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NATIONAL ADVISORY CCY/vI!TTEE FOR }_j{RONAUTICS

TEC_IC_ MEMOP_NDUM NO. 1135

THE LOAD DISTRIBUTION IN BOLTED OR Ei_ETED JOINTS

IN LIGHT-ALLOY STRUCTURES i

By F. ¥ogt

SUY_RY

This report contains a theoretical discussion of the load distribu-

tion in bclt_d or riveted Joints in light-alloy structures which is

applicabl_ net only for loads below the limit of prolortlonality but also

for !cads abo_e this limit. Th_ theory is developed for double and sin-

gle shear joints. The methods given are illustrated by n<unerical exam-

pl_s and tha values assumed for the bolt (or riw_t) stiffnesses are based

partly on theory and partly on known experimental values, it is shown
that th_ load distribution does not vary greatly with the bolt (or rivet)

stiffness_s and that for deslgn puzposss it is us_ally sufficient to

knew their order of magnitude. The theory may also be directly used for

spct-w_!ded structures and_ with sm_!l modifications; for seam-welded

structures. The ccm_'utational work involved in <h_ methods d_i_cribed is

simple and may be completed in a reasonable time for most practical prob-

lems.

A summary of earli_r theoretical and experimental investigations on

the subject is included in the report.

1. I_RODUCTION

Th_ distribution of the loads on rivets in steel structures has re-

ceived much atteI_tion during the last 30 y_ars _d a su_i_ry of r_fer-

ences on this subject is given in section 2. It has been shown that the

load distribution is not usually uniform, and this has been exu!_i]:_d

theoretically by considering the relative stiffnesses of the different

parts of the structure. The actual stiffnesses have been calculated in

this way from the observed nonuniformities in the load distribution.

iReprlnt of Report No. S.M.E. 3300_ Oct. 1944; issued by the Royal

Aircraft Establishment_ Farnborough_ England.
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Th_ theeretic_l information available, hewers,r, is only valid for
!cads 0_lew _he limit of proLorticnality 3 and for aircraft structures the
be_.a_:i-_,rabove tLis limit is of great _m_,ortance. Ti_Is report contains a
the_e_._sal discussion of the load distribution in oolted or riveted
Joints +h_t is mere complete, and particular attention i_ givei_ to the
cas_ in which the loads exceed the _ "__:ml _ cf pr )portlonality.

:_.nytheoretical treatment must be based on the Imuowledgeof the
local displacement at a bolt (or a rivet) as a func1_icn of the shear load
carried, and th_ load distribution for any number of felts or _-ivets may
t;u_n _-efound math_matic_ily. The b_sic problem is therefc_e to detcmnine
the local displacAment at a bolt, or th_ stiffness of the tolt_ as _ func-
tion cf the load. This displacement includes the bending and sh,_ardefer-
maticns in the bolt its_if together with the local compression in the
pl.a<es d_e to the bearing stresses. This dispiacem_nt can to scm_extent
be e__tiz_<,edth=-cr_tical!y when _he le_ds are below the limit of prcDor-
....... __.:_j, 8_.dthis is shownin 3.2 This is n¢_ possible for loads
aho,__,thi_ llmit_ and, as the excerimental information at present avail-
able is _ot _ufficie_:t, further tests ar_: necessary.

In this cozm_ectionthe difference in tehavi_.r of bci_e {_z_dhot or
cold riw_ts, and of b_its or rivets in single cr double shear; is impor-
t_:nt. In hot rlvetin_{ the plates are pressed together and the shear load
up to a c_rtaln amount is carried b_,'friction; whelmthi_ friction fails
th_ r_vev, carries th_ _he_r ].cad d_rectiy. In cold ri'_tir.g in light-
all_y s_ruc-.ur_s the pr_ssure between the plates is c<:mparativel_ much
less and conse_u_ntly _he load carried by friction i.q also less. The
pr(:s_curein b::,ited coLuecticns is entirely dependent on th_ ti_htenir_g of
the nu_s a_.dcarn_otb_ relied upon in aircraft structures b_caus_ of the

eff_ct_ _:f "_Ibraticn. The disnmeter cf th_ rivet is increased during the

process cf ri_eting due to compression an_ this is particularly the case

in hcC riveting. The rivets net only fill the h__-!edrill_,d in th_ _late

but may e<_n en!ar{{e it. in bolted connections th(_ holes usually ar_

dr_iAed with a slightly larger dlsmeter _han the bolts, arid when the

shear load is increased above that t_ken by friction the p!ate_ will slip

b_fore the bolts c_,n act again. This slip can be _!iminated only by us-

Ing bolts turned to a close fit. Owing to both _hese reasons hot rivets

can be assumed to be stiffer than cold rivets of the same nominal dimen-

sio.us_ and _hey are both stiffer than Bolts. Comparison between the

seri_s cf tests available is difficult a_d, further, the value of tests

on st,_el structures for the design of light-a].icy structures is limited.

_t should be r_m_mber_d also t_t even if ri_ets in single shear are de-

signed f_r _he. sam_ bear_z:g and shea_- stresses as for rive_s in doubl_

shear, th_y may behave very differently_ arid _his is mcst noticeable when

the ple,tes are thin a_d f!_xible in cc_mparisc,n With the rivets. In the

ca_e of single shear the plates w_l! t_ bent locally, and th_ consequent

ti!.tin_ of the ri:_ts may increase cq_slderabl2 the displacement _etween

_n_.am ,._ta_ part_ the_h9 plates. Because experimental data on th._se _ _ _' _ of
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problem are partly lacking, the analysis developed in this report is
based on assumedrivet and bolt stiffnesses that can be only partly
checked either by theory or by available test results.

2. SU_W_RYOFREFERENCESTOE_LIER IN_TSTIGATIONS

C. Bathe in reference i based the theory of the load distribution
on the principle of least wor_ it is developed for double shout joints by
assuming knownvalues of the rivet stiffnesses. The theory is aifl!cable
orgy uo loads below the limit of proportionality, and conslderatlcn _s
given tc Joints between tapered members. The rivet stiffnesses were cal-
culate& from tests madeon joints with a large number of rivets.

Tests reported by J. Montgomeryon pages 727 and 755 of reference 2
were madeon steel plates with single to quadruple riveted lai_ joints
that are ordinarily used in shipbuilding, that is, rivets in singl_ sheer.
A main purpose of these tests _as to deterr_ine the load at which the fric-
tior_i resistance due to compression between the plates fails and the non-
uniformity of the load distribution in multiple row rivets was cor_'ilmed.
The tests given in th_ p_per carm_ot,however, be used for an accurate de-
termination of the stiffness of the rivets because this would invol<e
complicated calculations.

Strain tests on steel gusset plates are reported by T. Wyss (refer-
ence 3) and indicate a nonumiform load distrlbution_ but the tests cannot
be used for the d_termination of the rivet stiffnesses.

In reference 4 by W. Pleines tests on riveted steel cci_ectlons are
referred to, and the limit of proportionality c_u only to someextent be
Judged. Tests were madealso on dural plates cor_ected by a s_eel bolt
in double shear to steel straps, and give valuable informati<_n on the

limit of prolJortlonality so far as bearing stresses on dural plates are

concerned. The s_if_ness of dural bolts connecting dural plates ca_u_ot

be fo_d from these tesSs.

A paper by E. Cassens (reference 5) contains a the('ry for the calcu-

lation of the loads on rivets cor_ecting a plate to a beam in bending.
The theory is _ _ - _ •no_ adequate as essential features are om_t_d and the re-

sults are partly misleading. A few tests on the stiffness of rivets in

steel and dural structures are also referred to, but ne details of plate

dimensions or test methods are given. Although the author applies th_se

test results 5o rivets in single shear it is not clear whether the tests

were conducted on rivets in single or double shear.

