
MAP ALGORITHMS FOR

DECODING LINEAR BLOCK CODES

BASED ON SECTIONALIZED

TRELLIS DIAGRAMS

Ye Liu, Marc Fossorier
and

Shu Lin

January 26, 1999

MAP ALGORITHMS FOR DECODING LINEAR BLOCK

CODES BASED ON SECTIONALIZED TRELLIS DIAGRAMS

Abstract

The MAP algorithm is a trellis-based maximum a posteriori probability decoding al-

gorithm. It is the heart of the turbo (or iterative) decoding which achieves an error

performance near the Shannon limit. Unfortunately, the implementation of this algorithm

requires large computation and storage. Furthermore, its forward and backward recursions

result in long decoding delay. For practical applications, this decoding algorithm must be

simplified and its decoding complexity and delay must be reduced. In this paper, the

MAP algorithm and its variations, such as Log-MAP and Max-Log-MAP algorithms, are

first applied to sectionalized trellises for linear block codes and carried out as two-stage

decodings. Using the structural properties of properly sectionalized trellises, the decoding

complexity and delay of the MAP algorithms can be reduced. Computation-wise optimum

sectionalizations of a trellis for MAP algorithms are investigated. Also presented in this

paper are bi-directional and parallel MAP decodings.

1 Introduction

Maximum likelihood decoding (MLD) minimizes the block (or sequence) error probability,

however, it does not necessarily minimize the bit (or symbol) error probability. It only delivers

hard decoded bits, called hard outputs, without providing their reliability measures. In many

error control coding schemes, it is desirable to provide both decoded bits and their reliability

values, called soft outputs, for further processing to improve the system error performance.

A decoding algorithm that allows to process soft-decision inputs and produces soft-decision

outputs is called a soft-in/soft-out (SISO) decoding algorithm. The most well known SISO

decoding algorithm is the MAP (maximum a posteriori probability) decoding algorithm that

was devised by Bahl, Cocke, Jelinek and Raviv in 1974 [1]. This algorithm is a trellis-based

decoding algorithm for both block and terminated convolutional codes. It is devised to minimize

the symbol error probability. Unfortunately, the implementation of this algorithm requires large

computation and storage. Furthermore, its forward and backward recursions result in long

decoding delay. As a result, the potential of the MAP algorithm has not been studied until

most recently when this algorithm was used in turbo (or iterative) decoding to achieve an error

performance near the Shannon limit [2]. In the study of turbo decoding, a focal point is the

MAP algorithm which is actually the heart of turbo decoding. The concern is how to simplify

this decoding algorithm and reduce both the decoding complexity and delay.

This paper investigates decoding complexity and delay of the MAP algorithm and its vari-

ations, such as Log-MAP [3] and Max-Log-MAP [4] algorithms, for linear block codes. For

decoding linear block codes, conventional MAP and Max-Log-MAP algorithms have been de-

vised based on bit-level code trellises [1, 4]. In this paper, it is shown that these decoding

algorithms can be modified and carried out based on sectionalized code trellises. Proper sec-

tionalization of a code trellis results in a significant reduction of decoding computational com-

plexity. Computation-wise optimum sectionalizations of a code trellis for MAP, Log-MAP and

Max-Log-MAP algorithms are investigated. Also investigated in this paper are bi-directional

and parallel MAP decodings based on the structural properties of code trellises. Bi-directional

decoding can reduce the decoding delay by a factor close to two. Parallel decoding not only

simplifies decoding complexity but also speeds up the decoding process.

The organization of this paper is as follows. Section 2 gives a brief review of sectionalized

trellisesfor linear block codes.In Section3, a modifiedMAP algorithm basedon a sectionalized

code trellis is first described and its computational complexity and storage requirement are ana-

lyzed. Then optimum sectionalization of a code trellis to minimize the computational complexity

is considered. Modified Max-Log-MAP and Log-MAP algorithms based on a sectionalized code

trellis and their computational complexities are presented in Section 4. Bi-directional and par-

allel MAP and Max-log-MAP algorithms are described in Section 5. Section 6 summarizes the

results and concludes the paper.

2 A Brief Review of Sectionalized Trellises

Consider an (n, k) linear block code C with a minimal n-section bit-level trellis T in which each

branch represents a single code bit [5, 6]. For any positive integer u such that 1 _< u <_ n,

the bit-level trellis T can be sectionalized into u sections with section boundary locations in

U = {h0, hx,'",h_} where 0 = h0 < hi < .." < h_ = n. This sectionalization results in an

u-section trellis T(U). At boundary location hi, the state space (the set of states) is denoted

Eh, (C). The j-th section of T(U), denoted Ti, consists of the state space Ehj_,(C) at time-

hj_l , the state space Ehj(C) at time-hi and the branches that connect the states in Eh,_l(C)

and the states in Ehj(C). A branch in this section represents mj = hj - hi-1 code bits. Two

adjacent states a' and a with a' E Ehj_I(C) and a E Eh,(C) may be connected by multiple

branches, called parallel branches. For convenience, we say that these parallel branches form a

composite branch, denoted L(cr',a). Each branch b(a',a) E L(a',a)is labeled by a mi-tuple

(vhj__+l, vhj_l+2,''', vhj), where vhj_l+i = +1 for BPSK signaling with unit energy.

A codeword in C is denoted by v = (vl, v2,'", v,). Let Chj__,hj denote the linear subcode of

C which consists of those codewords in C whose components are all zero except for the h i - hi-1

components from the (hj-x + 1)-th bit position to the hj-th bit position. Let ph,__.h,(C) be the

punctured code of length h i - hj-x obtained from C by removing the first hi-1 and last n - hj

components from each codeword in C. For a linear code A, let k(A) denotes its dimension.

Then the number of states at time-hi in T(U) is given by [5]:

IEh,(C)[= 2k(C)-k(Co,h,)-k{C,,,.). (1)

The number of composite branches converging into (or entering) a state ah, E Eh,(C) at

2

time-h/, called the incoming degree of ahj, is given by

deg(crhj)in _ 2k(C°'h'l)-k(C°'hj-I)--k(Chj-1 ,hi).

