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EXECUTIVE SUMMARY

A practical engineering methodology has been developed to analyze and predict fatigue crack

growth rates under elastic-plastic and fully-plastic conditions. Under small-scale yielding conditions,

the methodology reduces to the customary LEFM approach to FCG analysis based on AK.

The methodology employs the closure-corrected effective range of the J-integral, AJen, as the

governing parameter. Delta J was selected because it best satisfied the simultaneous criteria of

theoretical validity, practicality, and demonstrated usefulness. Alternative parameters based on other

path-area integrals were critically reviewed and found to be less satisfactory.

The first major component of the methodology is a set of J (and AJ) solutions for specific

geometries, along with general J estimation methods for other geometries and loading conditions.

Solutions of the plastic component of J generally follow either the EPRI estimation scheme or the

reference stress method. Solutions of the elastic component of J are based on the linear elastic stress

intensity factor with a first-order plastic correction based on the crack-tip plastic zone size.

Existing J solutions for standard fracture mechanics geometries, including many NASGRO

geometries, are documented. Elastic-plastic finite element methods are employed to generate new

plastic J solutions, and these and other FE results are then used to derive new optimized reference

stress solutions. These solution forms are conservatively extended to construct reference stress

solutions for other geometries without available FE solutions. General schemes are developed to

estimate J under various types of combined loading. New reference stress methods are developed

and verified for combined mechanical loading and combined primary and secondary loading. A J

estimation method for two-dimensional Mode I cracks under biaxial loading is also developed and
verified.

The second major component of the methodology is a set of specific practical algorithms that

translate a J solution into a specific quantitative prediction of fatigue crack growth rate or life.

Solutions for AJ follow the same general form as the EPRI and reference stress schemes for J, with

single values of applied parameters replaced by their respective ranges, and employing a cyclic

constitutive law. Corrections for crack closure are applied independently to elastic and plastic J

terms based on energy considerations.

Crack opening stresses are calculated from closed-form equations derived by Newman. FE

studies show that these equations could be extended to the EPFCG regime, to different geometries,

and to combined loading by replacing the normalized maximum stress term with a normalized

maximum stress intensity factor term. Simple, verified algorithms are identified for the stress
concentration effects and multiaxial effects on closure.

Simple algorithms are developed to evaluate the instability of cracks subjected to monotonic

and cyclic loading in materials that behave in a brittle or ductile manner, and fatigue crack growth

equations are recommended for describing the acceleration in FCG rates due to incipient instability.

Algorithms are developed to estimate fatigue and constitutive properties needed for elastic-plastic

FCG analysis that might not be readily available. The general outlines of potential methods for load

interaction effects and creep-fatigue effects are presented and discussed.

xxvii



A critical core of the J solutions and practical crack growth algorithms is implemented in

software form in new elastic-plastic NASGRO modules. Solutions for J and AJ under combined

primary and secondary loading are provided for five existing NASGRO geometries: TC01, TC02,

CC01, SC01, and EC01. Failure algorithms compute critical crack sizes and critical loads for these

geometries. EPFCG lives are calculated from closure-corrected AJe_ solutions and a Paris equation

for crack growth rates. The new modules are independent and do not require the main NASGRO

code, but emulate the current NASGRO code and employ existing NASGRO routines wherever

possible. A User's Manual provides complete details of the capabilities of the new modules, along

with brief documentation of the theoretical background, verification, and validity limits of the
modules.

The NASGRO EPFCG module is independently verified by comparing its predictions with

actual experimental crack growth data for Inconel 718 for three different geometries, deformation

conditions ranging from SSY to LSY, and stress ratios ranging from R = 0 to R = -1. The NASGRO

module is found to be highly successful in predicting crack growth lives and crack shapes and
correlating crack growth rate data.

xxviii



1. BACKGROUND

1.1 The Demands of Space Propulsion

The current reusable rocket propulsion system supporting America's space program, the

Space Shuttle Main Engine (SSME), is an advanced, high performance liquid hydrogen/liquid

oxygen propulsion system. The requirements of building a reliable, reusable, and lightweight high

pressure rocket engine which fits in a small space has made the SSME the most sophisticated and

highly engineered liquid propellant rocket engine ever built. Future rocket engine design supporting

X-vehicles, Reusable Launch Vehicles (RLV), and liquid fly-back boosters, for example, will place

an even greater demand upon system performance and structural capability, resulting in increased

dependence upon advanced fracture mechanics methods in order to ensure structural adequacy.

The SSME and future reusable rocket engines are faced with a number of relatively unique

challenges in addition to the concerns commonly encountered with traditional gas turbines and

expendable rocket engines. The combination of the small volume and stringent lightweight

requirements on reusable engine components dictates the development of thin structural design and

relatively higher operating stresses. Furthermore, reusable hydrogen fueled propulsion system

components, exposed to the potentially detrimental effects of high pressure hydrogen environments,

are more at risk due to their extended environmental exposure. The components of the more

conventional expendable rocket engines, due to their much more limited operational lifetime, are not

nearly as susceptible to the combined damaging effects associated with repeated high stress and

strain cycles and high pressure hydrogen. In addition, the high film heat transfer coefficient of

hydrogen, coupled with extensive hydrogen cooling of reusable engine structures, can cause large

thermal gradients in the components as well as aggravate the effect of any temperature spikes during

engine start-up or cut-off. The result is that reusable space propulsion systems typically experience

a much broader range of temperatures, larger plastic strain ranges, and higher strain rates than do

either gas turbine or expendable rocket engines.

SSME operating experience can be used to illustrate the wide range of operating conditions.

The temperatures typically range from as low as -423 °F up to roughly 1500°F. However, thermal

spikes can drastically exceed the upper, steady state temperature. The environment can be liquid and

gaseous hydrogen or oxygen, as well as steam and any mixture thereof. The components have to

endure rapid loading rates as evidenced by thermal spikes, but also relatively long hold times of

approximately nine minutes each flight. The mean stress can result from pressure loads (exceeding

6000 psi), thermal effects, external mechanical loads, preload, and residual stresses from fabrication,

misalignment or fit-up. The component alternating stress can stem from phenomena such as

mechanical vibration, acoustic loading, and fluid flow. The load history of the SSME typically

includes load cycles due to proof testing, assembly/disassembly, engine start-up, steady state

operation, and shut-down. Several changes in the engine power level can occur during each engine

test or flight. Furthermore, high vibratory loads consisting of random and superimposed sinusoidal

components at a mean stress close to yield, act in combination with the previously mentioned low

cycle fatigue loads. Also, since current and future space propulsion systems are principally pressure

vessels, crack geometries of interest are predominantly surface and embedded cracks.



Experiencewith life-limited hardwareandoccasionalcomponentcrackingon theSSME
greatlyassistsin identifyingthemostrelevantissuesandconcerns.Crackingproblemsassociated
with inelasticloadinghavebeenattributedto thermalshocks,localnotcheffects,hydrogenassisted
cracking,internalhydrogenconcentration,largethermalgradients,preloadstresses,andlocalized
regionsof low strengthmaterials.Requiredelastic-plasticandfully plasticanalysismethodsinclude
thepredictionof crackgrowthdueto fatigueandtimedependenteffects(e.g.,truecorrosionfatigue,
stresscorrosionfatigue,creep,andcreep-fatigue),instabilityandplasticcollapse,leakbeforebreak,
and leakageareas. Additional analysis complexities arise due to the existence of complex

component geometries, multiaxial loading, variable states of stress, and various component boundary

conditions (e.g., from purely load to purely displacement control).

1.2 Previous Capabilities for Fatigue Crack Growth Analysis

Engineering approaches to characterization of fatigue crack growth (FCG) rates naturally

began with the more common and conceptually simpler case of fatigue cracks in nominally elastic

bodies. Here the zone of plastic deformation at the tip of the crack is relatively small in comparison

to other characteristic dimensions such as component width or crack length. Under these conditions

of "small-scale yielding" (SSY), the linear elastic stress intensity factor K, which scales the elastic

crack tip stress field, was found to be a suitable parameter to describe the behavior of the crack. The

landmark research in this area was conducted in the early 1960s by Paris (Pads, Gomez, and

Anderson, 1961; Paris, 1964), who showed conclusively that the range of the stress intensity factor,

K, could be used in a power-law expression to describe crack growth rates:

da = Co(_C)mo (1.1)
dN

Here da/dN is the average increase in the crack length per cycle of loading and CO and m o are

empirical constants. With relatively few exceptions, K has remained unchallenged to this day as the

parameter of choice for engineering analysis of FCG rates under SSY conditions.

Previous National Aeronautics and Space Administration (NASA) capabilities for the

analysis of FCG have employed this conventional AK approach to the SSY regime. The primary

NASA tool for fracture mechanics analysis of fatigue is NASGRO, formerly known as

NASA/FLAGRO (Forman et al., 1988). NASGRO was originally developed to address the Space

Shuttle Orbiter structure and payloads, and is now being used by a much broader audience for a wide

range of aircraft, propulsion, and space structure applications. NASGRO currently provides (Forman

et al., 1997) a wide range of stress intensity factor solutions, a robust crack growth equation, several

load interaction models, an extensive materials data base, facilities to accommodate complex load

spectra, and many other features. However, the currently released version of NASGRO is strictly

limited to linear elastic fracture mechanics.

NASCRAC is another general-purpose fracture analysis computer code developed for NASA

(NASCRAC, 1989; Harris et al., 1987). Although that program was originally envisioned to address
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notonly elasticbut alsoelastic-plasticconditionsto somesignificantdegree,thefinal productwas
heavilyweightedtowardsthe analysisof traditionalSSYFCG. While a largenumberof library
K-solutions were programmed into the code and extensive capabilities were provided for the

generation of new K-solutions when needed, only limited attention was given to J. J-integral

solutions for only eight crack geometries were included in Version 2.0 of the main code, all copied

directly from the earliest edition of the Electric Power Research Institute (EPRI) elastic-plastic

fracture handbook (Kumar, German, and Shih, 1981), and only a few of these geometries were of

practical value to the analysis of actual hardware. Version 2.0 of NASCRAC does contain an

optional stand-alone module for calculation of J using a nontraditional 2-D finite element approach,

but this module has very limited functionality. Moreover, the module is completely detached from

the main NASCRAC software, and no mechanism is provided to incorporate new J solutions into
the main NASCRAC code for evaluation of fracture mechanics life.

Furthermore, J solutions in the main NASCRAC code can only be used within the established

framework of SSY FCG technology. The first step after retrieval of a given J solution is to convert

it into the equivalent K value. Subsequent calculations use SSY crack growth laws, SSY variable

amplitude loading algorithms, and SSY criteria for, final fracture. This approach ignores any

fundamental differences between SSY and elastic-plastic or fully-plastic fatigue crack growth. As

will be shown later, these differences are considerable in many instances.

The previously available NASA tools for fracture mechanics analysis of fatigue are clearly

inadequate to address the full range of applications problems in reusable space propulsion systems,

where (as noted above) significant plasticity can accompany fatigue crack growth. The need to

develop improved fracture mechanics methods and tools that could satisfactorily address those

demanding applications problems was the motivation for the current contract.

1.3 Selection of a Governing Parameter for Elastic-Plastic Fatigue Crack Growth

The first and most fundamental challenge in developing practical engineering methods for

analysis of elastic-plastic fatigue crack growth (EPFCG) is to select a governing parameter to replace

or supplement the linear-elastic parameter AK.

1.3.1 Historical Background

The development of parameters and engineering methods to describe fatigue crack growth

under elastic-plastic and fully-plastic conditions, where SSY is no longer satisfied and K is no longer

an accurate description of the near-tip stress field, began somewhat later than the development of

the AK approach but proceeded at a much slower rate. One of the first attempts to develop a FCG

parameter for large scale yielding (LSY) was reported by Boettner, Laird, and McEvily (1965). They

successfully correlated crack growth rates at very large strains in a variety of materials with a

so-called "strain intensity factor", the product of remote plastic strain range, Aep, and the square root

of crack length, cry. McEvily (1969) later replaced Aep with Ae, the total strain range. Another

related but slightly different form was proposed by Solomon (1972), who calculated his

"pseudostress intensity factor" as E6eqrd where E is the elastic modulus. This general approach was



re-popularizedin the late 1970sandearly 1980sasthestrainintensityfactor,AK_, by El Haddad,

Smith, and Topper (1979a, 1979b) and by Skelton and co-workers (Haigh and Skelton, 1978; Starkey

and Skelton, 1982; Skelton, 1982).

One of the few competitors to K in early basic studies of SSY FCG was the crack tip opening

displacement (CTOD), St. The CTOD also attracted some early attention from McEvily,

Beukelmann, and Tanaka (1974) as a characteristic parameter for FCG under LSY, and Tomkins

(1975, 1980) later extended this concept. Both McEvily and Tomkins developed estimates of 8,

from the Biiby-Cottrell-Swinden (BCS) model for an idealized monotonically loaded crack with

appropriate modifications to accommodate cyclic loading and large-scale deformation. They both

also suggested some direct physical relationship between fit and the size of the crack growth

increment, but others (for example, Tanaka, Hoshide, and Sakai, 1984; Brown, de los Rios, and

Miller, 1988) have since used estimates of fit in a more general Pads-type power law crack growth

expression (similar to F_,qn. (1.1)).

Dowling and Begley (1976) at Westinghouse were the first to propose the range of the

J-integral as a correlating parameter for elastic-plastic fatigue crack growth. The J-integral had

previously been proposed by Rice (1968) as a characteristic parameter for near-tip stress-strain fields

in elastic-plastic fracture. Working from the fundamental identity of J as an energy term, Dowling

and Begley estimated 6,/from load-deflection curves for deeply-cracked compact tension and center

crack specimens. Advancing to the more complex semi-elliptical surface flaw in a smooth axial

fatigue specimen, for which no similar approximation formula was available, Dowling (1977)

developed an expression for AJ based on the suggestion of Shih and Hutchinson (1976) that J could

be estimated by summing independent elastic and plastic components.

Delta J has been by far the most common elastic-plastic FCG parameter in use in the past

twenty years. The list of different authors who have demonstrated its successful application to a

wide range of materials, specimen and crack geometries, and temperatures is much too long to cite

here. The specific methods of application remain varied: some researchers have calculated J with

some form of the Shih and Hutchinson elastic-plastic summation technique, now firmly established

in the EPRI elastic-plastic fracture handbook (Kumar, German, and Shih, 1981), while others have

continued to estimate J from experimental load-deflection information. This experimental approach,

of course, is not applicable to engineering design and analysis outside of the laboratory.

It is important to note, however, that AJ has been controversial since its first introduction.

Early objections stemmed from the original definition of J, which was based on the deformation

theory of plasticity and hence did not admit unloading. Later objections addressed the complications

introduced by fatigue crack closure, the inability of simple J to rigorously accommodate variations

in temperature, and other issues. Some of these objections have not been satisfied by strict

mathematical counter-arguments. Nevertheless, the demonstrated success of _t/as an engineering

tool (and the absence of alternative parameters with equally demonstrated success) left it intact as

the current parameter of choice for many analysts. This success also seems to suggest that, in spite

of theoretical objections, the parameter still captures enough of the correct physics to describe with

sufficient accuracy the driving forces for fatigue crack advance under many conditions.
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Nevertheless, these concerns prompted some additional searches for alternative elastic-plastic

fatigue (and ductile fracture) parameters. Most notable among these are the J* integral of Blackburn

(1972), the )'integral of Kishimoto, Aoki, and Sakata (1980), and the ATp* integral of Atluri,

Nishioka, and Nakagaki (1984). It is best to label these as path-area integrals since the far-field

representation includes both a path and an area contribution. A theoretical review of these

parameters with particular reference to elastic-plastic fatigue crack growth is available in Kim and

Orange, 1988. It can be shown that many of these quantities, including J, are derivable from a global

energy balance with different restrictions invoked. Typically, the new parameters have a greater

range of strict mathematical validity than the original J integral, particularly for problems involving

plastic loading and unloading, temperature changes, and crack growth. However, these new

parameters have not been evaluated outside of a very few research laboratories and are not yet

accepted as engineering tools.

1.3.2 Criteria for Parameter Selection

The selection of a governing parameter for SSY FCG is typically a non-issue because of the

wide acceptance of AK. For elastic-plastic FCG, however, the selection of the governing parameter

is perhaps the most significant issue to be addressed and likely the most controversial one. As was

discussed earlier, a number of parameters have been proposed and used. While AJ is the most

widely used parameter in the engineering community at present, it has remained controversial from

a theoretical standpoint.

The selection of a governing parameter must be guided equally by at least three

considerations. The first is that the parameter must represent with sufficient accuracy the actual

driving force for crack extension or the actual crack growth mechanism. That is, the parameter must

be theoretically valid. The second is that the parameter must be easily and accurately calculated or

estimated for a variety of actual materials, loads, and crack configurations: the parameter must be

practical. The third is that the parameter must have demonstrated success in the actual consolidation

of fatigue crack growth rate data and the prediction of fatigue crack growth lives under different

conditions: the parameter must be useful.

Theoretical considerations include the validity and uniqueness of the parameter under

complex load and environmental conditions including nonproportional loading and plastic

unloading, thermal gradients and cycling, and material inhomogeneity. An integral parameter should

ideally be sufficiently path-independent that the parameter value does not depend arbitrarily on the

region over which it is evaluated. Another key theoretical issue is that the parameter should describe

some physically-meaningful quantity which is somehow genuinely descriptive of the driving force

for crack growth. Finally, the ideal theoretical parameter should also permit some direct physical

measurement of its numerical value in order to validate computational methods. These theoretical

considerations were the primary focus of the NASA-funded General Electric (GE) review (Kim and

Orange, 1988) of the alternative path-area integrals.

Practical considerations are of equal importance for an engineering methodology, but have

often been neglected. The chosen parameter should be easily and accurately calculated for a variety



of materials, loads, structural geometries, and crack configurations. A parameter which requires a

sophisticated numerical analysis is less useful than a parameter which can be easily estimated from

handbook tables or simple equations. However, the mere availability of simple estimation schemes

is insufficient unless the estimation schemes used to estimate actual numerical values for the

different parameters retain the theoretical distinctions between the parameters (McClung and

Sehitoglu, 1991). The typical calculation schemes for three of the leading "simple" parameters (A J,

fit, and AK_) have been shown to give exactly the same functional form,

AX = AtaAo{A_ e + ApAep} (1.2)

where AX is the range of the parameter, Ao is the applied stress range, Ae_ and A% are the nominal

elastic and plastic strain ranges, a is the crack length, and A t and Ai, are general coefficients. An

exact knowledge of the proper driving force is of little value unless that driving force can be either

exactly calculated with sufficient economy or estimated with sufficient accuracy. For example, the

crack opening displacement is one of the more attractive parameters from a conceptual or theoretical

standpoint. Unfortunately, the COD is typically estimated from an unvalidated modification of the

simple Dugdale crack model, which is technically limited to a center crack under plane stress SSY

in an elastic-perfectly plastic material. Any exactness present in the concept is likely lost in the

estimate. If the theoretical uniqueness of a given parameter is critical, then the estimation scheme

must retain sufficient accuracy to capture this uniqueness.

A related factor in this question of practicality is the crack and component geometry. Most

analytical solutions and most simple crack models correspond to simple reference crack

configurations, such as the center-cracked infinite plate subject to uniform stressing. Most real

cracks and real components, of course, are much more complex. An important criterion for a crack

growth parameter will be how easily and accurately the effects of different crack and component

geometries can be calculated. For AK this is simple, because many handbook solutions have been

accumulated through the years and can be readily integrated into a computer code. For most

elastic-plastic parameters, however, this information is totally unknown.

Yet another practical issue is the availability of a material data base. Existing data bases for

fatigue crack growth are almost exclusively limited to SSY conditions, where AK is the correlating

parameter. The chosen elastic-plastic and fully plastic FCG parameter should be able to employ this

data base as much as possible to minimize the need for further baseline testing. This implies that

the ideal parameter should have some clear relationship to AK and that its use should be entirely

consistent with established approaches to SSY FCG as plasticity effects diminish.

The third set of selection criteria requires that the parameter have demonstrated success in

the correlation of fatigue crack growth rate data in regimes which are relevant to the intended

applications. No parameter, no matter how conceptually satisfying, should be used in engineering

applications without a substantial experience base of successful use to correlate crack growth rates

for different loads and geometries on a consistent basis. This success implies that confident

predictions of growth rates and lives can be carded out from engineering calculations of the



parameterinconjunctionwith a standard data base of material properties that describe crack growth

resistance in benchmark laboratory tests.

1.3.3 Evaluation of Delta J

Theoretical Considerations. The most frequent objections raised to Delta J following its

introduction by Dowling and Begley (1976) argued that since the J-integral was based on the theory

of deformation plasticity, which does not allow unloading or nonproportional plasticity, then it could

not be applied to cyclic loading. However, Lamba (1975) had already demonstrated that a properly

defined AJ maintained path independence in his studies of notch deformation. Wuthrich (1982;

Wuthrich and Hoffelner, 1984) and Tanaka (1983) independently proved the path-independence and

validity of AJ in application to fatigue cracking problems.

All three authors emphasized that "Delta J" must be properly formulated to maintain this

validity. The original J-integral was defined by Rice (1968) for two-dimensional problems as

Ou i
= - _ ds (1.3)J fW, dy x

P

where x and y are rectangular coordinates normal to the crack front, ds is an increment of arc length

along any contour, 1", beginning along the bottom surface of the crack and ending along the top

surface, T_ is the surface traction exerted on the material within the contour, and ui is the

displacement. The strain energy density Wc is given by the equation

=f (1.4)

where oij and cij are the stress and strain tensors, respectively. The correct "operational" definition

of A J, then, is given by

a(Aui)

AJ = f AW c dy- AT i ds (1.5)Ox
F

where

(1.6)

Here the increments A of the stress, strain, traction, and displacement quantities designate the

changes in these quantities from their respective reference values. However, the "A" in AJ and AWe

do not represent changes in J and W_; instead, AJ and AW, are single-valued functions of their

arguments. In other words, dJ, Jmu - Jmi," In this sense, "Delta J" is something of a misnomer, and

Wuthrich (1982) has even argued that the term should not be used for this reason. It is therefore

perhaps more appropriate to speak of the "A J-integral" rather than the "range of the J-Integral." For
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elastic-plastic,cyclically saturatedmaterials,the path-independence of AJ is satisfied since Ac is a

single-valued function of Ao during the loading portion of the cycle. The stress range field, Aoij, and

strain range field, A%, within the cyclic plastic zone at the crack tip follow the usual HRR-singular

forms with AJ characterizing their amplitudes. Further tutorial background is provided in Saxena

(1998).

By analogy to the original J-integral, then, AJ properly defined appears to have significant

physical meaning. Delta J is related to the rate of change of potential energy with change in crack

size, and (as noted above) scales the stress and strain fields in the crack tip deformation zone.

Furthermore, AJ is a quantity that can be directly measured experimentally. For example, Dowling

and Begley (1976) measured AJ in deeply cracked compact tension specimens according to

2A
AJ - (1.7)

Bb

where A is the area under the load-deflection curve, B is the specimen thickness, and b is the length

of the untracked ligament. Here, again, the analogy with the original J-integral was employed.

Delta J does have some remaining theoretical limitations, primarily related to variability in

material properties in the crack tip region. Yoon and Saxena (1991), for example, have pointed out

that path independence will not be strictly satisfied for materials that are not cyclically saturated.

Temperature-dependent constitutive property variations for cracks growing in significant thermal

fields may also violate path-independence. The practical significance of these limitations, and the

possibility of pragmatic solutions to overcome the limitations, remains to be evaluated from

experience.

A final set of potential theoretical limitations is the potential loss of J-dominance under

certain conditions. When applied loads are severe, especially in low constraint geometries, the crack

tip stress field may not be adequately characterized by the J-integral (McMeeking and Parks, 1979;

Dodds et al., 1993), and so J alone may not be an adequate predictor of crack growth or fracture.

Current approaches to this problem in the international fracture community typically employ an

additional parameter, such as Q, to characterize the stress field more completely. In principle, the

same limitations may apply to the A J-integral, although the magnitude of AJ in a fatigue crack

growth analysis will typically be less than the maximum value of J in a ductile fracture analysis, and

so the problem may be less significant. It is also possible that the different crack advance

mechanisms associated with fatigue crack growth have a decreased functional dependence on loss

of constraint. Specimen size or geometry effects on EPFCG rates have not been noted as they have

been observed for ductile fracture. However, this limitation has related implications for the practical

characterization of crack instability (treated in Appendix I), where constraint has an apparent effect

on fracture toughness that is actually related to changes in the crack driving force.

Practical Considerations. Further taking advantage of the direct analogy to the original

J-integral, AJ also satisfies most of the aforementioned practical considerations. Delta J can be

relatively easily and accurately calculated for different materials, loads, structural geometries, and

crack configurations. As will be discussed in Chapter 2, numerous J solutions are already available.



New J solutions can be generated with finite element analysis, and powerful reference stress

techniques can be used to generalize the discrete numerical solutions or even estimate J in the

absence of finite element results. These estimation techniques, while simple, can be applied to

practical, complex geometries, and they preserve the distinctive information about the particular

geometry and material. As will be discussed in Chapter 3, all of these monotonic J solution forms

can easily be employed to calculate AJ.

As will be shown in Chapter 3, AJ is directly related to AK in the SSY regime. This provides

a basis for employing conventional (SSY) fatigue crack growth data bases in elastic-plastic FCG

analyses, thereby minimizing the need for additional property generation. Furthermore, this

relationship between AK-controlled SSY FCG and A J-controlled EPFCG suggests that tools for

EPFCG can easily be built into current tools for SSY FCG analysis, employing some of the same

practical crack growth algorithms.

Finally, it must be emphasized that AJ has been successfully used by many researchers to

correlate fatigue crack growth rate data and fatigue lives. While different researchers have employed

slightly different forms of AJ, all have generally followed similar conceptual approaches. An

exhaustive bibliography of this experience is neither practical nor needed, but selected citations are

useful to illustrate the breadth of the experience base (Dowling and Begley, 1976; Dowling, 1976,

1977; Mowbray, 1979; Sadananda and Shahinian, 1979; E1Haddad et al., 1980; Huang and Pelloux,

1980; Musava and Radon, 1980; Reger and Remy, 1982; Vardar, 1982; El Haddad and Mukherjee,

1983; Wang et al., 1983; Heitmann et al., 1984; Tanakaet al., 1984; Jolles, 1985; Obrtlik and Polak,

1985; Grin' et al., 1987; Horikawa and Cho, 1987; Hoshide and Socie, 1987; Rie and Schubert,

1987; Zheng and Liu, 1986; Hoshide et al., 1988; Bicego, 1989; Hatanaka et al., 1989; Jablonski,

1989; Yang and Lu, 1989; Earthman, 1991; Vormwald and Seeger, 1991; McDowell and Berard,

1992; Miura et al., 1994; Mu et al., 1996; Rie and Wittke, 1996; Rahman et al., 1997).

1.3.4 Evaluation of Alternative Parameters

The current contract effort was initiated by NASA-Marshall with the preliminary judgment

that the range of the J-integral was the most appropriate choice for the elastic-plastic governing

parameter around which a practical methodology could be developed. This judgrnent was based on

an assessment of the available information about EPFCG, including many of the factors reviewed

in the previous section.

Nevertheless, it was recognized at the outset that AJ was not necessarily a perfect parameter,

or even the optimum parameter for all EPFCG applications. Therefore, a comprehensive literature

review and critical evaluation of various governing parameters for EPFCG was conducted as part

of the research program. The review was primarily focused on the alternative path-area integrals

referenced earlier in the historical survey. The main criteria for evaluation were the considerations

described in Section 1.3.2: theoretical rigor and validity, ease of use for practical applications, and

demonstrated success in crack growth rate data consolidation and life prediction.
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This review and evaluation is documented at some length in Appendix A. For convenience,

the major conclusions are reproduced in the paragraphs that follow.

The simple alternative parameters such as AK, and COD have clear practical and theoretical

limitations. They share the same practical limitations of J in addressing temperature-dependent

changes in material properties. In practice, these simple parameters are usually estimated directly

from computations of J or K, and as such they retain the same theoretical limitations of those two

fundamental parameters. Since most of the estimation techniques used to calculate the simple

alternative parameters produce exactly the same functional form as A J, any potentially important

theoretical distinctions between the different parameters are lost entirely in the estimation schemes.

The alternative integral parameters clearly have some desirable theoretical capabilities, and

their general success in correlating EPFCG data in the GE studies is encouraging. However, these

advanced parameters possess some major practical limitations at the present time. First of all, their

computation depends entirely upon complex elastic-plastic finite element analyses of growing

cracks. This type of analysis is difficult and expensive for simplified (two-dimensional) laboratory

specimen configurations, and totally unfeasible for actual (fully three-dimensional) component

geometries and temperature-load histories. Second, several ambiguities remain regarding theoretical

interpretation and application. Several of the parameters cannot be measured experimentally, so

direct validation is not possible. The physical meaning of several parameters for the crack growth

process is not yet evident and may not exist. Because of this absence of clear mechanistic

justification, the parameters may give incorrect results in some applications.

The GE study found the two parameters At'* and AJ(and their rate forms) to be the most

promising alternative parameters for a wide range of EPFCG, Thermo-Mechanical Fatigue (TMF),

and creep crack growth applications. In view of the GE results, and in view of other potential

limitations of other proposed integral parameters, this seems to be a reasonable conclusion.

However, the practical use of these alternative parameters will likely depend on the development of

simplified estimation techniques.

Extensive development work will be required before these new parameters can be used with

confidence in actual applications. Therefore, although these parameters have exhibited some

promise in research settings, their engineering implementation in the near term is not viable.

Considering all evaluation criteria, the original choice of AJ appears to be the optimum

choice at the present time as the governing parameter for practical assessment of EPFCG. Delta J

best addresses a broad range of both theoretical and practical issues. For example, robust estimation

schemes are available to calculate AJ accurately and efficiently for a wide range of crack and

component geometries; a AJ methodology enables the existing AK crack growth data base to be

employed; and AJ has an established history of successful use in the characterization of crack

growth.

Delta J is not a perfect parameter. Several mathematical conditions required by the original

theoretical formulation of J will not be strictly satisfied for some practical EPFCG problems.
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Thermal gradients and temperature-dependentmaterial properties may degrade the path-

independence of J and introduce practical difficulties in computing a single representative value.

However, researchers have shown repeatedly that AJis successful in correlating EPFCG data

under isothermal conditions. This success has been explained in terms of an "operational" definition

of AJ which satisfies the essential spirit of the mathematical formulation. Several researchers have

also used simple estimates of AJ with moderate success to correlate TMF and other elevated

temperature fatigue crack growth data.

It should be noted that even a "perfect" governing parameter, one which exactly characterizes

the crack-tip stresses and strains and the manner in which they facilitate crack advance, may be

inadequate to completely describe crack growth rates in elevated temperature applications. Potential

changes in crack growth damage mechanisms due to environmental and metallurgical effects may

also be significant, and so some information about changes in material resistance to crack growth

may be required. The scope of the current contract, however, is limited primarily to addressing the

effects of mechanical plasticity on the "driving force" for crack growth.

In summary, NASA-Marshall appears to have made a wise choice in their preliminary

selection of AJ as the governing parameter for EPFCG. There is an immediate need to develop

practical tools for analysis of existing and planned hardware. Delta J has an extensive track record

of successful use for the analysis of elastic-plastic fatigue crack growth, considerably more extensive

than any competing parameter. The technology is available to address most of the detailed questions

relating to actual implementation of an engineering method. Hence, it is possible to assemble a

practical and reliable engineering tool in a relatively short time frame and with relatively limited

resources.

1.4 Overview of the Program and Final Report

Technical efforts under the current contract may be broadly grouped into three major areas,

and those three areas also provide the organizational scheme for this final report.

The first major area is the development and verification of additional J-integral solutions for

crack geometries of particular significance to advanced reusable propulsion systems. A few relevant

J solutions were already available, and needed only to be adapted for NASA use. Other general J

solutions were derived from available finite element solutions. In other cases, new elastic-plastic

finite element solutions were generated for specific geometries and then used to derive more general

reference stress solutions applicable to a wider range of geometries. Finally, methods were

developed to estimate J for various combined loading cases, including combined primary loading,

combined primary and secondary loading, and multiaxial loading. The development and verification

of new J-integral solutions is described in Chapter 2.

The second major area is the development and verification of practical crack growth

algorithms. These algorithms translate a general calculation of J for some crack geometry into a

specific quantitative prediction of FCG rate and FCG life. The first steps in this translation are the
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appropriateformulation of a cyclic AJ estimatefrom a monotonicJ solution and the correct

implementation of crack closure information into an estimate of the effective cyclic J, AJef f.

Methods were developed to estimate crack opening stresses for different applied stresses, stress

ratios, stress states, and specimen and crack geometries. Other algorithms were developed to predict

the conditions for crack instability (final fracture) and the potential acceleration of the FCG rate due

to incipient instability. An important set of algorithms provides guidance for determining needed

material properties, including the estimation of some properties from readily available information

when a complete experimental characterization has not been performed. Finally, general guidance

was provided for the development of practical algorithms to address creep-fatigue effects and load

interaction effects in variable amplitude cycling. The development and verification of practical crack

growth algorithms is described in Chapter 3.

The third major area is the development and verification of NASGRO software modules.

The original contractual scope of work was dedicated to the development and verification of new

methodologies. This work scope was later expanded to address the implementation of the

methodologies in engineering software tools. The NASGRO work scope to date, however, has been

limited to the implementation of the critical core methodologies: J solutions for primary and

secondary loading for five common geometries; failure algorithms to compute critical crack size or

critical load at fracture; and simple elastic-plastic fatigue crack growth calculations for the five

implemented geometries. The development and verification of NASGRO software modules is

documented in Chapter 4.

Many new elastic-plastic fracture mechanics methodologies have been developed and

verified in the current contract effort. Some of these new developments have been documented in

considerable detail in earlier monthly technical progress reports and topical reports. For

convenience, the current final report is comprehensive, containing thorough descriptions of all work

performed under the current contract, with appropriate integration of earlier progress reports.

However, to preserve the readability of the final report, many of the detailed investigations are

documented in appendices. The main body of this final report is designed to be more of an overview

document that provides a general description of the work completed and organizes the detailed

discussions in the appendices. For convenience, all references for the main body and the appendices

are collected into a comprehensive list at the end of the report.

The contracting team of Southwest Research Institute and Rocketdyne (now part of Boeing

North American) also performed two other technology contracts for NASA-Marshall on related

topics during the period of performance of the current contract. These other two contracts were both

focused on the elastic-plastic fracture mechanics analysis of proof testing, and both contracts

employed J-integral methods to describe crack growth and instability. The two proof testing

contracts have now both been completed and documented (McClung et al., 1996b; Chell et al.,

1997a). The investigations conducted under the proof testing contracts provided a number of useful

results to this elastic-plastic fatigue crack growth contract, and vice versa, and the interactions

between the three contracts were recognized and managed by NASA-Marshall. This synergism

between the three contracts greatly enhanced the productivity and efficiency of all three. While the
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investigationsdocumentedin detail in this final reportweresupportedbythecurrentcontract,key
resultsfrom theothertwo contractsareimplementedandcitedasappropriate.

Dueto theexceptionalbreadthof thedevelopedmethodology,thesymbolicnomenclature
employedin this final reportis extensiveandcomplex. Symbolshavesometimesbeenassigned
multiplemeanings,andmultiplesymbolshavesometimesbeenusedto identify thesamequantity,
in orderto maintainclarity andconsistencywith historicalusage.While everyattempthasbeen
madeto minimize anyconfusionarisingfrom theseconflicts (and,in fact, many"conflicts" have
beenmaintainedto minimize collateralconfusionfrom changesin historical usage),the list of
symbolsprovidedin thepreliminarypagingcannotprovideadefinitiveguidetoall symbolmeanings
or a completelist of all symbolvariants. Theprimarymeaningof all symbolshasbeenclearly
identified in the immediate context of each usage,and this immediate context (not the
comprehensivelist of symbols)mustbetheprimarymeansof identifyingsymboldefinitionswhen
conflictsarise.
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2. DEVELOPMENT AND VERIFICATION OF J-INTEGRAL SOLUTIONS

2.1 Introduction

Given that AJ has been chosen as the governing parameter, the task remains to obtain an

accurate J solution for a given combination of material, load, and geometry.

For small-scale yielding (SSY) FCG, the task of calculating the governing parameter is

relatively straightforward. The governing parameter K is based on linear elastic fracture mechanics

(LEFM) and may be calculated to very high accuracy in a number of different ways. A very large

number of solutions are already available in the literature, and many different numerical analysis

techniques have been established to calculate new values with a minimum of additional effort.

Furthermore, the form of K can be normalized so that it is independent of load magnitude (i.e., K

merely scales with applied load), although it is dependent on the spatial variation in stress resulting

from the load. Since K is usually independent of material properties, its other major dependence is

on geometry.

In contrast, the task of estimating an elastic-plastic parameter is generally more difficult. The

J-integral, like other elastic-plastic parameters, is a nonlinear function of both applied load and

material strain hardening, and may also be a nonlinear function of the customary geometry

parameters. Simple linear mechanics methods are not adequate to meet this challenge.

The general engineering approach to estimating J for primary loading developed originally

under EPRI sponsorship (Kumar et al., 1981) can be written as

Jic )- JelC,e)+J lc,e) (2.1)

Here Je is a first-order plastic corrected value of the linear elastic solution for J that interpolates

between linear elastic and fully plastic behavior. It is related directly to the stress intensity factor

through the expression

(2.2)

The EPRI J estimation scheme defines the effective crack length, ce, according to

Ce=C +dpry (2.3)

including a crack tip plastic zone size correction determined by the terms _ and ry that are defined

respectively as
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(2.4)

r 1 n-1
(2.5)

In these equations, 13equals 2 for plane stress and 6 for plane strain based on arguments about the

size of the crack-tip plastic zone, P is the applied load, and Po a characteristic normalizing net

section yield load. The effective elastic modulus E' is equal to E for plane stress and E/(1-v 2) for

plane strain, where E is Young's modulus and v is Poisson's ratio. The parameters n and o o appear

in the Ramberg-Osgood equation describing stress-strain behavior (see Eqn 2.7).

Although the analytical forms of the fully-plastic component, Jp, used in the EPPd scheme

differ slightly depending on the cracked structure, for illustrative purposes the following expression
is used here

c .___cn P

n+l

(2.6)

where Wis the section width. This particular estimation scheme was developed for materials whose

stress-strain behavior can be described by a Ramberg-Osgood equation of the form

£ 0 + (g 0- (2.7)
E0 O 0

where e is the total strain (elastic plus plastic) due to the stress, o, a, and n are material constants,

and eo is a "yield" strain corresponding to the "yield" stress Oo, where Co=Oo/E. The first term on the

right hand side of this equation represents the component of elastic strain, ce, and the second term

represents the plastic strain, cp.

The nondimensional factor h_ in Eqn 2.6 is, in general, a function of both constitutive

relationship (e.g., strain hardening exponent) and geometry (e.g., crack length). The values of the

function h / are typically obtained from detailed finite element (FE) analysis, and the EPIC3 handbooks

contain tabulated values of h_ for various cracked geometries, normalized crack sizes (e.g., c/W), and

values of n. The different functional forms of Eqn 2.6 arise from different normalization schemes

used to define h 1. The handbooks also give equations for evaluating the yield load Po. This
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parameterdepends on the Ramberg-Osgood yield stress, Oo, and structural dimensions (for example,

wall thickness and radius in the case of cylindrical pressure vessels).

