
NASA/CR- 1999-209331

ICASE Report No. 99-17

Plane Smoothers for Multiblock Grids:

Computational Aspects

lgnacio M. Llorente

Universidad Complutense, Madrid, Spain

Boris Diskin

ICASE, Hampton, Virginia

N. Duane Melson

NASA Langley Research Center, Hampton, Virginia

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-97046

May 1999



Available from the following:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)
5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650



PLANE SMOOTHERS FOR MULTIBLOCK GRIDS: COMPUTATIONAL ASPECTS*

IGNACIO M. LLORENTE t, BORIS DISKIN$, AND N. DUANE MELSON§

Abstract. Standard multigrid methods are not well suited for problems with anisotropic discrete oper-

ators, which can occur, for example, on grids that are stretched in order to resolve a boundary layer. One

of the most efficient approaches to yield robust methods is the combination of standard coarsening with

alternating-direction plane relaxation in the three dimensions. However, this approach may be difficult to

implement in codes with multiblock structured grids because there may be no natural definition of global

lines or planes. This inherent obstacle limits the range of an implicit smoother to only the portion of the

computational domain in the current block. This report studies in detail, both numerically and analytically,

the behavior of blockwise plane smoothers in order to provide guidance to engineers who use block-structured

grids. The results obtained so far show alternating-direction plane smoothers to be very robust, even on

multiblock grids. In common computational fluid dynamics multiblock simulations, where the number of

subdomains crossed by the line of a strong anisotropy is low (up to four), textbook multigrid convergence

rates can be obtained with a small overlap of cells between neighboring blocks.
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1. Introduction and previous work. Standard multigrid techniques are efficient methods for solving

many types of partial differential equations (PDE's), due to their optimal complexity (the required work is

linearly proportional to the number of unknowns) [2], optimal memory requirements, and good efficiency

and scalability in parallel implementations [10, 12]. Although highly efficient multigrid methods have been

developed for a wide class of problems governed by PDE's, these methods are still underutilized in production

and commercial codes [17]. One reason for this underutilization is that the textbook efficiency achieved in

solving uniformly elliptic problems is not maintained in anisotropic problems; i.e., convergence rates of

standard multigrid methods degrade on problems that have anisotropic discrete operators.

Several methods to deal with anisotropic operators have been studied in the multigrid literature. One

popular approach is semicoarsening where the multigrid coarsening process is not applied uniformly to all

of the coordinate directions [13, 14, 16, 19]. By selectively not coarsening the grid in certain directions,

the anisotropy can be reduced on the coarser grids. This process makes the smoothing problem easier

because only part of the high-frequency error (namely, the error components oscillating in the directions of

coarsening) should be eliminated in relaxation.

Another approach for dealing with anisotropic problems is to develop robust smoothers that can eliminate

all the high-frequency errors in the presence of strong anisotropies [11, 15, 18]. These robust smoothers can
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be efficiently implemented in the framework of a multigrid method with full coarsening. Plane-implicit

relaxation schemes belong to this family of robust smoothers. These schemes are natural for structured

grids. (It is more difficult to apply them to unstructured grids because there is no natural definition of a

plane or even a line.) Other intermediate alternatives that combine implicit plane or line relaxations with

partial and full coarsening have also been presented in the multigrid literature [6, 8, 21].

Previously [11], we studied the behavior of plane-relaxation methods as multigrid smoothers on single-

block grids in the three dimensions (3-D). With numerical experiments and the local mode analysis, we

compared diffcrent methods by considering the dependence of their smoothing factors on the anisotropy

strength. It was observed that for strong anisotropies and practical grid sizes, there are significant differences

in the smoothing factors, depending on whethcr periodic or Dirichlet boundary conditions are employed.

For Dirichlet boundary conditions, increasing anisotropy turns the smoother into an exact solver. (The

convergence factor is inversely proportional to the anisotropy strength.)

It has long been known (see, e.g., [2]) that the alternating-direction plane relaxation scheme is a sim-

ple, extremely efficient and robust method. Its efficiency, in fact, is improved in the presence of strong

anisotropies. This scheme was considered to be essentially more expensive (in work-count per relaxation

sweep) than point relaxation schemes. However, it was found (see [11]) that the overall convergence rate of

the 3-D multigrid solver does not deteriorate if, instead of exactly solving two-dimensional (2-D) problems

arising in plane-relaxation sweeps, just one 2-D V-cycle is used in each plane. With this improvement, the

convergence factor per work unit of the 3-D V-cycle employing the alternating-direction plane relaxation

scheme for an isotropic problem is just twice that of the most efficient cycle using a pointwise smoother.

This cost does not look excessive, taking into account the excellent robustness of the alternating-direction

plane relaxation smoother in treating anisotropic problems.

Such single-block algorithms are very efficient (especially for structured grids with stretching) due to

their relatively easy implementation (on both sequential and parallel computers) and good architectural

properties (parallelism and cache memory exploitation). However, multiblock grids are needed to deal with

complex geometries or to facilitate parallel processing. This multiblock approach is already useful in serial

computers: it improves the data locality properties and efficiently exploits the memory hierarchy of the

underlying computer [7].

Plane smoothers have been successfully applied to solve the incompressible Navier-Stokes equations on

rectangular multiblock grids (multiblock grids where lines and planes are globally defined) [15]. In a general

case, however, the plane-implicit smoother can be applied only within the current block, and so this plane

smoother becomes a blockwise plane smoother. The purpose of the current work is to study whether the

optimal properties of plane-implicit smoothers deteriorate for general multiblock grids where these smoothers

are not applied globally, but inside each block.

Previous analysis for the 2-D case reported by Jones and Melson [9] suggests that multiblock grids have

a detrimental effect on the performance of implicit schemes. By using numerical experiments and rigorous

analysis, Jones and Melson derived relations between the block size, the amount of overlap between blocks,

and the strength of the anisotropy, that must hold for the resulting multigrid algorithm to be efficient. By

looking at the model problem, they showed that textbook multigrid efficiency is achieved only when the block

sizes (and, therefore, the range of the implicit operators) are proportional to the strength of the anisotropy.

We have developed a flexible 3-D code to study the behavior of blockwise plane smoothers and determine

whether the result relating the convergence rate with the block size, the overlap size, and the anisotropy

strength obtained for the 2-D case holds for 3-D. The current version of the code solves the nonlinear



diffusion-convectionequationbyusingafull multigridapproachwith the full approximation scheme [2, 20]

for V-cycles. This report presents results for the linear anisotropic diffusion equation. This equation can

be solved in a multiblock, cell-centered, stretched grid for complex geometries. Each block can overlap with

neighboring blocks. The code is implemented in Fortran77 and has been parallelized with the standard

OpenMP directives for shared-memory parallel computing.