The number of composite branches diverging from (or leaving) a state ah___ E

time-hi_l, called the outgoing degree of O'hj_l, is given by

deg(crhj_l)out --&2 k(cn'-I .,)-k(Cnj,,,)-k(C%__ ,nj). (3)

The branch complexity of the trellis section T i is measured by: (1) the size of a composite

branch, denote [B_I; (2) the number of distinct composite branches in the trellis section, denoted

[B][; (3) the total number of composite branches in the trellis section, denoted IB_[. These

branch complexity parameters are given below [5]:

IB_I = 2 k(eh'-_ 'h,),

IB]I = 2k(v"'-''h'lC))-k(ch'-''h'),

]B_[= [Eh,(C)]" deg(ah,)in = 2 k(c}-k{chJ''}-k(c°'h'-_}-k(ch'-*'h').

(4)

In the trellis section Tj, each distinct composite branch appears

2k(C)-k(Co hj_l)-k(C%,.)-k(p%_ 1,%(C))

times. In general, IByl is much larger than IBSI. This fact will be used in reducing the compu-

tational complexity of MAP algorithms.

3 A Modified MAP Algorithm Based on a Sectionalized

Trellis

For decoding block codes, the conventional MAP algorithm has been devised based on bit-level

trellises [1][4]. In this section, we show that the MAP algorithm can be carried out in two stages

based on sectionalized trellises. Proper trellis sectionalization results in a significant reduction

in storage requirement and computational complexity.

3.1 The algorithm

Consider an v-section trellis T(U) for an (n, k) linear block code C with section boundary

locations in U = {h0, hi,'", h_}. Let L(a',a) be a composite branch in the j-th section Tj

of T(U) which connects state a' to state a with a' E Eh,_I(C) and a E Zh_(C). Each branch

b(a', a) C L(a', a) consists of mj = hj - hi-1 code bits, denoted

b(a',a) = (vh,_,+x,vh,_,+2,'",Vh_).

Let r = (rl, r2," ", rn) be the received sequence and rj = (rh,_,+l, rh,_,+2,''", rh,) denote

the j-th section of r. For each branch b(a', a) E L(a', a), define the following probability:

"lh,(b(a',a)) _= p(a,b(a',a),rjla')

= p(a,b(a',a)ld)p(rjl(d,a),b(a',a)). (5)

The value 7h, (b(a',a)) represents the transition probability from state a' to state a through

the branch b(a', a) that produces rj. For simplicity, we call it branch (transition) probability.

Then the probability of the composite branch L(d, a) connecting state a' to state a that results

in the received vector rj is given by

A

7h,(L(d,a)) = (6)
b(a',a)EL(a',a)

For the MAP algorithm based on the sectionalized trellis T(U), the forward and backward

recursions are to compute the following state probabilities:

C_h,(a) = Y_ 7h,(L(a',a))ah,__(a'), (7)

a'ef_h__ 1(a)

/3h,__(a') = y_ %i(L(a',a))j3h,(a), (S)

O'Eflhj (O t)

where f_h,__ (a) denotes the set of states in Eh,_l (C) that are adjacent to state a and _'_hj (O't)

denotes the set of states in Ehj(C) that are adjacent to state a'. The forward and backward

recursions are initialized with o_ho(ao) = 1 and _3h_(af) = 1, where a0 and a I are the initial state

and final state of the trellis T(U) at time-0 and time-n, respectively.

For computing the log-likelihood ratio (LLR) of the code bit vt, hi-1 + 1 < l < hi, define

7h,(L,,+(a',o')) _= __, ",/h,(b(a',a)), (9)

b(a',a)eL(a',a)
vl=+l

- fit"/ha(L,_,(,a)) -- _ "Thj(b(a',cr)). (10)

b(a*,a)EL(at,a)
vl=--I

It follows from the definitions of (6), (9) and (10) that

7hj(L(o",a)) = 7h,(L+(a',o')) + 7h_(L;(a',a)), (11)

for every code bit v_ in Tj. Then the LLR of vt is given by

t +E(o,,.)%_1(o
L(_)_) = log v/----+l (12)

E (_,,.)ah,_,(a')"/h,(L_(a',a))13h,(a)'
vl=--I

where the summations are over all the adjacent state pairs (a',a) with a _ E Eh___(C) and

• Zh, (C).

To carry out the decoding process, we must first compute the composite branch probabilities,

7hj(L(a _,a))'s. In a sectionalized trellis, a section may consists of many composite branches,

however, the number of distinct composite branches is relatively small. In computing a's, fl's

and LLR's, we only need to compute the probabilities of the distinct composite branches. Based

on this fact, we may perform a preprocessing step to compute "Th_(i(a',a)), 'Th,(i_(a',a)), and

•Th,(L+(a',a)) for each distinct composite branch i(a',a) and each code bit vt and store them

in a table called the -Thi-table. This preprocessing step reduces computational complexity of the

MAP algorithm significantly.

The MAP algorithm based on a sectionalized trellis T(U) can be carried out in two stages.

At the first stage, the parallel branches of each distinct composite branch are preprocessed to

form the "),-tables. Then, the MAP decoding is performed with parallel branches in a composite

branch viewed as a single branch.

Consider the computation of a branch transition probability 7a, (b(a', a)) given by (5). For

equally likely signaling and a linear code, all the states at any section boundary are equiprobable.

Then

1

p(a, b(a', a)la') - E=,,e%(_,)IL(a', a")l" (13)

As]_h,(a')l and]L(a',a")] remain the same for all states or' • Eh,__(C) [5], p(o,b(a',a)lcr') is

constant in the trellis section Tj. Since we are only interested in the ratio given by (12), we can

scalethe branch transition probability 7h,(b(a', a)) by any factor without changing the LLR of

an estimated code bit. Therefore, in computing ah_ (a), _h__l(a') and L(v_), we can use

wh,(b(a', _)) _ p(rjl(d,a),b(d,a)) (14)

instead of "1% (b(a', a)) to simplify computations. For an AWGN channel with zero mean and

variance N0/2,

hj

"--'/_--2-1m'/2exp{- _ (r,-v,)2/N0}. (15)
wh,(b(o",a)) = \rNo]

/=h)-l+l

To construct the -},-tables for the v-section trellis T(U), we use the following procedure:

For 1 <_j_< v,

(1) Compute wh, (b(a', a)) using (15) for all distinct branches in trellis section Tj.