Finite element approaches to Jcalculafion for a general-purpose fatigue crack growth analysis

code have at least two significant limitations, however. First of all, the finite element solutions are

exactly correct for only a single combination of material properties and crack/component

dimensions. Estimation of J for any other combination of properties and dimensions typically

requires empirical interpolation of tables containing multiple solutions, likely with some loss of

accuracy. Purely interpolative approaches are even more impractical for fully three-dimensional

crack configurations. For example, a surface crack in a finite sized plate is characterized by the

crack aspect ratio (a/c) and two width-to-thickness ratios (a/t and c/b) in addition to the h/b value.

The second major limitation is the significant cost associated with the generation of original

J solutions by the finite element method. Mesh generation alone for the finite element analysis of

complex crack problems is extremely time-consuming, to say nothing of the computer costs

associated with solution of a large three-dimensional elastic-plastic problem. Original finite element

analysis is a reasonable approach to obtaining a limited number of new J solutions, but certainly not

to obtaining all J solutions needed in the program.

An alternative option for J estimation is the reference stress method (Ainsworth, 1984)

developed at the former Central Electricity Generating Board (CEGB) in the UIC The method is

now incorporated into the R6 procedure for structural integrity assessment (Milne et al., 1986) and

is widely used by designers and analysts. The reference stress method (RSM) requires only three

basic inputs: (1) a K solution; (2) a description of the elastic-plastic constitutive response of the

material (e.g., Ramberg-Osgood constants, Eqn. 2.7); and (3) an estimate of the limit load for the

cracked member, assuming elastic-perfectly plastic material behavior. The J estimate can be written

in the simple form

K 2 [ Ee,ff
= _ (2.8)

J _ Oro.

The reference stress o H is calculated as

P
_ __ O0

Orcr- P0
(2.9)

where P is the applied load and Po is the plastic limit load for a (cracked) rigid plastic material of

yield stress o0. The reference strain %_ is then calculated from the constitutive relationship as the

uniaxiai strain corresponding to o,_. The RSM expression can be expanded to include a first-order

plastic correction to K, and it can also be reformulated for Ramberg-Osgood materials to define an

equivalent h_ factor in the manner of Eqn.2.6.

The RSM approach is a particularly powerful means of estimating J for practical engineering

problems, especially when detailed FE solutions are not available. Since K solutions are readily

available or calculable for many geometries, and stress-strain relationships are also commonly
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available, the generation of a J estimate is typically reduced to the task of defining an appropriate

limit load solution. A required limit load solution may be obtained from existing compendia (Miller,

1988) or estimated from simple mechanics arguments.

Alternatively, an optimized limit load solution can be derived from a limited number of

existing FE J solutions. This approach insures that the RSM solution is acceptably accurate while

providing a means of "extending" the FE solution to a much wider range of load, geometry, and

material parameters. Such an approach--the collaboration of selective FE analysis with general

RSM formulations--has been employed to great advantage in the current contract, as described
further below.

The general form of the optimized RSM estimate of Jp for a Ramberg-Osgood material

employed in this work is (Chell et al., 1997b)

P

n-1

(2.1o)

where Po" is the optimized net section yield load evaluated using the Ramberg-Osgood yield stress,

o.. In general, Po ° will not equal the EPRI normalizing yield load, Po, although it may have a form

very similar to it. V is a dimensionless "structural" parameter that, in general, has a value of around
1, and

1
2 (plane strain), la=l (plane stress) (2.11)

1 -v e

where v, is the elastic value of Poisson's ratio, and vp is the plastic value.

The general form of Eqn 2.10 offers several advantages over the conventional EPRI scheme.

Making the assumption that V=I, then Eqn 2.10 provides a relatively simple expression for Jp that
can be used for defective hardware for which EPRI handbook solutions are not available. This is

possible because J, can be readily evaluated for a wide range of geometries using existing K

solutions, and the net section yield load, Po°, can be estimated from existing compendia of solutions

(Miller, 1988), or estimated using plastic limit analysis. In addition, if the material stress-strain

j sucurve cannot be adequately represented by a Ramberg-Osgood equation, then can still be

evaluated using a generalized version of Eqn 2.10,

RSM

s; (2.12)

where the reference stress, ore/,is defined as
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(2.13)

and the reference plastic strain,

Ramberg-Osgood material,

_,_, is the uniaxial plastic strain corresponding to o,_

EPref=(x O° Oref

For a

(2.14)

Additional modifications to reference stress estimates are possible that employ empirical

modifications to the optimum yield load or the structural parameter that introduce an additional

dependency on the strain hardening exponent, n. Some modifications of this nature were explored

under the current contract. When supporting data are available, the extra degrees of fl'eedom

associated with these modifications permit some i_ in the accuracy of the J solutions.

However, these modifications are possible only when more extensive finite element data are

available, and the validity of the modification outside the bounds of the available data cannot be

assured. Furthermore, the reference stress method modified in this way can no longer be extended

to non-Ramberg-Osgood materials. Therefore, the contractor has chosen not to employ these

modified reference stress solutions in the delivered methodology. However, future work could

demonstrate the validity and usefulness of these modifications in certain situations.

Chapter 2 summarizes activities under the current contract to develop and verify new

./-integral solutions. Previously existing ./solutions are surveyed and summarized. New reference

stress ./solutions are derived from existing FE solutions for two-dimensional through cracks. New

finite element ./solutions are generated for a limited matrix of surface and comer cracks, these FE

solutions are employed to develop improved reference stress solutions with greater generality, and

the reference stress solutions are then independently verified with another set of recent FE solutions.

New finite element ./solutions are generated for cracks emanating from double edge notches, and

the FE solutions (along with existing EPRI solutions) are used to verify a new reference stress

technique for cracks growing from any stress concentrator. New reference stress ./solutions for

through cracks in finite plates are derived from existing FE solutions and verified. General ./

estimation methods for combined mechanical loading based on the reference stress technique are

developed and verified. Various J estimation methods for combined primary and secondary loading

are critically reviewed, and a new procedure combining the reference stress technique with a first-

order plasticity correction is forwarded. A ./estimation technique for two-dimensional Mode I

cracks subjected to biaxial loading is presented and verified. As noted earlier, many of the details

of these methods and their verification are provided as appendices to the main body of the report.
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2.2 Existing Solutions

The great majority of formal J solutions currently available have been generated in work

supported by the Electric Power Research Institute (EPRI). The EPRI handbooks (e.g., Kumar,

German and Shih, 1981; Zahoor, 1989-1991 ) typically contain tables of h 1values for discrete values

of n, a/t, etc., derived from extensive finite element (FE) computations, along with appropriate

formulae for K (often borrowed from existing compendia of K solutions). A limited number of

additional J solutions are available in the literature, primarily analytical solutions for cracks in

infinite bodies and isolated FE solutions for special geometries. These isolated FE results are

typically insufficient to support a general expression for J. The major J solutions available are

summarized in Table 2.1. Nearly all of these solutions are limited to uniform tensile loading (or

internal pressure, for hollow cylinders), with only a few solutions for pure bending or combined

bending-tension. A more detailed compilation of existing J solutions is provided in Appendix B.

Table 2.1 Summary of Existing J Solutions

Existing Solutions

Thorough Limited

STANDARD SPECIMENS

Compact Tension Specimen, SS02 X

Three-Point Bend Specimen, SS05 X

THROUGH-THlCKNF..SS CRACKS IN PLATES AND SIIELLS

Through Crack in an Infinite Plate X

XThrough Crack at Center of Plate, TC01

Through Crack at Edge of Plate, TC02 X

Double-Edge Cracked Plate X

Axial Through Crack in a Pressurized Cylinder, TC07 X

Circumferential Through Crack in a Cylinder, TC08 X

Through Crack from Hole in a Finite Plate, TC09 X

EMBEDDED CRACKS

Embedded Elliptical Crack, EC01

SURFACE CRACKS

X

Semi-Elliptical Surface Crack in a Plate, SC01

Semi-Elliptical Axial Surface Crack in a Hollow Cylinder, SC04

Internal Axial Surface Crack (Constant Depth) in a Hollow Cylinder

Semi-Elliptical Circumferential Surface Crack in a Hollow Cylinder, SC05

Internal Circumferential Surface Crack (Constant Depth) in a Hollow Cylinder, SC06

External Circumfenential Surface Crack (Constant Depth) in a Hollow Cylinder. SC06

X

X

X

X

X

X
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2.3 New Solutions

2.3.1 Surface, Corner, and Embedded Cracks in Plates

The finite element method and the reference stress method were employed in partnership to

construct new J solutions for quarter-elliptical corner cracks (NASGRO designation CC01), semi-

elliptical surface cracks (NASGRO designation SC01), and elliptical embedded cracks in finite

plates (NASGRO designation EC01 ). These idealized crack configurations are commonly employed

in many applications problems.

2.3.1.1 Finite Element Solutions

While a number of FE results have been published for the surface crack geometry, the

available solutions alone are not sufficient to construct a general tabular interpolation solution for

all possible degrees of freedom, including variations in a/t, a/c, c/b, strain hardening exponent (n),

and angular position (_) (the geometry parmnete_ associated with the surface crack are defined in

Figure 2.1). No literature J solutions were available for the corner crack geometry, and embedded

crack solutions were available only for infinite bodies.

In order to facilitate the development of RSM estimates, a matrix of additional finite element

J solutions were generated for surface cracks and comer cracks under uniform tension using the

commercial finite element program ABAQUS. The matrix included three a/t values, three a/c

values, and three n values for a fixed c/b = 4.0. Elastic solutions were validated by comparison with

the most recent benchmark K solutions in NASGRO. Fully-plastic h_ values were obtained at eleven

angular positions along the crack front. Further descriptions of the finite element analyses, along

with detailed tabular and graphical results, arc given in Appendix C.

2.3.1.2 Reference Stress Solutions

Reference stress solutions were derived from the FEM J results for SC01 and CC01 under

uniform tension and the results of Yagawa et al. (1993) for SC01 under bending using the

optimization scheme developed by Chell et al. (1997b). The specific forms of the plastic J solutions

employed were

Jess_ a a b) J_ a,a- b)l.tVo_t'c" = tc"

Jee's_ a a b) J_ a,a b)PVa= ;c"

n-I

__e
po"

, for CCOI or SCOI under tension

(2.1S)

• for SCO1 under bending
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Figure 2.1 Schematicdefininggeometryparametersfor semi-ellipticalsurfacecrackin finite plate
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Here the optimized yield load, Po', the optimized yield moment, Mo, and the structural parameter,

V, are dependent on geometrical parameters only and are independent of the strain hardening

exponent, n. To generalize the solution to arbitrary c/b values, the structural parameter Vwas taken

to be a constant associated with each specific model type and the crack front location, and

independent ofa/t and a/c ratios. For model type SC01 under tension or bending, two values of V

for the deepest (_ = 90 °) crack tip and the near surface (O = 9 °) crack tip, (Vo),_ and (Vc),_, were

evaluated as the arithmetic mean of optimized Vvalues for all a/t and a/c ratios. Respectively, (V,,),,n

and (Vc),n are equal to 1.8164 and 1.2561 for SC01 under tension and 1.0412 and 0.9730 for SC01

under bending. For model type CC01 under tension, V was taken as the maximum of the two

arithmetic means at the 0=9 ° and 0=-81 ° near surface crack tip locations. In this case, V=V._=

max(( V,,),,,,_(Vc),,_)=1.4329.

The optimization scheme also found that for tension-loaded SCOI and CCOI flaw geometries,

the optimized net section yield load was approximately given by the reduction in the load beating
area of the flawed section

for CCO1 where W=b

for SCO1 where W=2b

(2.16)

The net section yield moments, Mo', for SCOI and CCOI were approximated from plastic limit

analysis.

In the absence of finite element Jp solutions to use as data to optimize or verify the RSM

solutions for model types EC01 under tension and CC01 under bending, the RSM approach was still

used but with Po estimated from plastic limit theory and with a conservatively chosen V=1.873. This

constant value of Vcorresponds to plus two standard deviations from the mezm value derived from

a statistical analysis of V values for a wide range of cracked structures (Chell et al., 1997b). There

is a 97% confidence that computed V values will fall below this statistical upper bound.

The new RSM solutions were verified by comparing the results against the original FE results

generated in this contract for SC01 and CC01 under uniform tension and the Yagawa et al. (1993)

results for SC01 under bending. In addition, independent FE results in the literature were used for

further verification. Shambeam and Landes (1995) have reported J results for SC01 under uniform

tension which cover a wide range of values for crack depths (0.16 < a/t < 0.82), aspect ratios

(0.46 < arc < 2.0), and plate dimensions characterized by the width to crack length

(2.28 < b/c < 17.1) and half-height to thickness (4 < h/t < 16) ratios. In all, they calculated 21 J

solutions covering n values of 5, 10, and 15. Their results represent a widely varied, almost

randomly selected, set of solutions.
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The correlation between the Sharobeam and Landes results and the RSM estimates was found

to be strong. Agreement was good even when the load bearing area was large compared with the

crack area (the smallest ratio of crack area to total plate area was 0.018). Hence load redistribution

due to the presence of the flaw appears to be able to occur over a wide area.

The variation in the value of V reflects both an explicit crack size dependence and also

possible inaccuracies in the computed values of h_. It is not yet possible to see how the value of V

can be estimated a priori, and the limited data base of results currently available is not sufficient to

warrant performing a parametric fit of V to a/t and a/c. However, the results demonstrate that it is

possible to employ average (or perhaps bounding) values of V and generate relatively accurate Jp
solutions, especially at the deepest point of the crack.

Further details of the development and verification of all the RSM solutions for SC01, CC01,

and EC01 are given in Appendix K, the User's Manual for the NASGRO elastic-plastic fracture

mechanics modules. Included in Appendix K are extensive tables of V and normalized optimum

yield loads, along with graphical representations of all verifications, and a table showing limits of

applicability (both geometric and material) of all J solutions in NASGRO.

2.3.2 Cracks at Stress Concentrations

Cracks at stress concentrations are another important class of elastic-plastic fracture

mechanics problems, since the geometric discontinuity may substantially elevate the local stresses

and may even introduce plastic enclaves in the uncracked body.

There are only two known sets of J solutions available for cracks emanating from stress

concentrating features, and both are for defects at round holes. Sumpter (1973) presented graphical

J values for symmetric defects at a hole under uniform uniaxial nominal stressing in a non-work

hardening material. Results were given for ratios of defect depth to hole radius, a/R, of 0.05, 0.1,

and 1. The EPRI handbooks (Kumar, German, and Shih, 1981) included J solutions in the usual

EPRI parametric form for a single defect emanating from a hole subjected to biaxial nominal

stressing, where the ratio of the stress components parallel and perpendicular to the plane of the

defect is 0.5. Results were given for a/R ratios of 0.125, 0.25, 0.5, 0.75, and 1, and strain hardening
exponents of 1, 2, 3, and 5.

2.3.2.1 Finite Element Solutions

In order to support the development and validation of a general reference solution method

for cracks at stress concentrations, a set of J solutions were generated using the elastic-plastic finite

element method. These FE solutions were developed under the companion contract on multiple

cycle proof testing (MCPT), not the current contract, since the elastic-plastic fracture mechanics

behavior of cracks at stress concentrations was a particularly significant problem for the assessment

of MCPT. A more detailed description of the FE methods and results is given in the MCPT final

report (McClung et al., 1996b). For convenience, a short summary is given here.
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Threedoubleedgenotch geometries under plane stress tensile loading were considered in

the investigation, corresponding to K, values of 4.29, 6.43, and 8.57 where

stress at notch
K t = (2.17)

gross section stress

Corresponding values of D/R were 2.41, 6.2, and 11.6. Here, b is half the width of the plate and R

is the radius of the semi-circular notch tip. The relationships between d, a, R, D, and b, are shown

schematically in Figure 2.2. The notches extended 30% across the section (D = 0.3b = 1.5 inch,

where b = 5 inch) and had root radii of 0.622 inch, 0.2425 inch, and 0.129 inch.

The finite element analyses were first verified under linear elastic conditions by comparison

with known solutions. Then the fully plastic component of J, Jp, was calculated for various crack

depths and strain hardening exponents, n, assuming a Ramberg-Osgood stress-strain law (Eqn. 2.3)

with a characteristic yield stress Oo = 60 ksi and Young's Modulus E = 30,000 ksi. The constant

_t = 100 was chosen to have a very high value in order to induce high levels of plasticity at relatively

low stress levels. Values ofn = 1, 3, 5, 10, and 15.were used in the analysis, and for each value the

applied load, P, was incremented in the computations until JJJ < 0.0005 (where Jc is the elastic

component of J), which ensured that the fully plastic solution had been reached. Following the EPRI

handbook (Kumar, German, and Shih, 1981) form for double edge cracked plates (DECP), Jp was

expressed in the form

(a D) IP_n+1Jp : _ - Je)-" {_(IoEoChl "_',/1, [_j (2.18)

so that the EPRI J solutions would be recovered at relatively large d values (d > 0.5R) when the

notch plus crack could be represented to a good approximation as a crack of effective depth,

a = D + d subjected to the nominal stress. In this equation, P is the applied load, Po is a

characteristic yield load per unit breadth of plate given by

4
= _CO ° (2.19)

c = b - a, and hl(alb,n, D/R) is a function whose values were derived from the FE results. At large

d values, h_ (a/b, n, D/R) becomes independent of D/R, and the hi values tabulated in the EPRI

handbook for the double edge cracked plate were approximately recovered. These results showed

that, as in the linear elastic case, the effect of the notch is limited to crack depths, d, that are less than

about half the root radius, R, of the notch.
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Figure 2.2. Schematic showing geometrical relationship between notch depth (D), notch root

radius (R), crack depth (d), notch plus crack depth (a), and half plate width (b)
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2.3.2.2 Reference Stress Solutions

A new J estimation method was developed that combines the scheme adopted by EPRI and

used in the elastic-plastic handbooks, with the reference stress method (RSM).

In the new scheme, hereafter referred to as the modified RSM, first order plasticity effects

are included in J via a first order plastically corrected value for the linear elastic solution, Je. This

insures that the correct linear elastic limit is recovered by the scheme.

The fully plastic contribution to J, Jp is evaluated using the RSM. For the purposes of

validating the approach, the optimized RSM is employed. In this method, a yield load, Po', and

structural parameter, V(a/b,D/R), are derived from finite element solutions for Jp. (in the present

instance, the Jp solutions were available from the new FE solutions and the EPRI handbooks.) The

values of Po° and V(a/b,D/R) were chosen so as to optimize the fit of the RSM estimate of Jp to the

finite element solutions for a range of n values. This approach ensured that the correct fully plastic

limit is recovered by the scheme.

Note that in general, the values of Po" and V(a/b,D/R) are not known a priori in the absence

of appropriate finite element solutions for Jp, Po" is often approximated by Po, and V(a/b,D/R) is

assumed to have the value of unity. Using the optimized approach provides an accurate

representation of the fully plastic solution, enabling the accuracy of the modified RSM to be

explicitly investigated in the important elastic-plastic regime which interpolates between linear

elastic and fully plastic behavior.

The optimized RSM expression for Jp used here was

Jp = Je(d) V(alb,DIR)
Ee._

Oref

(2.20)

where e_ is the plastic component of the reference strain which, for Ramberg-Osgood materials,

is given by

(2.21)

and

P
Oref . o (2.22)

P
0
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Thetotal J estimate was then written as

J = J e(d + (_* ry) + Je(d) V(a/b,D/R)
Oref

(2.23)

where

(2.24)

The new method was verified through detailed comparison with both the EPRI and new FE

solutions. Agreement was excellent for all the crack depths analyzed (0.1194 _ d/'R < 0.6431) and

at all load levels.

In principle, this new estimation method for cracks at stress concentrators should be

applicable to any notched geometry for which a K solution is available, along with a Jp solution for

the cracked geometry in the absence of the notch. The geometric limitations of the new J solution

for the crack at a notch would be the same as the limitations of the constituent K and Jp solutions.

The reference stress formulation would permit application of the solution for Ramberg-Osgood

materials with any n > 1, and ultimately for materials with other stress-strain relationships.

However, specific validity limits for specific solutions to be developed in the future would need to

be established through suitable verification analyses.

Further details of the new J estimation method for cracks at notches, along with extensive

documentation of the verification studies, are given in Appendix D.

2.3.3 Reference Stress Solutions for Through Cracks in Plates

Finite element J solutions were available in the EPRI handbook (Kumar et al., 1981) for the

through crack at the center of a finite plate (NASGRO designation TC01) under uniform tension for

plane strain and plane stress, and for the through crack at the edge of a finite plate (NASGRO

designation TC02) under uniform tension or bending for plane strain and plane stress. In order to

increase the generality of the solutions for these geometries, optimized reference stress solutions

were also derived from the finite element solutions.

. . . . RSM

The reference stress solutions for the plastic J term, Jp , took the following general forms:

TC01 with b=WI2 and TC02 under tension with b=-W:
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n-I

(2.25)

TC02 under bending with b=W:

n-I

(2.26)

Here Wis the plate width, and the crack size is 2c for TC01 and c for TC02. The optimized

yield loads, Po or Mo', and the structural parameter, V, were derived from the EPRI finite element

results for different strain hardening exponents, but are themselves dependent on geometrical

parameters only and are independent of the strain hardening exponent. Discrete values of the

optimized yield loads and V's are given in Appendix K. Appendix K also documents the

verification of the reference stress solutions by direct comparison with the established EPRI finite

element results.

These new RSM solutions share the same geometric limitations as the EPRI solutions from

which they were derived (see Table 15 in Appendix K), but may be employed with larger strain

hardening values than the n = 20 upper bound of the EPRI solutions. For Ramberg-Osgood materials

with n < 20, the RSM and EPRI solutions should give nearly identical results. The primary

advantage of the RSM formulation is that it permits future extension to materials that do not follow

a Ramberg-Osgood stress-strain equation.

2.4 Estimation Methods for Combined Mechanical Loading

In the linear elastic regime, K due to combined mechanical loading (e.g., tension + bending)

can be easily computed by summing the independent K values calculated for the loads acting

separately. In the nonlinear plastic regime, however, this linear superposition does not hold for the

computation of J under combined mechanical loading. No rigorous procedure to perform this

combination was previously available.

An approximate method has now been developed to estimate J for two simultaneously

applied mechanical loads, given that J solutions are available for the two loads acting separately.

This combined J solution can be expressed in terms of the linear elastic component of J for the

combined loading, and a material dependent function of an appropriate combined yield load. The

latter is called the optimum yield load, and represents the load to cause net-section yielding of a

defective structure of non-strain hardening material. The derivation of J for the combined loading

is thus reduced to finding an expression for the optimum combined yield load. The concept of the

optimum yield load is discussed further in Chell et al. (1997b).
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Themethodologyhasbeenvalidatedagainstcomputedfully plasticJ solutions for single

edge cracked plates (Kumar et al., 1984a), and cylinders containing circumferential through-wall

defects (Kumar and German, 1988), simultaneously subjected to tensile forces and pure bending

moments. The agreement between the approximate solutions and the computed J values is generally

good, as summarized in Figure 2.3. The accuracy of the method is dependent on the accuracy of the

combined yield load chosen as an interpolation function between the two extreme loading conditions

corresponding to pure tension and pure bend. The developed methodology has the added benefit of

allowing solutions obtained for Ramberg-Osgood materials to be extended to materials that display
arbitrary stress-strain behavior.

In principle, this new estimation method for cracks under combined mechanical loading

should be applicable to any geometry for which J solutions are available for the two loads acting

separately, and for which a combined yield load solution can be formulated. The geometric

limitations for the new solutions would be determined by the minimum capabilities of the individual

J solutions and combined yield load solution. The reference stress formulation would permit

application of the solution for Ramberg-Osgood materials with any n > 1, and ultimately for

materials with other stress-strain relationships. However, specific validity limits for specific

solutions to be developed in the future would need to be established through suitable verification

analyses.

More complete details of the estimation method and its validation are given in Appendix E.

This appendix also includes further background on the optimum yield load concept.

2.5 Estimation Methods for Combined Primary and Secondary Loading

Procedures for determining J for primary (mechanical) loads are now relatively well-

established, as discussed in the preceding sections. However, parallel procedures for secondary (i.e.,

thermal, residual, displacement imposed) loads are far less advanced. This is due, in large extent,

to the variety of such loads, which makes a general characterization of them (e.g., a handbook

approach) difficult, if not impossible. Furthermore, these secondary loads can have a significantly

different and much more complex effect on a total J solution than do primary loads, and their effect

is also dependent on the manner in which they are combined with primary loads.

Four major methods for estimating J for combined primary and secondary loads have been

forwarded previously: the EPRI handbook approach (Kumar et al., 1984) which incorporates the

effect of secondary loading through a first-order plasticity correction to the elastic component of J;

the R6 structural integrity procedure (Milne et al., 1986) which includes a term characterizing the

interaction between primary and secondary loads; the method of Chell (1986) which combines a

first-order plasticity correction with the RSM approach; and a proposed modification to the R6

procedure (Budden, 1989) based on the Neuber principle. None of these methods are totally

satisfactory as they stand.
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A new procedure has been developed based on improvements in the Chell approach. This

procedure allows credit to be taken for situations where stress relaxation occurs due to plastic

deformation in the defect free structure, although it is not generally applicable to situations where

significant elastic follow-up occurs. The latter problem can be addressed by simulating the

secondary loading with imposed displacements, and a method of solution for this approach has been

outlined. The method has been validated against available FE solutions for combined mechanical-

thermal loading. Further work is needed to validate certain aspects of the method. Of particular

concern are J estimates when the secondary load produces a plastic enclave large in size compared

to the crack. The recommended procedure is not applicable to cases where it is known that load

history effects are important (the order of application of primary and secondary loads). The method

assumes that the primary load is superimposed on an existing secondary load.

Appendix F contains a detailed discussion of the four previous methods and the new

improved procedure.

2.6 Estimation Methods for Multiaxial Loading

As noted earlier, most existing J solutions, are limited to simple uniaxiai load configurations

such as pure tension or bending. However, multiaxial stress states occur frequently in reusable

aerospace propulsion systems. Solution of the complete muitiaxial problem was beyond the scope

of the current contract, but some simple estimation techniques have been developed and evaluated.

A more complete discussion of these methods is available in Appendix G.

The approach is based on an approximation scheme for infinite bodies first introduced by He

and Hutchinson (1981 ) and later amplified by Dowling (1987). For a stress, S, applied remote from

the crack in a direction normal to the plane of the crack, and remotely applied transverse stresses,

T, normal to the axis of stress S, the multiaxial, fully plastic J solution can be written in the general
form

  0o0a 0/ 0) (2.27)

where o 0, c0, and n are material constants in the Ramberg-Osgood constitutive relationship, Eqn 2.7.

The effects of multiaxiality are captured in the factor h o. For plane strain, h 0 is given by

h 0 = h o {11 - ZI}"-_ (2.28)

where h' 0 is the uniaxial solution and the biaxiality ratio _ = T/S. For plane stress, the form is
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/ {_/1_ _,+_ 2}n-1h0 = h0 (2.29)

This approach has been validated against the rigorous numerical results of He (1986) for

through-thickness cracks in infinite plates under both plane stress and plane strain at biaxiality ratios

ranging from - 1 to +2. Quantitative agreement is generally excellent for _. values between - 1 and

+1, which is the range of practical importance.

The only available set of biaxial J results for cracks in finite bodies is that of Jansson (1986),

who published fully plastic plane stress FE solutions for biaxially-loaded center-cracked plates at

_. = ±1, _q3.5, and 0. Agreement of the simple estimation scheme with the Jansson results is

reasonably good but gradually deteriorates for deeper cracks (a/t > 0.5), especially with larger strain

hardening exponents (n _ 13). This crack depth effect is largely due to rigid boundary displacement

constraints imposed by Jansson which cannot be emulated by the simple estimation scheme.

Estimates were found to be conservative (higher than FE values) for X = ± 1.0, 0.0, and -0.5, but not

_. = +0.5.

This new estimation method for J under multiaxial loads is currently limited to two-

dimensional geometries with Mode I through cracks for which J solutions under uniaxial loading are

available. The accuracy for large cracks in finite geometries, especially under significant levels of

structural constraint, cannot be assured without further validation. The geometric and material limits

of applicability of specific solutions would also be bounded by the geometric and material limits of

the constituent uniaxial solution, and the method is currently limited to Ramberg-Osgood materials.
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3. DEVELOPMENT AND VERIFICATION OF

PRACTICAL CRACK GROWTH ALGORITHMS

3.1 Introduction

The role of the practical crack growth algorithms is to move from a general calculation of J

for some component and crack geometry to a specific quantitative prediction of fatigue crack growth

life under various conditions; i.e., to estimate properly the accumulation of relevant damage. These

algorithms must be sufficiently simple to admit incorporation into an efficient computer code for

general purpose fatigue crack growth analysis and must be sufficiently robust to address accurately

a wide range of components, materials, and loading conditions.

Much less research has been conducted on fatigue crack growth under elastic-plastic

conditions than under small-scale yielding (SSY) conditions, where AK is generally acceptable as

the correlating parameter for crack growth rates. As a result, relatively few practical algorithms have

been proposed for EPFCG, and much less background information is available to support the

development of these algorithms. The algorithms presented in this report are based on the best

available analytical and experimental data, but it must be emphasized that this data base is limited

in size and scope for many problems. Existing data were employed wherever possible, and some

new analytical and experimental investigations were conducted as needed to address critical needs

for new information. The technical challenge is a large one, and comprehensive answers to all

important questions are far beyond the scope of any single research program.

It should be noted that the algorithms presented in this report have been derived and

assembled using a modular approach wherever possible. As new insights or data become available,

or as engineering experience identifies significant shortcomings associated with certain approaches,

individual algorithms can be replaced by revised versions.

Crack growth algorithms for SSY conditions have already been proposed, and in some cases

also validated, for some of the problems addressed here. In some cases, these SSY algorithms can

be applied to EPFCG conditions with equal or at least acceptable accuracy. In some cases, SSY

algorithms require modifications to enable their extension into the EPFCG regime. In other cases,

SSY algorithms (especially those with a predominantly empirical basis) are known to predict the

wrong trends under EPFCG conditions, and must be replaced entirely.

The goal of this research program, and of this report, has been to lay out a general framework

to solve the comprehensive EPFCG problem, even if all relevant issues are not yet resolved. The

intended approach is relatively exhaustive, attempting to identify and mention most key issues, and

to propose at least one approach to each significant t_hnical challenge. Limitations and important

unknowns are identified where possible, and needs/priorities for future research are highlighted.

The basic engineering philosophy which undergirds most of the practical crack growth

algorithms for EPFCG is that accurate predictions of crack growth rates due to fatigue crack growth

mechanisms will result from an accurate characterization of the effective range of the J-integral,
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AJ,u. The specific technical arguments supporting this philosophy follow in subsequent sections.

In practice, this implies that accurate crack growth algorithms depend on three basic calculations or

characterizations: (1) an accurate estimate of the (monotonic) J-integral for the specific loads,

material, and geometry (discussed at some length in Chapter 2); (2) an accurate estimate of crack

closure behavior for the specific loads, material, and geometry; and (3) an accurate means of

incorporating stress and strain ranges and closure information into the cyclic EPFCG parameter,

AJ, u. The primary exceptions to this engineering approach are those applications in which

alternative crack growth mechanisms come into play, such as ductile tearing near instability, or

creep-fatigue mechanisms at appropriate temperatures and times.

Characterization of the primitive parameters-loads, materials, and geometries-is addressed

to only a limited extent in this report. The general task of component stress analysis is clearly

beyond the scope of this contract, although some recommendations for the characterization of local

stress or strain fields are given where appropriate. The task of identifying the appropriate component

and crack geometry for a given application is also left to the reader. In general, the correlating

parameters J and K are given for idealized geometries. Some assistance is given for the task of

identifying or characterizing relevant material properties. While specific data bases or test methods

are not addressed, material property requirements are clearly identified, and recommendations are

forwarded for estimating those necessary properties that may not be readily available from data

which are more likely available.

The presentation and discussion of crack growth algorithms that follows begins with remarks

about the construction of the effective cyclic range of the J-integral, Ajar, from a monotonic J

estimation form. Included here are discussions of the rationale and proper manner for the

incorporation of closure information into the parameter estimate. Detailed descriptions of different

analytical methods to quantify specific crack closure behavior in different situations are then

presented. Subsequent discussions address specific algorithms for crack instability and the

estimation of material properties, followed by general discussions of issues associated with load

interaction effects and creep-fatigue effects.

3.2 Formulation of Closure-Corrected AJ

As noted in Chapter 1, the correct mathematical definition of zlJ is not J=_ - J=i°, but is

instead given by replacing the stress, strain, traction, and displacement quantities in the original

integral equation for J with their respective ranges. Following this argument, it is possible to derive

an engineering expression for AJ from the monotonic J equations presented in Chapter 2 by

appropriately replacing single values of the load, stress, and strain with their respective ranges.

In doing this, however, it is essential to observe the differences between monotonic and

cyclic constitutive relationships. According to Masing's hypothesis, the cyclic (hysteretic)

stress-strain relationship can be obtained approximately for materials that exhibit symmetric

behavior in tension and compression by "doubling" the monotonic stress-strain curve (Bannantine,

Comer, and Handrock 1990). The original monotonic constitutive equations may be used to describe

cyclic hysteretic behavior if the original single values of stress and strain are replaced by the stress
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and strain amplitudes. For a Ramberg-Osgood material, for example, the cyclic constitutive law can
be written as

2e 0 200
(3.1)

Note that this constitutive relationship may change further if the material cyclically hardens or

softens. In this case, the functional form of Eqn 3.1 stays the same, but the values of the Ramberg-

Osgood constants are replaced by their stable cyclic counterparts a', Oo', Co', and n'.

The other critical difference between the monotonic J expression and the cyclic AJ

expression is the influence of crack closure. Dowling and Begley (1976) and Dowling (1976), in

their groundbreaking investigations of AJ as a correlating parameter for EPFCG, recognized that the

fatigue crack was closed during a portion of the loading cycle. The significant impact of this crack

closure on the energy associated with crack extension was immediately obvious from the load vs.

load line displacement data. Since Dowling and Begley were measuring AJ, according to an energy

definition, from the area under the load-displacement curve (Eqn 1.7), they recognized the need to

identify the crack closure level and incorporate this information into their estimate of AJ. Dowling

(1977) did not account for crack closure in his first AJ estimates for small semi-elliptical surface

cracks in smooth, axial specimens only because he was unable to identify a crack opening level from

remote hysteresis loops or low-power optical microscopy.

Subsequent researchers have been remarkably strong in their agreement that crack closure

is an important element of accurate AJ estimates. For example, of the thirty-three papers cited in

Section 1.2.3 to illustrate the breadth of research experience with AJ, twenty-three papers

incorporated crack closure information into their calculations of AJ. Most of the ten papers that

omitted closure information from AJ did so only because their authors were unable to detect or

measure closure levels for very small cracks, and chose instead to assume conservatively that the

crack was open throughout the fatigue cycle. This overwhelming majority is all the more remarkable

in view of the considerable controversy in the area of SSY fatigue crack growth studies regarding

the existence and utility of crack closure as a characterizing feature of fatigue cracking in that

regime.

Concerns have been raised previously about whether crack closure effects compromise the

path-independence of AJ. The work of Lamba (1975), Wuthrich (1982), and Tanaka (1983) in

demonstrating the path-independence of a properly-defined AJ was cited in Chapter 1, but those

authors did not consider the closure phenomenon, and it is not clear how to include closure

considerations in a rigorous proof of path-independence. However, Kubo et al. (1989) have

performed an important numerical analysis of AJ with an elastic-plastic finite element simulation

of a growing fatigue crack. They calculated AJ numerically and demonstrated path-independence

when the crack opening point was employed as a reference point for the evaluation. Kubo et al. also

showed that AJ based on the crack opening load appropriately characterized the range of the stress,

strain, and displacement in the vicinity of the crack tip.
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Thecitedauthorsdid employ a variety of methods to incorporate closure into their parameter

estimates. The approach adopted here is illustrated in Figure 3.1, which shows the influence of crack

closure on the effective hysteresis loop energy: the effective elastic and plastic strain energies are

denoted in the figure by the cross-hatched areas. This approach is conceptually consistent with the

fundamental definition of J as a measure of energy. The elastic strain energy in the absence of

closure would be equal to the product V2AoAe c. The effective elastic strain energy associated with

the hysteresis loop is then given by ½(.fiAoAec, where U is the effective stress intensity factor range

ratio that characterizes crack closure

U = Kmax - K°_n

Kma _ - Kmi n

(3.2)

Here K_, is the applied stress intensity factor at which the crack first becomes fully open during the

load-increasing portion of the cycle, and Kin, and K=a, are the maximum and minimum stress

intensity factors in the cycle, respectively. The plastic strain energy in the absence of closure is a

large fraction of the product AOAep; for an elastic-perfectly plastic material it would be exactly equal

to that simple product. The effective plastic strain energy, taking closure into account, is then

approximately equal to UAOAep: the height of the hysteresis loop is decreased by the factor U,

whereas the width of the hysteresis loop is roughly unchanged for typical crack opening stresses.

Therefore, the crack closure factor U should have an impact on both the elastic and plastic terms of

AJ, but not the same impact on both terms.

Returning now to the fundamental definition of the cyclic AJ as the J-integral with single

values of stresses, strains, and loads replaced by their ranges, it is possible to write simple equations

for AJ by analogy to Eqns 2.1 through 2.14 for the monotonic J.

The general engineering expression for the closure-corrected cyclic rid, therefore, comprises

elastic and plastic components where

aJ,,,(c,Ae)- AJ:(c,,ap)+aJ:(c,ap) (3.3)

The first-order plastic corrected value of the effective elastic AJ c is related directly to the effective

stress intensity factor range by the expression

,,J:(c,,,p)=
E /

(3.4)

Note that this formulation predicts a U 2 influence of closure on the elastic term, consistent with the

energy-based argument of Figure 3.1.
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corresponding estimates of effective stress and strain ranges.
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A
The effective crack length for cyclic loading, c e (here the adjective "effective" indicates a

plasticity-modified crack length, not the influence of crack closure), is now given by

a + aAryc e =C (3.5)

where the cyclic crack tip plastic zone size correction is determined by the terms _a and Ary that are

defined respectively as

(3.6)

Ary= _ 20o )
(3.7)

Note that the effective crack length is calculated on the basis of the cyclic plastic zone size rather

than the monotonic plastic zone size, and that the cyclic plastic zone size is computed on the basis

of the cyclic yield stress 20 o, consistent with the original formulation of Rice (1967). This is all

consistent with the approach of Newman (1992a), who investigated the growth of small fatigue

cracks under intermediate scale yielding. Newman suggested that the effective crack length was best

given by

where Ary is given by

,, ary
Ce =C +_

4
(3.8)

0.9)

and the monotonic plastic zone size ry is calculated using the maximum applied stress intensity
factor.

Newman is correct that crack closure has a direct influence on the size of the cyclic plastic

zone (McClung, 199 lb), although the actual influence is slightly more complex than his simplified

expression, which can underestimate Ary. However, for simplicity, the effect of closure to reduce

the plastic zone size has been conservatively neglected in the present formulation. But this

simplification is not particularly significant. Dowling (1987) has shown that the effective crack

length correction term is numerically significant in a J solution only for a narrow range of the

intermediate scale yielding regime. In small-scale yielding, Ary << a, and the correction is minimal.

In large-scale yielding, Jp >> Jc, and so a small correction in the elastic term is not significant. In the

intermediate scale yielding regime, if AK/(2o0) is large enough to cause a potentially significant

crack length correction, then the crack opening level is probably relatively close to zero, so that the
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effectof theNewman(1-Kope,/K,,_)2termis still relativelysmall. For increased accuracy (reduced

conservatism), however, it may be useful to investigate this correction in more detail in future work.

In general, the Newman formulation for the effective crack length, Eqn 3.8, gives an

apparently smaller crack length correction than the formulation in the present methodology.

