental data can

be assessed. Demonstration of the rigor, accuracy, and ease-of-use of the mathematical

treatment of these thin oil films, as described here, tends to reinforce confidence in the

continued development and expanding use of thin oil films in the important measurement

of wall shear stress. The utility of the direct and inverse solvers for practical applications

should become apparent from results of those cases presented.

Variable Wall Shear, 1D Case

The first problem considered is a simple 1D model problem where wall shear stress

varies linearly. For this problem, we assume the pressure gradient is either zero or negligi-

ble. Gravity and surface tension effects are also ignored. The solution is known from the

1D analytical relations and we may evaluate the accuracy of both the Box-Implicit direct

and inverse solvers for this case, as well as alternate solution methods which have been

used in other studies for analyzing experimental data.

Assume the wall shear stress varies as T(N/m 2) = a + bx = 20 + 100x, where x is

in meters, with the leading edge of the thin oil film at x = 0 and the film extending to

x = 0.1 meter. Assume the oil film has a kinematic viscosity of Vo = 100 centiStokes, with

a density of Po = 1000 Kg/m 3. These properties are similar but not identical to commonly

used silicone oil. For the numerical solutions, assume an initial oil film thickness at t = 0

of h0 -- 10 microns and a time step of dt = 0.1 second.

A closed form time self-similar solution can be obtained for this case using equation

3.7, the analytical relation for a 1D thin oil film:

H = ht = (#o/T) 1/2 (#o/7)l/_dx = 2 (1 - (1 +
0

Figure 7a shows the oil film thickness at several times (t = 0, 20, 40, 60_ 80 and

100 seconds) from the analytical solution above, and from the 1D version of the Box-

Implicit direct solver. An evenly spaced grid of 100 points is used for the numerical solver.

The analytical solution assumes an infinite initial film thickness. Some of the observed
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differencesbetween the analytical and numerical solutions are due to this differing initial
condition. However, very good agreement (< 1%) between the analytical and numerical
solutions can be seento occur for those regionsand times where the oil film has reduced
in thickness to 3/4 or lessthan the initial thickness. We consider that the decreasein
differencesbetween the numerical solution and the analytical solution appear to be more
closelyassociatedwith the decreasein the oil film thicknessrelative to the initial thickness
rather than with the increasein time. Clearly, however, the numerical solution approaches

the analytical time self-similar solution as the oil film thins.

Another observation from figure 7a is that for "small" times a corner exists in the

oil film thickness distribution (e.g., x _ 0.04m for t = 20 seconds). For larger times,

the corner has convected out of the solution domain. Note that by integration, for the

dh/dx -- 0 region with v = a + bx, of the 1D form of equation 3.1 for the time variation of

h, we obtain:

h = h0/(1 + hobt/2#) (5.2)

A piecewise analytical solution can thus be formed for this problem with the smaller h

from equation 5.1 or 5.2 being selected. The observed corner occurs where equations 5.1

and 5.2 intersect, xc = (a/b)[(1 + hobt/2#) 2 - 1].

For the Box-Implicit direct solver, an oscillation in the solution appears to originate

from this corner. This oscillation is numerical rather than physical. To solve this numerical

oscillation, a "Flux-Limit" concept is adapted to the Box-Implicit algorithm. For this

Flux-Limit concept to be applied, a first-order (rather than second-order) form of the

Box-Implicit algorithm is used for those nodes where the slope of the oil film thickness

changes sign. The solution from the Box-Implicit Flux-Limit algorithm is shown in figure

7b. Examination of the solution in figure 7b at, for example, t = 20 seconds shows that the

oil film slope changes sign at only two locations, meaning the first-order treatment at these

two nodes is sufficient to eliminate the corner oscillation. Clearly, the corner oscillation is

eliminated with excellent agreement otherwise.

Figure 7c shows the solution from the Finite-Volume Upwind-Implicit direct solver

algorithm. Although the solution appears to be somewhat better behaved than the Box-

Implicit direct solver, a corner oscillation still appears. A Flux-Limit form of the Finite-

Volume Upwind-Implicit algorithm eliminates this oscillation as is evident in the solution

given in figure 7d.

An adaptation of the MacCormack 22 explicit algorithm to the thin oil film problem

leads to the solution given in figure 7e. The explicit algorithm is stable since the effective

stability index (CFL- UcAt/Ax ._ ThAt/2#oAX) for this problem is less than 1. No corner

oscillations occur, although slight differences (< 2%)in the oil film thickness distribution

for t = 20 and t = 40 seconds compared to the other numerical solutions are observed.

A further test of the numerical methods is to consider the accuracy of the inverse

solver. To accomplish this. we use the analytical oil film thickness for two times, t = 80
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and t = 100 seconds, as the known input to the inverse or T numerical solver. The

7 vs x solution from the inverse solver can then be compared with the original known

_- = 20 + 100x distribution. Figure 8a shows a r vs x distribution from the Box-Implicit

inverse solver. The comparison with the known result is excellent, within 1%. A further

test is. to use the oil film thickness distribution from the Box-Implicit direct solver as the

input to the Box-Implicit inverse solver as shown in figure 8b. Clearly demonstrated is the

accuracy of these methods for both direct and inverse solutions for this test case.

Shown in figure 8c is the T VS X distributions derived by means of the One-Time-Level

Box-Implicit inverse algorithm from the Box-Implicit Flux-Limit direct solver's oil film

thickness at times t = 40 and t = 100 seconds. Agreement within 1% occurs except for

where the corner region of the t = 40 second Box-Implicit oil film thickness distribution has

not yet convected out of the region of interest. The One-Time-Level Box-Implicit inverse

algorithm requires the input oil film distribution to have become fully time self-similar

(H(x) =- h(x, t)t =constant), which has not occurred as yet for the t = 40 second numerical

oil film distributions. A reasonable estimate for the time at which an oil film becomes fully

time self-similar is given by ts ._ L/Uc ._ L#/Tho. For this problem, L = 0.1 meter,

h0 = 10 microns and ts _ 50 seconds. When the input oil film thickness distribution has

evolved to the point where it is time self-similar, the One-Time-Level Box-Implicit inverse

algorithm yields quite accurate results.