The research code is described in section 2. We have analyzed two cases of anisotropy. The first case is

an anisotropic equation discretized on uniform grids (section 3) and the second case is an isotropic equation

discretized on stretched grids (section 4). Different strategies for parallelizing multigrid solvers with blockwise

relaxation schemes are outlined in section 5. Finally, section 6 presents some conclusions and future research

directions.

2. The numerical problem. We will study the behavior of plane smoothers on multiblock grids when

solving the anisotropic diffusion equation

02u(x, y, z) bC_2U(X, y, z) c02u(x, y, z)
(2.1) a Ox 2 + coy2 + c Oz 2 = f(x, y, z)

on a 3-D rectangular open domain, _, with suitable boundary conditions on 5_, where u is an unknown

function, and f is a specified source function. Coefficients a, b, and c in equation (2.1) can, in general, be

functions of the spatial variables. A finite volume discretization of equation (2.1) is applied on a cell-centered

computational grid _1. The discretization is given by the system of equations Llu 1 = fl.

FIG. 1. 32 x 32 X 32 uniform grid, 32 x 32 x 32 grid stretched along x-direction (stretching ratio 1.5) and 32 x 32 x 32

grid stretched along all directions (stretching ratio 1.5).

This paper studies two sources of anisotropy: anisotropic equation coefficients and nonunitary cell aspect

ratios due to grid stretching. These sources reflect different situations: the former represents problems with a

uniform anisotropy throughout the domain, while the latter exhibits problems with an anisotropy that varies

from cell to cell. Grid stretching is commonly used in computational fluid dynamics (CFD) grid generation to

pack points in regions with large solution gradients while avoiding an excess of points in more benign regions.

In the present work, the stretching of the grid in a given direction is characterized by the stretching ratio

(quotient between two consecutive mesh sizes in the same direction). See Figure 1 for examples of stretched

grids. Varying local grid aspect ratios cause the mesh sizes (and, therefore, the anisotropy strength) to be



differentin eachcell. Notethat for anexponentialstretchingin all thedirections,everycellcanhavea
differentanisotropy.

2.1. The single-block algorithm. Our research code implements the full approximation scheme

(FAS) to deal with nonlinearity. However, in the simplified (linear problem) case studied in this report

the FAS performance is exactly the same as for the correction scheme.

A sequence of grids 121(l = 1 .... , M) is used in the multigrid scheme where l_1 is the finest target grid

and the rest of the grids are obtained by applying cell-centered coarsening. In nonstretched-grid solvers,

ht = 2hi-1 and hi = h. Llu I = ft is the discretization of equation (2.1) on 12_. The following iterative

algorithm represents a V(71,72)-cycle to solve the system Llu 1 = fl.

step 1: Apply _/1 sweeps of the smoothing method to Llu 1 = fl

RESTRICTION PART

for l ----2 to M

step 2: Compute the residual r1-1 = fl-1 _ Lt-lul-1

step 3: Restrict the residual r t = l_-lr 1-1

step 4: Restrict the current approximation v t = ]_-lut-1

step 5: Compute the right-hand side function fl = r t + Ltv t

If (l < M) then

step 6: Apply _/1 sweeps of the smoothing method to LZu I -- ft

else

step 7: Solve the problem LMu M = fM on the coarsest grid

PROLONGATION PART

for /=M-lto 1

step 8: Correct the current approximation u I ----u I + I[+l (UTM - v TM)

step 9: Apply "r2 sweeps of the smoothing method to Llu z = fl

The intergrid operators that perform the restriction (I_-1 at step 3 and I_-' at step 4) and the prolon-

gation (I_+1 at step 8) connect the grid levels. The prolongation operator maps data from the coarser level

to the current one while the restriction operators transfer values from the finer level to the current one. For

the restriction operators, we used unweighted averaging for the solution u and a volume-weighted sum for

the residual r. The prolongation operator is trilinear interpolation in the computational space.

Alternating-direction plane smoothers (Figure 2) for steps 1, 6, and 9 (in combination with full coars-

ening) have been found to be highly efficient and robust for anisotropic discrete operators on single-block

grids [11]:

• Optimal work per cycle. An exact solution of each plane is not necessary; an approximate solution

obtained by a single, 2-D multigrid cycle gives the same convergence rate of the 3-D multigrid cycle

as an exact solution of each plane, but in much less execution time.

• Very tow convergence ]actor. The convergence rate improves as the anisotropy becomes stronger.

2.2. Multiblock grids. Multiblock grids divide domain 12 into P subdomains _p (p = 1, ..., P)



FIG. 2. Alternating-direction plane-implicit smoother.

FIG. 3. Multiblock grid for a multielement airfoil. Neighboring subgrids share a grid plane.

P
(2.2) s2 = up=af_p,

where each subdomain f_p is covered with a structured grid f_. The grid blocking is generated by the grid

generation software to deal with geometric complexities (Figure 3). A similar blocking is induced on the

coarser grid levels. For multigrid, we construct a sequence of grids f_l (l = 1, ..., M); each grid is defined as

the union of P blocks:

(2.3) f_t = t_)p=ll2p,PI. (l = 1, ..., M).

We assume that the grid lines are contiguous (possessing C o continuity) across the block interfaces (Figure

3).

This decomposition generates artificial boundaries within the original domain. It is necessary to apply

some boundary conditions to the governing equations at these interfaces. In practice, a Dirichlet boundary

condition is applied at artificial boundary cells (Figure 4). (Artificial boundary cells are cells adjacent to the
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FIG. 4. Data structure of a subgrid without overlap; n is the number of cells per side in every block, m is the number of

blocks per side in the split, and _ is the number of overlapping ceil planes.

boundary of the given block.) The values of the unknowns assigned to these boundary cells are derived from

the values at the corresponding cells in the neighboring blocks. Therefore, subgrids are extended to include

these artificial boundary cells.

":::: '::"::" ..... _ [i _" .[::':.::::

"l" "! ! NII :I• • •

Overlapping cell

[] Artificialboundary c_l

_-] Inner cell

x True boundary

FIG. 5. Data structure of a subgrid with overlap: n is the number of cells per side in every block, m is the number of

blocks per side in the split, and 6 is the number of overlapping cell planes.