However, his formulation was based on a Dugdale estimate of the plastic zone size, which gives a

slightly larger value than the Irwin-type estimate employed in the present methodology.

By analogy with the monotonic fully-plastic component of J (Eqn 2.6), the fully-plastic

component of AJe_ can be written in the EPRI scheme as

c n Ap
n+l

(3.1o)

Note the multiplier of two on the yield load and the leading factor of four on the entire expression;

both of these factors arise from the cyclic (hysteretic) doubling of the stress-strain curve (Eqn 3.1).

Note, also, the closure correction by the simple multiplier U (not 0 `2 as in the elastic term). The

correctness of this choice is perhaps more obvious in the context of an equivalent but simpler version

of the EPRI fully-plastic scheme. The original normalizations of He and Hutchinson (1981 ) were

written in the general form

Jp = of.t, a h I (3.11)

where the subscripts p have been added to clarify that He and Hutchinson were treating a fully plastic

material. The cyclic analog of Eqn 3.11 (replacing single values by their ranges) is the simple form

AJp = AoA_ah I (3.12)

The energy considerations associated with Figure 3.1 indicated that the effective value of the plastic

component should then be written

AJp ff = UAOAepa h 1 (3.13)

This equation can be expanded by expressing the cyclic plastic strain in terms of the cyclic stress for

a cyclic Ramberg-Osgood material to give the general form

)n+lAJPff = 4Ut_°°e° a hl _o )
(3.14)
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which is genericallythesameform as Eqn (3.10).

In order to preserve this same functional dependence of AJpcn on U in reference stress

estimates for AJpon, we must write the form

Note here that U is not included in the AJ_ term, because that would introduce an inappropriate U 2

factor on AJpen. This RSM formulation can also be easily extended to materials with arbitrary stress-

strain behavior, being careful to observe the cyclic hysteretic doubling of whatever constitutive

relationship is employed.

3.3 Algorithms to Estimate Crack Opening Stresses

The earliest characterizations of crack opening stresses were based on direct experimental

measurements, beginning with the original investigations of Elber (1970, 1971). Many test data have

been reported for closure under SSY conditions, but relatively few experimental results are available

under elastic-plastic conditions. Dowling and Begley (1976) and Mowbray (1979), in their early

work on A J, estimated closure levels from the cusp in the unloading line of the load-displacement

curve. When cracks are small relative to overall specimen dimensions, which is typically the case

for practical EPFCG problems, no global compliance changes are visible, and this technique fails.

McClung and Sehitoglu (1988) measured closure in small edge cracks under elastic-plastic cycling

with a high-magnification replica technique. Iyyer and Dowling (1986), Rie and Schubert (1987),

and Hatanaka et al. (1987a, 1987b) attempted to measure closure for surface cracks in low-cycle

fatigue specimens via low-magnification inspection of the crack opening displacements at the

specimen surface, but this technique is disadvantaged by several difficulties (McClung and

Sehitoglu, 1991).

A more satisfying approach to determining crack opening stresses in the context of practical

crack growth algorithms is based on rigorous mechanics analyses of the closure phenomenon. The

limited experimental data available, although insufficient to construct empirical closure models, is

nonetheless important as a means of verifying the mechanics models.

The first mechanics models of closure were all generally based on a Dugdale (1960) or

Bilby-Cottreil-Swinden (1963) strip-yield model that has been modified to leave material in the wake

of the advancing crack tip. These include the early efforts of Dill and Saff (1976), Shiratori et al.

(1977), Fuhring and Seeger (1979), and Budiansky and Hutchinson (1978); the slightly later and

more extensive work of Newman (1981, 1982), and the more recent contributions of Sehitoglu

(1985a, 1985b) and Ibrahim et al. (1986). The first significant research in elastic-plastic finite

element (FE) modeling of growing fatigue cracks was conducted independently by Newman (1976)

and Ohji et al. (1974) in the early 1970s, and in the ensuing twenty years the FE method has been
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appliedto studyplasticity-inducedcrackclosurein overseventyadditionalpublications(McClung
andSehitoglu,1989a;McClung,1992).Limited studiesof closurebasedon theboundaryelement
method(CruseandRaveendra,1988)andsuperdislocationmodels(KanninenandAtkinson,1980)
arealsoavailable.

It is not thepurposeof this report to compare the results of all the various closure models

exhaustively. Some comparisons, along with critical discussions of the various modeling issues

which impact on the accuracy and validity of the results, are available elsewhere (McClung and

Sehitoglu, 1989a). While the specific numerical results vary from model to model, the general trends

of crack opening stresses with various parameters are nearly always similar, and those models that

satisfy certain modeling criteria are usually in reasonably good quantitative agreement.

Disagreements in U rarely exceed ten or twenty percent, which is usually a negligible contribution

to the total uncertainty in crack growth rate.

Newman has exercised his modified-Dugdale closure model, available to the general public

as the FASTRAN-II computer code (Newman, 1992b), to develop a simple closed-form equation

(Newman, 1984) which gives crack opening stresses as a function of applied stress, stress ratio, and

crack-tip constraint. This equation is written as

OopenJOmax -" A 0 + AIR + A2R2 + A 3R 3 for R _>_0 (3.16)

Oopen/Om_ x = A o + AIR for -2 < R < 0 (3.17)

when Oo_n > Cram. The coefficients are

A 0 = (0.825- 0.34txc + 0.05tx 2) [COS(rCOmax/2Oflow)] ''ac (3.18)

A, = (0.415-O.0711Xc)Omax/Oflow (3.19)

A 2 = 1 - A 0 A] - A 3 ((3.20)

A 3 = 2A 0 + A] - 1 (3.21)

Here ct¢is the constraint factor (the subscript has been added here to avoid confusion with the similar

symbol in the Ramberg-Osgood equation). For pure plane stress conditions, cxc is set equal to 1.0.

The pure plane strain limit was originally identified by Newman as ac = 3.0, but smaller values of

ccc (e.g., 1.73) (McClintock and Irwin, 1965) have also been chosen to represent plane strain in some

applications. The flow stress Onow is originally the yield stress for the Dugdale perfectly-plastic
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material,but it hasbeenre-interpretedastheaverageof the uniaxial yield (o.) and ultimate (o,lt)

strengths in order to account approximately for strain hardening behavior. Suggestions on alternative

means of estimating oeow for strain hardening materials, or for materials that cyclically harden or

soften, in the face of limited material property data axe discussed in Section 3.5.2.

This equation has been chosen as the primary means of estimating crack closure behavior for

the practical EPFCG crack growth algorithms, for the following reasons. First of all, only Newman

(1984) and Ibrahim et al. (1986) have derived such a simple closed-form equation. All other closure

analyses are available only as graphical or tabular results, and for any given model, typically only

limited results are available. Development of any new set of simple equations to predict closure

would not only be a time-consuming exercise, it would likely not be supported by a sufficiently

broad data base. The Ibrahim et al. equation gives generally similar results to the Newman equation

under some conditions, but it considers only plane stress, not plane strain or any other constraint

state.

The Newman equation gives satisfactory agreement with the results of more advanced

closure models, such as FE models, and it is nearly always conservative if not highly accurate. It

should be noted that the original Newman model actually addresses only central cracks in infinite,

elastic-perfectly plastic bodies under pure mode I loading, and the influence of constraint is

addressed only approximately. However, systematic comparisons with detailed FE closure results

have confirmed that the Newman model agrees relatively well under those limited conditions. More

important, these comparisons have indicated how the Newman equation can be interpreted and

applied to predict closure levels satisfactorily under a much wider range of load, geometry, and

material conditions. Some of these comparisons are shown in conjunction with later discussions.

In short, the Newman equation has been adopted because it is robust (it addresses a wide

variety of crack growth problems), it is simple (the closed-form equation permits a rapid, direct

computation of crack opening stress), it is accurate (it has shown acceptable agreement with relevant

experimental and advanced numerical results), and it is generally conservative under those

conditions when its exact accuracy is less certain.

It should be noted that crack closure can arise from other sources besides crack wake

plasticity, such as crack surface roughness and crack surface oxides (Suresh, 1991). However,

roughness and oxide effects are generally more significant in the near-threshold regime and for

cracks that are microstructurally-small. Crack wake plasticity and the associated residual stresses

ahead of the crack tip are generally the dominant closure mechanism in the Pads regime, especially

for large amplitude fatigue cycles that can crush asperities or oxide debris on the crack surface and

hence reduce their contributions to closure. For these reasons, modeling of crack closure in the

current methodology is limited to plasticity-induced phenomena. Fortunately, this closure

mechanism is by far the most mature from the modeling perspective. However, it should be

emphasized that the Newman approach adopted here may not be accurate in the SSY near-threshold

regime when other closure mechanisms come into play.
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3.3.1. Effects of Maximum Stress, Stress Ratio, and Stress State

The predictions of the Newman equation for a variety of applied stresses, stress ratios, and

stress states are illustrated in Figures 3.2 and 3.3. The figures show, first of all, that normalized

crack opening stresses are typically a strong function of normalized maximum stress. This result is

particularly significant for EPFCG, because Omax/OnoW values under elastic-plastic conditions are

typically much larger than under small-scale yielding conditions. A failure to recognize and address

this effect can lead to nonconservative crack growth rate predictions.

This important result is consistent with a wealth of other experimental, analytical, and

numerical evidence for cracked configurations which are outside the near-threshold regime and the

near-net-section-yielding regime (McClung, 1991c). These two alternative regimes are discussed

later in the report. Agreement between the Newman equations and recent FE closure results for a

low-hardening plane stress material at two stress ratios is shown in Figure 3.4. The R = 0

comparison is a good example of a situation in which the Newman model is conservative when its

apparent accuracy may be lower.

One of the "limitations" of the original Newman model is that the Dugdale crack upon which

it is based is a small-scale yielding model without strict applicability to general elastic-plastic

behavior. In addition, the FASTRAN computer code experiences numerical difficulties above

Omax/Ono,_values around 0.7, and the closed-form equation was derived from results between

Omax]Oflow = 0.2 and 0.8. In order to solve a complete range of EPFCG problems, however, it must

be possible to accommodate larger values of the normalized maximum stress.

Fortunately, the Newman equation is sufficiently smooth and well-behaved that it also gives

good predictions at higher values of o,,_JOnow. Note in Figure 3.4 the good agreement between

simple equation and FE results out to maximum stresses approaching the flow stress, especially for

the significant fully-reversed condition. The Newman equation also gives the correct limiting result

that U = 1 for R _ 0 whenever the maximum stress approaches or exceeds the flow stress. Another

confirmation of the validity of this "extrapolation" is the excellent agreement between the Newman

equation and actual experimental measurements of crack closure at large maximum stresses

(McClung and Sehitoglu, 1988), as shown in Figure 3.5. The experimental and model material here

was a 1026 steel with significant strain hardening (the FE model directly incorporated a linear

hardening constitutive law with large slope), so the comparison also confirms the validity of the

Onow = (Oys + Oult)/2 approach to accommodating strain hardening with the Newman model. This is

one of the few conditions where the Newman model predicts higher crack opening levels than the

FE model, but it is interesting to note that the Newman model agrees more closely with the

experimental data.

Therefore, it appears to be reasonable to apply the Newman equation to higher maximum

stresses, not because the original Newman model is strictly valid under those conditions, but because

the derived equation agrees well with comparable experimental and numerical results in that

expanded regime.
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In a similarvein, theNewmanequationwas limited to R a - 1 in its original derivation and

publication. The equation appears to be well-behaved for slightly lower stress ratios (more

negative), however, so small extrapolations are probably reasonable. Very few experimental data

are available for comparison in this range, but some recent crack growth rate studies have suggested

that the Newman equation predicts the correct trends at R = - 2 (Bloom, 1994). Note that at higher

positive stress ratios, the Newman model correctly indicates that crack closure occurs less and less

(U approaches 1.0 more quickly).

As the Newman results indicate, crack opening stresses are typically lower in plane strain

(higher constraint) than in plane stress at low and intermediate values of Om,x/Onow.At slightly higher

OmJOt_, values, around 0.6 to 0.8, closure levels are relatively independent of stress state. As will

be noted later, this regime is relatively common in EPFCG problems. At even higher applied

stresses, when o_, approaches onow, crack opening stresses are actually computed to be slightly

higher in plane strain than in plane stress. This somewhat surprising result has not yet been

evaluated experimentally, primarily because of the great difficulty in making any experimental

measurements of crack closure in true plane strain conditions, but the stress state trends of the

Newman model have been independently confirmed and rationalized by finite element closure

analyses (Lalor and Sehitoglu, 1988; Sun and Sehitoglu, 1992).

Quantitative estimation of crack opening stresses therefore requires an assessment of the

appropriate stress state: plane stress, plane strain, or some intermediate constraint. In the context of

the Newman modified Dugdale model, this choice is quantified in terms of the constraint factor cxc.

At least two basic approaches are possible to select the appropriate value of (xc. One

approach is to make some sort of rigorous quantitative assessment of stress state. The traditional

method for two-dimensional laboratory specimen geometries has been to compare the crack tip

plastic zone size (the width ahead of the crack tip) with the specimen thickness. Full plane strain

constraint is frequently assumed to exist (Clark, 1971; McGowan and Liu, 1980; Daiuto and

Hillberry, 1984) whenever a criterion similar to that specified in ASTM E 399 (1998) is satisfied,

where B is specimen thickness. Full plane stress conditions are typically assumed (Daiuto and

Hillberry, 1984; Shahinian, 1976;.Hertzberg and Paris, 1965) when the crack tip plastic zone width

is on the order of one-half the specimen thickness or greater

B<m (3.23)

When neither of these criteria is satisfied, partial constraint is assumed.

46



Forthree-dimensionalconfigurations,it hasbeentraditionaltoassumethatquarter-elliptical
comercracks,semi-ellipticalsurfacecracks,andelliptical embeddedcracksarecharacterizedby
planestrain in the specimeninterior, but that surfaceor comer cracks exhibit plane stress
deformationatthespecimensurface.However,thistraditionalapproachleavesopentwoquestions.
Firstof all, which"planestrain"valueof a c is most appropriate: 3.0? 1.73? Or some other value?

And second, how is constraint diminished under elastic-plastic conditions when plasticity becomes

widespread? If constraint in two-dimensional configurations decreases when the crack-tip plastic

zone size becomes large compared to the specimen thickness, how does constraint in three-

dimensional configurations change when the crack-tip plastic zone size becomes large compared to
the remaining ligament?

A second approach to selecting txc is more empirical in nature: the optimum a¢ is chosen on

the basis of which value will best correlate the current experimental fatigue crack growth rate data.

For example, ct¢ may be used as a fitting parameter to optimize the regression of FCG data at

different stress ratios. This is the approach adopted in the current NASGRO computer code.

Newman also follows this approach, although he also imposes stress state transitions as the crack

grows and the plastic zone size grows larger in comparison to specimen dimensions (Newman et al.,
1986; Newman, 1996).

In the absence of rigorous quantitative answers to the previous questions about the numerical

characterization of stress state, and for consistency with the current NASGRO approach, it appears

prudent to adopt the more empirical approach to the selection of a_. However, in the absence of

adequate experimental data (as will often be the case), it appears prudent to assign a c = 3 (full plane

strain) to surface, comer, and embedded cracks under elastic-plastic conditions. This approach

generally gives the most conservative (lowest) crack opening stresses. A constraint parameter of

0cc = 3.0 is also recommended for two-dimensional plane strain configurations, because the Newman

model with ac = 3.0 agrees most closely with the limited experimental and numerical data for plane

strain closure (McClung, Thacker, and Roy, 1991). In the absence of supporting experimental data

under elastic-plastic conditions, it does not appear prudent to impose rigorous stress state transitions

as the crack grows.

These stress state issues are investigated further in the experimental verification of the

NASGRO EPFCG module, Appendix L.

3.3.2 Effect of Specimen Geometry

The original Newman FASTRAN model and most other mechanics analyses of crack closure

have focused on the center-cracked plate under uniform tension, usually with a small ratio of crack

length to specimen width so that finite width effects were minimized (or eliminated entirely, for

infinite plate models). Systematic parameter studies of geometrical issues such as specimen

configuration or large changes in crack length were virtually non-existent. Therefore, it has not been

clear to what extent the "benchmark" center-cracked plate closure results were applicable to other

specimen or structural geometries. For example, does the same functional dependence of Oop_dCm,_

on Cma_/Onow hold, or does it somehow change for significantly different geometries?
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In order to address these issues, a series of analytical investigations utilizing a FE closure

model were conducted. The model was used to study closure at three different crack lengths for

three different specimen geometries: center-cracked plate, single-edge-cracked plate under tension,

and single-edge-cracked plate under pure bend. The details of these investigations axe summarized

in Appendix H.

The key result of these investigations, as shown in Figure 3.6, is that crack opening stresses

o,_lOm,_ are more accurately correlated by K,,JKf_o,, than by o_,JOnow, where KoJKno w is given by*

Kma x F OmaxVr_"a
(3.24)

For the center-cracked infinite plate, F = 1, and so K_IKno,, = o_Jo,ow. This implies that the

Newman equations can be used equally well to predict crack opening stresses in other specimen

geometries simply by replacing o.uJOnow in equations 3.16-3.21 with the calculated K_IKno,,. The

FE studies also showed that the Newman equation interpreted in this manner provided an accurate

or slightly conservative lower bound to nearly all FE closure results obtained. The quality of the

Km_lKno,, geometry correlation does deteriorate at larger values of K_IKn,,,,, (farther outside the

small-scale yielding regime), but the Newman equation remains a conservative estimate.

Appendix H was published as an independentjournal article in slightly modified form earlier

in the contract (McClung, 1994). This publication prompted Liu and Wu (1997) to investigate

further the effects of specimen geometry on crack closure using an extension of the Newman strip

yield closure model that incorporated a two-dimensional weight function method. They studied the

same three geometries plus one notched geometry at various stress ratios and obtained similar

results. They confirmed that KmJKnow was a successful correlating parameter, especially in the

small-scale yielding regime, slowly deteriorating outside this regime. They reported slightly stronger

correlations at R > 0 and slightly weaker correlations at R = -1.

It appears reasonable to apply this same K,_IKno,, , criterion to other specimen geometries

which have not yet been explicitly studied, in the absence of other information. This unvalidated

extension is supported by several factors. First of all, the criterion has an attractive rational

foundation: it is entirely reasonable and perhaps even expected to characterize crack tip behavior

in terms of the stress intensity factor rather than simply the nominal stress. Second, the geometries

* Note that in Figure 3.8 and some following figures, and in Appendix H, the term K_,,, is denoted as K0= o0,/ga. This

nomenclature follows from historical usage in the finite element closure analysis, where the characteristic strength
variable is o_ the intersection of the elastic and plastic lines in a bilinear stress-strain curve. For the low hardening
materials represented in these figures, o0 = on,,,, and so K0= Know.Furthern_re, in some of these figures, and throughout
Appendix H, the applied stress is denoted as S rather than o, again following historical usage, to emphasize that the
finite element stress is a nominal, far-field quantity, not the local stress in the vicinity of the crack tip.
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which have been examined directly represent an extreme range of configurations, with F values

ranging from 1.0 to 2.8 and normalized crack depths ranging from a/t = 0 to 0.5, and including both

tension and pure bend loading. Relatively few For a/t values encountered in practical situations will

exceed these values.

Of particular interest are three-dimensional geometries such as surface cracks, which are of

great significance in reusable aerospace propulsion systems and other engineering applications. For

these geometries, the F values at the maximum depth position can be as small as 0.64 for

semi-circular cracks in uniform tension (and even smaller for larger a/2c ratios), and so a Km_,/Kno w

criterion would suggest a slightly less pronounced effect of o_/Ono w on crack opening stresses.

Unfortunately, since the surface flaw is a genuinely three-dimensional geometry, rigorous closure

analyses are much more difficult and largely beyond the practical limits of current models or

computing power. Furthermore, experimental measurements of closure for these configurations are

also impractical. Therefore, this particular application of the criterion cannot be directly verified at

the present time. The criterion can be indirectly verified, however, by comparing actual

experimental FCG rate data with predictions based on these assumptions.

The use of an LEFM criterion such as K_IKa.,, (as opposed to some EPFM criterion based

on J) to characterize closure behavior seems appropriate for several reasons. First of all, verification

of the Km,,IKn_ approach (and the o,_/Ono _ approach on which it is based) has been performed well

outside the small-scale yielding regime; i.e., outside the normal region of K validity. Second, as

deformation becomes increasingly elastic-plastic and K becomes less accurate as a descriptor of the

crack tip fields, closure behavior approaches limiting conditions (e.g., no closure at R = 0), and this

limit state is satisfactorily described by the K,,JKf_o, , approach (as described in the next section).

Third, the K,,_,lKf_ow approach provides an unambiguous criterion for secondary loading conditions,

when J effects are considerably more complex.

One postscript on stress state effects is in order: As was observed earlier, the predicted crack

closure levels for all constraint conditions (¢c ranging from 1 to 3) are all relatively similar when

o,_loao_ (K,,,,,/Kno,,,) is around 0.6 to 0.8. This is roughly the range of expected Km,,,,IKno_ values for

semi-circular surface cracks when o_, approaches (;no_, which may be satisfied in EPFCG problems.

Therefore, stress state assessments in conjunction with closure predictions may not be required to

be extremely accurate.

3.3.3 Effect of Net-Section and Gross Yielding

As discussed in the previous section, crack opening stresses in a variety of geometries appear

to be correlated by the parameter K,_JKnow. This correlation is strong in the SSY regime and

generally holds into the ISY regime, although the quality of the correlation gradually deteriorates.

A corollary of this relationship is that changes in the crack length do not cause changes in the crack

opening stress, unless those changes in crack length also introduce significant changes in the

geometry correction factor, F, contained in the expression for K. This corollary is consistent with

a wealth of experimental and analytical evidence (McClung, 1991c).
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However,asthecracklength(or theappliedstress)increasesto thepointthattheremaining
ligament is significantly plastic, this relationshipbetweenK,,,,,,,IKno,,, and Oo_/om,_ appears to

deteriorate (McClung, 1991 c). Crack opening stresses drop off with additional crack growth. This

change likely occurs because the elastic constraint which confines the residual plasticity in the

vicinity and wake of the crack tip (the fundamental mechanism of plasticity-induced closure) is

significantly diminished.

This effect is illustrated in Figure 3.7, which shows crack opening stresses from a FE

simulation of a single growing fatigue crack (center crack, nominal a/W around 0.5) at R = 0 and an

applied stress of o=JOno w = 0.41. Initially, Oor_, remains constant as the crack extends. As the

nominal net section stress reaches about 0.8o 0, however, Oo_. begins to drop off. The deterioration

in Oor_ is appreciable by the time the nominal net section stress reaches o 0, such that oo_, appears

to be rapidly approaching zero.

The ASTM standard test method E647 for measurement of fatigue crack growth rates

requires that the nominal net-section stresses in center-crack tension (ASTM designation M(T),

middle-crack tension) specimens remain lower than 0.80 of yield. A related validity criterion for the

compact tension specimen requires than the nominal crack-tip plastic zone size (PZS) be less than

0.25 of the remaining ligament, b. This PZSIb criterion is nearly the same as the nominal net-section

stress criterion for the MT specimen. Limited FE closure investigations suggest that these two

criteria may also provide rough rules-of-thumb to indicate when crack closure behavior begins to be

influenced by ligament plasticity effects. However, it should be emphasized that these criteria have

not been systematically validated for this particular purpose.

Finite element closure results that violate one or both of these two criteria are shown in

Figure 3.8. The specimen geometries (and the specific FE models) are the same as those considered

previously in studies of specimen geometry effects. In order to apply the net-section stress criterion

to the SECP-bend geometry, the criterion was reinterpreted in terms of the relationship between the

nominal applied stress and the nominal limit stress for an elastic-perfectly plastic material. Details

are given in Appendix H. In Figure 3.8, the ratio of applied stress to limit stress ranges from 0.8 to

about 1.1, and the ratio of PZS to b ranges from 0.25 to about 0.35. The trend lines from other

analyses satisfying both criteria (smaller Km,JKn_) were included on the figure for comparison

purposes. In general, oo_, dropped off somewhat more rapidly with increasing Km_/Kno wwhen either

criterion was violated, especially at R = 0. However, the crack opening stresses continued to follow

expected trends for some configurations, especially at R = - 1. Note, also, that the Newman equation

is still an approximate lower bound for most of the data shown.

However, several questions remain. First, is it more appropriate to characterize net-section

yield (or limit stress) and PZS sizes in terms of the yield stress (e.g., the 0.2 percent offset yield

stress) or the flow stress (typically, the average of yield and ultimate)? The ASTM criteria for FCG

testing cited above are formally expressed in terms of the yield stress. However, the test method

recognizes that for materials exhibiting appreciable strain hardening, this approach may be

unnecessarily conservative. Therefore, the ASTM test method offers an alternative set of criteria

based on the flow stress. Since the flow stress has already been adopted in these practical algorithms
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asan acceptable (albeit approximate) means of addressing the effects of strain hardening on closure,

it appears reasonable to continue the use of the flow stress in criteria for ligament plasticity effects.

This choice further delays the predicted onset of net-section yielding effects.

A second question is the proper manner in which to apply the K,,_,IKno,, approach when o._

is greater than yield. For example, when the maximum (near-surface) stresses in a bending

configuration are greater than o n, some stress redistribution will occur, and the actual maximum

stresses at the outer fiber will be less than the values predicted by elasticity theory. Which stresses,

elastic or actual, should be used to calculate K_u,/Kno Wand then oo_do_,? Almost no direct evidence

is available to support any recommendation. For consistency with the recommended treatment of

combined primary and secondary stresses, it may be prudent to calculate Kn_,/Kno w on the basis of

the actual (plastically-relaxed) stress distribution. This would generally require an additional

computation of K for a non-uniform stress distribution, but this computation may be required to

determine J in the recommended manner. In this calculation, the yield stress should be interpreted

as or,, not Ono,,. In the event that the elastic-plastic stress distribution is not available and cannot be

easily calculated, the use of the elastic stress distribution (e.g., the usual linear distribution for

bending) in the computation of K_,/Kno,, and then Oo_tO,,_, should be conservative. Unfortunately,

this result may be unnecessarily conservative in some applications.

A third question addresses the ambiguity of net-section yield definitions for three-

dimensional geometries. Consider, for example, a deep semi-elliptical surface crack in a finite plate

such that the maximum depth of the flaw is approaching the back surface. The crack-tip plastic zone

size at the maximum depth of the crack may be a very large fraction of the remaining ligament at that

point (perhaps even exceeding the ligament size). However, a short distance around the crack

perimeter, where the remaining ligament is larger, the crack-tip plastic zone may not exceed net-

section yield criteria. Closure behavior at the two positions, however, will certainly be related.

Furthermore, plastic relaxation at the maximum depth position may introduce local load shedding

to neighboring ligaments that further complicates the local stress state and closure response.

In view of these unanswered questions, and in view of the general success of the Newman

model in bounding closure behavior even when net-section yielding (defined in terms of o_o w) is

approached, it may be adequate at the present time to introduce no rigorous modifications to the

crack closure algorithms to accommodate net-section yield effects. It should also be noted that under

elastic-plastic conditions, when stresses are severe and net-section yielding is more likely, the

nominal calculated closure stresses already approach zero (as Km,,,,IKno w approaches 1). However,

net-section yield effects could be more significant for large cracks under lower applied stresses,

where nominal closure stresses are relatively high (especially in plane stress) and the decreases in

closure stresses due to net-section yield effects can be more pronounced (as in Figure 3.7). Further

study is required to resolve these issues.

Based on the considerations discussed in Sections 3.3.1 through 3.3.3, it is useful to

summarize the limits of applicability of the Newman closure algorithm as employed here. The

algorithm can be applied to any cracked geometry under uniaxial primary loading for which K

solutions are available, for Kmax/Kno Wvalues less than 1, although its accuracy may deteriorate under

54



netsectionyielding. The algorithmcanbeapplieddownto arbitrarily low valuesof K=_,lKnow,

although it may not give accurate answers in the near-threshold SSY regime, when AK approaches

AKth. The algorithm can be applied to stress ratios in the range -2 < R < 1. As discussed in

Section 3.3.6, extension of the algorithm to combined primary and secondary loading appears to be

valid but has not been rigorously verified. The algorithm can be applied to any material for which
a flow stress can be defined.

3.3.4 Effect of Stress Concentrations

The growth of cracks near stress concentrations, such as holes or notches, is one of the classic

problems in fatigue. Brock (1972) was one of the first to note that growth rates are often higher than

might be expected from nominal AK values when the crack is still small relative to the dimensions

of the concentrator. Numerous researchers have experimentally measured crack opening levels for

cracks growing from holes or notches and found that gradual changes in closure with increasing

crack length corresponded to changes in growth rates (Tanaka and Nakai, 1983; Ogura et al., 1985;

Shin and Smith, 1985, 1988; Sehitoglu, 1985a, 1985b; Savaidis and Seeger, 1994). McClung and

Sehitoglu (1992) and others have studied the problem more closely with careful literature reviews,

crack growth experiments, and coordinated finite element closure analyses, and have confirmed that

accurate assessment of crack opening stresses is a key step in describing the growth of these fatigue
cracks.

This observation introduces the question of how best to estimate crack opening stresses for

cracks near stress concentrations. McClung (1991a) has proposed and validated a simple model

which may be easily extended to cover a broader range of elastic-plastic FCG problems. The

accuracy of this model has subsequently been independently confirmed in research by Savaidis et

al. (1995). The heart of this simple model is the same fundamental dependence of oo_o/o,=_, on

Or_/Ono Wpredicted by the Newman closure analysis and used to address other closure problems, as

described above. The unique feature of the simple model is the manner in which o,_ is defined.

The simple model is summarized schematically in Figure 3.9. First, the local stress at

maximum load, o_yax, at the location of the crack tip in an equivalent notched but uncracked body

is determined. Second, the ratio of this local maximum stress to the flow stress is set equal to the

normalized nominal maximum stress, omJono w in a corresponding cracked but unnotched body.

Finally, based on this o,,_JOno w value, the normalized crack opening stress Oo_JOr_ is estimated

from a suitable closure analysis and assigned to this particular crack-tip location in the original

notched, cracked body. Note that in Figure 3.9, the symbol "S" is used to denote nominal or far-field

applied stresses, and the symbol "o" is used to denote local stresses.

The first and third steps in this simple model require additional computations to be

completed, for which algorithms must be specified. The first step involves estimation of the local

stress field in the equivalent notched, uncracked body. This determination can be carded out in

several different ways. The most accurate (and typically most expensive) method is to perform an

elastic-plastic finite element analysis. For some applications, this FE analysis may already be

available. In general, it will not be available, and the extra expense is probably not warranted to
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solve only the closure problem. Alternative approaches involve estimating the elastic-plastic stress

distribution from the elastic stress distribution. Glinka (1985a, 1985b) has published a detailed

analysis scheme to determine this elastic-plastic field from the elastic field in a manner that takes

into account different states of stress (plane stress vs. plane strain) and the stress redistribution

brought on by notch plasticity. A simpler and more well-known approach to the same task employs

the Neuber relationship,

g t = _ e (3.25)

where K t is the theoretical stress concentration factor, and /_ and /_ are the corresponding

concentration factors for local stress and strain, respectively. The Neuber form neglects stress

redistribution due to yielding, and it is known to slightly overestimate stresses at the notch root in

many cases, but these two effects may roughly compensate for each other in some applications. The

Neuber method requires fewer computations, and its accuracy is expected to be entirely suitable for
most closure assessments.

Use of either the Neuber or Glinka methods does require prior information about the

theoretical elastic stress distribution near the stress concentration. Closed-form solutions are

available for some common notch geometries. For example, the original solution by Inglis (1913)

is available for a center hole in a plate. Amstutz and Seeger (1995) and Glinka and Newport (1987)

have developed simple methods to estimate the elastic stress field ahead of the notch based on the

remote stress, the stress concentration factor, and the notch root radius.

The third step is to estimate (lOl_Oma x from Om_/O,o,,. For consistency, this step should be

carried out using the same Newman closed-form equation presented earlier. Use of this relationship

raises the same question posed before about the use of a OmJOno,, criterion for widely differing

geometries. Previously it was noted that Om,flonow should be interpreted as Km_xIKnow when the

geometry correction factor F in the stress intensity factor expression was significantly different from

1. Previous validation exercises for the Om_/Oao,, approach to crack closure at notches and holes

considered only center cracks or short edge cracks, where F was approximately equal to 1.

Applications of this approach to other configurations have not yet been validated, but this small

extension seems reasonable. Note that the F value used to calculate Kml,,IKno,, from o,._/oaow should

be based on an equivalent crack length in a corresponding unnotched body, to avoid double counting

of the stress concentration effect. Further studies are required to evaluate use of this approach for

cracks growing from notches or holes embedded in global stress gradients, such as bending

configurations.

It is interesting to note that the KmJKno wcriterion appears suitable to address the entire notch

closure problem (independent of the computation of a local stress o_ ax), at least qualitatively. For

very short cracks at notch roots, the stress intensity factor is known to be approximately given by

Km_, = 1.12Kto_ V/_-'a, where a is measured from the root of the notch. The stress concentration

factor K, is typically around 3.0 or greater for many notches or holes. If Know is equal to Onow V/'_,

then KmJKno w will be around 1.0 or even greater even when o,_JOno Wis as small as 0.3. This result
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correctlypredicts the general trend that crack opening levels are quite low for very short cracks at

notches. In the other extreme, for very long cracks at notches, the stress intensity factor is given by

the usual Km_ = FOm_V/-_a+c) , where F is the usual geometry correction factor for the notch-

independent long crack configuration and c is the notch half-width, so that K is actually independent

of the notch stress field. Since the corresponding long crack Know is of_ _, KmJKnow =

FOm_lOno _, and the notch is correctly predicted to have no influence on crack opening stresses.

The particular attractiveness of this alternative approach is that a consistent closure algorithm

could be used for both notched and unnotched geometries. Since previously cited studies of closure

in unnotched bodies with stress gradients (bend geometries) found that opening stresses were

correlated by Km,,IKn,,,, rather than the nominal (untracked) stress at the crack tip location, it may

be that Km_lKno,,, is theoretically a better parameter for notches as well. The use of a KmJKno,,

criterion could also facilitate a more general treatment of the closure problem when notches are

superimposed on nominal stress gradients, such as notches in bending.

A key unsolved problem, however, is the proper manner to carry out a smooth transition from

the short crack Know to the long crack Know. For the short crack K_,,,, the reference crack size is just

a, the crack length measured from the notch root, but for the long crack Know, the reference crack size

is the total length (a + c). Application of the K,,,JKn,,, concept will require the identification of the

crack size at which the long crack criterion should be adopted and some means of transitioning

smoothly from the short crack to the long crack Know solution. The transition crack size, for example,

could be estimated by the intersection of the short crack and long crack stress intensity factor

solutions (Dowling, 1979), by the original notch plastic zone boundary, or perhaps indicated in some

way by the closure solutions themselves. Once a suitable transition size is identified, some sort of

interpolation scheme might be used to perform the transition with adequate smoothness. These

nontrivial unresolved issues prevent a simple application of the K,_IKn°,,, criterion to the notch

problem at the present time. Further study is required.

The approach based on local stresses and o,,Jono,,, has been shown previously to address

adequately the effects of stress ratio, nominal maximum stress, strain hardening, and notch shape on

crack closure behavior near stress concentrators. Further details are available elsewhere (McClung,

1991a). While the original simple closure model was employed in conjunction with FCG rate

calculations based on AKar, there appears to be no reason why the closure information could not be

used successfully to inform a AJcn approach to FCG rate prediction. The task of estimating J for

cracks near notches is treated separately in Section 2.3.2.

3.3.5 Effect of Multiaxial Stresses

The SwRI finite element (FE) model of a growing fatigue crack was exercised to study crack

closure under biaxial loading. A brief description of the general FE model is given in Appendix H.

For these biaxial studies, the only specimen geometry considered was the center-cracked plate with

a/W around 0.125. The ratio of plastic to elastic modulus was H/E = 0.01. The applied stress state

was characterized by the biaxiality ratio _. = o/oy, where o x and oy are the applied (nominal) stresses

parallel and perpendicular to the crack line, respectively. Five different biaxial stress ratios were
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considered:_.= 0 (ordinaryuniaxial loading),+1 (equibiaxialloading),+1/2, - 1/2,and- 1(which
is equivalentto pureshear).All appliedloadingwasproportional,eitherfully in-phase(positive
lambda)or 180° out-of-phase(negativelambda).Thecrackisalwaysgrowingperpendiculartothe
axisof themaximumprincipalstress(traditionalModeI loading).Furtherbackgroundinformation
isavailablein (McClung,1989a),whichreportsonsomeearlieranalysesofbiaxial effectsconducted
with anearlierversionof theFEclosurecode.

ThecrackopeningresultsaresummarizedinFigure3.10forR = 0 (top) and R = - 1 (bottom).

In these figures, Oor_nand Omaxdenote oy stresses (stresses perpendicular to the crack line), consistent

with the usual definition for uniaxial loading. Several general trends are evident. First of all, at

lower applied stresses (below OmJO 0 = 0.3 or 0.4), the biaxial stress ratio has essentially no effect

on crack opening stresses. This is consistent with experimental observations that under small-scale

yielding conditions, different biaxial stress ratios have no significant effect on fatigue crack growth

(FCG) rates (McClung and Sehitoglu, 1988). Second, there is a general trend at larger applied

stresses (moving into the intermediate-scale and large-scale yielding regime) to lower crack opening

levels for increasingly negative biaxial stress ratios, and to higher crack opening levels for positive

biaxial stress ratios. Again, this is generally consistent with available experimental FCG rate data

(Brown and Miller, 1985; Hoshide, Tanaka, and Yamada, 1981). Predictions of FCG rates based

on the finite element closure results and a closure-corrected Paris Law relationship agree rather well

with these available experimental da/dN data (McClung, 1989a). These numerical results are also

generally consistent with limited experimental measurements of closure (McClung, 1989a). Note

that the effect of biaxiality on crack opening behavior is more pronounced for negative lambda

values than for positive lambda.

These FE results, while interesting and valuable, are not suitable in their present form for

incorporation into practical algorithms for elastic-plastic FCG analysis, because they are not

sufficiently general. The general approach chosen to characterize crack opening levels in the

practical EPFCG methodology is the simple set of equations derived from the Newman FASTRAN

model. This model has been shown previously to give an acceptably accurate lower bound to the

crack opening levels given by the more sophisticated FE analyses for various uniaxial loading cases.

Although the Newman equation provides a means for describing the effects of applied stress,

uniaxial stress ratio (R), out-of-plane stress state, and material hardening on crack opening stresses,

it does not provide an intrinsic means of incorporating the effects of biaxial stress ratio on crack

closure.

Based on Rocketdyne experience, the most common biaxial stress states which are expected

to be encountered in reusable aerospace propulsion systems are positive lambda values. These

include cracks growing in pressurized cylinders, where the pressure-induced axial stress is

traditionally one-half the value of the hoop stress (_, = +1/2), and cracks growing in equibiaxial

thermal stress fields (Z = +1). For these biaxial ratios, the effect of biaxiality on crack closure is

often minimal. If positive biaxial stress ratios are simply neglected, the crack opening stresses

corresponding to uniaxial loading (_. = 0) are always a slightly conservative estimate, and this may

be an optimum approach at the present time.
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A corresponding practical approach for negative biaxial stress ratios is not immediately

apparent. The difference between uniaxial and biaxial results increases with increasing maximum

stress and increasingly negative lambda. Ultimately, crack opening stresses for negative biaxial

stress ratios appear to drop off sharply as nominal gross yielding conditions are approached. For

example, when _. = - 1, the von Mises yield criterion indicates that general yielding is satisfied when

Or = -o x = 0.57700 and o 0 is the uniaxial yield stress. From Figure 10, the crack opening level is

seen to drop off sharply as Omax approaches 0.57700. This suggests that the effective (yon Mises)

stress, oe,, may play some useful role in characterizing the applied loading. However, at lower

applied stresses, the biaxial stress ratio has no effect on crack opening behavior, so the effective

stress alone will not be suitable as a predictive parameter.

