
THE KLIPSCH SCHOOL OF

ELECTRICAL AND COMPUTER
ENGINEERING

TECHNICAL REPORT SERIES

-

-

-

-
-

-
-
-
-

CARRIER ESTIMATION USING CLASSIC SPECTRAL
ESTIMATION TECHNIQUES FOR THE PROPOSED

DEMAND ASSIGNMENT MULTIPLE ACCESS SERVICE

Bradley James Scaife, B.S.

NMSU-ECE-99-007 August 1999

CARRIER ESTIMATION USING CLASSIC SPECTRAL ESTIMATION

TECHNIQUES FOR THE PROPOSED DEMAND ASSIGNMENT

MULTIPLE ACCESS SERVICE

BY

BRADLEY JAMES SCAIFE, B.S.

A Thesis submitted to the Graduate School

in partial fulfillment of the requirements

for the Degree

Master of Science in Electrical Engineering

Major Subject: Electrical Engineering

New Mexico State University

Las Cruces, New Mexico

August 1999

-

"Carrier Estimation Using Classic Spectral Estimation Techniques for the Pro-

posed Demand Assignment Multiple Access Service," a thesis prepared by Bradley

James Scaife in partial fulfillment of the requirements for the degree, Master of

Science, has been approved and accepted by the following:

Timothy J. Pettibone
Dean of the Graduate School

~1)~
Phillip L. De Leon
Chair of the Examining Committee

Committee in charge:

Dr. Phillip L. De Leon, Chair

Dr. Gerald J. Dunn

Dr. Stephen Horan

Dr. James P. Le Blanc

11

ACKNOWLEDGMENTS

The author would like to take the opportunity to thank Frank Hartman, Cliff

Baxtor, and the entire White Sands Complex Staff for their support and for the

opportunity to gather test data in a very busy environment. Additionally, the

author wishes to express gratitude to Lawrence Alvarez for invaluable assistance

on numerous occasions in setting up hardware and test beds.

The author would like to thank Dr. Paul Klipsch for his incredible service to

New Mexico State University, the field of electrical engineering, and to the author

personally. It was an honor to be a graduate scholarship recipient but a greater

honor to meet Dr. Klipsch personally.

The author would like to express his appreciation and admiration for the pro­

fessors of the Klipsch School of Electrical Engineering and in particular to Dr.

James LeBlanc for excellent instruction and invaluable assistance with this work.

The author would like to take the opportunity to express a lifetime of gratitude

for the many lessons taught him by his advisor Dr. Phillip L. De Leon. His work

on this project and support of it as well as his willingness to direct, correct, and

instruct with seemingly endless patience has made him more friend than advisor.

A final word of gratitude to my wife Nancy for ever demonstrating faith, hope,

and love, but the greatest of these

iii

-

VITA

-Born in

1987-Graduated from Ashland High School, Ashland Oregon

1994-Graduated from Oregon Institute of Technology, Klamath Falls, Oregon

1994-1997-lntel Corporation, Portland, Oregon

1998-1999-Research Assistant, New Mexico State University Manuel Lujan

Center for Space Telemetering

1999-Teaching Assistant, Klipsch School of Electrical and Computer

Engineering, New Mexico State University

PROFESSIONAL SOCIETIES

Institute of Electrical and Electrical Engineers

PUBLICATIONS

Scaife, Bradley J. 1998. Doppler Shifted Spread Spectrum Carrier Recovery Using

Real-Time DSP Techniques. International Telemetering Conference.

FIELD OF STUDY

Major Field: Signal Processing and Computer Architecture

IV

ABSTRACT

CARRIER ESTIMATION USING CLASSIC SPECTRAL ESTIMATION

TECHNIQUES FOR THE PROPOSED DEMAND ASSIGNMENT

MULTIPLE ACCESS SERVICE

BY

BRADLEY JAMES SCAIFE, B.S.

Master of Science in Electrical Engineering

New Mexico State University

Las Cruces, New Mexico, 1999

Dr. Phillip L. De Leon, Chair

In any satellite communication, the Doppler shift associated with the satel­

lite's position and velocity must be calculated in order to determine the carrier

frequency. If the satellite state vector is unknown then some estimate must be

formed of the Doppler-shifted carrier frequency. One elementary technique is to

examine the signal spectrum and base the estimate on the dominant spectral com­

ponent. If, however, the carrier is spread (as in most satellite communications)

this technique may fail unless the chip rate-to-data rate ratio (processing gain)

associated with the carrier is small.

v

In this case, there may be enough spectral energy to allow peak detection against

a noise background.

In this thesis, we present a method to estimate the frequency (without knowl­

edge of the Doppler shift) of a spread-spectrum carrier assuming a small processing

gain and binary-phase shift keying (BPSK) modulation. Our method relies on an

averaged discrete Fourier transform along with peak detection on spectral match

filtered data. We provide theory and simulation results indicating the accuracy

of this method. In addition, we will describe an all-digital hardware design based

around a Motorola DSP56303 and high-speed A/D which implements this tech­

nique in real-time. The hardware design is to be used in NMSU's implementation

of NASA's demand assignment, multiple access (DAMA) service.

Vl

Contents

List of Figures

List of Tables

Frequently Used Terminology

1 Overview

1.1 Introduction

1.2 Comparison of Goddard and NMSU's DAMA Proposals.

1.3 Proposed Solution

1.4 Simulations, Test Data, and Theory .

1.5 DAMA Hardware

2 DAMA Project Description

2.1 Current WSC Operations

2.2 NMSU's Proposal

2.3 Spread Spectrum Fundamentals

2.4 Operating Parameters Description .

2.5 Carrier Estimation Problem

2.6 Proposed Solution . .

3 Theory and Simulation

3.1 Signal Description . .

3.2 Estimation Accuracy Theory .

3.3 Comparison of Theory to Simulation

Vll

ix

xi

xii

1

1

2

3

4

6

8

8

10

12

16

18

19

24

24

25

29

-

3.4 Simulation Model Description

3.5 Simulation Results

3.6 Theoretical/Simulation Data Summary

4 WSC Data Collection Experiment

4.1 Motivation of WSC Data Collection Experiment

4.2 Data Collection Setup

4.3 WSC Collected Data Processing .

4.4 WSC Data Results Compared to Simulation

4.5 Conclusions of WSC Data Collection

5 Carrier Estimation Hardware and Software

5.1 Motorola DSP56303EVM Description .

5.2 Burr Brown 800kHz A/D

5.3 A/D Interface Board

5.4 Additional Hardware

5.5 Software Description for Real-Time Carrier Estimation

6 Conclusions and Future Work

A Matlab Simulation Code

B Motorola DSP 56303EVM Code

References

Vlll

31

32

38

39

39

40

43

44

46

48

48

51

51

52

53

56

57

94

134

List of Figures

2.1 Illustration of Doppler Shift to DAMA Carrier 9

2.2 DAMA Carrier Placement Against MA Spectrum 12

2.3 TDRSS MA Spectrum at IF from Actual Data . 13

2.4 2047 PN Code Implementation . . . 14

2.5 Spreading Effect of Processing Gains 16

2.6 Flowchart for Carrier Estimation Algorithm 23

3.1 Signal Space Diagram for BPSK 25

3.2 Comparison of Theoretical Curve Against Simulation 30

3.3 Family of Curves for Non-SMF Case 33

3.4 Non-SMF Frequency Estimation for PG = 10, SNR = 2 dB . 34

3.5 Non-SMF Frequency Estimation for PG = 20, SNR = 2 dB. 34

3.6 Non-SMF Frequency Estimation for PG = 100, SNR = 2 dB 35

3. 7 Family of Curves for SMF Case 35

3.8 SMF Frequency Estimation for PG = 10, SNR = 2 dB 36

3.9 SMF Frequency Estimation for PG = 40, SNR = 2 dB 37

3.10 SMF Frequency Estimation for PG = 100, SNR = 2 dB . 37

4.1 Experiment Setup 40

4.2 Placement of Test Frequencies Near TDRSS Null 42

4.3 Comparison of Simulated Results vs. WSC Captured Data 45

ix

4.4 Carrier Estimation Summary

5.1 DSP56300 Core System Block Diagram

47

49

5.2 Locking Tone Generation . 53

X

List of Tables

1 Test Sets Captured 43

-
-

Xl

Frequently Used Terminology

• AWGN: Additive White Gaussian Noise

• BPSK: Binary Phase Shift Keying(ed)

• BW: Bandwidth

• CDMA: Code Division Multiple Access

• DAMA: Demand Access Multiple Assignment

• DSO: Digital Storage Oscilloscope

• DSP: Digital Signal Processing/Processor

• MA: Multiple Access

• PG: Processing Gain

• PN: Psuedo-Noise

• PSD: Power Spectral Density

• Rx: Receive

• SMF: Spectral Matched Filter

• SN: Space Network

• SNR: Signal to Noise Ratio

xii

• SS: Spread Spectrum

• TDMA: Time Division Multiple Access

• TDRS: Tracking and Data Relay Satellite

• TDRSS: Tracking and Data Relay Satellite System

• Tx: Transmit

• WSC: NASA's White Sands Complex

xiii

-

1 Overview

1.1 Introduction

In an effort to provide increased access to NASA's Space Network (SN), a

Demand Access Multiple Assignment communication scheme has been proposed.

Under this scheme, users would have the option to communicate short information

packets at low data rates on demand. This scheme is driven by the increased abil­

ity of modern satellites (spacecraft) to detect error conditions on board the satel­

lite [1]. Under current SN operations, communication services are pre-scheduled

and the schedules often have significant delay and are not easily modified. The

DAMA service is to be designed such that it operates independently of the current

scheduled Multiple Access (MA) service.

The SN consists of geostationary Tracking and Data Relay Satellites (TDRS)

that operate as a virtual "radio frequency (RF) mirror" for data transmissions

from/to low Earth orbiting (LEO) spacecraft communicating to/from ground sta­

tions. These LEO spacecraft are in orbit about the earth and due to their relative

motion to a receiving TDRS, a Doppler shift is induced in transmissions. Since

the MA service is pre-scheduled, these Doppler shifts may be accounted for allow­

ing the ground station to detect and receive the LEO signal. In the case of the

DAMA system, where data transmissions are to be scheduled on demand,

1

the Doppler shift information may be unknown and thus a system must be de­

signed to estimate (to within ±3 kHz) the carrier of the LEO signals.

1.2 Comparison of Goddard and NMSU's DAMA Proposals

Two independent proposals have been offered to implement the DAMA ser­

vice. The first has been proposed by NASA/Goddard Space Flight Center (GSF)

and the second by New Mexico State University. The Goddard proposal intends

to provide continuous tracking of all LEO satellites equipped with DAMA capabil­

ity. Thus with the state vectors of all of these LEO satellites known, the Doppler

shift of the carrier can be computed much like for the MA service. Whereas the

Goddard proposal must maintain these state vectors so that the ground station

receiver may demodulate, the NMSU proposal forgoes LEO satellite state vec­

tor knowledge to simplify the required ground station hardware. In the NM$U

proposal only a single element of the TDRS antenna array is used as a global bea­

con [1]. With a global beacon configuration, even a satellite that is experiencing

alignment problems may transmit an emergency message to ground station users

utilizing the DAMA communication system. As the state vector of the communi­

cating spacecraft has been given up, the ground station will not know the position

of transmitting LEO space vehicle and thus the Doppler shift cannot be accounted

for [2]. Previous work has shown that the Doppler shift of a LEO spacecraft and

2

-

-

a TDRSS can vary by as much as ±50 kHz which is outside of the ground station

receiver (GSR) tolerance of ±3kHz [3].

The fundamental problem to NMSU's proposal lies with estimating the carrier

of the transmitted signal to within the tolerance of the GSR. Hardware must

be developed that will provide a locking tone, accurate to within the ground

station tolerance, in order for the ground station to demodulate. The problem is

exacerbated by the nature of the DAMA signal. The DAMA carrier is to employ

a Spread Spectrum (SS) scheme. SS signals tend to suppress spectral peaks of

carriers and have responses that are spread out over a wider bandwidth. As we

shall show below, this makes the proposed solution to carrier estimation more

difficult.

1.3 Proposed Solution

The proposed solution to the carrier estimation problem described above is to

employ classical Digital Signal Processing (DSP) spectral estimation techniques

to estimate the carrier frequency. We shall employ a Discrete Fourier Transform

(DFT) to generate magnitude squared spectral data from the received signal. The

resolution of the DFT will be set to provide accuracy to within the ground station

tolerance. A single iteration of this process will not be sufficient to protect the car­

rier estimation from noise so we will average the magnitude squared data to limit

the effects of noise. This process results in a periodogram. Having obtained the

3

periodogram of the received signal, we shall employ a frequency domain matched

filter to maximize the Spectrum-to-Noise ratio (SPNR). The frequency domain

matched filter will be predetermined based primarily upon the predefined SS fre­

quency characteristics, such as processing gain (PG) and power, of the received

signal. The results of the application of the matched filter, like those of the time

domain equivalent, provide an optimal solution by enhancing the spectrum prior

to searching. We then search the enhanced periodogram for a peak with which

we base our carrier estimation. The accuracy of this technique will be shown

to depend primarily on the PG of the DAMA carrier and the Signal-to-Noise

ratio(SNR).

1.4 Simulations, Test Data, and Theory

At the core of the proof of concept for the proposed solution is a simulation

model designed in Matlab. The simulation models the DAMA carrier against

additive white Gaussian noise (AWGN), where we use AWGN to effectively model

the white noise like spectrum of the MA service [2]. Having approximated the

TDRSS channel by its most critical feature(presence of the MA service) we add t~e

DAMA carrier and simulate carrier estimation based upon the approach described

in section 1.3. The simulation model provides estimation accuracy as a function of

the SNR and the PG of the DAMA carrier. We will show that accurate estimation,

4

-

to within the ground station tolerance, is achievable 80%-90% of the time for the

given DAMA data rates and corresponding spreading rates.

To verify the accuracy of the simulation model, we include the results of an

experiment with test data gathered at NASA's White Sands Complex (WSC). In

this experiment, actual data vectors were streamed to a ground station transmitter

for transmission to a TDRS (in orbit) and sent back to the ground station receiver.

The parameters of the experiment were set such that we could observe several

key issues with carrier estimation. The data gathered was processed with the

proposed algorithm and compared to simulation results. The most significant

conclusion of the experiment was that carrier estimation with the collected data

was nearly equivalent to results obtained through simulation. The simulation is

then recognized to accurately model the actual TDRSS channel.

We have developed a theoretical analysis that leads to a rough approximation

for carrier estimation accuracy. The analysis of carrier frequency estimation is

based upon use of the OFT, and the description of carrier estimation accuracy as

a random variable [4]. From this description and the use of various approxima­

tions, we obtain an expression that describes the root mean square error (RMSE)

between the actual carrier frequency and the estimate. The result is expressed as

a function of SNR, data (chip) rate, and window type and length. Though the

approximations break down in low SNR cases, in the higher SNR cases theory

agrees with simulation results.

5

1.5 DAMA Hardware

As described above, we seek to provide the ground station with an accurate

carrier frequency based upon our estimation. We perform this estimation through

the use of specifically designed hardware. The base of the hardware utilizes Mo­

torola's DSP56303EVM (EVM). The EVM utilizes Motorola's DSP56300 core

which is capable of 80 million instructions per second at 80 MHz and has enough

available on-chip memory to implement the algorithm described above. As we

will be required to sample the incoming signals at rates greater than that allowed

by the EVM, we have integrated an 800 kHz 12 bit Burr-Brown ADS7810/19

analog to digital converter (A/D) into the design. To interface the EVM and the

A/D requires some additional logic and level translators that are implemented

on an additional interface card. The card allows the EVM to control the A/D

while allowing samples from the A/D to be passed directly into the memory of the

EVM for processing. These three components, excluding some additional analog

pre-processing and post-processing equipment, make up the core of the carrier

estimation hardware. The hardware is designed to receive signals that have been

filtered and frequency shifted to baseband, estimate the carrier, and then provide

a locking tone to the GSR. The GSR will use this carrier estimate to demodulate

the DAMA carrier.

6

-

-

The hardware has been tested with synthesized waveforms as well as actual wave­

forms captured during the WSC experiment and performs as designed/required.

7

2 DAMA Project Description

2.1 Current WSC Operations

TDRSS was originally devised by NASA as an efficient means to control costs

associated with providing a ground station for each satellite [5]. The concept of

a space network was formed where users could transmit and receive all commu­

nications through a common ground station. NASA operates TDRSS as a space

network (SN) using it to provide customers with communication access to their

Low Earth Orbiting (LEO) spacecraft. The SN consists of six geostationary Track­

ing and Data Relay Satellites (TDRS) located 22,250 miles in orbit and a ground

station located at the WSC (other operational ground stations exist as well) [5].

The function of a TDRS is to act as a virtual "RF mirror" through which commu­

nication signals are relayed between user spacecraft and the ground station. An

antenna array, located on each TDRS, is tuned by weighting antenna elements to

provide a spot beacon to the spacecraft. This requires a unique weighting vector

and associated signal processing equipment for each user spacecraft [1]. Two com­

munication schemes are used by the SN to fulfill various communication needs [5]

[3]:

• multiple access (MA) at low data rates of 100 bps to 50 kbps operating in the

S-hand (2.1031 GHz- 2.1097 GHz forward service, 2.2845 GHz- 2.2905 GHz

return) and using CDMA spread spectrum with a chip rate of 3 Mchips/s.

8

-

-50kHz Doppler +50kHz Doppler

0.9

0.8

0.7

0.6

.s
3 c: 0.5
"' .,
:;;

0.4

0.3

0.2

0.1

50 100 150 300
Frequency (kHz)

Figure 2.1: Illustration of Doppler Shift to DAMA Carrier

• single access (SA) at up to 300 kbps operating in either the S-band or the K-

band (2.0204 GHz- 2.1233 GHz forward service, 2.2 GHz- 2.3GHz return)

using TDMA.

The SN is able to provide 80% - 100% coverage for LEO spacecraft and is capable

of simultaneously supporting 26 user spacecraft.

TDRSS consists of geostationary satellites but the LEO spacecraft that use

this system are not necessarily geostationary. We know that signals originating

from a source moving relative to a TDRS will experience a Doppler shift [6). It has

been shown that the Doppler shift of these signals can be as much as ±50 kHz [3].

This is illustrated in Figure 2.1. The GSR normally maintains the state vector of

9

the satellite it is intended to communicate with and hence can simply calculate

an estimate of the Doppler shift. Provided that the estimated Doppler shift is

within ±3 kHz of the actual Doppler shift, the ground station can demodulate

the received signal. In any system where one would forgo knowledge of the state

vector of these satellites, the result would be that in general the GSR could not

synchronize to the Doppler shifted carrier and thus the carrier neeq be estimated.

The SN currently works under a scheduling process whereby a request for

service must be made in advance (prescheduling) to utilize the SN. The scheduling

delay often takes as much as 21 days for the request to be processed [3]. \Vhile the

request can be serviced quicker in emergencies, the delay does not allow customers

to react in near real-time to emergency situations that may arise with a user

spacecraft. DAMA is a proposal that seeks to provide on demand communications

between a user and their spacecraft without the need for prescheduling.

2.2 NMSU's Proposal

The initial scope of the NMSU proposal is towards implementing a "911"

service where satellites that have an gone into an error state may communicate

this to the user when it detects such a condition. The eventual scope is to provide

this service as a standard service to all DAMA capable spacecraft that require

only low data rates with small data packets. Additionally it must be expanded

to allow multiple access-or use by multiple users. For this thesis we assume a

10

-

single DAMA user at a time. The algorithm to be developed below is scalable to

allow for multiple DAMA users at some point in the future.

The NASA GSFC proposal seeks to implement the DAMA service by main­

taining the state vector information for each user spacecraft that is DAMA capable

by continuously tracking each of these spacecraft. As in the MA service, with the

state vector of the spacecraft known, it is routine to estimate the Doppler-shifted

carrier and provide this estimate to the GSR. In contrast, NMSU's proposal gives

up this state vector knowledge so that the DAMA ground station equipment is

simplified. This leads to a problem with the Doppler estimation as it now must

be estimated and supplied by means other than from the state vector. We pro­

pose a solution to this problem with the algorithm to be developed below that

will execute on the hardware that was also developed to provide the GSR with

this Doppler estimate. DAMA is to be implemented with a SS BPSK modulated

communication scheme like the MA service described above. However, there are

certain restrictions that determine the parameters of the scheme. The DAMA car­

rier is to be placed just inside the first upper TDRSS null as observed in Figure

2.2. The carrier will be placed such that a maximal Doppler shift of +50 kHz will

not place the carrier too near the null so that the rolloff of the TDRSS channel

and other associated GSR equipment, which bandpass filters on the mainlobe,

will not adversely affect carrier estimation. The signal in Figure 2.3 consists of

the MA service and the DAMA signal and demonstrates the overall response of

11

Magnitude not to scale

0_9 for Illustration only

0.8

0.7

0.6

0.4

0.3

0.2

0.1

DAMA (2290.4MHz)

0~~~~~--~L--L---L--~~~~~~~~--~

2278 2280 2282 2284 2286 2288 2290 2292 2294 2296 2298
Frequency (MHz)

Figure 2.2: DAMA Carrier Placement Against MA Spectrum

the TDRSS system with the addition of the DAMA signal. We furthermore see

the effects of sidelobe rejection of the TDRSS system.

2.3 Spread Spectrum Fundamentals

To discuss the operational parameters of the proposed DAMA carrier estima-

tion, it will first be necessary to provide some fundamentals of SS communication

schemes and definitions of important parameters. These parameters directly affect

carrier estimation performance.

We begin with a basic and widely used definition for SS systems: SS systems

are distinguished by the characteristic that their signals consume a bandwidth

greater than the information rate [7]. Though there are several different tech-

12

-

20

18

16

10

8

28 30
f(MHz)

Figure 2.3: TDRSS MA Spectrum at IF from Actual Data

niques for implementing the spreading, we focus on the technique known as spread

spectrum by direct sequence (DS). DS spread systems implement a scheme where

the information data is acted upon by pseudo-noise (PN) data, whose elements

are referred to as chips, to produce a spread spectrum bandwidth (BW). The ratio

of chips to bits is typically an integer and the chip rate is often much higher than

the data rate. This ratio is defined as the processing gain (PG) where

(2.1)

and Rc is the chip rate in chips/sand Rb is the data rate in bits per second (bps).

The PG also describes the ratio of chips/bit from which we see that each bit will

be acted upon by PG chips through the use of modulo-2 addition. The PN code

13

Figure 2.4: 2047 PN Code Implementation

sequence, Ci, has the property that it approximates a white noise sequence and

is periodic. ci is designed purposely such that

(2.2)

indicating orthogonality between PN codes of equal length but different "keys".

In practice, PN codes are only approximately orthogonal. The number of 1 's and

O's, with Ci E {0, 1}, differ by at most one. Many different techniques exist for

the generation of these codes and we provide the 2047 PN code as an example.

Though the 2047 PN code exhibits the qualities of white noise it is in fact periodic

with period 2047. This PN code may be viewed as a primitive polynomial and

implemented with a shift register as seen in Figure 2.4.

In general the initial state of the shift register is a "key" and each key represents

a different PN code that is orthogonal to other PN codes as described in (2.2). In

this manner each PN code operates as an orthogonal basis function for each vector

14

of data. Multiple users are allowed in the same bandwidth precisely because each

message is orthogonal to the other.

For the MA service, Rc = 3 Mchips/s. From theory it is known that the BW

consumed by this modulation scheme follows the relation:

BW <X 2Rc (2.3)

where BW is the bandwidth, and Rc is the chip or spreading rate [8]. From (2.3)

we observe that the MA service will occupy approximately 6 MHz of BW as is

illustrated in Figure 2.2 and Figure 2.3.

We will show that PG plays a large role in carrier estimation but first it is useful

to see how PG will affect the BW of a signal. As we "spread" a carrier more and

more (increase Rc relative to Rb), the spectrum of the carrier will tend to spread

out and flatten. This can be observed in Figure 2.5 below where we have spread a

BPSK at various rates. Both PG's in Figure 2.5 are relatively low however, it will

be shown that low PG's are required for accurate carrier estimation. Estimation

of the carrier becomes more difficult at higher PGs since the carrier power is not

concentrated over a small band of frequencies, which would result in a sharp

15

35

30

25

~20

~ 15

i

-5

I
I

' ' \
I

I

·I

I
I

...

-10 '----...L.lL---'-_a_-'--LLL----'--.L.lL--'-..,_-L_"-:-'-_..........IJ
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Normalized Frequency (Hz)

Figure 2.5: Spreading Effect of Processing Gains

spectral peak, but rather distributed over a wider range. The peak in the SS case

has less power and therefore noise may bury it (as intended for SS systems).

2.4 Operating Parameters Description

We now describe some of the communication parameters of the DAMA pro-

posal. We are particularly interested in three parameters when dealing with digital

communication systems: power, bit rate, and probability of bit error. For DAMA

carrier estimation, we are not required to demodulate the signal and thus do not

look at the probability of bit error. The first two, however, will affect our ability

to to perform carrier estimation.