2.3. Overlapping subdomains. Let us define the extended subgrid f_tv,_ which is the subgrid f_tv

including all the inner and artificial boundary cells, plus an external margin of 6-cells deep overlapping into

the neighboring block (Figure 5). In the general case of a cubic (3-D) partitioning when the overlap can be

different in each of the six directions, 6 is a six-component vector (6zv, 6m, 6v, 6_n, 6z_, 6zm). The expressions

Lvuvl_ = f_l and L_,auv, __ = ftv,_ denote discretizations on f_t and f_,a, respectively.

For simplicity, we consider a uniform overlapping (the same 6) throughout all the block interfaces. We

must distinguish between the number of overlapping cells (26) and the physical size of the overlap ((26+ 1)h).

The latter is defined as the distance between centers of the artificial boundary cells of the two extended

subgrids sharing a block interface. There are two strategies for the coarse-level block overlapping:

• Fixed overlap. The overlap parameter 6 is the same in all the levels of the multigrid hierarchy
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FIG. 6. Grid hierarchy of overlapping subdomains with a fixed number of overlapping cells n is the number of cells per

side in every block, m is the number of blocks per side in the split, and _ is the number of overlappin 9 cell planes

(Figure 6). Consequently, the overlapping space increases on the coarse levels. (It is doubled in

each coarsening step.) This expansion happens because the number of the overlapping cells in the

cross-interface direction remains fixed, while the size of each cell is doubled.

• Decreasing overlap. The number of overlapping cells in the cross-interface direction is reduced (6 is

divided by 2 for each coarser level; see Figure 7). The overlapping space may also increase but much

more slowly than in the previous case.

Again, in order to compare these strategies, we have to consider the performance (i.e., convergence rate

per work unit) of the obtained algorithms. The work-count per cycle is a bit higher in the algorithm with

a fixed overlap, due to the memory and computation overhead on the coarse levels. However, these two

alternatives do not exhibit the same convergence rate (see discussion in section 3). Much of the efficiency

of the multigrid algorithm is lost when using a decreasing overlap. Consequently, the fixed-overlap strategy

was found to be globally more efficient.

The grid generation code generates a multiblock grid decomposed into subgrids. Extended subgrids are

defined at the beginning of the simulation code. Note that overlapping cells may belong to several (more

than 2) subgrids. This inherently implies a deterioration of the efficiency in a parallel setting.

In a general multiblock grid, there is no global definition of a line or a plane and so we have two

alternatives to implement a V-cycle with an implicit smoother:

• Domain decomposition with multigrid applies the V-cycle inside each block.

• Multigrid with blockwise plane smoother ( Multigrid with domain decomposition smoother ) applies

the V-cycle on the entire multiblock domain, while the smoothers (steps 1, 6, and 9) are performed
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F](_ 7 Grid hierarchy of overlapping subdomains with a decreasing number of overlapping cells; n is the number of cells

per side in every block, m is the number of blocks per side in the split, and 6 is the number of overlapping cell planes

inside each block.

2.4. Domain decomposition technique with multigrid. The following iterative algorithm repre-

sents a domain decomposition VDD('_l,72)-cycle to solve the system Llu I = fl, where i21 is a multiblock

grid decomposed into P subgrids.

for p = 1 to P

1 1 1

step 1: Apply V(_/1,_/2)-cycle to solve the system Lp,,_up,,_ = ]_,,i on I2p,_

update 1: Update the overlap cells of neighboring blocks with values obtained in step 1

This technique is widely known by the computational community; it is the one-level multiplicative

approach to solve the problem in a domain decomposition manner [1]. This alternative does not present

a high level of parallelism because blocks are updated in sequential order. Other alternatives (Jacobi or

colored ordering) with a higher parallelism can be found in the domain decomposition literature. The main

drawback of the one-level multiplicative approach is its slow convergence rate. The convergence of this

technique cannot be better than the convergence of the Schwartz method, which is known to be very poor.

In fact, the convergence of a multigrid cycle with blockwise plane smoother will be bounded above by the

convergence rate of the domain decomposition solver.

2.5. Multibloek with blockwise smoother. This approach is a priori more efficient because the

multigrid algorithm is applied on the whole domain. Its efficiency and excellent parallelization potential



already have been demonstrated for isotropic elliptic problems [4] where pointwise red-black smoothers were

used. In the proposed multigrid method for multiblock grids, the plane smoothers are applied within each

block because no global definition of plane or line is assumed. However, the rest of the operators (restriction

and prolongation) are completely local and do not need any global information. This method is a simple

modification of the one-block approach, with the smoother applied blockwise. The following iterative algo-

rithm represents a VBw-cycle with the blockwise smoother to solve the system Llu 1 -= fl, where Ft 1 is a

multiblock grid.

Apply 3'1 sweeps of the blockwise smoother:

for p -- 1 to P
1 1

step 1: Apply the smoothing method to the system Lp,SUp, 5 _- flp,5

update 1: Update the overlap cells of neighboring blocks with 1Up,5

RESTRICTION PART

for l = 2 to M

for p -- 1 to P
l--1 l--1 rl--1 l--1

step 2: Compute the residual rp f_ -- Lip Up

l l l-1
step 3: Restrict the residual rp = (I__l)r p

l ^l 1--1
step 4: Restrict the current approximation vp = (II_ 1)up

for p = 1 to P

I and l of neighboring blocksupdate 2: Update vp,61 and rp,61 in the external margin cells by using vp rp

forp= 1 to P

step 5: Compute the right-hand side ]_,_ = rp,_ + Lp,_Vp,_ll

If (l < M) then

Apply 3"1 sweeps of

forp= 1 to P
l l l

step 6: Apply the smoothing method to the system Lp,sUp, _ = fp,5

update 3: Update the overlap cells of neighboring blocks with lUp,5

else

step 7: Solve the coarsest-grid problem Ltu t = fl on the whole domain

forp= 1to P

of neighboring blocksupdate 4: Update up,_l in the external margin cells by using up

PROLONGATION PART

forl---M-lto 1

for p ---- 1 to P

l _ (_r//+l)(U/+l /+1step 8: Correct the current approximation u_ = up - % )

for p = 1 to P

update 5: Update up,_l in the external margin cells by using utv of neighboring blocks.

Apply 3"2 sweeps of

for p = 1 to P

step 9: Apply the smoothing method to the system Llp,_u_,_ = ftp,z

update 6: Update the overlap cells of neighboring blocks using t_t p,j.