Steel Structures Research Committee Reports (reference 6) include

theoretical investigations and also tests. In the first report (pp. !.90-

179), Bathe _ives an improvement cf his theoretical treatment in reference
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I which is -_id below the limit of prcporticna!ity. Tests on joints with
a larr{_ n'_fzer cf ri'_ets or bolts were madeby Sanawi in connection with
this the,_rAtlcal investigation. The load carried by friction in th_ c_ee
rf b_l_d ccrz:ections was measured also as a function of the torque on

the, u-<Ltd,. This last matter also is dealt with in the second report

(PI_. ;O_-_76J. On pages 289-291 and also on peges 295 and 296 of the

final r_p_r_ the defo_a. %ion at rivets _d bolts due to shear forces is

in these reports references are given also to other pa_ers on this

sub_ecl:

'C. 71nd_isen, Hertwtg and Feterman, and Hc_-g_:.ard (reference_ 7 to 9).

Bi_ich, in his Germztn textbook on steel bridges also has pub!ish_d_

in 191_h, *. theory of the load d_tribut!on cn rivets. Th_ references

a,':_]lable ind.!.ce.tethat only the simple probl_m of loads below t_e limit

c_ pr"?,_z'<ionm_.it_ " is consider,_d.

.P,_fer_ne_. _o bf[ r,. VolkArson gives a theoret!cal discussion of the

]o_d 4]stribution on rivets based on a "substitut_ sfIstem" with a contin-

uous <_<rz_er,tLcr. between plate and stra?s instead of connection at dis-

cr_-te points. Tills does not al_pear to simplify the ana!y_is and the
• ":.>,7 _,e_z_ns __nd for l::,ad_ aoo:e th_ limit_pt,hod :Ls unsuit,, ..... for tape,red _ _"""

cf pr-o_,orti,.:na._ity. The extension of' the theer,y to nonlinear deformat,ons

is i_c,-z'rect <nd gives mis]._adlnj_ rasu!ts. The direct measuremenss of the

s_.ift'ness of dural rivets cen_tltut_ the main value of his work e_nd these

test s_ri_s ar_ tk_ only ones of real vs.iue that ha,'e ueen publish_,d on

this subject. _,he _e_,7*o cf the d_ffe.en._ tests :-re discussed in 3.3.

I,ittle original work ccncernin{_ th_ load distribution on rivets is

given in r_fer, nc_ l! bj H, Pottier, but in fart Vll the _!elch _ud

Volkerson m_thcds are given. In addition, scme _n;estigations are gien

on ten_eratur_ stresses.

q_F_-J, T._FORY <F DOU_,,I.ESH_TAR JOZNTS

3.1Dist, rihutlcn of Leads below limit of Proportionality

A d'_uble, shear joint is shown in _'i/_,u__ _ _a}, and in figure i(b) the

i<,ad_: earri_d by the different m_,mbers of the Joint also are shown.

Ass,_me th_ h:_'ht_ t_ c_.rry the she_r leads 2z, _,_, Ps_ P_. ., half cf

which are carried r_t each side strap. The tension Io_.ds in the different

G_ctions cf the plate are th_.n
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Ql = PI

Q_ = PI + P2

Qs = P_ + Pe + Ps, and so forth

and the loads in the two side straps taken together arc

Rl = P - QI

R2 = P -q_

R_ = P - Q3, and so forth

where P is the total load carried by the joint.

The total local displacement at each bolt (in bolt, straps, and
plate) maybe written in the form

Ol = OlPI _©

_2 = c,eP2bo, and so forth

where bo is a quantity with which all deformations are co_rpared, and

Cl, c2, arid so forth_ are nendimensiona! para/netere that are constants

telow the proportion_.l limit _id functions of tht_ loads above the propor _-

tionai limit.

The extension of each section of the plate and of the side straps

may in the same way be written in the form

1
kl = a_ Qi 50

ke i = ae Q_ Oo, and so forth

and kl = bl Rl bo

respectively.

Now

k_ = b 2 Re Oo, and so forth

51 + kl i = kl + 52

_2 + k21 = %2 + 5S_ and so forth
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and these give the foilcw!ng equations,

cl P! + al _l = hl (f--Pz) + c_ Pp

c_ P_ + a3 (PI + P_ + P_) = b3 (P - Pl - P=, - Ps) + c_ P4

and co on, if there are more than four bolts,

<._j. + Zq-:) + (a s + b_ + c3)P s c_. _.'_ s _' and so forth

Furt.herj if _h,:,_e _'-re n bolts

P = Pl + P_ + Pa ÷ • +Pn

and from these simple equations the icads Pl, _-'2-_, and sc forth, carried.

by _he belts aide e_s_v,__, calculated once tile ccefflcJents a, b_ and c,

which rebresent Lhe relative stiffnesse_ of the .....,"÷_....._ of the Joint, a_e
}mu<wn.

If th,_ bolts are arranged in several rows non_ml to the tensile toad,

each row containing a number cf Lo!ts, the culculaSions may be carried

out as ab-_:e with the following modification. Let the n_ber of 0oils in

the i_h row be mi and let Pi be the total load on all these bc!.ts.

The "_ -_:_ on each bolt will then be _i/ml. The terms ci_ I in the equa--

tions which refresent the displacement at an individual bci_ s;hcuid then

be replac_d by ciPi/mi; othel_ise, the equations "_re "dr±altered.

A.qsume the stiffness cf all sect].ons of Lhe 7:lares s_nd straps to be

the _me und take o,_ = _;En, where A is the mean effective section of

the plate, sc tha_

a_ = a2 = a s = =: 0z = b_: : b s = : i
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Ass_me further that the stiffness of all the bolts is the same:

C 1 : C 2 = 0 3 : . . = C

The equations are then

(2 + c) PI = c P2 = P

2Pz + (2 + e) P2 -- c Ps = P

2Pz + 2P_ + (2 + c) Ps = c P4 = P, and so forth

and o_cause of sy_netry_

i"i = Pn, P2 = Pn-l_ Ps = Pn-2_ and so forth

which togesher w_th the relation

P = Pl + P2 +

gi_,_es the following results.

For 3 bolts:

For 4 bolts:

For _ bolts:J

and

For 6 bolts:

and

• +_n

PJ_= P5 = P(_- ÷ _,c + c )/(_ ._ lo0 + 5c2)

--P2= P,_ = _(c _ c_)/(_ + lOc + pc 2)

_:_= P c2/(4 + fOe + 5c_)

P1 o = P(4 + 6e + c2)/(8 + 16e + 6c 2)

P2 = P_ = P(_c + 02)/(8 + 16c -_6c_)

l:s = P_ = P cO/(8 + i6c + 6c _)

W_th, for instance, c = 2_ these relations give:
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For 3 bolts: Px = Ps = 0.375 P or 1.125 P/3

P_ = 0.25 P

For 4 brlts: Pz = P4 = 0.333 P or 1.333 P/4

P;_= P3 = 0.167 P

For 5 bolts: Pl = P5 = 0.319 P or 1.595 P/5

Pa = P4 = 0.136 P

Pa = o,09l P

Pz = P6 = 0.312 P

P2 = P5 = 0.125 P

P3 = P4 = O-Col3 P

For 6 bolts: or 1.87 P/6

This gives the well-known result_ that by using relatively stiff

bolts (when c is small) an increase in the n_mY_er of bolts does not re-

duce the !c.ad on. the ,__,_._b_ loaded bolts very much, provided the loads

ar_ bei<;w th_ p_opcrt_onr_l limit. By us_Ing very f].axib!e bolts (when c

is larje) the load distribution approximate_: to a ur_Iform distribution:

Pi--_> 2/M as o -> _

This is to s:m_ extent realize& _h_n all the, bcits undergo large non-

linear :l.fcrmat_i:nls while th_ plat,_ and straps still r_maln stiff. (See
_.7 ,_n__3.8.)

