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Symbols

BFO blood forming organ

C coefficient (see eq. (3))

CAM computerized anatomical man

CRT cosmic ray telescope

DFE degree of iron (FE) enhancement

E kinetic energy, MeV/amu

GOES Geostationary Operational Environmental Satellite

GSFC Goddard Space Flight Center

H dose equivalent, cSv

HZE high charge and energy

IMP Interplanetary Monitoring Platform

LET linear energy transfer

NCRP National Council on Radiation Protection and Measurements

p(E) momentum, _/E(E+ 1876)

P30 momentum corresponding to proton energy of 30 MeV, 239.15 MV

SEPBz solar energetic particle baseline for atomic charge

SPE

VLET

Z

a(E)

 z(E)

solar-particle event

very low energy telescope

atomic charge

enhancement index

proton velocity relative to velocity light

integral fluence, particles/cm 2

differential fluence, protons/(cm2-MeV)

energy spectra of atomic charge
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Abstract

The solar-particle event (SPE) of September 29, 1989, produced an iron-rich

spectrum with energies approaching 1 A GeV with an approximate spectral slope
parameter of 2.5. These high charge and energy (HZE) ions challenge conven-

tional methods of shield design and assessment of astronaut risks. In the past,

shield design and risk assessment have relied on proton shielding codes and bio-

logical response models derived from X-ray and neutron exposure data. Because

the HZE spectra decline rapidly with energy and HZE attenuation in materials is
limited by their penetration power, details of the mass distributions about the sen-

sitive tissues (shielding materials and the astronaut's body) are important deter-

mining factors of the exposure levels and distributions of linear energy transfer.

Local tissue environments during the SPE of September 29, 1989, with its HZE

components are examined to analyze the importance of these ions to human SPE

exposure. Typical space suit and lightly shielded structures leave significant con-

tributions from HZE components to certain critical body tissues and have impor-
tant implications on the models for risk assessment. A heavily shielded equipment

room of a space vehicle or habitat requires knowledge of the breakup of these

ions into lighter components, including neutrons, for shield design specifications.

Introduction

Solar-particle events (SPE's) have long been rec-

ognized as a potential hazard to human operations in

space.. Recently, the SPE of August 4-7, 1972, was
analyzed, and the inclusion of dose rate effects on risk
assessment was found to reduce health effects of

exposure by a factor of 3 in comparison with a single
high-dose-rate exposure (ref. 1). In that calculation,

only incident protons were considered, as that was the

data set available for analysis. A large SPE, occurring

on September 29, 1989, contained an iron-rich spec-
trum with energies "approaching 1 A GeV and an

approximate energy power index of 2.5 (ref. 2). This

SPE is the largest high-energy event of the space era

(1959 to present), and 10 times this event matches the

ground level data of the SPE of February 23, 1956. It
suggests a 10-scaled event as a worst case event for a

design guide of future deep space mission.

To analyze the importance of HZE ions to human

SPE exposure and for a design guide for future deep

space missions, the event-integrated fluences of the

SPE of September 29, 1989, are constructed from the

limited measured data. The proton spectrum above 30
MeV is well described by a model developed by Nym-

mik (refs. 3 and 4). Below that energy, an exponential

distribution of protons developed by Shea and Smart

is used (ref. 5). The enhancements of the high charge
and energy (HZE) ion abundances, which may present

new and significant problems for radiation protection,

are calculated relative to solar energetic particle base-

line (SEPB) abundances (ref. 6). By using the

HZETRN code systems (ref. 7), transport properties of

the shielding materials and an astronaut's body tissues
are calculated. The typical shield configurations are

assumed to be equivalent aluminum structures. The

astronaut geometry is taken from the computerized
anatomical man (CAM) model (ref. 8). The risk

assessment and the risk contributions of particle

groups are made with the full spectrum of the SPE of
September 29, 1989, to characterize local tissue envi-
ronments.

Energy Spectra of SPE of September 29,
1989

Analytic representation of proton spectra is made
according to the model of Nymmik (refs. 3 and 4) for

energies above 30 MeV and the exponential rigidity

spectra of Shea and Smart (ref. 5) for energies below

30 MeV. From the model of Nymmik (refs. 3 and 4),

the event-integrated proton fluence above 30 MeV of

this event is given by

33o(pp(E) dE = 1.39 × 109 protons/cm 2 (1)

where E is the kinetic energy, and _p(E) is the differ-
ential fluence. For the proton differential fluence

above 30 MeV, _p(E) is given as a power law by



%(e) de = L- 0-30J de (2)

where 13is the proton velocity relative to the velocity

of light, the momentum p(E) = ,,/E(E + 1876), and

P30 is the momentum corresponding to a proton energy
of 30 MeV, which is equivalent to 239.15 MV. The

coefficient C is calculated from equation (2) as

C = 1.39× 109 = 2.034x 107 (3)

[2,39.151451
_30 L p(E) J _ dE

The differential fluence below 30 MeV is calculated

by using an exponential distribution (ref. 5) because

there is a flattening of the spectra below 30 MeV

based upon observations of this event (ref. 9). This

calculation gives a very good empirical description of

data below 30 MeV, and the integral energy spectra
above 1 MeV of this event are well described with

measured data of NOAA (ref. 10) as shown in
figure 1.