At step 7, the problem is solved exactly on the coarsest grid common to all the blocks. The cost of

solving the system on this grid is negligible compared with the total work.

At updates 2, 4, and 5, the external margin of overlapping cells of neighboring blocks are updated by

using inner cells of the current block (Figure 8a). At updates 1, 3, and 6, the overlapping cells of neighboring

blocks are updated by using inner and external overlapping cells of the current block (Figure 8b).

_1 _'l-I-I-I't-I.l-l-I-I-lel,lel.l-lm_l_
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i
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r

Inner cell

• True boundary

FIc. 8. The algorithm presents two different update processes.

The algorithm includes two computation-update processes:

• Global computation of the residual, restriction, and prolongation (steps 2, 3, 4, and 8) are performed

on inner cells of _ for all the blocks. Then the external margin of overlap cells of all the blocks are

simultaneously updated (updates 2, 4, and 5).

• Within a smoothing step (steps 1, 6, and 9), the update of the solution values at the internal and

external overlap cells of neighboring blocks (updates 1, 3, and 6) is performed immediately after

completing the smoothing process at the current block S2_,_. The new, smoothed _ approximation_p,5

is used. Thus, the order of these updates repeats the order in which the blocks are treated in the

smoothing steps.

Next, we study the properties of the plane-smoother technique for multiblock grids in two situations:

• Anisotropic equation discretized on uniform grids

• Isotropic equation discretized on stretched grids

10



3. Anisotropic equation discretized on uniform grids. A cell-centered discretization of equation

(2.1) on a uniform grid is given by

(3.1)

Cl

(ui_#_-l,i. - 2ui_,_#. + u_x,i_+l,i.) +

1

_z (Ui=,iy,i*--I -- 2Ui=,i_t,i. "_- Ui=,iv,i.+i) = J;=,iu,i.

where is -- 1, ..., nz, iu = 1, ..., nu, iz = 1, ..., nz, ¢1 = a/c, and e2 = b/c are the anisotropy coefficients; fr is a

discretization of the continuous function f(x, y, z)/c; and hx, hv, and hz are the mesh sizes in the x, y, and

z directions, respectively. The equation is cell centered and the grid nodes are at the cell vertices. The grid

may have different mesh sizes in each dimension.

A multigrid method separates the treatment of different error components: the high-frequency com-

ponents of the error are reduced in relaxation (smoothing) steps and the low-frequency error components

are eliminated in the coarse-grid correction. Thus, the efficiency of a multigrid solver depends strongly on

the smoothing factor of the relaxation. Indeed, the derivation of a good smoother is probably the most

important step when developing multigrid algorithms.

Consequently, the efficiency of our multigrid technique is determined by the smoothing properties of the

blockwise plane smoother. Of course, the smoothing factor of the blockwise plane smoother approaches the

factor of a pointwise smoother when the number of blocks increases. In the limit, each block consists of

one cell only and the blockwise smoother reverts to a pointwise smoother. This is not a realistic case. We

always assume that the number of cells per block is large. Our goal is to study the behavior of the blockwise

smoothers when the number of subdomains crossed by the line of a strong anisotropy is low (up to four).

This is common in CFD simulations. It is unlikely that regions of very strong anisotropies will traverse

many blocks, especially for stretched grids. In such cases, textbook convergence rates could be obtained by

allowing larger overlaps in the blocks with the strong anisotropy, while in other blocks the overlaps can be

small. Even when an extremely strong anisotropy traverses four blocks in a line, we obtain good convergence

rates when using a moderate overlap.

The smoothing properties of a blockwise plane smoother are analyzed for the model equation (3.1) for

an anisotropy (in the equation coefficients) ranging from 1 to l0 s. The number of subdomains crossed by

the strong anisotropy is either two or four. As a point of reference, we take the convergence rate obtained

by a V(1,0)-cycle for the isotropic problem on a single-block grid with a Gauss-Seidel plane smoother. This

cycle demonstrates a textbook multigrid convergence rate of about 0.36 (the plane-smoother convergence of

reference) [11]. The convergence rate of the same V(1,0)-cycle with the pointwise Gauss-Seidel smoother is

about 0.55 (the point-smoother convergence of reference).

3.1. Numerical results. Let us assume an g 3 global grid partitioned in m 3 blocks (cubic partitioning).

Each block is covered with _2_p,, extended subgrid. Our aim is to obtain the dependence of the convergence

rate p(m, n, _, e) on the following parameters:

• number of blocks per side: m

• number of cells per block side: n (n = _-)

• overlap parameter describing intersection between neighboring blocks:

• strength of the anisotropy: e

11



s21

FIc. 9. Rectangular uniform multiblock grid used in the numerical experiments; n is the number of cells per side in every

block and rn is the number of blocks per side in the split.

3.1.1. Description of test problem. All the numerical experiments reported here deal with the

numerical solution of equation (2.1) on the unit cube f_ = (0, 1) × (0, 1) × (0, 1) with the right-hand side of

(3.2) f(x, y, z) = -(a -4-b + c) sin(x + y + z)

discretized on 643 and 1283 multiblock grids (Figure 9) with different overlaps (5 = 0, 2, 4, and 8). Dirichlet

boundary conditions are enforced on the boundary by evaluating

(3.3) u(x, y, z) = sin(x + y + z).

The asymptotic convergence rate monitored in the numerical tests is the asymptotic rate of reduction

of the L2 norm of the residual function in one V(1,1)-cycle.

The (x, y)-plane Gauss-Seidel smoother is applied inside each block and the blocks are updated in

lexicographic order. For intergrid transfers, the same operators as defined in section 2.1 are used. The 2-D

problems defined in each plane are solved by one 2-D V(1,1)-cycle with x-line Gauss-Seidel smoothing.

3.1.2. Discussion of results. Two sets of calculations were performed to determine the experimental

asymptotic convergence rate as a function of the anisotropies. In the first set, two parameters (q and e2) are

varied, and in the second, just one parameter (el) is varied while the second parameter (e2) remains equal

to 1.

• Both c1 and e2 are varied for the single block case (m = 1) and two multiblock cases (m = 2 and

m = 4). Different overlaps between blocks (5 = 0, 1, and 2) are examined. The upper graphs in

Figures 10 and 11 show the results for 643 (N = 64) and 1283 (N = 128) grids, respectively.