An alternate method of solving for 7- vs x that appears in the oil film literature is

based on the ad hoc assumption that the local wall shear stress is inversely related to the

local slope of the oil film height (only one time level is used):

Figure 8d presents the result of application of this local slope method to determine the

7- vs x distribution from the analytical oil film thickness at t = 100 seconds. Comparison

with the known r = 20 + 100x distribution reveals obviously large errors (> 50% of the

rise in T) which result from the use of equation 5.3. These errors can be shown to arise

where dT-/dx _ O. In particular, by rearrangement of equation 3.5:

(#o / dh ( ht )dT (5.4)7-=[T )

The error in equation 5.3 is given by the (ht/2#o)dT-/dx term. The increase in 7- of

10N/m 2 over the region of the oil flow from x = 0 to x = 0.1m leads to an error of 6N/m 2

or 60% for this algorithm. It is strongly recommended that the relation of equation 5.3 not

be used except for regions very close to the leading edge of the oil film (as was correctly

done by Monson, Mateer, and Menter7'8). Where the oil film is time self-similar and a

single image is available, the One-Time-Level Box-Implicit inverse algorithm described

earlier is recommended instead due to its ease-of-use and high accuracy.
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Constant Wall Shear, Increasing then Decreasing Film Thickness, 1D Case

A feature related to the nonlinearity of the thin oil film equation is explored with

the next problem. The study of the behavior and solution of nonlinear partial differential

equations (PDEs) invariably leads to Burgers' equation. A point to be made is that, where

v and #o are held constant, the simplest form of the 1D thin oil film equation is identical

to the inviscid form of the Burgers equation. Much of what has been learned from the

study of Burgers' equation about the behavior and solution of nonlinear PDEs directly

applies to the present thin oil film work. In turn, we realize that the study of the thin oil

film provides a quite practical and possibly interesting physical manifestation of Burgers'

equation. A certain irony exists in the realization that each oil flow study performed by

an experimentalist is also actually a Burgers' equation experiment.

One CFD problem area studied using Burgers' equation is the inviscid 1D (or normal)

shock. The present problem examines this shock-like behavior that can arise from the

nonlinear term, even for a thin oil film.

The 1D form of the thin oil film equation is given by:

Oh Orh2/2#o

0-7 + Ox - 0

An advantage of the thin oil film form is that we may form model problems where 7

varies and even changes sign, allowing us to examine a greater range of fluid physics. Such

a model problem is examined in the next subsection. For the particular model problem

under consideration, however, we assume that T = 25 N/m 2, p = 1000Kg/m 3, v = 100

centiStokes (e.g., v = 100-10 -6 m2/sec) and # = pv = 0.1Kg/m-sec and that these remain

constant.

First note that oil thickness, h, is being convected in the mean at a velocity, Uc =

7-h/2#, which leads to the nonlinear h 2 term in the PDE. The characteristic wave velocity,

found by expanding the O/Ox term, is given by U,_ = 7"h/#, which is also equal to the oil

velocity at the air/oil film interface at y = h.

Further assume for this current problem that the initial (to = 0) oil film thickness

increases linearly with x, followed by region of constant thickness, then decreases linearly

with x followed by another region of constant thickness according to:

h(to = O) =10-5x/0.04, for x < xa = 0.04m

h(to = 0) =h0 = 10-sin, for xa = 0.04m < x < Xb = 0.05m

h(to = O) =10-5(3.5 - x/0.02), for X b = 0.05m < x < xc = 0.068m

h(to = O) =hl =- lO-6m, forx>xc=0.068m

Figure 9a shows this initial (to = 0) oil film thickness distribution, as well as subse-

quent development of the oil film for times of t =4, 8, 12, 16 and 20 seconds. The corners
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initially at xa = 0.04m, Xb = 0.05m and xc -= 0.068m are also identified in figure 9a to aid

in describing the subsequent oil film development.

By means of characteristic and mass-conservation based arguments, the development

of the oil film thickness distribution with time can be established. Such piecewise analytical

solutions of the oil film provide a basis for comparison with numerical solutions, as well as

provide revealing insight into the shock-like behavior exhibited.

Consider the region between xo -- 0 and xa, where the oil film thickness increases

linearly with x. Note that the convective velocity also increases linearly in x and the film

tends to spread, leading to a decrease in the slope of the oil film thickness. Because the

region between x -- 0 and xa is linear with constant r and tto, we know the 1D time

self-similar solution applies, where vh(t - 16) = #ox. Rearranging slightly, we find the

slope for this region is Ah/Ax = #o//T(t -- 16). The corner at Xa, where the linear region

intersects the h ---- h0 plateau, thus moves to the right at a constant wave velocity such

that:

xa(t)- xa(to) ho/(Ah/Ax) = (7ho/Po)(t- to)

The wave velocity of the corner at Xa is Tho//#o ---- 2.5mm/sec. Similarly, the corner

at Xb is an artifact that moves at the constant wave velocity, 7hO/#o = 2.5mm/sec. Also,

the corner at xc moves at the constant wave velocity, 7"hl/#o -_ 0.25mm/sec.

The plateau between x_ and Xb will retain constant oil film thickness since Oh/Ot --

-('rh/#)Oh/Ox - O, with corners at xa(t) and Xb(t) which appear to translate to the right

at a constant wave velocity of "rho/#.

In contrast, between Xb and xc, the oil film thickness decreases linearly with x. Thus,

the wave velocity, rh/#o, also decreases in x. The corner at Xb tends to catch up with

the slower moving corner at xc and the oil film thickness slope becomes steeper, until

a discrete jump of h0 - hi occurs with xb(t) = xc(t). The discrete jump forms when

Xb(t ) = xc(t ) ---- 0.07m at t=8 seconds.
Piecewise solutions for the oil film thickness at t = 4 and t = 8 seconds based on the

above arguments are given in figure 9a.