This discussion invites a more theoretical consideration of exactly why and how biaxiality

influences crack opening behavior. At least two factors appear to be involved. The first, as noted

earlier, is the effective yon Mises stress. However, the von Mises stress alone is not consistent with

several results. The absence of von Mises effects on closure at lower applied stresses has already

been pointed out. In addition, the effective stress at _. = +1 is the same as the effective stress at

_. = 0, but the closure results are not the same. And according to effective stress arguments, since

_. = +1/2 corresponds to a minimum in the nominal stress vs. effective stress relationship

(oaf = 0.76oy), it might be expected that _. = +1/2 would correspond to the highest crack opening

levels. This is barely true for R = - 1 and not true for R = 0.

The second factor which likely influences crack closure behavior is crack tip constraint,

particularly as influenced directly by near-tip stresses parallel to the crack. The crack closure

phenomenon itself is motivated by elastic constraint of the near-tip plastic deformation. A loss of

constraint, such as that which occurs when applied stresses increase and crack tip plastic zones grow

large relative to the crack and remaining ligament, generally leads to a decrease in crack closure

levels. Positive stresses applied parallel to the crack cause an increase in constraint, along with a

corresponding small reduction in the size of the crack tip plastic zone (McClung, 1989a), and it

appears reasonable that this may cause some increase in crack closure levels.

This constraint effect caused by remotely applied stresses may also be related to the effects

of different "T-stresses" on crack tip behavior. The T-stress is the non-singular stress term parallel

to the crack in the near-tip field. Leevers and Radon (1982) have shown that the T-stress, which

influences the near-tip constraint, varies widely from geometry to geometry. These T-stress effects

may also help to explain why crack closure results differ slightly from geometry to geometry, as

discussed in Appendix H. In that appendix, it was observed that specimen geometry effects nearly

vanished under small-scale yielding conditions when opening data were correlated on the basis of

KmJK o, but that the quality of this correlation gradually deteriorated at higher stress levels. This is

similar to the loss of agreement between uniaxial and biaxial results at higher stresses, especially for

positive biaxial stress ratios. Implicit T-stresses influence the near-tip field in a similar, but not

identical, manner to remotely applied biaxial stresses.

These theoretical considerations may provide some guidance for the development of more

rigorous algorithms to predict the effects of biaxiality on crack closure. It should be noted, however,
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thatnegativebiaxial ratiosarenotexpectedto occur frequently in SSME applications. When they

do occur, it is also possible that resulting crack growth may be mixed-mode in nature, and

mixed-mode growth is clearly beyond the scope of the current program.

In view of the limited information available, a simple semi-empirical algorithm has been

developed to predict crack opening levels for negative biaxiality ratios from uniaxial closure data.

This algorithm calculates a closure-equivalent applied stress from the applied biaxial stress. The

closure-equivalent applied stress is the equivalent uniaxial applied stress which generates the same

crack opening response as the biaxial applied stress. The equation developed is

b/ax/a/
Oy

Oclosure- equivalent _ O0

0 o

I Ocut°ffI
1 +

°o )
biaxial

Oy Ocuto ff

o_ o o

biaxial

O cutoff Oy

Oo Oe#

where O_iaxial is the applied stress % in the biaxial loading case, oaf is the von Mises effective stress,

and o¢,t_ is the applied stress Oy below which uniaxial and biaxial crack opening stresses are
• b/ax/a/ .

idenlacal. For example, Oy /o,H Is 0.577 for _ = - 1 and 0.756 for _. = 0. For R = - 1, o_o 0 is

approximately 0.25, and for R = 0, oc,,,,_/o 0 ranges from 0.45 to 0.55. It is not possible at this time

to predict the value of oc,,,o_/o o over a general range of R and X. When in doubt, a lower value of

oc_,on/o 0 will generally always give more conservative (lower) values of o.t,Jomx. The predictions

of crack opening stresses for negative lambda values, based on equation 3.26 and available FE

results for uniaxial stressing, are compared with available biaxial FE results in Figure 3.11.

It should also be noted that no numerical results are yet feasible for more common (and

complex) geometries such as surface cracks. Furthermore, no experimental data revealing how

biaxiality affects FCG rates for surface cracks or other three-dimensional geometries have been

published. The generation of additional closure information or predictive algorithms for multiaxial

loading is beyond the scope of the current investigation.

These multiaxial closure algorithms are currently limited to two-dimensional geometries with

Mode I through cracks under uniform biaxial loading, to stress ratios in the range -1 < R _0, and to

biaxiality ratios in the range - 1 < _. < + 1. Further investigations should permit extension to a broader

range of conditions.

3.3.6 Effects of Combined Loading

It appears that the effects of combined mechanical (primary) loading on crack opening levels

can be addressed adequately with the standard K,_IKs,,,,, criterion (Section 3.3.2). For example, a

common form of combined mechanical loading is combined bending and tension. Each loading

mode independently defines a value of K_,, and the total K,_ can be obtained by superposition. The
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nominal K_w is chosen in the usual way, and then Oo_JOm_ is calculated on the basis of KmJKno w

from the usual Newman closure equation. This approach has been verified for edge cracks under

combined bending and tension using the finite element method (see Appendix H). The extension

of this method to other geometries and other forms of combined mechanical loading appears

reasonable, although further validation is not possible at this time.

The effects of combined primary and secondary loading on crack closure behavior are

undoubtedly complex, and no analytical or experimental information is available to guide the

development of specific algorithms or to validate those algorithms. Furthermore, the development

of this information is well beyond the scope of the current investigation. However, it appears

reasonable to adopt the same Km_Know approach proposed earlier to address different specimen

geometries as well as combined mechanical loading. In this case, the total Km_ value employed will

be the linear superposition of contributions to the elastic stress intensity factor from both primary

and secondary loading. This value is also required by the J-estimation scheme for combined primary

and secondary loading (as discussed in Appendix F) and therefore should be readily available.

A remaining ambiguity is the proper choice of the normalizing flow strength o 0 in the

expression for Know, when the crack is growing through a thermal gradient (secondary stresses are

thermal) and when the flow stress is significantly temperature-dependent. A reasonable choice for

o 0 would seem to be the value corresponding to the temperature at the current crack tip location.

However, this is only a speculative suggestion and has not been confirmed. A more conservative

assumption may be appropriate in view of the uncertainty.

Finally, it should be noted that other complexities often associated with combined primary

and secondary loading, such as thermo-mechanical fatigue (TMF) loading and time-dependent

(creep) deformation, can also influence crack closure behavior. For example, Sehitoglu and Sun

(1989), using an enhanced FE closure code, have shown that time-dependent deformation in the

vicinity of the crack tip can have a significant effect on crack closure stresses. They developed a

simple expression to predict the dependence of crack opening stresses on material and test variables,

but this expression is not sufficiently general for present purposes. Palazotto and Bednarz (1989)

have presented results from other finite element studies based on a time-dependent constitutive

formulation which show some influence of viscoplasticity on closure levels. Further studies of TMF

and creep effects on crack closure remain well beyond the scope of the present investigation.

3.4 Algorithms for Crack Instability

The onset of crack instability defines the end of the fatigue crack growth life. Furthermore,

incipient instability can cause an acceleration in the fatigue crack growth rate due to the contribution

of static failure modes to crack extension during the load-up part of a fatigue cycle. The fundamental

failure criteria governing these crack instability phenomena in materials that exhibit brittle or ductile

behavior are now reasonably well-established. The main feature differentiating fracture in brittle and

ductile materials is that the latter display an increase in toughness as a crack extends under a rising

load, whereas in the former crack extension and instability are coincident.
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Practicalalgorithmsthat address these crack instability issues are described in detail in

Appendix I. In that appendix, criteria for evaluating the instability of cracks subjected to monotonic

and cyclic loading under linear elastic and elastic-plastic conditions are reviewed and practical

guidelines provided for implementing the criteria for brittle and ductile materials. Emphasis is

placed on ductile materials because of the more complicated instability criterion governing these

materials, and because they are a major constituent of advanced reusable aerospace propulsion

systems. Fatigue crack growth equations are recommended for describing the acceleration in FCG

rates due to incipient instability. This acceleration depends on the magnitude of the crack tip driving

force at the maximum load in the cycle and the fracture resistance of the material.

In general, the instantaneous enhancement in cyclic crack propagation rate will depend on

the previous cyclic load history. Rules are provided in the appendix for determining the influence

of this load history. In the case of ductile materials, which can undergo simultaneous stable tearing

and fatigue crack growth, the rules are formulated in terms of Memory and Loss of Memory Models.

In the Memory Model, the ductile fracture process zone at the crack tip retains information about the

previous cyclic loading, while in the Loss of Memory Model this information is assumed lost. The

latter model predicts more conservative crack growth rates than the former. Available experimental

evidence providing verification of the Memory Model is summarized in an endnote to Appendix I.

The characterization of fracture properties for use in the instability criteria is discussed in

Appendix I, as well as the effects of plastic constraint on fracture toughness and JR-curves. Practical

considerations pertaining to the application of the crack instability criteria to predicting failure in
service life assessments are addressed.

3.5 Algorithms to Estimate Fatigue, Constitutive, and Fracture Properties

The development and use of practical algorithms for the prediction of elastic-plastic fatigue

crack growth rates requires an appropriate material data base. This data base must include

information about material resistance to fatigue crack growth; some characterization of the material

constitutive (stress-strain) response, with attention to both monotonic and cyclic properties; and a

description of the material resistance to fracture instability by tearing or cleavage. Discussions of

material properties requirements and recommended estimation techniques for FCG, constitutive, and

fracture properties follow below.

3.5.1 Fatigue Crack Growth Properties

The most obvious requirement for materials data is some characterization of the resistance

to fatigue crack growth: appropriate material constants for an equation which relates the applied

driving force to the resulting crack growth rate daMN. Unfortunately, data bases do not currently

exist for experimental elastic-plastic fatigue crack growth behavior. Relatively few EPFCG test

programs have been conducted, nearly all in a research environment, and no standardized test

method (e.g., ASTM) has been developed. The FCG data bases that do exist are nearly all for

small-scale yielding conditions in which AK has been used as the correlating parameter. The
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availableSSY FCGdatabasesareactuallyquite extensiveandcovera broadrangeof structural
materials.

Fortunately,it appearspossibleto converttheseSSYFCGdatabasesfor usewith predictive
algorithmsfor elastic-plasticFCG. TheJ-integral is directly related to the stress intensity factor, K,

in the linear elastic or SSY regime according to the relationship

g 2

E /
(3.27)

where E' = E for plane stress and E/(1-v 2) for plane strain, and E is Young's elastic modulus. This

relationship can easily be exploited to convert a crack growth expression which is written in terms

of AK to an expression written in terms of AJ. Furthermore, it has been shown by experience that

this same crack growth relationship in the SSY regime can be successfully extrapolated upwards into

the elastic-plastic and fully-plastic regimes, so that a single crack growth expression adequately

describes FCG data spanning as many as five orders of magnitude in daMN (Dowling, 1976;

McClung and Sehitoglu, 1991; McClung and Hudak, 1994). In other words, a AJ (or AJaf) vs. da/dN

relationship which is valid in the SSY regime is also valid in the EPFCG regime.

The use of material data bases (empirical constants) which are keyed to SSY FCG

relationships presents an additional question: which SSY FCG equation to use? The simplest and

most common equation is the so-called Paris Law, the power law relationship written as

da
- Co(AK) m° (3.28)

dN

where Co and m o are the empirical (material) constants, typically based on a least-squares regression

of experimental crack growth data. Several other crack equations have been proposed, however, and

some are in common use. The NASCRAC (1989) computer code, for example, permits the use of

the Forman, Walker, Collipriest, and Hop-Rau models. These alternative models were developed

primarily to follow observed deviations from standard power law behavior at very low applied stress

intensities (near threshold) or at very high applied stress intensities (near final instability and

fracture).

The best choice for EPFCG analysis appears to be the simple Paris Law form. There is no

evidence that EPFCG data exhibit traditional threshold behavior at very low applied values of AJ.

In fact, small cracks in elastic-plastic deformation fields typically grow at rates significantly faster

than near-threshold (large) cracks, at equivalent AK values well below the nominal threshold stress

intensity factor range, AK_; this is one-manifestation of the so-called small crack effect (McClung

et al., 1996a). At the other extreme, EPFCG data generally exhibit standard power law behavior at

very high applied values, perhaps deviating only when the critical value of the J-integral for the

initiation of ductile tearing, J_, is approached or exceeded. While some deviation from power law
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behavioris expectedat theselimits, in EPFCGit appearspreferableto addressthis phenomenon
directlythroughconsiderationof ductile fractureequationsratherthanthroughsomemodification
to theFCGequation.Theseissuesarediscussedfurther in Section3.4. If theonly availableSSY
FCGdataareexpressedin termsof oneof themorecomplexcrackgrowthequations,somefurther
algebramayberequiredto obtaintheequivalentCo and mo values.

If the material resistance to SSY fatigue crack growth is described by COand m0 as written

in Eqn. 3.28, then the material resistance to EPFCG can be written according to

da = C_ (A J)"' (3.29)
dN

where

C l = C O(E / ) ''°/2 (3.30)

m 0
rn I = q (3.31)

2

As discussed in Section 3.2, the driving force for elastic-plastic fatigue crack growth is best

expressed in terms of a closure-corrected AJef t. However, the original SSY FCG data base is most

likely defined in terms of a nominal AK value which has not been corrected for closure. It is not

valid to insert a closure-corrected driving force into a material resistance equation written in terms

of a closure-independent driving force. Therefore, the original SSY FCG constants must be adjusted

for closure by computing the original closure-corrected AKeff values and determining the new SSY

FCG constants which will give the same FCG rate. Since, in general, crack closure stresses would

not have been measured during the generation of the baseline SSY FCG data, these closure stresses
must be estimated.

A variety of experimental observations and analytical models are available to estimate

closure levels, as discussed in Section 3.3. The correct closure stress will depend on the stress state

(plane stress vs. plane strain), the applied maximum stress as a fraction of the flow stress, and the

stress ratio. Most baseline SSY FCG testing is performed at relatively low applied stresses (perhaps

on the order of 0.1 to 0.3 of the yield stress) and at stress ratios ranging from R = 0 to 0.1. The stress

state can vary from plane stress to plane strain, depending primarily on the thickness of the test

specimen (as discussed below). For these applied stresses and stress ratios, a reasonable estimate

of crack closure behavior under plane strain conditions is about Uo = 0.75 to 0.8, where U0 denotes

the effective stress intensity factor range ratio for baseline SSY FCG data. This estimate is

conservatively consistent with the limited number of experimental measurements (Fleck and Smith,

1982) and analyses (Chermahini et al., 1989; McClung et ai., 1991; Newman, 1984) available for

plane strain. A reasonable estimate for plane stress is about U 0 = 0.5 (see Appendix H). Minor

variations from these levels will not cause significant errors. If the specific load history and

specimen geometry for the baseline SSY tests are both known, then the closure levels can be
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estimatedfrom availableinformationsuchastheNewmanclosureequations(Newman,1984)cited
in Section3.3.

Algebraic adjustmentsin the material constantsfor closure are straightforward. A

closure-corrected Paris equation in the SSY regime can be written as

where

da
- --"-''C'_(AKo,_)'n2 (3.32)

dN

C
C2 - (3.33)

Uo"o

/'Yt2 -" m o (3.34)

as

Combining the closure and SSY vs. EPFCG corrections, then, the final form may be written

da
-_ = C (AJe#)- (3.35)

where

c0(e'Y  
C - (3.36)

u?

m o
m = m (3.37)

2

in terms of the original SSY FCG data base constants.

The decision to treat the original SSY data as either plane stress or plane strain has

implications for the selection of both E' and U0. In reality, of course, the deformation fields near

fatigue cracks are complex and three-dimensional, and the degree of constraint gradually changes

with increasing distance from the crack tip or with proximity to the specimen surface. The ideas of

plane stress or plane strain are actually only limiting representations of constraint between which

most of reality occurs. However, it is often convenient to choose one or the other extremes as a
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simpledescriptionof stress state. The traditional criteria for two-dimensional geometries were

reviewed in Section 3.3.1. Much of the available SSY FCG data is expected to satisfy full plane

strain conditions, especially for high strength aerospace structural materials.

The current NASGRO database contains a large quantity of fatigue crack growth data

expressed in terms of AK, including tabulation of all parameters associated with the NASGRO crack

growth equation. Unfortunately, due to the complex nature of the NASGRO equation (da/dN is a

function not only of AK but also of Kth, Kc, R, a crack closure factor derived from the Newman

closure equations, and three other empirical exponents), it is not possible to use the NASGRO value

of C directly in either Eqn. 3.35 or 3.36. In most cases, however, the NASGRO value of the crack

growth exponent n can be set equal to the exponent m 0 in Eqn. 3.37 to determine m (this should be

checked carefully due to possible complications from the near-threshold and near-instability terms

in the NASGRO equation). However, it should be possible to use the raw data (numerical or

graphical) in the NASGRO database, in conjunction with the given exponent (n) value, to calculate

or estimate C Oin Eqn. 3.36. Furthermore, the value of the Newman constraint factor (xc (denoted as

tt in the NASGRO manual) should provide some insight as to the stress state associated with the
baseline data.

3.5.2 Constitutive Properties

A quantitative description of the material constitutive response is required both to compute

the driving force Ajar and to estimate the crack closure parameter U. Ideally, the available material

data base will include direct experimental information on both the standard tensile properties oys

(yield strength) and ou_t (ultimate tensile strength) as well as some representation of the stress-strain

relationship. This relationship is often expressed in the Ramberg-Osgood form,

/:0)n8 U + tt U- (3.3S)
I_o o o

where e0, o0, tt, and n are the material constants, usually determined empirically through a least

squares regression of stress vs. strain data from a tensile test. This is the form assumed by the EPRI

handbook approach to estimating J and by most elastic-plastic finite element J solutions. The

constitutive response of some materials is not well described by the Ramberg-Osgood form,

however, and alternate forms such as a bilinear stress-strain relationship may be more appropriate.

Stress-strain relationships such as the Ramberg-Osgood equation can be written in terms of

engineering stress and strain or true stress and strain as derived from tensile test data. True stresses

and strains are corrected for changes in the instantaneous cross-sectional area and length of the

tensile specimen due to deformation during the test, whereas engineering quantities are based on the

original nominal dimensions of the tensile specimen at the beginning of the test (Bannantine, et al.,

1990). The common yield and ultimate strengths are customarily given as engineering quantities.

The engineering and true stress-strain curves are very similar except at large values of strain
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approachingnecking,andsovaluesof the Ramberg-Osgood constants will generally be similar for

engineering and true quantities unless the data from which they were derived include very large

strains. Current usage of the Ramberg-Osgood equation in EPFM applications by various

practitioners is mixed between engineering and true quantities. Pragmatically, the engineering stress

and strain values will be more commonly available, and their use in this context appears acceptable.

Engineering quantities were recommended in the recently completed proof testing handbook (CheU

et al., 1997a). However, true values are also acceptable in the current context, and are preferred by

some users of J-integral methods.

In some cases, however, the available data base may not include all this direct experimental

information on the specific material of interest. If only some information is available, it may still

be possible to estimate the remaining information using some simple engineering rules-of-thumb.

For example, if the only tensile data available are the traditional yield and ultimate strengths, an

approximate Ramberg-Osgood relationship can be constructed. It can be shown that the strain

hardening exponent in Eqn. 3.38, n, is related to the ratio of yield and ultimate strengths by the

expression (Bannantine et al., 1990)

ou,_ l oxp(1)
oy, In (0.002) J

(3.39)

if a is set equal to 1 and the yield strength or` corresponds to a 0.2 percent (0.002) offset. In this

particular expression, or` and o_t are engineering quantities and n is the exponent in a true stress-true

strain relationship. However, considering the approximate nature of the estimate, the mixed

formulation should be acceptable. For the IN-718 considered in this program, for example, the strain

hardening exponent was calculated as 15.8 from the original experimental stress-strain data. Based

on Eqn. 3.39, the ratio of ultimate over yield was predicted to be 1.17. The actual average values

of or, and o,,t from the same two tensile tests were 166.4 and 195.2 ksi, respectively. The ratio of

these two values is 195.2/166.4 = 1.17. A compilation of o,,_/o. vs. n values based on Eqn. 3.39 is

given in Table 3.1. Note that direct computation of n from ou,/or` will require an iterative solution

(inversion) of Eqn. 3.39. Once n is determined, o 0 can be estimated from

1

_Oo / to) n
I. XYl

(3.40)

and go is given by

O0
eo = _ 0.41)

E
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In order to use the Newman modified-Dugdale model to compute crack opening stresses (see

Section 3.3.1), an estimate of the so-called flow stress, anow, is required, where Onowis the average

of yield and ultimate strengths: oys = (Oys + Oult)/2. If Ramberg-Osgood or related power-law

relationships are available for the material of interest, Onow can be estimated with the aid of

Eqns. 3.39 and 3.40.

Table 3.1. Relationship between strain hardening exponent and ratio of

ultimate to yield strengths, based on Eqn. 3.39.

I
n

I (lair / Oy_

3 3.943

3.5 3.102

4 2.604

4.5 2.281

5 2.057

5.5 1.893

6 1.769

6.5 1.672

7 1.595

7.5 1.532

8 1.480

8.5 1.436

9 1.398

9.5 1.366

10 1.338

10.5 1.313

11 1.292

n Odt / O:a

11.5 1.273

12 1.255

12.5 1.240
i

13 1.226

13.5 1.213

14 1.202

14.5 1.191

15 1.182

15.5 1.173

16 1.165

16.5 1.157

17 1.150

17.5 1.144

18 1.138

18.5 1.132

19 1.127

19.5 1.122

20 1.117

A very important note is that the constitutive response of some materials can change

significantly after substantial cyclic deformation (in the elastic-plastic regime) has occurred.

Depending on the initial metallurgical condition of a material, the stress-strain response may exhibit

gradual cyclic strain hardening, cyclic strain softening, little or no change, or mixed behavior in

which relative softening may occur at one strain range and relative hardening at another. These

changes can directly affect the material properties required for both J calculation (e.g.,

Ramberg-Osgood constants) and closure analysis (e.g., Onow).

It is not possible to predict cyclic properties directly from monotonic properties, but it is

possible to anticipate when cyclic hardening or softening may occur. In general, materials which
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have particularly "soft" monotonic properties tend to harden following cycling, while materials

which are initially quite "hard" tend to soften. This can sometimes be predicted on the basis of the

monotonic strain hardening exponents: if n < 5, then cyclic hardening will often occur, while if

n > 10, cyclic softening is more likely. Many materials tend to cyclically stabilize around n'= 6 or

7. Consider, for example, IN-718 in the STA-I condition: the monotonic strain hardening exponent

is about 15.8. This material cyclically softens, and the cyclic strain hardening exponent is about 6.2.

Manson and Hirschberg (1964, p. 133) proposed an alternative criterion for hardening or softening

based on the ratio of the monotonic ultimate strength to the monotonic yield strength. If

OJOy_ > 1.4, then cyclic hardening is predicted; if o JOy, < 1.2, then cyclic softening is predicted.

A large change in cyclic response is not expected for ratios between 1.2 and 1.4.

Directly measured cyclic values for the yield and ultimate strengths are generally not

available, although the cyclic yield strength can be computed directly from a cyclic Ramberg-Osgood

relationship and the "cyclic ultimate strength" can be estimated with the aid of Eqn. 3.39. These

computations will typically be required in order to estimate the cyclic flow stress o'no_ needed for

closure calculations. If no experimental information is available on the cyclic constitutive

relationship (e.g., Ramberg-Osgood), then no direct means is available to compute or estimate any

of the cyclic tensile properties. If Coffin-Manson.total strain vs. fatigue life data of the general form

!

2 E

are available, then the cyclic strain hardening exponent, n', can be approximately estimated from the

relationship (Morrow, 1965; Bannantine et al., 1990)

/ C
n =- (3.43)

b

where c is the fatigue ductility exponent and b the fatigue strength exponent in a fatigue life equation

of the form above. In practice, cumulative regression errors can degrade the accuracy of this

relationship. Based on energy arguments, Morrow (1965) has suggested that the cyclic strain

hardening exponent can also be roughly estimated from either b or c according to the relationships

-n'
c - (3.44)

n' +5

-1
b - (3.45)

n'+5
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It is notalwaysclearwhethermonotonicor cyclic propertydatashouldbeusedin specific
applications.Theapplicationof cyclic loadingto agivenmaterialdoesnot aloneimply thatcyclic
propertiesare appropriate. The cyclic loading must be intenseenough(maximum stresses
approachingorexceedingyield,orcyclicdeformationincludingasignificantplasticcomponent)and
long enough (a significantnumberof cycles) to causea completetransition to stablecyclic
properties.No simplerules-of-thumbareavailableto estimatewhenachangewill orwill notoccur,
or how longis requiredfor thechangeto occur. If cyclic softeningor hardeningdoesoccur,then
thestablestatewill oftenbe reachedafter about 20 to 40 percent of the total expected low cycle

fatigue (LCF) life, so some initial assessments may be possible based on nominal strains and LCF

properties. If it is suspected that cyclic hardening or softening may occur but it is not clear, then it

may be prudent to choose the constitutive properties which will give the most conservative

prediction of crack growth rates.

The issue of cyclic vs. monotonic constitutive properties suggests a related question: does

a change from a monotonic to a cyclic material state also influence the material resistance to fatigue

crack growth ? The earlier observation that SSY FCG and EPFCG data can be consistently correlated

by the same power law relationship suggests that the FCG resistance does not change appreciably.

This is probably true because the FCG resistance is primarily controlled by near-tip material

response. Near the crack tip, due to the intense cyclic deformation, the material experiencing

separation is probably always approximately cyclically stable, even if the remote properties are

nominally monotonic.

As noted earlier, tabulated Ramberg-Osgood constants are not readily available in the public

domain for common metals used in space propulsion systems. Some limited information on stress-

strain properties for various structural alloys is available in the Aerospace Structural Metals

Handbook (Brown et al., 1996) and the StructuralAlloys Handbook (Holt et al., 1996). These data

are typically in the form of stress-strain curves (which could be digitized and then fitted to estimate

the Ramberg-Osgood constants) or in the form of tabulated or graphical values of yield and ultimate

strengths (which could be used to estimate the Ramberg-Osgood constants following the procedures
outlined earlier).

3.5.3 Fracture Properties

As discussed in detail in Appendix I, material property requirements to characterize ductile

fracture include (as a minimum) some measure of the critical value of J for the initiation of ductile

tearing, J_t, and (ideally) a complete J-resistance curve (J vs. Aa). Unfortunately, tabulated or

graphical values of these properties are not generally available in the public domain in any quantity.

More commonly available in the public domain are data for the fracture toughness expressed

in terms of K. For example, the NASGRO database contains values for the plane strain fracture

toughness, K k, and the fracture toughness (measured or estimated) for part-through flaws, K_c. In the

absence of other information, a first estimate of the value of J_ can be obtained by setting Kmt equal

to the available, appropriate fracture toughness (K_c, K_c, or K¢), depending on the application of

interest, and then calculating J,,_t as
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(3.46)

Limited additional toughness data are available in the Aerospace Structural Metals Handbook

(Brown et al., 1996) and the Structural Alloys Handbook (Holt et al., 1996).

No reliable estimation techniques are currently known for constructing a complete J-

resistance curve without performing the necessary elastic-plastic fracture mechanics tests. However,

the blunting line of the J-resistance curve can be estimated as

J = (2oys) Aa (3.47)

An approximate lower bound to the actual resistance curve would then follow the blunting line up

tO Jmt, with no increase in toughness above Jmat (in other words, assume that fracture occurs

whenever J_ exceeds -/mat)- An approximate upper bound to the actual resistance curve would

follow the blunting line at all values of J.

3.6 Load Interaction Effects

Perhaps no other advanced topic in SSY fatigue crack growth has received more attention

over the years than variable amplitude loading. A variety of specialized algorithms to predict crack

growth rates under variable amplitude loading have been proposed, several of them specifically

designed to address the often observed phenomenon of crack growth retardation following an

overload. This retardation effect has been directly linked by experiment to crack closure behavior

and the associated residual stresses and plastic zone introduced by the overload. Most of the variable

amplitude crack growth models, however, such as the Wheeler (1972) and Willenborg (Willenborg,

Engle, and Wood, 1971) models, are empirical in nature and require the determination of multiple

empirical constants. As such, they do not accurately reflect the mechanics and physics of the crack

growth mechanisms. Another model, the FASTRAN approach of Newman mentioned earlier in the

discussion of crack closure, is based directly on the mechanics of crack closure. This model has been

successfully applied to a variety of fatigue life prediction problems (e.g., Newman, 1981) and has

also been demonstrated to predict the key trends observed in high-resolution crack-tip measurements

following overloads (Dexter, Hudak, and Davidson, 1989; Davidson, Hudak, and Dexter, 1985,

1987).

In comparison, very few detailed studies of variable amplitude effects in elastic-plastic and

fully-plastic fatigue crack growth have been reported. The limited data available suggest, however,

that crack closure remains a key issue (McClung and Sehitoglu, 1988; Socie, 1977). Furthermore,

studies of LSY FCG indicate that some of the rules-of-thumb about variable-amplitude loading

effects under SSY conditions may give entirely wrong answers when applied to LSY. For example,

consider Figure 3.12, which shows in schematic a simple SSY history (top) and a simple LSY history

(bottom). The SSY history is well known to produce significant crack growth retardation due to
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Figure 3.12 Finite element simulations showing effect of stress amplitude on crack closure

following a single overload cycle
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closureeffects,and by the sameline of conventionalreasoningthe LSY historywould alsobe
expectedto produceretardation.But in practice,theLSY historycanleadto a majoracceleration
in thecrackgrowth rateanda reductionin thefatiguecrackpropagationlife by nearlya factorof
four in comparisonto linear damageestimateswhich neglectclosurealtogether(McClungand
Sehitoglu,1988).

The motivation for this acceleration is again closure (or lack thereof following the overload),

but it is a uniquely LSY closure effect. At large maximum stresses (in this case, greater than the

yield stress) and at low stress ratios (in this case, R = - 1), the major cycle opening stress and closing

stress (normalized by the yield stress) both decrease significantly, the closing stress dropping off

sharply with increasing maximum stress. The major cycle closure behavior can cause large changes

in subcycle closure behavior and greatly increase subcycle damage, even if the major cycle occurs

infrequently. These closure phenomena have also been directly observed experimentally (McClung

and Sehitoglu, 1988). Such changes in closure behavior may cause load cycles that are nominally

below the threshold for fatigue damage to cause significant crack growth.

Finite element closure studies have identified more clearly the differences--and

similarities--between SSY and ISY/LSY load interaction effects (McClung, 1992). Figure 3.13

shows the results of three different FCG simulations in which changes in normalized crack opening

levels following a single overload were tracked. All three simulations involved R = 0 cycling with

a single 100% overload. The lowest amplitude simulation had a baseline maximum stress of 0.200,

so the overload maximum stress was 0.4Oo--still in the SSY regime. The highest amplitude

simulation had a baseline maximum stress of 0.400, and therefore an overload maximum stress of

0.8Oo--well into the ISY regime. At the lowest stress amplitude, the post-overload closure behavior

shows a momentary decrease in closure levels, and then a sharp rise in closure levels. This is

entirely consistent with the customary retardation in FCG rates following overloads in the SSY

regime. Furthermore, the simulation demonstrates why this retardation is typically delayed,

beginning not immediately after the overload but some number of cycles later, following a very brief

acceleration in growth rates (Ling and Schijve, 1990). The closure behavior in the highest stress

amplitude simulation is similar in that closure levels drop immediately following the overload, and

then rise substantially. The critical differences are that the immediate drop is much more

pronounced, causing a much more pronounced temporary acceleration in growth rate, and that the

subsequent rise in closure level occurs at a much more gradual rate. In fact, if the overload cycle

occurs repetitively, even infrequently, it is likely that the overload cycle will repeat before the

subcycle closure level ever returns to its previous stable level. In this case, the load interaction effect

would be entirely acceleration, never retardation.

The key to successful prediction of variable amplitude loading effects in elastic-plastic FCG,

then, is to focus on the physical mechanisms which cause nonlinear damage accumulation. The

primary mechanisms of interest here relate to crack closure and the associated changes in plastic

strains and residual stresses. Empirical models developed for SSY conditions will be of limited

value. The mechanics-based FASTRAN approach appears to hold considerable promise, although

its general applicability to ISY and LSY conditions has not been fully established and may be
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restricted. However, the FASTRAN approach is not consistent with the structure of the NASGRO

elastic-plastic fracture mechanics modules.

In general, it is known that for "short" loading spectra, the crack closure behavior is

controlled almost entirely by the major or dominant cycle in the spectrum (Socie, 1977). For

"longer" spectra, the subcycles play an increasingly important role in setting the closure levels. A

practical approach to variable amplitude crack growth analysis might begin by defining the opening

and closing levels in terms of the major cycle and then developing an estimate of the subcycle crack

growth distance which is required to overcome this effect. An ad hoc model of this type was used

successfully to correlate crack growth rates by McClung and Sehitoglu (1988). Vormwald and

Seeger ( 1991) and Topper et al. (1992) have also employed fade-out models to describe the gradual

changes in crack closure with crack growth following large amplitude overload or underload cycles,

qualitatively similar to the trends in the FE results shown above. Vormwald and Seeger (1991)

further proposed an elementary algorithm to predict crack opening stresses under elastic-plastic

variable amplitude loading, and their recommendations deserves more careful study in future

development of load interaction rules. For loading spectra which are more random in nature and

which are not dominated by any one cycle, it may be reasonable to calculate statistically some

effective average crack opening level and apply it to the entire history (Newman, 1981).

Other variable loading effects may also be important. For example, a limited number of large

amplitude cycles could cause significant cyclic hardening or softening that might otherwise not occur

under the remaining small amplitude cycles. These changes in the constitutive properties could

significantly influence the value of AJ and thereby significantly influence fatigue crack growth rates.

This effect is related to the periodic overstrain effect described by Brose et al. (1974) for smooth

specimen fatigue lives under variable amplitude loading.

Due to the complexity of the problem and the limited available data, it is not possible at this

time to develop and verify a rigorous quantitative algorithm for load interaction effects in EPFCG.

Until such an algorithm is developed, simple linear damage rules (i.e., assuming the absence of either

beneficial or deleterious load interaction effects) should be employed. This is consistent with the

approach taken by NASGRO for SSY FCG analysis, where load interaction algorithms have not been

implemented until Version 3.

3.7 Creep-Fatigue Effects

As noted in Section 1.1, the operating conditions for reusable aerospace propulsion system

hardware include elevated temperatures and significant hold times. Under these conditions, it is

possible that creep deformation and the resulting damage at the crack tip can contribute substantially

to the crack growth process. A synergistic interaction can also occur between creep and fatigue

mechanisms.

Unfortunately, although the traditional fracture mechanics parameters K and J have proven

to be successful parameters for characterizing time independent static and cyclic crack behavior, they

are not adequate for characterizing time dependent creep deformation at a crack tip. A time
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dependentfracturemechanics(TDFM) parameterthat correlatesda/dt data for different cracked

geometries and loading systems may be required for the fracture control of some reusable aerospace

propulsion system components. Although the formal development of practical TDFM algorithms

is beyond the scope of the current contract, it is useful to develop the general outline of a suitable

approach and thereby lay the foundation for future work. As will be shown, the appropriate TDFM

methodology employs much of the new elastic-plastic fracture mechanics technology developed

under the current contract to facilitate a J-based approach to fracture control.

To overcome the shortcomings of K and J, Landes and Begley (1976) proposed the use of

a new parameter, C*, to characterize creep deformation under steady loading conditions. C ° is the

creep analog of the J-integral, and hence can be estimated with the same general procedures

previously described for J. While C" has been widely accepted as the correlating parameter for creep

crack growth under large-scale creep, it is not applicable for components undergoing transient

behavior, such as cyclic loading.

C" was later generalized to include transient, as well as steady state, creep deformation by

Saxena and co-workers (Saxena, 1986; Saxena and Liaw, 1986; Leung et al., 1988; Bassini et al.,

1989), and the new parameter was denoted C,. Unlike C °, C, is an explicit function of time as well

as crack size and applied load. C, does not characterize the crack tip fields, except under steady state

conditions when it reduces to C', but it does have an interpretation related to the rate of change of

the power input from the loading system as the crack extends (Saxena, 1986). A time dependent

crack field characterizing parameter, C(t), has been developed by Riedel (1987). This parameter also

reduces to C ° under steady state conditions. The parameter C(t) provides important information on

typical transition times between the transient and steady states, and between small and large scale

crack tip creep conditions.

Appendix J outlines a practical approach to the characterization of creep-fatigue crack

growth under cyclic loading conditions involving a hold time at steady load. The crack growth rate

per cycle is expressed as the linear sum of two contributions: that due to fatigue crack extension,

and that due to creep crack growth during the hold time

daldN = (daldN)f + (daldN)tim_ (3.48)

Here (da/dN) I is the fatigue crack growth rate,

(da/dN)f = D(AK) t (3.49)

and D and I are temperature dependent material constants that may also depend on the hold time.

The effects of cyclic plasticity can be addressed by replacing AK with (E' AJ) ta. The creep crack

extension, (da/dN)t,,,.,, that occurs during the hold time, th, is evaluated according to
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(da/dg)tim e - f(da/dt)dt = fnc, qdt
o o

(3.50)

where H and q are material constants.

The parameter C, consists of transient (short time) and steady state (long time) components,

both of which depend on the constitutive law which relates creep strain rate to stress. The value of

6", is also dependent on whether creep deformation recovery due to cycling can occur at the crack tip.

If the zone of creep deformation which spreads out from the tip is smaller than the cyclic crack tip

plastic zone, then creep recovery will occur and all history effects from previous cyclic load changes

are lost. If the creep zone is much larger than the cyclic plastic zone, then recovery is unlikely, and

information regarding the previous load history is retained with creep deformation evolving with

time as if no cyclic loading had occurred.

The transient component of 6", is characterized by the applied stress intensity factor, and

derivatives of it. Expressions for the steady state component can be readily derived from available

fully plastic J solutions, or a reference stress approach, by employing the analogy between plastic

and creep deformation. Hence, 6", can be calculated from material property data and fracture

mechanics parameters. The effects of thermal loading can be incorporated into Ct by adding the

thermal stress intensity factor to the stress intensity factor arising from primary loading, and

evaluating C,(t-.O) using the total value. The steady state component, C', is unaffected by thermal

loading and depends only on the applied primary load. The foregoing are applicable even when

widespread crack tip plasticity is present.

Further details of the methodology are provided in Appendix J, including methods of

calculating C,, procedures for performing a remaining life assessment, and discussions of other

important factors such as crack growth incubation, loading ramp rate, and temperature changes

during the cycling.

Because the approach to creep-fatigue effects outlined here has not yet been developed into

a formal set of algorithms, it is not possible or appropriate to characterize the limits of applicability

at this time.
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4. DEVELOPMENT AND VERIFICATION OF NASGRO SOFTWARE MODULES

4.1 Introduction

The original Statement of Work (SOW) in this contract called for the development of

practical engineering methods for the analysis of elastic-plastic and fully plastic fatigue crack

growth, but did not address the implementation of these methods in engineering software. NASA-

Marshall had originally intended that the methods would be implemented in software form, but the

decisions about when and how to perform that implementation were postponed until the methods

themselves had begun to take shape.