16

-

For the purposes of this thesis, we will describe DAMA power in two different

ways. The first will be SNR in dB of the DAMA carrier-to-MA spectrum. Vve

use this SNR definition when observing simulated work since the MA spectrum

was modeled as AWGN. We can gain insight into this definition by observing

Figure 2.3. The DAMA carrier will exhibit a peak against the passband of the

MA service. Thus, we are interested in the DAMA power to that flat passband.

The second way of describing power will be as the ratio Cb/ No which is used in

WSC operations. This is a measure of DAMA carrier power to the noise floor.

Through observations of spectra (under typical conditions) collected at WCS, the

mapping between the two power ratios was seen to be approximately

Cb/ No = 45dB ~ SNR = 2dB. (2.4)

In this thesis, we shall use Cb/ N 0 to describe results of actual signals and SNR

when describing simulation results. To avoid confusion when comparing the two,

we shall map SNR to Cb/ N 0 •

Since we intend DAMAto be aSS BPSK system, we must not only describe

data rates, but also chip rates and therefore PGs. Due to the nature of the DAMA

service, it has been proposed that Rb = 1 kbps [3]. The PG, as defined in (2.1),

will be another parameter that is of primary concern since it determines the B\V

of the DAMA carrier and impacts the sampling rate. DAMA carrier estimation

17

accuracy will be shown to depend on PG to a large extent and therefore the chip

rate will be a matter of investigation.

Sampling rate is another important parameter. It was initially proposed that

the PG would be set to PC = 100 [3]. With the data rate set as above, this

implies a chip rate, Rc = 100 kbps. This will exhibit a mainlobe width of 200kHz

by (2.3). From Figure 2.2 we can observe that we will need to accqunt for another

100 kHz due to Doppler shift. The total possible BW of the DAMA carrier is then

300 kHz. We recall that to avoid aliasing while sampling the DAMA carrier, the

DAMA signal must be bandlimited and be sampled at

Is 2:: 600kHz. (2.5)

A commonly available, inexpensive 800 kHz A/D was found that matched the

requirements and we thus chose Is = 800 kHz. This has implementation ramifi­

cations that will be discussed below.

2.5 Carrier Estimation Problem

The problem with demodulating the DAMA carrier is the same as that for the

MA carrier (though for the MA case the estimate is derived from the state vector

of the satellite): the ground station is not capable of demodulating a signal if the

error of the estimate is greater than ±3 kHz from the actual. As NMSU's proposal

will not keep track of state vector information for each user spacecraft, the carrier

must be estimated reliably and efficiently and then passed to the ground station

18

receiver. NMSU's DAMA proposal hinges upon accurate carrier estimation. We

have developed an algorithm and hardware that performs this task and we shall

describe the algorithm as well as the parameters for operation that will provide

accurate carrier estimation. The hardware will provide a locking tone to the

ground station receiver.

2.6 Proposed Solution

The proposed solution relies on classical spectral estimation theory with some

modifications to improve performance. We begin by assuming that external analog

hardware required to bandlimit and frequency shift to baseband the TDRSS and

DAMA signals is available. Contained in the 400 kHz band (assuming fs = 800

kHz) will be a portion of the TDRSS signal along with the entire DAMA signal.

We next employ an averaged DFT (implemented with an FFT) which, if mag-

squared values are computed, is also known as a periodogram. Since we assume

AWGN with zero mean, the averaging has the effect of reducing estimation error

variance of the carrier based on the DFT estimate of the DAMA spectrum. We

express this as

1 p N-1 . k

{ 2} X(k) = p ~~E x[n +pN]e-''~"1 (2.6)

where P is the number of blocks in the average, N is the number of points in

the block, n is the sample index, and k is the frequency index [9]. To obtain a

frequency resolution that will enable us to estimate within the accuracy of the

19

GSR, we choose

N = Is =800kHz ~ 267 !J.I 3kHz
(2.7)

but this would not allow us to use the radix-2 based FFT. We alternatively round

to N = 512 for use with the FFT which yields

!J.I = Is = 800kHz = 1562.5H Z
N 512

(2.8)

This increases our increases our physical resolution beyond what is actually re-

quired.

From the result of the periodogram, we are left with an estimate of the spec-

trum of the received signal. We estimate the carrier frequency by choosing the

maxima of the periodogram. We assume that we are operating the DAMA service

such that a peak will be observed in the average. We can improve the spectrum-

to-noise ratio by utilizing a method from communication theory. It is known that

the optimal solution for a receiver corrupted by AWGN is obtained by imple-

menting a matched filter [7]. We will employ the frequency domain equivalent,

spectral matched filter (SMF), which like its time domain analog is optimal and

will maximize the SNR. In the time domain, a matched filter can be described by

its impulse response

h(t) = s(T- t) (2.9)

with

OS:t<T

20

where s(t) is the time reversed equivalent of the received signal. The matched

filter is then convolved with the received signal yielding

y(t) = lots(T)s(T- t + T)dT. (2.10)

The same approach may be applied in the frequency domain where we have a

SMF that is matched to the expected, frequency-reversed Power Spectral Density

(PSD) of the DAMA carrier. Through a discrete convolution between the SMF

and estimated DAMA spectrum, we may arrive at a desired optimal solution that

maximizes the spectrum-to-noise ratio. The SMF is described as

H(k) = X(N- k) , 0 ~ k < N (2.11)

where X(N- k) is the frequency-reversed equivalent of the PSD of the DA1v1A

carrier. The SMF is then convolved with the spectrum of the received signal as

Xsmf =X* H (2.12)

where * indicates the convolution operator. The results of applying the SMF to

the process will be described in detail in section three. We then form our carrier

estimate with

j = arg max(Xsm/) is
N

(2.13)

where j is the estimated frequency of the carrier, N is the number of points of the

FFT and is is the sampling frequency. The discrete convolution in (2.12) smears

21

the number of points by

Lx 1 = LH + M sm (2.14)

where Lx•mf is the translated length of Xsmf' LH is the length of the SMF (N =

512), and M is the length of the periodogram (N = 512). We must subtract

the maxima of the SMF, purposely located at N /2 - or 256, from the index

obtained by arg max(Xsm/). The SMF is generated in practice by generating a

simulated DAMA carrier (without noise) with random data and averaging 1000

periodograms based on the simulated signal. The simulated signal is set with the

PG that we wish to test. A flowchart that describes the algorithm is shown in

Figure 2.6.

22

Figure 2.6: Flowchart for Carrier Estimation Algorithm

23

3 Theory and Simulation

3.1 Signal Description

We have previously stated that the DAMA carrier will use SS BPSK and we

begin with a description of the communication scheme. BPSK is a communication

scheme where data is encoded into the phase of a sinusoid (carrier). The general

equation for M-ary PSK is shown in (3.1)

s(t) = Acos(wct + 1/Jm(t)) (3.1)

where A is the amplitude of the carrier, We is the carrier frequency and 1/Jm (t) is the

phase component. In general we may add more power to the sinusoid by increasing

A but we assume A = 1 for the purposes of this thesis. 1/Jm (t) may take on m

distinct phases based upon the mapping of data to phase. For the binary case we

use two distinct phases. Though we could choose any two distinct phases, in order

to minimize error we typically choose the antipodal signaling as seen in Figure

3.1 as it provides the optimal decision boundary [8]. With this configuration,

the phase term 1/;(t) may take on values corresponding to 1/;(t) E {0, 1r }. This is

equivalent to modulating the sign of the sinusoid such that we may revise (3.1) to

s(t) =A d(t) cos(wet) (3.2)

where d(t) E { -1, 1} and is dependent on the mapping of data. As explained in

Section 2.3, the data is DS spread by a PN code. For purposes of the analysis that

24

Decision. Boundary

< X X >

Figure 3.1: Signal Space Diagram for BPSK

follows, we may look at SS BPSK as just BPSK at a higher data rate, namely the

chip rate. We make this assumption since we are interested only in searching for

a spectral peak of magnitude-squared data and not in demodulating the signal.

3.2 Estimation Accuracy Theory

The following arguments follow closely the work of Boaz Porat in his book,

A Course in Digital Signal Processing. We have only extended his arguments to

frequency estimation of a BPSK signal [4}.

To begin, we make the following assumptions: s(n) is a BPSK signal as de-

scribed in (3.2), S(eiwn) is the DTFT of s(n), w(n) is the rectangular windowing

function, and v(n) is AWGN of zero mean. The received signal would then be

x(n) = s(n)w(n) + v(n)w(n)

taking the Fourier Transform of this yields

N-l N-l

X(ejwn) = 2: s(n)w(n)e-jwn + L v(n)w(n)e-jwn
n=O n=O

25

N-1 N-1

L s(n)e-jwn + L v(n)w(n)e-jwn
n=O n=O

N-1

= S(elwn) + L v(n)w(n)e-jwn
n=O

The PSD of s(n) is given by [8]

P,(,Jwn) = E [s'(,Jw•)j = :~ [sine cw -2~,)osf) r (3.3)

where we have transformed (3.3) from continuous time to discrete time, R is the

data rate in bits/sec, and osf is the oversample factor in samples/bit. The maxima

of the sine function as well as the maxima of the BPSK periodogram will occur

at w = We hence

N-1

X(elwn)lw=wc = S(eJWc) + L v(n)w(n)eJWcn (3.4)
n=O

and taking the magnitude-squared of both sides,

IX (wJ 12 = (S(eiw') +f. v(n)w(n)e-jw,n) (S(,Jw,) +f. v(n)w(n)e-jw,n) •

(S(eiw') + ~: v(n)w(n)e-jw,n) (S'(eiw') +f. v(n)w(n)eiw,n)

IS(e1wcW

+2~ [s(eJwc) f. v(n)w(n)e-jwcn]

N-1 N-1

+ L L w(n)v(n)w(m)v(m)e-jwc(n-m)
n=O m=O

Taking the expectation of the magnitude-squared value yields,

26

+E [2~ [s(eiw")}; v(n)w(n)e-;w,n]]

+E [}; f: w(n)v(n)w(m)v(m)e-)wc(n-m)]

Ps(ejwn)

+2R [s(e)wc)}; E[v(n)]w(n)e-)wcn]

N-1 N-1

+ L L w(n)w(m)E[v(n)v(m)]e-jwc(n-m)
n=O m=O

The first term is by definition as provided in (3.3) and is evaluated as

P(1w)i - A2
s e W=Wc - 4R

The middle term evaluates to 0 since we have assumed E[v(n)] = 0. We further

assume E[v(n)v(m)] = "fvb(n- m), then

A2 N-1 N-1 .
- + L L w(n)w(m)'Yvb(n- m)e-Jwc(n-m)
4R n=O m=O

A2 N-1

4R + 'Yv L w2(n)
n=O

A2
4R + 'YvN

We next define an output SNR using (3. 7) as the ratio between

(3.5)

We define the input SNR as

(3.6)

27

where A2 /2 is the average power of a BPSK signal [8]. We delineate between

output and input SNR to account for the application of the window function.

Finally we define a window processing gain as

SNRo

SNRdN

2 [A
2

'Yv l
N 4R'YvN ~

2

1

RN2

We next employ a rule of thumb which states

(3.7)

(3.8)

(3.9)

(3.10)

which is given in Porat as a requirement for the reliable detection and frequency

estimation of a real sinusoid in noise [4]. We modify (3.10) for the BPSK case in

terms of (3.5), (3.6), and (3.9) which yields

A2
-- > 100
RN'Yv-

(3.11)

In the development provided by Porat, the mean square error is then given as

(3.12)

where No is the power density of the noise, lw is a window parameter [4], D is the

measurement interval (D = NT5 , where Ts is the sampling period), and A is the

amplitude of the sinusoid. We further make the assumption that E[}c - Jc] = 0.

28

With this assumption and provided that (3.10) is true, the approximation in (3.12)

is valid [4]. The approximation given in (3.12) can now be modified to yield

(3.13)

where we have applied (3.3) evaluated at w = We· The result of (3.13) is an

approximation of the mean square error (MSE) of the BPSK carrier frequency

estimate. We note that like the sinusoid in noise case, the approximation in

(3.13) is only valid when we ensure that (3.11) is true.

Equation (3.13) provides an approximation for the expected value of the MSE

frequency estimate. We can use it to provide an approximation of the error in

estimated frequency Jc from a true frequency fc from using a DFT approach to

estimation. It is recognized that with the many assumptions and the inclusion

of a rule of thumb that (3.13) can only give a rough approximation to the actual

MSE of the frequency estimation [4].

3.3 Comparison of Theory to Simulation

Having obtained the MSE, we now show how (3.13) compares to simulation

data. In the simulation we modeled a BPSK signal with a carrier frequency, fc, of

178kHz (typical of DAMA) and the sampling frequency, fs, set to 800kHz (as in

DAMA). The simulation performed anN= 512 point DFT on the BPSK signal

and measured the MSE of the estimated frequency, Jc, to the actual frequency fc·

The results of the simulation are shown in Figure 3.2 where we have shown the

29

X 10
4

12 -- \

\
\

10 \

\

\
B

"N :;
w
<I)

6 ::;
cr:

4

~Approximation

2

0

-35 -30 -25 -20 -15 -10 -5 0 10
SNA (dB)

Figure 3.2: Comparison of Theoretical Curve Against Simulation

simulation results versus the approximation developed in (3.13). The root mean

square error (RMSE) is simply the square root of (3.13) and it is the expected

value in Hz that]c is from fc as a function of SNR. This relates directly to the

accuracy of estimating fc with fc to within the GSR tolerance and provides a

means by which we can approximately determine the accuracy for a given SNR.

We can conclude from the simulation that at high SNR's (< 5 dB), the the?-

retical curve and the simulation curve match, while at low SNR's the theoretical

curve becomes invalid (due to assumptions made during calculation) [4]. We

further conclude that at high SNR's (3.13) will provide a good estimate of the

mean of the estimation accuracy and allow us to predict performance. At low

30

SNR's the simulation curve approaches a condition where the noise is dominating

the spectrum and the maximum peak is uniformly distributed over the 400 kHz

band, yielding near random estimates. The theoretical curve is asymptotic to zero

RMSE whereas the simulation curve will actually converge only to the difference

between the true frequency and the selected DFT frequency-the difference is un-

likely to be zero. This illustrates an important point regarding accuracy of carrier

estimation: since we quantize to the DFT frequency points, there will most likely

be an error irrespective of what SNR we are operating at. The maximum amount

of this error assuming large SNR is given by

A fs
max(fc - fc) < N (3.14)

This error can only be reduced by increasing N, the number of points of the DFT.

3.4 Simulation Model Description

Though we have developed a theoretical analysis culminating in (3.13), the

approximation is not tight enough to provide proof of concept. We turn to a

Matlab simulation model to provide a core proof of concept. \Ve shall use this

simulation model to explore the operational parameters of the algorithm. The

simulation models the DAMA carrier against other MA users and A~rGN. The

simulation builds up a SS BPSK digital waveform based on the PG that we wish

to test and then adds appropriate AWGN. It then estimates the doppler-shifted

carrier frequency based upon the algorithm developed in section two. A record is

31

kept of carrier frequency estimations and those that fall within the tolerance of

the ground station at WSC are counted as an accurate estimation. Likewise any

estimation that is outside of the ground station tolerance is considered inaccurate.

By performing the simulation 10,000 times for each SNR and desired PG, we

obtain a plot that describes estimation accuracy.

The simulation was originally written without the SMF and then rewritten to

include the SMF process. The SMF improves estimation accuracy and allows for

higher PG's. The Matlab code for the simulation is given in Appendix A.

3.5 Simulation Results

We now provide results of simulation both in the SMF and non-SMF cases.

The simulation results for the non-SMF are shown in Figure 3.3 and illustrate

estimation accuracy as a ratio of accurate estimations to total estimations versus

SNR. In Figure 3.3, we plot three curves for PG = 10, 20, and 100. The curves

are generated through 10000 estimates per SNR and we perform 8 DFT blocks of

N = 512 points. At an SNR = 2 dB, the results of Figure 3.3 demonstrate that

estimation accuracy would be approximately 14%, 60%, and 88% for PG = 10, 20,

and 100 respectively. NASA has placed the requirement that any implementation

32

0.9 -0.8

l!!,0.7

~
.!i 0.6 .. ---~
~ 05
w
0

.~ 0.4
t:

~
0.. 0.3

0.2

0.1

0
-10 -8

Estimation Accuracy

PG-10

PG 20

PG=100

-6 -4 -2 0 2
SNR (dB)

Figure 3.3: Family of Curves for Non-SMF Case

4

should have as high a PG as possible. From Figure 3.3 it is clear that only the

PG = 10 case is practical.

Carrier frequency estimation may also be observed through the use of his-

tograms which also relate information regarding the variance of the estimations.

In Figure 3.4, Figure 3.5, and Figure 3.6 we show histograms for PG = 10, 20,

and 100 respectively. Each is shown for SNR = 2. In each figure the actual carrier

frequency is denoted by the center dashed line while the GSR tolerance (±3kHz)

is shown by the outer dashed lines.

The results with the SMF enhancement, as described in section two, are much

better (Figure 3. 7). The results shown in Figure 3. 7 are generated as in the

33

3000

2500

2000

;1500
" " 8

1000

500

0
1.85

X 10
5

Figure 3.4: Non-SMF Frequency Estimation for PG = 10, SNR = 2 dB

450

300

~ 250

~

100

50

1.85 1.9 1.95 2 2.05
Estimation Frequency (Hz)

X 10
5

Figure 3.5: Non-SMF Frequency Estimation for PG = 20, SNR = 2 dB

34

1.85 1.9 1.95 2 2.05
Estimation Frequency (Hz)

X 105

Figure 3.6: Non-SMF Frequency Estimation for PG = 100, SNR = 2 dB

0.9

0.8

so.7

~
.so 0.6 ..
* ~0.5
w

PG-100

oL-----~-------L--------~------~-------L----~
-10 -5 0

SNR (dB)
5 10

Figure 3.7: Family of Curves for SMF Case

35

0000~.-------.-------.-------.-------,-----~

5000

2000

1.85 1.9

X 10'

Figure 3.8: SMF Frequency Estimation for PG = 10, SNR = 2 dB

non-SMF case with the exception that we have now included SMF processing. In

Figure 3. 7, we show estimation accuracy curves for PG = 10, 40, and 100. Here we

see that estimation accuracy of the PG = 100 case has improved seven-fold. The

case of PG = 40, a likely DAMA operating parameter, demonstrates accuracy

at nearly 90% in a typical operating SNR region. As in the non-SMF case, we

observe the histograms of Figure 3.8, Figure 3.9, and Figure 3.10 which are shown

for PG = 10, 40, and 100 respectively. Each figure is shown at SNR = 2. From

these figures it is clear that there is less variance and therefore more estimations

within the GSR tolerance.

36

4000

3500

3000

"'2500
~
~

" <.>
(:l2000

1500

1000

500

0
1.65 1.95 2 .05

Estimation Frequency (Hz) X 10'

Figure 3.9: SMF Frequency Estimation for PG = 40, SNR = 2 dB

I
~

2500

2000

1500

1000

500

1.65

Figure 3.10: SMF Frequency Estimation for PG

37

X 10'

100, SNR = 2 dB

3.6 Theoretical/Simulation Data Summary

We have demonstrated results for a model that attempts to simulate DAMA

carrier estimation in the presence of the TDRSS spectrum which is modeled with

AWGN. We provide results indicating that accurate carrier estimation is possible

with the algorithm developed in section two. Additionally, we have determined

some operating points for the PG parameter. We have shown that we can ac­

curately estimate the DAMA carrier 90% of the time with a PC = 40 at the

typical SNR range. The simulation has provided a demonstration and we offer a

loose theoretical approximation (3.13) to the estimation accuracy. In section four,

we shall use data collected at NASA's White Sands Complex (WSC) to further

validate the simulation results.

Appendix A includes all of the developed code for the simulation model in­

cluding instructions for its use. Additional code is provided to perform data

visualization.

38

4 WSC Data Collection Experiment

4.1 Motivation of WSC Data Collection Experiment

An experiment was devised to perform validation of the simulation model by

collecting actual signals transmitted through TDRSS and collected at WSC. \;v'e

subsequently processed them offline using the estimation algorithm. The funda­

mental idea of this experiment is that we can observe the performance of the

algorithm with actual DAMA signals. If the algorithm using actual signal data

performs similar to the simulation under various PGs and at various SNRs, we

may state with a degree of certainty that the simulation model is indeed accu­

rate enough to predict carrier estimation. This also allows for the prediction of

the performance of the algorithm if any of the operating parameters need to be

changed. A side benefit is that we may also perform in-house testing using sim­

ulated signals without the expense of interrupting critical TDRSS operations for

testing.

This section discusses the actual experiment performed at WSC, including

details regarding setup, the processing of the data, and the conclusions drawn. \Ve

verify the simulation model's results with actual TDRSS data. Additionally, the

experiment points out the realistic operating boundaries which are an important

part of the DAMA design.

39

Figure 4.1: Experiment Setup

4.2 Data Collection Setup

Two sets of equipment were used to collect test signals that were sent from

the ground station and relayed off of a TORS back to the ground station. The

setup was as shown in Figure 4.1. The Transmit (Tx) equipment consisted of a

computer equipped with a high speed PDMA32 Data Transfer Card (PDMA32).

The purpose of the Tx equipment was to send a data vector to ground station

equipment where it was BPSK modulated and transmitted to a TDRS. The data

vector sent consisted of underlying data bits of {±1} with Rb = 1 kbps which

was then spread by a spreading vector at a rate of Rc = PG · Rb chips/s. Several

of these data vectors, consisting of raw binary data and DS spread with a PN

code (see section two), were generated in advance of the experiment and then

used as a data source. The source code (wsands.m, wsands2.m, wsands3.m, and

wsands4.m) is given in Appendix A.

40

The Receive (Rx) equipment consisted mainly of a LeCroy Digital Storage

Oscilloscope (DSO) to capture IF signals and another computer to store captured

signals. As the TDRSS channel is bandlimited to approximately 40 MHz, the

DSO was set to sample at a rate of 100 MHz. This was the closest value to the

Nyquist rate that the DSO was capable of sampling at. The DSO was capable

of storing the captured data waveforms with either 50,000 samP,les or 100,000

samples depending on the storage medium that was used and both sizes were

collected.

With the hardware setup described, we now turn out attention to the test set.

The test set was established to test a variety of key parameters and determine the

operational bounds of each. The key parameters are

• Processing Gain

• DAMA Carrier power-to-noise ratio (Cb/ No)

• Placement of IF Carrier Frequency against TDRSS spectrum

The PG, defined in (2.1), is the most critical of the three. Initial work with the PG

indicated a PG of 100 could be used [3]. Subsequent simulations indicated that

at this PG value the estimation accuracy was not reliable and lower values were

investigated (see section three). It was included in the test set for completeness.

PG's of 10, 20, 40, and 100 chips per bit were the focus of the test set.

41

t t t t t
32.60 32.65 32.70 32.75 32.80 IF Frequency

f(MHz)

Figure 4.2: Placement of Test Frequencies Near TDRSS Null

Three different carrier power-to-noise ratios were investigated. These ratios

were 40, 45, 50 dB. These values were chosen as typical values based upon the

experience of WSC staff [10]. It should be noted again that these values are

described as a ratio of the carrier power to the noise floor in dB and not carrier

power to MA spectrum as described in section three.

The last test parameter is that of the carrier placement. The carrier frequen-

cies were chosen such that a range of frequencies near the TDRSS null could be

examined. Recall from section two that we intend to place the DAMA carrier at

2.29 GHz which at IF is 2.9 MHz above the TDRSS center frequency. The range

of test frequencies are observed in Figure 4.2. By examining a range of IF fre-

quencies, we are allowed to effectively simulate a Doppler shift as well as examine

the effects of the rolloff of the TDRSS channel. Comparing this to the TDRSS

spectrum shown in Figure 2.2, we see that the upper range will be affected by

the TDRSS rolloff. The full test set is shown in Table 1. The full test set had to

be reduced for logistical reasons to lessen impact on TDRSS operations, however,

the reduced test set provides enough insight for simulation verification.

42

Table 1: Test Sets Captured

II PG I Fe MHz I 40 dB I ~;/:;o I 50 dB II
32.60 *

10 32.65 * * *
32.70 * *
32.80 *
32.60

20 32.65 * * *
32.70 *
32.80
32.60

100 32.65 *
32.70
32.80
* indicates data collected

4. 3 WSC Collected Data Processing

We noted above that the captured waveforms were sampled at 100 MHz and

stored as either 50,000 or 100,000 length vectors. In section two it was also noted

that the bandwidth of the DAMA carrier plus maximum possible Doppler shift

yielded a 300 kHz frequency search space and that the FFT resolution will be

1562.5 Hz. Downsampling the captured waveforms to fs = 800 kHz was impracti-

cal due to the problems of designing a narrow band decimation filter sharp enough

for the rate conversion. Instead we seek a solution that will allow us to perform

a frequency search with a nearly equivalent FFT resolution. We see then that

fs 100MHz
l:ifexperiment = N =

65536
= 1525.8H Z (4.1)

provides a nearly equivalent FFT resolution to (2.8). In order to provide the

43

resolution in {4.1) and maximize the use of the short data sets, the vectors were

either overlapped in the 100,000 sample case or zero-padded in the 50,000 length

case. Without zero-padding the 50,000 length vector to 65536, the OFT does

not meet the required resolution. The net result of this operation is a collection

of 65536 length vectors with which to work with. These vectors were then used

in a periodogram of eight data blocks chosen at random and pro<;essed with the

simulation code that was used with a synthetic waveform (see Appendix A). This

process was iterated 500 times, due to maximum data support, to form simulation

bounds using WSC data.