For times past t = 8 seconds, the discrete jump moves with a wave velocity associated

with the average height of the jump, 7(ho + hl)/2#o = 1.375mm/sec. This wave velocity

can be determined by considering a small control volume of length, Ax, with the jump

just entering. The jump is from a plateau of constant thickness, ho, to another plateau

of constant thickness, hi. Thus, the flow of oil into the control volume will occur at a

constant volumetric rate, 7h2/2#o. The flow of oil out of the control volume also occurs at

a constant volumetric rate, Th_/2#o. The net rate of increase of oil volume in the control

volume will be v(h_ - h_)/2#o. However, the initial oil volume present as the jump just

enters the control volume is hlAx. The oil volume present as the jump just exits the

control volume is hoax. The net change of the oil volume in the control volume as the

jump travels the distance Ax is (h0 - hl)AX. The amount of time, then, for the jump to
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travel through the control volume is At -- ((ho - hl)Ax)/(T(h 2 - h2)/2#o). Rearrangement

gives the wave speed of the jump:

Uj = Ax/At = T(ho + hl)/2#o

The piecewise solution for the time t -- 12 seconds, as shown in figure 9a, results from

application of the above arguments.

When t = 153 seconds, the corner at xa will just catch up with the jump at xa =

xj -- 78_mm. Subsequently, the ho plateau will no longer exist, and the average height

of the jump will decrease as the jump moves to the right, and the wave velocity of the

jump will also decrease. However, a consideration of the known time variation of the slope

of the linearly increasing region (x0 to xj), along with the known time variation of the

total oil volume, V = (0.431 - 0.0005t)10-6m 2, in the domain (x = 0 to x = 0.1mm)

allows calculation of the jump movement and oil film thickness distribution past t = 153
seconds. The oil film thickness distributions for t = 16 and 20 seconds are also shown in

figure 9a.

Precise knowledge of the piecewise analytical solution for this "shock-like" 1D model

problem allows for assessment of the accuracy of the Box-Implicit method and the Finite-

Volume Upwind-Implicit method for direct numerical solvers. These numerical solutions

are given in figures 9b, 9c, 9d and 9e.

With the exception of the region about the shock-like jump, the Box-Implicit and

Finite-Volume Upwind-Implicit methods provide quite acceptable solutions. The jump

region, however, leads to large oscillations in the numerical solutions particularly for the

Box-Implicit method without the Flux-Limit treatment. For both the Box-Implicit and

Finite-Volume Upwind Implicit methods, the Flux-Limit treatment improves the solution

about the jump region, but with an apparent increase in jump wave velocity. This increase

in jump wave velocity is likely because the rather simple Flux-Limit treatment is not

mass-conservative as implemented.

Another criticism of the numerical solutions obtained is that the h0 plateau is not

preserved, becoming rounded at the Xa and Xb edges. Upwind methods are known to be

dissipative and this appears to be the reason, with the Box-Implicit method being better

behaved in this regard.

2D Surface Tension Bubble Problem

The next case considered is designed to demonstrate the inclusion of surface tension

terms. The primary focus of the present paper is on the response of an oil film to a

wall shear stress. However, in the vicinity of separation, the surface tension term can

dominate. Thus, it is desirable to demonstrate that the surface tension terms are correctly

implemented in the overall numerical procedure. To do this, we consider a problem where
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the oil film is subjected to only the surface tensionterm, and, furthermore, the problem is
designedso that featuresof the oil responseare analytically known.

In constructing the present problem, wedo not solve the surface tension problem in
general, but only demonstrate inclusion of the surfacetension terms and also prepare for
the 3D separation problem of the next subsection. We consider here, then, the simpler
casewherethe oil film thicknessvaries only in the x direction.

Where only surface tension effects occur, and then only in the x direction, equation

2.2 becomes:

oh o+ 3.0 =o (5.5)

Assume that oil is spread initially (t = 0) so as to assume the shape:

h(x, t = 0) -- ho[1 - (x/xo)4], for - xo _< x < xo (5.6)

This initial bubble shape is not in equilibrium and the initial rate at which the bubble

changes shape is known by simple substitution of equation 5.6 into equation 5.5:

Oh 0 h 3 0

ah 4
= 8----___4[1 - (x/xo)412[1 - 13(x/xo) 4]

#oX5

(5.7)

The bubble shape continues to change with time until steady state is reached. The

steady state bubble shape will be given by:

h(x, t = oc) = 1.2ho[1 - (X/Xo)2], for - x0 <_ x < xo (5.8)

Note the steady state bubble shape given by equation 5.8 satisfies equation 5.5 with

Oh/Ot = 0, and also has the same oil volume as the initial bubble shape equation 5.6:

o hdx = 1.6hoxo
x0

An accurate, mass-conservative numerical direct solution method given the initial

bubble shape of equation 5.6 should lead to the steady state bubble shape of equation 5.8

and have an initial rate of change of oil film thickness given by equation 5.7.

As can be seen from equation 5.5, the surface tension term is highly nonlinear (h 3)

involving a fourth-order derivative in space. To implement the surface tension term into

the numerical solver, we choose here to use the linearized line-implicit method described

below. Although the method is incorporated in the current example program for nodes
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along the plane of symmetry as well as for purely interior nodes, we describe only the
interior node treatment here.

First, integrate equation 5.5 with time between times tl and t2:

h_ - h_+ [( ) hah_dt] = 0 (5.9)

We linearize the h3h_x term at t2 as:

Substituting into equation 5.9:

cO [(aAt)(ha(h2)xx x + 3h_h2(hl)xxx - 2h3(hl)x_z)] = 0
h_ - hl + -_x 61_o

Now evaluate equation 5.10 at the midpoint, (i - 1/2):

(5.10)

aAt

h2,i - hl,i + h2,i-1 - hi,i-1 + (3#oAx)

- [h_(h2)_ + 3h_h2(hl)_ - 2h_(hl)_Ji_l} = 0

(5.11)

where Ax = xi - xi-1.