Empirical representations of oxygen and iron

spectra are given by Tylka, Dietrich, and Boberg

(ref. 2) as shown in figures 2 and 3. In these figures,

the mean spectral slopes are 3.9 and 2.5 for oxygen

and iron particles, respectively. To obtain the abun-

dance distributions from He to Ni (Z = 2 to 28), oxy-
gen is chosen as the element for the SEPB to which
the relative abundances of those ions are normalized

because its statistics are the best for the ions heavier

than He (ref. 6). The defined SEPB values in

reference 6 are reproduced in table 1, with which the

energy spectra from He to N (Z = 2 to 7) are given as

t_z(E) = SEPB z x _o(E) (4)

where _o(E) is the energy spectra of oxygen.

some underlying pattern for ions heavier than oxygen,
and their spectra are classified by the degree of Fe

enhancement (DFE) with increasing atomic number Z
beyond oxygen as follows:

DFE(Z,E) = (I) _t(E) (5)

Here, the enhancement index a(E) is given from the

energy spectra of oxygen and iron as

iV%erE):I

a(E) = (6)

The degree of enhancement at 100 A MeV of each

atomic charge number beyond oxygen (eq. (5)) is
shown in figure 4 for its abundance relative to the

baseline abundance. With the degree of enhancements
and the SEPB abundances, the data for ions from F to

Mn (Z = 9 to 25) are obtained as

_z(E) = SEPBz t_o(E) (I) tx(E) (7)

For Co (Z = 27) and Ni (Z = 28) energy spectra, one

thirtieth and one tenth of Fe ion spectra are taken,
respectively, which are the relative abundances in

cosmic ray fluence. The relevant integrated fluence
spectra of the SPE of September 29, 1989, are shown

in figure 5. These spectra are used as input to the

transport code systems, HZETRN (ref. 7), for the risk

analysis of the SPE of September 29, 1989.

Critical Regions Considered Inside
Shield for SPE Protection

In some events, an enhancement of heavy ion
abundances is seen relative to an SEPB that increases

with increasing atomic number. These enhancements

have some correlation with spectral slope (ref. 6). The
SEPB Fe/O ratio is 0.066, but for the SPE of

September 29, 1989, the fluence ratio for Fe/O is

approximately 0.2, which demonstrates that this event
is enriched in Fe threefold. This enhancement is

viewed as a distinct physical process superposed on

Particles arriving at some remote location from

the Sun are diffusing through the interplanetary media

and show some anisotropy because in the leading edge

of the expanding radiation field, back-scattered parti-

cles are absent. Following the first 20 to 30 min after

initial particle arrival, isotropy is usually achieved;
therefore, the radiation fields that are incident on the

spacecraft are assumed to be isotropic. Simple space-
craft geometry is chosen in which an astronaut is



assumedtobeatthecenterof a large spherical shell of

uniform material. Three typical shield representations

for a spacecraft are space suit, pressure vessel, and

equipment room. These shields are assumed as
equivalent aluminum structures: space suit with a

thickness of 0.3 g/cm 2, pressure vessel with a thick-

ness of 1 _/cm 2, and equipment room with a thickness
of 5 g/cm; (ref. 11).

Inside a shield enclosure, three critical organs con-

sidered in this study are skin, ocular lens, and blood

forming organ (BFO). In order to determine spatially
the positions of these critical sites, the computerized

anatomical man (CAM) model, which contains 2400

separate geometric tissue regions of several different

elemental compositions and densities (ref. 8), is used.
The detailed mass distributions of body geometry

from 512 rays are used to generate fluences of the var-

ious components of solar particles at each site inside a
shield.

Risk Assessment at Local Tissue

Environment

The incident fluences from the SPE of

September 29, 1989, inside typical space shields are
calculated with the HZETRN code system (ref. 7).
The interior radiation environment is transported

through the inhomogeneous and geometrically com-

plex body to calculate the specific local tissue envi-
ronment. The radiation risks in terms of conventional

dosimetry, dose and dose equivalent with quality fac-

tor (ref. 12), are estimated at local tissue environ-
ments. These are shown in tables 2 and 3.