• Only the parameter el is varied for the single block case (m = 1), and two multiblock cases (m = 2

and m = 4). Different overlaps between blocks (5 = 0, 1, and 2) are examined. The lower graphs in

Figures 10 and 11 show these results for 643 (N = 64) and 1283 (N = 128) grids respectively.

the graphs exhibit a similar behavior with respect to _ and e. We can distinguish three differentAll

cases:

In the single-block case (m = 1), the convergence rate decreases quickly for an anisotropy larger

than 100, tending to (nearly) zero for very strong anisotropies. In fact, the convergence rate per

V(1,1)-cycle decreases quadratically with increasing anisotropy strength, as was predicted in earlier

work [11].
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FIc. 10. Experimental convergence factors, pc, of one 3-D V(1,1)-cycle with blockwise (x, y)-plane smoother in a 643 grid

with respect to the anisotropy strength (_z and _2) for different values of the overlap (6) and the number of blocks per side (m).

• If the domain is blocked with the minimal overlapping (m > 1 and 6 = 0), the convergence rate for

small anisotropies (1 < _ < 100) is similar to that obtained with a single block with a pointwise

smoother on the whole domain (i.e., point-smoother convergence of reference, which is about 0.552).

It increases to a fixed value for larger anisotropies. This limit is defined by the convergence in the

corresponding domain decomposition algorithm. The convergence rate for strong anisotropies gets

closer to one for finer grids (compare Figures 10 and 11 for the same m and 6 but different N).

• If the domain is blocked with larger overlapping (m > 1 and _ > 2), the convergence rate for small

anisotropies is similar to that obtained without blocking on the whole domain (i.e. plane-smoother

convergence of reference which is about 0.362 ) and increases to the fixed domain decomposition

limit for very strong anisotropies. The asymptotic value for strong anisotropies gets closer to one

for smaller overlaps and finer grids (compare Figures 10 and 11 for the same m but different 6 and

N).

Numerical results show the following properties of the convergence behavior:

• Convergence is very poor with the minimal overlap (6 = 0), but it improves rapidly with larger

overlaps (6 >_ 2).

• If we compare the results for 643 and 1283 and m = 2 (Figures 10 and 11), we realize that the

convergence rate for large anisotropies is bounded if the overlap is increased in proportion to the

size of the block, i.e., p(2, n, 6, e) .._ p(2, 2n, 26, e) (see Figure 12). Therefore, mesh-independent

convergence rates can be obtained for large anisotropies by increasing the number of overlap cells

in proportion to the number of cells per side in the subgrid. The amount of extra work (in relative
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FIG. iI. Experimental convergence factors, Pc, of one 3-D V(l,1)-cycle with blockwise (x,y)-plane smoother in a 1283

grid with respect to the anisotropy strength (el and e2) for different values of the overlap (_) and the number of blocks per side
(m).

terms) to maintain the convergence rate at a fixed level does not increase for finer grids.

• For 17-cell overlap (J = 8), 2 blocks per side (m = 2), and 323 cells per block (n = 32), we obtain

for all anisotropies (nearly) the same convergence rate as for the isotropic case without blocking

(plane-smoother convergence of reference). This overlap results in only a 25 percent computation

and memory penalty.

• The smoothing factor for very strong anisotropies degenerates with an increasing number of blocks

m, because the blockwise smoother tends to be a pointwise smoother.

3.2. Analysis. The full space Fourier analysis is known as a simple and very efficient tool to predict

convergence rates of multigrid cycles in elliptic problems. However, this analysis is inherently incapable of

accounting for boundary conditions. In isotropic elliptic problems where boundary conditions affect just a

small neighborhood near the boundary, this shortcoming does not seem to be very serious. The convergence

rate of a multigrid cycle is mostly defined by the relaxation smoothing factor in the interior of thc domain,

and therefore, predictions of the Fourier analysis prove to be in amazing agreement with the results of

numerical calculations. In the presence of a strong anisotropy, boundary conditions have a stronger effect on

the overall convergence factor that a multigrid cycle can achieve. If the strong anisotropy direction aligns

with the grid (as in equation (3.1)) and the domain is not blocked, then the smoothing factor calculated

by the full-space Fourier analysis still predicts well the multigrid cycle convergence rate. In the case of

nonalignment, however, the full-space analysis cannot reflect the poorness of the coarse-grid correction,

which slows down the convergence (see [5, 3]) and so the half-space analysis must be used instead. The
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(r. = 2).

multiblock structure brings additional difficulties: in strongly anisotropic problems on decomposed domains,

artificial boundaries have a large effect on the solution in the interior (e.g., on the relaxation stage), making

even the half-space analysis inadequate. In the extreme case of a very large anisotropy, the behavior of a

plane smoother is similar to that exhibited by a one-level overlapping Schwartz method [1]. The following

analysis is an extension of the half-space Fourier analysis, taking into account the influence of a second

boundary.

We consider the discrete equation (3.1) on a layer (ix, i u, iz) : 0 < ix < N, -cx_ < iv, iz < oc. This domain

is decomposed by overlapped subdomains in an x-line partitioning. The boundaries of all the subdomains

are given by the set of cell planes orthogonal to the x-coordinate axis. Boundary conditions are represented

by one 2-D Fourier component at a time. In this way, the original 3-D problem is translated into a 1-

D problem where frequencies of the Fourier component are considered parameters. When estimating the

smoothing factor for the 3-D alternating-direction plane smoother, we analyze only the high-frequency Fourier

components. A 2-D Fourier component e i(Ovi_+O"i'), (lOul < 7r; tOzt <_ 7r) is a high-frequency component if

the absolute value of either 0 u or 0z is greater than or equal to 7r/2.

We are given values of N, m, n, 6, ez and e2 (see definitions in section 3.1) and we let the integers ix =

0... N numerate the cells. We also label the blocks with numbers from 1 to m. To predict the smoothing

factors observed in our numerical experiments, we assume that the strongest anisotropy direction is aligned

with the x axis, i.e., el > e2 _> 1. The actual boundary separating two neighboring blocks is placed between

the cell centers. Recall that the overlap parameter 6 corresponds to the case where the width of the domain
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shared by two overlapped blocks is (2of + 1)h. The left boundary condition of the first block is defined at

the center of the actual (not artificial) left boundary cell 11 = 0; the right boundary condition is defined

at rl = n + _ + 1. Each block k (k = 2 .... , rn - 1) has two (artificial) boundary planes settled in the

interior of the domain: the center of the left boundary cell is located at lk = (k - 1)n -- (f, and the center

of the right boundary cell is at rk = kn + (i + 1. The left boundary cell of the last m-th block is centered

at lm = (m - 1)n - (f, and the center of the right boundary cell is at r m = N. One application of the

3-D alternating-direction plane smoother on the k-th block includes three plane-relaxation sweeps. In the

analysis, we assume that in the first sweep, the smoother proceeds in the x direction from it = lk to i x = rk,

solving the corresponding y-z-plane problems exactly. In numerical tests, just one V(1,1)-cycle is applied

to approximate the 2-D solutions. The second and third sweeps are performed in the y and z directions

respectively.