The derivative, hxxx, may be found numerically by:

(h,xz)i = c_ihi+2 + _ihi+l + eihi + _ihi-1 + 5ihi-2

where the coefficients, (c_, _, % 5 and e), are given in Appendix B.

Equation 5.10, with substitution and rearrangement, takes on the following matrix
form:

A2ih2,i-a + Alih2,i_2 + AOih2,i-1 ÷ BOih2,i + C0ih2,i+l + Clih2,i+2 = D0i (5.12)

where
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C2i --0

 /xt •

)co, =(3u-l-oK,;(hLg - hL-l  -l)

aAt h3
BOi =1 + (3#oAx)[h3,iei - 1,,_a_3i_l

+ 3h2a,i(aihl,i+2 + _ihl,i+l + eihl,i + 7ihl,i-1 + _ihl,i-2)]

aAt ha
A0i =1 + (3#oAX)[ 1,i7i - h3,i-l£i-1

- 3h2,i_l(ai-lhl,i+l +/3i-lhl,i + ei-lhl,i-1 + 7i-lh1,i-2 + 5i-lh1,,-3)]

aAt )
Ali =(3_--'_x (h3'iSi- h3'i-17i-1)

eAt

A2i = - ( 3#oAx)(h_,i_#_i-1)

DOi =hl,i + ha,i-1

+ 2h31,i(aihl,i+2 +/3ihl,i+l + eihl,i + 7ihl,i-1 + (_ihl,i'2)

-- 2h31,i_l (O_i-lhl,i+l + ]_i-lhl,i + ei-lhl,i-1 + 7i-lhl,i-2 + (_i-lhl,i-3)

The matrix equation 5.12 is then solved by means of a scalar septa-diagonal solver

written for the present work. The scalar septa-diagonal solver is quite similar to commonly

used scalar tridiagonal solvers available, but is seven elements wide rather than only three.

The initial oil film thickness distribution for the model surface tension problem, equa-

tion 5.6 (with 100 centiStoke oil of 1.0 specific gravity and a -- 21.010-3N/m, h0 = 10.0

microns and Xo = 0.1 meter) is shown in figure 10. The known analytical steady state

oil film thickness distribution, equation 5.8, is also compared in figure 10 with the present

steady state numerical results using the method described above. The excellent agree-

ment of the numerical and analytical steady state oil film thickness distribution is clearly

indicated.

Figure 11 shows the initial rate of change in the oil film thickness, (Oh/Ot)t=o, for the

model surface tension problem. Again the excellent agreement of the numerical results and

the known analytical form (eq. 5.7) of this feature is clearly indicated. Suggested by this

level of agreement for these features between the numerical result and the known analytical

forms is that the surface tension terms are correctly implemented into the present oil film

solver using the methods described in this subsection.
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Saddle on Plane of Symmetry_ 2D Case

As a final example problem, the important practical case of a saddle located on a plane

of symmetry is next examined. Such a flow occurs, for example, in the region ahead of a

cylinder (or airfoil) mounted normal to a wall (or fuselage). Both a saddle of separation

and a saddle of attachment are considered. These saddle cases are calculated by the 3D

direct solver numerical methods described previously and are compared to the known closed

form solution, also described previously. The additional effects of wall pressure gradients

and surface tension for these saddle cases are also examined. This model problem is an

example of a highly 3D separated flow, and the ability of the numerical methods described

to accurately calculate this category of flows is a prime focus of the present study.

For both saddle cases, we assume the saddle (where both Tx and 7z equal zero) is

located at x = 0 and z -- 0. The oil is applied initially (t -- 0) as a thin film of ho -- 10

micron thickness with a leading edge located at x = -0.01 meter. The oil properties were

chosen to be nearly (but not identical to) those of silicone oil with a constant kinematic

viscosity of uo = 100 centiStokes, a density of Po = 1000 Kg/m 3, and a surface tension of

a = 21.10-3N/m.

The wall shear stress is assumed to vary according to:

Tx = ax, and rz = bz

For the saddle of separation case, a = -2000N/m 3 and b = 1500N/m 3.

For the saddle of attachment case, a = -2000N/m 3 and b = 2500N/m 3.

In the absence of surface tension and pressure gradient effects, a time self-similar

analytical solution is given by equation 3.21, repeated here:

( 2#ot _ ( x io+bl-- = - ) --='_ ), for 0<x<x0h Ht ,_-_j(1 (5.13)Xo

Further, the shape of the surface streamlines (passing through the arbitrary point

(xs, zs)) are given from the analytical solution by equation 3.19 repeated here:

z (! b/a (xs b/-o (5.14)z-f= xs) = x )

Figures 3a and 3b show the shape of the surface streamlines for the two saddle cases

presently considered.

Direct Solver, With and Without Surface Tension Terms

Numerical solutions for the oil film thickness distribution were obtained using the Box-

Implicit method for the two saddle cases, both with and without surface tension. Figure 12

shows the numerical solutions at a time of t = 100 seconds, both with and without surface
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tension. Also shownin figure 12 is the comparableanalytical solution (eq. 5.13) for each
case. Figure 13 is similar to figure 12,but showsthe region near the saddlepoint in more
detail. For this problem, the oil film thickness variesonly with x and not z, even though

the shear field varies in (x,z). However, the numerical solution procedures are indeed fully

3D with h(x, z). Only the plane of symmetry solution is shown, but the z -_ 0 numerical

solutions prove to be identical as would be expected for this particular test problem.

The excellent agreement in figures 12 and 13 between the analytical solution and the

numerical solution (without surface tension) gives a clear indication of the suitability of the

Box-Implicit numerical methods we have implemented in the present direct solver. Only

for the grid point located at x -- 0 does a considerable difference between the analytical

and numerical thickness solutions exist. The analytical solutions for both a saddle of

separation and a saddle of attachment are cusped at x = 0. Furthermore, for a saddle of

separation, the cusp at x = 0 leads to an infinite oil film thickness, h(x, 0) --+ _c as x -+ 0.