(2) Compute "yh,(L+(a',a)) for each code bit vz for hi-1 + 1 < I < hi.

(3) Compute %_(L;hj_l+,(a',a)) for the code bit vh,_l+l. Then, it follows from from (11) that

L + (a',a))."/h,(L(a',a)) = %,(L;-h,__+l (d,a)) + %,(.h,_1+1

(4) Finally, using (11), we obtain %,(L_(a',a)) for hi_l + 2 < l < hi, by computing the

difference, "Th_(L(a', a)) - "/h, (L + (a', a)).

From (7), we see that ah, (a)'s can be computed along with the construction of -},-tables from

the initial state a0 to the final state al of the code trellis in forward direction. If bi-directional

decoding (see Section 5) is performed, it follows from (8) that _h,_l(a')'s can be computed

along with the construction of _,-tables from the final state al to the initial state a0 of the code

trellis in backward direction. As soon as ah, (a')'s and fib,_, (a)'s at the boundaries of the j-th

trellis section Tj have been computed, the LLR's of the code bits vl with hi-1 + 1 < l < hj are

evaluated from (12).

3.2 Computational complexity and storage requirement

The computational complexity of the MAP algorithm is measured in terms of the number of

real operations required to decode a received sequence. It can be analyzed by enumerating

the numbersof reM operations required for constructing the .,/-tables and computing a's, fl's

and LLR's of the estimated code bits. We assume that computations of exp(.) and log(-) are

accomplished by using a read-only memory (ROM) (i.e., table look-up).

To construct the 7hi-table for the j-th trellis section Tj based on the procedure presented in

the previous subsection, the computations required at each step are given below:

(1) step-1 requires]Bd] •]B']].mj additions and 113]]. IB_]. (mj - 1) multiplications.

(2) step-2 to step-4 require]Bd[• (IBm'[/2 - 1)-mj, [Bff[. (]B_']/2- 1)+ 1 and mj- 1 additions,

respectively.

Therefore, construction of 7h,-table for the trellis section Tj requires a total of

g_(7) = IBJt.IBm1.mj + ,BJI.(iB_l/2- 1).m_ + IB]l"(IB_i/2- 1)+ ,_j (16)

additions and a total of

N_(7) = IB]I. IB?. (ms- 1) (17)

multiplications.

Computations of a's and /3's from (7) and (8) require a total of N_(a) + NJ(_) additions

and NJ(a) + N_(fl) multiplications, where

N_(a) = (deg(o'hj)in- 1). IZh,(C)I-" IB;I- IZ,,,(C)I, (18)

N_(_) = (deg(ah,_,)o.t- 1). IEh,_,(C)l = [BTI- IEh,_,(C)l, (19)

N_(c_) = N_(_)= IB;I. (20)

The last step of MAP decoding is to compute the LLR's of the estimated code bits vl for

hj-x + 1 < l < hj with 1 _< j _< !'. Define

8(5) zx __. Othi_,(a)Thi(L(a ,O'))flh,(a), (21)
(,.',_)

s(g_(v,) _ E _-,(_')_,(L+(_',_))_,(_), (221
(_',_)

vl=+l

S(___(v_) zx _ ah,_,(a')Th,(L_-,(a',a))/3h,(a). (23)

(_',_)
v/=--I

It follows from (11) and (21) to (23) that

s(s)= + (24)

for hj-x + 1 < l < hi. To compute the LLR L(vl)'s from (12), we need to compute S(_(vt)'s and

(S) , S_(v,)'s canS(_._(vt)'s. Computations of S+x (vt) s and be done efficiently by using the following

procedure:

(1) Compute S (j) from (21), which requires]B_[- 1 additions and 2]B_[multiplications.

(2) Compute S(_(v,)'s from (22) for hj-a + 1 < l < hi, which requires (IB_I- 1).mj additions

and]B_l.m s multiplications (using partial results from step-l).

(3) Compute S(j_(v,)'s from (24) by taking the differences, S (j) - S(_(v,), for hi-1 + 1 < l < hi.

This step requires mj subtractions (equivalent to additions).

Once S(_(v,)'s and S_(v,)'s have been computed, the LLR's of estimated code bits v, for

hi-1 "4-1 < l < hj can be evaluated, which requires m s divisions (a division operation is assumed

to have the same complexity as a multiplication operation). Therefore, computation of the

LLR's of estimated code bits corresponding to the trellis section Tj requires a total of

N_(L) = IB_I- 1 + IB_I "ms (25)

additions and a total of

N_(L) = 21B_I + (IB21 + 1).mj (26)

multiplications (including m s divisions).

Summarizing the above results, execution of the MAP algorithm based on the sectionalized

trellis T(U) requires a total of

_,-I v-I v-2

N_(U) = __,(NJ_("/) + NJ,,(L)) + _ N_(a) + _ N_(fl)
S=0 S=l j=o

additions and a total of

v--I v-I u--2

Nm(U) : _(N_("/) + NJ(L)) + _ N_(a) + _ N_(fl)
j=O j=l j--=O

(27)

(28)

multiplications. The numbers N_,(U) and N_(U) together give a measure of computational

complexity of the MAP algorithm based on the sectionalized trellis T(U).

During the decoding process, the "r-tables must be stored for the computation.s of a's, /3's

and LLR's of the estimated code bits. This requires

lJ--1

M(3') = _ IB]I-(2mj + 1) (29)
j=0

storage locations (or unites). If bi-directional decoding is performed, we also need to store

a's and /3's for the computations of LLR's of the estimated code bits before the forward and

backward recursions meet at the middle of the trellis. This requires M(ct)+M(13} storage locations,2

where

v-1

M(a) = y_ [Eh_(C)[, (30)
j=l

/J-2

M(/3) = _ IEh,_,(C)I. (31)
j=0

If the LLR's of estimated code bits are to be used for further decoding process, they must be

also stored. This requires another

M(L) =n (32)

storage locations. Therefore, the total storage requirement for MAP decoding based on section-

alized trellis T(U) is

M(U) = M(7) +
M(a) + M(fl)

2
+ M(L). (33)

3.3 Optimum sectionalizations

A code trellis can be sectionalized in many ways. Sectionalizations that give the smallest number

of computation operations and memory storages are called computation-wise optimum section-

alizations and memory-wise optimum sectionalizations, respectively. An algorithm for finding

computation-wise optimal sectionalizations for Viterbi decoding of block codes has been devised

by Lafourcade and Vardy I7]. This algorithm can be applied to MAP algorithms.