4.4 WSC Data Results Compared to Simulation

The results of the processed data in comparison to simulation results are shown

in Figure 4.3 below. The plot shown is for PG = 10 with the simulation rep~e­

sented by the curve and the individual data points being the collected data across

the various frequencies indicated. The plot indicates successful carrier estima­

tion to within ±3 kHz as the ratio of accurate estimates to total estimates versus

Cb/ N 0 • We can make several observations from the plot.

The first observation we can make is in regards to carrier power Cb/ N 0 • We

observe that at a Cb/ No = 40 dB, the estimation accuracy is much less than the

simulation exhibits indicating a practical limit to Cb/ N0 • As Cb/ N0 increases

to 45 and 50 Cb/ N 0 , estimates performed with actual WSC signal data match

44

Estimation Accuracy

•
0.95

0.9

&
lii 085
a:
.5 .,
J!l 0.8 <0

·~
w
0 0.75

.~
t::

~ 0.7
0..

0.65

0.6
0

0.55
38 40 42 44 46 48 50 52

Cb/No (dB)

Figure 4.3: Comparison of Simulated Results vs. WSC Captured Data

those using synthetic data. This result indicates that we can estimate Doppler

accurately provided that the carrier power is high enough for the range of carrier

frequencies specified in Figure 4.2. This is an intuitive result as well since we

would fully expect that a carrier with higher power will exhibit a more defined

peak against the TDRSS spectrum. We also observe that the nominal carrier

power provided by WSC will be sufficient as an operational bound. Previo~s

work indicated that the DAMA carrier power and the MA carrier power can be

relatively the same [3]. For the algorithm developed however we must have enough

power so that the DAMA carrier exhibits a peak against the MA spectrum. Based

45

on collected data for the Cb/ N0 = 40 case, the DAMA carrier is lost in the MA

spectrum and in general cannot meet reliability requirements.

4.5 Conclusions of WSC Data Collection

We have shown some important results with the WSC Data Collection analysis.

The algorithm using actual TDRSS signals performs nearly the same as when

using synthesized signals (see Figure 4.4). Therefore the synthesis of modeled

signals is accurate to actual TDRSS signals. We rely heavily on the simulation

to provide proof of concept and so the justification of the simulation is vital: the

simulation is used to narrow in on the operating parameters that we should like

to run at. Though we only have significant data for the PG = 10 case, we extend

the results described above to higher PG's with the assumption that the effects

of spreading the signal even further in the frequency domain will cause neglible

disparities between the simulation and actual operation. We can use simulated

waveforms to implement additional, and important, real-time hardware tests.

There remains one outstanding issue with regards to accurate carrier estima­

tion. We have seen previously that the TDRSS channel begins to rolloff sharply

near the location that we would like to place the DAMA carrier. Though the data

did not support the investigation-at least in the spectral matched filter case-it

is nevertheless true that if the DAMA carrier is nominally placed too close to the

46

Synthesized Signal

--~o

WSC Data Signal

r-----t Real-Time DSP
Hardware

Matlab
Simulation

Figure 4.4: Carrier Estimation Summary

Equivalent Carrier
Frequency
Estimation

null, then the rolloff will adversely affect accuracy. We must also avoid placing

the DAMA carrier in the MA passband.

Overall the successful comparison of captured data to simulation data indicates

that provided the DAMA carrier has sufficient power, we can explore additional

operation bounds with a high degree of confidence.

47

5 Carrier Estimation Hardware and Software

5.1 Motorola DSP56303EVM Description

The DSP56303EVM(EVM) is the core hardware component of the carrier es­

timation hardware developed. It executes the DSP specific real-time assembly

language version of the carrier estimation algorithm (see Appendix B). The EVM

is an evaluation module which is designed to be used in prototyping applications.

As such, it offers a variety of interface options and configuration settings that

make it adaptable to many different types of development projects. The board

contains a DSP56303 24-bit digital signal processor that executes the assembly

code routines. It also features a DSP56002 specifically for use in I/0 functions

through a JTAG/OnCE port. JTAG is a protocol that was developed to allow

hardware and software developers to observe and manipulate hardware for trou­

bleshooting purposes. The JTAG port for the EVM is primarily used with a PC

and debugger software that allows a developer to load code into the EVM, single

step through sections of code, and observe the contents of memory and registers.

The onboard DSP56002 is not available for coprocessing code, but rather is used

to control the I/0 functions to the host PC. The EVM also contains 32K x 24-bit

Fast Static Ram (SRAM) built with three banks of 32k x 8 bit SRAMS with 15 ns

access times. An additional 64k x 8 bit Flash Programmable Erasable Read-Only

Memory (PEROM) is provided for stand alone operation. The EVM also contains

48

ttt 16~
Hi ' Tnple Hoot

T1mer Interface
HI08

In I .f

"' w
Q ..

~~e ESSI SCI Progr1om RAM
Interface Interlace 408& x 24

(diltault)

TIT
Peripheral

Expansion ,.,..

XOall
RAM

2048)(24
(dtlfault)

24-Bit Exler""'
Bus

p l-f+--+------f-iDSP56300 tnto~oco
OM Core 1 . Cache Control

r---- non Control

~+-~-----~~-~~!-~~~~ ~ 24 ln~:al D8 Data Bus r-~
Bus P08 Sw•tch Data

~A ~~+-~l--~l---~,l--~GD~IB~~+--.L-~-~~g"'l
- ~lock If' --!:..- • • ____ • ____]II .0:~ AI,'! : ~~Mn mnt 5 m arator 1 Program t..-.• Program t..-.' Program I 2• x 24 • 56-+ SB·bit MAC JTAG l.....L:...__

I PLL 11 1 Interrupt 1 1 Decode 1 1 Address 1 Two 56-bll Accumulators ,---
II .. ~1~11!'.. • ~~'2"!'.. .. G!~~'2'" 56-bll S.rrel Sh1fter OnCE'.. ~

21 I ~~L-~g=
li£"SE'T ' L- MODC.mll"e

tNITiiM MODD.mlm A-'0456

Figure 5.1: DSP56300 Core System Block Diagram

a 16 bit CODEC for sampling incoming analog waveforms and producing analog

waveforms out from digital data [11].

The EVM is based upon the DSP56300 core which is shown in Figure 5.1. The

EVM specifically uses the DSP56303 processor. The processor is capable of 80

MIPS with an 80 MHz clock. It provides for backwards compatibility with 56k

core code so that code written for earlier processors should function equally well

on the newer cores. Due to a seven level instruction pipeline architecture, the

DSP56303 is capable of effectively an instruction every clock cycle. It is based on

the Haroard architecture so that it works with a dual memory structure. This

architecture is particularly suited for parallel move instructions. This allows the

49

programmer to access two different memory structures at a time. For more on the

DSP56303 please see [12].

The DSP56303 not only provides the processing power required to perform

carrier estimation efficiently, but it is highly configurable and can interface to a

large number of peripheral products. Though higher level languages (C) may be

used to program the processor, it is most efficient when programmed in assembly.

The assembly language that the DSP56303 uses is specialized to perform DSP

tasks and includes features for that purpose. The Real-Time version of the carrier

estimation algorithm is developed completely in assembly (see Appendix B).

To create a program for the DSP56303, code is written in assembly language,

and then assembled through the use of Motorola software tools to machine usable

object code (.cld files). We may then use a software tool like Domain Technologies

Debug-EVM to load the code into program memory of the DSP56303. With the

Debugger software, we can utilize the JTAG port to single step through code and

observe the results on calculations.

For the DAMA project, as was described in section two, we are required to

sample at a higher rate than the EVM can perform with the on board CODEC.

We will use the on board CODEC in the generation of the locking tone to the

ground station receiver. To sample the DAMA spectrum, we need to interface a

high speed A/D.

50

5.2 Burr Brown 800kHz A/D

Earlier we noted we must search over a 300kHz BW (200 kHz for the DAivlA

mainlobe, assuming no more than a PC = 100, and with ±50 kHz for maxi­

mum Doppler shift) which was revised from an earlier estimate of 364 kHz. The

Burr Brown 12 bit 800 kHz ADS7810/19 (BB A/D) was chosen since it has a

sampling frequency of 800 kHz which gives a Nyquist interval of 400 kHz and

because it is available in a convenient evaluation package for easy interfacing to

the DSP56303EVM. The 12-bit samples of the BB A/D have a dynamic range of

-72 dB which is sufficient for the TDRSS system. It was necessary to build an

interface board to allow samples collected with the BB A/D to be passed to the

303.

5.3 A/D Interface Board

The A/D Interface Board (ADIB) was developed as a Masters project by Tim

Baggett [13). Its purpose is to provide an interface to allow the EVM to com­

municate with the BB A/D. The board was developed to allow samples taken

with the BB A/D to be passed into a peripheral (upper) memory location, which

corresponds to the memory mapped I/0 portion of memory. Though it is not a

requirement, we may access the data samples with an efficient fast interrupt rou­

tine which is preferable. It is also possible with the interface board to use direct

memory transfers (DMA) though this was not implemented in the Real-Time ver-

51

sion of the carrier estimation algorithm. The board allows for user configuration

of the specific memory location the samples will be written in to. The ADIB was

further complicated by voltage level discrepancies between the BB A/D and the

303. This was overcome through the use of zero wait-state level translators that

adjust the output levels of the BB A/D to levels acceptable by the 303.

5.4 Additional Hardware

In an actual implementation of the DAMA carrier estimation hardware, there

will be additional hardware required. Recall from the discussion of the DAMA

project implementation, it was stated that WSC could provide the DAMA carrier

at an IF of 32.65 MHz. The range of frequency values that a DAMA carrier can

take, identified as 300 kHz, must be pre-filtered to bandlimit the signal containing

the DAMA carrier from the MA waveform or aliasing will result. This is to. be

accomplished using an analog pre-filter set to a passband over the range if interest.

With the signal now appropriately pre-filtered, the signal must be frequency

shifted to baseband utilizing additional commonly available analog hardware.

With this pre-processing accomplished, the DAMA carrier can be sampled and

the digital signal processed to detect and estimate the carrier frequency utilizing

the algorithm described in section two. Upon the algorithm's determination of the

DAMA carrier frequency, the CODEC on the EVM is utilized to provide a locking

tone. By choosing a sample rate of 32kHz for the synthesis of the locking tone, we

52

DSP56303
Frequency Frequency ToGS Generated ... Multiply (x25) .. Shift to IF

__.,
Locking Tone
ifs=32 kHz)

ifs =800kHz) ifc=32. 7 MHz)

R

Figure 5.2: Locking Tone Generation

need only frequency multiply by 25 to get the appropriate frequency value (< 400

kHz). Afterward we frequency shift this tone back to IF for the GSR. This is illus-

trated in Figure 5.2. The analog hardware required to implement the frequency

multiplication and shifting is commonly available and an essential component in

implementation.

5. 5 Software Description for Real-Time Carrier Estimation

The carrier estimation code is designed to work with the EVM and the ADIB

to sample the incoming signal, process the signal, and then produce a locking tone

to the ground station. The core of the program is based upon the code supplied

with the EVM named pass.asm. The purpose of the pass.asm is to initialize

the EVM (CODEC and processor), then transfer samples to/from the CODEC

from/to the processor. All signal processing is performed between transfers. This

code is important because in most cases of programming a Motorola DSP56xEVJ\il,

the algorithm to be implemented will use pass.asm as the starting point. The

carrier estimation code is slightly modified in that while it uses pass.asm as

the core, it must set the EVM to properly receive samples from the BB A/D

53

and instead of reading sample values from the on-board CODEC, it will instead

read sample values from an upper memory location as described above. Upon

completing the initialization of the EVM (CODEC and processor) to work with

the BB AjD, the carrier estimation algorithm begins. We begin by looking at the

flowchart in Figure 2.6 which describes the algorithm.

The initial step from the reset condition is to initialize memory and on-board

CODEC and prepare the EVM for communication with the ADIB. The algorithm

then begins by filling the sample buffer with values. Once it has achieved a

full block of 512 samples, it applies a windowing function of the user's choice.

Typically either Rectangular or Hamming window coefficients are used. Included

in this window function is an iteration scaling factor of 1/P, where P is the block

number, which is nominally set to 0.125. This is included to scale for averaging.

This has the added advantage of saving computation time since both windowing

and average scaling are accomplished at once.

From the flowchart we now see that the actual FFT is performed. The FFT

routine is supplied by Motorola (see Appendix B) and produces a normally ordered

Fourier transform, as opposed to a bit-reversed, complex result from a normally

ordered input. The result is stored such that the real component of the result

is in X memory and the imaginary in Y memory. We compute the magnitude­

squared of the FFT and repeat this step averaging magnitude-squared data P

= 8 times to form the periodogram. If we assume that x(n) E R where x(n)

54

is the received, sampled signal, we need only search the first N /2 points due to

Hermitian symmetry

X(k) = X*(N- k), 0:::; k:::; N- 1. (5.1)

This reduces the computational time and memory usage.

Continuing with the flowchart in Figure 2.6, once the periodogram is com-

puted, we convolve the result with the SMF and begin a search for the maxima

of the enhanced spectrum. The result of this search is an index corresponding

to the dominant spectral component. From this index a frequency may be found

according to the relation

. k- b.
J = --2 fs

N
(5.2)

where j is the estimated frequency [14], k is the index found from the search,

L = N is the length of the SMF, N is the number of points of the FFT, and fs

is the sampling frequency. A sine wave table is then used to provide a locking

tone at 1/25 frequency that the ground station expects. As described above, this

locking tone will be frequency multiplied up IF. The DSP56303 assembly code is

given in Appendix B.

55

6 Conclusions and Future Work

In this thesis we have described an algorithm to perform carrier estimation

for the DAMA project. We have shown that the estimation accuracy depends

primarily on the processing gain of the SS BPSK signal though some tertiary

parameters also affect accuracy. We have developed a simulation model that

provides proof of concept and provides DAMA operational parameters. Through

the use of data collected at the WSC, we have verified the simulation model and

established an operational point of PG = 40 with a corresponding accuracy of

90%.

In addition to the development above, we have developed Real-Time code

based on the algorithm developed utilizing a Motorola DSP56303EVM. The entire

project is implemented in hardware and functions equivalently to the simulation

model.

Future work might involve the formulation of a tighter theoretical bound as

well the development of the analog hardware required for implementation. This

work could be applied in other applications relating to communications betwee~

user spacecraft and commercial telecommunication satellites. In this scheme, ad­

ditional carrier pre-shifting would be required.

56

A Matlab Simulation Code

dama.m

001 %•·· 002 % DAMA dama
003 %
004 %
005 %
006 %
007 %

Description: This function allows simulation of the estimation of a DAMA
user's Doppler-shifted carrier frequency. We assume a spread spectrum
system and the presence of other SS systems (modeled by AWGN).

008 % Programmer: Phillip De Leon
009 %
010% Creation Date: December 31, 1995
011 %Last Revision: Sept. 24, 1998
012 7.
013 % Version History:
014 % 1.0 - frequency estimate of sinusoid in noise
015 % 2.0 - frequency estimate of DAHA carrier in noise (spread spectrum)
016 % 3.0 - better memory management, more efficient
017 7. 4.0 - STFTs or average FFTs or MA filter smoothing of FFT bins
018 % 5.0 - 800kHz sampling rate, 512-point FFT
019 7. 6.0- frequency estimate nov over 512 blocks (of a longer signal).
020 7. 7.0 -added frequency-domain matched filter to search
021 7.
022 7. Required subroutines: Use PLOT_DAHA_DATA.H to visualize data
023 7.
024 % Notes:
025 % 1) For n
026 % SNR =
027 7.
028 7. For n

MA users DAMA-to-MA power ratio is
(Rb_DAMA/Rc_DAMA)/(n•Rb_HA/Rc_HA)
(1000/10000)/(n•l0000/3000000) • 30/n.
= 5, SNR = 7.78dB;

029 7.
030 7. 2) This code is compute intensive!!!
031 7.
032 7. References: Digital and Analog Communication Systems by Couch p.359
033 %
034 % Copyright (c) 1998 by Phillip De Leon, All Rights Reserved

035 %••••··· 036
037 clear;
038

039 7. ----------------------
040 % DAMA User's Parameters

041 % ----------------------
042 Fc_DAMA = 164e3; 7. DAHA user's carrier frequency (after shifting) in Hz
043 main_lobe_BW = 200e3; 7. 200kHz main lobe BW centered on F_DAMA
044 max_Doppler • 64e3; 7. maximum Doppler shift of +/-64kHz
045 est_tolerance = 3e3; 7. must estimate carrier to within +/- est_tolerance
046

047 7. -------------------------------
048 7. Communication System Parameters

049 % -------------------------------
050 Fs = 800000; 7. output signal sampling freq. (samples/a)
051 Fe = Fc_DAMA + 0.5•max_Doppler; 7. assume DAMA carrier is +507. max
052 7. Doppler shifted (for testing purposes)
053
054 Rb_DAMA • 1000; 7. data rate
055 Rc_DAMA = 100000; 7. chip rate
056 samples_per_bit = Fs/Rb_DAHA;
057 samples_per_chip = Fs/Rc_DAHA;
058 Rb_HA = 10•Rb_DAMA;

for DAMA (bits/s) Fs/Rb_DAMA must be integer
for DAMA (chips/a) lOOK?

7. must be integer
7. must be integer
7. data rate for MA (bits/s)

57

069 Rc_HA = 3000000; X chip rate for HA (chips/a) 3000K
060

061 X -------------------------------
062 X Frequency Estimation Parameters

063 X -------------------------------
064 X Estimation of Fe occurs over a bandvidth of ...
066 X Fe - max_Doppler - main_lobe_BW/2 < F_DAHA < Fe + max_Doppler + main_lobe_BW/2
066 X o <• f <• 328
067 N • 612; X length data block to take FFT over
068 vindov = 0; X if 0 assume rectangular vindov, 1 Hamming Windov
069 if (vindov)
070 v = hamming(N); X Hamming vindov used in FFT
071 end;
072
o73 x----------------------
074 X Simulation Parameters

o16 x----------------------
076 number_of_estimates • 30; X number of frequency estimates to perform
077 X for each SNR typically 10000
078 num_FFTs = 8; X average 8 FFTs per estimate;
079 snr • [-6)'; X vector of SNRs (in dB) to simulate typically from -2.2 to 4.7dB
080
o81 x-----------
082 X Simulation
o83 x-----------
084 est_data = zeros(length(snr),N/2); X malloc storage for estimation data
086
086 form= 1:length(snr); X m is index for SNRs
087 disp(sprintf('••• SNR • Xd •••',snr(m)));
088 max_pos_est_error = 0; X reset variables
089 max_neg_est_error = 0;
090 rand('seed' ,0); X reset uniform generator seed
091 randn('seed',O); X reset normal generator seed
092
093 for n • 1:number_of_estimates; X n is index for estimate t
094 n;
096 sum_mag_X_sqrd = zeros(N/2,1); X malloc storage for accumulation of FFT data
096 sum_mag_S_sqrd = zeros(N/2,1); X malloc storage for accumulation of FFT data
097

098 X --------------------
099 X Synthesize SS signal

100 X --------------------
101 X Generate digital message
102 data= round(rand(ceil(num_FFTs•N/samples_per_bit),1)); X generate data (bits) to modulate
103
104 X Digital BPSK Modulation
106 start = 0;
106 stop • samples_per_bit - 1;
107 mag • [);
108 for i = 1: length(data)
109 n = [start: stop];
110 if c·data(i)) X if o multiply by -1
111 msg • [msg' (-1)•sin(2•pi•n•Fc/Fs)] '; X build up message signal
112 else X if 1 multiply by 1
113 mag [msg' sin(2•pi•n•Fc/Fs)]'; X build up message signal
114 end;
116 start • stop + 1;
116 stop ,. min((start + samplea_per_bit - 1) ,num_FFTs•N);
117 end;
118
119 X Direct Sequence Spreading
120 PN_code = round(rand(ceil(num_FFTs•N/samples_per_chip) ,1));

58

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173 if
174
175

start = 1;
stop = samples_per_chip;
s = [];
for i = 1:length(PN_code)

n = [start:stop];
if c-PN_code(i)) X if 0 multiply by -1

s • [s' (-1)•msg(n)'] '; %build up spread signal
else X if 1 multiply by 1

s = [s' msg(n)']'; X build up spread signal
end;
start = stop + 1;
stop= min((start + samples_per_chip - 1),num_FFTs•N);

end;

% Compute FFT of BPSK-SS for Matched Filter Use
S = fft(s(1:N));
mag_S_sqrd = real(S(1:N/2).*conj(S(1:N/2)));
sum_mag_S_sqrd = sum_mag_S_sqrd + mag_S_sqrd;
avg_mag_S_sqrd = sum_mag_S_sqrd/num_FFTs;
MF = flipud(avg_mag_S_sqrd);

fork= 1:num_FFTs; X k is index on 'FFT number

X Add AWGN noise (MA users + channel noise) according to desired SNR to SS signal
noise = randn(N,1) .• sqrt(cov(s)/(10-(snr(m)/10))); % ./ ?
s_prime = s(1+N•(k-1):N•(k-1)+512); X Take length N buffer of samples from total.
r = s_prime + noise; % carrier + noise
r = r ./ sqrt(cov(r)); %scale to unit variance

X -------------
% Window signal

X -------------
if c-window)

x = r; % no window => rectangular. window
else

x = w ·* r; X window with preset window
end;

X= fft(x);
mag_X_sqrd = real(X{1:N/2).•conj(X(1:N/2))); %due to symmetry need only scan lower half
sum_mag_X_sqrd = sum_mag_X_sqrd + mag_X_sqrd;

end; % FFT loop

X --------------------
% Frequency estimation

% --------------------
avg_mag_X_sqrd = sum_mag_X_sqrd/num_FFTs;

X Frequency-Domain Matched Filtering
MF_mag_X = conv(MF,avg_mag_X_sqrd);

(0)
k = find(avg_mag_X_sqrd == max(avg_mag_X_sqrd));
if (length(k) > 1)

176 k = median(k); %choose the median kif there are several
177 else
178 k = k;
179 end;
180 end;
181 if (1)

182 k = find(MF_mag_X == max(MF_mag_X));

59

if (length(k) > 1) 183
184
186
186
187

k • median(k); X choose the median k if there are several
else

k = k;
end;

188 k = k - N/2 - 1; X MF spreads range by 2
189 end;
190
191
192
193
194
196
196

est_data(m,k) • est_data(m,k) + 1;

end; X estimates loop
save dama_data est_data

end; X snr loop

197 X ------------------------------
198 X Save Data in MATLAB 4.x format

199 X ------------------------------
200 x = version;
201 if (x(1)••63) X running on MATLAB 6.x

X tally estimate

202 save -v4 dama_data Rc_DAMA Fs Fe snr est_tolerance N window number_of_estimates est_data
203 else X running on MATLAB 4.x
204 save dama_data Rc_DAMA Fs Fe snr est_tolerance N window number_of_estimates est_data avg_mag_X_sqrd
206 end;

60

mLbpsk...ss.m

001 %••··· 002 % MF_BPSK
003 %
004 %
005 %
006 %

Description: This function
BPSK-SS frequency-domain
stored in a file for use
theoretical PSD.

computes the matched filter for the PSD of the
waveform. The matched filter coefficients are
in the DAMA.M code. We may be able to use the

007 7.
008 %
009 %
010 %
011 %
012 7.
013 %
014 %
015 %

Programmer: Phillip De Leon

Creation Date: Sept. 25, 1998
Last Revision: Oct. 24, 1998

Version History:
1.0 - MF for the BPSK-SS

016 % 1.1 -New Vectorization Methods -will reduce run time.
017
018

7.
%

1.2 Added Crash Recovery- ALL data is saved to temp.mat prior to
next major algorithm step.

019 %
020 Y. Required subroutines:
021 %
022 % Notes:
023 7. 1) N must be the same as in DAMA.M
024 %
025 % Approximate Runtime:
026 % P200 win98 -22 minutes
027 7. Mac Not performed
028 % Pxx Linux Not performed
029 %
030 % References:
031 7.
032 7. Copyright (c) 1998 by Phillip De Leon, All Rights Reserved
033 %•••
034 ON= 1; %Used to turn options on or off.
035 OFF 0;
036 ERR = 0; 7. Set ERR to level achieved before crash - results
037 7. are saved in temp.mat
038
039 if ERR== 0 disp('Operation Level One:')

040 7. ----------------------
041 % Code Parameters

042 7. ----------------------
043 spreading_opt = ON; 7. ON to spread - OFF to just BPSK modulate.
044 window • OFF; 7. if OFF assume rectangular window, ON Hamming Window
045

046 7. ----------------------
047 7. DAMA User's Parameters

048 7. ----------------------
049 Fc_DAMA = 200e3; 7. DAMA user's carrier frequency (after shifting) in Hz
050 7. Set to middle of DAMA frequency range.
051
052 Y. -------------------------------
053 7. Communication System Parameters
054 7. -------------------------------
055 Fs 800000;
056 Fe = Fc_DAMA;