Example 2

A unif7rm ].cad llstributlon can be d0talned also by tapering the sec-

tion o±" the plale end straps in proportion to the load to be carried by

this d_sired distribution. For instance 3 in the case of five bolts the

relatlv, stiffnesses of the different sections should be chosen as follows:

a4 =bl =i

a3 = b2 = 4/'3

a2=bs=2

al=b4=4

that _s s_ctlon -%4 = Pl

that is section A s = B2 = 0.75 BI

that is section A2 = Bs = 0.5 Bl

that is section Al = B 4 = 0.25 B z



NACAI!MNo. 1135 9

and if ci = c2 = c_ -- c4 = c_, it is found that Pz = P2 = _s = P4 = P._,
ai_dthis result is independent cf the value of c.

More generally, a uniform load distribution is obtained it" all _ .... _,
hav_ the samestiffness and the cross sectlcns of the plates __rech:_:en so
that

Bi = Ai (n - i)i/i

but Jt is hardly precticable, however, to taper to this exlent "n _s_ual
_-'r ,oC CF,__grLIcuI ,..f,.,..,.

If the taper is chcsen as follows,

a.4 =hi =t

as : b2 = 1.25 : 5/4

a2 = b3 = 1.667 = 5/3

az = _4 = 2.5 = 5/9

it is found that for c = 2,

that is s_ction A_ : Bz

that is section As = B2 = 0.8 B]

that is section Am = Bs : 0.6 Bz

that is section Am = _4 = 0.4 ?l

and

insi_ai, of

Similarly, for c = 4,

Pz = P5 = 0.245 P

P2 = P4 -- 0.174 P

Ps : 0.!62 P

C.319 P, ).136 P, and 0.091 P if there w_,re nc tapper.

Pl = P5 = 0.231 P

P2 = P4 = 0.183 P
and

Ps : 0.172 P

instead of 0.274 P, 0.161 P, and 0.1°9 P if lhere were no Japer.

With 9his de_gree of tapering, th_ maximum load on el..-,,bolt for :_ : 2

is reduced from 1.995 to 1.22_, tLmes 0.2 P and for c = 4 _s reducod from

1.370 to 1.155 times 0.2 P.
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In other words, the tap_r has considerably reduc_d the overload on
the cuter bolts to nearly the meanvalu_ 0.2 P.

If the sections 1.0 - 0.8 - 0.6 - 0.4 are the maximLumdegree of taper
that _n be used _n order to maintain the necessary strength of plate, it
is to be questioned whether this is the best possibl_ taper. A detailed
inv.,st_gation indicates that the best load distribution is obta_ed b.y
_,_.klng ih._ cross section of the plate as small as possible between the
]u_t t_c. bolts and by tapering only after th_ second bolt. For instance,
with th_ taper 1.O - 1.0 - 0.7 - 0.4 and c = 4 the rivet loads are
0.229 P, ().lel P, 0.180 P, O.181 P, and 0.229 P. The r_duoti<_n of the

r__=_ 1cad is er_ly from 0.231 P to 0.229 P, which is r.{_gligible.

But th_ stresses in the plates are reduced also by this chang= in th_ taper,

and _v._n if the effect of this alteration is of littl_ #nupcrte_.ce, it is

at 3.-._t an i_.prcv_,m_nt in the d_slgn of the structure. The load distri-

but],:n for the parti=ular case of five bolts is shoml in figure 2.

3.2 Displacement at Rivets _r Bolts and Th, cr_tical Ar.alyels for

Loads below the Limit of Proporticna!Ity

]_eiow the limit of proportionality, arid ass'znlng that no load is

c_rri_d by friction, the local deformation at the bolt and th_ hole can

b_ approx_mm.tely calculated in th_ two extreme cas_s when the diameter of

the bolt is either v_ry large or vez_ small in ccmparls,_n with the thick-

nesses t of th_ plate and th<_ straps.

(I) Diameter very i_rf_e.- In this ca_e the l_it is very stiff and will

th_-_n_c_ _nLy slightly b_-nto The dls+rltut!cr, of 3cad alcr_ the axis of

th_ bolt can b_ ass_r._d t:_ be fairly _ve_, as sho_n in figure 3(h). The

_ire_t _l.ear ar.d bendlEg d_formation In the _olt l_el. can then easily

be calo_ate, d. Let f_ he the d_sp].acement bet_-een the plate and the.

straps du_ to this part of the deformation. This d_ep!ac<_m_nt can obvi-

ou_'.lyb,_ taken as the difference between th_ mean (_rdiLate for the elastic

lln_ of the b01t f_r the thicknes_ te of the plato mi_.us th_ mes_ ordi-

nat_ for th_ thick_ess tz of the straps, as indicaled in figures 3(e.)

and 3(b). The detailed calculation gives

fz : (P/Ed) (tt_ s + 1Stem te + lOtz t_ _ + 2t2S)/ll.78d s

+ 0.3 (P/Ed) (2tz + t2)/d

wh_r_ the first term represents the deformation due to bending and the

s_aond term that due to shear.
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With tl = 0.5t2, this gives

and with tl = t2

# 0.or(t2/d) + j

fl = (F/E)_ 0.9(to/d) + 3.0 (t2/d) J

Th_._,bending of %he bolt introduces ncnlnuif<r_itu of the load _dth a

c_nc_ntration toward the common surface of the plata and the strap_, and

thus r_duces the bending of _he bolt. I_ addition, rivet heads and tight

nuts cn th_ bolts will reduce the bending. The i'ornnu!a therefor_ gives

decidcdly too largo a value for %he displacement_ due to bending if d is

small and can be cn/y approximately correct for l_r_Ee values of d.

Th_ rlirect ccmpr .........i_- due to bearing stresses in the plato, +.he

straps_ and the bolt must be added to this displacement du_ to bendlr4_

of the bolt.

Coker and Filch (reference 12, p. 527) give the approximate stress

distribution in an infinitely larg_ plate with a leaded hole. The stress

distrlbuticn includ_:s a te_:r__rcportional to I/_: where x is the dis-

tance from the c_nter of the hole and integration from the edge of the

hole to infinitely ],_rg_ values of x will therefore, give inf_niteiy

lar_ values of the displac_ment f2 (see fig. 4(a)). Cnly the local

deformation at the hole is required here and not th_ effect of th_ stresses

away from the hole. I+, is therefor_ reasonab!, to integrate only up to

certain values of x, and it is found that

for x= dl.O = Ir/ t) o362
x = d ].._' f_ <?/Et) 0.5_6

x = d 2.0 f2 = (P/_t) 0.745

x = d 3.0 f2 = (P/Et) 0.967. and so forth

For lar_er values of x, f2 increases only very gradually, and, since

x = 3d takes into account more than the local strain, it is reasonable

to take

f2 = 0.9 !_/Et

In the bolt itself there is a compression due to the b_arir_ stresses

which are approximately P/dr at the surface and half of this value at
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the axis of the bolt. The corresponding compression between the surface
and _e axls of the bolt can be approximately taken as

: --0.37 P/Et

XT_e bearing stresses in the plate and the bolt give approximately

(P/E_,t)(o.9 + o,375) - (P/Ed) 1.3 d/t

There is _ne _uch term for the middle plate (thickness ts) and one for
/ •

thJ straps _thlckness tl), and thes_ together give

(P/Ed)1.3 +

The displacement at the bolt when the hole diameter is large is fi-

nally given by

(P/Ed)S(d/t ,

where f _s a functic_n of the relative dimensions,

and for tl = 0.5 t2

3

f : 1.3 (a/2t_ + a/t2) + O°6t2/d + (t_:/d)

: 2.6 dlte + 0.6 t21d + (t21'd) s

and for tl = t2

f = 1.95 d/t2 + 0.9 t2/d + 3 (t2/d) s

approximately,

T_n,_s_fo__nulas are only valid for large values of d3 and then

the first term is the most important, and the others are or_ly of minor

imp or tanc e.