The Lafourcade and Vardy algorithm is based on the following simple structure: For any

two integers z and y with 0 < x < y < n, a section from time-x to time-y in any sectionalized

9

trellis T(U) with x, y E U and z + 1, z + 2,..., y - 1 ¢ U is identical [5]. Let _p(z,y) denote

the number of computations (or storage unites) required to compute 7's, a's,/Ts and LLR's of

the MAP algorithm to process the trellis section from time-x to time-y. This number _(x,y)

is solely determined by the choices of x and y. Let _min(X, y) denote the smallest number of

computations (or storage unites) required in MAP decoding to process the trellis section(s) from

time-z to time-y in any sectionalized trellis T(U) with x, y E U. The value _min(0, n) gives the

smallest total number of computations (or storage unites) of the MAP algorithm for processing

the code trellis with an optimum sectionalization. It follows from the definitions of _(z, y) and

_min(X, y) that

cp(O,y),mino<_<u{Cpm_n(O,x)+cp(x,y)}}, for 1 < y < n
_min(O, y) = - (34)

_(0, 1), for y = 1.

For every y C {1,2,... ,n}, _n(0, y) can be computed as follows. The values of ¢y(x,y) for

0 < x < y < n are computed using the structure of the trellis section from time-x to time-y.

First, _mjn(0, X) is computed. The value ¢pm_n(0, y) can be computed from _Or_(0, Z) and _(z, y)

with 0 < x < y using (34). By storing the information when the minimum value occurs in the

right-hand side of (34), an optimum sectionalization is found from the computation of _m_n(0, n).

The computational complexity and storage requirement of MAP decoding of a linear block

code very much depend on the sectionalization of the code trellis. A sectionalization that mini-

mizes both is desirable. However, such a sectionalization in general does not exist. If there is no

severe constraint on the size of memory storage, we may choose a sectionalization that minimizes

the computational complexity. Based on the above analysis, decoding computation of the MAP

algorithm involves two kinds of real number operations, additions and multiplications, in every

decoding step. A multiplication operation is more complex than an addition operation and they

can not be treated the same (to have the same weight) in the minimization of computational

complexity. This makes it hard (if not impossible) to find a sectionalization that minimizes both

the number of additions and the number of multiplications. Since the number of multiplications

required in the MAP decoding is much larger than the number of additions required and a

multiplication operation is much more complex than an addition operation, we may just find

a trellis sectionalization to minimize the total number of multiplications. Alternatively we can

weight an addition operation as a fraction of a multiplication operations, say 1/20 of a multipli-

cation. Then we find a trellis sectionalization to minimize the total number of multiplications

10

and weighted additions. Optimum trellis sectionalizations(in terms of minimizing the number

of multiplication operations) of someRM codesfor MAP decodingare given in Table 1. For

comparisonpurpose, the computational complexity and storagerequirement basedon the bit-

level trellis for eachcodearealsoincluded. From this table, weseethat bit-level trellis requires

much larger computational complexity and storagerequirementthan an optimum sectionalized

trellis. We alsoseethat the optimum trellis sectionalizationin terms of minimizing the number

of multiplication operationsmay not reducethe number of addition operations. So there is a

trade-off betweennumbersof additions and multiplications.

From Table 1, weseethat optimum sectionalizationis moreefficient for low-rate codesthan

for high-rate codes.This is becausethat IB I tends to be large in high-rate codes [5].

From Table 1, we also see that optimum sectionalization of a code trellis, in general, results in

a non-uniform sectionalized trellis (trellis sections are not equal in length). For IC implementa-

tion of a MAP decoder, since using the same hardware to process all the trellis sections is highly

desirable, a uniformly sectionalized trellis seems a better choice. Table 2 gives the best uniform

sectionalizations for RM codes with the MAP decoding. Uniform sectionalizations marked with

"*" are also optimal sectionalizations. From Tables 1 and 2, we observe that the best uniform

sectionalization only requires slightly more operations than the optimum sectionalization.

4 The Max-Log-MAP Algorithm Based on Sectional-

ized Trellises

The Max-Log-MAP algorithm is a suboptimum version of the MAP algorithm [3, 4]. It provides

an efficient trade-off between error performance and decoding complexity. This algorithm is

based on a very simple approximation for logarithm of a sum of real numbers. For a finite set

of real numbers, {61,62,-", 6q}, the following approximation holds:

q

log(___ (35)
i----1 - -

This approximation is called maximum logarithm (max-log) approximation.

11

4.1 The algorithm

Using the max-log approximation, the LLR of an estimated code bit given by (12) based on a

sectionalized code trellis T(U) can be can be approximated by

L(fit) = max{logo%__(a') + logTh,(L+(a',a)) + log/_h¢(a)} --
(_,',_)

v/=+l

max {log ah,_, (a')+ log 7h,(L;(a',a))+ log/3h, (cr)},
(_,',_,)
v/=--I

(36)

for hi-1 + 1 < 1 < hi. It follows from (6) to (10) and the max-log approximation of (35) that

the state and composite branch metrics in (36) are given below:

log ah,(a) = max(,,){log%,(L(a',cr)) + log Cehj_, (a')},
a'Ef_hj_ 1

log/3h,_l(a') = max {log'yh,(L(a',a)) + logflh,(a)}
aE_hj(a') "

logTh,(L(a',a))a max {logTh,(b(a',a))},
b(a',a)EL(a',a)

max {log %¢(b(a', a))},
b(a',a)eL(a',a)

vl=+l

max {log 7h, (b(a', or)) },
b(a',a)EL(a',a)

Vl=--I

(37)

(38)

(39)

(40)

(41)

for hj-a + 1 < 1 < hi.

The metrics, log ceh, (a) and log/3hi (a), are simply the forward and backward metrics of state

a, respectively, and they can be computed recursively with initial conditions, log Ceho(ao) = 0

and log j3h.(al) = 0. The metric log%, (L(a', a)) is simply the metric of the composite branch

L(a', a). The sum

logah___(a') + log Thj(L(a',a)) + log/3hi (a)

evaluated from (37) to (39) represents the metric of a path in T(U) that passes through state

a' at time-hi_l, state a at time-hi and a branch in L(a', or).