7. output signal sampling freq. (samples/a)
7. assume unshifted DAMA carrier

057
058 Rb_DAMA = 1000; 7. data rate for DAMA (bits/s) Fs/Rb_DAMA must be integer
059 Rc_DAMA = 50000; 7. chip rate for DAMA (chips/s) lOOK?
060 if rem(Fs,Rb_DAMA) -= 0

61

061 error('samples_per_bit MUST be an integer!!') X Check to make sure that the
062 Y. samples per bit is integer.
063 end
064 if rem(Fs,Rc_DAMA) -. 0
065 error('samples_per_chip MUST be an integer!!') 7. Check to make sure that the
066 X samples per chip is integer.
067 end
068 samples_per_bit • Fs/Rb_DAMA;
069 samples_per_chip = Fs/Rc_DAMA;
070

Y. must be integer
X must be integer

071 Y. -------------------------------
072 Y. Frequency Estimation Parameters

073 X -------------------------------
074 Y. Estimation of Fe occurs over a bandwidth of ...
075 Y. Fe - max_Doppler - main_lobe_BW/2 < F_DAMA < Fe + max_Doppler + main_lobe_BW/2
076 Y. 0 <• f <• 328
077 N = 512; Y. length data block to take FFT over
078
079 if (window)
080 w z hamming(N); X Hamming window used in FFT
081 else
082 w • ones(N,1);
083 end
084

085 X ---------------------
086 X Averaging Parameters
087 Y. ---------------------
088 num_FFTs • 5000; X Average iterations - higher -> better resolution
089
090 save temp X End of level One - save work so far to temp.
091 end
092
093 if ERR ·~ 1 I ERR •= 0 Y. Check Error Level.
094 disp('Operation Level Two:')

095 X -------------------------
096 X Generate digital message

097 Y. -------------------------
098 M = num_FFTs•N•Rb_DAMA/Fs; X number of bits to take PSD over
099
100 disp('Preallocating ... ')
101 mag= zeros(M•samples_per_bit,1); Y. Preallocate msg signal
102 data= msg; Y. Preallocate data signal (-1,+1)
103 a = mag; Y. Preallocate s - see variable description.
104 disp('Done Preallocating ... ')
105
106 mag • sin(2•pi•(O:M•samples_per_bit-1)•Fc/Fa); Y. BIG vector- not for the weak!!
107 mag • mag'; data •
108 filter(ones(samples_per_bit,1),1,upsamp((-1).-(round(rand(M,1))),samples_per_bit));
109 Y. Previous line generates a data vector with each
110 Y. bit represented by aamplea_per_bit number of
111 X samples.
112 msg = msg.•data; X data vector is multiplied by the signal vector
113 X to generate the message vector - BPSK modulated.
114
115 save temp
116 end
117

Y. End of Level Two - save work so far to temp.

118 if ERR •= 2 I ERR •• 1 I ERR •• 0; disp('Operation Level Three:')
119

120 7. -------------------
121 X Spread BPSK Signal

122 X -------------------

62

123 if spreading_opt X If spreading option is on then spread signal.
124 PN_code = filter(ones(samples_per_chip,1) ,1, ...
125 upsamp((-1).~(round(rand(ceil(num_FFTs•N/samples_per_chip),1))), ...
126 samples_per_chip));
127 s = msg.•PN_code; X s is the BPSK modulated spread spectrum signal.
128 end
129
130 X Compute FFT of BPSK-SS for Matched Filter Use from averages.
131
132 X h = vaitbar2(0,'Generating Matched Filter Frequency Response ... ');
133 start = 1;
134 stop = N;
135
136 save temp X End of Level Three - save work so far to temp.
137 end
138
139 if ERR == 3 I ERR •= 2 I ERR •• 1 I ERR •= 0
140
141 disp('Operation Level Four:')
142
143 sum_mag_S_sqrd = zeros(N/2,1);
144 for 1 = 1:num_FFTs
145 X vaitbar2(1/num_FFTs);
146 1
147 n = [start:stop];
148 temp • v.•s(n);
149 S = fft(temp);

X Generate averaged mag-squared
X data from NN block FFTs.

150 mag_S_sqrd = real(S(1:N/2).•conj(S(1:N/2)));
151 sum_mag_S_sqrd = sum_mag_S_sqrd + mag_S_sqrd;
152 start = stop + 1;
153 stop = stop + N;
154 end
155
156 X close(h)
157 avg_mag_S_sqrd = sum_mag_S_sqrd/num_FFTs; % average.
158 MF = flipud(avg_mag_S_sqrd); X "time reverse" data to prepare
159 N1 = Fc•N/Fs; X for dama_mf code.
160
161
162 end
163
164 if vindov
165 wtype ['ha'];
166 else
167 vtype ['re'];

%Record index of carrier frequency.

168 end fname = ['pg' int2str(Rc_DAMA/Rb_DAMA) vtype];
169
170 mver =version if (mver(1) == '5')
171 eval(['save -v4 ' fname ' MF N1 N'])
172 else
173 eval(['save ' fname ' MF N1 N'])
174 end
175
176

111 X --
178 7.
179 7. Variable Description
180 X
181 % Name Description Purpose

182 %---
183 X ON Program Control Used to turn ON/OFF Program Options
184 7. OFF Program Control Used to turn ON/OFF Program Options

63

185 X ERR
186 X spreading_opt
187 X vindov
188 X Fc_DAMA
189 X
190 X
191 X Fs
192 X Fe
193 X

Program Control
Program Control
Program Control
Program Parameter

Program Parameter
Program Parameter

194 X Rb_DAMA Program Parameter

Used in disaster recovery
Used to turn ON/OFF spreading
Used to turn ON/OFF windowing
DAMA Carrier Frequency - for the
purposes of this program it is used
to set the reference index.
Sampling Frequency
Carrier Frequency - in this program
it is set to the value of Fc_DAMA.
Bit Rate

195 X Rc_DAMA Program Parameter Chip Rate
196 X samples_per_bit
197 X Calculated Parameter Each bit is represented by t of samples
198 7. samples_per_chip
199 X Calculated Parameter Each chip is represented by t of
200 X samples.
201 X N Program Parameter Length of FFT block
202 X v Calculated Parameter window coefficients
203 X num_FFTs Program Parameter Number of Iterations
204 X M Calculated Parameter The number of bits required in the data
205 7. vector.
206 7. msg Calculated Vector The actual sinusoidal signal - later it is
207 X BPSK modulated.
208 X data Calculated Vector Binary data stored as (-1,1)
209 X s Calculated Vector BPSK SS carrier
210 X PN_code Calculated Vector The psuedo-random noise vector to cause
211 X spreading.
212 X start Program Parameter Used in indexing
213 7. stop Program Parameter Used in indexing
214 7. 1 Program Control Used in FOR loop
215 X h Program Control Handle to figure
216 7. sum_mag_S_sqrd
217 X Calculated Vector
218 X S Calculated Vector
219 X mag_S_sqrd Calculated Vector
220 7.
221 X avg_mag_S_sqrd
222 X Calculated Vector
223 X MF Calculated Vector
224 X
225 X vtype
226 7.
227 X fname
228 X mver
229 X

Program Control

Program Control
Program Control

Holds sum of magnitude squared data from FFT.
Holds FFT data for current iteration
Holds magnitude squared data from FFT for
current iteration.

Holds the average mag_S_sqrd vector.
Frequency reversed - think of it as time
reversed data.
Type of vindov employed for inclusion into
file name.
Filename
mver(1) holds matlab version.

230 7.--

64

plot_dama_data.m

001 %••···
002 % PLOT_DAMA_DATA plot_dama_data
003 %
004 %
006 %
006 %

Description: This function provides a variety of tools for DAMA data
visualization using the file saved in DAMA.M

007 Y. Call Syntax: plot_dama_data
008 %
009
010

% Programmer: Phillip De Leon
%

011 Y. Creation Date: December 31, 1995
012 %Last Revision: July 1, 1997
013 7.
014 %Required subroutines:
016 7.
016% Notes: Assume workspace (DAMA_DATA.HAT) has already been loaded.
017 %
018 % References:
019 %
020 % Copyright (c) 1998 by Phillip De Leon, All Rights Reserved
021 %••···
022
023 Y.clg;
024
026 selection= menu('Select a Plot', ...
026 'Estimation Ranges',... 7. 1)
027 'Estimation Histograms', ... 7. 2)
028 'Estimation Accuracy',... % 3)
029 'Exit');
030

031 % ---------------------
032 % Estimation range

033 % ---------------------
034 it (selection a= 1)
036 i a find(est_data(l,:)); %find non-zero elements
036 max_neg_est_error = ((min(i)-1) • Fs I N) - Fe; Y. 1 <= i <= N but need 0 <= i <= N-1
037 max_pos_est_error = ((max(i)-1) • Fs I N) - Fe;
038 plot([snr(1) snr(1)], [max_neg_est_error max_pos_est_error]);
039 hold on
040 tor m = 2:length(snr)
041 i = find(est_data(m,:)); %find non-zero elements
042 max_neg_est_error = ((min(i) - 1) • Fs I N) - Fe;
043 max_pos_est_error = ((max(i) - 1) • Fs I N) - Fe;
044 plot([snr(m) snr(m)], [max_neg_est_error max_pos_est_error]);
046 end;
046 plot([-100 100] ,[est_tolerance est_tolerance],':')
047 plot([-100 100],[-est_tolerance -est_tolerance] ,':')
048 hold ott;
049 ylabel('Estimation error (Hz)');
060 xlabel('SNR (dB)');
061 if (vindov)
062 title(['Frequency Estimation Ranges (Rc=',sprintf(''Y.d',Rc_DAMA),
063 •, N=',sprintf('%d', N),', Hamming vindov)']);
064 else
065 title(['Frequency Estimation Ranges (Rc=' ,sprintf('%d',Rc_DAMA),
066 ', N=',sprintf(''Y.d', N),', Rectangular vindov)']);
067 end;
068 [i,j] find(est_data);
069 Ymin min(j);
060 Ymax = max(j);

65

061 axis([(snr(1)-10) (snr(lengtb(snr))+10) 1.1•min(Ymin,-est_tolerance) ...
062 1.1•max(Ymax,est_tolerance)]);
063

064 % --------------------
065 7. Estimation histogram

066 7. --------------------
067 elseif (selection =• 2)
068 form • 1:length(snr)
069 bar([O:N/2-1).•(Fs/N),est_data(m,1:N/2));
070 hold on;
071 plot([O:N/2-1].•(Fs/N),est_data(m,1:N/2),'+');
072 plot([Fc Fc],[O 1.hmax(est_data(m,1:N/2}}],'b:');
073 plot([Fc+est_tolerance Fc+est_tolerance),[O 1.1•max(est_data(m,1:N/2})] ,•r:');
074 plot([Fc-est_tolerance Fc-est_tolerance],[O 1.1•max(est_data(m,1:N/2})],'r:');
075 hold off;
076 ylabel('Occurences')
077 xlabel('Estimation Frequency (Hz)')
078 if (window)
079 title(['Frequency Estimation for SNR of •,sprintf('%g', snr(m)),
080 'dB (Rc=•,sprintf('%d',Rc_DAMA),', N•',sprintf('%d',N),', Hamming window)']);
081 else
082 X title(['Frequency Estimation for SNR of •,sprintf('%g', snr(m)), ...
083 X 'dB (Rcz',sprintf('%d',Rc_DAMA),•, N•',sprintf('Xd',N),•, Rectangle window)']);
084 title(['Frequency Estimation for SNR of •,sprintf('Xg', snr(m)), ...
085 'dB']);
086 end;
087 axis([0.96•(Fc-est_tolerance) 1.05•(Fc+est_tolerance) 0 1.1•max(est_data(m,1:N/2))]);
088 disp('Hit any key to plot next histogram ... ');
089 pause;
090 end;
091
092
093
094
095

X --------------------
X Statistical Accuracy

X --------------------
elseif (selection =• 3)

096
097 %

lover_index_bound • ceil(N•(Fc-est_tolerance)/Fs)+1 X 1 <= lover_index_bound <= N
lower_index_bound = 1;

098
099 %
100
101

upper_index_bound • floor(N•(Fc+est_tolerance)/Fs)+1 7. 1 <= upper_index_bound <= N
upper_index_bound • 211;

pause
102 accuracy= zeros(length(snr),1};
103 form • 1:length(snr)
104 number_accurate_estimates•sum(est_data(m,lover_index_bound:upper_index_bound));
105 accuracy(m) = number_accurate_estimates I number_of_estimates;
106 end;
107 plot (snr ,accuracy, 'k')
108 xlabel('SNR (dB)');
109 ylabel('Proportion of Estimates in Range');
110 title('Estimation Accuracy');
111 grid;
112 else
113 return;
114 end;
115 X plot_dama_data

66

wsands4.m

001 X White Sands Data Collection Code ver 4.0
002 X Started on 6/26/98
003 X Fill in comments. ---> Still need to comment

Signal Vector Descriptions:
004 X
005 X
006 X
001 X
008 X
009 X
010 X

1: Rb • 1000 bits/sec Rc 100000 chips/sec
2: Rb 1000 bits/sec Rc = 20000 chips/sec
3: Rb z 1000 bits/sec Rc = 10000 chips/sec
4: Rb 1000 bits/sec Rc = 40000 chips/sec

011 X Revision History:
012 7.
013 X
014 X
015 X
016 X
011 X
018 X
019 X
020 X
021 X
022 X
023 X
024 X
025 X
026 X
027 i:
028 %
029 X

Ver
Ver

1.0:
2.0:

Baseline, one file generated per user input
Four "useful" files generated at once, no user
input. Some code cleaned up (vectorized).

Ver 3.0: More vectorization, utilizes MATLAB's filter
function. Vectors are pre-allocated.

Ver 3.01: Changed code so that I of bits may be individually
selected.

Ver 4.0: To allow for larger data file generation, a menu
system is implemented so that only one data file
is generated. This compensates for memory
problems. Edit file for different spread/data
rates.

Ver 4.01: "2047" NASA PN sequence took to long to generate
so the sequence is generated offline for faster
performance. This restricts resulting binary file
length to 2meg.

030 X Last Update: 7/13/98
031 X Written by: Bradley James Scaife

032 %•••···
033 timer = cputime
034 preamble_length = 5000;
035
036 choice = menu('Please Select File to be
037 Generated:','1k_100','1k_20','1k_10','1k_40');
038
039 if choice == 1
040 % Generate file one

041 X••··················
042
043 X Message One Parameters

044 X•·······················
045 %msg_len1 = input('Enter Message Length One (bits): ');
046 msg_len1 = 20e3; %Restricted value - only change if spread vector code is altered.
047 Rb1 = 1000; Rei = 100000;
048
049 % Calculated Parameters: Message One
050 %•••··································
051 spread_factor1 = ceil(Rc1/Rb1); %Set as an integer.
052
053 7. Preallocate MSG1 vector
054 %••••······················
055 msgl_init = zeros(msg_len1,1); msg1 =
056 zeros(msg_len1•spread_factor1,1);
057 7.spreading_vector1 = zeros(msg_len1•spread_factor1,1);
058
059 % HSG 1 and Spreading Vector Generation
060 %••······································

67

061 rand('seed' ,0);
062
063 msg1_init • round(rand(msg_len1,1));
064
065 msg1 = upsamp(msg1_init,spread_factor1)';
066 msg1 • filter(ones(spread_factor1,1),1,msg1);
067 clear msg1_init
068
069 load avec
070
071 X Generate s1
072 X•••••••••••••••
073 disp('Generating s1 ... ')
074
075 s1 z 256•xor(msg1,spreading_vector)';
076
077 X Binary File Generation
078 X•••••••••••••••••••••••••
079 disp('Generating binary file ... ')
080 disp('Inserting preamble ... ')
081 disp('Inserting signal vector ... ')
082
083 data_out1 • [zeros(1,preamble_length) s1];
084 fid •fopen('1k_100.bin','wb');
086 fwrite(fid,data_out1,'int8');
086 fclose(fid);
087
088 elseif choice •= 2
089
090 X Generate File 2: Per definition in header above.
091 X•••
092 Xmsg_len2 = input('Enter Message Length Two (bits): ');
093 msg_len2 • 100e3; XRestricted value - only change if spread vector code is altered.
094 Rb2 = 1000; Rc2 • 20000;
095
096 X Calculated Parameters
097 X••••••••••••••••••••••••
098 spread_factor2 • ceil(Rc2/Rb2);
099
100 X Preallocate HSG2 vectors
101 X••••••••••••••••••••••••••
102 msg2_init a zeros(msg_len2,1);
103 msg2 • zeros(msg_len2•spread_factor2,1);
104 Xspreading_vector2 = zeros(msg_len2•spread_factor2,1);
105
106 X Message and Spreading Vector Generation
107 X••
108 msg2_init = round(rand(msg_len2,1));
109 msg2 • upsamp(msg2_init,spread_factor2)';
110 msg2 • filter(ones(spread_factor2,1),1,msg2);
111 clear msg2_init
112
113 load avec
114
115 X Generate s2
116 X•••••••••••••••
117 disp('Generating s2 ... ')
118
119 s2 • 255•xor(msg2,spreading_vector)';
120
121 X Binary File Generation
122 X•••••••••••••••••••••••••

68

123 disp('Generating binary file ... ')
124 disp('lnserting preamble ... ')
125 disp('lnserting signal vector ... ')
126
127 data_out2 = [zeros(1,preamble_length) s2];
128
129 fid = fopen('1k_20.bin','wb');
130 fwrite(fid,data_out2,'int8');
131 fclose(fid);
132
133
134 elseif choice •= 3
135 X Generate File 3: Per definition in header above.
136 %••••···
137 %msg_len3 = input('Enter Message Length Three (bits): ');
138 msg_len3 = 200e3; %Restricted value - only change if spread vector code is altered.
139 Rb3 • 1000; Rc3 = 10000;
140
141 % Calculated Parameters
142 X••••••••••••••••••••••••
143 spread_factor3 = ceil(Rc3/Rb3);
144
145 % Preallocate HSG3 vectors

146 %••••······················ 147 msg3_init = zeros(msg_len3,1);
148 msg3 = zeros(msg_len3•spread_factor3,1);
149 spreading_vector3 = zeros(msg_len3•spread_factor3,1);
150
151 % Message and Spreading Vector Generation

152 %•••······································· 153 msg3_init • round(rand(msg_len3,1));
154 msg3 •upsamp(msg3_init,spread_factor3)';
155 msg3 • filter(ones(spread_factor3,1),1,msg3);
156 clear msg3_init
157
158 load avec
159
160 % Generate s3

161 %••·············
162 disp('Generating s3 ... ')
163
164 s3 • 255•xor(msg3,spreading_vector)';
165
166 % Binary File Generation
167 X•••••••••••••••••••••••••
168 disp('Generating binary file ... ')
169 disp('lnserting preamble ... ')
170 disp('Inserting signal vector ... ')
171
172 data_out3 = [zeros(1,preamble_length) s3];
173
174 fid = fopen('1k_10.bin' ,'wb');
175 fwrite(fid,data_out3,'int8');
176 fclose(fid);
177
178 else
179 %Generate File 4: Per definition in header above.
180 X•••
181 %msg_len4 = input('Enter Message Length Four (bits): ');
182 msg_len4 = 50e3; %Restricted value - only change if spread vector code is altered.
183 Rb4 = 1000; Rc4 = 40000;
184

69

185 X Calculated Parameters
186 X••••••••••••••••••••••••
187 spread_factor4 • ceil(Rc4/Rb4);
188
189 X Preallocate HSG4 vectors
190 X••••••••••••••••••••••••••
191 msg4_init • zeros(msg_len4,1);
192
193 msg4 = zeros(msg_len4•spread_factor4,1);
194 X apreading_vector4 • zeros(msg_len4•spread_factor4,1);
195
196 X Message and Spreading Vector Generation
197 X••
198 msg4_init • round(rand(msg_len4,1));
199
200 msg4 • upsamp(mag4_init,spread_factor4)';
201
202 msg4 filter(ones(spread_factor4,1),1,msg4);
203 clear msg4_init
204
205 load avec
206
207 X Generate s4
208 X•••••••••••••••
209 diap('Generating a4 ... •)
210
211 s4 • 255•xor(mag4,spreading_vector)';
212
213 X Binary File Generation
214 X•••••••••••••••••••••••••
215 disp('Generating binary file ... ')
216 disp('Inserting preamble ... ')
217 disp('Inserting signal vector ... ')
218
219 data_out4 = [zeros(1,preamble_length) s4];
220
221 fid • fopen('1k_40.bin','wb');
222 fwrite(fid,data_out4,'int8');
223 fclose(fid);
224
225 end
226
227 disp('All Done :) ')
228 run_time = cputime - timer

70

cap_mf.m

001 % Title:
002 % cap_mt.m
003 %
004 %
006 %
006 %
007 %
008 %

Purpose:
The purpose of this code is to generate estimation data similar to
dama_mt vith the exception that this code is tailored to use data
captured during the White Sands Complex (WSC) experiment.

009 % Revision:
010 % 1.0 -- 11/20/98
011 %
012 % Revision History:
013 %
014 %

none => baseline

016 % Author:
016 % Brad Scaife
017 %
018 %Notes:
019 % This code requires as input data that has been prepared by vsco_d2.m vhich

prepares the captured data and generates a matrice of usable vectors (see
vsco_d2 comments for more information). This code also relies on an index

020 %
021 %
022 %
023 %
024 1.
025%
026 %

matice that is generated by in_prp.m. In both cases these files have already been
prepared and may simply be loaded folloving prescribed naming conventions. In
the event that these data files have been lost though it vas thought helpful to
comment on hov to regenerate them.

027 % Average runtime:
028 1. - 8 minutes
029%

030 %••··
031 clear all;
032
033 ON = 1; OFF = 0;
034
036 % Code Options
036 %:::::::::::::::
037 vindov = OFF;
038 matched_filter ON;
039 insight = OFF;
040

% Use to toggle use of hamming vindov
% Use to toggle use of matched filter

% Use to gain instantaneous frequency estimation

041 % Code Parameters
042 %::::::::::::::::::
043 Fs = 100e6; % DO NOT CHANGE - this vas the sample rate used.

% As per dama_mt definition - not vsc definition.
3e3;% +/- range of acceptable error in Hz.

044 %snr = 1.6
046 est_tolerance
046 N = 66636;
047 number_of_estimates
048 fft_avg = 8;
049
050
051

% FFT block length.
= 1000; % t of estimation attempts. Don't modify!!!

% Number of FFT's to average over - changing this vill
% require changes to code mentioned in documentation above
%as vell as the rerunning of this code.

052 alpha= 2;
053

% Constant used to obtain consistent data points - does not
%add to statistical meaning nor detract from it.