Let us consider equation (3.1) with the initial approximation fii_,i_,i, and the source function f'_,i_,i.

given in the form

£ri_,iy,i_ = A(iz)e i(O_iv +O*i_)

f_.,iu,i. = F(ix)ei(°vi_ +O.i,,)

ix = O, . . . , N,

where A and F are (N + 1) dimensional complex-valued vectors. A(i,) and F(ix) represent the corresponding

amplitudes of the Fourier component at ix.

Let E(iz) be the amplitude of the algebraic error in the k-th block after updating the solution values

at the overlap _lk,(k- 1)n / • We have E(i_) = U(ix)- A(i_), where U(ix) is the amplitude of the exact

discrete solution

U(0) = U0; U(N) = _,

qV(ix - 1) + ,lV(i_) + qV(ix + 1) = F(i_),

ix=l,...,N-1,

with given boundary conditions U0 and U1.

In the first sweep, the new amplitude El(i.) is defined from

El(lk) _- E(Ik); El(rk) = E(rk),

(3.4) qEl(ix - 1) + #1El(ix) = -qE(ix + 1),

i, = lk + 1,... ,rk -- 1.

After the second sweep the new amplitude F-_(ix) is the solution of the following system of equations.

E2(lk) = E(lk), E2(rk) = E(rk),

(3.5) elE2(ix - 1) + #2F-_(i_) + qE2(ix + 1) = -e2eiOvSl(ix),

ix -- lk + 1,...,rk -- 1,

,2 = --2q +e2(e -i°_ -- 2) + 2(cos0z- 1)

Finally, the amplitude Ea(i_) of the approximate solution obtained after the third sweep is found from

the following system of equations.

Ea(l_) = E(lk), Ea(rk) = E(rk),
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(3.6) elE3(ix- 1)+ #aEa(ix)-t-elE3(ix + 1) = -ei°'E2(ix),

ix = lk + 1,...,rk -- 1,

÷  (cos0 _1)÷(o,o._
The smoothing factor of the alternating-direction plane smoother step is the ratio between the L2 norms

of high-frequency errors before and after the step is performed. This analysis is very rigorous and especially

useful for predicting the convergence in full multigrid (FMG) algorithms (see, e.g., [2]). In these algorithms,

where only a few smoothing steps are performed on each grid and the initial error is basically the difference

between solutions on successive grids, this analysis allows a direct estimation of the algebraic error at any

stage of the algorithm.

To estimate asymptotic convergence rates, the following simplifications can be adopted.

3.2.1. Simplifications in different regimes. There are two processes affecting the amplitude of

high-frequency error components. The first is the smoothing in the interior of the blocks. The effect of this

smoothing is very similar to that on the single-block domain. It is well described by the smoothing factor

SM derived from the usual hill-space Fourier mode analysis (see [2, 11, 20]). If the problem is essentially

isotropic (el = O(1)), then each of the three sweeps (3.4) (3.6) contributes to the alternating-direction

plane-relaxation smoothing factor. This smoothing factor proves to be very small (SM = 1/x/i_ _ 0.089 in

the pure isotropic problem), but the overall convergence rate in a V-cycle is worse because it is dictated by

the coarse-grid correction. To predict the asymptotic convergence rate in a V-cycle, the two-level analysis

should beperformed. In problems with a moderate anisotropy in the x direction (el = O(h-_)), the high-

frequency error is reduced mainly in the third sweep (3.6) and the smoothing factor approaches the 1-D

factor SM = l/v/5 (see [11]). In strongly anisotropic problems (el = O(h-2)), the third sweep reduces the

smooth error components as well, actually solving the problem rather than just smoothing the error.

The second process influencing the high-frequency error is the error propagation from incorrectly specified

values at the block boundaries. The distance on which this high-frequency boundary error penetrates inside

blocks strongly depends on the anisotropy. It can be estimated by considering a semi-infinite problem

associated with the sweep (3.6). The left-infinite problem stated for the k-th block assumes a zero right-

hand side and omits the left boundary condition

E(rk)=B, E2(i_)=0, -oo<ix <rk.

The solution of this problem is

_2 --rk

(3.7) el-_ -1 + #a + el,_ = 0;

For high-frequencies under the assumption el > e2 _> 1,

0 =
The right-infinite problem is similarly solved providing

I 1->i.

<.._-
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[ \
where

Ar_O_,Oz) is a root of equation (3.7) satisfying [AI < 1.

The roots of quadratic equation (3.7) for 0y -- 0 and 0z = _ are given by

Al = - + - and

At-- A1-1-- -_- ^_/_- 1 ,

where

 3=-2 (i+2)
£1

Thus, if

A rk-/_-2_-I << A 25+1

i.e., the influence of the far boundary (e.g., rk+l boundary on rk), is negligible in comparison with the

influence of the nearby boundary (/k+l on rk), then the high-frequency error amplitude reduction factor,

RF, is estimated as the ratio between the amplitudes on the right boundary rk before and after the plane-

smoother step is performed. After relaxing the k-th block, the amplitude at lk+l is about BA_ 25-1 and
/ \ 25+ 1 / \ 45+2

after relaxing the (k + 1)-th block, the estimated amplitude at rk is B_Ar/A/) = B_Ar) . Thus,
the reduction factor could be approximated by

/ \ 46+2

(3.8) nF

If the anisotropy is strong (_1 -- O(h-2)), both boundaries (far and nearby) affect the error amplitude

reduction factor. If the number of blocks m is not too large, then the corresponding problem includes m

coupled problems (like 3.6) with zero right-hand sides. This multiblock problem can directly be solved. For

the two-block partition it results in

[A?-5-1 _
(3.9) RF= \ _ _ ] .

In all the numerical tests described in sections 3.1-3.2, the V(1,1)-cycle convergence rate can be predicted

by the (squared) smoothing factor, which is calculated as the maximum value of SM or RF.