(2) Die_neter very small.- If the diameter of the bolt is very small

in comparison with the thickness of the plate the displacement between the

plate and the straps can or]y depend on the deformation in the bolt and the

plates n_ar their common surfaces.



NACA_' No. i135 13

The idgal case is to someextent represent_:d tj spo"_-welding when
the two surfaces are hcme_eneouslycormected ovmr an area of ,_ie_met_r d.

For this case the dis,_iac=ment may be fo_d by means of the fcrmuia_ fc:c

strauss and strain in a seml-infinlte bcdy loaded at the s_&rfa2m, es-d f_r

leads distributed over r_ctar4_ular areas the average _Isplao_m_ut ha_ be_n

ca]_cu!_tod (reference 13). Substituting a square of sld,:_s s :-_r a circle

with die--meter d = 1.2@s_ both of which have the same area_ it _[_ t':.und

that for bolts in double shear

= 2(o.9P/Es)o.9!= z.o3P/ a

Th_s ca!c_lation gives too small a value for the __,:.-.__-_,.._....._....._.,_e_t....."_-.,.,_,_:.

can,: of bolt _r rivet cor_leotlons because9 the bolts or _ _ ...._ _r_; r.o%

wei£e:l to the plate. On _he contrary_ a ]cadlng of the Joint must Drc--

du.c:_ openincs betw,sen the bolt and the plato.

A;_<_,he:restimate Fay be made as follows by as_:uming that tb., " o._t

is c'_m_letely bu_l_+ in at distances greater than gd_ g beln,(_ ,a certain

_ar_eter# @_,',m th_ cc'_mon surfaces of the plate and th_ _" _-_,

bolt is then in double shear_ as sho_n in figure 4(b)_ and

),_= (P/Ed) (3.7g + 6 _'

and iaking different values of g it is fcund that

f cr

_ .--o.4

_5{.% -'= L) ,

g=C.6

5 .= ].. 3 :P/k<:
_' : 1.9 i :',d
5 = 2.7 P,.'K:[

5 = 3.7 P/Ed

Th_ coefficients can be determin_;d only by tests., an_ _rcvi_-r_].ly

a valu_ of 3 is assumed to be reasonaY, le. Much d_ends cn how c]_<',_ely

the bolt fits the hole and if the hole is large, than the bolt t?._ di_-

placement w_ll obviously be 8reatly increased.

(3 _'IntorDolaticn.- By writin_

_d plotting f as a function of the ratio d/t2 for v.-_rylar._c an.d very

small valu:-_s of this ratio, the values d f for medium values of the rat[_

may be approximately obtained by interpolation as shown in figur_ 5.
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0n dimensional grounds the displacement must be given by a formula
of thls type, where f is a nondim_nsionsl function of the ratios be-
tween _he diameter and the thicknessss of the plate and the straps. The
wld_:h cf the plate also enters into this function, but if the width is
lar2_ in comparison with the diameter the effect of variations in the
width is negligible.

3.3 Comparison-#ith Tests

Velkorscn has measured the deformation for single dural rivets end

gives diagrams for a ccefflcient n defined by the equation 8 = P/n

and by _Titln_

= (P/EI)F

wh_re f is a function of the relative dlmensJons f = Ed/n

With a value of E equal to 7000 kilcgrams per square millimet_r i the

following results are obtained from his diagrams:

tl t2

• IJ.

1 1

1 ' 1

1 1

2 2

2 2

2 2
3 _ _

6
6

+

d

I 5

t 4

I +_.6
4

5I +
I 3
J .

i
n I

t

4,_. ,; t 6.37
!

3,O(O [ 7. CO
2,400 7.5_

8,D_(:' ,i _,]_2
5,9oo [ 4.75

4,000 1 5.25

11,200 I 3.12

7,4,::0 I 3,764,4_:_0 k.76

7_ values of f s_e sho_n in figure 6 as a function of the ratio

d/t2.

The following results given by Cass_ns also ar_ shown in th_ same

figure on th_ asstuzption that the tests were made on rivets in doubls
shear:

d=5_m

d =4ram

d = 3 _m

IThls corresponds to 107 psi.

n = i00,000 kg/cm

n = 50,000 kg/cm

n ,,,,46,000. kg/cm
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No information is given on the t_st methods employed. Volkerson admits
w_lations up to about 25 percent for the individual samples fr_omthe
averag_ cf six, and, where so muchdepends on the workmanship, this is
not ur_eas_nabl_. It is obviously more serious t_t the test r_sults
are not in agreement with t_ dimensional law_ which necessitates t_t all
the points should be on a continuous lin_ in figure 6. This was not in-
vestigated_ and it is stated that the deformations are proportimtal to the
leads up to 17 percent of the ultimate for d = 5t2 and up to 46 p_rcont
of tY_eultimate for d = 0.7t2. A more detailed investigation of Vo!kerscn's
results shows that the proportional limit c_rresponds either to b_aring
stresses up to 32 kg/_ 2 or to shearing stresses up to 13 kg/mm2. 0_y
for very larg_ diameters d in ccmparlson with the thic_s_es t was
the limit fo_d to be at appreciably lower _tres_s: and this cculd be
expected b_causo the buckling of such thin plates takes place. In this
connection it should be noted that Pleiner has obserwd perv__m_ntdefor-
mations due to bearing stresses above 12 to 15 kg/mm2 in the plates.
Since these deformations are not proportional to the loads, the limits
given by Volkerson therefore appear to be high. The deformations, however,
are probably not greatly in excess of the limit of proportlonalltv.

The disagreement with the dimensional law c_n be explained by gaps
in the rivet holes or by a different type of nor_inear deformation. The
meet reasonable explanation, however, is the dlfference in the action of
friction for large and small rivet diameters. Montgomery (reference 2)
has pointed out in &n article that, for steel rivets, "In fact, the whole
series of experiments showedthat th_ adherence factor had not the im-
portance in the thicker plates which it had in the case of thir_er material."
This statement means that for constant thic_ess of the plates, but vari-
abl_ diam, ter of the rivets, the frictional resistance is ccm_ratlvely
greater for large than for small rivet diameters. This is in agreement
with the Volkerson results and might explain the disagreement with the
dimensional law.

If_ now, comparisons are madewith the results of the theoretical
analysis given in 3.2, it can be seen t_at for a small rivet di_neter there
is fair agreement with the Volkerson tests. For large diameters only did
the tests giv_ considerably less displacement than that given by the theory,
thus indicating considerable frictional resistance.

Since the main point here is to obtain a formula giving the correct
order of magnitude,

f = a(d/t2 + d/2tl) + b

may be taken as an average where a = 0.8 and b = 2.5, and the straight

lines corresponding to tl = t2 and tl = t2/2 are shown in figure 6.
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By writing

5 = Pf/Ed = cP5o = cP Z/EA

the coefficient

where

A

and
d

c = A f/Zd

cross section of plate

spacirg cf rivets or bolts

used in the g_neral theory is obtained

di_mi_ter of rivets or bolts

From the approximate formula given above for f it is fot_d that

o = (Ah) 0.8/t + 2.5/a)

TT_e only other test series that can be used for the d_termination of

the coefficient c is given by Bathe _n his original paper (reference i),

and in th_ Steel o._ructur_s Ccmmlttee R_ports l,reference 6].. From tests on

i/2---inch to 7/S--inch steel rivets spaced 4 inch_s apart and Joining

3-by 5/8-inch plates with 3-by 5/16-inch straps, Bathe found the empirical
relatic:n

c = P,i(IO 5 x d214) (Bathe used S for c)

wh_r_

_o_al lead cn the Jcint, pour_ds

and

rl_._ dism:eter, inches

The coefficient c is deduced from theory that is valid only below

the limit of proportionality and c should then depend only on the rela-

tive dimensions and not on the load. The variation of c with the load

may have been caused by frictional effects and by nonlinear deformations

within the range of applied load.