054 f_lo 32.60e6;
055 f_hi = 32.90e6;
056
057 lower_bound_index = ceil(f_lo•N/Fs)+1;
058
059 starting_bound = lover_bound_index;
060

71

061 upper_bound_index s floor{f_hi•N/Fs)+1;
062 Rb_DAMA • 1e3;
063
064 X Program Flow
065 X:::::::::::::::

if window
wtype • ['h'];

else
wtype • ['r'];

end

066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081

menu_sel • menu('Select Data to Process:', ...
'SF=10, SNR1, F2', ... X Selection 1
'SF•10, SNR1, F3', ... X Selection 2
'SF=10, SNR2, F1', ... X Selection 3
'SF=10, SNR2, F2' , ... X Selection 4
'SF•10, SNR2, F3', ... X Selection 5
'SF•10, SNR2, F6', ... X Selection 6
'SF•10, SNR3, F2', ... % Selection 7
•SF=20, SNR2, F3') % Selection 8

082 if menu_sel az 1
083 data_filename • ['c:\research\code\matlab\whites·2\wscmat-1\snr1_f2' wtype];
084 eval{['load ' data_filename]);
085 num_col • size{x,2);
086 index_filename = ['c:\research\code\matlab\whites·2\cmb8_' int2str{num_col)];
087 eval(['load ' index_filename]);
088 iterations • choose(num_col,8);
089 Xsnr • -5;
090 snr = 40;
091 Rc_DAHA • 10e3;
092 Fe • 32.66e6;
093
094 elseif menu_ael •= 2
095 data_filename = ['c:\reaearch\code\matlab\whites-2\wscmat-1\snr1_f3' wtype];
096 eval(['load 'data_filename]);
097 num_col • size(x,2);
098 index_filename • ['c:\research\code\matlab\whites-2\cmb8_' int2str(num_col)];
099 eval(['load ' index_filename]);
100 iterations = choose(num_col,8);
101 Xsnr = -6;
102 snr = 40;
103 Rc_DAHA = 10e3;
104 Fe • 32.70e6;
105
106
107 elseif menu_sel •= 3
108 data_filename • ['c:\research\code\matlab\whites-2\wscmat-1\snr2_f1' wtype];
109 eval(['load ' data_filename]);
110 num_col • size(x,2);
111 index_filename • ['c:\research\code\matlab\whites-2\cmb8_' int2str(num_col)];
112 eval(['load ' index_filename]);
113 iterations • choose(num_col,8);
114 Xsnr • 1.5;
115 snr • 45;
116 Rc_DAHA • 10e3;
117 Fe = 32.6e6;
118
119
120 elseif menu_sel •• 4
121 data_filename • [•c:\research\code\matlab\whites-2\wscmat-1\snr2_f2' wtype];
122 eval(['load • data_filename]);

72

123 num_col = size(x,2);
124 index_filename = ['e:\researeb\eode\matlab\wbites"2\emb8_' int2str(num_eol)];
125 eval(['load • index_filename]);
126 iterations= ehoose(num_eol,8);
127 % snr = 1.5;
128 snr = 45;
129 Rc_DAMA = 10e3;
130 Fe = 32.65e6;
131
132
133 elseif menu_sel == 6
134 data_filename = ['e:\researeh\code\matlab\whites"2\wsemat-1\snr2_f3' wtype];
135 eval(['load 'data_filename]);
136 num_col • size(x,2);
137 index_filename = ['c:\researeh\code\matlab\whites"2\cmb8_' int2str(num_eol)];
138 eval(['load • index_filename]);
139 iterations= ehoose(num_eol,8);
140 % snr = 1.5;
141 snr = 45;
142 Re_DAMA = 10e3;
143 Fe= 32.70e6;
144
145
146 elseif menu_sel == 6
147 data_filename = ['e:\researeh\eode\matlab\whites"2\wsemat"1\snr2_f5' wtype];
148 eval(['load ' data_filename]);
149 num_col = size(x,2);
150 index_filename = ['e:\researeh\eode\matlab\whites-2\emb8_' int2str(num.col)];
151 eval(['load ' index_filename]);
152 iterations= ehoose(num_col,8);
153 %snr = 1.5;
154 snr = 45;
165 Rc_DAMA = 10e3;
156 Fe = 32.80e6;
157
158
159 elseif menu_sel •= 7
160 data_filename = ['c:\research\code\matlab\wbites"2\wsemat"1\snr3_f2' wtype];
161 eval(['load • data_filename]);
162 num_eol = size(x,2);
163 index_filename = ['c:\researeh\eode\matlab\whites"2\emb8_' int2str(num_col)];
164 eval(['load • index_filename]);
165 iterations= ehoose(num_eol,8);
166 %snr = 2.2;
167 snr = 50;
168 Re_DAMA = 10e3;
169 Fe = 32.65e6;
170
171
172 else
173 data_filename = ['c:\researeh\eode\matlab\whites"2\wsemat"2\snr2_f3' wtype];
174 eval(['load • data_filename]);
175 num_eol = size(x,2);
176 index_filename = ['e:\researcb\eode\matlab\whites"2\emb8_' int2str(num_eol)];
177 eval(['load • index_filename]);
178 iterations= ehoose(num_eol,8);
179 snr = 1.5;
180 Rc_DAMA = 10e3;
181 Fe= 32.70e6;
182
183 end
184

73

185 X Some Corrections for code operation
186 X::::::::::::::::::::::::::::::::::::::
187 if iterations > 1000
188 iterations = 1000;
189 end
190
191 if iterations •• 1000
192 alpha • 1;
193 else
194 alpha • 2;
195 end
196
197 X Load Matched Filter
198 X::::::::::::::::::::::
199 if matched_filter
200 if window
201 wtype2 • ['ha'];
202 else
203 wtype2 • ['re'];
204 end
205
206 fname • ['pg' int2str(Rc_DAMA/Rb_DAMA) wtype2];
207 eval(['load c:\research\code\matlab\damane-1\' fname])
208 end
209
210 X Process Begin
211 X::::::::::::::::
212 N • 65536; X Reset N after loading matched filter - required.
213 X Preallocation
214 X::::::::::::::::
215 X • zeros(N,fft_avg);
216 XX • zeros(N/2,fft_avg);
217 X_mag_squared • zeros(length(lower_bound_index:upper_bound_index),fft_avg);
218 XX_mag_squared • zeros(N/2,fft_avg);
219 X_avg ~ zeros(length(lower_bound_index:upper_bound_index),fft_avg);
220 XX_avg = zeros(N/2,fft_avg);
221 eat_data = zeros(length(snr),length(lower_bound_index:upper_bound_index));
222 Xeat_data • zeroa(length(anr),N/2);
223
224 X Begin FFT Estimation Process
225 X:::::::::::::::::::::::::::::::
226 for n • 1:iterations

n
temp= x(:,index(n,:));
X= fft(temp);
X • X(lower_bound_index:upper_bound_index, :);
7~ = Xt(1:N/2,:);
X_mag_squared • (X.•conj(X)). ';
X_avg = (aum(X_mag_squared) ./ fft_avg).';

if matched_filter
MF_mag_X ~ conv(MF,X_avg);

end

7. Select current index pattern.
7. Perform 8 FFT's
7. Restrict to search bound

X Sum and average.

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
246
246

k • find(X_avg(1:length(X_avg)) •• max(X_avg(1:length(X_avg))));
if insight
diap('Frequency found to be:')
(k+20791)•100e6/64e3

pauae(10)
end
if matched_filter

k • find(MF_mag_X(l:length(MF_mag_X)) az max(MF_mag_X(l:length(MF_mag_X))));

74

247
248 if (length(k) > 1)
249 k = median(k);
260 end
261
252 k = k - N1;
253 else
264 k = find(X_avg(1:length(X_avg)) •= max(X_avg(1:length(X_avg})));
255
256 if (length(k) > 1)
257 k = median(k);
258 end
259
260 end
261
262 est_data(1,k) est_data(1,k) + 1; % Increment bin
263
264 end
265
266 est_data(1,:) = est_data(1,:) .• alpha; %Sponge data to look like a larger estimate
267

268 % ------------------------------
269 % Save Data in MATLAB 4.x format

270 % ------------------------------
271 x = version;
272 if (x(1)=='5') % running on MATLAB 6.x
273 save -v4 cap_dat Fe Fs N N1 est_data est_tolerance number_of_estimates ...
274 starting_bound snr vindov vtype2
275 else % running on MATLAB 4.x
276 save cap_dat Fe Fs N N1 est_data est_tolerance number_of_estimates ...
277 starting_bound snr vindov vtype2
278 end;

75

wsco_d2.m

X DAMA Test Signal Analysis
X

Purpose: X
X
X

001
002
003
004
005
006 X
001 X

This code is to be used as driver code for wsco.m. This code
converts captured whites sands files and converts them into
usable length N blocks. Not entirely automated. Please read
info in wsco.m for details on project purpose.

008
009 Input:
010

X
X
X
X
X
X
X
X
X

This code requires the DAMA test files named as s1,s2, ... sn.
011

Output: 012
013 Undecided at this point.
014
015 Revision History:
016
011 X
018 X
019 X
020 X
021 X
022 %

ver 1.0:
ver 2.0:

ver 2.5:

baseline
Changed scope of code. This program is now to
to be used to drive other code only.
Restructed the format data is to be saved in.

023 X Current Version - Date:
024 % 2.5 - 8/4/98
025 X
026 X Author:
027 X Brad Scaife
028 X
029 X Date:
030 X 7/23/98
031 X
032 X Notes:
033 X Remember to change the save filename at the end of the code. Sorry
034 X got to do a little work to run this one.
036 X••
036 clear all
037 ON = 1;
038 OFF = 0;
039 window • OFF;
040
041 X Change to working directory
042 X••••••••••••••••••••••••••••••
043 cd c:\research\data\damaus-1\1k_10\snr2\f3
044
045 X Code Options
046 X••••••••••••••••••••••••••••••
047 X capture_option • 0; X 0 for 50ksample data else 1 (for lOOk)
048
049 X Code Parameters

050 X••···························· 051 num_files • 6; X 6- for snr1_f3; 9- for snr2_f3; 12- for snr3_f2
052 half • 65536;
053 short_cap • 50002;
054 long_cap ~ 100002;
055
056 load sl;
057 if length(s1) == long_cap
058 capture_option = 1;
059 else
060 capture_option 0;

76

061 end
062 clear s1;
063 pack
064
065
066
067
068
069 % Load raw signals

070 %••····························
071
072 k = 0;
073
074 h = waitbar2(0,'Loading files ... ');
075
076 while 1
077 k = k+1;
078 waitbar2(k/num_files);
079 sk = ['s' int2str(k)];
080 filename = sk;
081 if "exist(filename), break, end
082 eval(['load ' filename])
083 end
084 close(h)
085
086 Y. Preallocation

087 %••••··························
088 x = zeros(half,(1+capture_option)•num_files);
089
090
091 cd c:\research\code\matlab\whites"2
092
093 if capture_option
094 h • waitbar2(0,'Parsing 100 kSample Files ... ');
095 index = 1;
096
097 if window
098 W hamm(half);
099 else
100 W z ones(half,1);
101 end
102
103 for k = 1:2:2•num_files
104 waitbar2(index/num_files);
105 varname = ['s' int2str(index)];
106 temp • eval([varname]);
107 index • index +1;
108 x(:,k) = temp(1:half).*W; Y. For others
109 x(:,k+1) = temp(length(temp)-half+1:length(temp)).•W; Y. For others
110 end
111
112 close(h);
113 else
114 h = waitbar2(0,'Parsing 50 kSample Files ... ');
115
116 if window
117 W = hamm(length(s1));
118 else
119
120
121

end
w ones(length(s1),1);

122 fork= l:num_files

77

123 waitbar2(k/num_files);
124 varname z ['s' int2str(k));
126 temp • eval([varname]);
126 temp = temp.•W;
127 temp= [temp;zeros(half - length(temp),1)];
128 x(: ,k) " temp;
129 end

close(b);
end

130
131
132
133
134
136
136
137
138
139
140

cd c:\research\code\matlab\whites"2\wscmat"2

mlver • version;
if (mlver(1) == '6')

save -v4 snr2_f3r x
else

% Running on MATLAB 5.x

141

save snr2_f3r x
end

142 cd c:\research\code\matlab\whites"2
143 %clear all

78

prepcap2.m

001 % Title:
002 % prepcap.m
003 %
004 % Purpose:
005 % The purpose of this code is to prepare DAMA captured signals for
006 % comparison against simulated results.
007 %
008 X Revision:
009 X 1.0 7/26/98
010 % 1.5 8/2/98
011 X 2.0 11/2/98
012 %
013 X Revision History:
014 X none
015 % 1.5 Altered code to accept new signal matrix generated
016 X in wsco_d.m
017 X 2.0 Employing Spectral Matched Filter
018 %
019 % Author:
020 X Brad Scaife
021 X
022 X Date:
023 X 7/26/98
024 X
025 X Notes:
026 % This code requires input signals matrices that have been prepared
027 % by wsco_d.m and vector sequence matrices prepared by goob.m. Due to
028 % limited test set, the code makes some approximations that may or may
029 % not be valid. Therefore, this code should not be considered in any
030 % way a proof but rather a "ballpark" type of justification: Could it
031 % work in the real world?
032 %
033 ,. ••

034 clear all
035 ON= 1;
036 OFF "' 0;
037
038 % Code Parameters
039 X*****************
040 snr = 1:7; X SNR Ranges from So/N estimate.
041 Fe= 32.7e6; X Measured DAMA carrier -from WSC.
042 Fs = 100e6; 7. Burr-Brown Sampling Rate.
043 est_tolerance = 3e3; 7. +/- acceptable error.
044 N = 65536; % FFT block length.
045 number_of_estimates 1000; 7. I of estimation attempts
046 fft_avg = 8; 7. Number of FFT's to perform estimation over.
047 alpha = 2; 7. Correction to number of estimates.
048 insight = 0;
049 lower_bound_index = 21291; 7. Index of lower search bound.
050 upper_bound_index = 21504; X Index of upper search bound.
051 starting_bound = lower_bound_index;
052 window = OFF;
053 matched_filter ON;
054
055 7. ?reallocation

056 %••··············
057 X = zeros(N,fft_avg);
058
059 X_mag_squared = zeros(length(lower_bound_index:upper_bound_index),fft_avg);
060

79

061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
071
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
096
096
097
098
099
100
101
102
103
104
105

X_avg • zeros(length(lover_bound_index:upper_bound_index),fft_avg);

est_data = zeros(length(snr),length(lover_bound_index:upper_bound_index));

it vindov
load c:\research\code\matlab\damane-1\pg10ha

else
load c:\research\code\matlab\damane-1\pg10re

end

X Load SNR1_F2 Data Matrix (65536x12) and Combination Matrix (496x8)

%•••·· load c:\research\code\matlab\vhites-2\snr1_f2 load
c:\research\code\matlab\vhites-2\cmb8_12 h •
vaitbar2(0,'Formulating SNR1 Estimation for f2 ... ');

for n • 1:495

end

index "' cmbo3;
vaitbar2(n/496);

Y. Load unique index pattern matrix.

temp • x(:,index(n,:)); X Select current index pattern.
X • fft(temp); X Perform 8 FFT's
X= X(lover_bound_index:upper_bound_index,:); Y. Restrict to search bound
X_mag_squared • (X.•conj(X)).';
X_avg • (sum(X_mag_squared) ./ fft_avg).'; X Sum and average.

k • find(X_avg(1:length(X_avg)) •• max(X_avg(1:length(X_avg))));
if insight

end

disp('Frequency found to be:')
(k+20791)•100e6/64e3
pause(10)

if (length(k) > 1)
k • median(k);
disp (• coops •)

end

est_data(1,k) = est_data(1,k) + 1; X Increment bin

est_data(1,:) = est_data(1,:) .• alpha; X Sponge data to look like a larger estimate

106 clear x
107 clear index;
108 close(h);
109
110
111 X Load SNR1_F3 Data Matrix (66536x12) and Combination Matrix (495x8)
112 X••···
113 load c:\research\code\matlab\vhites-2\snr1_f3
114 load c:\research\code\matlab\vhites-2\cmb8_12
115 h • vaitbar2(0,'Formulating SNR1 Estimation for f3 ... ');
116
117 for n = 1:495
118
119
120
121

index "' cmbo3;
vaitbar2(n/495);

X Load unique index pattern matrix.

122 temp • x(:,index(n,:)); Y. Select current index pattern.

80

123 X= fft(temp); %Perform 8 FFT's
124 X= X(lover_bound_index:upper_bound_index,:); %Restrict to search bound
125 X_mag_squared = (X.•conj(X)).';
126 X_avg = (sum(X_mag_squared) ./ fft_avg).'; %Sum and average.
127
128 k = find(X_avg(l:length(X_avg)) == max(X_avg(l:length(X_avg))));
129 if insight
130 disp('Frequency found to be:')
131 (k+20791)•100e6/64e3
132 pause(10)
133 end
134 if (length(k) > 1)
135 k = median(k);
136 disp('ooops')
137 end
138
139 est_data(2,k) = est_data(2,k) + 1; % Increment bin
140
141 end
142
143 est_data(2,:) est_data(2,:) .• alpha; %Sponge data to look like a larger estimate
144
145 clear x
146 clear index;
147 close(h);
148
149
150 % Load SNR2_F1 Data Matrix (65536x12) and Combination Matrix (495x8)

161 ~··· 152 load c:\research\code\matlab\whites-2\snr2_f1
153 load c:\research\code\matlab\whites-2\cmb8_12
154 h • waitbar2(0, 'Formulating SNR2 Estimation for fl ... ');
155
156 for n = 1:495
157
158
159
160

index = cmbo3;
waitbar2(n/495);

% Load unique index pattern matrix.

161 temp= x(:,index(n,:)); 7. Select current index pattern.
162 X= fft(temp); 7. Perform 8 FFT's
163 X= X(lower_bound_index:upper_bound_index,:); %Restrict to search bound
164 X_mag_squared = (X.•conj(X)).';
165 X_avg = (sum(X_mag_squared) ./ fft_avg).'; 7. Sum and average.
166
167 k = find(X_avg(l:length(X_avg)) == max(X_avg(1:length(X_avg))));
168 if insight
169 disp('Frequency found to be:')
170 (k+20791)•100e6/64e3
171 pause(10)
172 end
173 if (length(k) > 1)
174 k = median(k);
175 disp('ooops')
176 end
177
178
179

est_data(3,k) est_data(3,k) + 1; 7. Increment bin

180 end
181
182 est_data(3,:)
183
184 clear x

eat_data(3,:) ·*alpha; %Sponge data to look like a larger estimate

81

185 clear index;
186 closa(h);
187
188
189
190 X Load SNR2_F2 Data Matrix (65536x12) and Combination Matrix (495x8)
191 X•••
192 load c:\research\code\matlab\vhites"2\snr2_f2
193 load c:\raaearch\code\matlab\vhites"2\cmb8_12
194 h • vaitbar2(0,'Formulating SNR2 Estimation for f2 ... ');
195
196 for n ~ 1:495
197
198
199
200

index • cmbo3;
vaitbar2(n/496);

X Load unique index pattern matrix.

201
202
203
204
205
206
207
208
209
210
211
212
213
214

tamp • x(:,index(n,:)); X Select current index pattern.
X • fft(tamp); X Perform 8 FFT's
X= X(lover_bound_index:upper_bound_index,:);
X_mag_aquared • (X.•conj(X)).•;

X Restrict to search bound

X_avg • (sum(X_mag_squared) ./ fft_avg).'; X Sum and average.

k • find(X_avg(1:length(X_avg)) •• max(X_avg(1:length(X_avg))));
if insight

end

disp('Frequency found to be:')
(k+20791)•100e6/64e3
pause(10)

if (length(k) > 1)
k • median(k);

215 disp('ooops')
216 end
217
218 est_data(4,k) • est_data(4,k) + 1; X Increment bin
219
220 end
221
222 ast_data(4,:) = est_data(4,:) .• alpha; X Sponge data to look like a larger estimate
223
224 clear x
225 clear index;
226 close(b);
227
228
229 X Load SNR2_F3 Data Matrix (65536x18) and Combination Matrix (1000x8)
230 %•••
231 load c:\research\code\matlab\vhites"2\snr2_f3
232 load c:\research\code\matlab\vhites"2\mc_cmb2
233 h • vaitbar2(0,'Formulating SNR2 Estimation for f3 ... ');
234
236 for n ~ 1:1000
236
237 waitbar2(n/1000);
238
239 temp • x(:,index(n,:));
240 X= fft(temp); X Perform 8 FFT's
241 X= X(lover_bound_index:upper_bound_index,:);
242 X_mag_squarad = (X.•conj(X)).';
243 X_avg • (sum(X_mag_squared) ./ fft_avg).'; X Sum and average.
244
245 k = find(X_avg(l:length(X_avg)) == max(X_avg(1:length(X_avg))));
246 if (lengtb(k) > 1)

82

247 k = median(k);
248 disp('ooops')
249 end
250
251 est_data(5,k) est_data(5,k) + 1; X Increment bin
252
253 end
254
255 clear x;
256 close(h);
257
258 % Load SNR2_F5 Data Matrix (65536x12) and Combination Matrix (495x8)
259 X•••
260 load c:\research\code\matlab\vhites-2\snr2_f5
261 load c:\research\code\matlab\vhites-2\cmb8_12
262 h = vaitbar2(0,'Formulating SNR2 Estimation for f5 ... ');
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

for n = 1:495

index = cmbo3;
vaitbar2(n/495);

% Load unique index pattern matrix.

temp= x(:,index(n,:)); 7. Select current index pattern.
X= fft(temp); %Perform 8 FFT's
X= X(lover_bound_index:upper_bound_index,:); %Restrict to search bound
X_mag_squared = (X.•conj(X)). ';
X_avg = (sum(X_mag_squared) ./ fft_avg).'; %Sum and average.

k = find(X_avg(1:length(X_avg)) == max(X_avg(1:length(X_avg))));
if insight

end

disp('Frequency found to be:')
(k+20791)•100e6/64e3
pause(10)

if (length(k) > 1)
k .. median(k);
disp ('ooops')

end

286 est_data(6,k) = est_data(6,k) + 1; X Increment bin
287
288 end
289
290 est_data(6,:) = est_data(6,:) .• alpha; %Sponge data to look like a larger estimate
291
292 clear x
293 clear index;
294 close(h);
295
296 % Load SNR3_F2 Data Matrix (65536x12) and Combination Matrix (495x8)
297 X••••***
298 load c:\research\code\matlab\vhites"2\snr3_f2
299 load c:\research\code\matlab\vhites"2\cmb8_12
300 h = vaitbar2(0, 'Formulating SNR3 Estimation for f2 ... ');
301
302 for n = 1:495
303
304
305
306

index = cmbo3;
vaitbar2(n/495);

% Load unique index pattern matrix.

307 temp= x(: ,index(n,:)); %Select current index pattern.
308 X= fft(temp); %Perform 8 FFT's

83

309 X • X(lover_bound_index:upper_bound_index,:); Y. Restrict to search bound
310 X_mag_squared • (X.•conj(X)).';
311 X_avg = (sum(X_mag_aquared) ./ fft_avg).'; Y. Sum and average.
312
313 k • find(X_avg(1:length(X_avg)) •• max(X_avg(1:length(X_avg))));
314 if insight
315 disp('Frequency found to be:')
316 (k+20791)•100e6/64e3
317 pause(10)
318 end
319 if (length(k) > 1)
320 k = median(k);
321 disp('ooops')
322 end
323
324 est_data(7,k) = eat_data(7,k) + 1; Y. Increment bin
326
326 end
327
328 est_data(7,:) = est_data(7,:) .• alpha; Y. Sponge data to look like a larger estimate
329
330 clear x
331 clear index;
332 close(h);
333
334
336 mlver = version;
336 if (mlver(1) == 6) Y. Running on HATLAB 6.x
337 save -v4 dama_cap Fa Fe snr eat_tolerance N number_of_estimates
338 est_data lover_bound_index upper_bound_index
339 else X Running on HATLAB 4.x
340 save dama_cap Fs Fe snr eat_tolerance N number_of_estimates
341 est_data lover_bound_index upper_bound_index
342 end

84

exl.m

001 %•••·· 002 7.
003 %Experiment One: Finding Probabilities and MSE estimates of estimating
004 7. a complex sinusoid in noise.
005 7.
006 % Purpose: The purpose of this code is to determine and prove the
007 % relationship between the DAMA curves and actual MSE of
008 % estimation. This baseline test will provide insight into the
009 % simpler case of a complex sinusoid in noise which will then
010 % be extended to the more complex DAMA carrier case.
011 %
012 % Programmer:
013 % Date:
014 7. Revision Date:

Brad Scaife
2/14/99
4/20/99

015% Current Revision: 1.10
016 % Revision History:
017 % 1.0
018 % 1.01
019 7. 1.02
020 %
021 % 1.03
022 %
023 %
024 7.
025 %
026 %

1.10

- Baseline
- Corrected Noise Power and theoretical curve
- Fixed indexing problem and clearing of mae

through each iteration.
- Added support for estimation range compared

to some baseline OFT resolution for comparison.
- Increasing the computational resolution of the

FFT so that the the aim curve can more closely
match the Porat Curve.

027 % Notes: See Porat. As per indicated in Porat, the results of
028 % estimation are valid only when the "rule of thumb" are
029 % satisfied. Thus any processing of snr's below the ROT are
030 7. not valid with the theoretical curve.
031 %••···
032 clear all
033 clc
034
035 7. Program Parameters:

036 %••···················
037 N = 512; 7. -
038 L = 8•N; 7. -

fs/(B•N);

1. -
1. -
1. -
7. -

039 Nbase = N;
040 ts = 800e3;
041 Ts = 1/ts;
042 f = 200e3 +
043 stime = 0;
044 phi = 0;
045 A = 1;

etime • (N-1)/fs;
1.

046 Jw = 1;
047 0 = Nbase•Ts;
048
049
050 snr = [-20:.5:30]';
051 number_estimates = 1000;
052

1. -
% -
1. -

053 7. Calculated Program Parameters

054 %••·····························

Normally set to 512.
Computational Resolution.
Basic OFT resolution.
Sampling frequency.
Sampling interval.
Sinusoid frequency.

Phase offset.
Amplitude of sinusoid.
Set as window function - see Porat.
As per Porat.

055 est_range = floor(fs/L)/2; 7. - Frequency estimation range as a function of
056 % basic OFT resolution.
057 f_lo f - est_range; 7. - Lower "accurate" estimation bound.
058 f_hi f + est_range; 1. - Upper "accurate" estimation bound.
059 k_lo ceil(f_lo•N/fs); 1. - Lower index bound.
060 k_hi floor(f_hi•N/fs); 1.- Upper index bound.