The numerical solutions have some difficulty in resolving this cusp for the last grid point

at x = 0. A further observation is that as the numerical grid becomes finer (not shown),

the cusp in the numerical solutions at x = 0 becomes higher appearing to approach the

analytical result.

This sharp cusp, however, will not occur in a real oil film due to surface tension.

Therefore, the inability of the numerics to resolve the sharp infinite cusp at x -- 0 is of

little practical significance. Also shown in figure 13 are the numerical solutions for t = 100

seconds where surface tension is included using the line-implicit numerical procedures

described and tested in the previous (surface-tension-only) problem. As can be seen in

figure 13, the surface tension removes the sharp cusp which otherwise appears in the

analytical and numerical solutions. Also, grid refinement (not shown) of the numerical

solutions with surface tension no longer noticeably affects the oil film solutions obtained

in the region of x = 0.

Surface tension appears to more greatly affect the saddle of separation solutions than

the saddle of attachment solutions, due to the more pronounced cusp occurring for the

saddle of separation. From an order-of-magnitude analysis, the extent of domain affected

by surface tension can be approximated by:

L_ = (_ah]2) 1/4 (5.15)

For the present saddle of separation test case, Lo _ 110 microns, while for the present

saddle of attachment test case, La _ 80 microns. Based on figure 13, the observed domain

actually affected by surface tension appears to be in the region of Ax _ 2La.

The above calculations do not include pressure gradient effects. The pressure gradient

terms has an all but negligible influence on the thin oil film solutions presented. According

to equation 3.18, the pressure gradient associated with a saddle characterized by Tx = ax

and Tz = bz, will have a magnitude of P_ = -(3a+b)/tanS, where 8 _ 30 deg is the angle of
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departure from the surfaceof the streamlineoriginating from the saddle into the flowfield.
An order-of-magnitude analysis, showsthat the oil film peak will be displaced upstream
of the saddle by Lp _ (3 + b/z)ho. For figure 13, the oil film peak associated with the

saddle of separation would be displaced about Lp _ 4ho _ 20 microns. This displacement

caused by the pressure gradient would be about 1 grid point upstream. For the saddle of

attachment shown in figure 13, the oil film peak would be displaced upstream even less, by

Lp _, 10 microns, or 1/2 grid point. In the absence of pressure gradient terms, the saddle

problem is symmetric in x as well as in z about the saddle. The surface tension terms are

easily incorporated for the symmetric problem. However, the pressure gradient terms lead

to a nonsymmetric (in x) saddle problem. Because the effect of pressure gradient on the

oil film is so small for these thin oil flms, the pressure gradient terms were not included

in the calculations for the oil film at this time.

In the remaining portion of this saddle flow subsection, we use the above direct solu-

tions in lieu of experimental data to explore several techniques for analysis of experimental

oil film data. The context of the present study suggests three approaches. The first and

simplest experimental thin oil film analysis in the vicinity of a saddle is to examine the

surface streamlines for a rough estimate of b/a, thereby determining whether the saddle

is a saddle of separation or a saddle of attachment. A second analysis is to examine the

oil film thickness, h vs X/Xo, along the centerline, z -- 0, for estimates of the ratio of the

shear gradients, b/a, and, again, whether the saddle is a saddle of separation or a saddle

of attachment. However, the third and most thorough experimental thin oil film analysis

of a saddle is to measure the thin oil film distribution h(x, z), at one or more times, along

with a surface streamline measurement, -y(x, z), and then use an inverse solver, such as

described earlier in this paper, to deduce the complete wall shear field, (vx(x, z), Tz(x, z)),

in the vicinity of the saddle.

Placement of a pattern of oil dots or other conventional surface oil flow visualization

techniques in the vicinity of a saddle point is straightforward and will result in an image

similar to figure 3a or 3b. From figure 3a or 3b, for each selected surface streamline, s,

we may identify an arbitrary point (xs, zs) through which that streamline passes. Other

arbitrary points (xi, zi) which lay on the same streamline may then be tabulated. In the

vicinity of the saddle, the streamline coordinates will behave according to equation 3.19,

rewritten here in logarithmic form as:

log(-_s ) = (b/a) log(-_s ) (5.16)

A log-log plot of (z/zs) vs (x/xs) for the saddle cases solved above is shown in figure

14. Note that all the streamlines for each saddle case fall on one line associated with

the b/a ratio for that case. The several saddle cases are clearly distinguishable in figure

14, providing estimates of b/a and identifying which case is a saddle of separation or

attachment. On a plot such as figure 14, each quadrant is associated with either saddles of
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separation or with saddlesof attachment but not both. The simplicity of this streamline
analysis approach is compelling. Anticipated experimental complications not evident in
this brief exampleinclude the fact that in generalthe sepratrix emanating from the saddle
will typically be curved rather than straight.

Figure 15exploresthe utility of a plot of h vs lOglO(X/X0), as mentioned in the section

on analytical solutions (Section 3). In figure 15, x is the distance from the saddle along

the plane of symmetry, x0 is the distance to the leading edge of the applied oil, and h is

the oil film thickness.

The ability to determine experimentally whether a given saddle is a saddle of sepa-

ration or a saddle of attachment may prove desirable. We also may wish to estimate the

ratio of the shear stress gradients, b/a. Figure 15 demonstrates how this might be done.

Consider, in particular, the line shown in figure 15, which represents the special case where

a + b -- 0. This is a saddle which is intermediate between a saddle of separation and a

saddle of attachment. For the case where a 4- b = 0, a plot of h vs loglo(X/Xo) will be a

straight line, as indicated by the analytical solution given by equation 3.23 repeated here:

ht=H=(-tto/a) ln(xo/x), for X<Xo, a<0, and a+b=0 (5.17)

For a saddle of separation, a+b < 0, a plot of h vs loglo(x/xo) will curve upward from

the straight line as shown in figure 15, even with the effect of surface tension included.