As the engineering methods for EPFCG were developed and documented, and as

performance of the original SOW was nearing completion, NASA-Marshall addressed the software

implementation issues. Amendments to the SOW were executed in order to transfer the EPFCG

technology to the practicing engineer through the development of computer software to implement

the analytical tools.

NASA-Marshall directed that the EPFCG methodology should be implemented into

NASGRO, an existing linear-elastic fracture mechanics program used extensively throughout the

NASA centers and the aerospace community. NASGRO, which was originally titled NASA/

FLAGRO, has broad capabilities for the computation of stress intensity factors and the calculation

of fracture mechanics remaining life under small-scale yielding conditions. The original NASA/

FLAGRO program, itself based on an earlier computer program known as FLAGRO4 (Forman and

Hu, 1984), was first released over ten years ago (Forman et al., 1988). New versions have been

released as major enhancements were completed. Version 2.0 was released in 1994 (Forman et al.,

1994). V._rsion 3.0, the first to be denoted as "NASGRO," is in Beta prerelease at this writing

(Forman et al., 1997), and is expected to be officially released during late 1998.

NASGRO, like nearly all other LEFM computer codes for FCG, employs the range of the

stress intensity factor as the correlating parameter for crack growth rates. As noted earlier in this

report, although AK is inadequate as a correlating parameter under elastic-plastic conditions, the

computation of an appropriate EPFCG parameter such as AJcf f requires values of AK as input.

Therefore, an LEFM computer code is an appropriate starting point for the development of an

EPFCG computer code.

The new elastic-plastic fracture mechanics NASGRO modules were developed as

independent modules that do not require compilation or execution of the main NASGRO code.

NASA may choose to integrate the new modules more closely with the main NASGRO code in a

future release of NASGRO, and the design of the modules will facilitate this integration. However,

the modules were developed as an independent code at this time for several reasons. First, NASA

and its onsite contractors properly control the source code for the main NASGRO code, and control

the release of new official versions of NASGRO. Therefore, the current contractor team was not in

a position to deliver a new version of the main NASGRO code. Furthermore, development and

delivery of the new modules as an independent program insures that the software is now available
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to NASA bothassourcecodeandasexecutablecodefor immediateuse,without waitingon the
developmentandreleaseof a newNASGROversion.

Becausethenewmodulesweredevelopedasanindependentprogram,nochangesweremade
to themainNASGROprogramitself. However,for consistencyandcompatibilitywith themain
NASGRO code, the new modulesemulateNASGRO whereverpossible. Existing NASGRO
subroutinesorsubprograms(for example,interpolationroutines)wereemployedwhereverpossible
in the developmentof the new elastic-plasticmodules. All K solutions employed in the new

modules were taken directly from the current NASGRO version without modification. General

NASGRO protocols for text-based input and output were followed, including batch file mode. No

graphical user interface (GUI) was included in the SOW or developed.

Since the new elastic-plastic methodology reduces to aconventional SSY methodology when

loads are relatively low and plastic strains are negligible, the new modules perform almost identically

to the existing NASGRO program in the SSY regime. However, some minor changes to current

NASGRO methods were implemented in some aspects of the program where necessary for

compatibility with the new elastic-plastic methodology, so the new modules will not always give the

identical answer to NASGRO in the SSY regime. For example, current NASGRO methods for

closure corrections to the driving force AK were modified to accommodate the new Kma,,/Know

criterion for crack opening values. Also, the complex NASGRO crack growth equation, which

employs nonlinear crack growth curves in the near-threshold and near-instability regimes, was

replaced with a simple linear Paris equation, since EPFCG does not exhibit threshold behavior, and

since near-instability EPFCG behavior is better described with methods that explicitly treat the

interactions between monotonic and cyclic crack growth mechanisms.

The new elastic-plastic fracture mechanics NASGRO modules were specifically tailored for

the NASGRO environment. Therefore, the capabilities of the current NASGRO main program had

some influence on, and in some cases limited, the capabilities of the new elastic-plastic modules.

For example, the current EC01 K solutions in the main NASGRO program are limited to uniform

tension applied to a centrally-located symmetric flaw. Therefore, the current EC01 solutions in the

new elastic-plastic modules share the same limitations, and nonuniform secondary stress

distributions are conservatively recharacterized as calculated average uniform stresses.

It must be emphasized that the elastic-plastic NASGRO modules developed to date and

described in this report represent only a subset of the EPFCG methodology developed and verified

under the current contract. As evidenced by this final report, that EPFCG methodology includes a

very broad range of capabilities and addresses a very broad range of problems. The intent of the

NASGRO module development conducted in the current contract was to implement a critical core

of this methodology and provide a solid foundation for further software development in the future.

Therefore, the new NASGRO modules are limited to a small number of common geometries and to

a basic set of crack growth capabilities. Many of the more advanced features of the methodology,

such as the treatment of notched geometries, multiaxial loading, combined mechanical loading,

creep-fatigue interactions, etc., have not yet been implemented. In other cases, simpler versions of

methodologies have been implemented. For example, treatment of combined primary-secondary
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loading follows the EPRI handbookprocedurerather than the more complex procedures
recommendedin AppendixF. Theseandotherfeaturescouldbeimplementedin futureversionsof
theNASGROelastic-plasticmodules.

Complete details of the capabilities of the new NASGRO modules is provided in
AppendixK, which servesasa User'sManual for the newmodules. This User's Manualwas
designedto function as a stand-alonedocument. Therefore,Appendix K contains some brief

additional documentation of the theoretical background to the methods implemented in the modules,

along with documentation of the module verification and validity limits. The appendix also includes

detailed instructions on how to run the program, including line-by-line documentation of interactive

screen input.

Portions of this final report serve as a more comprehensive "theoretical manual" for the user.

The experimental verification of the EPFCG submodule is independently documented in

Appendix L.

For convenience, a brief description of the capabilities of the elastic-plastic NASGRO

modules follows below.

4.2 J and hJ Solutions

Solutions for the J-integral and the closure-corrected range of the J-integral are provided for

five existing NASGRO geometries: central through crack, TC01; edge through crack, TC02; quarter-

elliptical comer crack, CC01; semi-elliptical surface crack, SC01; and elliptical embedded crack,

EC01. All five geometries have solutions for uniform tensile loading, and TC02, SC01, and CC01

also have solutions for bending. Combined tension and bending loading is not supported.

All five geometries have reference stress solution modules, and TC01 and TC02 also have

solution modules based on the EPRI handbook. The reference stress solutions for TC01, TC02,

SC01 (tension), and CC01 (tension) are based on optimized limit loads derived from available finite

element J solutions. The reference stress solutions for SC01 (bend), CC01 (bend), and EC01 are

conservatively based on limit loads estimated from plastic limit theory and bounding values of a

structural parameter that appears in the optimized reference stress solutions.

All five geometries support combined primary and secondary loading based on the EPRI

handbook method, which incorporates the effect of secondary loading through a first-order plasticity

correction to the elastic component of J and 62. Secondary stress gradients are conservatively

recharacterized to generate uniform and linear stress fields admissible to the NASGRO K solutions.

4.3 Failure Algorithms

The failure algorithms compute critical crack sizes and critical loads for the five NASGRO

geometries subjected to combined primary and secondary loading. The critical load computation is

based on the primary load, with secondary loads being held constant. For brittle materials containing
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crackswith two degreesof freedom,assessmentsarecarriedout atboththea-tip and the c-tip, but

for materials that behave in a ductile manner, the assessments are made restrictively at the a-tip.

Cracks with more than one degree of freedom (i.e., CC01, SC01, EC01) axe reduced to one degree

of freedom in growth by restricting crack size changes either to maintain constant aspect ratio, or to

maintain the size in the c-direction fixed while permitting growth in the a-direction.

Instability analysis for materials that behave in a ductile manner is based upon crack

resistance curves that describe increasing toughness with crack extension. Failure is assumed to

occur when the applied J and the gradient of applied J with increasing crack length, dJ/da,

simultaneously exceed the material toughness and the gradient in toughness with respect to tear

length. J-resistance curves are described with simple quadratic or power law equations.

4.4 Elastic-Plastic Fatigue Crack Growth

Elastic-plastic fatigue crack growth lives for cyclic changes in combined primary and

secondary loads are calculated from closure-corrected AJ solutions and a Paris equation for crack

growth rates. Closure corrections are based on the equations derived by Newman from his modified-

Dugdale closure model, interpreted in terms of K=JKno,, values. Chosen values of the constraint

factor in the Newman equations, _xc, can be applied independently to each location for two-degree-of-

freedom cracks (CC01, SC01, EC01), although the use of a common value at both locations is

recommended based on verification studies conducted to date. The NASGRO surface correction

factor I_R is applied to the AJ solution at points where the crack front intersects a free surface (the

c-tip for SC01 and the a-tip and c-tip for CC01). Material property constants for the Paris equation

written in terms of AJ are derived from the corresponding constants in a SSY Paris equation written

in terms of AK, (without closure corrections) and an independent estimate of closure in the SSY data.

The EPFCG module permits variable amplitude stress histories and employs simple linear

damage rules, so no load interaction effects are incorporated. Existing NASGRO protocols are

followed to define fatigue load spectrums or schedules.

Starting from a user-specified initial crack size, the module computes crack sizes, maximum

J values, AJ values, and values of the effective stress range ratio, U. These quantities are calculated

and output at both locations for a two-degree-of-freedom crack, at specified numbers of cycles to a

predefined limiting number of cycles or until failure. Determination of crack instability (failure) in

the EPFCG module is currently based on simple exceedance of a specified critical J value.

The NASGRO EPFCG module was independently verified by comparing its predictions with

actual experimental crack growth data from critical tests performed on specimens of Inconel 718.

Experiments included three different specimen geometries (TC01, SC01, and CC01). Some tests

were conducted under SSY conditions, while others were conducted under intermediate or large-

scale yielding conditions. Stress ratios were R = 0, R = 0. I, or R = - I. The SSY tests were used to

determine baseline crack growth properties, and then these properties were used to make independent

predictions for the remaining tests. The NASGRO module was found to be highly successful in

predicting crack growth lives and correlating crack growth rate data. All lifetime predictions were
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conservative and within a factor of two of the actual observed life. The NASGRO module also

generally predicted the correct crack shape development for two-degree-of-freedom surface cracks.
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5. SUMMARY AND CONCLUSIONS

A practical engineering methodology has been developed to analyze and predict fatigue crack

growth rates under elastic-plastic and fully-plastic conditions. The methodology employs the

closure-corrected effective range of the J-integral, Ajar, as the governing parameter. Under small-

scale yielding conditions, the elastic-plastic methodology reduces to the customary linear elastic

fracture mechanics approach to FCG analysis based on AK, although still closure-corrected.

The range of the J-integral was selected as the governing parameter because it best satisfied

the simultaneous criteria of theoretical validity, practicality, and demonstrated usefulness.

Alternative parameter choices based on other path-area integrals were critically reviewed and found

to be less satisfactory based on the same criteria. Although AJ does possess some limitations, it

appears to be the best available parameter at the present time.

The methodology comprises two major components. The first major component is a set of

specific solutions for the J-integral for specific geometries, along with a general methodology for

calculating J under a wide range of different conditions, including combined loading. The second

major component is a set of specific practical algorithms that translate a J solution into a specific

quantitative prediction of fatigue crack growth rate or life, including general equation forms for AJaf,

and algorithms for determining crack opening levels, crack instability conditions, and material

properties. A core subset of the J solutions and the practical algorithms has been implemented into

special elastic-plastic NASGRO modules. All components of the entire methodology, including the

NASGRO modules, have been verified through analysis and experiment, and limits of applicability
have been identified.

The details of the J solution methods, the practical crack growth algorithms, and the

NASGRO modules, along with documentation of the verification exercises and identification of the

limits of applicability, are provided in three preceding chapters and in twelve accompanying

appendices. A brief summary of the individual elements of the methodology follows.

5.1 Summary of J-Integral Solutions

Solutions of the plastic component of the J-integral generally follow either the EPRI

estimation scheme, which is based directly on normalized finite element results, or the optimized

reference stress method, which employs an estimation scheme based on the stress intensity factor

solution, the constitutive equation, and an optimized limit load solution. The solutions are generally

applicable to materials described by a Rarnberg-Osgood constitutive relationship, although the

reference stress form permits extension to materials that obey an arbitrary stress-strain law.

Solutions of the elastic component of the J-integral are generally based on the linear elastic stress

intensity factor with a first-order plastic correction based on the crack-tip plastic zone size.

Existing J solutions for standardized fracture mechanics geometries, including many

NASGRO geometries, were documented and tabulated. Most of these solutions are found in EPRI

handbooks, with a few additional solutions scattered in the literature.
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Elastic-plastic finite element methods were employed to generate new plastic J solutions for

semi-elliptical surface cracks and quarter-elliptical comer cracks in finite plates under uniform

tension. These FE results were then used to derive new optimized reference stress solutions for the

same configurations. The solutions were further verified against independent literature FE results.

Optimized reference stress solutions for surface cracks under bending were derived from other

literature FE results. These solution forms were then conservatively extended to construct reference

stress solutions for comer cracks under bending and elliptical embedded cracks under tension, for

which no finite element results were available.

Elastic-plastic finite element methods were used to generate new J solutions for a specific

set of cracked double edge notch geometries. These FE results were then employed to develop and

verify a new optimized reference stress solution method for the general problem of a crack at a stress

concentrator. The method was further verified against available FE results in the EPRI handbook.

Optimized reference stress solutions were derived for through cracks in plates under tension

or bending from FE results in the EPRI handbook.

General reference stress methods were developed for estimating J under combined

mechanical loading (combined tension and bending, for example). The methodology is based on the

identification of an optimum combined yield load. Verification of the methodology was

accomplished through comparison with limited available solutions in the EPRI handbook for two

different geometries.

Four previously proposed methods for estimating J for combined primary and secondary

loading were critically reviewed, and a new procedure was developed based on improvements in one

of the four previous methods. The method has been verified through comparison with available FE

solutions for combined mechanical and thermal loading.

A general Jestimation method for two-dimensional Mode I cracks under biaxial loading was

developed and verified by comparison with available literature solutions.

5.2 Summary of Practical Crack Growth Algorithms

Solutions for AJ follow the same general form as the EPRI and reference stress schemes for

J, with single values of applied load, stress, or stress intensity factor replaced by their respective

ranges, and employing a cyclic Ramberg-Osgood constitutive form. Corrections for crack closure

are applied independently to elastic and plastic J terms based on energy arguments.

Crack opening stresses as a function of normalized maximum stress, stress ratio, and stress

state are calculated from a simple set of closed-form equations derived by Newman from his

modified-Dugdale closure model of a center-cracked plate. These equations were shown to compare

favorably with more sophisticated finite element models and with experimental measurements in the

elastic-plastic regime. Finite element closure studies showed that the Newman equations could be

extended to address a wider variety of geometries as well as combined loading by replacing the
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normalizedmaximumstressterm with anormalizedmaximumstressintensityfactorterm. The
effectsof net-sectionyieldingonclosurebehaviorwereidentified.A simple,verifiedalgorithmwas
identified that predictedcrackclosurelevelsfor cracksgrowingout of stressconcentrations.A
simplemodificationto theNewmanequationswasdevelopedto describetheeffectsof multiaxial
appliedstresseson theclosureof ModeI cracks.

Simple algorithms were developedto evaluatethe instability of cracks subjectedto
monotonicandcyclic loadingin materialsthat behavein a brittle or ductilemanner. Resistance
curvemethodswereemployedfor ductilematerialsunderelastic-plasticconditions.Fatiguecrack
growthequationswererecommendedfor describingtheaccelerationin FCGratesdueto incipient
instability. Rules were developedto determinethe influence of previous load history on
simultaneoustearingandfatiguecrackgrowthmechanisms.

Algorithmsweredevelopedto estimatefatigue,constitutive,andfracturepropertiesneeded
for elastic-plasticFCG analysisthat might not be readily available. Thesealgorithmsincluded
equationsto estimateelastic-plasticFCGequationconstantsfrom availableAK-basedsmall-scale
yielding FCG equations,equationsto estimateRamberg-Osgoodconstitutive propertiesfrom
conventionaltensileproperties,andequationsto estimatecyclic constitutivepropertiesfrom low
cyclefatiguedata.

Importantissuesassociatedwith thetreatmentof loadinteractioneffectswerediscussed,and
generalguidelinesfor analytical treatmentswere suggested,but a specific algorithmwas not
proposeddueto thecomplexityof theproblem.

Thegeneraloutlineof amethodologyforcreep-fatigueeffectsoncrackgrowthwaspresented
anddiscussed.Themethodologyisbasedonalinearsummationof thecrackgrowthcontributions
dueto creepandfatigue. The time-dependentparameterC, is employed to characterize the creep

crack growth rates.

5.3 Summary of NASGRO Modules

A critical core of the J solutions and practical crack algorithms was implemented in software

form in new elastic-plastic NASGRO modules. The new modules are independent and do not

require compilation or execution of the main NASGRO code, but emulate the current NASGRO

code and employ existing NASGRO routines (such as K solutions) wherever possible. Complete

details of the capabilities of the new modules are provided in a User's Manual, which also includes

brief documentation of the theoretical background, verification, and validity limits of the modules.

Solutions for J and AJ are provided for five existing NASGRO geometries: TC01, TC02,

CC01, SC01, and EC01. All five geometries have solutions for uniform tensile loading, and TC02,

SC01, and CC01 also have solutions for bending. Combined tension and bending loading is not

supported. All five geometries have reference stress solution modules, and TC01 and TC02 also

have solution modules based on the EPRI handbook. All five geometries support combined primary
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and secondaryloading basedon the EPRI handbookmethod,which incorporatesthe effect of
secondaryloadingthrougha first-orderplasticitycorrectionto theelasticcomponentof J and AJ.

The failure algorithms compute critical crack sizes and critical loads for the five NASGRO

geometries subjected to combined primary and secondary loading. The critical load computation is

based on the primary load, with secondary loads being fixed during iteration. Cracks with more than

one degree of freedom are reduced to one degree of freedom in growth by maintaining constant

aspect ratio, or by maintaining one crack dimension fixed. Instability analysis for materials that

behave in a ductile manner is based upon crack resistance curves that describe increasing toughness

with crack extension.

EPFCG lives are calculated from closure-corrected AJ solutions and a Paris equation for

crack growth rates. Closure corrections are based on the equations derived by Newman from his

modified-Dugdale closure model, interpreted in terms of KmJKno,, values. The NASGRO surface

correction factor 13R is applied to the AJ solution at points where the crack front intersects a free

surface. Material property constants for the Paris equation written in terms of closure-corrected AJ

are derived from the corresponding constants in a SSY Paris equation written in terms of closure-

independent AK. The EPFCG module permits variable amplitude stress histories and employs

simple linear damage rules (no load interaction effects). Starting from a user-specified initial crack

size, the module computes crack sizes, maximum J values, AJ values, and U values at specified

numbers of cycles to a predefined limiting number of cycles or until failure.

The NASGRO EPFCG module was independently verified by comparing its predictions with

actual experimental crack growth data for Inconel 718. Experiments included three different

specimen geometries (TC01, SC01, and CC01), a wide range of deformation conditions (SSY, ISY,

and LSY), and stress ratios ranging from R = 0 to R = - 1. The SSY tests were used to determine

baseline crack growth properties, and then these properties were used to make independent

predictions for the remaining tests. The NASGRO module was found to be highly successful in

predicting crack growth lives and correlating crack growth rate data. All lifetime predictions were

conservative and within a factor of two of the actual observed life. The NASGRO module also

generally predicted the correct crack shape development for two-degree-of-freedom surface cracks.
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A.I Introduction

A.I.1 Potential Limitations of AJ

Several potential limitations of J and AJ have been identified during the past two decades,

and these issues may be grouped into three broad categories. The first set of concerns, which were

raised relatively soon after AJ was first proposed as a governing parameter for EPFCG, addressed

the fundamental suitability of AJ to characterize crack growth under cyclic loading. How could a

parameter which was originally based on nonlinear elasticity theory and the deformation theory of

plasticity be valid when elastic-plastic unloading occurred? How could path-independence be

maintained during not only unloadi,g but also crack closure? Some of these fundamental issues are

addressed elsewhere in the final report, citing satisfactory responses from the literature.

A second set of concerns involves the particular theoretical and practical suitability of J and

AJ to characterize crack-tip fields when temperatures are changing temporally and/or spatially in the

cracked component. Since elastic-plastic conditions are often associated with severe thermal

conditions, this is potentially a significant concern. Researchers have suggested that AJ can lose its

path-independence in the presence of thermal gradients or material inhomogeneities, such as changes

in constitutive properties with changing temperatures. A related practical problem confronting

simple estimation schemes for AJ is how to choose appropriate material properties when these

thermal effects are significant.

Finally, a third set of concerns currently receiving significant attention in the (monotonic)

fracture community is the potential loss of J-dominance under certain conditions. When applied

loads are severe, especially in low constraint geometries, the crack tip stress field may not be

adequately characterized by the J-integral, and so J alone may not be a successful predictor of crack

growth or fracture. Ongoing studies are currently emphasizing the use of an additional parameter

(for example, Q) to characterize more completely the crack-tip stress field. The potential

implications of these issues for EPFCG have not been addressed to date.

A.1.2 Possible Alternative Parameters

Delta J is not the only candidate parameter for an EPFCG methodology. As noted in the

background, several other "simple" parameters were developed in the early days of EPFCG research.

These include the strain intensity factor and the crack tip opening displacement. More recently, a

number of sophisticated path-area integrals have been proposed to address concerns about AJ. Most

notable among these are the J* integral of Blackburn (1972), the )'integral of Kishimoto, Aoki, and

Sakata (1980), and the ATp* integral of Atluri, Nishioka, and Nakagaki (1984). A theoretical review

of these parameters with particular reference to elastic-plastic fatigue crack growth is given by Kim

and Orange (1988). It can be shown that many of these quantities are derivable from a global energy

balance with different restrictions invoked. Typically, the new parameters have a greater range of

strict mathematical validity than the original J integral, particularly for problems involving plastic

loading and unloading, temperature changes, and crack growth.
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A.2 Critical Evaluation of Alternative Parameters

A.2.1 Previous Studies of Alternative Parameters

The current contract did not permit original investigations of alternative parameters in detail.

However, a number of studies in the literature have evaluated different parameters from different

perspectives, and it is useful to critically review these different studies.

General Electric. The only comprehensive study of the various integral parameters was

conducted by GE Aircraft Engines under NASA-Lewis sponsorship (Kim and Orange, 1988; Kim

et al., 1988a, 1988b; Kim and Van Stone, 1992, 1995a, 1995b, 1995c, 1997). This study included

a theoretical assessment of the parameters, along with numerical and experimental evaluation of the

parameters under a variety of load and temperature histories.

The theoretical survey (Kim and Orange, 1988) investigated eight different integral

parameters. The survey concluded that there existed as yet no integral parameter with a

well-established physical background and all the desirable features required for engine applications.

The four parameters A J*, A],, ATp*, and ATp were found to maintain theoretical path-independence

for more general elastic-plastic problems, including nonproportional loading, unloading, temperature

gradients, and material inhomogeneities. This was not true of the simple AJ and its closely related

derivative parameters.

On the other hand, the GE/NASA study found that the physical meaning of the four advanced

integral parameters was either vague or totally unknown. The physical meaning of AJ is

well-established for those applications where theoretical validity has also been established. Neither

J* nor J' can be measured experimentally, since neither can be expressed as the rate of a potential

or as a line integral along the boundary of the structure (both include an area integral). ATp* can be

measured experimentally only for proportional loading. ATp, along with AJ and its derivative

parameters, can be measured experimentally, although AT v is related to the near crack-tip stress field

only for proportional loading.

The GE/NASA study also investigated the ability of the four advanced integral parameters

to correlate experimental crack growth rate data under several different types of load and temperature

histories. In all cases, the parameters were computed from elastic-plastic finite element (FE)

analyses of the cracked components, including FE simulation of crack growth and crack closure.

Original experiments were performed at GE with buttonhead single edge notch specimens of Alloy

718. Total strain ranges varied from 0.50% to 1.70%. Some analyses were also conducted for

experiments conducted previously by Jordan and Meyers (1989; 1986) with Hastelloy X.

All four advanced integral parameters did a good job of correlating Alloy 718 isothermal tests

at 538C for three different strain ranges. The performance of AJ, which retains general theoretical

validity under these conditions, was not investigated. The advanced parameters also did a reasonably

good job of correlating Alloy 718 TMF crack growth data with the 538C isothermal data. Thermal

gradient tests in which the crack tip region was at higher temperatures (649(3) were reported to be
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consistentwith 649Cisothermaltests,althoughthoseisothermaltestswerenotanalyzedwith the
alternativeparameters.Thethermalgradienttestswerenotconsistentlycorrelatedwith theTMF or
538Cisothermaltests,perhapsindicatingsomeindependenttime-dependentorenvironmentaleffects
at thehighertemperature.

The successof theadvancedparametersin correlatingtheMeyersHastelloyX datawas
somewhatmixed. Threeof thefour advancedparametersdid agoodjob with the isothermaltests
ateachof five differenttemperatures,butATp did not perform well at some higher temperatures and

was eliminated from further evaluation. Trend lines from different temperatures were significantly

different. Correlation of TMF data was not as strong. A few out-of-phase tests at lower temperature

ranges were correlated well, but agreement between different TMF tests at higher maximum

temperatures was poor.

It is worthy of special note that Jordan and Meyers also evaluated different correlating

parameters for their data. They used much simpler estimation techniques (no numerical analysis)

and therefore were limited to evaluating simpler parameters: AK, AK,, AJ, and COD. Their resulting

correlations were generally of similar quality to the GE advanced parameter correlations for the

isothermal tests (worse at lower temperatures, sometimes slightly better at higher temperatures) and

generally much better than the GE correlations for the TMF tests. The Jordan-Meyers analyses are
discussed in more detail below.

GE also conducted a limited number of studies on strain histories with hold times,

investigating both the advanced integrals J*, .],, Tv* and their rate integral counterparts J*, ._, and

Tp. The rate forms of the parameters were required to correlate Alloy 718 growth rate data with
hold times, although T did not perform satisfactorily. Correlation of data from tests with

combined cycling and Phold times required an empirical superposition technique. Further

consideration of these tests and analyses is beyond the scope of the current report, however.

Jordan and Meyers. As noted above, Jordan and Meyers conducted isothermal (1989) and

TMF (1986) tests on tubular specimens of Hastelloy-X as part of an earlier NASA-Lewis contract

effort at Pratt & Whitney (Meyers, 1982). Several different simple parameters, including AK, AK_,

A J, and COD, were evaluated. Each parameter was estimated from simple analytical expressions,

and crack closure was not considered. Jordan and Meyers generally concluded that all of the

elastic-plastic parameters performed somewhat similarly. Under isothermal conditions, they did a

relatively poor job at low temperatures and a relatively good job at elevated temperatures. The COD

estimate, which was derived from a AJ calculation, did the best job of correlating isothermal data

from different temperatures. The elastic AK was always unsatisfactory. The three parameters AK,

AK_, and AJ were all reasonably successful in correlating data from three different types of TMF

cycles within a factor of two. Note that total strain ranges were 0.15% to 0.40%, lower than the GE

tests, so the plasticity was less severe.

Estimation of AJ presented special challenges due to cyclic hardening as well as

temperature-dependent changes in modulus and strain hardening exponent during TMF cycling.

These challenges are among the theoretical limitations of AJ cited in the GE study. Jordan and
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Meyersdevelopedsimpleestimationtechniquesto addresseachchallenge.Thecyclic hardening
problemwashandledbyreformulatingAJ in terms of plastic work measured at the ends of the gage

length, and then measuring this quantity periodically during the test. A constant average value of

elastic modulus for a variable temperature cycle was chosen that gave the same strain energy at peak

load as the actual temperature-dependent modulus. An effective value of the strain hardening

exponent was computed from the measured stress range and strain range values in the TMF tests.

Marchand and Pelloux. Marchand and Peiloux (Marchand, Pelloux, and Ilschner, 1987,

1988; Pelloux and Marchand, 1986), in conjunction with another NASA-Lewis contract, examined

fracture mechanics approaches to isothermal and TMF crack growth data in several different gas

turbine materials using an SEN specimen. Total strain ranges were 0.25% and 0.50%. Again, they

focused their evaluations on simple parameters that could be easily estimated: AK and AK,, AJ

computed using some of the same techniques as Jordan and Meyers, and a modified AK which

corrected for the effects of specimen compliance changes at longer crack lengths. They concluded

that AK and AK, provided poor correlations of the data and that AJ provided a better but still

inadequate description. The modified AK parameter gave reasonably strong correlations. The best

performer was identified as an alternative version of the modified AK parameter which

accommodated crack closure considerations based on measured crack opening stresses. The

influence of closure on the other parameters was not explored.

Others. Other researchers have argued for the use of advanced alternative parameters on

theoretical grounds but have not provided experimental validation. Brust (Brust, Nakagaki, and

Gilles, 1990; Brust, McGowan, and Atluri, 1986; Brust, Nakagaki, and Springfield, 1989), for

example, is an advocate of T* and the related family of crack-tip integrals for use in a wide range

of history-dependent and temperature-dependent fracture problems. However, no original

experimental evidence has been presented to support these claims for elastic-plastic fatigue crack

growth, other than an isolated unload-reload ductile crack growth test. Brust points out that "there

is still much work needed before an integral parameter, whether T* or any other, can be used with

confidence for arbitrarily cracked structures" (Brust, Nakagaki, and Gilles, 1990).

A.2.2 Summary and Discussion

The simple alternative parameters such as AK_ and COD have clear practical and theoretical

limitations. They share the same practical limitations of J in addressing temperature-dependent

changes in material properties. In practice, these simple parameters are usually estimated directly

from computations of J or K, and as such they retain the same theoretical limitations of those two

fundamental parameters. Parameters which cannot be estimated from J or K generally cannot

rigorously accommodate geometry effects, since only J and K have well-developed libraries of

geometry correction factors (and techniques to compute the same). Furthermore, as noted earlier,

most of the estimation techniques used to calculate the simple alternative parameters produce exactly

the same functional form as AJ. Therefore, any potentially important theoretical distinctions

between the different parameters may be lost entirely in the estimation schemes.
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Thealternativeintegralparametersclearlyhavesomedesirabletheoreticalcapabilities,and
theirgeneralsuccessin correlatingEPFCGdatain theGEstudiesisencouraging.However,these
advancedparameterspossesssomemajorpracticallimitationsatthepresenttime.

First of all, theircomputationdependsentirelyuponcomplexelastic-plasticfinite element
analysesof growing cracks. This type of analysisis difficult and expensivefor simplified
(two-dimensional)laboratoryspecimenconfigurations,and totally unfeasiblefor actual (fully
three-dimensional)componentgeometriesandtemperature-loadhistories.Severalmodelingissues
remainunresolvedfor eventhesimplified researchproblem.Forexample,GEpointedout thatthe
finiteelementmeshsize,theloadingstepsize,andthenodereleaseschemefor crackgrowthall need
furtherinvestigation(Kim andVanStone,1992).Theeffectsof crackclosureon theseadvanced
parametershavenot beenfully addressedin the numericalmodeling. The computationof rate
integralsfor historieswith holdtimesrequiresinformationaboutthetimefor thecrackto advance
incrementallyin theFEmodel,but this informationis notavailablea priori. Calculation of T* can

be arbitrarily dependent on the choice of the characteristic distance, e, locating the integration path

around the crack tip, and no theoretical guidance is yet available to select an appropriately consistent

value of e for laboratory and application configurations.

Second, several ambiguities remain regarding theoretical interpretation and application.

Several of the parameters cannot be measured experimentally, so direct validation is not possible.

The physical meaning of several parameters for the crack growth process is not yet evident and may

not exist. Because of this absence of clear mechanistic justification, the parameters may give

incorrect results in some applications. For example, Brust, McGowan, and Atluri (1986) have

advocated T* for elastic-plastic unload-reload applications because it was uniquely successful in

predicting observed ductile crack advance below the previous maximum load on the second cycle

of an experiment with A508 steel. However, this type of crack advance behavior is not typical for

unload-reload histories in the ductile fracture regime (Marschall and Wilkowski, 1989). Therefore,

it is possible that in other applications, T* would predict crack advance where it is not observed

experimentally.

The GE study found the two parameters _tJ* and A./(and their rate forms) to be the most

promising alternative parameters for a wide range of EPFCG, TMF, and creep crack growth

applications. In view of the GE results, and in view of other potential limitations of other proposed

integral parameters, this seems to be a reasonable conclusion.

However, the practical use of these alternative parameters will likely depend on the

development of simplified estimation techniques. As noted earlier, a dependence on extremely

complex finite element analyses will not be acceptable for engineering methodologies in the

foreseeable future. Instead, simplified estimation schemes must be developed. These estimation

schemes should permit the relatively rapid, approximate computation of rid* or AJfor realistic

geometries and time-temperature-load histories. The estimation schemes could employ simplified

analytical methodologies such as K solutions, J solutions, temperature-dependent constitutive laws,

etc. Some tabular approaches which incorporate representative finite element results (cf. the EPRI

handbook methodology for Jr) may be appropriate. In particular, the most promising approaches may
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bethosewhichbeginwith someexistingJ estimation scheme but which capture the uniqueness of

the alternative integral formulation, at least in part. At the present time, it is not clear if simplified

estimation schemes of this type, or of any type, can be developed.

The practical limitations of the advanced parameters suggest that their engineering

implementation is not feasible in the near future. Therefore, it seems appropriate to revisit the

original AJ parameter, re-assessing its potential theoretical limitations and evaluating the practical

significance of those limitations.

A.3 A Re-Evaluation of _hJ

At the outset of this re-evaluation, it should be reiterated that AJ is not a perfect parameter.

Several mathematical conditions required by the original theoretical formulation of J will not be

strictly satisfied for some practical EPFCG problems. Thermal gradients and temperature-dependent

material properties may degrade the path-independence of J and introduce practical difficulties in

computing a single representative value. This re-evaluation should not be construed as an attempt

to "sweep under the rug" these potential complications.

However, researchers have shown repeatedly that AJ is successful in correlating EPFCG data

under isothermal conditions, despite arguments about mathematical rigor to the contrary. This

success has been explained in terms of an "operational" definition of AJ which satisfies the essential

spirit of the mathematical formulation, if not its letter. And it is from this perspective that we

evaluate whether AJ may still have adequate engineering utility to address more complex EPFCG

histories involving significant thermal effects.

First of all, it is useful to remember that several researchers have used simple estimates of

AJ with moderate success to correlate TMF and other elevated temperature fatigue crack growth

data. The work of Jordan and Meyers and also of Marchand has already been cited. Romanoski and

Pelloux (1990) found that a closure-corrected Ajar gave excellent consolidation of elastic and

elastic-plastic small crack data in IN I00 at 649C. Okazaki and colleagues (Okazaki and Koizumi,

1983; Okazaki et al., 1983) have published several papers in which AJ was used successfully to

correlate TMF and isothermal fatigue crack growth data in different steels. Their work included

several examples in which a rate form of AJ was used to characterize time-dependent effects such
as strain rate.

Furthermore, the monotonic parameter J is currently being employed in other industries to

solve problems which are primarily driven by thermal stresses arising from transient thermal

gradients. For example, J is currently the parameter most often used to address the pressurized

thermal shock (PTS) problem facing nuclear pressure vessels. This fact does not prove that J is a

perfect parameter for the job, but it does suggest that other researchers have concluded that, for the

time being, J is the best available choice.

It is not clear to what extent a loss of theoretical path-independence will cause practical

difficulties for AJ in an engineering context. Chan, Lankford, and Davidson (1986) have shown
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from high-resolution experimental measurements that at the microscale, path-independence is not

strictly satisfied even under simple isothermal elastic-plastic cycling. This violation, however, has

not invalidated the use of AJ for crack growth rate correlation under these conditions. Path

independence is not necessarily a strong selection criterion for cyclic loading. Characterization of

cyclic changes in the parameter are more important. Miller et al. (1993) have argued for the

interpretation of AJ as a local parameter which reflects the crack tip opening behavior, in which case

they claim that path independence is irrelevant. The use of AJ in this manner, however, requires an

estimation scheme which genuinely reflects local behavior and which can be carded out consistently

in a wide range of applications. The "operational definition" of AJ employed previously in

isothermal problems may be sufficient to solve non-isothermal problems as well.

The theoretical limitations of AJ should become most significant when cyclic plasticity is

relatively large. When cyclic plasticity is more limited (e.g., contained plasticity at a stress

concentrator, or along the outer fibers of a member experiencing a large thermal gradient), or when

the plasticity arises entirely from secondary loading (e.g., thermal loading), the total AJ solution may

be more closely linked to the corresponding elastic AK solution. Minor computational errors arising

from path dependence or other theoretical transgressions will be of relatively less consequence. The

GE experiments emphasized extensive plasticity: uniform global strain ranges as high as 1.70%.

While this may have been an appropriate choice to test the suitability of various parameters under

diagnostically extreme conditions, it does not necessarily reflect the types of nonlinear deformation

likely to be encountered commonly in SSME and other aerospace propulsion applications.

The moderate success of Jordan-Meyers and Marchand in using simple parameters more

closely linked to AK appears to be consistent with this argument about limited plasticity, although

some of their successes may have been fortuitous. It is slightly bewildering why (in a few situations)

the correlations employing estimates of AJ, which were based on AK solutions, gave slightly less

satisfying correlations than the elastic AK itself. This disagreement suggests that some errors may

have been introduced by the particular estimation scheme used to compute the plastic AJ component.

It appears that it would be useful to conduct further studies of simple AJ estimation schemes

(i.e., schemes which do not require FE analysis) for non-isothermal conditions, including both

thermal gradients and thermal cycling. Some of the "simpler" alternative integral parameters

reviewed and quickly dismissed by the GE study represent attempts to address thermal stress issues

without necessarily addressing the fundamental theoretical limitations of the J formulation. These

parameters may provide some insight for a more robust J estimation scheme.

Special attention should be given to appropriate means of accommodating temperature-

dependent material property changes as well as thermal stresses. The simple algorithms derived by

Jordan and Meyers to address temperature-dependent changes in modulus and strain hardening

exponent provide a starting point, but improved methods may be possible. Bounding techniques

which ensure conservatism may be adequate for many engineering purposes.

Although these estimation schemes should not be dependent on FE analysis, it is

recommended that limited FE studies be conducted in conjunction with development of the

A.7



estimationschemesto validateandoptimizethesimpleapproaches.TheseFEstudieswouldalso
permitfurtherevaluationof theextentandsignificanceof pathdependence.

Thepotentialroleof crackclosurein thesethermalproblemsshould be investigated further.

Both Marchand and Romanoski found that simple closure corrections significantly improved the

quality of their correlations with simple AK and AJ estimates. The GE finite element studies found

that closure was significant for all of the advanced integral parameters: contributions to the path-area

integral were negligible when the crack was closed. Unfortunately, little is known about potentially

unique closure phenomena motivated by thermal effects, but simple approaches based on

well-characterized stress-dependent (isothermal) effects may be adequate.

These improved simple estimation schemes for AJ under non-isothermal conditions could

be evaluated by applying them to the available crack growth data from GE, Jordan-Meyers,

Marchand, etc. At some point, it may also be useful to conduct additional original experimental

investigations, particularly as it becomes possible to identify a series of critical diagnostic tests. It

should be recognized, however, that these will not be inexpensive experiments.

Experimental evaluation of the improved AJ estimation schemes should permit a clearer

understanding of the limitations of _t/from both theoretical and pragmatic perspectives. In turn, this

exercise should more sharply focus the potential need for advanced alternative parameters, and

perhaps evaluate the ability of the alternative parameters to provide improved correlations.

A.4 General Remarks About All EPFCG Governing Parameters

Before closing, it is useful to discuss briefly two important issues pertaining to all of the

proposed governing parameters for EPFCG, especially under non-isothermal conditions.