Batho's formula for c car_uot be directly compared with the formula

based on the theory given above and the Volkerson tests, because it in-

volves P and no other dimension apart from the rivet diameter. ]3atho
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has p_inted cut that th_ indirect way of determining the cccffici_nt c

dce_ not give accurate results and the tests indicate a valu_ of c _'...._..

is considerably loss than that to be expected from the fore,going theory

and the results cf Vclk_rson. Even at leads equal to one thlr_ of t}_at

at failure the value of c is only on_ fourth to one fifth of that to b_

expected, and for higher loads the experimental values of c ar_ increas-

ing very rapidly.

The explanation may be that, for the lower loads, the entire lead is

carrie_ by friction and then the corresponding stiffness of the rivets is

very much increased.

It Is not, however_ reasonable to base the design of l_ght-al!oy

structures on these tests on hot riveted structures because those mu_t

involve considerably more friction than is to be expected with cold

rivets or bolts.

The formula based on the Volkerson tests is recommended for the de--

sign of light-alloy structures until new tests have been ma_e,

3.4 Displacements above the Limit of Proportionality

Mathematical analysis cannot glve the displacement of rivets or bolts

for lcads above the limit of proportionality. The only test seri_s pub .°

lished, which gives general results for light-alloy rivets, appear to be

of Volkerson.

Generally speaking, if the diameter is large in comparison with the

thick-hess, the Joint will fail due to bearing stresses after large dis-

placements which are primarily due to deformation of the plates. Very

thin plates will fail by buckling and, according to Pleine_, this occurs

if d is greater than _t, provided the plates are not suoported by
nuts or rivet heads.

The following data have be_n tak, n from Volkerscn's work and sa'e

shown in figures 7(a), 7(b), 7(c), and 7(d). The tests refer to dural

rivets with dimensions given In 3.3.

Let

represent limit of proportionality for the rivet, from which the

correspondir_ bearing and shear stresses are calculated

P2, ultimate icad at failure from which the corresponding bearing and

shear stresses are calculated

52, ultimate displacement at failure
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an_

S value of the ordinate at the Iced axis for the tangent to the upper
pert of the displacement curve. (S_e fig. 7(a).)

Th_ bearing and s!i_r stresses for the ic_ds Pi and Pe are p]otted
as f_n_ :i:s of the ratio d/t 2 arid those t:_rres_ondinc ts +_e load S
are also plot, ted in th_ ssme_,_y. !t is fo_m,dt?_t o_!_n ave_:'_ge
S = O._}2P2 with variations from 0.$6 t,a rl)._16ez.d in cr_c_exce,o_ion to 0.71.
Fail_re for d gre_.ter titan 3t_ B_emsto oe d_e to b_rin$ str_z_eeswith
a maximum-_a]ue of 140 kilogrs_s per squar_ mi!!Z'rJ_Jter_d fo_' sma!7er di-
ame*,_r t i_ due to shear stresses wltf_ an average value of about 29 kilsgr_ms
per s l_aro mill_eter.

For d = 3tm the limit of prcportiona!ity seemsto be at bee_ring
stres:_;e of about 32 ki!cgr_s per sqt_are_!llime_or, and decreases both
for larg_,r and smaller ii_neters as shownin figur_ 7(b). For very _mail
@iameters the limit of proportionality corresponds to shear stresses of
about 13 kilograms per square mi!iimeter.

The displacement at the limit of proportionality can be i'ound from

where f is the quanti_ discussed in 3.2 and 3.3.

Let the displacement at failure be

where fs is a similar function cf the relative di_aensioms. Tie quantiV
f2 has been ca!ctul_ted from the given test resui+c a_id is shownin flg_Are
7(d) as a fur._stisn of the ratio d/t_. The experJ_m_ntalpclnt8 in this
fi@ure very r.early lie, crl a smooth curve, and th_r_ is actually better
a6_e_mentt_an for f b,_low the limit of propcrtionallty. If P a_d
Y_ _r__ kr_ovn,the ultimate displacement _2 can _iowbe found for an_
size of rivet.

In this way the displacement in the high region and the low region
is ottained as a function of the load, and it is only necessary to Join
the corresponding two straight lines by a smoothcurve. It is not nec-
essary to determine morepoints on this curve directly from Volkerson's
tests becaus_ it is more important to know their order of megnitude than
their accurate values. The curve shownin figure 7(a) is for the case
where d = t_. The ncr_inear cart of the displacement is found to be
comparatively muchgreater for larger diameters.
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The continuous curve representing the displacement is perhaps a little
mislead_ng_ and for most practical purposes th_ displacement is more ade-
quately represented by a discontinuous (or dotted) curve.

3.5 Test Methods

Volk_rsor madethe plate continuous with the s_de straps air,chad to
it as shownin figure 8 and measured the extension betw_en _h_ _cints A_
and Cl. _ correction was then madefor the normal extenslcn in the, plate
(Aa - B2) arid the straps (BI -Cl). P!elnes measured the ex_enslcn _--
tween th_ points DI and D2 without any correction. At first sight it
would appear reasonable to measure the displacement between points ZI an_
Bm to obtain the local "bolt + hole deformation" directly. This_ however,
wc_Id neoessitate a correction in th_ original equations as foilcws.

The elorgation of the stra_s between Bl
previously denoted by

and Bl ] (see fig. 9) was

k2 = b2 R2 5o

The total te_siie force in the strap for the length Bl to Al is_ how-
ever, equal to

RI = R2 + P2

and the correction erpression for the elongation should th_re_ _re be

k2 = Zc(b2 R2 + b_! P2)

and similarly for the length of plate BaI
into the expression for the elongation,

to C21 the icad P_ er_ters

_2 : 5o(a2 02 + a21P3)

where the coefficients a21 and b21 take account of th_ additional

elongation in the length when the direct pressure on the hc!e gives tension

in the plates at both sides of the hole.

With the bolt + hole deformation measured between the points B_ and

B2 included in 52,

i
52 = c2 P2 8o, and so forth
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But

_2 + k21 = %2 + 53

and using this relation

1 1
02 _2 + a2 Q2 + a2 P3 = b2 R2 + b21 P2 + c31 P3

which may also be obtained from the origir_l equation

C2 P2 + a2 (Pl + P2) r.b2 (P - P1 - P2) + c9 P8

by _ iting

C 2 = 021 --b21

1 i
and cs = c3 - a2

These corrected ccefficlents c may be found directly by determining

the extenslcn between the points A l and C2 cn the test specimen since

the connection is mad_ by a slr,sle bolt. These points should be situated

sufficiently far from the bolt for no appreciable strain tc occur beyond

the points. Diagonal gagir_ should be avcide_±, and to reduce the number

of gages a "bridge" may be built up betw_e.n the two straps as shown _n

flg_re lO. F_:r testing one bolt_ two gages - one on each side - are then
needed.

3.6 l_formation cf Plate and Straps

If the effect of the hole be disregarded

k = R_/EA

where A is the cross sectirn a_d l is the distance between the bolts

as shc_u_ in figure ii. So far as is known_ no direct t_sts cn the addl-

tional elcngatlon due tc the hole are available in published work. If

the dla_eter (d) of the hole is not t_o large in comparison with the

width (h) of the plate, an estimate may, however 3 be _de in the follow-

ing way. A rectangular hole cf area d x nd is substituted for the clr-

ctu!ar hole and the extension is calculated cn the basis that t2_e stress is

unlfcrmly distributed both at the complete section and at the reduced sec-

tian. This gives
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% = R_/EAl

where the average effective section is

AI:AIIl +ndYl -

A ccmparlson with th_ s÷_ress dlstributicn given by Cok_r and Filch (refer-

enc_ 12, p. 45_9) indicates a value cf the cc,_ff_ci-'nt n equsY, t_ 2.5to3.