For a saddle of attachment, a 4- b > 0, a plot of h vs lOglo(x/xo) will curve downward

from the straight line as shown in figure 15, again even with the effect of surface tension

included. Clearly from figure 15, to use a log plot to unambiguously distinguish between a

saddle of separation and a saddle of attachment, oil film thickness data must be obtained

quite close to the saddle (x < 0.03x0).

Inverse Solver, With and Without Surface Tension Terms

An important aim of the present work was the development and validation of a 2D thin

oil solver suitable for determining the 2D wall shear stress field on the surface bounding a

complex 3D flow. To test, in this subsection, the inverse solver methods described earlier

in this paper, we use the oil film thickness distributions obtained above by our direct

solver for the 3D saddle of separation as the input to the inverse solver. A first oil film

height distribution input case is considered where surface tension effects are not included

in the direct solver, and then a second oil film height distribution input case where surface

tension effects are included in the direct solver. Both the Two-Time-Level (eq. 4.26) and

the One-Time-Level (eq. 4.30) versions of inverse solver algorithm are considered. Surface

tension terms may also be explicitly added to the inverse Two-Time-Level solver algorithm

and are also considered.

Figure 16a and 16b show the Tx(N/m 2) = -2000x(m) and the 7z(N/m 2) = 1500z(m)

distributions, respectively, for the saddle of separation problem being considered. The
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oil film distribution for this casewasobtained using the direct solver without the surface
tension terms (alsoseefig. 12)and wasthen usedasthe input to both the One-Time-Level
and the Two-Time-Level (without surfacetension) inversesolvers.For the Two-Time-Level
solver, oil film distributions at t = 75 and t = 100 seconds were used, while for the One-

Time-Level inverse solver, only the oil film distribution at t = 100 seconds was used. The

wall shear stress distributions obtained by the inverse solvers are also shown in figures 16a

and 16b. Note that uneven spacing in z was used to demonstrate the ability of both the

direct and inverse solvers to deal with uneven grid spacing and also so as to better resolve

the immediate vicinity of the saddle. Figure 16c shows the r_ vs x results in the vicinity of

the saddle to a finer scale than that of figure 16a. From the earlier discussion of the direct

solver, we know the oil film distribution in the absence of surface tension agrees quite well

with the analytical solution for this case. Figures 16a-16c clearly indicate that the inverse

solver, both the One-Time-Level and the Two-Time-Level algorithms, also performs nearly

ideally, in the absence of surface tension, in calculation of the 2D wall shear stress field

about a saddle of separation.

Surface tension effects do occur about a saddle of separation in an actual experimental

setting. Thus, to examine the ability of the present inverse solver to deal with surface

tension effects, we also consider the case where the input oil film thickness distribution

was produced using the direct solver which included surface tension effects (see also the

discussion of fig. 13). The ability of the direct solver to correctly incorporate surface

tension effects was previously validated in the discussion of the surface tension bubble

problem earlier in this section.

Figures 17a and 17b are wall shear stress results, Tx VS X and rz vs x, respectively,

for the inverse solvers without surface tension terms in the inverse algorithm. Unlike

the results in figures 16a-16c, however, the input oil film distribution for figures 17a and

17b does include surface tension effects. Some error in the wall shear stress 7z appears

in the immediate vicinity of the saddle of separation as a result of introducing surface

tension effects into the oil film thickness distribution; however, errors in Tz close to the

saddle become quite large. The surface-tension-induced errors are limited to a region of

Ax _ 2L_ about the saddle. In spite of the errors we observe, both the One-Time-Level

and the Two-Time-Level inverse algorithms provide nearly identical results.

Next, we add surface tension terms to the inverse Two-Time-Level solver to determine

if these surface-tension-induced errors can be removed. Since the One-Time-Level inverse

solver algorithm relies exclusively on the time self-similar relation h _ H/t; which is not

valid for the surface tension term, the One-Time-Level inverse algorithm cannot be easily
corrected for surface tension.

Figure 18a and 18b are the wall shear stress results, _'x vs x and Tz VS X, respectively,

for the Two-Time-Level inverse solver with surface tension terms added. Note that the

surface-tension-induced errors close to the saddle of separation are still present but are

smaller than those of figures 17a and 17b. To improve the accuracy for large time steps, an
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assumption that h ._ lit was incorporated into the derivation of both the direct solver and

the inverse solver algorithms. Where the wall shear stress terms dominate, this assumption

aids accuracy considerably. However, where surface tension terms become dominant, large

time steps are not as accurately accomplished with this assumption. The direct solver

results are obtained with a time step of At ---- 0.1 second. The inverse solver algorithm

is designed for use with experimental data having large time steps between images and is

tested here with a time step of At = 25 seconds.

We have in this subsection demonstrated that the direct solver provides an excellent

representation of the oil film thickness distribution about a saddle of separation or a saddle

of attachment even to the extent of including surface tension effects in the vicinity of the

saddle. Surface tension is found to influence only a quite limited region in the immediate

vicinity of the saddle (Ax = 2La _ 200 microns). The One-Time-Level and Two-Time-

Level inverse solver algorithms have also been demonstrated to provide accurate wall shear

stress distributions for the saddle of separation case, except for this limited surface-tension-

dominated region.
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6. CONCLUDING REMARKS

The flow of a thin film of oil placed on a surface and then subjected to the 2D wall

shear stress generated by a 3D aerodynamic flow is extensively considered. The governing

partial differential equation is derived to include the effect of a wall shear stress and wall

pressure gradient on the thin film of oil. Surface tension and gravity terms are included.

We refer to the resultant partial differential equation as the "Thin Oil Film Equation."

The "Squire form" and the "Tanner form" of the thin oil film equation are shown, in

Appendix A, to be equivalent through a metric transformation. Numerous analytical time

self-similar solutions for the thin oil film equation are described. Of particular interest is

the flow of a thin oil film in the vicinity of 3D aerodynamic surface streamline singularities

such as the saddle of separation and the saddle of attachment.