The first issue is that these parameters characterize only the mechanical "driving force" for

crack growth: some measure of the strength of the stress and strain fields in the vicinity of the crack

tip, as influenced by externally applied loads (mechanical, thermal, etc.) and the constitutive

response of the material. This is not so much a "limitation" of the parameter as it is simply a

recognition that the kinetics of crack growth includes both "driving force" and "material resistance"

factors. Driving force parameters (such as _r_', _t/, 6J*, etc.) do not (and were never intended to)

address potential changes in the material resistance to crack growth under various test or application

conditions. For example, a significant change in the crack-tip temperature may induce a change in

the crack growth mechanism from intergranular to transgranular. Environmental effects on crack

growth which are dependent on time and/or temperature may become important. Other issues such

as hydrogen effects may also play some role.

Some of these effects have been noted in studies of elevated temperature EPFCG. For

example, Man:hand, Pelloux and Ilschner (1987) constructed two different correlations of his

isothermal and TMF data for Hastelloy X, one incorporating intergranular crack advance modes and

one incorporating data which involved transgranular cracking. He suggested that the mode of

fracture depended primarily on the temperature at which Om_, occurred. Ghonem, Nicholas, and
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Pineau(1993) have reviewedthe variety of crack growth damagemechanismswhich canbe
operativein Inconel718at elevatedtemperatures.Theyconcludedthatthesedamagemechanisms
rangedfrom fully cycle-dependentto fully environment-dependent,dependingsolelyon theslip
characterin thecrack-tipregion.

Thechallengeof correlatingcrackgrowthdatafrom complexEPFCGconditionssuchas
TMF, therefore,is much more than simply identifying the proper mechanicalparameterto
characterizethecrack-tipdeformation.Somecorrelationof crackgrowthdamagemechanismsmust
alsobeperformed.Fromapragmaticstandpoint,thequestfor thesecorrelationswill likely include
questionsaboutthe practical relationshipbetweenTMF andisothermalcycling (perhapsat the
maximumor minimumtemperatureof theTMF cycle),andthecorrespondingrelationshipbetween
isothermalcyclingat differenttemperatures.Eventhemosttheoreticallycorrectalternativeintegral
parameterswill beinsufficient to addressthesequestionsalone.

Thesecondissueis theextentto whichasinglecrack-tipparametergenuinelyanduniquely
reflectsthe importantnear-tipstressandstrainfields. As notedin the Introduction,undersome
conditions(especiallylow constraint)thecrack-tipstressfield itself is notadequatelycharacterized
by the J-integral alone. This loss of J-dominance has been linked to apparent changes in fracture

behavior during monotonic loading when attempts are made to characterize fracture solely in terms

of J. This limitation would be shared by all of the alternative integral parameters as well, so in this

regard the newer approaches offer no benefit. However, it is not clear if these constraint effects will

also be important for EPFCG applications. The constraint effects were identified in fracture

problems when different geometries exhibited substantially different failure behavior. In EPFCG

studies, however, data from contrasting geometries and contrasting load regimes have been shown

to agree closely (Dowling, 1976), and so it is possible that the loss of J-dominance is not practically

significant for fatigue crack growth. In general, crack-tip deformation will be much less severe in

most EPFCG applications than in the types of ductile tearing problems exhibiting large constraint

effects, and this is a possible explanation. Further work is needed to clarify whether constraint

effects exist or are significant for EPFCG.

A.5 Conclusions and Recommendations

Two of the advanced integral parameters, A J* and A_ along with their rate forms, appear to

be promising alternatives to AJ in applications which involve extensive plasticity and large

temperature changes. Other alternative parameters, including both simple and advanced

formulations, have been shown to be less promising.

However, currently available methods for computing these advanced parameters involve

complex finite element analysis which is impractical for engineering applications. Additional work

is required to develop simpler estimatior, schemes, if this is even possible. Furthermore, numerous

other theoretical and practical issues about the calculation and application of these parameters remain

outstanding. Extensive development work ($$$ and time) will be required before these parameters

can be used with confidence in actual applications. Therefore, although these parameters have

exhibited some promise in research settings, their practical use in the near term is not viable.
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Consideringall evaluationcriteria, theoriginal choiceof AJ appearsto be theoptimum
choiceat thepresenttimeasthegoverningparameterfor practicalassessmentof EPFCG.DeltaJ

best addresses a broad range of both theoretical and practical issues. For example, robust estimation

schemes are available to calculate AJ accurately and efficiently for a wide range of crack and

component geometries; a AJ methodology enables the existing AK crack growth data base to be

employed; and AJ has an established history of successful use in the characterization of crack

growth.

Therefore, in the short term, further development of AJ to address potential limitations

appears to be preferable. These development activities should include more careful studies of

practical schemes to address various temperature dependencies in the calculation and application of

AJ. Application of these new estimation schemes will help identify uses of AJ which maintain

adequate conservatism for engineering life assessment, and may also facilitate a more thorough

assessment of the practical limitations of AJ. The previous uses of AJ to characterize elevated

temperature crack growth data in which theoretical validity was not strictly satisfied suggests that

some of these validity questions may be of less practical significance in engineering applications.

Finally, it should be noted that even a "perfect" governing parameter, one which exactly

characterizes the crack-tip stresses and strains and the manner in which they facilitate crack advance,

may be inadequate to completely describe crack growth rates in elevated temperature applications.

Potential changes in crack growth damage mechanisms due to environmental and metallurgical

effects may also be significant, and so some information about changes in material resistance to

crack growth may be required. The scope of the current contract, however, is limited primarily to

addressing the effects of mechanical plasticity on the "driving force" for crack growth.
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APPENDIX B

A SURVEY OF CURRENTLY AVAILABLE J SOLUTIONS





This appendix summarizes the J solutions that are currently available in tabulated or closed

form (not including new J solutions generated in the current contract effort). Included in the survey

of available solutions are many common geometries in NASGRO (with NASGRO designation

cited), geometries identified by NASA as being of particular interest, and additional geometries of

particular relevance to pressurized systems. The results of the survey are summarized in Table B. 1.

Note that many geometries of interest have no available solutions for the plastic component of J.

Many of these solutions are taken or adapted from the various handbooks that have been

published by EPRI over the past seventeen years. In these handbooks, tabulated solutions are

typically given for discrete values of normalized crack and component dimensions and the strain

hardening exponent.

In general, a complete J solution requires both an elastic J solution, which is typically derived

directly from a K solution (either tabulated or closed-form), and a plastic J solution, which is based

either on tabulated FEM results or a closed-form analytical estimate. The plastic J solution is

typically based on a power law constitutive relationship, and so the total J solution reflects a material

obeying a Ramberg-Osgood constitutive relationship between total stress and total strain.

Since most J estimation techniques, including the EPRI handbook and CEGB reference stress

approaches, require a linear elastic K solution to construct a total J solution, sources for appropriate

K solutions have also been noted for convenience. However, the detailed cataloguing of K solutions

is outside the scope of the current contract. Many other K solutions can be found in equation,

tabular, or graphical form in standard handbooks, textbooks, or manuals such as Rooke and

Cartwright (1976), Murakami (1987), Anderson (1995), and the NASGRO computer code and user's
manual.

The specific solutions for either K or J are not given in this appendix, but instead references

are given that identify where the equations or tables can be found. For convenience, some additional

references are given for isolated J solutions published in individual reports or journal articles. Often

these solutions are given as total J values (either tabular or graphical) based on limited FEM

calculations.

This compilation is inevitably incomplete. A systematic literature search was performed

early in the contract effort to identify existing J solutions, and some new solutions were published

and identified later in the contract effort, but some later publications may have been missed.

Furthermore, some J solutions are available only in reports that have not been formally published,

widely circulated, or indexed, and hence may have escaped detection during the literature search.

The symbols used in this particular appendix are, in many cases, the symbols employed in

the cited references. Those original references should be consulted for specific symbol meanings;

no attempt is made here to define or harmonize all of the cited symbols.
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Table B.1. Surveyof Existing J Solutions

Existing Solutions

Thorough Limited

STANDARD SPECIMENS

Compact Tension Specimen, SS02 X

Disc-Shaped Compact Tension Specimen, SS03

Arc-Shaped Tension Specimen, SS04

Three-Point Bend Specimen, SS05 X

THROUGH.THICKNESS CRACKS IN PLATES AND SHELLS

Through Crack in an Infinite Plate X

Through Crack at Center of Plate, TC01 X

Through Crack at Edge of Plate. TC02 X

Double-Edge Cracked Plate X

Through Crack From Hole in a Lug. TC04

Through Crack in a Hollow Sphere, TC06

Axial Through Crack in a Pressurized Cylinder, TO07 X

Circumferential Through Crack in a Cylinder, TC08 X

Through Crack from Hole in a Finite Plate, TC09 X

Radial Through Crack (Internal) in a Hollow Disk

Radial Through Crack (External) in a Hollow Disk

EMBEDDED CRACKS

Embedded Elliptical Crack, EC01 X

CORNER CRACKS

Quarter-Elliptical Comer Crack in a Plate, CCOI

Quarter-Elliptical Comer Crack from Hole in a Plate, CC02

Quarter-Elliptical Corner Crack from Hole in a Lug, CC03

SURFACE CRACKS

Semi-Elliptical Surface Crack in a Plate, SC01 and SC02 X

Semi-Elliptical Axial Surface Crack in a Hollow Cylinder, SC04 X

Internal Axial Surface Crack (Constant Depth) in a Hollow Cylinder X

Semi-Elliptical Circumferential Surface Crack in a Hollow Cylinder, SC05 X

Internal Circumferential Surface Crack (Constant Depth) in a Hollow Cylinder, SC06 X

External Circumferential Surface Crack (Constant Depth) in a Hollow Cylinder, SC06 X

Semi-Elliptical Surface Crack in a Solid Circular Bar, SC07

Circumferential Surface Crack (Constant Depth) in a Solid Cylinder
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STANDARD SPECIMENS

CompactTensionSpecimen,SS02

K solution available in NASGRO, Anderson (1995)

Plastic J solutions available in tabulated form for

a/W = 0.25, 0.375, 0.5, 0.625, 0.75, 1.0

n= 1,2,3,5,7, 10, 13, 16,20

plane stress or plane strain

Source: Kumar et al. (1981) EPRI Handbook, Section 3.1

Disc-Shaped Compact Type Specimen, SS03

K solution available in NASGRO, Anderson (1995)

No plastic J solution currently available

Arc-Shaped Tension Specimen, SS04

K solution available in NASGRO, Anderson (1995)

No plastic J solution currently available

Three-Point Bend Specimen, SS05

K solution available in NASGRO, Anderson (1995)

Plastic J solutions available in tabulated form for

a/W= 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, .875

n= 1,2,3,5,7, 10, 13, 16,20

plane stress or plane strain
2L/b = 4

Source: Kumar et al. (1981) EPRI Handbook, Section 3.4
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THROUGH-THICKNESS CRACKS IN PLATES AND SHELLS

Through Crack in an Infinite Plate

K solution is trivial

Plastic J solution for uniform tension based on closed form expression (good for all n values)

plane stress and plane strain

Source: Shih and Hutchinson (1976), He and Hutchinson (1981)

Through Crack at Center of Plate, TC01

K solution available in NASGRO, Anderson (1995)

Plastic J solutions available in tabulated form for uniform tension

a/W= 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, .875

n= 1,2,3,5,7, 10, 13, 16,20

plane stress and plane strain

Source: Kumar et al. (1981)EPRI Handbook, Section 3.3

Note: this plastic J solution can be extended continuously back to a/W = 0. by polynomial

interpolation between larger crack sizes and the infinite plate solution (2.1).

Plastic J solutions available in tabulated form for biaxially loaded center-cracked plates

a/W= 0.125 to 0.625 in 0.125 steps

n = 1,2, 3, 5, 7, 10,13,16,20

plane stress only

load ratios S_/Sy = ±.0.5 and ±1.0

Source: Jansson (1986)

Limited FEM J solutions for combined thermal and mechanical loading in Kumar et al. (1984a)

EPRI Report, Section 7, and also in Hellen and Blackburn (1987)

Through Crack at Edge of Plate, TC02

K solution available in NASGRO, Anderson (1995)

Plastic J solutions available in tabulated form for uniform tension

a/W= 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, .875

n= 1,2,3,5,7, 10, 13, 16,20

plane stress and plane strain

Source: Kumar et al. (1981) EPRI Handbook, Section 3.3

Plastic J solutions available in tabulated form for pure bending
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details not currently available

Source: Kumar et al. (1982) EPRI Report

Plastic J solutions available in tabulated form for combined tension and bending

a/W= 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, .875

n= 1,2,3,5,7, 10

plane strain only

5 discrete values of tension-to-bending ratio

Source: Kumar et al. (1984a) EPRI Report, Section 2

Limited FEM J solutions for combined thermal and mechanical loading in Kumar et al. (1984a)

EPRI Report, Section 7

Double-Edge Cracked Plate

K solutions available in Anderson (1995)

Plastic J solutions available in tabulated form for uniform tension

a/W = 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, .875

n= 1,2,3,5,7, 10, 13, 16,20

plane stress or plane strain

Source: Kumar et al. (1981) EPRI Handbook, Section 3.6

Through Crack From Hole in a Lug, TC04

K solution available in NASGRO

No plastic J solutions currently available

Through Crack in a Hollow Sphere, TC06

K solution available in NASGRO

No plastic J solutions currently available

Axial Through Crack in a Pressurized Cylinder, TC07

K solution available in Zahoor (1990) EPRI Handbook, Section 6.1, for 0 < c/(Rt) °5 < 5

also see NASGRO

Zahoor (1990), Section 6.2, also gives an approximate total J solution based on a Dugdale model
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No FEM plasticJ solutions currently available

Circumferential Through Crack in a Cylinder, TC08

K solutions available in Zahoor (1989) EPRI Handbook, Section

internal pressure
also see NASGRO

1, for axial tension, bending,

Plastic J solutions available in tabulated form for

axial tension, bending, combined tension + bending
R/t = 5, 10, 20

n= 1,2, 3, 5,7, 10

0/_ ranges from 0 to 0.5 in small steps

Source: Zahoor (1989) EPRI Handbook, Section 2, including solutions from earlier Kumar et al.
handbooks

Some improved solutions are available in Wilkowski et al. (1992) for bending, small 0/n

Through Crack From Hole in a Finite Plate, TC09

No closed form K solutions available, but several tabular solutions have been published

see Murakami (I 987), Chapter 5

NASGRO has a series solution for tension and bending plus biaxial tension

Limited plastic J solutions available for narrow range of a/R values in a biaxial stress field

see Zahoor (1991) EPRI Handbook, Section I 1.2

Radial Through Crack (Inside) in a Hollow Disk

Apparently no closed form K solution available

Graphical K solution available in Murakami (1987), Section 6.5, for rotating disk

No plastic J solutions currently available

Radial Through Crack (Outside) in a Hollow Disk

Apparently no closed form K solution available

No plastic J solutions currently available
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EMBEDDED CRACKS

EmbeddedElliptical Crack

No closed form K solutions available for the general 4 DOF problem

some graphical and tabular solutions available in Murakami (1987), Chapter 9
one closed form solution available in NASGRO for

embedded elliptical crack centered in a finite thickness plate (EC01)

Closed form K solutions available for buried elliptical crack in infinite body

under uniform tension or bending; see Murakami (1987), Chapter 9

Weight function solutions available for buried elliptical crack in infinite body

under general bivariant stress field; see Wang et al. (1998)

No FEM plastic J solutions currently available for general 4 DOF problem

closed-form plastic J solution (based on FEM results) available for penny-shaped crack in infinite

body

Source: He and Hutchinson (1981)

limited FEM results also available for penny-shaped crack in finite diameter round bar

Source: He and Hutchinson (1983b)

CORNER CRACKS

Quarter-Elliptical Corner Crack in a Plate, CC01

K solution available in NASGRO for uniform tension, bending

No FEM plastic J solutions currently available

Quarter-Elliptical Corner Crack from Hole in a Plate, CC02

K solution available in NASGRO

No FEM plastic J solutions currently available

Quarter-Elliptical Corner Crack from Hole in a Lug, CC03

K solution available in NASGRO

No FEM plastic J solutions currently available
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SURFACE CRACKS

Semi-Elliptical Surface Crack in a Plate, SC01, SC02

Closed-form (Newman and Raju, 1981) K solutions available in NASGRO for uniform tension and

bending; NASGRO also contains general weight function solutions for arbitrary stress
distribution

limited number of plastic J FEM solutions available from Yagawa et al. (1993)

limited number of total J FEM solutions available from Kirk and Dodds (1992), Wang (1988, 1991 ),

Parks and Wang (1988), Dodds et al. (1993), Sharobeam and Landes (1995)

very limited total J solutions also published by Nikishkov and Atluri (1988), Trantina et al. (1983),

and Hodulak and St6ckl (1985)

Comment: Although several different sets of FEM J solutions have been published for

surface cracks in plates, no single author has published a sufficient number of reliable results

to faciliate a general tabular interpolation solution, as in the EPRI handbooks. Furthermore,

the results of different authors sometimes disagree.

Semi-Elliptical Axial Surface Crack in a Hollow Cylinder, SC04

Closed-form K solutions available in Zahoor (1991) EPRI Handbook, Section 8.1, for internal

pressure, various stress distributions

Weight function K solution in NASGRO

Some additional tabulated K solutions available in Murakami (1987), Section 9.36

Plastic J solutions available in tabulated form for internal pressure only

a/t = 0.1 to 0.8 in 0.025 or 0.05 steps

a/2c = 1/3, 1/4, 1/6, 1/10, 1/20, and 1/40

n= 1,2,3,5,7

R/t = 10 only

Source: Zahoor (1991 ) EPRI Handbook, Section 8.2

also see very limited FEM total J solutions by Wilkening et al. (1984) and Brooks and Noack (1988)

Bass et al. (1982) and Bryan et al. (1984) have published very limited FEM total J solutions for

external axial semi-elliptical surface flaw in cylinder

Internal Axial Surface Crack (Constant Depth) in a Hollow Cylinder

K solutions available for internal pressure and arbitrary stress distribution

Source: Zahoor (1991) EPRI Handbook, Section 7.1

Plastic J solutions available in tabulated form for internal pressure only
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R/t = 5, 10, 20

a/t = 0.0 to 0.8 in 0.05 steps

n=1,2,3,5,7,10,20

Source: Zahoor (199 l) EPRI Handbook, Section 7.2

also see solutions for external axial crack in pressurized cylinder, Kumar et al. (1982) EPRI Report

Limited FEM J solutions for combined thermal and mechanical loading in Kumar et al. (1984a)

EPRI Report, Section 7

Semi-Elliptical Circumferential Surface Crack in a Hollow Cylinder, SC05

Closed-form K solutions available in Zahoor (1990) EPRI Handbook, Section 3.1, for axial tension,

bending moment, arbitrary stress distribution (internal crack; limitations on crack size/shape)

NASGRO K solution for uniform tension, bending

FEM plastic J solutions available in tabulated form for axial load (internal crack)

a/t = 0.1 to 0.8 in 0.025 or 0.05 steps
n= 1,2,5, 10

0/n = 0.05 to 1.00 in 0.05 steps

R/t = 10 only

Source: Zahoor (1990) EPRI Handbook, Section 3.2

FEM plastic J solutions also available for constant depth circumferential surface cracks

independent uniform axial load or bending moment

same a/t, n, 0/n, and R/t values as semi-elliptical surface crack solutions above

Source: Zahoor (1990) EPRI Handbook, Section 2.2 (K solutions in Section 2. l)

Very limited number of FEM plastic J solutions published by Yagawa et al. (1985) for a nearly semi-

elliptical shape

Internal Circumferential Surface Crack (Constant Depth) in a Hollow Cylinder, SC06

K solutions available in Zahoor (1990) EPRI Handbook, Section 4.1, for axial load and arbitrary
stress distribution

weight function K solutions also available in NASGRO for arbitrary stress distribution

plastic J solutions available in tabulated form for axial load

a/t = 0.0 to 0.8 in 0.05 steps

n= 1,2,3,5,7, 10,20

R/t= 5, 10, 20

Source: Zahoor (1990) EPRI Handbook, Section 4.2
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Limited FEM J solutions for combined thermal and mechanical loading in Kumar et al. (1984a)

EPRI Report, Section 7, and in Muscati (1985)

External Circumferential Surface Crack (Constant Depth) in a Hollow Cylinder, SC06

K solutions available in Rooke and Cartwright (1976), Section 3.2.1, for uniform axial tension

weight function K solutions also available in NASGRO for arbitrary stress distribution

Plastic J solutions available in Kumar et al. (1982) EPRI Report

Semi-Elliptical Surface Crack in a Solid Circular Bar, SC07

K solutions available in NASGRO for uniform tension and bending

No plastic J solutions currently available

Circumferential Surface Crack (Constant Depth) in a Solid Cylinder

K solutions available in Rooke and Cartwright (1976), Section 3.2.1, for uniform axial tension

(limiting case of solution for hollow cylinder)

no plastic solutions currently available
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APPENDIX C

FINITE ELEMENT J SOLUTIONS FOR SURFACE

AND CORNER FLAWS





New J-integral solutions based on original elastic-plastic finite element analysis were

developed at Rocketdyne for semi-elliptical surface flaws and quarter-elliptical comer flaws. Some

of the results were generated in conjunction with parallel Rocketdyne internal research activities.

A parametric quarter-elliptical flaw model was employed. The model was originally

developed to interface with 3D models of components, and it can also be used to generate fully

plastic J-integral solutions for 3D surface or comer flaws. The basic solid entities and their meshing

and load application macros were set up in ANSYS 5.0, resulting in a typical mesh as shown in

Figure C. 1. Flaw modeling employed solid modeling techniques including area concatenation and

extensive programmability capabilities. The model was broken up into sub-volumes so that each

volume could be map-meshed with eight-noded bricks. The vicinity of the crack tip was deleted

facilitating convergence of the plastic solution for materials with high hardening exponents. A mesh

and volume division is shown for a particular geometry and mesh refinement in Figure C.2. A flag

is used to generate boundary conditions for surface or corner cracks, and the far field load can be

perpendicular to or parallel with the crack plane. The opening and the parallel stresses may have

different polynomial forms, varying only through the plate thickness.

Reviews of the literature indicate that the fully plastic results published by different

researchers do not agree uniformly. Furthermore, even the elastic values may not agree with the

Newman-Raju tables in some cases. Therefore, criteria for various aspects of solution quality such

as attainment of fully plastic behavior, infinite boundaries, and convergence with respect to element

refinement must be established and clearly stated when documenting the results. An adaptive

scheme based on optimization was applied to make sure that all the criteria were satisfied with the

least amount of function evaluations. A J-integral evaluation script incorporating meshing, solution,

J-integral extraction and quality checking as well as the algorithm to satisfy conditions of

convergence with respect to element size, attainment of fully plastic deformation and appropriate

model extent was developed.

J-integral solutions were generated with ABAQUS, using its J-integral evaluation capabilities

and the recently implemented Ramberg-Osgood material model. Utility programs were written to

extract J-integral values at each load step and integration path. Values associated with integration

paths were screened against a path independence criterion. The quality of the mesh (closely tied to

material nonlinearity and load level) was characterized by the number of 'good' paths and the

maximum difference between the averaged J value and the J-integral on any of the retained paths.

All these steps were implemented in a C shell script called SURFLAW that generates a table of

J-integral values corresponding to input material properties, load conditions and mesh refinement

parameters.
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Comparisonsof resultsfrom SURFLAW with literature J solutions were favorable, as

indicated in Figures C.3 and C.4. The Dodds solution (Dodds et al., 1993) shown corresponded to

medium hardening and flaw geometry conditions (2c/a = 6, a/t = 0.25, 2b/t = 4, E = 500, v = 0.3, n

= 10, o 0 = 1, tz = 1). Model refinement was characterized by the number of stations along the crack

front, the number of elements at a station, referred to as the number of sectors, and the radial element

size. The stations were uniformly distributed along the elliptical angle, _. First, a mesh refinement

study was performed. Comparisons with Dodds' results showed that at the deep point of the crack

front and at the free surface the results matched even with relatively coarse mesh designs. The

angular dependence, however, differed as shown in Figure C.4. The refinement study demonstrated

that the current parametric model converged to the angular dependence given in Figure C.4. The

number of elements surrounding the crack front was found to be the most important factor to

convergence at the deep end and at the free surface, probably related to the resolution of the angular

dependence in the near-tip field.

The fully plastic solution generation procedure was eventually automated. The version of

ABAQUS used in this effort had only an elastic-plastic material model, and therefore the fully plastic

solution had to be extracted using an EPRI-type scheme. Since the additivity of elastic and plastic

J-integral contribution is already an approximation, the logic was to apply large enough load level

so that the elastic contribution is negligible and then separate the plastic contribution from the

calculated total J-integral. The initial guess for this load level was calculated using a simple

reference stress method (McClung et al., 1996b) to estimate the plastic contribution and then solving

for the load that results in negligible elastic J. Subsequently, the model was solved using elastic and

elastic-plastic materials. The load level that satisfied the criterion for small elastic J to total J ratio

was then calculated by a few iterations adjusting the estimated load value. While the 'fully plastic'

load level is found, the proper (n+l) power dependence is monitored to assure that the deformation

mode does not shift in the gross yielding regime. Once the fully plastic h I factors were extracted,

the governing script stepped to a higher mesh refinement level until consecutive h I values converged

at the free surface and at the depth direction. Refinement typically increased the number of degrees

of freedom by 1.5x - 2x, largely concentrated in the vicinity of the crack front.

Tables of the fully plastic hi factor were generated for surface flaws and corner flaws under

membrane loading. Here h_ was defined as

Jp

h I - t_cY0E0 /(O.oo/n+l (C.1)

\ao J

where o 0, e0, tz, and n are the usual Ramberg-Osgood constants. Three different a/t values (0.2, 0.5,

0.8) and three different a/c values (0.2, 0.6, 1.0) were considered (a total of nine different

combinations). These are the same crack shapes and sizes considered in the Yagawa finite element

results (Yagawa et al., 1993) for surface cracks. Three different values of the strain hardening

exponent were considered: n = 5, 10, and 15. Yagawa and most authors have considered only n less

than or equal to 10. The geometry ratios h/c = 4 and c/b = 0.25 were held constant in all analyses.
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TablesC.1andC.2showcomparisonsof elasticsolutionswith themostrecentbenchmark
K solutions, developed at NASA-Johnson and incorporated in version 2.0 of NASGRO. The elastic

solutions were obtained with standard 8-noded elements in ABAQUS. At the free surfaces, the

stress intensity factors have been calculated using a plane stress assumption, while plane strain was

used at all other stations. The third and fourth columns of these tables show the percentage

difference between the new ABAQUS results and the FLAGRO solutions at the plate surface (_ = 0)

and at the deepest point in the thickness direction (_ = 90). The fifth, sixth, and seventh columns

of these tables give information related to the mesh refinement and size of the FE models: the

number of sectors perpendicular to the crack front, the ratio of the element size to the minimum of

a and b, and the total number of degrees of freedom (NDOF). Agreement is relatively strong for the

surface crack but not as good for the comer flaw.

Fully-plastic h I values were calculated with the hybrid version of the ABAQUS 8-noded

element, which is expected to perform better under conditions of incompressibility than the standard

displacement-formulated elements. Tables C.3 - C.8 furnish the numerical values of the h I factors,

while Figures C.5 - C. 10 illustrate the same information graphically. The columns of the tables

represent values at stations at equidistant elliptical angle (_). In the current study, 11 stations were

specified. It is apparent that for high values of the strain hardening exponent, the calculated J values

oscillate slightly with angular position. This problem is worse for elongated flaws. Also, in some

surface crack computations, the symmetry condition requiring that the J-integral plot along the crack

front have zero slope at _ = 90 is not apparent, judging from the plots.
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Table C.1. Surfaceflaw, membraneloading- elasticsolutionquality; comparisonwith results
from FLAGRO2.0

a/t a/c

.20 .20

.20 .60

.20 1.00

.50 .20

.50 .60

.50 1.00

.80 .20

.80 .60

.80 1.00

% e(O)

9.24

% e(90)

-I.46

nsec

9

cerat NDOF

15240.012

-.27 -.52 9 .017 10503

.79 -1.64 9 .017 8469

6.17 -4.76 9 .012 13518

-2.61 -2.97 9 .017 9801

9-2.36 .017-1.76 8235

4.90 -4.09 9 .012 12396

-4.05 -2.33 9 .017 8400

.017-3.52 -3.06 7524

Table C.2. Comer flaw, membrane loading - elastic solution quality; comparison with results

from FLAGRO 2.0

a/t

.20

.20

.20

.50

.50

.50

.80

.80

.80

a/c

.20

.60

1.00

.20

.60

1.00

.20

.60

1.00

% e(0)

8.80

-1.43

-2.09

3.45

-6.40

-5.82

-2.40

-10.78

-10.82

I% e(90)

2.29

.48

-2.24

-3.74

-4.32

-6.42

-9.32

-9.13

-10.95

nsec

9

cerat ] NDOF

.012 15240

.017 10503

.017 8469

.012 13518

.017 9801

.017 8235

.012 12396

.017 8400

.017 7524
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APPENDIX D

A J ESTIMATION SCHEME FOR CRACKS AT NOTCHES





D.1 Introduction

In this Appendix, a J estimation scheme is proposed and validated against original finite

element J results and existing results presented in the EPRI elastic-plastic fracture handbook

(Zahoor, 1991 ). The new FIE results are elastic-plastic J solutions for symmetrical cracks emanating

from parallel sided double edge notches (DEN) in plates subjected to tensile forces and undergoing

plane stress deformation. The EPRI solutions were derived for a single crack emanating from a

round hole in an infinite body subjected to uniform biaxial stressing, the stress normal to the crack

plane being equal to twice the value of the stress acting parallel to the crack plane. Both sets of

solutions were obtained for material stress-strain behavior governed by the Ramberg-Osgood law

E (I

E O
O O

+IX (D.1)

where e o, tz, n, and o o are material constants, and •o=Oo/E, E is Young's modulus, and • is the strain

corresponding to the uniaxial stress, o.

The cracked DEN J solutions were computed for various a/b and n values and for D/R=2.41,

6.2, and 11.6 which correspond to stress concentration factors, K,, of 4.2, 6.3, and 8.4, where

stress at notch
K t = (D.2)

gross section stress

Here, a=D+d, where D is the depth of the notch, d is the depth of the crack measured from the root

of the notch, b is half the width of the plate, and R is the radius of the semi-circular notch tip. The

EPRI solutions are for a crack at a embedded round hole with D/R=1 and K,=2.8. Hence, these two

sets of results provide a comprehensive range of solutions which cover most stress concentration

features of practical interest. The relationships between d, a, R, D, and b, are shown schematically

in Figure D. 1.

D.2 J Estimation Schemes

D.2.1 EPRI Scheme

In the EPRI handbook, the plane stress solution for J is expressed in the form

J = Je + Jp (D.3)
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J
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Figure D.1 Schematic showing geometrical relationships between notch depth (D), notch root

radius (R), crack depth (d), notch plus crack depth (a) and half plate width (b).
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where Je is a first order plastically corrected value of the linear elastic solution for J and is given by

Je(de) = Je(d + dpr) (D.4)

where

g 2

J - (D.5)
e E

and K is the stress intensity factor. The effective depth, de=d+_ry, includes a plastic zone correction

determined by the terms _ and r_.which are defined as

D "-

(D.6)

(D.7)

Here 13equals 2 for plane stress, and 6 for plane strain.

The plastic component of J, Jp, is expressed as

Jp = _ c o o o d hl(d/R,n,3,)

n+l

(D.$)

where the values of the function h I are tabulated in the EPRI handbook for various values ofd/R and

n, and for a biaxial stress factor, 3.=0.5. P is the applied load, and Po a characteristic yield load.

The cracked DEN results were expressed in a similar form to the EPRI handbook solution

for double edge cracked plates. For example, the plastic component of Jp was written as

D.3



Je = c_ c o o o c hl(a/b,n,D/R) (D.9)

where c=b-a.

plane stress as

The characteristic yield load, Po was defined for the double edge cracked plate in

4
Po = m c o o (D.IO)

19.2.2 Proposed Estimation Scheme (Modified RSM)

The proposed J estimation scheme combines the scheme adopted by EPRI and used in the

elastic-plastic handbooks, with the reference stress method. In the proposed scheme, hereafter

referred to as the modified RSM, first order plasticity effects are included in J via a first order

plastically corrected value for the linear elastic solution, Je, given by equations (D.4) and (D.5). This

ensures that the correct linear elastic limit is recovered by the scheme.

The fully plastic contribution to J, Jp is evaluated using the RSM. For the purposes of

validating the approach, the optimized RSM is employed. In this method, a yield load, Po', and

structural parameter, V( a/b,D/R ), are derived from finite element solutions for Jp. (In the present

instance, the Jp solutions are available from the new FE results and the EPRI handbooks.) The

values of Po* and V(a/b,D/R) are chosen so as to optimize the fit of the RSM estimate of Jp to the

finite element solutions for a range of n values. This approach ensures that the correct fully plastic

limit is recovered by the scheme.

Note that in general, the values of Po* and V(a/b,D/R) are not known a priori in the absence

of appropriate finite element solutions for Jp, Po* is often approximated by Po, and V(a/b,D/R) is

assumed to have the value of unity. Using the optimized approach provides an accurate

representation of the fully plastic solution, enabling the accuracy of the modified RSM to be

investigated explicitly in the important elastic-plastic regime which interpolates between linear

elastic and fully plastic behavior.

The optimized RSM expression for Jp is

Jp = J (d) V(alb,DIR) (D.11)
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where er_ is the plastic component of the reference strain which, for Ramberg-Osgood materials,

is given by

Ere f = t_ (D.12)

and

P
--- _ (iOref , o (D.13)

Po

In summary, in the proposed modified RSM J estimation scheme for cracks at notches, J is written

as

"1_ * Ee _e:J = Je(d + ry)+ Je(d) V(a/b,D/R) _ 00.14)
(Ire/ J

where

(O.15)

D.2.3 Standard RSM Scheme

For comparison purposes, it is useful to review the standard RSM scheme.

optimized RSM expression is

The standard

J = J e(d)

1L*2

1+

Ee-ref

(Iref

+ J(d) V(a/b,D/R) Ee_p_f (D.16)

(Iref

where ereI is the reference strain derived from Equation (D. 1) by replacing o by arcf, and L:=P/Po'.

In this equation, the first term on the right hand side provides a first order plastic correction similar
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to that appearingin Equation (D.15). However,notethat whereasthemodified RSM approach
explicitly includeslocal notch tip plasticity effectsthroughthedependenceof Je on dp'ry, these

effects are not directly accounted for in the standard RSM approach, where small scale plasticity is

assumed to depend on the net section stress parameter, Lr*.

D.3 Validation of J Estimation Scheme

It is convenient to transfer the J results obtained from the finite element computations and

the optimized modified RSM to the Failure Assessment Diagram (FAD) to facilitate a comparison

of the two sets of solutions, and to identify trends in behavior as the value of K, changes. The FAD

provides a simple diagrammatic representation of J solutions which makes apparent the effect of

increasing crack tip plasticity as the applied load is increased. The FAD can be generated by

evaluating the parameters L_ and K_ as a function of the load P using the equations

Je(d,P)Lr - P K = (D.17)
P o(a/b) '

The value of L_ measures the nearness of the flawed structure to net section yielding (by definition,

L,= 1 corresponds to net section yielding), and the value of K r determines the effects of crack tip

plasticity with respect to linear elastic behavior. (By definition, Kr = 1 corresponds to J=Je, and linear

elastic fracture mechanics may be applied, whereas a value of K_<<1 indicates that fully plastic

behavior is appropriate and J---Jp.)

FAD's have been constructed using Equation (D.17) for the J solutions given in the EPRI

handbooks and the new cracked DEN solutions. (Note that L r in this equation is evaluated using the

EPRI expressions for the characteristic yield loads.) In all cases, Ramberg-Osgood constants given

by _= 1 and o0=60 ksi were used. A summary of the J solutions analyzed in terms of the FAD is

shown in Table D. 1. FAD's have also been constructed for the notch geometries listed in Table 1

using J values derived according to the modified RSM and the standard RSM. In all, a total of 10

EPRI J solutions and 88 new cracked DEN J solutions were analyzed in this way. A representative

set of the results are displayed in Figures D.2 through D.6 for the EPRI geometry and n=5, and

Figures D.7 through D.28 for the cracked DEN geometry and n= 10.

Although the source values for J are not given in the EPRI handbook, the EPRI solutions

validate the modified RSM approach to estimating J since the EPRI handbook gives the solutions

already resolved into J, and Jp components, as defined in equations (D.3) through (D.8). These

equations are equivalent to equation (D. 14) since in equation (D. 14) the plastic component, Jp, is the

optimized RSM solution derived directly from equation (D.8). Figures D.2 through D.6 enable the

accuracy of the standard optimized RSM (equation (D. 16), indicated by solid lines in the figures)

to be compared with the EPRI finite element solutions (dashed lines), bearing in mind that the

standard RSM does not explicitly incorporate the effect of the notch on crack tip plasticity in the

small scale yielding regime. The RSM estimate of J will be conservative compared to the finite
element results when the RSM failure curve falls inside the finite element failure curve, but will
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underestimatethefinite element J value when the reverse situation occurs. For a given applied load

(L r value) the ratio of J solutions is given by

J (RSM3

J (finite element)

m

Kr (finite__r(R-ff--_element) 12
(D.lS)

From Figures D.2 through D.6 it can be seen that the standard optimized RSM method provides a

good approximation to the EPRI finite element values of J, even for the smallest crack (d/R=0.125)

where the stress concentration of the hole will have the most effect on crack tip plasticity.

In Figures D.7 through D. 13 the finite element FAD's derived from the new cracked DEN

J solutions for K,--4.2 (open circles) are compared with the FAD's constructed using the modified

RSM (dotted lines) and the standard RSM (solid lines). These figures illustrate some important

points:

The FAD's constructed using the modified RSM are in excellent agreement with the

finite element solutions for all the crack depths analyzed (0.1194<d/R<0.6431) and

at all load levels (L r values).

The effects of the concentration of stress and strain at the notch root on crack tip

plasticity are clearly apparent for shallow cracks (d/R<0.2940). This is indicated by

the shape of the FAD's at low values of the applied load (low L r values). In this

regime, the values of Kr derived from the finite element and modified RSM are

significantly less than 1, whereas the standard RSM (which does not incorporate the

effect of the notch on small scale crack tip yielding) is still predicting values which
are close to 1.

The standard RSM estimation scheme for J could significantly underestimate J for

shallow cracks at notches for low to moderate load levels. Hence, the standard RSM

estimation for J will be non-conservative in these cases.

At high loads where plastic deformation has extended across the net section (L,>I),

local effects at the notch root become insignificant for all the cracks analyzed. In this

regime, the FAD's calculated from the finite element J values, and using the modified

and standard RSM's, are all in good agreement.

The FAD's derived from the three methods are in good agreement at all load levels

for relatively deep cracks (d/R>0.2940). This indicates that local notch stress

concentration effects on crack tip plasticity are small for these types of cracks. In

these cases, the J solutions for the notch plus crack are very similar to the J solutions

for a crack of depth a=D+d subjected to the nominal load. This kind of behavior is

well known in linear elastic fracture mechanics and could have been anticipated to

occur also in the elastic-plastic fracture regime.
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TheFAD's forthecrackedgeometrieswhereK,=6.3 are shown in Figures D. 14 through D.20.

Similar conclusions can be drawn from these results as for those for K,=4.2, with, in particular, local

notch concentration effects being most important for shallow cracks where d/R_<0.3063. Similar

conclusions can also be drawn from the results presented in Figures D.21 through D.28 for the

cracked geometries where K,=8.4.