85

061
062 if N •• Nbase
063 k_hi • k_lo;
064 end
066
066 res_factor = N/L; % - Resolution Factor
067
068 X Preallocate
069 X••···········
070 success = zeros(1,length(snr));
071 mse_calc • zeros(1,length(snr));
072 mae • zeros(1,length(snr));
073 rmse = zeros(1,length(snr));
074 rmse_calc • zeros(1,length(snr));
076 mse_sum • 0;
076 Xerr_sum • 0;
077
078 X Signal Generation, Finding of true frequency
079 %••
080 s • csin_gen(f,phi,A,fa,stime,etime); X Verified power • 1.
081 signal_power = cov(s);
082 S • fft(s);
083 S_mag • abs(S);
084 %true_ind • find(S_mag •• max(S_mag))-1
086 Xf_true = true_ind/N•fs
086 Xpause
087 f_true • f;
088 X true_ind = floor(f_true•N/fs)
089
090 X Display Parameters
091 X•••·················
092 disp(sprintf('True Frequency: X10.6f Hz',f_true))
093 disp(sprintf('Base Points: Xd', N))
094 diap(sprintf('DFT Points: Xd',L))
096 disp(sprintf('Base DFT Resolution: X10.5f Hz', fs/N))
096 disp(sprintf('Calculation DFT Resolution: X10.5f Hz', fs/L))
097 disp(sprintf('Resolution Factor: Xd', res_factor))
098 disp(sprintf('Estimation Range: X10.5f Hz', est_range))
099 disp(sprintf('Lower Index Bound: Xd', k_lo))
100 diap(sprintf('Upper Index Bound: %d', k_hi))
101 disp('Press a key to continue ... ') pause
102
103 for n • 1:length(snr)
104 snr(n)
105
106
107

snr_mod =
% No • Ts
X No • Ts

X Current SNR to be tested.
sqrt(cov(s)/(10-(snr(n)/10))); X Standard Deviation of noise
• sqrt(2) • (anr_mod)-2; X Noise Power in W/Hz.
• (2 • snr_mod-2)-2;

108 No = Ts • snr_mod-2;
109 mse_calc(n) = (6•No•Jw)/((2•pi)-2 • A-2 • D-3);
110 X rmse_calc(n) • sqrt(6•Jw•sqrt(cov(s)/(10-(snr(n)/10)))/(100•pi-2))/D;
111 X rmse_calc(n) = (1/D)•aqrt(6•Jw•PG/(100•pi-2));
112 randn('aeed',O);
113
114 fork • 1:number_estimates
115 v = [randn(N,1) + j•randn(N,1)]•snr_mod/sqrt(2);
116
117
118
119
120
121
122

Xcov(s)
Xcov(v)
X10•log10(cov(s)
Xpause
y • s + v;

X Remove me
X Remove me

I cov(v)) X Remove me
X Remove me

86

123 Y = fft(y,L);
124 Y _mag = abs (Y) ;
126 %Y_mag • Y_mag(1:NI2 + 1);

126
127 max_ind = min(find(Y_mag •= max(Y_mag))) - 1;
128 f_found max_indiL•fs;
129
130 mse_sum = mse_sum + (f_true - f_found)"2;
131 % err_sum = err_sum + abs(f_true - f_found);
132
133 if (max_ind >• k_lo t max_ind <= k_hi)
134 success(n) = success(n) +1;
136 end
136
137
138
139 end
140
141 % mse(n) = (err_sum I number_estimates)"2;
142 mse(n) = mse_sum I number_estimates;
143 rmse(n) = sqrt(mse(n));
144 % err_sum = 0;
146 mse_sum = 0;
146
147
148 end
149

success(n) success(n)lnumber_estimates;

160 rmse_calc • sqrt(mse_calc);

87

ex2.m

001 X••···
002 X
003 X Experiment Tvo: Finding Probabilities and MSE estimates of estimating
004 X a real sinusoid in real noise.
005 X
006 X Purpose: The purpose of this code is to determine and prove the
007 X relationship between the DAMA curves and actual MSE of
008 X
009 X
010 X
ou X

estimation. This baseline test will provide insight into the
simpler case of a complex sinusoid in noise vhich vill then
be extended to the more complex DAMA carrier case.

012 X Programmer:
013 X Date:
014 X Revision Date:
015 X Current Revision:
016 X Revision History:
017 X
018 X

Brad Scaife
3/18/99
3/18/99
1.0

1.0 - Baseline

019 X
020 X
021 X
022 X

Notes: See Porat. As per indicated in Porat, the results of
estimation are valid only when the "rule of thumb" are
satisfied. Thus any processing of snr's below the ROT are
not valid vith the theoretical curve.

023 X••··· 024 clear all clc
025
026 X Program Parameters:
021 X•••••••••••••••••••••
028 N • 65536; X - Normally set to 612.
029 Nbase • 65536; X - Basic DFT resolution.
030 fa • 800e3; X - Sampling frequency.
031 Ts • 1/fs; X - Sampling interval.
032 f • 200e3 + fs/(4•N); X- Sinusoid frequency.
033 stime • 0; etime = (N-1)/fs;
034 phi • 0; X - Phase offset.
035 A • 1; X - Amplitude of sinusoid.
036 Jv • 1; X - Set as window function - see Porat.
037 D • Nbase•Ts; X - As per Porat.
038
039
040 snr = [-20:.2:10]';
041 number_estimates • 100;
042
043 X Calculated Program Parameters

044 X•······························ 045 est_range • floor(fs/Nbase)/2;
046
047 f_lo • f - est_range;
048 f_hi = f + est_range;
049 k_lo • ceil(f_lo•N/fs);
050 k_hi • floor(f_hi•N/fs);
051
052 if N Nbase
053 k_hi = k_lo;
054 end
055
056 res_factor = N/Nbase;
057
058 X Preallocate
059 X•************
060 success= zeros(1,length(snr));

X - Frequency estimation range as a function
X basic DFT resolution.
X - Lover 11 accurate" estimation bound.
X Upper "accurate" estimation bound.
X - Lover index bound.
X - Upper index bound.

X - Resolution Factor

88

-

of

061 mse_calc = zeros(1,length(snr));
062 mae= zeros(1,length(snr));
063 rmse • zeros(1,length(snr));
064 rmse_calc = zeros(1,length(snr));
065 mse_sum = 0;
066 Xerr_sum = 0;
067
068 % Signal Generation, Finding of true frequency
069 %••··
070 s • sinu_gen(f,phi,A,fs,stime,etime); %Verified power • 1.
071 aignal_pover = cov(s);
072 S = fft(s);
073 S_mag • abs(S);
074 %true_ind • find(S_mag •= max(S_mag))-1
075 lf_true = true_ind/N•fs
076 %pause
077 f_true • f;
078 % true_ind = floor(f_true•N/fs)
079
080 % Display Parameters
081 %••··················
082 disp(sprintf('True Frequency: %10.6f Hz',f_true))
083 disp(sprintf('Base Points: 7.d', Nbase))
084 disp(sprintf('DFT Points: %d',N))
086 disp(sprintf('Base OFT Resolution: 7.10.5f Hz', fs/Nbase))
086 disp(aprintf('Calculation OFT Resolution: %10.5f Hz', fs/N))
087 disp(sprintf('Resolution Factor: 7.d', res_factor))
088 disp(sprintf('Estimation Range: 7.10.5f Hz', est_range))
089 disp(sprintf('Lover Index Bound: 7.d', k_lo))
090 disp(sprintf('Upper Index Bound: %d', k_hi))
091 disp('Press a key to continue ... ') pause
092
093 for n = 1:length(snr)
094 snr(n) % Current SNR to be tested.
095 snr_mod = sqrt(cov(s)/(10-(snr(n)/10))); 7. Standard Deviation of noise
096 % No = Ts * sqrt(2) * (snr_mod)-2; 7. Noise Power in W/Hz.
097 % No = Ts * (2 • snr_mod-2)-2;
098 No = Ts • snr_mod-2;
099 mse_calc(n) = (24•No•Jw)/((2•pi)-2 • A-2 • o-3);
100 % rmse_calc(n) sqrt(6•Jw•sqrt(cov(s)/(10-(snr(n)/10)))/(100•pi-2))/D;
101 7. rmse_calc(n) = (1/D)•sqrt(6•Jw•PG/(100•pi-2));
102
103
104
105
106
107
108
109
110
111

for k = 1:number_estimates
v = randn(N,1) • snr_mod;

% cov(s)
% cov(v)
% 10•log10(cov(s) I cov(v))
% pause
y = s + v;

112 y fft(y);
113 Y_mag = abs(Y);
114 Y_mag_p = Y_mag(1:N/2 + 1);
116

X Remove me
X Remove me
X Remove me
7. Remove me

116 max_ind = min(find(Y_mag_p == max(Y_mag_p))) - 1;
117 f_found = max_ind/N•fs;
118
119 mse_sum = mse_sum + (f_true - f_found)-2;
120 % err_sum = err_sum + abs(f_true- f_found);
121
122 if (max_ind >= k_lo t max_ind <= k_hi)

89

123
124
125
126
127
128 end
129

success(n)
end

success(n) +1;

130 X mse(n) • (err_sum I number_estimates)-2;
131 mse(n) = mse_sum I number_estimates;
132 rmse(n) • sqrt(mse(n));
133 X err_sum = 0;
134 mse_sum • 0;
135
136 success(n) • success(n)lnumber_estimates;
137 end
138
139 rmse_calc • sqrt(mse_calc);

90

ex3.m

001 %•••··
002 %
003 % Experiment Three: Finding Probabilities and MSE estimates of estimating
004 % a BPSK carrier in real noise.
006 %
006 Y. Purpose: The purpose of this code is to determine and prove the
007 % relationship between the DAMA curves and actual MSE of
008 % estimation. This test is an extension of experiments one
009 Y. and tvo vhere a BPSK carrier is under test.
010 7.
011 7. Programmer: Brad Scaife
012 % Date: 3/30/99
013 % Revision Date: 3/30/99
014 %Current Revision: 1.0
016 % Revision History:
016 % 1.0 - Baseline
017 %
018 % Notes: See Porat. As per indicated in Porat, the results of
019 Y. estimation are valid only vhen the "rule of thumb" are
020 % satisfied. Thus any processing of snr's belov the ROT are
021 % not valid vith the theoretical curve.

022 Y.••··· 023 clear all clc
024
026 %--------------------
026 % Program Parameters

027 7.--------------------
028 N 612;
029 L • 2-o * N;
030 A = 1;
031 Jw "' 1;
032 fft_avg 26;
033
034

035 % -------------------------------
036 % Communication System Parameters

037 % -------------------------------
038 Fs 800e3; 7. output signal sampling freq. (samples/s)
039 Fe = 178e3; % BPSK carrier frequency in Hz. (cycles/sec)
040 kc floor(Fc•L/Fs);
041 Rb 10e3; % data rate (bits/s) Fs/Rb must be integer
042 samples_per_bit = Fs/Rb; % must be integer
043 D = N/Fs;
044
045 %----------------------
046 % Simulation Parameters
047 %----------------------
048 number_of_estimates • 1000;% I of frequency estimates to perform for each SNR typically 10000
049 snr = [-12:2:14]';
050 msg = zeros(N,1);
061 s "'zeros(N,1);
062 r = zeros(N,l);
053
054 %--------------
055 % Display Info
056 %--------------
057 disp(sprintf('Sampling Frequency Fs: %6.16f',Fs));
058 disp(sprintf('Carrier Frequency Fe: %5.15f',Fc));
069 disp(sprintf('FFT Resolution (Data Supported): %5.16f' ,Fs/N));
060 disp(sprintf('FFT Computational Resolution: 7.5.15f',Fs/L));

91

061
062
063 pause
064

o65 x--------------------------
066 X Begin Iterative SNR Loop

o67 x--------------------------
068
069 fork~ 1:length(snr)
070
071 rand('seed',1000);
072 randn('seed',O);
073 mse_aum • 0;
074
075 noise_pover = (A-2/2)/(10-(anr(k)/10));
076 No= (noise_power) I Fa;
077 help_factor • 1;
078 mae_calc(k) • (24•No•Jw)/(help_factor•(2•pi)-2 • (A-2/(4•Rb)) • o-3);
079
080 for l = 1:number_of_eatimates
081
082 R_mag_sum = zeros(L/2,1);
083
084 for n = 1:fft_avg

o85 x----------------------
086 X Generate BPSK Signal

o87 x----------------------
088 msg • A•[cos(2•pi•([O:N-1])•Fe/Fs)]. ';
089 data= filter(onea(aamples_per_bit,1),1,upsamp
090 ((-1).-(round(rand(eeil(N/samples_per_bit),1))), ...
091 aamples_per_bit));
092
093 data • data(1:length(msg));
094 s • mag .• data;
095
096
097 noise= randn(length(msg),1) .• sqrt(eov(s)/(10-(snr(k)/10)));
098 r • s + noise;
099 r = r ./ aqrt(eov(r));
100
101
102
103 R • fft(r,L);
104 R_mag_sum = R_mag_sum + R(1:L/2).•conj(R(1:L/2));
105 end
106
107 R_mag • R_mag_sum ./ fft_avg;
108
109 kmax = min(find(R_mag •= max(R_mag)));
110 f_est • (kmax-1)/L•Fa;
111
112 mae_sum = mse_sum + (Fe - f_est)-2;
113 X[Fe - f_est,kmax]
114
115 end
116
117 mse(k) ~ mse_sum/number_of_estimates;
118 rmse(k) • sqrt(mse(k));
119 rmse_calc(k) • sqrt(mse_ealc(k));
120 end
121
122 elf

92

123 plot(anr,rmse_calc,'--')
124 hold on
126 plot(snr,rmse)
126 hold oft
127 grid

93

B Motorola DSP 56303EVM Code

rev30.asm

001 REV 3.0
002
003 Just for convenience -delete later!!! Turns on/off D/A codec
004 bclr t19,x:M_CRBO ;Disable Rx on A-codec
006 bclr t18,x:M_CRBO ;Used to disable Tx interrupt
006
007
008
009
010
011
012
013
014
016
016
017
018
019
020
021
022
023
024
026
026
027
028
029
030
031
032
033
034

opt now

no list
include 'ioequ.asm•
include 'intequ.aam•
include 'ada_equ.asm'
include 'vectors.asm'
include '7819equ.asm'

;list

;••·· ; Initial Layouts: This section of code sets up the D/A memory resources,
the program memory resources and defines the FFT macro.

;••·· include 'CS4216.asm' ;D/A Memory Resources
include 'fftr2cn.asm' ;FFT Macro
include •convm.asm'
include 'mlayout.dat'

;Convolution Macro
;Memory Layout

;••·· ; Fast Interrupt - IRQB
•••

org pli:I_IRQB
movep y:BB7819_DR,x:(r0)+
org pli:I_IRQB+1
bset tO,x:FLAGS

036 org p:$100
036 START
037 main
038

039 ;••·· 040 ; Set Operating Frequency

041 ;••••·· 042 movep tCLK_RATE,x:M_PCTL ;Set PLL and Chip Operating Frequency
043

044 ;••·· 046 ; Set Operating Parameters ot DSP66303

046 ;••·· 047 move tOP_MODE,omr ;Set Operating Mode ot 303
048

049 ;•••··· 060 ; Setup Stack

061 ;••·· 062 movec tO, sp ; clear hardware stack pointer
063 move tSTACK,r6 ;initialise stack pointer
064 move t-1,m6 ;linear addressing
056
066
067

058 ;•••···

94

059 ; Set AAR Wait States for External Memory(32k) and A/D Codec

060 ;••·· 061 include 'ws_set.asm' ;Set Wait States
062

063 ;••·· 064 ; Set Up IRQB Interrupt Parameters. IRQB is the interrupt designated to
065 ; the A/D Codec.

066 ;••••·· 067 ori ll$03,mr Mask all interrupts until needed.
068 include 'core_ipl.asm' ; Set IRQB Interrupt Parameters
069
070
071 AAR2 equ
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101

movep

jsr
andi

main_ loop

jclr
bclr
jsr
jmp

process_sample
clr
move
dec
move
tst
jne

ori

jsr
jsr
jsr

andi
movep

102 GET_NEXT_SAMPLE
103 rts
104
105 Subroutines:
106 ;••············
107 include
108 include
109 include
110 include
111 include
112 include
113 include
114 echo
115 end

$fffc21
liAAR2,x:M_AAR2

INIT
l$fc,mr

liO,x:FLAGS,•
liO,x:FLAGS
process_sample
main_ loop

a

Compare Upper 12 bits to fffxxx
Setup AAR2

Register Initialization Routine
Re-enable all interrupts

;Wait for Sample In

x:SAMPLE_COUNTER,aO
a
aO,x:SAMPLE_COUNTER
a
GET_NEXT_SAMPLE

ll$03,mr ;Disable Interrupts

WIN_N_SCALE
COMPUTE_FFT
AVG_FFT

ll$fe,mr ;Enables only BOOk A/D
liiPRC,x:M_IPRC ;Re-enable A/D Codec

'comp_fft.asm'
'vsc.asm'
'avg_fft.asm•
'init.asm,
'get_bin.asm•
'sinwgid.asm•
'ada_init.asm'

95

mlayout.dat

001 :••·· 002 ;mlayout.DAT: This data file is used with rev1.ASM to lay things out in memory
003
004 ; Notes: For use with rev 2.1 code.

005 ;•••··· 006 References:
007 DSP56300 Family Manual {300FM)
008 DSP66303 Ussr's Manual {303UH)

009 ;•••···
010 ; Equates:

011 ;•••·······
012

013 ;••·· 014 ; 56303 Processor Operating Parameters Control

015 :••·· 016 CLK_RATE equ $040004 ;Chip Operating Clock - See Section 9.3 300FM
017 OP_MODE equ $389 ;Chip Operating Mode
018 ;Please use either 389 or 3C9 for proper
019 ;operation. .Please see DAMA Programming Notes
020 ;and 303UM:3-13 for details.
021 FS equ 32000 ;Please set the same as D/A sample rate.

022 ;•••··· 023 DAHA Project Memory Settings. PLEASE DO NOT CHANGE!!! CODE WILL LIKELY NOT
024 FUNCTION. THE MEMORY HAS BEEN SPECIFICALLY SETUP UTILIZING ALL ON-CHIP
025 MEMORY.

026 :•••··· 027 POINTS equ 612 ;Number of Points {samples)
028 TABLE_SIZE equ 612 ;Sine Wave Lookup Table Size {Will adjust output)
029 ITERS equ 8 ; FFT Iterations
030 OFFSET equ 128 ;Correction from Spectral Smearing due to Convolution.
031 ;OUTPUT_SEC equ 2 ;Please enter duration of output in seconds.
032 ;OUT_LENGTH equ OCVI{FS•OUTPUT_SEC)
033
034 ; Long Memory:

036 ;••············
036 org l:$000a
037
038 SAHPLE_DATA dam
039 FFT_DATA dsm
040 ;FFT_RESULT dsm
041 COEFF dsm
042
043 ; X Memory:

044 ;•••········
046 org x:$000a ;see
046
047 SA_DATA_PTR
048 FT _DATA_PTR
049 IFFT_PTR
060 IFFT_MOD
061 ;FT_RES_PTR
062 HAG_PTR
053 COEFF_PTR
054 WAV_PTR
055 WIN_PTR
056 WIN_HOD
057 SHF_PTR
058 CNVO_PTR
059 FFT_COUNTER
060 SAHPLE_COUNTER

ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds
ds

POINTS
POINTS
POINTS
POINTS

;Signal buffer {0200 - 03ff)
;FFT Output buffer {0400 - 05ff)
;Result FFT Data (0600 - 07ff)
;Sine-Cosine "Twiddle" Factor Lookup (0800 - 09ff)

ADA_INIT.ASM for why we start at x:$000a

1
1
1
1
1

1
1

1
1

;SAHPLE_DATA Pointer Storage
;FFT_DATA Pointer Storage
;Imaginary FFT Data Pointer Storage
;Imaginary FFT Data mod Storage
;FFT_RESULT Pointer Storage
;Magnitude Squared Data Pointer Storage
;Coeff Pointer Storage
;Sine Wave Table Pointer Storage
;Window Pointer Storage
;Window Modulo Storage
;SMF Pointer Storage
;Convolution Result Buffer Pointer Storage
;FFT Counter
; Sample Counter

96

061 MAX_VAL ds ;Maximum value storage
062 MAX_LOCATION ds 1 ;Holds address of max location
063 INT_DELTA ds 1 ;Delta for Carrier Reconstruction.
064 FRAC_DELTA ds
065 RO_STORE ds
066 R1_STORE ds
067 R2_STORE ds
068 R3_STORE ds
069 R4_STORE ds
070 R5_STORE ds
071 R7 _STORE ds
072 MO_STORE ds
073 M1_STORE ds
074 M2_STORE ds
075 M3_STORE ds
076 M4_STORE ds
077 M5_STORE ds
078 M7_STORE ds
079 N5_STORE ds
080 N7_STORE ds

1
1
1

1
1
1
1
1
1

;rO storage
;r1 storage
;r2 storage
;r3 storage
;r4 storage
;r5 storage
;r7 storage
;mO storage
;m1 storage
;m2 storage
;m3 storage
;m4 storage
;m5 storage
;m7 storage
;n5 storage
;n7 storage

081 FLAGS
082 OUT_COUNTER

ds
ds

;User Defined Flag Register
1 ;Output Sample Counter

083 CNV_MEM
084 STACK

ds
equ

1 ;For use in convolutional code.
• ;Beginning of Stack

085
086 org x:$800

087 ;••······························· 088 ; Magnitude Squared Data

089 ;••······························· 090 MAG_SQ_DATA dam POINTS/2
091
092 org x:$AOO

093 ;••······························· 094 ; Generate Sine Wave Lookup Table

095 ;••·······························
096 TAB dam TABLE_SIZE
097 include 'sintab.asm'
098 sintab TABLE_SIZE,TAB
099
100 ; Y Memory:

101 ;••••·······
102 org y:$0

103 ;••··································· 104 ; Generate Hamming Windov v/ Prescale

105 ;••···································
106 HAMM dsm POINTS ;Hamming Windov table.
107 include 'hamming.asm'
108 hamming PDINTS,HAMM
109
110
111 ; Build Tviddle factor lookup tables for FFT Routine

112 ;••·· 113 include 'sincos.asm' ;Tviddle factor macro - builds lookup tables
114 sincos POINTS,COEFF ;Build lookup tables.
115
116
117 ; Spectral Matched Filter

118 ;••·······················
119 SMF dsm PDINTS/2
120 org y:SMF
121 include 'smf20.dat•
122

97

123
124 ; Convolution Output
125 •••••••••••••••••••••
126 CNV_OUT d1m 2•POINTS-1

98

wsc.asm

01 •••
02 win_n_scale Subroutine
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20

Purpose: Tbe purpose
overflow problems.
of the spectrum but

of this subroutine
Tbis will have the
will not alter the

In: x: (rO) - Sample Buffer
y:(r4) -Hamming buffer

is to scale the input data to avoid
effect of lowering the overall values
shape of the spectrum.