The dose equivalent contributions of particle

groups to the skin inside shields are shown in figure 6.
Skin is the least dependent on individual body masses,

and the fractional contribution of protons increases as

a function of equivalent aluminum shielding because

of the breakup of multiple charged ions and secondary

production from HZE nuclear interactions with mainly
shield materials, as evident from figure 6. At the ocu-

lar lens, the fractional contributions of all the particle

groups show the same trend as for skin but with a

lesser degree of change as shown in figure 7. This
trend is caused by an increased shielding by body
masses than for skin. The fractional contributions of

all the particle groups at BFO are nearly independent

of the shield thickness as shown in figure 8. It is rea-
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soned that BFO is the most dependent on individual

body masses and all the radiation components are

attenuated to some degree (ref. 13) before reaching the

specific target site of BFO. The most body-shielding
effect is achieved at BFO among the sensitive sites

considered. The risk contribution is further analyzed

to study the detailed local tissue environment and is

presented as follows.

The differential spectra of dose equivalents in fig-

ures 9 through 11 show the detailed risks calculated
for local tissue environments. In these figures, the

height of each curve is proportional to the contribution

for that energy interval. At skin and ocular lens within

a shield, most HZE particles have not reached the end

of their range, but after passing through a shield and

body masses they have been slowed down to higher

LET and fragmented into smaller HZE's that have

higher quality factors. At BFO, which is rather deep

into the body, most HZE particles have been substan-

tially stopped. The energy levels at the peak contribu-

tion of dose equivalent are shifted to higher energy

levels for all the particle groups, as the sensitive site

shifts to deeper within the body. This change is

because HZE particles with high penetration power
become the most effective radiation constituent at that

location. Also noticeable are still significant risk con-

tributions from HZE particles to these tissues inside a

space suit and pressure vessel, as shown in figures 9
and 10.

In figures 9 through 11, two sources of secondary

particles for atomic charge number 1 and 2 are identi-
fied. Differential dose equivalent contributions at low

energy correspond to targetlike fragments, and those

at high energy are from projectilelike fragments

(ref. 14). Relatively abundant low-energy protons and

alpha particles have been produced by nuclear interac-

tions of all primaries in shielding materials and body,

and they contribute substantially to the calculated dose

equivalent. Detailed local tissue environments are
determined by the mass distributions of shielding

materials and body geometry.

In table 3, dose equivalent calculations of the SPE

are given along with the NCRP 30-day limit (ref. 15).
These limits are set to preclude both acute and late

nonstochastic effects by not exceeding the threshold
levels to these effects. From the table, total dose

equivalent at each local tissue is significantly reduced



as shieldthicknessis increasedfrom spacesuit, to
pressurevessel,andto equipmentroom. But dose
equivalentin theequipmentroomonly is within the
acceptableNCRP30-daylimit at eachlocal tissue.
Therefore,only the equipmentroomprovidessuffi-
cient shieldingto avoidacuteor nonstochasticlate
effectsin sensitiveorgansbytheNCRP30-daylimit.

The buildupof neutronsis harmfuleveninsidean
equipmentroombecausetheyareanimportantsource
of theprotonandHeionexposureswithinthetissues.
Indeed,for thecontributionsof doseequivalentsof
Z = 1 and 2 at low energy near 0.1 to several MeV/

amu, these particles result from neutrons produced in
the shielding materials.

For the current risk estimation, the dose equivalent

is calculated by using the defined quality factors

(ref. 12). These quality factors are derived principally

for carcinogenesis and mutagenesis, and the actual

risk estimates for acute exposure may be somewhat
lower than the current estimation. The current estima-

tion is approximated at best, since quality factors for

early radiation effects are not defined (ref. 12). Fur-

thermore, not only track structure effects on injury
cross sections are poorly understood, but there is a

lack of detailed spectral data for alpha particles and

heavier ions emitted during the SPE. Because the full

heavy ion spectra of the SPE of September 29, 1989,
are constructed from the limited measured data, the

current risk estimation for this SPE will be changed

undoubtedly due to these uncertainties.