Another result of this study is that both direct and inverse numerical solution tech-

niques are developed. In addition to the wall shear stress terms, these direct and inverse

solution techniques may additionally include the effects of the wall pressure gradient, grav-

ity and surface tension terms. A Two-Time-Level inverse solver is described which includes

these effects. A One-Time-Level version of the inverse solver is for use in the absence of

the wall pressure gradient and surface tension terms. When the oil film thickness varia-

tions are provided from experimental images of the oil film, the inverse methods provide

a rigorous mathematical basis for an improved form of the oil film based wall-shear-stress
instrument.

The numerical solvers are applied to several model problems having known analytical

solutions so as to evaluate the fundamental accuracy of these numerical methods. Both the

direct and inverse numerical solvers are shown to be stable, accurate and computationally

efficient. One alternate T VS X solution method based on the local slope of the film thickness

sometimes suggested elsewhere for oil film based wall-shear-stress instrumentation is shown

to have fundamental accuracy problems leading to, in one example considered, errors of

50% or more. A model surface tension problem with an analytical solution is also derived

to demonstrate the ability of the present solvers to correctly implement the surface tension

terms, which can become important near separation.

An extensive application of the direct and inverse numerical solvers to the case where

oil film flows on the surface in the vicinity of a saddle of separation provides a clear demon-

stration of the success and utility of these numerical methods. The saddle of attachment

case is also successfully treated.

Techniques for the rigorous analysis of the behavior of thin oil films on test surfaces

bounding complex 3D aerodynamic flows have been demonstrated. Instrumentation for

the measurement of the 2D wall shear stress which use these numerical techniques should

be accurate and suitable for use in complex 3D aerodynamic flows.
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APPENDIX A

The Equivalence of the Tanner Form and the Squire Form

of the Thin Oil Film Equation

In this appendix, we show that the 2D thin oil film equation of the form as given

by Squire (see eq. 2.2) and of the form as given by Tanner (eq. A.6 derived below)

are equivalent and may be derived from each other by means of a metric transformation.

Understanding of the details of this transformation is useful in the construction of boundary

conditions. The Tanner form of the thin oil film equation can be useful in formulation of

certain types of boundary conditions, whereas the Squire form of the thin oil film equation

is more compatible with current computational fluid dynamics numerical procedures.

Consider that the test surface covered by an oil film may be described by a cartesian

x-z coordinate system or by an s-n coordinate system attached to the surface streamlines

as depicted in figure A1. Thus, n is constant for a given surface streamline, and s is the

distance along the surface streamline. The local transformation between these two coordi-

nate systems is accomplished by first a rotation ((x, z) :=v (5:, 5)) by the local shear stress

angle, "_, followed by a stretching dn -= ads to account for the divergence (or convergence)

of the surface streamlines. Note the stretching function, c_, varies with position on the test

surface.

Clearly,

cOs cOs

ds = --_rdx + -_zdz = cos _/dx + sin "),dz

cOn On
dn = --_-dx + --_-dz = - c_ sin_,dx + a cos-_dz

clx (Yz

Inversion of the transformation matrix above gives:

COx COx

dx -- -_sdS + _ndn

cOz cOz
dz = -_s dS + --_ndn

= cos "_ds - (sin "_/a)dn

= sin "_ds + (cos "//a)dn

Further, transformation of partial derivatives between these two coordinate systems

may be locally accomplished by:

o9 COs CO cOn cO

Ox -COx COs+ 0-_ CO---n
8 COs CO cOn cO

cOz - cOz cOs+ 0----_CO--n

and
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0 Ox 0 Oz 0

Os - Os Ox + Os Oz
0 Ox 0 Oz 0

On - On Ox + 0--_Oz

In the x-z coordinate system, consider the thin oil film equation of the form given by

Squire (restricted to wall shear stress effects):

Oh 0 (rxh 2 . 0 (r_h 2)
0--_-+_xx -_-o)+_zz _ =0 (A.1)

To transform to the s-n coordinate system for the form given by Tanner, we first

expand:

0 (v,h _) __0(r,h 2) 0h2/2#o 0h2/2#o
O---x 2#0 + Oz 2#o =rcosq, Ox + r sin'_ Oz

Or sin "r )+ (h_/2"°)(O_ s_ + 7z

Next, apply the coordinate transformation:

0 rxh 2 ) O_O_(rzh2 0h2/2#o 0h2/2#o+ ) =T COS_,(COS -- a sin "_ )Ox( 2_o Oz _ _ Os On

0h2/2#o 0h2/2#o
+ v sin _/(sin_, Os + a cos_ On )

+ (h2/2#o)(COS_/OTc°s_ _ asinq, 0rc°s_'
Os On

+ sin -_ 0r sin _ Or sin -y )
Os + a cos _ On

Now, contract the left hand side (mostly, cos2+ sin 2 = 1), and rearrange giving:

o (_h _) o(r_h_) o(_h _ _ or+ = ) + (rh /2,o)_-_x 2#0 Oz 2#0 Os 2#o

which then leads to the s-n form for the 2D thin oil film equation:

Oh OTh2/2#o _nn0--[ + Os + (rh2/2#o)a = 0 (A.2)

Note that in analyzing surface streamline images, a would seldom actually be estab-

lished since the stretching, a, distorts angles, and the rotated coordinate, 5, would be used

locally rather than n. Thus, the substitution into the above equation of 07/05 = sO'r/On

would be appropriate, particularly in the formulation of numerical boundary conditions:
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Oh 07h2/2#o 07
+ Os + (7"h2/2#o)-_z = 0 (A.3)0--[