D.3.1 Significance of V(a/b,D/R)

Whereas, in the absence of appropriate fully plastic J solutions, the value of the yield load,

Po', can be estimated from plastic limit load theory, it is not possible to determine the value of

V(a/b,D/R) without these solutions. The value of Po" is not dependent on local notch stress

concentrations, and is a function of the remaining uncracked section (net section) and the nominal

applied load. In contrast, the value of V(a/b,D/R) for shallow cracks (d/R<0.3) will be sensitive to

notch concentration effects. For example, in the case of double edge notched plates V typically had

a value of around 1.4 for the very shallow cracks, which decreased to around 1.2 for the deepest

cracks. These values are consistent with an average values for V of about 1 which has been derived

from the analysis a wide range of cracked structural geometries. Furthermore, the value of V only

influences the value of J in the fully plastic regime.

Hence, it is proposed that a value of 1 be assumed for V, and the following expression be

used to evaluate J in cases where finite element elastic-plastic results are not available

J -: Je(d 4- _* r)-I- Je(d) (Da9)

D.3.2 Validation of Equation (1).19)

Validation in support of equation (D. 19) is shown in Figures D.29 through D.34 which show

FAD's constructed using equations (D. 14) (dashed lines) and (D. 19) (solid lines), and FAD's derived

from the cracked DEN finite element J analyses for n= 10 (open circles). The figures cover FAD's

for shallow and deep cracks emanating from notches with K, values of 4.2, 6.3 and 8.4. The

modified RSM approximations to J represented by equations (D. 14) and (D. 19) were evaluated using

optimized yield loads, Po °.

The agreement between FAD's derived using the modified RSM based on assuming V= 1 and

the finite element FAD's is good, indicating that the accuracy of the modified RSM approach to

estimating J will be sufficient for engineering applications. As previously stated, the assumption

that V= 1 will only significantly influence the accuracy of FAD's derived using the modified RSM

approach in the fully plastic regime (L_ 1). This conclusion is supported by comparing the results

in Figures D.29 through D.34 for the two modified RSM approaches based on using an explicit value

for V and assuming V= 1.
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D.4 Summary

The elastic-plastic value of J for cracks at notches can be estimated by combining the EPRI

and RSM estimation schemes. The EPRI scheme provides a means of evaluating J in the linear

elastic and small scale crack tip yielding regimes which incorporates local notch stress concentration

effects. The RSM approach provides a way of estimating the effects of widespread plasticity (net

section yielding) on J. Combining these schemes provides the following equation for J which may

be applied at all levels of crack tip plasticity, from the linear elastic limit through to the fully plastic

limit, and for all crack depths

(D.20)

where Ore/ = P/P,,', Po" is an estimated yield load for the cracked structure, based on the remaining

uncracked section, and _° and ry are evaluated according to equations (D. 15) and (D.7), respectively.
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Table D.1. Summary of finite element J solutions for cracks emanating from notches.

a/b d/R R/D K,

EPRI plane stress solutions for single crack emanating from round hole subject to
biaxial stressing: n = 1, 3, 5.

0.000 0.125 1.00 2.8

0.000 0.250 1.00 2.8

0.000 0.500 1.00 2.8

0.000 0.750 1.00 2.8

0.000 1.000 1.00 2.8

Plane stress solutions for cracks emanating from double edge notched plates,
D/b=0.3: n = 1, 3, 5, 10, 15.

0.315 0.119 2.41 4.2

0.326 0.206 2.41 4.2

0.337 0.294 2.41 4.2

0.347 0.381 2.41 4.2

0.358 0.469 2.41 4.2

0.369 0.556 2.41 4.2

0.380 0.643 2.41 4.2

0.315 0.306 6.19 6.3

0.326 0.525 6.19 6.3

0.337 0.754 6.19 6.3

0.347 0.978 6.19 6.3

0.358 1.202 6.19 6.3

0.369 1.426 6.19 6.3

0.380 1.650 6.19 6.3

0.304 0.155 11.63 8.4

0.315 0.576 11.63 8.4

0.326 0.997 11.63 8.4

0.337 1.418 11.63 8.4

0.347 1.838 11.63 8.4

0.358 2.259 11.63 8.4

0.369 2.680 11.63 8.4

0.380 3.101 11.63 8.4
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Figure D.2 Comparison of EPRI finite element results (dashed line) with the optimized RSM

(solid line) for a single crack at a round hole subjected to biaxial stressing:

d/R=0.125, Kt=2.8, n=5.
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Figure D.3 Comparison of EPRI finite element results (dashed line) with the optimized RSM

(solid line) for a single crack at a round hole subjected to biaxial stressing:

d/R=0.250, Kt=2.8, n=5.
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Figure D.4 Comparison of EPRI finite element results (dashed line) with the optimized RSM

(solid line) for a single crack at a round hole subjected to biaxial stressing:

d/R=0.500, K,=2.8, n=5.
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Figure D.5 Comparison of EPRI finite element results (dashed line) with the optimized RSM

(solid line) for a single crack at a round hole subjected to biaxial stressing:

d,,"R=0.750, K,=2.8, n=5.
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Figure D.6 Comparison of EPRI finite element results (dashed line) with the optimized RSM
(solid line) for a single crack at a round hole subjected to biaxial stressing:

d/R= 1.000, K,=2.8, n=5.

D.15



1.0

0.8

0.6

0.4

0.2

0.0

K t = 4.2, d/R = 0.1194

a/b = 0.315, n = 10

Uniaxiai Stress

optimized RSM

--0-- f'mite element results

......... modified RSM

0.0 0.5 1.0 1.5 2.0

Lr

Figure D.7 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R=0.1194, Kt=4.2, n= 10.
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Figure D.8 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R=0.2067, K,--4.2, n= 10.
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Figure D.9 Comparison of finite element results (open circles) with the modified (dotted line)
and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R---0.2940, Kt=4.2, n=10.
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Figure D.IO Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R=0.3813, Kt=4.2, n=10.
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Figure D.I1 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R=0.4685, Kt=4.2, n=10.
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Figure D.12 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R=0.5558, Kt=4.2, n=10.
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FigureD.13 Comparison of finite element results (open circles) with the modified (dotted line)
and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R--0.6431, KC-4.2, n=10.
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Figure D.14 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R=0.3063, Kt=6.3, n=10.
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Figure D.15 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d./R=0.5248, Kt=6.3, n=10.

D.24



1.0

0.8

0.6

0.4

0.2

0.0

-4

-%\_'_'J_" . optimized RSM

K t = 6.3, d/R = 0.7540 _,

a/b = 0.337, n = 10 _..

Uniaxial Stress

' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' I

0.0 0.5 1.0 1.5 2.0

Lr

Figure D.16 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R=0.7540, Kt=6.3, n=10.
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Figure D.17 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R=0.9779, Kt=6.3, n= 10.
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Figure D.18 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R= 1.2018, Kt=6.3, n= 10.
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Figure D.19 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d./R=1.4256, Kt=6.3, n=10.
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Figure D.20 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R=1.6495, Kt=6.3, n=10.
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Figure D.21 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates
subjected to uniaxial stressing: d/R--O. 1550, Kt=8.4, n=10.
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Figure D.22 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R=0.5759, K,=8.4, n=10.
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Figure D.23 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates
subjected to uniaxial stressing: d/R=0.9967, K,=8.4, n= 10.
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Figure D.24 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R= 1.4175, Kt=8.4, n= 10.
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Figure D.25 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R=l.8383, Kt=8.4, n=10.
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Figure D.26 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R=2.2591, Kt=8.4, n= 10.
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FigureD.27 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R=2.6800, Kt=8.4, n=10.
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Figure D.28 Comparison of finite element results (open circles) with the modified (dotted line)

and standard (solid line) RSM's for symmetrical cracks in double edge notched plates

subjected to uniaxial stressing: d/R=3.1008, Kt=8.4, n= 10.
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Figure D.29 Comparison of finite element results (open circles) with the modified RSM using the
actual value of V(a/b,D/R) (dashed line) and V=I (solid line) for symmetrical cracks

in double edge notched plates subjected to uniaxial stressing: d/R=0.1194, Kt=4.2,
n=10.
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Figure D.30 Comparison of finite element results (open circles) with the modified RSM using the

actual value of V(a/b,D/R) (dashed line) and V=I (solid line) for symmetrical cracks

in double edge notched plates subjected to uniaxial stressing: d/R=0.6431,/(,=4.2,
n=10.
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Figure D.31 Comparison of finite element results (open circles) with the modified RSM using the

actual value of V(a/b,D/R) (dashed line) and V= 1 (solid line) for symmetrical cracks

in double edge notched plates subjected to uniaxial stressing: d/R=0.3063, K,=6.3,
n=10.
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Figure D.32 Comparison of finite element results (open circles) with the modified RSM using the

actual value of V(a/b,D/R) (dashed line) and V= 1 (solid line) for symmetrical cracks

in double edge notched plates subjected to uniaxial stressing: d/R= 1.6495, K,=6.3,
n=10.
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Figure D.33 Comparison of finite element results (open circles) with the modified RSM using the

actual value of V(a/b,D/R) (dashed line) and V= 1 (solid line) for symmetrical cracks

in double edge notched plates subjected to uniaxial stressing: d/R--O. 1550, Kt=8.4,
n=10.
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Figure D.34 Comparison of finite element results (open circles) with the modified RSM using the

actual value of V(a/b,D/R)(dashed line) and V= 1 (solid line) for symmetrical cracks

in double edge notched plates subjected to uniaxial stressing: d/R=3.1008, K,=8.4,

n=10.
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APPENDIX E

AN APPROXIMATE METHOD FOR DERIVING

J SOLUTIONS FOR TWO SIMULTANEOUSLY APPLIED

MECHANICAL LOADS FROM J SOLUTIONS FOR

THE TWO LOADS ACTING SEPARATELY





Sumn_ry

It is shown that the J solution for two mechanical loads applied simultaneously can be

expressed in terms of the linear elastic component of J for the combined loading, and a material

dependent function of an appropriate combined yield load. The latter is called here the optimum

yield load, and represents the true yield load of a defective structure of non-strain hardening material.

The derivation of J for the combined loading is thus reduced to finding an expression for the

optimum combined yield load. An approximate method for deriving this load is described using

reference stress concepts and published fully plastic J solutions for single mechanical loads. The

methodology is validated against computed fully plastic J solutions for single edge cracked plates,

and cylinders containing circumferential through-wall defects, simultaneously subjected to tensile

forces and pure bending moments. The agreement between the approximate solutions and the

computed J values is good. The accuracy of the method is dependent on the accuracy of the

combined yield load chosen as an interpolation function between the two extreme loading conditions

corresponding to pure tension and pure bend.

The methodology can be used to generate tables of values for the optimum yield loads, and

then J solutions for materials with arbitrary stress-strain behavior. This extension of the EPRI J

solutions for specific strain hardening exponents to the general case, is one of the major benefits that

can be derived from applying the reference stress method. It offers the opportunity for re-analyzing

the extensive J solutions contained in the EPRI handbooks in order to generalize the single load

solutions to arbitrary stress-strain behavior, and hence utilize these, where appropriate, to generate

solutions for combined loading cases. These developments will help facilitate the inclusion of J

solutions in computer programs, such as NASGRO, which may be extended to incorporate

elastic-plastic fracture mechanics.

E.1 Introduction

The Electric Power Research Institute (EPRI) has sponsored the calculation of elastic-plastic

J solutions for a variety of structural and laboratory specimen geometries (Kumar, German, and Shih,

1981; Kumar et al., 1984a; Kumar and German, 1988). Nearly all the solutions pertain to the

application of single mechanical loads, or mechanical loads combined with thermal loading. Only

a limited number of solutions have been derived for combined tensile forces and bending moments.

The purpose of this Appendix is to describe the development of an approximate method for

deriving J solutions for two simultaneously applied loads from existing solutions for single loads.

It is assumed that no J solutions are available for the combined loading case. If these solutions are

available they can be used, together with interpolation and/or extrapolation procedures, to derive the

desired solutions.

The approach adopted is based on the reference stress method proposed by Ainsworth (1984)

for characterizing the plastic deformation at a crack tip. These concepts are used to identify an

optimum yield load from which a reference stress may be derived. In general, the optimum yield load

does not correspond to any of the yield loads used in the J estimation scheme described in the EPRI
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handbooks,nor to theyield loadsnormallyderivedfrom plasticlimit loadtheory. As will beseen,
tosolvethecombinedmechanicalloadingproblemrequiresknowingtheoptimumyieldloadfor the
combinedloading. An approximatemethodfor constructingthis is givenin theAppendix,based
on estimatingplasticlimit loadsfor thecombinedloading.

Thedevelopedmethodologyfor combinedloadsisusedtogenerateapproximateJ solutions

for tensile forces and bending moments applied to single edge cracked plates (SECP) and cylinders

containing circumferential through-wall defects (CTWD). These are validated against J solutions

contained in the EPRI handbooks for the .same loads and geometries (Kumar et al., 1984; Kumar and

German, 1988).

E.2 EPRI J Estimation Scheme for Single Loads

In the EPRI estimation scheme the J-integral is written as the superposition of elastic (Je) and

plastic (Jp) components

J = L ÷ Jp (E.1)

J solutions reported in references (Kumar, German, and Shih, 1981; Kumar et al., 1984a; Kumar and

German, 1988) were derived from elastic-plastic finite element analyses for materials obeying the

Ramberg-Osgood stress-plastic strain constitutive law

eP/eo = =[O/Oo In (E.2)

where c p is plastic strain, a is the applied stress, and %, Oo, _xand n are material constants.

The elastic component of J is related to the applied stress intensity factor (K) through the

equation

Je = K 2(ae)/E ! (E.3)

where E'=E, Young's modulus, for plane stress, and E'=E/(1-v2), for plane strain, where v is

Poisson's ratio. The effective crack depth ae is evaluated from first order plasticity theory and is

given for a Ramberg-Osgood power law by

a e : a + rt_(n+l)[ (E.4)

where
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l+21( o/2
and a is the crack depth and Po a characterizing yield load chosen as a convenient normalizing load

parameter. 13is equal to 2 for plane stress, and 6 for plane strain conditions.

Expressions for Jp for single mechanical loads can be obtained from the EPRI handbooks

(Kumar, German, and Shih, 1981; Kumar et al., 1984a; Kumar and German, 1988) as

[Co]
(E.6)

where b is the section size and c=b-a is the uncracked ligament.

The function h I depends on a/b, n and, in general, a normalized structural parameter, D (for

example, for cylindrical geometries D = R/t, where R is the mean radius and t the wall thickness).

Values of hi are tabulated in the EPRI handbooks for various structural and laboratory geometries.

It is convenient to omit some or all of the functional dependencies of h_ in the ensuing discussions,

and to include explicitly only those dependencies which are relevant to the subject at hand.

E.3 Reference Stress Approach

The basic assumption of the reference stress method is that, for a particular structural

geometry, defect, and loading condition, there exists a reference point in J-load space through which

all the J solutions pass, irrespective of the constitutive equation describing the material stress-strain

response. The principle is shown schematically in Figure E. 1, where P represents the applied load.

The value of P corresponding to the reference point is hereafter called the optimum yield load, Po'.

This load is equal to the true yield load of a defective structure: the J-load curve for a non-hardening

(elastic-perfectly plastic) material also passes through the reference point.

The idea of a reference stress originates from the study of creep deformation. In the creep

context, the reference point corresponds to the spatial point in the structure where the steady state

value of the stress is invariant to changes in the constitutive law relating strain rate to uniaxial stress.

The value of the stress at this point is frequently used as a one parameter characterization of creep

deformation in the structure, and is called the reference stress. These concepts can be transferred to

plasticity by invoking the analogy between creep and plastic deformation. This analogy states that,

for similar constitutive equations between creep deformation (the law relating creep rate and stress)

and plastic deformation (the law relating plastic strain and stress), the results for a plastic stress

analysis can be obtained from creep analysis by replacing creep strain rate and displacement rate by

plastic strain and displacement. It is clear from this that a reference stress exists that characterizes

plastic deformation. This stress corresponds to the value of stress at the spatial point in the structure
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wherethestressis invariantwith respecttochangesin theconstitutivelaw relatingplasticstrainand
uniaxial stress. To theauthors'knowledge,the validity of transferringtheseconceptsto plastic
fracturemechanics,wherechangesin theappliedvalueof J replace changes in a spatial coordinate,

has not been formally established.

When applied to estimating J solutions, the aim of the reference stress approach is to

optimize the choice of yield load so that the dependence of h I on n is eliminated or reduced to an

insignificant level. Thus, in terms of the optimum yield load, Jp can be written as

 oo%ci l l ol
n÷l

where, by comparison with equation (E.6), h_ ° is given by

Although n appears as an argument in the terms on the right hand side of equation (E.8), it

is assumed in the reference stress approach that the product of these terms is independent of n. It

can be seen from equation (E.7) that all values of Jp for a given defective structure and applied load

are equal when P=Po °, irrespective of the value of n. This value of Jp is the value at the reference

point in J-load space (see Figure E. 1).

The optimum yield load allows an optimum reference stress to be defined. This stress

provides a single parameter characterization (for given plastic constraint) of the plastic deformation

in the uncracked ligament (Ainsworth, 1984). The optimum reference stress, Oral, is related to the

optimum yield load by the equation

Orey = (P/Po')Oo (E.9)

where o o is the yield stress.

E.4 Optimum Choice for Po"

Equation (E.6) has to reduce to the LEFM expression for J when n=l but with the elastic

value of Poisson's ratio, v, replaced by the plastic value, vp. Writing

K= (na)lZ2(PlA)F( b) (E.10)
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whereA is a geometric constant of the dimensions of area, and F is an influence function which

depends on geometry, then

where p = t_l_ v_)//1-_x' v2). Comparing equation (E.11)to equation (E.6)with n=l and ct=l yields

the following expression for hi(1 )

2
h_(1) : HP ° (E.12)

where use has been made of the relationship E¢o = ao and

(E.13)

Rewriting equation (E.8) as

hi hi(n)

•n+l p n*l
Po o

(E.14)

then from equation (E.12) it can be seen that both the left hand and right hand sides of equation

(E. 14) are independent of the choice of yield load when n= 1. This is an important observation which

influences the method chosen to determine Po°, but one that should be expected in the linear elastic

limit.

In order to find the optimum choice for Po', and to allow for uncertainties in the calculated

value of h_(n), equation (E. 14) is rewritten as:

Hp/2(1) hi(n)

n÷l
Po""(n) Po

(E.15)

where the Po'(n) are unknown yield loads whose values are to be determined. Re-arranging this

equation yields the following expression for Po'(n)
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vo'(,,) = P
°[ h,(,,) ] (Ea6)

This equation contains two unknowns when n>l, namely, Po'(1) and Po'(n), and reduces to

equation (E. 12) when n=l.

Inaccuracies in the computed values ofhl(n ) may arise from a number of causes, for example,

the quality of the finite element mesh, and, in the case of the EPRI handbook solutions, the goodness

of fit to the J results obtained using equations (E.1), (E.3), and (E.6). These computational

inaccuracies are manifested as uncertainties in the value of the optimum yield load, and, instead of

the J curves passing through a single point in J-load space as in Figure E. 1, the intersections of the

curves for different strain hardening capacities will be spread over a finite area of this space. Thus,

even though Po'(1 ) in equation (E. 16) is known precisely, inaccuracies in the value of hi(n) will

produce an apparent n dependence of the optimum yield load, which is shown explicitly in

equation (E. 16). Hence, a procedure is required for estimating the most likely, or optimum, value

of Po" taking into account these uncertainties.

The optimization procedure followed here consists of using Po'(1) as a variational parameter,

chosen to minimize the dependence of the yield loads Po°(n) on n for n>l. In other words, a value

for Po'(1) is sought such that Po'(n)=Po °, a constant independent of n, when n>l. A possible

numerical procedure for implementing this optimization scheme is described in Section 7.

Once these values of Po'(1) and Po ° have been determined, then, using equations (E.7),

(E. 11 ), to (E. 14), Jp can be written for n> 1 as

: . .[ P; ] [Pal (ra7)

This equation is surprising because it shows that the plastic component of J is related to the elastic

component. Furthermore, using the Ramberg-Osgood law as specified in equation (E.2), and the

definition of the reference stress, o,_t, given in equation (E.9), then equation (E. 17) can be re-written
as

lp : P J_ (E.18)
L%J]

where e_t v is the reference plastic strain corresponding to the value of o_f on the uniaxial stress-strain

curve. Note that.Iv is now expressed in a form which is applicable to materials with arbitrary stress-
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strain behavior. This important aspect of the reference stress approach enables a generalized,

material dependent expression forJp to be derived once the optimum yield load has been determined.

E.5 Extension to Combined Loading

J estimation schemes can be extended to the simultaneous application of two independent

load types (e.g. tensile force and bending moment), signified as P_ and P2, by characterizing the load

combination as P1 and _., where

(E.19)

and g is a geometric term that makes _. dimensionless. (For example, g=b for a SECP, and g=R for

a CTWD, if P1 is a tensile force and P: a bending moment). _.=0 corresponds to the application of

load type PI only, and X=_ to load type P2 only.

Let Po._ and Po.2 be the values of P_ and P2 at general yield when the loads are applied

separately. Clearly, the values of Pj and Pz at general yield, when both loads are applied

simultaneously, will depend on the value of _.. The combined yield load will be taken as the value

of P_ at yield, and be denoted by Po(X). Hence

eo,2

Po(_. : O) = Po _, Po (_" : oo) : _ (E.20)
• _.g

For combined loading the EPRI expression for Jp becomes (Kumar et al., 1984a; Kumar and

German, 1988)

(E.21)

and, equation (E. 17) becomes

Jp(P_,_.) = pJe(P_,X) (E.22)

The suitability of using the reference stress approach for estimating Jp for combined loading is now

apparent: the dependence of Jp on a function h_(n,)t), about which it is assumed that nothing is

known a priori (except for given solutions corresponding to the extreme values of _.=0 and _.=_), has

been removed. The problem has been reduced to the relatively simpler (but still non-trivial) one of
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estimatingthe optimum referenceloadsPo'(1,X) and Po'(_.) (addressed in the next section), and

evaluating the linear elastic solution for Je.

There are now a number of compendia which give K solutions for a wide variety of structures

and loads (Sih, 1973; Tada, Paris, and Irwin, 1985; Murakami, 1989) and since linear elastic

solutions are linearly additive, obtaining Je for combined loading is a relatively straightforward

matter. For example, if subscript 1 and 2 indicate applied loads Pt and P2, then Je for the combined

loading is given by

Je = (K,+K2)2/E' (E.23)

E.6 Estimating the Optimum Yield Load for Combined Loading

An estimate of a yield load for combined loading, denoted as Po()O, can be obtained from

plastic limit load theory. [For example, see the limit load compendium compiled by Miller (1988)

or the EPRI handbooks (Kumar et al., 1984a; Kumar and German, 1988).] This yield load can be

used as guidance in the choice of the optimum combined yield load by forcing it to recover the

optimum yield load solutions for the two loads applied separately, that is, when X = 0 and _. = ,,o.

This is done by defining the ratios:

and

Pal,
r(_. = 0) - - (E.24)

P o(_. = O) Po, l

eo'(x---) Po'. 
r(_. = _,) - - (E.25)

PoO.=_) t"o,2

where Po.l" and Pof are the optimum yield loads when Pt and P2 act separately. These ratios can be

used to force the chosen yield load, Po(_.), to approximate the optimum yield load, Po'(_.), for

arbitrary _. by writing

Po(X) = r(X=O)Po( r(X=O)X /_-__ ] (E.26)

which reduces to the correct optimum yield loads when _.---0 and _.=*_, and provides an interpolation

formula for Po'(_.) between these two extremes. A graphical interpretation of this equation is shown

in Figure E.2, which illustrates how the solution for Po(_.) is transformed into an approximate form

for Po'(Z).
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A similar procedure can also be followed for estimating the optimum yield load Po*(1 ,_.)

based on the ratios r(1,_.=0) and r(l,_.=_o) defined in a similar fashion to r(_.=0) and r(_.=_) in

equations (E.24) and (E.25), and using the same yield load, Po(_.).

E.7 Application to Single Edge Cracked Plates (SECP)

The fracture mechanics solutions for SECP's are frequently used in structural integrity

assessments. The EPRI handbooks contain plane strain Jp solutions for tensile (P_) and bending (P2)

loads (Kumar, German, and Shih, 1981), and a limited number of solutions for combined loading

for _=1/8, and a range of negative _. values, where _.=P2/bP 1 (Kumar et al., 1984a). The results for

a negative moment are not analyzed here, due to the problems associated with crack closure, and the

lack of J solutions for the case when _.=_oo. However, the _.=1/8 solutions [see Table 2-1 in reference

(Kumar et al., 1984)] provide data against which the methodology detailed in the previous sections

can be judged.

Unfortunately, the yield loads used in the definition of Po(_. ) for 3.=0 and _=oo in the EPR/

handbooks do not reduce to the yield loads Po' and pob used in the expressions for Jp, where

superscripts t and b refer to tension and bend respectively. It is convenient to renormalize the tension

and bend solutions so this is the case by replacing the EPRI functions h/and hj b by modified values

where

.l
h,(_') - (a/b)m [ Pox ] 0E.27)

and x stands for t or b: m=0 and _.=0 for tension, and m=l and _.=_ for bend. The (a/b) term is

required because the expression for Jp given in the handbook for bending does not include (a/b).

Values for h__ are tabulated in Tables 3-7 and 3-5 of reference (Kumar, German, and Shih,

1981) for tension and three-point bending respectively, and expressions for Po x are given by

equations (3.57) and (3.39) in the same reference. The three-point bending solutions are used in this

Appendix as an approximation to the pure bending solutions.

The modified hl(_.) solutions defined in equation (E.27) for _.=0 and _.=oo were used in the

optimization procedure described in Section E.4 to obtain Po'(O) and Po'(oo). In this procedure, the

value of Po'(1) was varied and the values of Po'(n) determined from equation (E.16) until the

parameter, p, was a minimum, where

P = _ (Po(n)-Po)2 (E.28)
n>l

and
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p, _ l_po(n ) (E.29)
o Nn>l

N is the number of n values (where n> 1) for which EPRI J solutions are available.

The plane strain EPRI yield load for combined loading was used as an interpolation formula

for evaluating Po'O.) from equation (E.26). The EPRI solution is given by equation (2.22) of

reference (Kumar et al., 1984a) as

Po(_') = 200 [2_.+_1 + - 12X+b I (E.30)

The optimized yield loads were used to determine hl(n,X ) from the equation

. [ eo(X)]..,

h,(n.X) = h,*(1A) [po--_] (E.31)

where

,2

h_" (1,X) = H(X)P o (1,X) (E.32)

and

H(X) -
E it (Ft 6_.Fb) 2+ la

(E.33)

Here B is the breadth of the plate. This was taken as unity in the computations, the applied loads

being defined per unit breadth. The results are shown in Table E. 1 together with the EPRI computed

values. There is reasonable agreement between the two sets of values given the fact that the form

of the optimum combined yield load has been approximated.

The conjecture that the differences between the two sets of results is due to the approximate

nature of the constructed optimum combined yield load is illustrated by the following analysis. From

equation (E.31)
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(E.34)

and

(E.35)

These equations can be used to assess the accuracy of the approximate solutions given in Table E. 1

as the following example shows. From Table E. 1 the alb=0.75 results for the EPRI solutions show

that the ratio on the right hand side of equation (E.35) is about 0.7. For example, it equals 0.695

when n=3, m=4, and 0.702 when n=5, m=5. The estimated value of this ratio is 0.629, which is

about 11% below the EPRI values. From equation (E.34) this indicates that the corresponding value

for ht(10,)t) will be approximately 0.4 = (1/1.11 s) times the EPRI value. As can be seen from

Table E. 1, this is the case.

E.8 Application to Circumferential Through-wall Defect (CTWD)

The EPRI handbooks contain Jp solutions for CTWD's subjected to a tensile force (P_), pure

bending moment (P2), and a combination of these two load types (Kumar and German, 1988). The

combined solutions for hl(n,R/t=lO,_.), which are analyzed herein, are for _. values of 0.5, 1 and 2

[see Table 2-9 in reference (Kumar and German, 1988)], where X=Pz/RPj. These results provide

data against which the approximate procedure for estimating Jp can be validated.

Values of h/and hi b are tabulated in Tables 2-3 and 2-7, respectively, of (Kumar and

German, 1988), and expressions for Po._ and Po,2 are given by equations (2-25) and (2-50) in the same

reference as

P°'l=P°(_'=O)=27_°°Rt[ 1 rc-O 2 sin-l(1-n _sin0)] (E.36)

and

1 sin0] (E.37)Po.2 = )tRPo(_" = oo) = 4ooR 2t cos (0/2) - 2

where a/b=OIn, a is half the total crack length, 0 is the angle subtended by an arc of length a, b=nR,

and t is the wall thickness. The EPRI handbook expression for Po(_.) is equation (2-75) in (Kumar

and German, 1988)
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Po 1
po(1) - ,

2 +4 - -.-Po,2 ]

(E.38)

The optimized yield loads were determined using equation (E.38) and following a procedure

similar to that described in Section E.7, where instead of equation (E.33), H(1) is defined as:

[ '/2H(1)- E r_ F t + iF
(E.39)

The results are shown in Table E.2 together with the EPRI solutions. As for the SECP case, there

is reasonably good agreement between the two sets of results.

E.9 Sensitivity to Choice of Po(1)

An alternative combined yield load to that defined by equation (E.38) can be obtained by

equating the force and moment corresponding to the induced stress distribution at yield to the

externally applied force and moment. This results in the pair of simultaneous equations (Miller,

1988)

4°:.[_. s n0} (E.40)

and

0 Po(z)
_xl - + (E.41)2 40 Rt

0

which can be combined to give the following equation for Po(1)

IP°(1) cos[O+ Po(X) I + lsin0
4o oRt 2 4OoRt ] 2

= 0 (E.42)

This alternative yield load was used to derive a new set of h,(n,l) values, displayed in Table E.2.

The new solutions track the behavior of h_(n,t) as n increases better than the results obtained using

the EPRI yield load.
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A comparisonof thevariouscombinedyield loadsfor alb=0.25 is shown in Figure E.3. It

can be seen that the alternative yield load falls below the EPRI yield load as X increases, and that the

derived optimum yield solutions fall above the corresponding yield loads. Comparison of the

combined yield loads in Figure E.3, and the corresponding results for a/b=0.25 in Table E.2,

illustrates the sensitivity of hl(n,X) to the choice of yield load used for interpolation purposes.

E.IO Summary of Procedure for Estimating Jp for Combined Loading

The following steps describe the procedure for determining the functions h+(n,X) which

define Jp through equation (E.21 ). It is assumed that values for h_(n,X=0) and h_(n,X=oo) are available
for a sufficient number of n values to enable the optimum yield loads for the two independently

applied mechanical loads to be determined, and that expressions for the corresponding yield loads

Po.I and Po.2 are also known. These yield loads have to be compatible with the combined yield load

chosen for use in equation (E.26) as an interpolation function between X=0 and X=_. This

compatibility is assured if Po(X=O)=Po.I and Po(X=oo)=Po.zlXg, where the parameter g is assigned to

an appropriate structural dimension.

(i) Determine the optimum yield loads Po*(_.--0), Po'(X=_), Po'(1 ,X=0), and Po*(1 ,_.=oo) from the

known solutions for h_(n,X=0), h_(n,X=oo), Po(X=0), and Po(X=oo), using the optimization

scheme described in Section 4 based on equation (E. 16). A simple numerical procedure for

performing this optimization is described in Section E.7 [equations (E.28) and (E.29)].

(ii) Evaluate X=PJgP_ for the required load combination, and determine the value of the function

H(X) from the stress intensity factor solutions for the two mechanical loads using equations

such as (E.33), and (E.39).

(iii) From plastic limit load considerations define a combined yield load, Po(X), for arbitrary X,

such as those given in equations (E.30), (E.38), and (E.42). Approximate methods of

constructing combined yield loads are discussed in reference (Miller, 1988). Equation (E.30)

may be derived by applying one of these methods, which is based on a yield surface for

combined tension and bending. Another technique is to use the lower bound limit load

theorem which enables a yield load to be obtained by balancing the applied forces by an

internal yield magnitude stress distribution consisting of tensile and compressive

components. This method was used to derive equation (E.42).

(iv) Use Po(X), together with r(X=0), r( 1,X----0), r(_,=.o) and r(1 ,X=_o), calculated from equations

(E.24) and (E.25), to determine approximate values for Po*(X) and Po*(1,X) from

equation (E.26). (See the equivalent graphical construction shown in Figure E.2.)

(v) Evaluate the function h_'(1 ,X) from equation (E.32) and hence calculate the value ofhz (n,X)

for the desired n value from equation (E.31).

(vi) Alternatively, Jp may be calculated directly from equation (E.22), or, if Jp is desired for a

non-Ramberg-Osgood material, using equation (E.9) to obtain o,_t, and the uniaxial stress-
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straincurvetoobtain_ra,andhence,usingthecombinedloadequivalentof equation(E.18)
andequation(E.23).

If computedJp solutions are available for PI and P2 and only a single material stress-strain

curve (say, a Ramberg-Osgood law and a particular n value, or arbitrary stress-strain behavior), then

values of Po'(_.=0) and Po'(X=_) required from step (i) can still be estimated as those values which

give the best agreement between equation (E.7) and the computed solutions for J, assuming that the

Po(I,O) Po'(1, oo)
ratios and are equal to unity.

Po'(0) Po(-)

If no computed J solutions are available for the loads PI and P2, then equation (E.22) can be

used to estimate Jp for the combined loading, but using best estimate values for Po'(_.--O) and

Po'(_.=o_) obtained from plastic limit load considerations and again assuming that the ratios Po(1,0)

Po'(0)

and P°(I'°°)are equal to unity.

P;(-)

E.11 Discussion

The methodology presented for determining an expression for Jp under combined loading is

approximate. The approximate nature of the method, which utilizes reference stress concepts, is in

the need to determine the optimum combined yield load for arbitrary X values from solutions which

are assumed known only for the two extreme cases where _. = 0 and _. = oo. The starting assumption

for the analysis is that J solutions for the two loads applied separately are known for a range of

different strain hardening materials. If this is not the case, then alternative methods can be

employed, as described in Section E. 10. In general, these will not be as accurate, as they are based

on less precise information.

The J solutions contained in the EPRI handbooks are expressed in terms of the functions h_

[see equations (E.6) and (E.21)], whose values are tabulated for various structural geometries,

specific crack depths (a/b ratios), strain hardening exponents, and applied load types (Kumar,

German, and Shih, 1981; Kumar et al., 1984a; Kumar and German, 1988). The tabular values can

be used in elastic-plastic fracture mechanics assessments to determine J values based on equations

(E. 1), (E.6), and (E.21), together with interpolation techniques to extend the range of the available
solutions.

However, a more efficient use of the methodology would be to generate tabular data for the

optimum yield loads and to utilize these, together with the developed reference stress approach, in

order to generate J solutions for materials with arbitrary stress-strain behavior [see equation (E. 18)].

This extension of the EPRI J solutions for specific strain hardening exponents, n, to the general case,

is one of the major benefits that can be derived from applying the reference stress method. Indeed,
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themethodoffers theopportunityfor re-analyzingtheextensiveJ solutions contained in the EPRI

handbooks in order to generalize the single load solutions to arbitrary stress-strain behavior, and

hence, utilize these, where appropriate, to generate solutions for combined loading cases.

Methods of utilizing tabular data for calculating fracture mechanics parameters are already

established in linear elastic applications: for example, in the computer program NASGRO. The

methodology proposed herein of deriving J solutions for combined loading from the J solutions for

the two mechanical loads applied separately, can be used to generate tabular data for use in extending

linear elastic based computer codes to include elastic-plastic fracture mechanics.

Another benefit of the reference stress method is that it allows new J solutions to be

estimated based on only linear elastic solutions and yield loads derived from plastic limit

considerations. These solutions are immediately applicable to materials which display an arbitrary

stress-strain response. The procedures for doing this are briefly described in Section E. 10, and are

based on equation (E. 18).

E.12 Conclusions

An approximate method for evaluating J for combined mechanical loads has been developed

based on reference stress principles. The accuracy of the method is determined by the accuracy with

which an optimum combined yield load can be estimated. A procedure for obtaining this optimum

yield load is described based on the optimum yield loads for the two mechanical loads acting

separately, and plastic limit load considerations. The method has been validated against elastic-

plastic finite element results for J obtained for single edge cracked plates, and circumferential

through-wall defects in cylinders, subjected to simultaneously applied tensile forces and pure

bending moments. The developed methodology has the added benefit of allowing solutions for J

obtained for Ramberg-Osgood materials to be extended to materials which display arbitrary stress-

strain behavior.
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Table E.1.

in parentheses

n value

alb

0.125

h I functions for a plane strain SECP under combined tension and bending for the case

of _,=0.125: Comparison of finite element and approximate results, the latter shown

3

3.881

2

4.544

5

2.632

(5.905) (4.727) (3.029)

0.25 2.536 1.773 0.843

(3.201) (2.269)

0.375 1.657 1.016

(2.015) (1.311)

0.5 1.305 0.804

(1.298) (0.791)

0.625 1.056 0.678

(0.952) (0.571)

0.75 0.609

(0.537)

0.901

(0.855)

(1.140)

0.373

(0.555)

0.310

(0.293)

0.290

(0.205)

0.293

(0.212)

7

1.734

(1.941)

0.392

(0.573)

0.136

(0.235)

O. 120

(0.109)

0.129

(0.074)

0.142

(0.084)

10

0.905

(0.995)

0.119

(0.204)

0.029

(0.065)

0.030

(0.025)

0.039

(0.016)

0.050

(0.021)
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Table E.2. h I functions for a through-crack in a cylinder under combined tension and bending.

Comparison of finite element and approximate results. The latter are shown in single

parentheses when the EPRI yield load was used, and double parentheses when the

alternative yield load was used as an interpolation formula.

n value

alb

0.125

2

7.222

(8.027)

((8.574))
,.

0.25 6.506

(7.682)

((8.496))

1.0 0.125 7.925

(9.013)

((9.771))

0.25 7.363

(8.847)

((10.036))

5

8.631

10

9.421

(7.893) (7.676)

((10.367)) ((14.228))

6.063 6.123

(5.679) (3.432)

((8.544)) ((8.625))

9.604 10.958

(8.543) (7.814)

((11.801)) ((16.165))

7.333 8.242

(6.455) (3.817)

((10.708)) (( 11.930))

2.0 0.125 7.970 9.335 9.985

(8.826) (8.078) (6.970)

((9.479))

0.25 7.438

(8.899)

((10.646)) ((12.919))

7.156 7.519

(6.410) (3.710)

((10.107))((9.981)) ((10.319))
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Figure E.1. Schematic of variation of J with load, P, for materials with different strain hardening

capacities. At the reference point, all J values are equal, and this occurs when the

load reaches the optimum yield load, Po*.
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Figure E.2. Graphical construction of the optimum combined yield load.
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APPENDIX F

J ESTIMATION PROCEDURES FOR COMBINED

PRIMARY AND SECONDARY LOADS





Summary

Four existing methods of estimating J for combined primary and secondary loads are reviewed. The

methods are: a J estimation scheme based on the Electric Power Research Institute (EPRI)

elastic-plastic handbook approach which incorporates the effects of secondary loading through a first

order plasticity correction to the elastic component of J; the R6 structural integrity procedure which

includes a term characterizing the interaction between primary and secondary loads; the method of

Chell which combines a first order plasticity correction with the reference stress approach; and a

proposed modification to the R6 procedure. None of the methods are totally satisfactory as they

stand. However, a new procedure for estimating J for combined loading based on improvements in

the Chell approach is developed. Parts of the procedure have not been fully validated and are based

on best engineering judgement drawn from the limited information available at the present time. The

procedure allows credit to be taken for situations where stress relaxation occurs due to plastic

deformation in the defect free structure, but it is not generally applicable to situations where

significant elastic follow-up occurs. The latter can be addressed by simulating the secondary loading

by imposed displacements. This problem is not treated in detail, but a method of solution is

outlined.
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F.1 Introduction

Procedures for determining J for primary (mechanical) loads are now well established, either

using the results of elastic-plastic finite element calculations, expressed in convenient parametric

form [the EPRI J estimation scheme (Kumar, German, and Shih, 1981)], or approximate analytical

methods such as those based on the reference stress approach of Ainsworth (1984). J-integral

formulations have also been developed for two-dimensional geometries subjected to combined

primary and secondary loads (Ainsworth, Neale, and Price, 1978; Wilson and Wu, 1979), and also

for axisymmetric and other three-dimensional structures (de Lorenzi, 1982). However, the situation

with regard to existing J solutions for secondary (i.e., thermal, residual, displacement imposed) loads

is far less advanced than for the primary loading cases, due, to a large extent, to the variety of such

loads, which makes a general characterization of them difficult, if not impossible.