The current risk estimation in table 3 shows that

skin dose equivalent inside a space suit would be very

large (=300 Sv) for an event of similar spectral charac-
teristics and 10 times intensities of the SPE of

September 29, 1989, such as the SPE of February 23,
1956. Even a dose rate reduction factor of 2 to 3

(ref. 1) would leave the exposures high compared with
the threshold for moist desquamation of 30 Gy (30 Sv)

for gamma rays (ref. 15). The mortality threshold is

1.5 Gy (1.5 Sv) for gamma rays, which is much lower

than 4.2 Sv to BFO inside a space suit for a "February
23, 1956 SPE." In addition to the possibility of skin

infection with an already depressed immune system,

the coincident BFO exposure may provide a serious

medical problem to the astronauts. Clearly, more

shielding is required even within an equipment room

to protect the critical tissues during most of SPE's. An

understanding of the breakup of HZE ions into lighter

components, including neutrons, is required for shield

design specification because all HZE particles are not

stopped as has been shown in figures 9 through 11.

Concluding Remarks

The event-integrated fluences of the solar-particle

event (SPE) of September 29, 1989, are calculated

according to the descriptions of the observed spectra.
This SPE was threefold enriched in Fe relative to the

baseline composition of SPE. The risk estimations.

clearly show that critical organs respond differently to
their local environments. To obtain accurate local tis-

sue environments, the detailed mass distributions of

shielding materials and the sensitive tissues are

required, and they are important determining factors
for accurate exposure level assessments and linear

energy transfer (LET) distributions. The result shows

that high charge and energy (HZE) ions play a limited

role inside a lightly shielded space suit and for the

least shielded organs by the NCRP 30-day limit during
the SPE of September 29, 1989.

The detailed risk analysis according to the differ-
ential spectra of dose equivalent shows that even a

heavily shielded equipment room cannot stop com-

pletely all energetic particles, which may break up into

lighter components including neutrons from the body.
Therefore, a well-shielded region and medical treat-

ment must be considered when a large SPE occurs

during deep space mission.

For accurate risk estimations and shield design
specifications, the spectral data for alpha particles and

heavier ions emitted during SPE's are required as well

as quality factors for early radiation effects. Improved

understanding of track structure effects on injury cross
sections and accurate nuclear databases including neu-

trons are required to decrease the risk estimate
uncertainties.
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Table 1. Solar Energetic Particle Baseline

Particle

[From ref. 6]

SEPBz Particle SEPB z

H/O 3500 + 500 Na/O 0.0083 + 0.0015

He/O 53 + 5 Mg/O 0.183 + 0.010

Li/O <0.001

BelO <5 x 10--4

B/O <5 x 10--4

C/O 0.454 + 0.018

AI/O 0.011-5 _ 0.018

Si/O 0.147 __0.009

P/O 0.0014 _+0.0006

S/O 0.0229 __0.0025

N/O 0.129 _+0.008 Ar/O 0.0016 __0.0007

O/O 1.00 + 0.031 Ca/O 0.0076 _+0.0016

F/O <5 x 10-4

Ne/O 0.128 + 0.008

(Ti+Cr)/O 0.0024 + 0.0009

Fe(group)/O 0.066 + 0.006

Table 2. Dose for SPE of September 29, 1989

Dose, cGy, at--

Atomic Skin inside-- Ocular lens inside-- BFO inside--

Charge Pressure Equipment Equipment
Space suit Space suit vessel room room

Z=i

Z=2

3 <Z< 10

!1 <Z<20
21 <Z<28

780.9

105.2

2.9

0.7

0.3

377.2

16.7

0.5

0.2

0.1

Pressure Equipment
vessel room

296.0 39.9

10.2 0.7

0.3 --0

0.1 =0

0.1 =0

306.6 40.6

193.5

4.8
0.1

0.1

-0

36.8

0.6

--0

-0

--0

13.1

0.2

--0

--0

--0

Pressure
Space suit vessel

27.6 23.4

0.4 0.4

--0 --0

=0 --0

_0 --0

28.0 23.8Total 890.0 394.5 198.4 37.4 13.3



Table3.Dose Equivalent for SPE of September 29, 1989

Dose, cGy, at--

Atomic Skin inside-- Ocular lens inside-- BFO inside--

Pressure Equipment
Pressure Equipment Space suitCharge Pressure Equipment Space suit

Space suit Vessel Room Vessel Room Vessel Room

Z=I

Z=2

3 <Z< 10

11 <Z<20

21 <Z<28

1738.3

1149.3

53.2

9.0

2.4

553.7

81.9

5.3

1.6

0.8

57.7

6.6

0.2

0.1

0.2

668.1

132.3

9.3

2.4

1.0

317.8

33.1

2.4

0.9

0.5

50.1

4.9

0.2

0.1

0.1

37.8

4.0

0.1

0.1

0.1

31.4

3.5

0.1

0.1

0.1

16.8

2.4

--0

--0

--0

Total 2952.2 643.1 64.7 813.1 354.7 55.4 42.2 35.1 19.3

NCRP

30-day 150 100 25
limit

(ref. 15)
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