Their tests wer_ made @n plat_s with o}en b_les a,)d, if' the holes were

filled bT_ bcltc_ the stress distrlbuticn w":,id be _ore _,u:ifcr:_Land n

correspondingly reduced. Pos:_il:,ly n equml to ..__ to _o would give a

r_sult lhat is mcr_, nearly cc_:'_ect. If _:hn n_les are w_'y cl_se!y sloaced,

the eflec._w section is probably not apT_reciab?y different from the mini-

nun section t(h - d).

3.7 Modifications in the Theory for Lead Distribution for Lcads

above the Limit of Proportionality

Abev_ the limit of proportionality the equati¢n_ that determine the

load distribution are no longer linear and, altho:_t_h at. _,xact sc!ution

mawr bo fcrv..aily obtained hy treating 5 as a _:_nlln_ar function of P,

thc_ ccI_uta_.i_nal work w_uf_d then %,e very s';ver__. The r::su] i__._may, how--

ever_ be c,htaine< +o an.'/requi_.'ed de:_ree of a_curac.y _n the following

simple way, pr_vid_-d the !cad--_xt_-_nsicn curve is ]_.own. Acs'_e that tho

load cn the ith bolt is Pi __nd then Lear tkis w%lue

where th_ m_aning cf the constants k i and S i _my b_ seen from figure

12. Th_ quantity k is proportional to the reciprocal of th_ tang9nt

modulus in _he same way that c is proportional to the reci[;rocal of

the modulus cf e]._._-tici%_ (E) at !c_..__.c_a_s, tr. the ass'm_.,ticn that

nor_linear deformations occur only in the bcJ._s and _._,the holes and not

in the sections of the plates between the holes, th_ equations

5i + ki x = ki + 81+_
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th_n give

ki (Pi - St) + ai (PI + P2 + • • • Pi) = bi (P - Pl - Pc - • • • - Pi) +

ki+_ (Pi_i - _%+i_" _z

that Is,

(al + bl + kl) Pl- k2 22 = bl P + (kl St - kc $2)

/_, _ _ c__ and so forth(a2 + b2)Pl + (am+ b2 + kin)P2- k3Ps = hap + _=m_-2_3_s,

Th_t_eequations differ from those that are c_rr_ct crf_y %elow the limit
ef _ropcrti_u_:a]_ity in the presence of terms of _}_ typ_ kISl -- ka2,2 and
in that k new replaces o° In order tc deter_.ir_ lh_ _a!_s of S and
k_ th_ bc!t !cads maybe asstu_d to b_ in th_ n_7?Acr __d _f _h_ average
load P/L_ and in most cas_s r-ccoDrs,_to a seccr_' _pp_'._z_ma_'u will not

be necessary-. Th_ corre_pondinc valu:_ of k for _II _ Lc[_ mey then

be obtair_=d from the load--extension curve. The t,._rms (_[iSi--ki+ISi+l)

are then zsrc and the equatiens are ide_tlcal with the eriglnal ones, _x-

cept that k now replaces c.

"_>_u all +,b_ %_lt loads have b_on determined in this way; more accu-

ra_ vai_s may b,_ f_und by s_bst_tuting _]_<_o_rr_pcnding values of S

_d k for each I cit _ntc !he c_mpi_t_ o_iuatlrn_ _71ven _2_ovo. The l_ad

&i_tri_uticL may be f'_und to aLy requlr_,d d_gr_e of accu_a0y by the repe-

7t _p_a_'_' fr_m th, V_ikers_n tests that at half th_ ultlmat_ load

th_ valu,_ of k is a_out five times that _f c in the p_rticu!ar case

of thick b_!.ts_ ÷.hat i,_ _t relatiwly large valuers of d/t. If_ for

e_ampl_, a = b = i and c = 2 at low l_ads, a _alu_ of k = i0 _y
be assumed tc be correct for loads at half the _itimate. For five bolts

c = 2 gives

P_ = P5 = 0.3].9 P

P2 = P4 = 0°136 P

and Ps = 0.091 P

while k = I0 gives as a first approximation
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and

P_ = P5 --o.235 P

P2 = P4 = 0.182 P

Ps = 0.166 P

The walue of k increases very rapidly in the neighborhood of the

altLv_ate load and then, accordir4 to Volkerson's tests, a valu_ of

k = 50 (or more) is not unreasonable f_r a value of C = 2. With k = 50

it is found that

Pl = P5 = 0.208 P

P_ = P4 _ o.196 P

and Ps _ 0.192 P

These results show the extent to which the loads are more uniformly

distributed _len there are deformations beyond the proportional limit.

The design of a Joint should not, however, be bssed on these equalized
loads becaus_ the actual behavior of each individual belt (or rivet) is

likely to be irregular near the ultimate load. It is safer to base the

design on values of k corresponding to medium loads.

3.8 Symmetrical Joints

_.2nen there is symmetry, it is convenient to number the bolts from the

axis of symmetry and, for example, in a Joint with 8 bolts the numbering

is then

4 (end)_ 33231_i_2_3,4 (end)

If all the sections of the plate and straps are the same

c I = c 2 = . . . = c

Tile total number of bolts is assumed to be 2n, and the equations valid

up to the limit of proportionality are
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PI ="PI

P2 = P1 + (2/c) P1

P3 = P2 + (2/c) + P2)

P4 = Ps + (2/c) (PI + P2 + Ps), and so forth

and P_ may be found from the equation

2(PI + P2 + • • + Pn ) = P

after expressing Pi in terms of Pl. Th_ bolt loads for Joints with a

large number of belts are shown in figure 14 for values of c equal to

5, i0, 20, and 40.

If, new, a certain number of the bolts - say from (i + i) - carry

loads above the limit of proportionality while those up to i carry

loads below this limit_ an approximate solution m_y be found as follows.

Ass'_ze the displacement below the limit of proportionality to be

5i = c PiSo

and for all loads above to be

5 i = k (Pi - S)%o

where k and S are constants.

The continuous lcad-_xtension curve is thus replaced by two straight

lines as shc_ in figure 13. The assumed limit of proportionality is at

the load S O = Sk/ (k- c), and by a proper choice of the second line

this value will be greater than PI. On the other hand, however, the

value of k so determined will be much smaller than that corresponding

to loads near the ultimate.

If th_ ith bolt carries a load that is Just equal to So, the dis-

placement at this bolt may be exTressed by either of the preceding for--

mt_as. The equations for the first i bolts are then



NACA TM No. i135 25

Pi = Pi-I + (2/c) (PI + P2 + • • • Pi-i)

ae before, and for the succeeding bolts are

Pi+1 = Pi + (2/k) (PI + P2 + • • • Pi)

Pi+2 = Pi+l + (2/k) (PI + P2 + • • • Pi-l), and so forth

As an example, a symmetrical Joint with 12 bolts may be considered

and the results for c = 5 and k = 20 are given below.