3.2.2. Relation to domain decomposition convergence theory. When the anisotropy is very

strong and the number of blocks is much greater than two, convergence rates observed in numerical tests are

well described by the domain decomposition convergence theory [1]. In this case, we are not interested in

the smoothing properties of the 3-D smoother but in its resolution properties, because it becomes an exact

method to solve N noncoupled 2-D problems (when el and e2 are very large) or N 2 1-D problems (when

only el is large). In fact, asymptotic convergence rates for large anlsotropies are in good agreement with

convergence rates predicted for 1-D or 2-D domain-decomposition Schwartz methods.

3.2.3. Comparison with numerical tests. For simplicity, we consider the V(1,1)-cycle with only

z-planes used in the smoothing step. The assumption that el > e2 _> 1 validates this simplification. The

predicted smoothing factor for this relaxation is SM = l/V/5 [11]. In numerical calculations for isotropic

problems on single-block domains, the asymptotic convergence rate was 0.14 per V(1,1)-cycle, which is very

close to the value predicted by the two-level Fourier analysis (0.134).
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TABLE3.1
Experimental, p_, and analytical, pa, convergence factors of a single 3-D V(1,1)-cycle with blockwise (x,y)-plane Gauss-

Seidel smoother (2 x 2 x 2 partition) versus anisotropy strength, width o] the overlap and the block size

n = 64 n = 128

el cf p_ p_ Pe P_

0 0.882 0.881 0.939 0.939

10 6 2 0.534 0.529 0.731 0.729

4 0.321 0.316 0.567 0.566

8 0.341 0.340

0 0.87 0.87 0.92 0.92

104 2 0.51 0.51 0.66 0.67

4 0.29 0.29 0.49 0.49

8 0.27 0.26

0 0.58 0.56 0.58 0.56

102 2 0.18 0.14 0.19 0.14

4 0.12 0.14 0.14 0.14

8 0.14 0.14

The next case we present is the comparison of the analytical predictions and the numerical results for

the V(1,1)-cycle convergence rates for different anisotropies for the domain decomposed into two blocks in

each direction. In this case, for predicting the reduction factor RF, analytical expression (3.9) can be used.

The formula for the asymptotic convergence rate p_ is

p_ = max(RF2, 0.14).[h(3.10)

Table 3.1 presents a representative sample of experiments for the case el >> e2 = 1. In this table, pe

corresponds to asymptotic convergence rates observed in the numerical experiments, while p_ is calculated

by means of equation (3.10). The results demonstrate nearly perfect agreement.

The asymptotic convergence rate deteriorates as the number of blocks grows. For a multiblock partition,

an accurate value of RF can still be calculated. (In the case when the domain is partitioned into m blocks,

it will be the spectral radius of a (m - 1)-by-(m - 1) matrix.) We decided, however, to present another,

simplified, methodology. Here the convergence upper bound, PDD, which is the asymptotic convergence rate

in the multiblock domain decomposition solver is estimated numerically as PDD = Pe for el = OO. The

reduction factor RF is calculated from expression (3.8), and the predicted convergence rate is

(3.11) p_ = max (rain( RF 2, PDD ), 0.14).

Practically, this formula implies that for small anisotropies (el _< 10) and for very large anisotropies

(el _ 104), the asymptotic convergence rate is estimated by some constants calculated numerically. The

analytical expression is correct in the range of moderate anisotropies. Notice that RF depends only on two

parameters (el and 6) which means that estimate (3.11) provides a good prediction only if n >> 6. Table 3.2

compares this analytical prediction with the results of numerical tests for some moderate anisotropies and

different values of the overlap parameter 5.
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TABLE 3.2

Rectangular stretched multiblock grid used in the numerical experiments; n is the number of cells per side in every block,

rn is the number of blocks per side in the split, and c_ is the stretching ratio.

_-1 6 Pa

0 0.56

102 2 0.14

0 0.83

10 3 2 0.40

4 0.19

P_

n= 16

m=4 m=2

0.64 0.58

0.23 0.18

0.85 0.79

0.52 0.38

0.20

TABLE 3.3

n = 32

m=4

0.63

0.26

0.86

0.54

0.42

n = 64

m=2

0.58

0.19

0.82

0.44

0.28

Moderate anisotropy: experimental, pc, and analytical, Pa, convergence factors versus overlap parameter, block size, and

number of blocks

We can now discuss the different convergence behavior exhibited by fixed and decreasing overlaps. A

decreasing overlap introduces errors on the coarse grids which become smooth errors on the fine grids and,

therefore, cannot be eliminated by the smoother on the fine grids. This is especially true in cases of weak

to moderate anlsotropy when the reduction factor is defined by smoothing properties rather than by the

properties of a domain decomposition solver. The convergence in this case is still bounded above by the

convergence rate of the domain decomposition solver, but we lose a lot of efficiency, especially because the

domain decomposition solver is sensitive to such issues as number of blocks and overlap size.

For a given m and 6/n ratio, if the domain decomposition solver is efficient enough, then it is possible

to use the same 6/n ratio on coarser grids rather than using a fixed number of cells in the overlap regions.

However, adopting a fixed 6/n ratio as a general rule for overlapping reduces the solver down to the level

of a domain decomposition solver. In the case of fixed overlap, the domain decomposition solver efficiency

is just an upper bound on the convergence rate. The bound is sharp only for huge anisotropies (huge in

strength and relevant region size).

n = 16,m ffi2, affi 1.5 [

4. Isotropic equation discretized on stretched grids. In this section, we study numerically the

behavior of plane-implicit smoothers for multiblock grids when the anlsotropy is not uniform but exponential.

For stretched grids, each cell can have a unique level of anisotropy (see Figure 13). The stretching is applied

near the boundary to mimic grids used in CFD simulations.
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Consider an N 3 global grid partitioned into m 3 blocks (cubic partitioning)(Figure 13). Again, each block

is supplied with an extended 12_p,_ subgrid. Our goal is to analyze the dependence of the convergence rate

p(m, n, _, _) on the following parameters:

• number of blocks per side: m

• number of grid cells per block side: n

• overlap parameter: (f

• stretching ratio: c_ =

4.1. Description of test problem. All the numerical experiments reported here deal with the numeri-

cal solution of equation (2.1) on the unit cube 12 = (0, 1) x (0, 1) × (0, 1) with a right-hand side and boundary

conditions given by expressions (3.2) and (3.3). The discretization is done on 643 and 1283 rectangular

stretched multiblock grids with various overlaps (_ = 0, 2, 4, 8).
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FIG. 13. Expemmental convergence factors, pc, of one 3-D V(1,1)-cycle with blockwise alternating-direction plane smoother

in a 643 grid w_th respect to the stretching ratio (c_) for different values of the overlap (6) and number of blocks per side (m).
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FIG. 14. Experimental convergence factors, pe, of one 3-D V(1,1)-cycle with blockwise alternating-direction plane smoother

in a 1283 grid with respect to the stretching ratio (el) for different values of the overlap (5) and number of blocks per side (m).