OUT: x:(rO) -Sample Buffer w/ Window, scale, and iteration
adjustments

Alters: a,b,rO,r3,r4,xO,x1,yO,y1

Written By:
Date:
Platform:
Calls:

Brad Scaife
2/20/98
Motorola DSP56303
None

21 This code is verified for use with version three code. See rev30.asm.

22 ;••·· 23 WIN_N_SCALE
24
25
26 move
27 do
28 mpyr
29 mpyr
30 move
31 move
32 ND_SCALE
33 mpyr
34 mpyr
35 move
36 move
37
38 rts

x:(rO)+,xO y:(r4)+,y0 ;Preload values.
IPOINTS/2-1,ND_SCALE
xO,yO,a x: (rO)+,xl y: (r4)+,y1 ;x' (x)•(w(n)•scale/1 iterations
x1,y1,b x:(rO)+,xO y:(r4)+,y0 ;Second Iteration
a,x:(r3)+ ;Store a into sample buffer
b,x:(r3)+ ;Store b into sample buffer

xO,yO,a x:(r0)+,x1
x1,y1,b
a,x:(r3)+
b,x: (r3)+

y:(r4)+,y1 ;Loop clean up: Two mults and
;corresponding writes to memory
;Counters back to top of
;buffer

99

comp_fft.asm

01 •••

02 COMPUTE FFT Subroutine
03
04 Purpose: The purpose of this subroutine is to compute the FFT of the input
06 signal and store it in memory.
06
07
08
09

In:
Out:
Alters:

rO,r1,r2,r3,r4,r6,mO,m1,m2,m3,m4,m6
x:(r1),rO,r1,r2,r3,r4,r6,mO,m1,m2,m3,m4,m6
Everything

10 ;••··
11
12
13
14
16
16
17
18
19
20
21
22
23
24
26
26
27
28

COMPUTE_FFT
move
move
move
move
move
move
move
move
move
move
move
move
move
move
move
move

rO,x:RO_STORE
rl,x:Rl_STORE
r2,x:R2_STORE
r3,x:R3_STORE
r4,x:R4_STORE
r5,x:R6_STORE
r7,x:R7_STORE
mO,x:MO_STORE
ml,x:Ml_STORE
m2,x:M2_STORE
m3,x:M3_STORE
m4,x:M4_STORE
m6,x:M6_STORE
m7,x:M7_STORE
n6,x:N6_STORE
n7,x:N7_STORE

29 fftr2cn POINTS,SAMPLE_DATA,FFT_DATA,COEFF
30
31
32
33
34
36
36
37
38
39
40
41
42
43
44
46
46
47

move
move
move
move
move
move
move
move
move
move
move
move
move
move
move
move
rts

x:N7_STORE,n7
x:N6_STORE,n6
x:M7_STORE,m7
x:M5_STORE,m6
x:M4_STORE,m4
x:M3_STORE,m3
x:M2_STORE,m2
x:Hl_STORE,m1
x:HO_STORE,mO
x:R7_STORE,r7
x:R6_STORE,r6
x:R4_STORE,r4
x:R3_STORE,r3
x:R2_STORE,r2
x :RLSTORE,r1
x:RO_STORE,rO

100

avgJft.asm

01 for use vith rev 2.1 code only AVG_FFT
02
03 move x:(r1)+,x0 y:(r7)+,y0
04 do I(POINTS/2),END_TLOOP
05 mpy xO,xO,a x: (r2) ,yl
06 macr yO,yO,a
07 add yl,a
08 move x: (r1)+,x0 y: (r7)+,y0
09 move a,x:(r2)+
10
11 END_ TLOOP
12 clr b
13
14
15
16
17
18

move x:FFT_COUNTER,bO
dec b
move bO,x:FFT_COUNTER
tst b
jseq GET_MAX_BIN

19 •••
20 ; Prepare to perform next FFT iteration

21 ;••······································ 22 move IPOINTS,x1 ;Reload sample counter for next sample
23 move x1,x:SAMPLE_COUNTER ;buffering.
24
25
26
27
28
29
30
31
32
33
34 CLR_DAT
35
36
37
38
39 CLR_SMP
40

move
move
move
move

move
do
move
move

do
move
move

rts

IFFT_RESULT,r2
IMAG_SQ_DATA,r2
IFFT_DATA,rl
rl,r7

t$0,x0
IPOINTS,CLR_DAT
xO,x:(rl)
xO,y:(r1)+

tPOINTS,CLR_SMP
xO,x: (rO)
xO,y: (rO)+

;re-Setup FFT Result ptr
;re-Setup Mag Squared data ptr
;Setup FFT Data ptr
;Imag. Pointer to FFT Buffer

;Clear FFT Data buffer
;Real
;Imaginary

101

get_bin.asm

01 ;••·· 02 GET_MAX_BIN Subroutine
03
04 Purpose: The purpose of this subroutine is to determine the frequency bin
05 that has the largest component and then to determine the delta for the
06 sine wave generation routine.
07
08
09
10
11

In:
Out:
Alters:

x: (r2)
b
b,x1,y1,r2

12 Notes: For use with rev 2.1 code only!!

13 ;•••··· 14 GET_HAX_BIN
15

16 ;••······································ 17 ; Clean Up From GET_BIN Subroutine

18 ;•••••··································· 19 move tPOINTS,x1 ;Reload sample counter for next sample
20 move x1,x:SAMPLE_COUNTER ;buffering.
21 move tFFT_DATA,r1 ;re-Setup FFT Data ptr
22 move rl,r7 ;Imag. Pointer to FFT Buffer
23 move tFFT_RESULT,r2 ;re-Setup FFT Result ptr
24 move tHAG_SQ_DATA,r2 ;re-Setup Mag Sq Data ptr

25 ;•••··························· 26 ; Perform SMF Convolution

27 ;••···························· 28 move rO,x:RO_STORE
29 move rl, x: Rl_STORE
30 move r4, x: R4_STORE
31 move mO,x:MO_STORE
32 move ml, x: Ml_STORE
33 move m4,x:M4_STORE
34
35
36

convm POINTS/2-l,MAG_SQ_DATA,SMF,CNV_OUT,CNV_MEM

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53 NEW_MAX

move x:RO_STORE,rO
move x:Rl_STORE,rl
move x:R4_STORE,r4
move x:MO_STORE,mO
move x:Ml_STORE,ml
move x:M4_STORE,m4

move
move
clr
do
move
cmp
jlt
jmp

tCNV_OUT,r7
tPOINTS/2-2,m7
b
tPOINTS-l,ND_MAX
x: (r7) ,x1
xl,b
NEW_HAX
DUMMY

;Bin Comparison
;b-x1
;b will always hold max

54 move
55 move

xl,b
r7,x:MAX_LOCATION

;Store New Max Location

56 DUMMY
57 move (r7)+
58 nop
59 ND_MAX
60 move x:MAX_LOCATION,b ;Subtract max location from base

102

123
124 NOP ' Reserved
125 NOP
126
127 jmp *
128 NOP '

SCI Receive Data
129
130 jmp *
131 NOP ;- SCI Receive Data w/ Exception Status
132
133 jmp *
134 NOP '

SCI Transmit Data
135
136 jmp *
137 NOP ' SCI Idle Line
138
139 jmp *
140 NOP '

SCI Timer
141
142 NOP ' Reserved
143 NOP
144
145 NOP ' Reserved
146 NOP
147
148 NOP '

Reserved
149 NOP
150
151
152 jmp *
153 NOP Host receive data full
154
155
156 jmp *
157 NOP ·- Host transmit data empty '
158
159 jmp •
160 NOP Available for Host Command
161 jmp •
162 NOP Available for Host Command
163 jmp *
164 NOP Available for Host Command
165 jmp •
166 NOP Available for Host Command
167 jmp •
168 NOP Available for Host Command
169 jmp *
170 NOP Available for Host Command
171 jmp •
172 NOP Available for Host Command
173 jmp *
174 NOP Available for Host Command
175 jmp •
176 NOP Available for Host Command
177 jmp •
178 NOP Available for Host Command
179 jmp •
180 NOP Available for Host Command
181 jmp •
182 NOP Available for Host Command
183 jmp •
184 NOP Available for Host Command

123

61 move tFFT_RESULT-l,yl ;location to get the actual index
62 move tMAG_SQ_DATA-l,yl ;location to get the actual index
63 sub yl,b ;Equals index ima:x
64 move tOFFSET,yO
66 sub yO,b
66 move b1,n6
67 jar SIHWGID ; end program
68
69 move t>ITERS,xl ;Init FFT Counter
70 move xl,x:FFT_COUNTER ;Reset FFt counter for next iteration.
71 rts

103

sinwgid.asm

01 ;••••·· 02 SINWGID Subroutine
03
04 Purpose: The purpose of this subroutine is to generate a tone at a frequency
05 based upon the delta value passed in from GET_BIN.ASM.
06

In: b 07
08
09
10

Out:
Alters:

n/a
a,xl,r5,n5,y0,

11 Notes:
12 For use with rev 2.1 code.

13 ;••·· 14 SINWGID
15
16
17
18

movep
andi

1$0,x:M_IPRC ;Disable A/D
t$fc,mr ;Enable all interrupts

19 ;••·· 20 ; Initialization: D/A Codec and Setup Control Words. Only initialize the
21 ; first time.

22 ;••·· 23 jset tl,x:FLAGS,send_loop ;Skip after initial pass
24 jsr ada_init ; initialize codec
25
26
27
28
29
30
31
32
33

move
move
move
move

bset

34 send_loop
35 jset
36 jclr
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

restart

move

clr
move
dec
move
tst
jeq

move
move
jmp

move
move

rts

tTONE_OUTPUT, yO
yO,x:TX_BUFF_BASE+2
tTONE_INPUT,yO
y0,x:TX_BUFF_BASE+3

tl,x:FLAGS

;set up control words

;Set after initialization.

t2,x:M_SSISRO,• ;wait for frame sync to pass
t2,x:M_SSISRO,• ;wait for frame sync

x: (r5)+n5,y0

a
x:OUT_COUNTER,aO
a
aO,x:OUT_COUNTER
a
restart

;Test for end of duration of
;samples out phase.

yO,x:TX_BUFF_BASE ;transmit left
yO,x:TX_BUFF_BASE+l ;transmit right
send_loop

tOUT_LENGTH,xl
xl,x:OUT_COUNTER

;ReSet output duration counter.

104

ws..set.asm

01 ;••·· 02 Wait State Parameter Settings Routine
03
04 Purpose: The purpose of this routine is to set the Bus Control Register (BCR)
06 to the proper number of wait states required by each AAR device. In the
06 DAHA Project, the AAR devices are:
07
08
09
10

32k SRAM
Burr-Brown Codec (Operating G 800kHz for DAMA Project)

11 ;••·· 12 ;Wait State Settings:

13 ;•••·················
14 DEFAULT _WS
16 SRAH_WS
16 FLASH_WS
17 PERIPH_WS
18
19
20 AREAO
21 AREAl
22 AREA2
23 AREA3
24
26 BBS
26 BLH
27 BRH
28
29
30 BCR
31
32
33

equ
equ
equ
equ

equ
equ
equ
equ

equ
equ
equ

equ

movep

$Of ; default are wait states
$Of ;32KW SRAH
$00 ;FLASH
$Of ;A/D Peripheral board

SRAH_WS
FLASH_WS
PERIPH_WS
SRAM_WS

$0 ;Bus State
$0 ;Bus Lock Hold
$0 ;Bus Request Hold

(BBS<<21)+(BLH<<22)+(BRH<<23)+(DEFAULT_WS<<16tM_BDFW)\
+(AREA3<<13tH_BA3W)+(AREA2<<10tM_BA2W)+(AREA1<<6tM_BA1W)+(AREAOtM_BAOW)

tBCR,x:M_BCR ;Initialize Bus Control Register

105

convm.asm

convm
convm

macro
ident

length,xcoefs,hcoefs,result,cnv_mem
1,0

;••···
Macro Name: CONVM.ASH

·---.
Purpose: The purpose of this macro is to provide the convolution

of tvo sequences stored in memory. The algorithm does
a nested structure to minimize the memory required.

Programmer:
Initial Date:
Current Rev:
Curr. Rev. Date:
Revision History:

Brad Scaife
2/20/99
1.0
2/20/99

1.0 - Baseline

·---.
Legal Statement:
This DSP66xxx macro may be freely used vith out the permission
of the author. The author provides the code vith the intent that
it is not to be used vhere such use may endanger life and property.
Usa of this macro code releases the author from ANY litagation both
past, present, and future from ANY and ALL such liability claims.
Use of this code is expressly permitted at your ovn risk.

;---
Resources Used:

Registers Used:
a,b,rO,r1,r4,nO,n4,mO,ml,m4,xO,x1,y1

Notes:
Please note that this revision of the code requires the tvo

input sequences to be of equal length.

;••···
K equ length
K_ALL equ 2•K-1

move lxcoefs,rO
move IK-l,mO
move lhcoefs,r4
move IK-1,m4
move lresult,r1
move IK_ALL,m1

Begin Calculation

move IO,xO
clr b xO,x:CNV_HEM
clr a

move x:(rO),xO y:(r4),y1
do IK_ALL/2+1,FIRST
move bO,x:CNV_HEM
do x:CNV_HEM,END_F

106

mac xO,yl,a x:(rO)-,xO y:(r4)+,y1

END_F
inc b
move thcoe:rs,r4
macr xO,yl,a
move bO,nO
move a,x: (rl)+
move txcoefs,rO
nop
nop
clr a
move (rO)+nO
move x: (rO)-,xO y: (r4)+,y1

FIRST

dec b
dec b
move t>l,xl
move x:(rO)-,xO y:(r4)+,y1
do tK_ALL/2,LAST
move bO,x:CNV_MEM
do x:CNV_MEM,END_L
mac xO,yl,a x:(rO)-,xO y: (r4)+ ,yl

END_L

move thcoefs+l,r4
move xl,n4
move bO,x:(r6)+
move xl,bO
inc b
macr xO,yl,a ~· ...
move bO,xl
move txcoeh+K-1, rO
move x:-(r6),b0
move a,x: (rl)+
dec b
clr a
move (r4)+n4
move x:(rO)-,xO y:(r4)+,yl

LAST

endm

107

cs4215.asm

01 ;---Buffer for talking to the CS4215
02
03 org x:O
04 RX_BUFF_BASE equ •
05 RX_data_1_2 ds ;data time slot 1/2 for RX ISR
06 RX_data_3_4 ds ;data time slot 3/4 for RX ISR
07 RX_data_5_6 ds 1 ;data time slot 5/6 for RX ISR
08 RX_data_7_8 ds 1 ;data time slot 7/8 for RX ISR
09
10 TX_BUFF_BASE equ •
11 TX_data_1_2 ds ;data time slot 1/2 for TX ISR
12 TX_data_3_4 ds ;data time slot 3/4 for TX ISR
13 TX_data_5_6 ds ;data time slot 5/6 for TX ISR
14 TX_data_7_8 ds 1 ;data time slot 7/8 for TX ISR
15
16 RX_PTR ds 1 Pointer for rx buffer
17 TX_PTR ds Pointer for tx buffer
18
19 TONE_OUTPUT EQU HEADPHONE_EN+LINEOUT_EN+(4•LEFT_ATTN)+(4•RIGHT_ATTN)
20 TONE_INPUT EQU MIC_IN_SELECT+(15•MONITOR_ATTN)
21 CTRL_WD_12 equ NO_PREAMP+HI_PASS_FILT+SAMP_RATE_32+STEREO+DATA_16 ;CLB=O
22 CTRL_WD_34 equ IMMED_3STATE+XTAL1_SELECT+BITS_64+CODEC_MASTER
23 CTRL_WD_56 equ $000000
24 CTRL_WD_78 equ $000000

108

init.asm

01 •••
02 INIT Subroutine
03
04 Purpose: The purpose of this subroutine is to initialize pointers to memory
05 and clear out buffers.
06

In: none
OUT: none

07
08
09
10

Alters: rO,mO,rl,ml,r2,m2,r3,m3,r4,m4

11 Notes: For use vith rev 3.0 code.

12 :••·· 13 INIT
14
15
16
17
18
19
20
21

move
move
move
move

move
do
move

22 move
23 CLEAR_SAHPLE
24
25
26
27
28
29

move
move
move
move
do

30 move
31 move
32 CLEAR_DATA
33
34 move
35 move
36 move
37 do
38 move
39 move
40 CLEAR_HAGSQ
41
42
43

move
move

44 move
45 move
46 do
47 move
48 CLEAR_CIIV
49 move
50 move
51
52 move
53 move
54 move
55 move
56
57 move
58 move
59 move
60 move

ISAHPLE_DATA,rO
rO,r3
IPOINTS-l,mO
m0,m3

l$0,x0

;Setup Sample buffer ptr
;Alternate Sample buffer ptr
;Setup Sample buffer mod
;Alternate Sample Buffer mod

IPOINTS,CLEAR_SAMPLE ;Clear Sample Buffer
xO,x:(rO) ;Real
xO,y:(rO)+ ;Imaginary

IFFT_DATA,rl
rl,r7
IPOINTS-l,ml
ml,m7
IPOINTS,CLEAR_DATA
xO,x:(rl)
xO,y: (rl)+

;Setup FFT Data ptr
;Imag. Pointer to FFT Buffer
;Setup FFT Data mod
;Imag. FFT Buffer mod
;Clear FFT Data buffer
;Real
;Imaginary

IFFT_RESULT,r2 ;Setup FFT Result ptr
IMAG_SQ_DATA,r2
IPOINTS/2-1,m2 ;Setup FFT Result mod
IPOINTS/2,CLEAR_MAGSQ ;Clear FFT Result buffer
x0,x:(r2) ;Real
xO,y:(r2)+ ;Imaginary

r7,x:IFFT_PTR ;Store IFFT for r7 reuse.
m7,x: IFFT_MOD
ICNV_OUT,r7 ;Setup Convolution Output ptr
12•POINTS-2,m7 ;Setup Conv. Output mod.
12•POINTS-1,CLEAR_CNV ;Clear Conv. Output
xO,y: (r7)+

x:IFFT_PTR,r7
x: IFFT _MOD ,m7

IHAMM,r4
IPOINTS-1,m4
ITAB,r5
ITABLE_SIZE-1,m5

IPOINTS,xl
xl,x:SAMPLE_COUNTER
I>ITERS,xl
xl,x:FFT_COUNTER

;Setup Hamming ptr
;Setup Hamming mod
;Sine Table
;Sine Table mod

;Initialize Sample Counter

;Init FFT Counter

109

61
62
63
64
65
66
67

move

move
move

rts

xO,x:FLAGS

IOUT_LENGTH,xl
xl,x:OUT_COUNTER

;Clear User Defined Flag Register

;Set output duration counter.

110

hamming.asm

01 hamming macro
02 hamming ident
03
04 py
06 FREQ_INC
06 SCALE_SHIFT
07 ;ITERATIONS
08
09 ;SCALE_FAC
10

points,hamm_loc
1,2

equ
equ
equ
equ

equ

3. 141692664
2.0•py/Gcvf(points-1) ;frequency increment
GCVI(Glog(Gcvf(points))/Glog(2.0)) ;Shifts to Produce 1/POINTS
2 ;Number of FFT Iterations to perform. There

;exists a limit before overflow.
Gcvf(points)•Gcvf(ITERATIONS) ;Scale Factor

11 org y:hamm_loc
12 N
13
14
16 N
16
17

set
dup
de
set
endm
endm

0
points
(0.64-0.46•Gcos(FREQ_INC•Gcvf(N)))/Gcvf(points/2)
N+1

;end of hamming macro

111

coreJpl.asm

01 ;••·· 02 Core Interrupt Priority Configuration Routine:
03
04 Purpose: The purpose of this routine is to set the core Interrupt
06 priorities. For the DAMA Project, only IRQB need concern us presently.
06 Thus, only bits 6 to 3 are relevant. The following table suggests the
07 proper settings:
08
09 IBL2: 0 for level triggering, 1 for edge triggering (DAMA uses edge)
10 IBL1-0:
11
12
13
14
16

Enabled
Priority

00 01 10 11

No Yes Yes Yes
0 1 2

16 For details see 303UM:D-17.
17
18 Current Settings:
19 Currently IRQB is the only interrupt enabled and it has been set to
20 priority level 2 (highest) and negative edge triggering.
21
22 Written By: Tim Bagget
23 Adapted By: Brad Scaife
24 Date: 3/22/98
26
26 Notes: For use with rev 2.1 code.

27 ;•••··· 28 ; CORE Interrupt Priority and Configuration
29 IBM equ $1 ;IRQB trigger (0 level, 1 neg edge)
30 IBP equ $1 ;IRQB priority level 0, 1, or 2;
31
32 IBL equ (IBM«2) + (IBP+ 1) &:3
33
34 ;IPRC
36 IPRC
36

equ
equ
movep

IBL<<M_IBLO&:M_IBL ;Disabled for the time being.
$000038
IIPRC,x:M_IPRC ;Initialize Interrupt Priority/Config

112

sintab.asm

01 sintab
02 sintab
03
04 pie
05 TAB_INC
06
07 org
08 N
09
10
11 N
12
13
14

macro tasiz,tab_loc
ident 1,2

equ 3.141592654
equ 2.0•pie/Gcvf(tasiz)

x:tab_loc
set 0
dup tasiz
de Gsin(TAB_INC•Gcvf(N))/2.0
set N+1
endm
endm

;end sine table generation macro

113

7819equ.asm

1 BB_ADR
2 BB7819_DR

equ
equ

$0 ;DIP Switch Address SWl ($0 - $3f)
SFFFFSO+BB_ADR ; ADS7819 Data Register

114

fftr2cn.asm

This program originally available on the Motorola DSP bulletin board.
It is provided under a DISCLAMER OF WARRANTY available from
Motorola DSP Operation, 6501 Wm. Cannon Drive W., Austin, Tx., 78735.

Radix 2, In-Place, Decimation-In-Time FFT (fast).

Last Update 18 Aug 88 Version 1.0

fftr2cn macro
fftr2cn ident

points,data,odata,coef
1,0

Radix 2 Decimation in Time In-Place Fast Fourier Transform Routine

Complex input and output data
Real data in X memory
Imaginary data in Y memory

Normally ordered input data
Normally ordered output data

Coefficient lookup table
-Cosine values in X memory
-Sine values in Y memory

Macro Call - fftr2cn points,data,odata,coef

points number of points (16-32768,
data start of data buffer
odata start of output data buffer
coef start of sine/cosine table

Alters Data ALU Registers
x1 xO y1 yO
a2 a1 aO a
b2 bl bO b

Alters Address Registers
rO nO mO
r1 nl m1

n2

r4 n4 m4
r5 n5 m5
r7 n7 m7

115

power of 2)

061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

Do first and second Radix 2 FFT passes, combined as 4-point butterflies

move x: (rO)+nO,xO
tfr xO,a x: (rO)+nO,y1

do nO,_tvopass
tfr y1,b x: (rO)+nO,yO
add yO,a x:(rO),x1 ;ar+cr
add x1,b rO,r4 ;br+dr
add a,b (rO)+nO ;ar'=(ar+cr)+(br+dr)
subl b,a b,x: (rO)+nO ;br'=(ar+cr)-(br+dr)
tfr xO,a a,xO y:(rO),b
sub yO,a y: (r4)+n4, yO ;ar-cr
sub yO,b xO,x: (rO) ;bi-di
add a,b y: (rO)+nO,xO ;cr'=(ar-cr)+(bi-di)
subl b,a b,x: (rO) ;dr'=(ar-cr)-(bi-di)
tfr xO,a a,xo y:(r4),b
add yO,a y: (rO)+nO,yO ;bi+di
add yO,b xO ,x: (rO)+nO ;ai+ci
add b,a y:(rO)+,xO ;ai'=(ai+ci)+(bi+di)
subl a,b a,y:(r4)+n4 ;bi'=(ai+ci)-(bi+di)
tfr xO,a b,y:(r4)+n4
sub yO,a x1,b ;ai-ci
sub y1,b x:(rO)+nO,xO ;dr-br
add a,b x: (rO)+nO,y1 ;ci'=(ai-ci)+(dr-br)
subl b,a b,y: (r4)+n4 ;di'=(ai-ci)-(dr-br)
tfr xO,a a,y:(r4)+

_tvopass

Perform all next FFT

move tpoints/8,n1
move t4,n2
move t-1,m2
move tO,m7

passes except last pass vith triple nested

;initialize butterflies per group
;initialize groups per pass
;linear addressing for r2

DO loop

;initialize C address modifier for
;reverse carry (bit-reversed) addressing

do tCcvi(Clog(points)/Olog(2)-2.5),_end_pass ;-1 ??? example: 7 passes for 1024 pt. FFT
;initialize A input pointer move tdata,rO

move rO,r1
move n1,r2
move rO,r4
move (r1)+n1
move r1,r5
move tcoef,r7
lua (r2)+,n0
move n0,n4
move n0,n5
move (r2)-
move x: (r1) ,x1
move x: (r7)+n7 ,xO
mac xl,yO,b
macr -xO,yl,b

do n2,_end_grp
do r2,_end_bfy
subl b,a x:(rO),b
mac -x1,xO,b x:(rO)+,a
macr -y1,y0,b x:(r1),x1
subl b,a b,x: (r4)+
mac x1,y0,b
macr -xO,y1,b a,x: (r5)+

y:(r7),y0
y: (rO) ,b
y:(r1)+,y1
y:(rO),a

b,y:(r4)
a,y: (r5)

y:(rO),b
y:(r1)+,y1
y:(rO),a

116

;initialize A output pointer
;initialize B input pointer
;initialize B output pointer
;initialize c input pointer
;initialize pointer offsets

;butterfly loop count
;x1=br,y0=vi,lookup -sine and -cosine values
; b=ai, xO=vr,update C pointer, preload data
;y1=bi,b=ai+br•vi,

; a=ai again,b=ai+br•vi-bi•vr=bi'

;loop BF-1 times and start Radix 2 DIT BF kernel
;b=ar,a=ai-br•vi+bi•vr=ai', PUT bi'
; a=br, b=ar-br•vr, PUT ai'
;b•ar-(br•vr+bi•vi)=br',xl=next br

;b=nai,a=2•ar-ar+br•vr+bi•vi=ar',
;yl•nbi,b=nai+nbr•vi
;a=nai,b=nai+nbr•vi-nbi•vr=nbi'

PUT br'

PUT ar'

123 _end_bfy
124 move (rl)+n1 ;points to first B in next group
125 aubl b,a x: (rO) ,b b,y: (r4) PUT last bi' in a group
126 mac -x1,xO,b x: (rO)+nO,a a,y:(r5) PUT last ai' in a group
127 macr -y1,y0,b x: (r1) ,x1 y:(r7),y0
128 subl b,a b,x: (r4)+n4 y:(rO),b PUT last br' in a group
129 mac x1,yO,b x: (r7)+n7 ,xO y: (r1)+,y1 update W pointer

macr -xO,y1,b a,x: (r5)+n5 y: (rO) ,a PUT last
_end_grp

130
131
132
133
134
135
136
137
138
139
140

move n1,b1
llr b
hl a

n2,a1
b1,n1

;divide butterflies per group by two
;multiply groups per pass by two

move a1,n2
_end_paas

Do last FF1' pass

move t2,n0
141 move n0,n1

;initialize pointer offsets

142 move tpoints/4,n4 ;output pointer A offset
143 move n4,n5 ;output pointer B offset
144 move ldata,rO ;initialize A input pointer
145 move todata,r4 ;initialize A output pointer
146 move r4,r2 ;save A output pointer
147 lua (r0)+,r1 ;initialize B input pointer
148 lua (r2)+n2,r5 ;initialize B output pointer

ar'

149 move tO,m4 ;bit-reversed addressing for output ptr. A
150 move m4,m5 ;bit-reversed addressing for output ptr. B
151 move lcoef,r7 ;initialize C input pointer
152 move (r5)-n5 ;predecrement output pointer
153 move x: (r1) ,x1 y: (r7) ,yO ;x1abr ,yO•wi
154 move x:(r5),a y:(rO),b ;a,.?,b•ai
155

in a group

and

and

and

156 do n2,_lastpass ;Radix 2 DIT butterfly kernel with one butterfly per group
157 mac x1,y0,b x: (r7)+n7 ,xO y: (r1)+n1,y1 ;b•ai+br•vi,xO•vr, y1•bi

update

update

update

A pointer

A' pointer

B' pointer

158 macr -xO,y1,b a,x: (r5)+n5 y:(rO),a ;b•ai+br•wi-bi•wr=bi',aaai, PUT previous ar'
159 subl b,a x:(rO),b b,y: (r4) ; a=ai ' , b•ar , PUT bi'
160 mac -x1,x0,b x: (rO)+nO,a a,y:(r6) ;b•ar-br•vr,a•ar, PUT ai'
161 macr -y1,yO,b x:(r1),x1 y:(r7),y0 ;babr',x1=nbr,yO=nwi
162 subl b,a b,x:(r4)+n4 y:(rO),b ; a=ar' , b=nai , PUT br'
163 _lastpass
164 move a,x: (r5)+n5 PUT ar'
165 endm

117

sincos.asm

01
02
03
04
05
06
07
08
09

This program originally available on the Motorola DSP bulletin
It is provided under a DISCLAMER OF WARRANTY available from
Motorola DSP Operation, 6501 Wm. Cannon Drive W., Austin, Tx.,

Sine-Cosine Table Generator for FFTs.