For the AWGN with BPSK transmission, we use (15) to compute log 7h, (b(a', a)). Since No

(l_L__m,/2
and _.NoJ are constants in Tj, we can use

hi

logTh,(b(a',a))= Y]_ r, vl,
l=hj_l +1

(42)

12

asthe metric of branch b(a', a)in computing log%j(L(a',a))'s.

Similar to the MAP algorithm based on a sectionalized trellis T(U), the Max-Log-MAP

algorithm can also be carried out in two stages. At first stage, the parallel branches of each

distinct composite branch L(a',a) are preprocessed to obtain the composite branch metric

logTh,(n(a',cr)) and the bit metrics, logTh,(L+(a',a)) and log'yh_(L_(a',a)) for hj-a + 1 < l <

hi. These metrics are stored in a table, called the branch metric table for the trellis section Tj

from time-hj_x to time-hi. Let b*(a', a) =a (v_i_,+x ' v__1+2,..., v_,) be the branch that has the

largest branch metric among parallel branches in L(a',a). From (39), we have

logT(L(a',a)) = log-l,(b'(a', a)). (43)

It follows from (39) to (41) and (43) that

log'yh,(n(a', a)) = max{log'Yh,(L+ (a', a)),log_th_(nv-_(cr', a)) } (44)

I l°g'Yh'(Lv+(a"_))' if v/' = 1, (45)

(loglh,(L_(a',a)), if v_* = --1,

for hi-1 + 1 < 1 < hi. Based on (45), we can construct the branch metric table for the trellis

section Tj using the following procedure A:

(1) Compute log "Th,(L(a', a)) from (39) for each distinct composite branch in Tj.

(2) For each code bit v, in Tj, based on b*(a',a) and from (45), we first check whether

v_* = 1 or -1 (a logic operation) to determine which one between logThj(L+(a ', a)) and

logTh_(L_(a',a)) is equal to logTh,(L(a',a)). Then we only need to compute the one

between logThj(L+(a',a)) and logTh,(L_-_(a',a)) that is not equal to logTh,(L(a',a)).

At the second stage of the Max-Log-MAP decoding, the state metrics log ahj (a) and 10g fih__, (a')

are computed from (37) and (38) recursively with initial conditions, log aho(aO) = 0, and

log fih_ (a f) = 0. Assuming bi-directional decoding, log ah_ (a) and log flh__, (a') are computed si-

multaneously from both directions of the trellis T(U) along with the construction of the branch

metric tables, section by section in serial manner. Once the state metrics, logah__l(a') and

log _hi(a), at the section boundary locations hi-1 and hi, have been computed and the branch

metric table for trellis section Tj has been constructed, the LLR's of the estimated code bits vt

13

for hi-1 W 1 < 1 < hj can be computed from (36) by executing the add-compare-select-subtract

(ACSS) process (similar to the Viterbi algorithm).

To compute the LLR L(fJt) efficiently, define

R(s) Lx max{log ah,_l(a')+ logTh_(L(a',o'))+ logflh_(a)), (46)
(o',_)

= max {log ah,_l(a') + logTh,(L,+(a',a)) + logflh,(a)}, (47)
(_',_)

v/=+l

= max {log e%__ (a') + log nh, (L_+ (a', a)) + log flh, (a) } }, (48)
0',")
vl=--I

for 1 < j < u. From (11), (46) to (48) and using the max-log approximation, we readily see

that for hi-1 + 1 < l < hi,

R(J) = max { R(_) (vt), R_) (v,)). (49)

It follows from (45) to (48) that

R (j) = I RU_(vt)' if v_ = 1, (50)

(o(s), "
• __l(Vl), if V_' = --1.

Then an efficient procedure for computing R_(v,), R_(vt) and L(vt), called procedure B, is

given below:

(1) Compute R (j) based on (46).

(2) For each code bit vt in Tj, based on b*(a', a) and from (50), we first check whether v 7 = 1

or -1 to determine which one between R(_(v,) and R_(vt)is equal to R (j). Then, compute

the one between R(_(v,) and R_(vt) that is not equal to R (j).

(3) Compute g(vt) by taking the difference, R(_1(vt) - R(j_(vt), for hi-1 + 1 < l < hi.

4.2 Computational complexity and storage requirement

The computational complexity for constructing the branch metric tables for the trellis sections

can be analyzed based on procedure A. From (39) and (42), we find that step-1 of procedure A

requires IB]] • [B_I. (mj - 1) additions and IB]I • (IBm]- 1) comparisons to compute the branch

14

metrics for all the distinct compositebranchesin the trellis sectionTj. From (45), (40) and (41),

we find that step-2 of procedure A requires logic operations and IBd[.([B_]]/2 - 1).mj comparisons

to compute metrics, logTh,(L+(G',a)) and log%(L_,(_',a)). Therefore, construction of the

branch metric table for the trellis section Tj requires a total of

Ny('y)= IB]I" (IByl- 1+ (IBJ'I/2- 1). r_j)

comparisons and a total of

NX('V)= IByI" IBYI"(mj - 1)

(51)

(52)

additions.

From (37) and (38), we find that the computation of metrics of states at the boundaries of

(53)

(54)

(55)

Tj requires a total of N_(_) + N_(fl) additions and NJ(_) + Nd(fl) comparisons, where

Nj(,_) = IByI- I_h,(C)I,

N_(fl)= IB21-1_h,_I(C)I,

NI(_) = N_(_) = IB2I.

To analyze the complexity of computing the LLR's given by (36), we follow procedure B.

Based on (46), step-1 requires 21B_I additions and IB_I- 1 comparisons to compute R(J)'s in

the trellis section Tj. Based on (50), (47) and (48), step (2) requires logic operations, IB_].mj

additions and (IB_I- 1).mj comparisons to compute R_(vt)'s and R(j_(vt)'s. Step-3 requires

mj subtractions (a subtraction operation is assumed to be equivalent to an addition) to compute

LLR's in the trellis section Tj. Therefore, a total of

comparisons and a total of

Nj(L) = (IB21- 1). (mj + 1) (56)

Nd(L) = (2 + mj). IBTI+ m_ (57)

additions (including subtractions) are required to compute LLR's in the trellis section Tj.