As before, we tested a FAS version of V(1,1)-cycle with the blockwise alternating-direction plane

smoother, unweighted solution averaging, volume-weighted residual averaging, and trilinear correction in-

terpolation. The solutions of the 2-D problems in each plane are approximated by one 2-D V(1,1)-cycle
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employing alternating-direction line Gauss-Seidel smoothing. The asymptotic convergence rates observed in

the numerical tests are presented in Figures 14 and 15.

4.2. Discussion of results. Numerical simulations were performed to obtain the experimental con-

vergence rate with respect to the stretching ratio, a. The single-block and multiblock grids (m --- 1, 2, and 4)

with different overlaps (6 = 0, 2, and 4) were tested. Figure 14 shows the results for a 643 grid, and Figure

15 for a 1283 grid. The results can be summarized in the following two observations:

• With a 2 3 partitioning, even the minimum overlap (6 = 0) is enough to exhibit good convergence

rates. The results for a multiblock grid with overlap of 6 = 2 match with the results obtained for

the single-block anisotropic case. That is, the convergence rate tends toward zero as the anisotropy

increases.

• With a 43 partitioning, results are not as good. With the minimal overlap (_ -- 0), the convergence

rate degrades for finer grids. However, with a larger overlap (6 = 2), the convergence rate again

tends towards the convergence rate demonstrated in single-block grid anisotropic cases.

5. Parallel implementation of multigrid technique. Block-wise plane smoothers may also be used

to facilitate the parallel implementation of a multigrid method on a single-block (rectangular) grid. Notice

that in this case there are global lines and planes and we are interested in block-wise smoothers only for

purposes of parallel computing. To get a parallel implementation of a multigrid method, one can adopt one

of the following strategies (see, e.g., [12]).

• Domain decomposition: A domain decomposition is applied first. Then, a multigrid method is used

to solve problems inside each block.

• Grid partitioning: A multigrid method is used to solve the problem in the whole grid.

Domain decomposition is easier to implement and implies fewer communications (better parallel proper-

ties), but it has a negative impact on the convergence rate. On the other hand, grid partitioning implies more

communication but it retains the convergence rate of the sequential algorithm (better numerical properties).

From a parallel code designer point of view, our approach is somewhere between domain decomposi-

tion and grid partitioning. Block-wise plane smoothers appear to be a tradeoff between architectural and

numerical properties (domain decomposition and grid partitioning).

• Convergence rate. For the isotropic case the convergence rate is equal to that obtained with grid

partitioning, and it approaches the convergence rate of a domain decomposition method as the

anisotropy becomes stronger.

• Communications. Although higher than in domain decomposition, the number of communications

is lower than in grid-partitioning algorithms.

However, it should be noted that due to the lack of definition of global planes and lines, grid partitioning is

not viable in general multiblock grids.

Therefore, the use of block-wise smoothers is justified to facilitate parallel processing whcn the problem

does not possess a strong anisotropy crossing the whole domain. In such a case, the expected convergence

rate (when using moderate overlaps at the block interfaces crossed by a strong anisotropy) is similar to the

rate achieved with grid partitioning, but the number of communications is considerably lower.

6. Conclusions and future directions. We have analyzed in detail the smoothing properties of

blockwise plane smoothers for multiblock grids. For simplicity, our analysis and test problems have focused

on rectangular grids, although the results can be extrapolated to more general multiblock grids. As a point

of reference, we take the convergence rate obtained by the plane smoother in the isotropic problem on a
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single-blockgrid.
Typically,intrueCFD simulations, there are no very large anisotropies crossing the whole domain. The

regions of very strong anisotropies are narrow (usually where there are thin boundary layers). Therefore,

it is unlikely that such a region will be divided into many blocks in the direction normal to the thin layer.

Anisotropies crossing one, two, or up to four blocks are very practical, especially for stretched grids. For

these cases, the overall convergence rate is still very good with a moderate overlap, as has been demonstrated

in the present report.

The blockwise plane method works as a smoother for low anisotropies and becomes a domain decom-

position solver for very large anisotropies. We have obtained an analytical expression that predicts the

smoothing properties of the blockwise plane-implicit smoother with respect to the block size, the amount of

overlap, and the strength of the anisotropy. The expression has been validated with numerical experiments.

As an example, for a line of strong anisotropy partitioned into two blocks, the multigrid convergence

of reference can be obtained with an overlap of just 25% of the number of cells in the block, and this

convergence rate can be maintained by increasing linearly the number of overlapping cells with the problem

size. In actual problems, a much smaller overlap is likely to be sufficient.

We have also analyzed the case of an isotropic equation on grids which are stretched near to the bound-

aries, a common case in practical CFD problems. This case is even more favorable, as the convergence rate

obtained for the single-block grid is maintained in multiblock grids with very small overlaps, tending to zero

with increasing anisotropy strength.

Blockwise alternating-direction plane relaxation methods are found to be robust smoothers and their

use should be considered for inclusion in the next generation of production CFD codes. A robust multiblock

code should check whether there is an anisotropy crossing a block interface. If so, an extended subgrid

overlapping with the neighboring block should be constructed. A multiblock strategy opens the possibility

of using an adaptive smoother -- that is, different smoothers for different portions of the domain, where

choice of the smoother is based on a minimization of operation count while retaining optimum smoothing

performance. An example of this would be using a plane-implicit smoother in the portions of the domain

that have strong anisotropies while using a point smoother in the regions that are isotropic.

The present code updates the blocks following the lexicographic ordering. However, in order to run

the code on a parallel computer, so that each processor solves a set of blocks, the update ordering must

present a higher parallelism grade. The next step will be to analyze the convergence rate and architectural

properties of red-black (or general-colored) ordering of the blocks. We intend to continue the work on the

block-structured algorithms. In particular, we will study the applicability of blocked alternating-direction

plane methods as multigrid smoothers for convection-dominated problems and more complicated PDE's.
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