Last Update 25 Nov 86 Version 1.2

10 sincos
11 sincos

macro
ident

points,coef
1,2

board.

78735.

12
13
14
15
16
17
18

sincos macro to generate sine and cosine coefficient
lookup tables for Decimation in Time FFT
twiddle factors.

points
coef

number of points (2 - 32768, power of 2)
base address of sine/cosine table

19 negative cosine value in X memory
20 negative sine value in Y memory
21
22 Latest revision - 25-Nov-86
23
24
25 pi
26 freq
27
28
29 count
30
31
32 count
33
34
35
36 count
37
38
39 count
40
41
42

equ
equ

org
set
dup
de
set
endm

org
set
dup
de
set
endm

endm

3.141592654
2.0•pi/~cvf(points)

x:coef
0
points/2
-Ocos(Ocvf(count)•freq)
count+1

y:coef
0
points/2
-Osin(Ocvf(count)•freq)
count+1

;end of sincos macro

118

ada_equ.asrn

page 132,60 001
002
003
004 ;••··
005 ADA_EQU.ASM
006
007 Initialization constants to facilitate initialization of the CS4215
008
009
010
011 Copyright (c) MOTOROLA 1996
012
013 Semiconductor Products Sector
014
015 Digital Signal Processing Division
016
017
018

019 ;•••··· 020
021
022
023
024
025 NO_PREAMP equ $100000
026
027 LO_OUT_DRV equ $080000
028
029 HI_PASS_FILT equ $008000
030
031 SAMP_RATE_9 equ $003800 9.6 kHz sample rate
032
033 SAMP_RATE_48 equ $003000 48 kHz sample rate
034
035 SAMP_RATE_32 equ $001800 32 kHz sample rate
036
037 SAMP_RATE_27 equ $001000
038
039 SAMP_RATE_16 equ $000800
040
041 SAMP_RATE_8 equ $000000
042
043 STEREO equ $000400
044
045 DATA_8LIN equ $200300
046
047 DATA_BA equ $200200
048
049 DATA_8U equ $200100
050
051 DATA_l6 equ $200000
052
053 IMMED_3STATE equ $800000
054
055 XTAL1_SELECT equ $100000 24.576 MHz
056
057 XTAL2_SELECT equ $200000 16.9344 MHz
058
059 BITS_64 equ $000000
060

119

061 BITS_128
062
063 BITS_266
064
066 CODEC_MASTER
066
067 CODEC_TX_OFF
068
069
070
071 ;CTRL_WD_12
072
073 ;CTRL_WD_34
074
075 ;CTRL_WD_56
076
077 ;CTRL_WD_78
078
079
080
081 HEADPHONE_EN
082
083 LINEOUT_EN
084
085 SPEAKER_EN
086
087 MIC_IN_SELECT
088
089 LEFT_ATTN
090
091 RIGHT_ATTN
092
093 LEFT_GAIN
094
095 RIGHT_GAIN
096
097 MONITOR_ATTN
098
099 ; OUTPUT _SET
100
101 ;INPUT_SET

equ $040000

equ $080000

equ $020000

equ $010000

equ NO_PREAMP+HI_PASS_FILT+SAMP_RATE_48+STEREO+DATA_16 ;CLB=O

equ IMMED_3STATE+XTAL1_SELECT+BITS_64+CODEC_MASTER

equ $000000

equ $000000

equ $800000

equ $400000

equ $004000

equ $100000

equ $010000 ;63•LEFT_ATTN -94.5 dB, 1.5 dB steps

equ $000100 ;63•RIGHT_ATTN -94.5 dB, 1.5 dB steps

equ $010000 ;16•LEFT_GAIN = 22.6 dB, 1.6 dB steps

equ $000100 ;16•RIGHT_GAIN "' 22.6 dB, 1.5 dB steps

equ $001000 ;16•MONITOR_ATTN =mute, 6 dB steps

equ HEADPHONE_EN+LINEOUT_EN+(LEFT_ATTN•4)

equ MIC_IN_SELECT+(16•MONITOR_ATTN)+(RIGHT_ATTN•4)

120

vectors.asm

001
002 page 132,60
003 ;••·· 004 VECTORS.ASM
005 Vector table for the 56303
006
007 Copyright (c) MOTOROLA 1996
008 Semiconductor Products Sector
009 Digital Signal Processing Division
010
011 ;••·· 012
013 ORG P:O
014
015 vectors JMP START Hardware RESET
016
017 jmp •
018 NOP Stack Error
019
020 jmp •
021 NOP . Debug Request Interrupt
022
023 jmp •
024 NOP . Debug Request Interrupt
025
026 jmp •
027 NOP . Trap
028
029 jmp •
030 NOP . NMI
031
032 NOP . Reserved
033 NOP
034
035 NOP . Reserved
036 NOP
037
038 jar main . IRQA
039
040 jmp •
041 NOP . IRQB
042
043 jmp •
044 NOP . IRQC
045
046 jsr echo . IRQD
047
048 jmp •
049 NOP . DMA Channel 0
050
061 jmp
052 NOP . DMA Channel 1
063
064 jmp •
055 NOP . DMA Channel 2
056
057 jmp •
058 NOP . DMA Channel 3
059
060 jmp •

121

061 NOP . DMA Channel 4
062
063 jmp •
064 NOP . OMA Channel 5
065
066 jmp •
067 NOP . Timer 0 Compare
068
069 jmp •
070 NOP . Timer 0 Overflov
071
072 jmp •
073 NOP . Timer 1 Compare
074
075 jmp •
076 NOP . Timer 1 Overflov
077
078 jmp •
079 NOP . Timer 2 Compare
080
081 jmp •
082 NOP . Timer 2 Overflov
083
084 jsr ssi_rx_iar . ESSIO Receive Data
085
086 jar aai_rxe_iar . ESSIO Receive Data v/ Exception Status
087
088 jar ssi_rxls_iar . ESSIO Receive last slot
089
090 jsr sai_tx_isr . ESSIO Transmit Data
091
092 jar ssi_txe_isr . ESSIO Transmit Data v/ Exception Status
093
094 jar ssi_txls_isr . ESSIO Transmit last slot
095
096 NOP . Reserved
097 NOP
098
099 NOP . Reserved
100 NOP
101
102 jmp •
103 NOP . ESSI1 Receive Data
104
105 jmp •
106 NOP . ESSI1 Receive Data v/ Exception Status
107
108 jmp •
109 NOP . ESSI1 Receive last slot
110
111 jmp •
112 NOP . ESSI1 Transmit Data
113
114 jmp •
115 NOP . ESSI1 Transmit Data v/ Exception Status
116
117 jmp •
118 NOP . ESSI1 Transmit last slot
119
120
121 NOP . Reserved
122 NOP

122

185 jmp •
186 NOP Available tor Host Command
187 jmp •
188 NOP Available for Host Command
189 jmp *
190 NOP Available :tor Host Command
191 jmp •
192 HOP Available for Host Command
193 jmp •
194 HOP Available tor Host Command
195 jmp •
196 HOP Available for Host Command
197 jmp •
198 HOP Available for Host Command
199 jmp •
200 HOP Available for Host Command
201 jmp •
202 HOP Available for Host Command
203 jmp •
204 NOP Available for Host Command
205 jmp •
206 HOP Available for Host Command
207 jmp •
208 HOP Available for Host Command
209 jmp •
210 NOP Available for Host Command
211 jmp •
212 NOP Available :tor Host Command
213 jmp •
214 HOP Available for Host Command
215 jmp •
216 HOP Available for Host Command
217 jmp •
218 HOP Available for Host Command
219 jmp *
220
221 NOP Available for Host Command
222 jmp •
223 HOP Available for Host Command
224 jmp •
225 NOP Available tor Host Command
226 jmp •
227 NOP Available tor Host Command
228 jmp •
229 NOP Available for Host Command
230 jmp •
231 HOP Available for Host Command
232 jmp •
233 NOP Available for Host Command
234 jmp •
235 HOP Available for Host Command
236 jmp •
237 NOP Available for Host Command
238 jmp •
239 HOP Available for Host Command
240 jmp •
241 NOP Available for Host Command
242 jmp •
243 HOP Available for Host Command
244 jmp •
245 NOP Available tor Host CoDUDand
246 jmp •

124

247 NOP Available for Host Command
248 jmp *
249 NOP Available for Host Command
250 jmp •
251 NOP Available :tor Host Command
252 jmp *
253 NOP Available :tor Host Command
254 jmp •
256 NOP Available :tor Host Command
266 jmp •
257 NOP Available for Host Command
268 jmp •
259 NOP Available :tor Host Command
260 jmp •
261 NOP Available for Host Command
262 jmp •
263 NOP Available for Host Command
264 jmp *
266 NOP Available for Host Command
266 jmp •
267 NOP Available for Host Command
268 jmp •
269 NOP Available for Host Command
270 jmp *
271 NOP Available for Host Command
272 jmp •
273 NOP Available for Host Command
274 jmp •
275 NOP Available for Host Command
276 jmp *
277 NOP Available for Host Command
278 jmp •
279 NOP Available for Host Command
280 jmp •
281 NOP Available for Host Command
282 jmp •
283
284
285 NOP Available for Host Command
286 jmp •
287 NOP Available for Host Command
288 jmp •
289 NOP Available for Host Command
290 jmp *
291 NOP Available for Host Command
292 jmp •
293 NOP Available for Host Command
294 jmp •
295 NOP Available for Host Command
296 jmp •
297 NOP Available for Host Command
298 jmp •
299 NOP Available for Host Command
300 jmp •
301 NOP Available for Host Command
302 jmp •
303 NOP Available for Host Command
304 jmp •
305 NOP Available for Host Command
306 jmp •
307 NOP Available for Host Command
308 jmp •

125

309 NOP Available tor Host Command
310 jmp *
311 NOP Available for Host Command
312 jmp *
313 NOP Available for Host Command
314 jmp *
315 NOP Available tor Host Command
316 jmp •
317 NOP Available tor Host Command
318
319

126

intequ.asm

01 ;••··· 02
03 EQUATES for ONYXE 56302 interrupts
04
05 Last update: June 11 1995
06

07 ;••••··· 08
09 page 132,56,0,0,0
10 opt mex
11 intequ ident 1,0
12
13 if CDEF(l_VEC)
14 ;leave user definition as is.
15 else
16 I_VEC equ $0
17 endif
18
19 ;--
20 ; Non-Maskable interrupts
21 ;--
22 !_RESET
23 !_STACK
24 !_ILL
25 I_DBG
26 l_TRAP
27 I_NMI
28

EQU
EQU
EQU
EQU
EQU
EQU

I_VEC+$00
I_VEC+$02
l_VEC+$04
l_VEC+$06
I_VEC+$08
I_VEC+$0A

Hardware RESET
Stack Error
Illegal Instruction
Debug Request
Trap
Non Maskable Interrupt

29 ;--
30 ; Interrupt Request Pins

31 ;--
32 I_IRQA EQU I_VEC+$10 IRQA
33 I_IRQB EQU I_VEC+$12 IRQB
34 I_IRQC EQU I_VEC+$14 IRQC
35 I_IRQD EQU I_VEC+$16 IRQD
36

37 ;--
38 ; DMA Interrupts
39 ;--
40 I_DMAO
41 I_DMA1
42 I_DMA2
43 I_DMA3
44 I_DMA4
45 I_DMA5
46

EQU
EQU
EQU
EQU
EQU
EQU

I_VEC+$18
I_VEC+$1A
I_VEC+$1C
I_VEC+$1E
I_VEC+$20
I_VEC+$22

DMA Channel 0
DMA Channel 1
DMA Channel 2
DMA Channel 3
DMA Channel 4
DMA Channel 5

47 ;--
48 ; Timer Interrupts

49 ;--
60 I_TIMOC EQU
51 l_TIMOOF EQU
52 I_TIM1C EQU
53 I_TIM10F EQU
54 I_TIM2C EQU
56 I_ TIM20F EQU
56

I_VEC+$24
I_VEC+$26
I_VEC+$28
l_VEC+$2A
I_VEC+$2C
I_VEC+$2E

TIMER 0 compare
TIMER 0 overflow
TIMER 1 compare
TIMER 1 overflow
TIMER 2 compare
TIMER 2 overflow

57 :--
55 ; ESSI Interrupts
59 ;--
60 I_SIORD EQU I_VEC+$30 ; ESSIO Receive Data

127

61 I_SIORDE EQU I_VEC+$32 ESSIO Receive Data With Exception Status
62 I_SIORLS EQU I_VEC+$34 ESSIO Receive last slot
63 I_SIOTD EQU I_VEC+$36 ESSIO Transmit data
64 I_SIOTDE EQU I_VEC+$38 ESSIO Transmit Data With Exception Status
66 I_SIOTLS EQU I_VEC+$3A ESSIO Transmit last slot
66 !_SURD EQU I_VEC+$40 ESSI1 Race i ve Data
67 I_SI1RDE EQU I_VEC+$42 ESSI1 Receive Data With Exception Status
68 I_SURLS EQU I_VEC+$44 ESSI1 Receive last slot
69 I_SI1TD EQU I_VEC+$46 ESSU Transmit data
70 I_SU TDE EQU I_VEC+$48 ESSU Transmit Data With Exception Status
71 I_SUTLS EQU I_VEC+S4A ESSU Transmit last slot
72

73 ;--
74 ; SCI Interrupts

76 ;--
76 I_SCIRD EQU
77 I_SCIRDE EQU
78 I_SCITD EQU
79 I_SCIIL EQU
80 I_SCITM EQU
81

I_VEC+$60
I_VEC+$62
I_VEC+$64
I_VEC+$66
I_VEC+$58

SCI
SCI
SCI
SCI
SCI

Receive Data
Receive Data With Exception Status
Transmit Data
Idle Line
Timer

82 ;--
83 ; HOST Interrupts

84 ;--
86 I_HRDF EQU I_VEC+$60 Host Receive Data Full
86 I_HTDE EQU I_VEC+$62 Host Transmit Data Empty
87 I_HC EQU I_VEC+$64 Default Host Command
88

89 ;--
90 ; INTERRUPT ENDING ADDRESS
91
92
93

;--
!_INTEND EQU

LIST
I_VEC+SFF ; last address of interrupt vector space

128

sincos.asm

01
02 This program originally available on the Motorola DSP bulletin board.
03 It is provided under a DISCLAMER OF WARRANTY available from
04 Motorola DSP Operation, 6501 Wm. Cannon Drive W., Austin, Tx., 78735.
05
06
07

Sine-Cosine Table Generator for FFTs.

08
09

Last Update 25 Nov 86 Version 1.2

10 sincos
11 sincos
12
13
14
15
16
17
18

macro
ident

sincos

points
coef

points,coef
1,2

macro to generate sine and cosine coefficient
lookup tables for Decimation in Time FFT
twiddle factors.

number of points (2 - 32768, power of 2)
base address of sine/cosine table

19 negative cosine value in X memory
20 negative sine value in Y memory
21
22 Latest revision - 25-Nov-86
23
24
25 pi
26 freq
27
28
29 count
30
31
32 count
33
34
35
36 count
37
38
39 count
40
41
42

equ
equ

org
set
dup
de
set
endm

org
set
dup
de
set
endm

endm

3.141592654
2.0•pi/Gcvf(points)

x:coef
0
points/2
-Gcos(Gcvf(count)•freq)
count+l

y:coef
0
points/2
-Gsin(Gcvf(count)•freq)
count+1

;end of sincos macro

129

adaJnit.asm

page 132,60 001
002
003
004
005
006
007
008
009
010
011
012
013

;••·· ADA_INIT.ASM Ver.2.0
Example program to initialize the CS4215

Copyright (c) MOTOROLA 1995, 1996
Semiconductor Products Sector
Digital Signal Processing Division

History:
14 June 1996: RLR/LJD - ver.1.0

;•••··
014 ; PLEASE NOTE: For use with rev 2.1 code.
015 .••

016
017 porte usage:
018 bitS: SSI TX (from DSP to Codec)
019 bit7:
020 bit6:
021 bitS:
022 bit4: codec reset (from DSP to Codec)
023 bit3:
024 bit2: data/control bar
025 O•control
026 1=data
027
028 ••
029 ; ••••• initialize the CS4216 codec •••••
030 .•••
031
032
033 PROGRAM OUTLINE:
034

; 1 program fsync and sclk •• output
;2 write pcO • 0 (control mode)
;3 send 64 bit frame x times, with deb bit .. 0, keep doing until read
;4 send 64 bit frame x times, with deb bit 1, keep doing until read
;5 re-program fsync and sclk •• input
;6 write pcO • 1 (data mode)

036
036
037
038
039
040
041
042

;7 receive/send data (echo slots 1,2,3,4; slots 6,6,7,8 ==constants)

back as
back as

043 ;••·· 044
046 initialize ssi -- fsync and sclk ==> outputs
046
047 org p:
048 ada_init
049 movep turn off ESSIO port (for now)

0

060 movep
051
062
063

movep
movep
movep

t$0000,x:H_PCRC
t$103807,x:H_CRAO
t$ff313C,x:H_CRBO
t$0003,x:H_PRRC
t$0,x:H_PDRC

40MHz/16 = 2.6MHz SCLK, WL=16 bits, 4W/F
RIE,TIE,RLIE,TLIE,RE,TE,sc2/sck outputs
setup pdO and pd1 as gpio output

054
056 ;----reset delay for codec
066 do t1000,_delay_loop
067 rep 12000
058 nop
059 _delay_loop
060

send out a 0 on DC" and RST_CODEC"

; 100 us delay (assuming 40KHz VCO)

130

061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079

bset IO,x:M_PDRC
movep ISOOOS,x:M_IPRP
andi I$FC,mr

sends out a 1 on pdO (rst_codec=1)
set interrupt priority level for ESSIO to 1
enable interrupts

;••··· The following data sets up the CS4215 control mode data:
(CTS = Control Time Slot, U/LN =upper/lover Nibble)

+------ CTS1-UN: 0 0 1 MLB 0 0 0 0
1+----- CTS1-LN: OLB CLB X X 0 0 0 0
II+---- CTS2-UN: HPF X DFR2 DFR1 0 0 1 0
II 1+--- CTS2-LN: DFRO ST DF1 DFO 1 1 0 0

xO = $002Cxx

+------ CTS3-UN: ITS MCK2 MCK1 MCKO 1 0 0 0
1+----- CTS3-LN: BSEL1 BSELO XCLK XEN 1 0 0 0
II+---- CTS4-UN: TEST TEST TEST TEST (TEST MUST BE 0)
Ill+--- CTS4-LN: TEST TEST ENL DAD 0 0 0 0

xo = $8800xx

080 ;••···

. set up buffer with control mode data
move ICTRL_WD_12,x0
move xO,x:TX_BUFF_BASE
move ICTRL_WD_34,x0
move x0,x:TX_BUFF_BASE+1
move ICTRL_WD_56,x0
move x0,x:TX_BUFF_BASE+2
move ICTRL_WD_78,x0
move xO,x:TX_BUFF_BASE+3

movep I$003C,x:M_PCRC ;turn on ESSIO except for scO and sc2

CLB -=0

jclr 13,x:M_SSISRO,• wait until rx frame bit==1
jset 13,x:M_SSISRO,• wait until rx frame bit==O
jclr 13,x:M_SSISRO,• wait until rx frame bit==1
jset 118,x:RX_BUFF_BASE,• loop until CLB set

CLB ·= 1

bset 118,x:TX_BUFF_BASE
do 14,_init_loopB
jclr 12,x:M_SSISRO,•
jset 12,x:M_SSISRO,•

_init_loopB
movep l$0000,x:M_PCRC

111

112 ;••··· 113 nov CLB should be 1 -- re-program fsync and sclk direction (i/p) -- also,
114 circular buffer pointers for echoing data rO=current, r1=old data to send
115 1 frame later
116
117
118
119
120
121
122

movep l$103807,x:M_CRAO
movep 1$FF310C,x:M_CRBO
movep l$0003,x:M_PDRC
movep I$003C,x:M_PCRC
rts

40MHz/16 = 2.5MHz SCLK, WL=16 bits, 4W/F
sckd and fsync (sc02) as inputs
D/c- pin .. 1 ==> data mode
turn on ESSIO except for scO and sc2

131

123 ;••·· 124 SSIO_ISR.ASM Ver.2.0
125 Example program to handle interrupts through
126 the 56303 SSIO to move audio through the CS4215
127
128 Copyright (c) MOTOROLA 1995, 1996
129 Semiconductor Products Sector
130 Digital Signal Processing Division
131
132 upon entry:
133 R6 must be the stack pointer
134 corrupts:
135 R6
136
137 History:
138 14 June 1996: RLR/LJD - ver 1.0

139 ;••·· 140
141
142 ;----the actual interrupt service routines (ISRs) follow:
143
144 ;************************ SSI TRANSMIT ISR *********************************
145 ssi_txe_isr
146 bclr
147
148 ssi_tx_isr

move
move
move
move
nop
movep
move
move
move
rti

14,x:M_SSISRO

rO,x:(r6)+
mO,x: (r6)+
13,m0
x:TX_PTR,rO

x:(rO)+,x:M_TXOO
rO,x:TX_PTR
x:-(r6),m0
x:-(r6),r0

Read SSISR to clear exception flag
explicitly clears underrun flag

Save rO to the stack.
Save mO to the stack.
Modulus 4 buffer.
Load the pointer to the tx buffer.

SSI transfer data register.
Update tx buffer pointer.
Restore mO.
Restore rO.

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

;********************* SSI TRANSMIT LAST SLOT ISR **************************
ssi_txls_isr

move
move
move

move
rti

rO,x: (r6)+
ITX_BUFF_BASE,rO
rO,x:TX_PTR

x:-(r6),r0

Save rO to the stack.
Reset pointer.
Reset tx buffer pointer just in
case it vas corrupted.
Restore rO.

;•••••••••••••••••••••••••• SSI receive ISR ********************************
170 ni_rxe_isr
171 bclr
172
173 ni_rx_isr
174
175
176
177
178
179
180
181
182
183
184

move
move
move
move
nop
movep
move
move
move
rti

15,x:M_SSISRO

rO,x: (r6)+
mO,x: (r6)+
13,m0
x:RX_PTR,rO

x:M_RXO,x:(rO)+
rO,x:RX_PTR
x:-(r6),m0
x:-(r6) ,rO

Read SSISR to clear exception flag
explicitly clears overrun flag

Save rO to the stack.
Save mO to the stack.
Modulo 4 buffer.
Load the pointer to the rx buffer.

Read out received data to buffer.
Update rx buffer pointer.
Restore mO.
Restore rO.

132

185 ;********************** SSI receive last slot ISR ••••••••••••••••••••••••••
186 ssi_rxls_isr
187 move
188
189
190
191
192

move

move
move
rti

rO,x: (r6)+
tRX_BUFF_BASE,rO

rO,x:RX_PTR
x:-(r6),r0

Save rO to the stack.
Reset rx buffer pointer just in
case it was corrupted.
Update rx buffer pointer.
Restore rO.

133

References

[1] Stephen Horan. An operational concept for a demand assignment multiple
access system for the space network. Technical report, New Mexico State
University, 1996.

[2] Phillip L. De Leon. Real-time dsp-based carrier recovery with unknown
doppler shift. Technical report, New Mexico State University, 1998.

[3] Monica M. Sanchez. Doppler extraction for a demand assignment multiple
access service for NASA's space network. Technical report, New Mexico State
University, August 1996.

[4] Boaz Porat. A Course in Digital Signal Processing. John Wiley and Sons,
Inc., first edition, 1997.

[5] NASA. Tdrss system description. world wide web, 1998.

[6] Franklin Miller. College Physics. Harcourt Brace Jovanovich, Inc., fourth
edition, 1977.

[7] John G. Proakis. Digital Communications. McGraw-Hill, Inc., third edition,
1995.

[8] Leon W. Couch II. Digital and Analog Communication Systems. Prentice­
Hall, Inc., fifth edition, 1997.

[9] Simon Haykin. Adaptive Filter Theory. Prentice-Hall, Inc., third edition,
1996.

[10] Frank Hartman and Cliff Baxter. Private communication, July 1998.

[11] Motorola. DSP 36303 User's Manual. Motorola, Inc., first edition, 1995.

134

[12] Motorola. DSP 56300 Family Manual. Motorola, Inc., second edition, 1995.

[13] Tim Bagget. High speed A/D interface for carrier doppler
tracking. Master's thesis, New Mexico State University, 1998.

[14] Sophocles J. Orfanidis. Introduction to Signal Processing. Prentice-Hall, Inc.,
first edition, 1996.

135