(i) Ps = So :

PI

P2 = Pl + 0.4 PI

Ps = P2 + 0.4 (Pl + P2)

= 1.0000 PI = 0.C684 So

= 1.4000 PI = 0.0957 So

= 9.3600 PI = 0.1613 So

P4 = Ps + 0.4 (PI + • • • + Ps) = 4.2640 PI = 0.2914 SO

P5 = P4 + 0.4 (Pi + • • • + P4) = 7.8736 PI = 0.5380 So

Pe = P5 + 0.4 (Pl + • • • + Ps) =14"6326 Pl = 1.0000 SO

0.5 P = Pl + P2 + • • • + Pe

(2) P5 = So:

Pl

P2 = similar expressions

P3 = to those above

P4

%

=31.53o2 Pz = 2.1548 So

= 1.0000 PI = 0.1270 So

= 1.4000 Pz = 0.1778 So

= 2.3600 P_ = 0.2997 So

= 4.2640 PI = 0.5415 So

= 7.8736 PI = I.OCO0 So

Pe = P5 + 0.i (PI + • • • + P6 )= 9.5634 PI = 1.2146 So

0.5 P = Pl + P2 + . • • + Pe = 3.3606 So
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(3) P4 = So:

Pl

P2 = similar expressions

Ps = to those above

P4

= l. OCO0 Pl = 0.2345 S o

= 1.4000 Pl = 0.3283 So

= 2.3600 PI = 0.5535 So

= 4. 2640 Pl = 1.0000 S O

P5 = P4 + 0.I (Pl + • • • + P4) = 5.1664 Pl = 1.2116 SO

P6 = P5 + 0.I (PI + - • • + Ps) : 6.5854 PI = 1.5444 So

0.5 P = Pl + P2 + • • • + Ps = 4.8723 So

Similar results may be obtalned for Ps, P2_ and PI equal to So

thus giving the leads carried by the belts at various applied loads as

_ho_m in figure 15(a). For intermediate values the Icads carried by the

bolts may be found simply by linear interpolation. The bolt loads are

also shown in figure 15(b) as functions of the total lead for this par-
t_cular case.

The example shows that in a Joint with many bolts the lead distribu-

tion is far from being uniform even when the defolmations are nonlinear.

'IT_etime taken to complete the calculations and the drawings was 1¼

hours, which clearly shows that an analysis of this kind can be made in
a reasonable time.

3.9 Reinforcing of Main Plate by Side Plates

If th_ main plate is reinforced by side plates, as sho_ in figure

16(a), these will tc some extent behave as straps in the usual way, but

the deformation at the main bolt will be slightly altered. The loads

carried by the bolts are denoted by

PI, P2, Ps, and so forth

t_m leads in the sections of th@ middle plate by

QI = Pl, Q2 = PI + Pc, Q3 = Pl + P2 + Ps, and so forth
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and the loads in the sections of the two side plates t_en tcgetn.r by

Rl = P - QI, R2 = P "-Q2, Rs= P - Qs, and so forth

as shown in figure !6(b). The displacement at the first bolt was yrevi--
ouJly denoted by CiPiSo and, because the side plates, an additional
term that is proportion&! to P, must now be introduced. (See fig. 16(c).)

Th_s additional term consists of two parts, one of which is _ue to
bending of the bolt and the other due to the compression arising from
the bearing stresses on the side plates. The first gives a displacement
in the samedirection as PI, and the second gives a displacement In th_
opposite direction because the side plates sllp back relatively to the
middle plate. The main bolt will usually be strong in comparison with

the Flates and the dis]}lacements due to bending will theref(,re be small

in comparison with those due to bearing. The total displacement duo to

Pl will therefore be negative and hence

_i = (ciP1 - gP)5
0

where g is a pcsitive constant. The equation

*I + kA I =: MA + 82

now gives

(al + bl + ci) Pl -e2 P2 = (bl + g) P

wh_l_ th_ other equations are as before

(a2 + b2) Pl + (am + b2 + c2) Pe - csPs = b2 P

(as + b3) (Pl + P2) + (as + bs + cs) Ps - c4P4 = bs P, and so forth

A more detailed discussion of the constant g is given below.

Ass_m_e: for exe_mple_ that there _re one bolt and three rivets_ 8s
in figuro 16(a), and that

al = a2 = as = bl + b_ + bs = i

Cl = 1.5_ C2 = cs = 04 = 3

g = 0.8
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Th_ equations al_ then

3.5 PI - 3 Pe = 1.8 P

2 Pl + 5 Pe- 3 Ps = P

2P, + 9P_+ 5P3 - 3P4 =P

PI + P2 + P3 + P4 = P

which give

PI = 0.557 P

P2 = 0.(_o p

Ps = 0.121 P

P4 = o.272 e

In other words, not quite half the load - Pl + P_ + P3 = 0.443 P - is

transferred by the rivets to the side plates _id from these to the main

bolt. In addition, the bearing stresses acting on the middle plate are

reduced to 55.7 percent of those found when there w_re no side plates.

If the term gPSo is neglected, the loads are found to be

PI = 0.403 P

P2 = o.z37 P

P_ = o._64 P

P4 = 0._96 P

As explained, the ccefficient g may be written in the form

g = gl _ gll

where gl represents the compression due to the bearing stresses and gll

represents the bending of the bolt. The deformation due to the beariz_

stresses has already been discussed and
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that is,
gl = 0.65 (A/Zt!)

The bending of the bolt is due to a bending momentthe value of which is
approximately

(P/S) (s- t_ . te)12

and from this by calculating the relative displacement between the centers

of the side plates and the middle plate it is found that

gll p5 ° = g11P(_/EA) = (2/3) (P/Edl4)(s-tl-t2)(3tl2+6tlt2+2t2 2)

that is,

g11 = 0.43(A/dlZ)(t2/dl)a(s/t2_ I- tl/t2)"!I + 3(tl/te) + 1.5(tl/t2)2) _
L

If the main bolt is made of steel and the plates of dural, the abow

constants 0.65 and 0.43 in gl and gll should be replaced by 0.52

and 0.14_ respectively. It can be seen from these expressions for gl

_1_ gll that the latter is small in ccmparls_n with the former if the

diameter dl of the first bolt is large in comparison with the thicknesses

of the plates_ which is usually the case in practice.

For the slightly different system depicted in figure 17, all the equa-

tions remain the same as before except that now Pl + P2 + P3 + P4 = 0
instead of P. With the same dimensions as above it is found that

PI = 0.462 P

P2 = -- O. C61 P

P3 = - 0.127 P

P4 = - 0.274 P

In other words_ not quite half the load is transferred by the three rivets

to the middle plate and from this to the main bolt. The bearing stresses

are correspondingly reduced to 53.8 percent ef those found when no middle

plate is added for the strengthening of the lugs.
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Th_se formulas give an approximate indication of how th_ slope varies
with the load, it b_ing rememberedthat 8 is a functicn of the load. In
consequence the momentarms will also depend on the load; and th_ load dis-
tribmtlon cn the rivets is then dependent on the load even at loads below
the !]mit of proportionality. The load distribution is, however, greatly
influenced by being inside the Joint, and these approximate formulas have
m_re]y b_,engiven to fix ideas.

The relation between _ and g at the outer rivet is neededfor a
mor_ _;xact solution of the problem. Consider a section originally of
length _, between the (i -l) th and the i th rivets in the left--hand
side of the axis of syTmnetryas shown in figur_ 20. The tenL_lle load car-
ried by the plates is denoted by Qi and RI, and the rivet losds at the
ends of the section by PI-i and Pi. Then frcm symmetry

and

where

Qi + Ri = P

ql = Rl = P/2

Ri = P/2 - Ni- l

Rn = Pn

Ni = Px + P2 + • . Pi

The offset loading causes the plates to bend, and the piano ends of the

section are at an angle _i to one another. Comparison between the ex--

tensions at the ccn_non surfaces of the plates then gives

that is,

o!"