Since a comparison operation has the same complexity as an addition, it is regarded as

an addition-equivalent operation. Therefore, to decode a received sequence, the Max-log-MAP

15

algorithm basedon the sectionalizedtrellis T(U) requires a total of

_'--1 v-1 v--2

Na,(U) = Y_(N_(7) + N_(T) + N_(L) + N_(L)) + ___(N_(a) + N_(a)) + y]_(N_(fl) + N_(_))
j=0 j=a j=0

(58)

addition-equivalent operations. N,,(U) is used as a measure of the computational complexity

of the Max-log-MAP decoding algorithm based on a sectionalized trellis T(U).

The storage requirement for the Max-log-MAP algorithm is the same as that for the MAP

algorithm.

Table 3 gives optimum sectionalizations (in terms of minimizing the number of addition-

equivalent operations) of trellises for some RM codes with the Max-Log-MAP decoding. For

comparison purpose, the computational complexities and storage requirements of these codes

based on bit-level trellises are also included. We see that proper sectionalization reduces com-

putational complexity and storage requirement significantly for the Max-Log-MAP algorithm.

4.3 Log-MAP algorithm

The Max-Log-MAP algorithm is a suboptimum realization of the MAP algorithm. Even through

it gives an error performance very close to that of the MAP algorithm as shown in Figure 1, it

produces soft-output values inferior to that of the MAP algorithm, due to the approximation

of (35). Hence, when we use the Max-Log-MAP algorithm in turbo decoding, the inferior relia-

bility value (the soft-output of the Max-Log-MAP decoder) results in performance degradation

compared with the optimum MAP decoder. Figure 2 shows bit error performances of turbo

decoding of the parallel concatenated code with block interleaver of size 256 and the (32,16) RM

component codes. We see that at bit error rate of 10 -3 , the Max-Log-MAP decoder results in

0.2 to 0.4 dB performance degradation compared with the MAP decoder.

To overcome this problem, the Jacobian logarithm

log(e 6' + e _) = max{5,, 52} + log(1 + e -16_-6'1) = max{6,, 52} + f_(]52 - 5al) (59)

can be used, where fc(') is a correction function [3]. Then, for a finite set of real numbers,

{'_1,'", Sq}, log(e 6' +"" + e _q) can be computed recursively. The recursion is initialized with

16

two terms given by (59). Supposethat log(e61+ ... + e6'-1) with 1 < i _< q is known. Hence,

log(J 2+... + = log(A +

= max{log A, _i} + fc(I log _ - _,1), (60)

with /k = e6_ + ... + e6_-2. Based on this recursion, we modify the Max-log-MAP algorithm

through the use of simple correction functions. This algorithm, called the Log-MAP algorithm

[3], gives the same error performance as the MAP algorithm, but is easier to implement. Each

correction term needs an additional one-dimensional look-up table, and two additions based

on (59). Consequently, the Log-MAP algorithm requires only additions and comparisons for

computing the LLR's.

The storage requirement for the Log-MAP algorithm is the same as those for the MAP and

Max-log-MAP algorithms, assuming the storage of the look-up tables is negligible.

Consider the computational complexity of the Log-MAP algorithm. Since two extra additions

are required per comparison to calculate fc(.) in (59), a total of N_(7) + 3N_(7), N_J(a) +

3N{ (a), N_ (/3)+ 3N_ (/3) and N_ (L)+ 3N_ (L) addition-equivalent operations required to compute

logT's, log a's, log/3's and LLR's in Ti, respectively, where N_/()'s and are the numbers

of additions and comparisons evaluated for the Max-Log-MAP algorithm in Section 4.2.

Table 4 gives optimum sectionalizations (in terms of minimizing the number of addition-

equivalent operations) of trellises for some RM codes with the Log-MAP decoding. For com-

parison purpose, the computational complexities and storage requirements of these codes based

on bit-level trellises are also included. We also see that proper sectionalization reduces compu-

tational complexity and storage requirement for the Log-MAP algorithm.

5 Bi-directional and Parallel MAP Decoding

To reduce the decoding delay and speed up the decoding process of the MAP algorithm, a

bi-directional MAP algorithm can be devised. This bi-directional MAP algorithm allows to

compute the forward and backward recursions simultaneously.

To achieve bi-directional decoding, we can permute the encoded sequence (vl, v2,..., v_) to

(vl,v_,v2,v,__l, ...) before transmission. Let r = (rl,r,_,r2,r,_l,...) be its corresponding re-

17

ceivedsequence.Basedon the interleaved received sequence r, we compute the 7 probabilities at

the boundary locations in the following order: 7hl _ 7h_ "+ 7h2 "+ 7h___ ---+ "". A permutation

circuit permutes the received sequence r into ra -- (rl, r2,"', rn) and r2 = (rn, r,__x,''', rl) and

shift them from both ends of the sectionalized trellis T(U) to perform forward and backward

recursions simultaneously and compute the a and fl probabilities along with computation of 7's

in both directions. When the recursions meet at the middle of the trellis, the computation of

the log-likelihood ratios of the code bits begins based on (12).

Even though the same number of computations is required, this approach roughly doubles

the decoding speed (or reduces the decoding time by half). If the code trellis has mirror image

symmetry [5], we use two identical circuits to compute a and /3. This also simplifies the IC

implementation. Trellises for RM codes and all cyclic codes have mirror symmetry [5]. This

bi-directional decoding approach can also be applied to the Log-MAP and Max-Log-MAP algo-

rithms.

An u-section trellis for a linear block code can be decomposed into parallel and structurally

identical subtrellises without cross connections among them [5]. Each subtrellis has much smaller

state complexity and connectivity than the full code trellis. This parallel decomposition allows

us to devise identical smaller MAP (or Max-Log-MAP) decoders to process all the subtrellises

in parallel independently without communication between them. This also simplifies the IC

implementation and speeds up the decoding process [8].