To proceed toward Tanner's form of the 2D thin oil film equation, consider figure A2

which seeks to relate the streamline divergence term used by Tanner (note Tanner uses

the symbol n rather than 7/) to the shear stress angle 7 used in this paper. In figure A2,

two surface streamlines are initially separated by a small distance, r/n = a(s, n)r/. Note,

r/_ is given in term of the stretched coordinate, n, whereas 7/is given in terms of the local

unstretched coordinate, 5. Thus, the angle formed between the two streamlines is given by

A3, = (07/05)7"1. A small distance, As, along the streamlines the separation will increase

by At/= (07/05)r/As. In the limit of small 7/and As, we obtain the relationship:

1 Or/ 07 07 (A.4)(7) as - 05 -
Substituting this relation into equation A.2 we obtain:

Oh 07h2/2#o 1 (97?O---t+ Os + (7h2/2#°)()-_s = 0 (A.5)
"1

Rearranging, we obtain Tanner's form for the 2D thin oil film equation:

Oho___7( 10r/rh2/2#o+ -_) Os - 0 (A.6)

Note, 77can be obtained by integrating equation A.4 along a surface streamline (the

choice for r/o at so can be arbitrarily small):

f:rl = r/oe ( o O'.t/O_.ds) (A.7)

Thus, the two streamlines initially some small distance apart, 7/0, at So will be separated

by r/at s. But, in terms of the n coordinate, the separation, r/n, is fixed:

rl_ = a(s, n)r/(s, n) = constant

which leads to:

-( fs' O_/O_ds) (A.8)o_ : o_0e o

Equation A.8 does give us the means to analyze a surface streamline image, with

known 7(x, z), for the stretching function, a(x, z), and known rotation function, 7(x, z),

required to establish the s-n coordinate system if so desired.

The demonstration presented here that Tanner's form and Squire's form of the 2D thin

oil film differ only in the coordinate system reveals the details of the required coordinate
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system transformation. Thesedetails should prove useful in correctly formulating general
boundary conditions.
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APPENDIX B

Numerical Forms for Oah/Ox 3

A centered numerical approximation to the partial derivative, Oah/Ox a, may be found

on an unevenly spaced grid (xi-2,xi-l,xi.,xi+l,xi+2) by:

(03h/Ox3)i = aihi+2 +/3ihi+l + eihi + "yihi-i + _ihi-2

--6(Xi+1 + Xi-1 q- xi-2 -- 3xi)

_ - (x,+2 - xi)(x_+2- x,+l)(_i+2 - x,_,)(xi+_ - x__2)
6(xi+2 + xi-1 + x__2 - 3xd

Z,-
(_,+_ - _i)(_+2 - _,+_)(xi+l - x,_l)(_i+_ - *_-_)

6(xi+2 + xi+l + xi-= - 3xi)

7i --(Xi__ 1 __ Xi)(Xi+2_ Xi_l)(Xi_l __ Xi+l)(Xi_l __ Xi__2 )

6(xi+2 + xi+l + x_-i - 3xi)
5i-

(Xi--2 -- Zi)(Xi+2 -- Xi--2)(Xi-2 -- Xi+l)(Xi-2 -- Xi--1)

ei = - (ai + _i + "ri + _i)

A biased numerical approximation to the partial derivative 03h/Ox a, may' be found

on an unevenly spaced grid (xi-l,xi,Xi+l,,Xi+2,xi+3) by:

(03h/Ox3)i = c_ihi+3 + _ihi+2 + _ihi+l + eihi + 5ihi-i

-6(xi+2 + xi+_ + xi-_ - axi)

_i -- (Xi+3 -- Xi)(Xi+3 - Xi+2)(Xi+3 -- Xi+l)(Xi+3 -- Xi-1)

6(xi+3 + xi+l + xi-1 - 3xi)

(_i+2 - xi)(xi+3 - *i+=)(*i+2- zi+_)(_i+2 - xi-_)
6(Xi+3 + Xi+2 + Xi-1 -- 3Xi)

"fi -- (Xi+I -- Xi)(Xi+3 -- Xi+l)(Xi+l -- Xi+2)(Xi+l -- Xi--1)

6(xi+3 + xi+2 + xi+l - 3xi)

(_i-_ - xi)(x,+_ - .i__)(x_-_ - .,+2)(x___ - x_+_)
ei = - (oei + _i + Ti + 5i)
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Figure 1. The thin oil film on a test surface.
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Figure 3a. Saddle of attachment surface streamlines.
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Figure 3b. Saddle of separation surface streamlines.
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Figure 3c. Node of attachment surface streamlines.
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Figure 3d. Node of separation surface streamlines.
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Figure 7a. Oil film thickness from Box-Implicit direct solver

(symbols) compared to analytical solution (lines) for
linear wall shear stress (= 20 + 100 x) case.
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Figure 7b. Oil film thickness from Box-Implicit Flux-Limit direct

solver (symbols) compared to analytical solution (lines)

for linear wall shear stress (= 20 + 100 x) case.
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direct solver (symbols) compared to analytical solution

(lines) for linear wall shear stress (= 20 + 100 x) case.
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Figure 8a. Wall shear stress from Box-Implicit inverse solver.
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seconds used as input to inverse solver.
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Figure 8b. Wall shear stress from Box-Implicit inverse solver.
Oil film thickness at t=80 and 100 seconds from

Box-Implicit direct solver used as input to inverse solver.
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inverse solver. Box-Implicit direct solver oil film

thickness at t=40 and 100 seconds as inverse solver input.
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Figure 8d. Wall shear stress from local-slope method.
Analytical oil film thickness at t= 100 seconds used

as input to local-slope method.
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15.0

t=0 16

-_ _ _o

"_[ LI !

dl p,'r,,J ,,-
0.0 ,' , ,

0.0 0.1
X, meters

Figure 9d. Finite-Volume Upwind-Implicit direct solver oil film
thickness at discrete times for constant wall shear

stress, non-monotonic initial thickness problem.



15.0

0.0
0.0 0.1

X, meters

Figure 9e. Finite-Volume Upwind-Implicit, Flux-Limit direct solver
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Square symbols form figure 3a, a saddle of attachment.
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