RiZ/EA- t'_i/2 + 5i = QiZ/EA + t_i/2 + 5i--1

¢i:(i/t) - + - Qi)
k

= (Z/EAt) _[c(P i - Pi-l) - 2 Ni--l_
J

In order to produce this degree of bending_ each plate must be sub-

Ject to a bending moment of amount EI_i/_.
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Let Y'i d_not_ the average value of the ordinate of the ce_mgns_zr--
face of th_ two plates for the section of the Joint. .The bending moment

acting _n the whole section, resulting in bending of the two plates ar.d

axial forces, is then

and this gives

MI = Py'i-- _I,_i/_ + tRi/2- tQi/2

-- (t/6) -[c(Pi - Pi-1) - 8 _i--_._,

Y'i = (tl6P) _c(Pi - Pi-l) - _' Ni-.,

The cuantity Y'i is sensibly zero at very small loads and the foregoing

relation then shows that

Pi--Pi-_ + (8/0) Nl--_

The corresponding equations for double strap Joints involve the constant

2/c instead of 8/c. It follows that for very small loads the load dis-

tribution shews even greater nonuniformity for single shear Joints than

for double shear Jolnts and this is due to the bendir_ of the plates. If

infinitely !erie loads could be applied within the limit of proportionality,

angles _i would still be finite and at such loads th_ equations reduce

t_ those for double shear Joints, that is,

Pi : Pi-_ + (2/c)i_i--_

In the analysis of the load dlstrlbuti_n at intermediate l_ads it is

c_nvenient to replace the average crdlnate Yi' by the ordinate Yl _f

the point ef intersection of the tsngents at the ends of the section, as

shown in figure 2!(a).

Now

Yi' = Yl + I_i/6

and it follows that

yi -- (t/_P! _o(! - oU12)(Pi - Pi-_) - 2(4 - o_/12/Ni-_ _
1 j
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Sim_l_ rolatlens may now be found between the quantities Yi if

there is an even :_umber of rivets Y: = O, and this merely confirms that

the rivet_ ,_n each side of the axis of symmetry carry the same load. Fr_n

ficur_ 21 _b) it is clear that the following recurrence relation holds be-

t-_'_:i the Y'i values,

and at the ends of th_ Joint (see fig. 2l(c)),

ar.d

y_ = o-- t/2 + z_f2 = _(: + e/_) - t/2

Yn-: = Yn + (_ + _/_,..)7,= g (! + 3e/2) - t/2 + _)&tm

_T.u cxpressicn for Yi and

into those equations to give

ar,d th,_ ordinate g.

In additlcn

_i previously found may ncw be substituted

n relations between the n rivet loads

2 (P: + P2 + • • • + Pn) = P

and these equations taken all together suffice to determine the rivet

loads Pi and the ordinat_ g.

In general, the solution of the equations is rathe_r Involved and

as an illustration the comparatively simple case of n = 2 (i.e., 4 rivets)

is ccnsid:_red in detail. The equations are

and

.::_.= g (:+ e/2)--t/2

Yz = 0 = 8 (l + 38/2)"- t/2 + 2_2

2P: + 9_102= P
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or

g(1 + 8/2) = t/2 + (t/6P) { c(1 - e 2 /12)(P2 - Pz) - 2(4-e2/!2)Pz ".;

g(1 + 3e/2) = t/2 -- (t/6P)(82/2) _ c(P2 - P1) - 2__P]

and

2PI + _-_2 = P

These equations give

_+6eP2  =1+ 8+0 (lO+3O>/12 c z+3ot2+o2(! 3 )/24
_J - J

and by taking c = 4, the following numerical results for various values

of e may be obtained:

o P,/P P /P

0.0

.5
1.O

1.5

2.0

2.5

3.0

3.5

o. 125 o. 375

•179 .321

•2O0 .30o

•2o9 .291

.213 I .237.915 .285

• e15 _ .285
. ez5 I .285

i

Fer very large values of

and again this gives

as for double strap Joints.

e

P2 = P_ (z + 2tc)

Pi = 0.2P

P2 = 0.3P
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Th_ _(,luticn f_r very high values cf e is of little practical in-
ter,_st bo,,ause it cr,rresponds to high !cads. Now

f = E__ tm/12Z2

and by taking e = 2 and _ = 10t it is found that f = E/300. S*r_ssss
in _xce_8 _f thi_ value will result in ncr_ilnear i_-fr,rmati_ns, and th_
form_-_lawill n,, l_nger be wal!d unless thP rive b pitch is increased. The
v_riati,,n in the load on the outer rivet is show_dia@rg_r_atically in fig-
ur_ 22 _n t.h_ basis that the leads, are within the elastic limit. Th_ ac-
tual r.um_rical r;,sults will, of course, vary b-,tn with the number,=f rivets

and with th_ valu_ of c for the particular Jclnt in question.

_h_n there are _veral rows _,f rlw, ts J,_Ir,%n_ th_ two plat;a t_geth=r,

it is n_.c_.ssary _nly t_ modify the abcw formulga by taking A +,c b,_ the

a_T._ac,rr,-_p_ndirg to _ne line cf rivets.

Th_ _b_w tabl_ shows theft with 4 r_vets and c = 4 th_ l_ad dim-

tr_,_.n en th_ rlvots is the sane for s!rgle and dcu_lr., _'h_ar j_int8

if Q = l. In g_neral th_ load dlstributi_n for single and d(._uble _h:',ar

J,_ints with 4 rivets is the same if

q= 20I( + o)

and f#r largnr values of q the l_ad distrlbuticn is b_t_r f_r slmgl@

thgn for doub!_ shear Joints.

Th_ _quati_ns: as given above are for j_Ints with an even number

_f riwts (gn) and f_r an odd humbert of rivets (2n + I) they should

b_ modified as f,,ll_ws. _he central nivet is deaig_ated by th_ suffix

m and the oth_r rlvets are des_ignated am b_f_re. Th_ t_tal load i_ _,w

+ 2 (PI + P2 + • Pn )P=P_ • .

i_mtead of

and

P = 2 (Pz + P2 + • • , Pz).

Ni = Pc/2 +Pz + P2 + • • • Pi

instead _f

N i = P_ ÷ Pe + • • • Pi



NACATMNo. 1135 37

At the axis of symmetry Yz = -Yo instead of Yl = 0. All other
g_,_-_'_tl _,quations, however, r_main unaltered, For example, in a Joint

with only t?_e_ rivets the equations are

and

P = Po + 2 PI

Yl = (t02/!2 P)_c(P1-Po)-Po_

y_ : (t/6P) c(1-o_/12)(P_-Po)- (4-o_/12)Po,_
k J

Yl = g (1 + el2) -- t/2

yo=-y_ =g (I+3_/2)-t/2+_

which give

P_./%=1+ s-e+ (4+e) e_/12 / c
__ L.

and by taking c = 4 the following numerical results fcr various values

of @ may be obtained:

0.0

.5
!.0

1,5
2.0

3.0

4.0

5.0

i0.0

0.200

.250

.24

.290

.2_

.3_

.34

,3_

,2_

0.400

•375
•3(;2
,355

.351

•348

•347

.348

•352

The si134_!e shear Joint with three rivets has the same load dis-

tribution as the double shear Joint; that is, PI/P = i + i/c if

q = 2c/(2 + c), and for larger values of q the single shear Joint

has a better load distribution than the double shear Joint, and in

particular for q = 4/3 and c = 4 the load distribution
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is obtained both for single and double sh_ar Joints, and the dist:_ibuti_n

in sing!_ shear Joint_ is slightly improved for larger values of O,

When there are several rows of rivets it is n_cessary only to make

the same modification that has already been mentioned for an ewn n1_ber
of rivets.

C ONC LUS I0NS

Further _xperlmental data on the load distribution in bolt_d rr

riveted Joints in light-alloy structures are needed to check the theory

developed in this r_p<rt and also to provide design data on bolt a_d

rivet stlffnesses. Th_ experlmental data at present ]wnown sre primarily

hue to Volkerson _nd th_se are not sufficient. Th_ n_rlcal example_

given show that the load distribution does not _-ary greatly with the

bolt (or rivet) stiffr,t_sses and that for design purpos<_s it is usually

sufficient to k_;ow their order of magnitude. The theory ma'r also be

directly used for spot-welded structures and, with small modifications_
for sema-w=id_d structures.

The c,_mputational work involved in the methods described is simple

and may be completed in a reasonable time for most practical problems.
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