Suppose an u-section trellis for an (n, k) linear block code is decomposed into Q subtrellises,

T(1),T(2),...,T(Q). The MAP decoder for the subtrellis T(q), 1 < q < Q, finds a pair of

values, Gq+l(vi) and Gq__l(vi) for each code bit vi in j-th section with 0 <_ i < n, as follows,

4- t
G]:l(vi) _ Y_ (c_h,_,(a') ."/h,(L,,,(a ,a))./3h,(a)). (61)

(o',a)eT(q)
vi=4-X

Then we determine the final pair of values of the entire trellis, denoted (G+I (v_), G-1 (v_)) as

follows,

G+l(Vi) _= Y_ G_.x(vi) and G-l(vi) zx
l_q<Q

Finally, the log-likelihood ratio of vi is given by

L(vi) = log G+i(vi)
G-l(Vi)"

E Gq-l(Vi) • (62)

l_q_Q

(63)

18

Similarly, the Max-log-MAP decodingcanalsobe performedin parallel. The Max-log-MAP

decoderfor T(q) obtains a pair of surviving metrics, M__x(vi) and Mq_l(v,), for v, which are given

by

Mi_(vi) = max {logah,_l(a') + logThs(L_(cr',a)) + 1og/3h,(a)}. (64)
(_',_)eT(q)

Vi=4-1

Then the final surviving pair of the entire trellis, (M+_(v_), m_a(v_)) are given by

m+x(v,) = max{m x(V,): 1 < q < @}and m_x(v,) = 1 < q < @}. (65)

Finally, the log-likelihood ratio of v_ is given by the difference, M+a(v_) - M_l(V_).

From the stand-point of speed, the effective computational complexity of decoding a received

sequence is defined as the computational complexity of a single parallel subtrellis plus the cost of

the final summations (or comparisons) among the survivors generated by each of the subtrellis

decoders. The time required for final summation (or comparison) is generally small relative to

the time required for processing a subtrellis. Furthermore, since all the subtrellises are processed

in parallel, the speed of decoding is therefore limited only by the time required to process one

subtrellis. Consequently, this approach not only simplifies the decoding complexity but also gains

speed. For example, the 4-section trellis diagram of the (32,16) RM code is shown in Figure 3.

It consists of 8 parallel and structurally identical subtrellises without communication between

them. From Table 5, we observe that a single subtrellis has much less computational complexity

than the entire trellis with the Max-log-MAP decoding. The system level architecture utilizes

8 low complexity Max-Log-MAP decoders to decode 8 subtrellises in parallel. Furthermore, the

parallel subdecoders are identical, so that the IC implementation is easy. Also it is clear that

both bi-directional and parallel decoding processes can be incorporated in a single decoder.

6 Conclusion

In this paper, we have modified the MAP, Log-MAP and Max-Log-MAP algorithms for decoding

linear block codes based on sectionalized trellises in order to reduce both the decoding complexity

and delay. Example results show that properly sectionalized trellises require less real operations

and less memory than the bit level trellis. Furthermore, we have taken advantage of the trellis

structure of linear block codes, such as mirror image symmetry and parallel structure to perform

19

bi-directional and parallel decodings. The bi-directional decoding is a simple approach to reduce

the decoding delay by a factor close to two. The parallel decoding uses identical subdecoders to

process subtrellises in parallel. This approach reduces the number of computations required for

each subdecoder and speeds up the decoding process.

References

[1] L. R. Bahl. J. Cocke, F. Jelinek and J. Raviv, "Optimal Decoding of Linear Codes for Minimizing

Symbol Error Rate," IEEE Trans. on Information Theory, 20, 2, pp. 284-287 (1974).

[2] C. Berrou, A. Glavieux and P. Thitimajshima, " Near Shannon Limit Error-Correcting Coding

and Decoding: Turbo Codes," Proc. of IEEE Intl. Conf. on Communications, Geneva, Switzerland,

pp. 1064-1070 (May 1993).

[3] P. Robertson, E. ViUebrun, P. Hoeher, "A Comparison of Optimal and Sub-optimal MAP Decoding

Algorithms Operating in the Log Domain," in Proc. ICC'95, Seattle, WA, 1995. pp. 1009-1013.

[4] J. Hagenauer, E. Offer and L. Papke, "Iterative Decoding of Binary Block and Convolutional

Codes," IEEE Trans. on Information Theory, 42, 2, pp. 429-445 (Mar. 1996).

[5] S. Lin, T. Kasami, T. Fujiwara and M. Fossorier, Trellis and Trellis-based Decoding Algorithms,

Kluwer Academic Publishers, Boston, MA., 1998.

[6] A. Vardy, Trellis Structure of Codes, Handbook of Coding Theory, (edited by V. S. Pless, W. C.

Huffman, and R. A. Brualdi), Elsevier Science Publishers, 1998.

[7] A. Lafourcade and A. Vardy, "Optimal Sectionalization of a Trellis," IEEE Trans. on Information

Theory, 42,3, pp. 689-703 (May 1996).

[8] H. T. Moorthy, S. Lin and G. T. Uehara, "Good Trellises for IC Implementation of Viterbi

Decoders for Linear Block Codes," IEEE Trans. on Communications, 45, 1, pp. 52-63 (Jan. 1997).

2O

Table 1: Optimum trellis sectionalizations of some RM codes for MAP decoding

Bit-level trellis Optimum sectionalizationCodes
muir. add. memory boundary location mult. add. memory

RM(8,4) 180 66 55 {0,2,4,6,8} 112 86 33
700 218 195 288 334 65RM(16,5)

RM(16,11) 1,020

RM(32,16)

458 195

25,612

{0,4,8,12,16}

{0,2,4,6,8,10,12,14,16}

9,594

712 574

4,891

109

153RM(32,6) 2,764 778 731 {0,4,8,16,24,28,32} 784 1,118
885

2,266

{0,2,4,8,12,16,20,24,28,
30,32}
{0,2,4,6,7,8,10,11,12,

13,14,16,18,19,20,21,

22,24,25,26,28,30,32}

4,748

9,704

4,064731

12,846

2,486RM(32,26) 549

RM(64,7) 10,988 2,922 2,827 {0,4,8,16,24,32,40,48, 2,288 3,710 457
56,60,64}

RM(64,22) 1,500,204 475,386 325,051 {0,2,4,8,16,24,32,40,48, 285,256 664,686 20,629
56,60,62,64}

RM(64,42) 2,197,548 998,394 325,051 {0,2,4,8,12,14,16,20,22, 1,395,352 1,395,352 124,453
24,26,28,32,36,38,40,42,

44,48,50,52,56,60,62,64}

RM(64,57) 20,396 9,978 2,827 18,952 10,398 2,453{0,2,4,6,7,8,10,11,12,
13,14,15,16,18,19,20,

21,22,23,24,25,26,27,

28,29,30,32,34,35,36,

37,38,39,40,41,42,43,

44,45,46,48,49,50,51,
52,53,54,56,57,58,60,

62,64}

Table 2: Best uniform sectionalizations of the MAP algorithm for Reed-Muller Codes

Codes

RM(8,4)

trellis

2-section*
multiplication
112

RM(16,5) 4-section* 288

RM(16,11) 8-section* 712

RM(32,6) 4-section 832

RM(32,16) 8-section 9,728

RM(32,26) 8-section 4,088

RM(64,7) 8-section 2,336

RM(64,22) 8-section 286,528

RM(64,42) 16-section 1,395,616

RM(64,57) 32-section 19,032

21

Table 3: Optimum trellis sectionalizationsof someRM codesfor Max-Log-MAP decoding

Codes Bit-level trellis Optimum sectionalization
boundary location operation memory

aM(S,4) {0.4,8} 156 81
486 77RM(16,5)

RM(16,11)

RM(32,6)

{0,2,4,8,12,14,16}

operation memory
230 55

886 195

1,446 195

3,478 731

35,142 4,891

6,950 731

13,782 2,827

1,975,462 325,051

3,195,814 325,051

30,246 2,827

{0,2,4,6,8,10,12,14,16}

{0,2,4,8,16,24,28,30,32}

1,222

1,510

109

165

RM(32,16) {0,1,3,5,8,12,16,20,24,27,29,31,32} 22,078 919

RM(32,26) {0,2,4,6,7,8,10,I1,12,13,14,16, 6,446 549

18,19,20,21,22,24,25,26,28,30,32}

RM(64,7) {0,2,4,8,16,24,32,40,48,56,60,62,64} 5,094 469

RM(64,22) {0,I,3,5,8,I0,16,18,24,30, 905,974 37,839

32,34,40,46,48,54,56,59,61,63,64}

RM(64,42) {0,2,4,8,I0,12,14,16,18,20,22,24,26, 2,646,566 141,925

28,30,32,34,36,38,40,42,44,46,48,50,52,54,

56,58,60,62,64}

RM(64,57) {0,2,4,6,7,8,10,I1,12,13,14,15,16,18,19, 29,174 2,453

20,21,22,23,24,25,26,27,28,29,30,32,34,

35,36,37,38,39,40,41,42,43,44,45,46,48,

49,50,51,52,53,54,56,57,58,60,62,64}

Table 4: Optimum trellis sectionalizations of some RM codes for Log-MAP decoding

Codes Bit-level trellis Optimum sectionalization
boundary location operation memory

RM(8,4) {0,4,8} 244 81

RM(16,5) {0,1,2,4,8,12,14,15,16} 866 83

RM(16,11) {0,1,2,3,4,6,8,10,12,13,14,15,16} 2,242 115

RM(32,6) {0,1,2,4,8,16,24,28,30,31,32} 2,946 171

RM(32,16) {0,1,2,3,5,8,9,12,15,16,17, 43,906 1,415

20,23,24,27,29,30,31,32}

RM(32,26) {0,1,2,3,4,6,7,8,10,i1,12,13,14,16, Ii,210 555

18,19,20,21,22,24,25,26,28,29,30,

31,32}

RM(64,7) {0,1,2,4,8,16,24,32,40,48,56,60, 10,690 475

62,63,64}

RM(64,22) 1,933,682 63,819

RM(64,42)

RM(64,57)

operation memory

330 55

1,258 195

2,298 195

4,906 731

54,202 4,891

ii,354 731

19,370 2,827

2,925,978 325,051

5,192,346 325,051

49,946 2,827

{0,I,2,3,5,8,9,12,16,17,20,24,28,

31,32,33,36,40,44,47,48,52,55,56,

59,61,62,63,64}

{0,1,2,3,4,6,8,10,12,14,16,18,20,22,24,26,

28,30,32,34,36,38,40,42,44,46,48,50,52,

54,56,58,60,61,62,63,64}

{0,1,2,3,4,6,7,8,10,i1,12,13,14,15,16,18,

19,20,21,22,23,24,25,26,27,28,29,30,32,

34,35,36,37,38,39,40,41,42,43,44,45,46,

48,49,50,51,52,53,54,56,57,58,60,61,62,

63,64}

5,009,346

49,618

141,931

2,459

22

Table 5:
trellis

Complexities for the Max-Log-MAP decoding of the (32,16)

operations

memory

operations

entire trellis subtrellis

2,690 340

3O,842 3,865

RM code with 4-section

10 -I

10 -2

_I0 _

10 .4

10 _ ' i i iI

2.5 3 3.5 4 4.5 5

Eb/No(dB)

Figure 1: Bit-error performances of the (32,16) RM code with MAP and Max-Log-MAP decoding

algorithms

23

10 0

i0 -I

10 -I

10 -3

10-"
0

'!!_'!'i...........i...i.........1
!i::!!!!!!!_!!_!_!!!!i!!!!!!!!!!!!!!!!!!!!!!!!_!!!!!!!!!!!!i!!!!!!!!!!!!i!!!!!!!!!!!!i!!!!!!!!!!!

!!!!!_!!_!!!!_!!!!!!!_!_!_!+!_!':!!!!!!!!!!!!i!!!!!!!!!!!!!!!!!!!!!!!!!i!!!!!!!!!!!!!!!!!!!!!!!!

.......... _........ :"............. _ "_"_ _" ::............i!i!!!_:: x*-"_..M I_,.*LO_."I_APi !.......

iiiiiiiiii:iiiiiiiiiiiiiiiiiiiiiiiiiii'iiii:_iii "?",,., i

__:_ i_ I __ ?_--.:.......

I I I I l i I

0.2 0.4 0.8 0.8 1 1.2 1.4 1.6

Eb/No(in do)

Figure 2: Bit-error performances of turbo decoding of the (32,16) RM code with MAP and

Max-Log-MAP decoding algorithms

Section 1 Section 2 • Section 3 Section 4
1st subtrellis "

64states 64'states 64states

Figure 3: 4-section trellis diagram of the (32,16) RM code

24