The many complex forms of secondary loads obviate the possibility of developing a

compendium of J solutions for these as has been done for primary loads in the elastic-plastic

handbooks sponsored by EPRI (Kumar, German, and Shih, 1981). There is, thus, a need to develop

and validate alternative approaches which make use of existing elastic-plastic J based

methodologies, but which have the flexibility to cope with the wide variety of secondary loads

encountered in practical situations. This appendix reviews some of the more promising of these

methods and indicates their status as regards validation and generality. A Jestimation procedure for

treating primary and secondary loads is proposed based on the results of this review.

F.2 Definition of Primary and Secondary Loads and Elastic Follow-up

F.2.1 Primary and Secondary Loads

Primary loads determine the plastic collapse conditions of the structure. Secondary loads are

divided into two types: self-equilibrated and non-equilibrated. Self-equilibrated loads induce

stresses which integrate to produce zero net force and moments on the structure and do not affect the

plastic collapse conditions. Examples are: thermal stresses in simple free standing structures (such

as plates and cylinders) which are invariant along the axis of the structure; some forms of welding

residual stresses generated by differential changes in the coefficient of expansion; and residual

stresses resulting from plastic deformation. Non-equilibrated secondary loads induce stresses which

integrate to produce a net force or moment on the structure, but do not influence the plastic collapse

conditions, although they may have a significant effect on elastic-plastic fracture behavior prior to

plastic collapse. In these cases the magnitude of the secondary loads is frequently related to the

stiffness of the structure. An example of non-self-equilibrated loading is displacement imposed

loading.

Secondary loads can give rise to technical difficulties only rarely encountered in primary

loading situations. For example, severe thermal loading frequently results in localized regions of

the structure where the stresses exceed yield, producing plastic enclaves and stress redistribution.

In the case of displacement loading there may be a strong interaction between the effective loading
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on the crack and the size of the defect due to changes in structural stiffness arising from the presence

of the defect (Chell, 1979). These effects should properly be taken into account in determining J.

F.2.2 Elastic Follow-up

The term elastic follow-up is used to signify the ability of the structure to increase local

strains by plastic yielding or creep deformation while under constant load or displacement. A

structure which is thermally loaded would display no follow-up if local strains were not increased

by stress relaxation due to plastic deformation. This particular situation, called strain invariance,

occurs when the reduction in elastic strains due to stress relaxation is exactly balanced by the

inelastic strains causing the relaxation. Although strain invariance during stress relaxation is only

rarely realized, even if the stress distribution is self-equilibrated, it is often a very good

approximation where inelastic strains are small compared to the elastic strains, such as occurs, for

example, when the plastic zone is small and surrounded by a massive elastic matrix.

The effects of secondary stresses on fracture behavior can be enhanced by elastic follow-up

in the structure. The most common form of follow-up arises from displacement loading which

produces a non-equilibrated stress distribution. However, significant follow-up can also occur in

cases where the structure experiences only self-equilibrated stress distributions (e.g., see

Section F.4.4).

F.3 Effects of Secondary Loads on Fracture

Methods for obtaining J that include secondary loading should take into account the effects

of these loads on fracture behavior in the linear elastic and fully plastic regimes. Secondary loads

that induce self-equilibrated stresses will produce different effects to those where the stress

distribution corresponds to a resultant non-zero force or moment. Stresses arising from displacement

imposed boundary conditions come under the latter category. In these cases the secondary stresses

act as if they were induced by primary loads (the sum of the reaction forces at the positions where

the displacements are imposed) that decrease as the crack size increases,

It is known from the work of Bueckner (1958) and Heaton (1976) that the stress intensity

factor, K_, due to a secondary load can be determined using the stress distribution in the defect free

structure. This kind of calculation can be performed using either strain energy concepts, or an

equivalent method which employs a weight function. The weight function is a geometric parameter

whose form depends on the geometry of the structure, the crack size and shape, and any restraints

that limit deformation of the structure (Rice, 1972). The surfaces of the structure over which

displacements are imposed would constitute a restraint: zero prescribed displacements are imposed

on these surfaces in the calculation of the weight function. The weight function is not dependent on

the form of the stresses or on the origin of their source, e.g., whether they arise due to mechanical,

thermal or other causes. If the weight function is known, then the stress intensity factor is obtained

by integrating the stress distribution multiplied by the weight function over the area occupied by the

crack.
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The fact that the stressintensity factors due to primary and secondaryloadsmay be
determinedusingthe same weight function implies that the effects of secondary loads in the linear

elastic regime is determined solely by their distribution in the structure. Any restraints which arise

from surfaces of the structure where displacements (zero or non-zero) are prescribed have similar

effects on K_ values determined for mechanically induced stresses as they do on Kt values

corresponding to thermal, residual or displacement induced stresses. Thus, in the linear elastic

fracture regime, secondary and primary loads that give rise to the same value of stress intensity

factor due to similar local stress distributions will contribute equally to the possibility of fracture.

This is not the case in the fully plastic regime where the cracked section has undergone

general yielding. One of the theorems used to determine lower bound plastic limit loads states that

a structure will not collapse by a yielding mechanism if the applied forces can be balanced by a

redistribution of the induced stress so that this nowhere exceeds the yield stress. This implies that

self-equilibrated thermal and residual stresses cannot affect the plastic collapse load of the structure.

These stresses do not contribute to fracture under fully plastic conditions because, by definition, they

correspond to zero net force or moment acting on the structure: in principle they can be redistributed

to produce a zero stress everywhere.

Although imposed displacements induce non-self-equilibrated stresses, these stresses alone

do not contribute to the plastic limit load since large deformations are required before the plastic

collapse mechanisms can operate. These will counter the effects of the imposed displacements,

reducing the reaction forces to zero. However, it is important to note that the restraints arising from

surfaces on which displacements are prescribed can affect the plastic collapse value of an

independently applied primary load by inhibiting the ability of the structure to freely deform, and

causing a change in the plastic collapse mechanism.

It is not clear how secondary loads will affect fracture in the transition region between the

two extreme failure conditions of linear elasticity and full plasticity. In this regime an elastic-plastic

analysis of secondary loads may produce results which can be either more or less onerous than the

results of a failure analysis based solely on linear elastic fracture mechanics. It is in the

elastic-plastic fracture regime that the results of the various methods of treating secondary loads are

liable to differ most, since J estimation schemes are usually designed to include the correct linear

elastic and fully plastic fracture behavior.

F.4 Review of Presently Available Methods of Estimating J for Combined Loading

F.4.1 The EPRI Scheme

Under EPRI sponsorship, Kumar, Schumacher, and German, have suggested a method for

extending the EPRI J estimation scheme to thermal and residual stresses. The method was

developed taking account of the different effects that secondary loads have on fracture behavior in

the elastic and plastic regimes. It was proposed that these effects could be adequately simulated by

including secondary loads together with primary loads in the first order plastically corrected linear

elastic contribution to J. Thus,
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J(a,P,S) =J e(ae,P,S ) +J P( a,P) (F.1)

where a is the crack depth, a, is an effective crack depth defined below, P and S signify mechanical

(primary) and thermal (secondary) loads, and superscripts e and p signify elastic and plastic,

respectively.

The expression for av is

j e= [K(ae'P) + K(a,S)_

E l

(F.2)

where E' = E, Young's modulus, for plane stress, and E' = E/( 1 -v 2) for plane strain.

The effective crack depth a, is calculated from

a e = a + dpry (F.3a)

where

1
= (F.3b)

Here P is the applied load, and Po a corresponding reference load: expressions for this are provided

in the EPRI handbooks.

r I3_x n+l J

13= 2 for plane stress, and 6 for plane strain and axisymmetric cases, and n is the exponent in the

Ramberg-Osgood stress-strain equation

n° (F.4)

where e is the strain due to the stress o, eo = oo/E, and Oo is a characterizing yield stress, tt and n are

material constants.

JP is usually written for a Ramberg-Osgood stress-strain relationship of the form of

Equation (F.4) as
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a n

n+l

(F.5)

The function hx(a/b,n ) is dependent on the type of applied loading (e.g., tension or bending),

the geometry of the structure and the crack, the ratio of crack size, a, to section size b, and the strain

hardening exponent, n. The remaining ligament, c = b - a. Po is a reference load which, in many

instances, is equivalent to the general yield load for the defective section. Expressions for Po, and

tabulated values for hl(a/b,n), are given in the EPRI handbooks which detail the J solutions (Kumar

et al., 1981; Kumar et al., 1984b; Zahoor, 1989). The specific form of Equation (F.5) and the chosen

dimensional normalizations may vary from geometry to geometry.

In the fully plastic regime, where ,P' >> Y, equation (F. 1) predicts the desired physical result

that secondary loads do not affect fracture behavior at or near plastic collapse.

Kumar et al. (1984b) present validation for this approach by comparing J values calculated

from finite element methods with those produced by the estimation procedure for four different

geometries subjected to combined mechanical and thermal loading. The results of this comparison

are summarized in Table F. 1 where R is the internal radius of the cylinder. The agreement between

the results of the procedure and the numerical calculations is good. This agreement should be

qualified by the observation that the thermal loads were not severe enough to produce significant

elastic-plastic crack tip loading conditions.

The EPRI scheme does not provide advice for situations where the combined mechanical and

secondary stresses exceed yield in the defect free structure, producing a plastic enclave in the region
of the defect.

F.4.2 The R6 Method

The R6 procedures (Milne et al., 1986), developed by the power generation industry in the

United Kingdom, enable the integrity of structures containing defects to be ascertained. The latest

version (R6 [Revision 3]) employs a J estimation scheme based on the reference stress approach of

Ainsworth (1984). For the purposes of this report it is not necessary to discuss the procedures in

detail but to describe, in terms of J, the way that combined primary and secondary loads are treated

within Option 2 of the procedures. This option is based on a material specific method of

estimating J.

In the Option 2 approach J is written for mechanical loads as

/ (F.6)
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where F is a function of the stress-strain (o - e) relationship and Py is the general yield load of the

cracked structure. Note that Py in general does not equal Po, which appears in the EPRI scheme,

although the two are often the same, or closely related.

The function F is defined as

Oref (Eere/) , for --<--PyPy

P PI
= _ , for _ >___

P P
y y

(F.7)

Table F.I.

Geometry description

Summary of J solutions used to validate the EPRI approach

Single edge cracked plate

Single edge cracked plate

Center cracked plate

a/b

0.25

0.25

0.25

Axially cracked cylinder (R/b=10) 0.25

Axially cracked cylinder (R/b= 10) 0.25

Peak thermal

stress/yield

Circumferentially cracked cylinder

(R/b=10)

Source

reference

0.37 Good Kumar et al. (1984a)

0.74 Good Kumar et al. (1984a)

1.04 Good Kumar et al. (1984a)

0.53 Good Kumar et al. (1984a)
m

1.06 Good Kumar et al. (1984a)

Fair0.25 2.75 Kumar et al. (1984a)

The accuracy is judged against the computed results for the secondary load, and the combined

secondary and primary loads.

Good = Within 10% of computed J solutions

Fair = Generally within 10-20% of computed J solutions

where

Oref = Oy s (F.S)
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PI _ (Oys + Oult) (F.9)
P 20

y ys

and o,ef is a reference stress and e,ef is the corresponding reference strain obtained from the uniaxial

stress-strain relationship. PI is the plastic collapse load, Oy, and o,,t, are the yield stress and ultimate

strength. For non-hardening materials, where Or, equals outt, the collapse load, Pp equals the general

yield load, Py. Equation (F.9) takes credit for the strain hardening capability of the material by

assuming that plastic collapse will take place with a flow stress equal to half the sum of the yield and

ultimate stresses. Verification for the use of F is provided in the validation section of the R6

procedures (Milne et al., 1986) and by Ainsworth (1984).

where

If secondary loading is also present then the expression for J is modified to read

J(a,P,S) = (F.IO)

P
r(x) = rl(x ) for 0.8_ m

P
Y

= - m _< 1.05

G
P

r(x) = O for 1.05<
P

Y

(F.I1)

and

rl(x) = 0.1x TM - 0.007X 2 + 0.00003X 5, X < 5.2

rl(x) -- 0.25,x > 5.2 (F.12)

where x = Kt(S)P/KI(P)y.

The parameter r characterizes the plasticity interaction between primary and secondary loads.

Equations (F. 10) and (F. 11) predict that the effect of the secondary load on plasticity decreases as

the primary load approaches the general yield load of the defected section: r becomes zero for loads

exceeding 1.05 times the yield load. The complex form of r (its dependence on r, and x) was

empirically chosen to pessimistically bound analytical and computed Jbehavior, and it has no simple

physical interpretation.
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Notethat,unliketheEPRIscheme,secondaryloadscontinueto affecttheplasticcomponent
of J after general yielding through the dependence of f' in Equation (F. 10) on K/S). However, this

dependence has little influence on the predicted fracture behavior in the fully plastic regime because

this behavior is not sensitive to the value of J, but is predominantly determined by the plastic

collapse load, as schematically shown in Figure F. 1. In this figure, the critical load, Pp and critical

defect size, aI, are shown corresponding to J=J1c, where the toughness, Jic, is high enough to result

in failure above general yield. It can be seen that, in this plastic failure regime, doubling the

toughness to 2J_c can make little difference to the values of the critical load and crack size, which

are bounded by the values of P1 and al, the values corresponding to plastic collapse.

The R6 procedures do not expliciily account for plastic relaxation of the combined primary

and secondary stresses in the structure, should the peak stress value exceed yield magnitude. The

R6 procedure recommends that J_ be evaluated always from a linear elastic stress analysis, and no

credit is taken for possible stress relaxation.

Verification for the R6 treatment of secondary loads is contained in the validation section of

the procedure (Milne et al., 1986), where it is discussed in terms of the failure assessment diagram

concept. The failure assessment diagram provides an alternative way of performing a J analysis, and

produces results which are equivalent to a J analysis. The validation exercise demonstrates that the

R6 procedures will predict conservative (safe) estimates for J in most circumstances (see Table F.2

for a summary of the J solutions used in the validation). This is consistent with the philosophy

behind the R6 procedures, which is to perform a failure avoidance analysis, rather than to predict

failure per se.

The one instance in the validation exercise where the R6 procedures proved to be

non-conservative is identified in Table F.2. In this case the defect was very small relative to the

tensile plastic enclave generated from the secondary loading in the defect free structure. The stress

and strain distributions in this zone were deliberately chosen to be approximately uniform, and not

to display the steep gradients which are typical of most thermal loading situations. This resulted in

the J behavior being similar under the maximum applied thermal loading to that for a defect

subjected to a uniform primary stress of yield point magnitude.

Currently the R6 procedures are being modified in order to remedy situations where the

procedures are known to be unconservative. These modifications are discussed in more detail in

Section F.4.4.

F.4.3 Chell's Approach

The R6 procedure does not exclude the use of alternative procedures for determining J in the

presence of secondary loads, and recognizes that these may remove some of the pessimisms inherent

in the R6 treatment of severe secondary loading. In particular, the approach adopted by Chell (1986)

is mentioned as one that attempts to take credit for plastic stress relaxation.
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Figure F.1. Above general yield the failure load (Ps) and critical crack size (al)become

increasingly insensitive to toughness, J_c, and hence J.
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Table F.2. Summary of J solutions used to validate the R6 (Revision 3) approach

Geometry description a/b

Center cracked plate 0.2 1.11

Center cracked plate 0.2 1.11 **

Center cracked plate *** 0.05 1.0

Center cracked plate 0.05 1.0 **

Circumferentially cracked cylinder 0.07 4.5
(R/b=0.53)

Circumferentially cracked cylinder

(_-0.53)

Peak thermal Source
stress/yield Accuracy* reference

Conservative

Conservative

Unconservative

Conservative

Conservative

Hellen and Blackburn (1985)

Hellen and Blackburn (1985)

Casper (1986)

Casper (1986)

Muscati (1985)

0.225 3.97 Conservative Muscati (1985)

* The accuracy is judged against the computed results for the secondary load, and the

combined secondary and primary loads.

Conservative = Safe when applied with R6 (Revision 3) procedures

Unconservative = Unsafe when applied with R6 (Revision 3) procedures

In this case the thermal load was superimposed on an existing mechanical load in order to

study load history effects.

These results were for the case where the secondary stress was at tensile yield point

magnitude in the central half of the plate, and at compressive yield either side of this. The

defect was embedded in a plastic zone 10 times its own size.

The approach of Chell (1986) is based on the R6 J estimation scheme but extends a previous

treatment of secondary loads (Chell, 1979) to include the effects of strain hardening and stress

relaxation. The crack tip plasticity interaction between primary and secondary loads is characterized

by first order plasticity theory which is re-expressed in the form of a reference load for the combined

loading. This modified load is constructed so that it reduces to the plastic collapse load of the

structure as the value of the mechanical load approaches this collapse load. The evaluation of the

term f is also based on the elastic-plastic stress profile in the component. These two features mean

that the value of J(a,P,S) evaluated in this scheme reduces to the value of J(a,P) as the primary load

increases towards the value required to cause general yield of the defect free component. In other

words, the influence of secondary loads on fracture behavior is diminished towards zero as plasticity

becomes widespread and "shakes out" the secondary stresses as illustrated in Figure F.2. This figure

shows the stress intensity factor for a defect subject to a primary, and a combined primary and

secondary load. For illustrative purposes, the defect has been chosen small enough to be within the

uniform tensile stress part of the secondary stress distribution, which is of magnitude equal to half
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the yield stress. As the uniform primary stress is increased, the stress intensity factor for the

combined loading increases linearly until the value of the primary stress exceeds half yield. For a

non-hardening material, the stress intensity factor becomes constant and independent of the applied

primary stress beyond this point, because plastic deformation prevents any further elevation in the

tensile stress region of the combined stress distribution. The effects of the secondary stress are

completely wiped out when the yield stress reaches yield magnitude, and the stress intensities for

the combined and primary loads become equal.

The first stage in Chelrs method is the evaluation ofJ_(ae _S), the elastic component of J due

to secondary loads only. This is done in a similar way to that used in the EPRI scheme, except that

the effective crack depth, ae' replaces a,, where

/

a e = a + ry (F.13)

[If the peak secondary stress exceeds yield then the elastic-plastic stress profile should be

used when evaluating J', compare Figure F.2. A simple approximate method for estimating this

profile from the results of a linear elastic stress analysis is detailed in (Chell, 1986).] This first order

plastic estimation of J _ is evaluated and used to determine an equivalent primary loading, P,,

characterized by the ratio Ps/Py', which would produce similar crack tip plasticity results to the

secondary loading. This is done using Equation (F.6), the R6 Option 2 approximation to J for

primary loading, and writing

J ega',e'-."'_ = J(a,S)= J e(a,S)F{ P-ff27_,lpy)
(F.14)

where F is the function defined by Equation (F.7). The value of the unknown ratio Ps/Py' may be

determined from Equation (F. 14). The term, F(Ps/Py) accounts for crack tip plasticity due to the

secondary loads, as characterized by the ratio J'(a, ; S)/J'(a, S).

If a primary load is superposed on the secondary load then the expression for J for the

combined loading is defined as

J(a,P,S) = Je(a,P,S)F( P---_P_,)py)
(F.15)

where the ratio Pp,/Py' characterizes a primary load which would produce the same crack tip

plasticity effects as the combined primary and secondary loads. The load ratio is given by the

equation
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Figure F.2. High primary loads "shake out" the effects of secondary loads.
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where P'/Py = min (Pt/Py, 1.25).

This equation is empirically derived and allows secondary loads to fully contribute, through

the first order plasticity term Ps/'p_', to crack tip plasticity in the small scale yielding regime, but

reduces their influence as either plastic collapse is approached, or, if the material has a large capacity

to strain harden, when the primary load exceeds 1.25 of the general yield load. Figure F.3 shows

how the equivalent primary load ratio, Pps/P/, varies as the primary load increases, for different

levels of crack tip plasticity due to a secondary load S. The effects of the secondary load are

quantified by the ratio PJPy', which in turn is related through Equation (F. 14) to the first order crack

tip plasticity correction signified by at'. In situations where P/Py > 1.25, and stress relaxation has

"shaken-out" the secondary stresses (compare Figure F.2), then Equations (F. 15) and (F. 16) predict

J(a,P,S)=J(a,P), as required on physical grounds.

Chell (1986) has validated his approach using published elastic-plastic Jresults for combined

primary and secondary loads, including all the results reported in the EPRI handbooks. The results

of this exercise are summarized in Table F.3. In general, the agreement between the estimated J and

the computed J values is good, especially if the Option 2 material dependent function F(P/Py) is

replaced by a function that reproduces the computed J values for the primary load. However, there

was one instance where his approach underestimated the computed J values. This was the case of

a small fully circumferential defect (less than 7% through the wall) in a thick cylinder subjected to

very severe thermal loading, such that the peak stress determined from linear elastic theory exceeded

4 times the yield stress. Chell attributed this discrepancy to the fact that the defect was embedded

in a massive plastic enclave generated by the severe thermal loading. The plastic zone in the defect

free cylinder due to the thermal loading alone extended over a third of the way through the wall.

Care should be exercised when applying the Chell method to these kinds of situations.

Note that the under-prediction of J using the Chell approach could be due, in part, to elastic

follow-up, as his method does not make allowance for the increase in plastic strain due to stress

relaxation: only the redistributed stresses are used in the calculation of J_ (a,S) and J(a,P,S) in

Equations (F. 14) and (F. 15) respectively.
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Figure F.3. Variation of Pps/Py' for different combinations of primary P/Pr and secondary P,/P_'
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Table F.3. Summary of J solutions used to validate the Chell approach

Geometry description

Peak

a/b thermal Accuracy*

stress/yield

Single edge cracked plate 0.25

Single edge cracked plate 0.25

Center cracked plate 0.25

[Axially cracked cylinder (R/b=10) 0.25

Axially cracked cylinder (R/b=10) 0.25

Circumferentially cracked cylinder 0.25
(R/b= 10)

Center cracked plate 0.2

Center cracked plate 0.2

Center cracked plate 0.2

Circumferentially cracked cylinder 0.07
(R/b=0.53)

Circumferentially cracked cylinder

(R/b=0.53)

Source

reference

0.37 Good Kumar et al. (1984a)

0.74 Good Kumar et al. (1984a)

1.04 Good Kumar et al. (1984a)

0.53 Good Kumar et al. (1984a)

1.06 Good Kumar et al. (1984a)

2.75 Fair Kumar et al. (1984a)

0.59 Good Hellen and Blackburn (1985)

1.11 Fair Hellen and Blackburn (1985)

1.11"* Good Hellen and Blackburn (1985)

1.25 Fair Muscati (1985)

0.07 4.5 Poor Muscati (1985)

The accuracy is judged against the computed results for the secondary load, and the

combined secondary and primary loads.

Good

Fair

Poor

= Within 10% of computed J solutions

= Generally within 10-20% of computed J solutions

= Generally differ by more than 20% from computed J solutions

In this case the thermal load was superimposed on an existing mechanical load in order to

study load history effects.

F.4.4 Proposed Modification to the R6 Approach

Evidence has been accumulating that the R6 treatment of secondary loads is not conservative

in some cases. Areas of particular concern are where the secondary loads generate appreciable

elastic follow-up in the structure, and where small defects are located in sensibly uniform stress

fields produced by the secondary loading (see Section F.4.2). To try and overcome these difficulties,

a modification to the R6 treatment has been proposed by Budden (1989) based on an approach
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suggested by Bhandari, Charif D'Ouazzane and Faidy (1984). They proposed using a modified

Neuber principle (Neuber, 1961) to utilize the results of an elastic-plastic stress analysis of the defect

free structure in order to construct an effective stress intensity factor.

In simplified outline, the approach is as follows. The stress intensity factor Kfor crack depth

a is determined from linear elastic theory using two stress profiles: the first profile corresponds to

the actual secondary load stress distribution in the defect free body, and results in a K value of

Kc,(a); the second profile is obtained from the computed elastic-plastic strains assuming linear

elastic theory to derive a pseudo-stress profile normal to the crack plane, and has a value of K_2_(a).

An effective crack depth, ae', is calculated using Kci)(a). The effective stress intensity factor for the

secondary loading, K_3)(a) is then evaluated from the square root of the product:

i a
K_3,(a) =[Kc1)(ae )K_2)( e')] 1/2 (F.17)

The R6 procedure for estimating J, as described in Section F.3.2, is then followed with Ki3)(a)

replacing K(S) in the relevant equations.

Budden (1989) provides validation for the method based on the results of elastic-plastic finite

element computations for J and the computed elastic-plastic stress and strain fields in the defect free

structure. He demonstrated that the method is conservative for all the cases he analyzed. Table F.4

provides a summary of this validation work. Unfortunately, the cases analyzed did not include the

small defect in a center cracked panel that produced non-conservative results when analyzed

according to R6 (Revision 3) (see Table F.2). However, they did include the cases where cracked

cylinders were subjected to a linear axial temperature gradient which was symmetrical about the

center of the cylinders. The computed J results for these cylinders indicated that significant elastic

follow-up was generated by plastic deformation under the thermal loading alone, and this resulted

in the elastic-plastic J values exceeding the linear elastic values.

The reason for this follow-up has been identified by Bradford (1987). He showed that for

thin cylinders the axial temperature variation is equivalent to an imposed radially symmetric rotation

at the symmetry plane which produces a radially symmetric bending moment. When the cylinder

is cracked, this rotation is imposed on the remaining uncracked ligament only, which results in a

reduction in the bending moment.
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Table F.4. Summary of J solutions used to validate the Budden approach

,i

Geometry description
Peak thermal

aft,
stress/yield

Center cracked plate 0.2

Center cracked plate 0.2

Circumferentially crackedcylinder 0.37
(R/b=lO)

Circumferentially cracked cylinder

(Wb=lO0)

1.11

1.11"*

4.22***

0.37 5.94***

Accuracy*

Conservative

Conservative

Conservative

Conservative

Source

reference

(Hellen and

Blackbum, 1985)

(Hellen and

Blackburn, 1985)

Reported in

(Budden, 1989)

Reported in

(Budden, 1989)

The accuracy is judged against the computed results for the secondary load, and the

combined secondary and primary loads.

Conservative = Safe when applied with R6 (Revision 3) procedures.

In this case the thermal load was superimposed on an existing mechanical load in order to

study load history effects

The thermal load was applied in the form of a linear variation of temperature along

the cylinder axis. The temperature variation was symmetrical about the plane of the

defect. This form of loading results in elastic follow-up.

F.5 Treatment of Elastic Follow-up Due to Imposed Displacements and Rotations

As illustrated in Section F.4.4, under the right conditions thermal loading can manifest itself

in the form of an equivalent imposed rotation. Similarly, secondary stresses may also arise due to

imposed displacements, either implicitly (as was the case for the rotation of the thin cylinder

discussed in Section F.4.4) or explicitly. It is possible to treat these cases provided that the boundary

conditions consistent with the prescribed nature of the loading can be defined. However, if more

than one load type is involved, as is the case for a mechanical load independently applied to a

structure subjected to imposed displacements, then proportional loading has to be assumed. Usually

this assumption does not present a serious impediment to the use of the available methods.

The approach to solving the imposed displacement problem in the elastic-plastic fracture

mechanics regime has been described by Chell (1979). He used the R6 procedures to formulate an

expression for J. A similar method was adopted by Bradford (1987), in his treatment of a thin

cylinder subjected to an imposed rotation. Briefly, in these approaches the displacement loading is
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simulated by a set of equivalent primary loads whose magnitude changes as the crack size changes.

The equivalent primary loads are given by the reactive forces at the positions where the

displacements are imposed. The magnitude of the equivalent primary loads are determined by the

requirement to maintain constant displacement values at these positions.

Hence, given a known form for J, and the compliance, C °, of the defect free structure, then

for imposed displacements A which reproduce the secondary stresses in the defect free structure, an

effective primary (reactive) load Ps can be obtained from the equation (see Endnote F. 1)

oA =P(a)C_s +PpC + dpd f jda,,Ps(a),P idAt,,,
s A

(FJS)

where Cs, ° and C,p ° are the compliances relating the applied forces P, and Pp respectively to the

corresponding displacements at the point of application of P,, A is the area occupied by the defect,

and Pp an independently applied mechanical load. The term containing the integral represents the

displacement contribution arising from the presence of the defect. The load P,(a) remains constant

during the integration over the area A and the dummy variable, a'. Once Ps, which is a function of

the crack size a, is determined, the value of J for the secondary load is given by J(a,P,(a),Pp). In the

evaluation of J(a,P_,Pp), Ps is treated as if it were a primary load and the secondary stresses are

assumed to scale according to the ratio P_(a)/Ps(a=O). Equation (F. 18) pertains to a single secondary

load, but in principle the concepts can be applied to more complicated combinations of primary and

secondary loads, although the equivalent formulation to Equation (F. 18) becomes correspondingly

more complicated (see Endnote F. 1).

F.6 Comparison of Methods

Four approximate methods have been described for estimating J for combined primary and

secondary loads: an EPRI scheme, the R6 method, an approach due to Chell, and a modified R6

procedure. Each of the methods has certain advantages and disadvantages.

The EPRI estimation scheme is the simplest method to apply as it incorporates the effects

of secondary loads in J through an effective crack length term appearing in the elastic component

J_. This can be derived from a linear elastic stress analysis. However, this approach could lead to

unacceptable over-estimations of J if appreciable plastic relaxation of the peak secondary stresses

occurs. On the other hand, it may not adequately represent the severity of the secondary loading if

this generates significant elastic follow-up in the structure. The method has limited validation based

on mechanical loads superposed on moderate thermal loads.

The R6 Option 2 method for estimating J is more complicated to apply than the EPRI scheme

and currently suffers from the same disadvantages. The validation section of the R6 procedures

demonstrates that the approach will predict conservative values for J for combined primary and

secondary loads, except where elastic follow-up is significant, or where the secondary loads produce

high uniform stresses in the region of the defect. The physical basis of the R6 treatment of
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secondaryloadsis notclear,andthis canleadto anomaloussituations. For example, the treatment

becomes ill defined when only a secondary load is applied to a structure as the term, r, which

incorporates the effects of crack tip plasticity on J, is not defined in the absence of a primary load

[compare Equation (F. 12)].

The approach described by Chell is based on similar principles to the R6 Option 2 method,

but includes the effects of secondary loads on crack tip plasticity in a more physically meaningful

way. It also takes credit for the relaxation of severe secondary stresses by plastic deformation.

However, the approach does not take account of elastic follow-up effects, and has been shown to

under-predict the value of J for small defects embedded in extensive plastic enclaves resulting from

extreme thermal loading.

The modified R6 method uses the Neuber principle to construct an effective, plastically

corrected, stress intensity factor for the secondary loading which is then used in the R6 procedure

instead of the corresponding stress intensity factor. The method appears to have little, if any,

physical justification, as the way that the Neuber principle is employed is far removed from the

application for which it was originally proposed. It must, therefore, be considered to be an

empirically based methodology. However, it allows the R6 method to take credit for plastic

relaxation in the secondary stresses, and it supposedly incorporates some of the effects due to elastic

follow-up. Its major disadvantage is that it adds an extra layer of complexity onto a scheme, the

physical basis of which appears to be obscure.

F.7 A Recommended Procedure for Determining J for Combined Primary

and Secondary Loads

None of the four approaches discussed in the previous section is suitable without

modification for assessing J under combined primary and secondary loads. A new approach is

required which retains the best of the technical advances that have been made, and builds on these

to try and overcome the deficiencies which have been identified. The new approach should be as

simple as possible to use, while at the same time pragmatically addressing important aspects of the

problem, such as the effects of stress redistribution due to plastic deformation.

Consideration of the data listed in Tables F. 1 through F.4 shows that the approach of Chell

is the most widely validated of the four approaches. It also has a number of advantages over the

other three methods. The approach allows elastic-plastic stress re-distribution to be treated, while

avoiding the complexities of the method being adopted for the R6 (Rev 3) procedures (Budden,

1989). The EPRI scheme(Kumar, Schumacher, and German, 1984b) presently does not address the

problem of stress relaxation and consequently would be overly pessimistic for cases of severe

secondary loading which resulted in extensive plastic deformation. Furthermore, fatigue crack

growth is sensitive to the fatigue stress ratio (the load at the minimum part of the cycle divided by

the load at the maximum part), and the value of this quantity will depend on the assumptions made

in the stress analysis. A linear elastic analysis will produce a different ratio to the result of an

elastic-plastic stress analysis, which is more appropriate under cyclic elastic-plastic conditions.
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A fundamentalassumptionmadein Chell'sapproach,which will alsobe assumedin the
recommendedproceduredescribedbelow, is that the valueof J for the combined primary and

secondary loads is independent of the order in which the loads are applied. This is equivalent to

assuming that non-linear elastic deformation will produce results which are in good agreement with

those derived using incremental plasticity theory. In the procedure outlined below, the effects of

secondary loads are first addressed, and then an expression for J is determined after the primary load

is superimposed on the secondary load.

The earlier approach of Chell has been modified in the new procedure to avoid the problem

of under-predicting J in situations where the defect is embedded in a plastic enclave. In these cases,

the first order plastic correction to the stress intensity factor for the secondary loads, which Chell

calculates using the elastic-plastic stress profile, is replaced by the maximum of the stress intensity

factor determined from the linear elastic stress profile for the actual defect size, and the value

determined following a procedure that uses an effective crack size (see Section F.4.3).

An option has been added to the recommended procedure to enable the user to take advantage

of available J solutions for the primary load alone. Chell (1986) found better agreement between

his method and computed finite element J solutions for the combined loading cases when the known

primary load J solutions were used in preference to the reference stress approximation.

A flow chart detailing the steps to be followed in evaluating J for combined primary and

secondary loads is given in Figure F.4. This figure references parts of this section which contain

more details concerning the steps in the procedure. In order to reduce the technical complexity, and

to highlight the main principles involved, the procedure is written only for defects with one degree

of freedom (i.e., defects that are far longer than they are deep). The extension of the procedure to

defects with more degrees of freedom (such as surface breaking semi-elliptical cracks) is relatively

straightforward and is described in Endnote F.2.

The following sections relate directly to the procedural steps contained in the flow chart in

Figure F.4, and should be read in conjunction with that chart.

F.7.1 Stress Analysis

The loads on the structure should be classified as primary or secondary. A definition of

primary and secondary loads is provided in Section F.2. If there are any doubts concerning the load

classification, then it is prudent to assume that the load is primary in nature. Initially, a linear elastic

stress analysis should be performed to obtain the stress distributions in the region of the structure

being analyzed.

F.Z2 Determination of J for Primary Loads using EPRI Solutions and Reference Stress

Methods

An estimation of J based on the EPRI scheme may be obtained for primary loads by using

equations (F. 1), (F.2), and (F.5), with the secondary load, signified by S, set to zero. The values for
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Yes

J Determine J using EPRI or Ireference stress approaches J

Specify the loads applied to the structure I

c_:,dcPef_Oe%auStrureS:analysis for the I
I

I Resolve the applied stresses intoprimary and secondary components

Evaluate SIF for secondary loads

Determine the effective crack size

I Evaluate the first order plasticity Icorrectionto the SIF for secondary loads

I Derive an equivalent load ratio for thesecondary loads

i Evaluate the primary load ratio L__

Determine the equivalent load ratio for

the combined loading

I Calculate the SIF for the combined loading

Calculate the value of J for the combined

loading

Figure F.4. Flow chart illustrating the steps and decision in the procedure for determining J for

combined loads. The section references indicate where more information can be

obtained in the main text.
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thefunctionshl(a,/b,n) may be obtained from the elastic-plastic handbooks (Kumar, German, and

Shih, 1981; Kumar, Schumacher, and German, 1984b; Zahoor, 1989). The elastic component of J,

f, can be also evaluated from Equation (F.5) by setting n=l and t_=l.

Equations (F.6) through (F.9) define J using the reference stress approach of R6. J' can be

evaluated using Equation (F.2), and expressions for K(a,P) can be obtained from either the

compendium of solutions (Sih, 1973; Tada, Paris, and Irwin, 1985; Murakami, 1987), or using

computer codes such as NASCRAC and NASGRO. A compendium of general yield and plastic

collapse loads, Pr and P_ respectively, are given by Miller (1988) for a range of defective structural

geometries.

F, Z3 Prescribed Displacements

Secondary loads which manifest themselves in the form of imposed displacements require

special treatment. A detailed discussion of imposed displacements is not given here, although a brief

description on how these conditions can be addressed is provided in Endnote F. 1.

It is only possible to give general guidance on the circumstances under which thermal and

residual loads may be simulated by prescribed displacements or rotations. In practice, there are

many specific factors which can influence the way secondary loads affect fracture behavior. These

are related to the form of the loading, the resulting stress distribution in the structure, and the

potential for elastic follow-up due to the geometric nature of the structure.

The most obvious indication that secondary loads may be acting like displacement imposed

loading is when the stress distribution across the section of interest is non-self equilibrated. Steady

state temperature distributions that vary through the structure, as well as across the section wall, are

likely to produce long range effects that may manifest themselves in the form of elastic follow-up.

In contrast, stresses that result from situations involving thermal shock, such as quenching or sudden

start-up, are likely to produce self-equilibrated stresses whose effects are localized. Similarly, the

process of welding two components may induce long range stresses due to the restraining influence

of the structure on the components resulting from shrinkage during cooling of the weld. On the other

hand, localized welding residual stresses, which are self-equilibrated, may arise due to inelastic

deformation produced in the welding process, or from differences in the expansion coefficients

between weld and base materials.

At this time, the complex factors affecting the behavior of secondary loads mean that an

engineering judgement has to be made as to how they are to be treated for each particular case,

taking into account the specific aspects related to each case. If there is justifiable doubt concerning

the classification of a secondary load, then it is prudent to treat this load as primary.

F.7.4 Primary and Secondary Components of Stress

In a linear elastic fracture mechanics analysis it is not necessary to resolve the applied stress

distributions into primary and secondary load components. However, this is required in elastic

F.23



plasticfracturemechanicsbecausethesecondaryloadsbehavedifferently toprimaryloadsascrack
tip plasticitydevelopsandbecomeswidespread.Theresolutionof thestressesisstraightforwardif
independentstressanalysesareperformedfor thedifferent loadcases,but this is notalwaysdone,
particularly if the loadhistory experiencedby thecomponentinvolvescomplicatedstart-upand
shut-downprocedures.In theselattercases,theprimaryloadscanbeidentifiedby integratingthe
stressesacrossthe sectionto obtainthenet tensileforceandmomentactingon it. Theseloadscan
be representedby a linear stressdistribution, chosento balancethe force and moment. The
differencebetweenthis linear profile and the profile for the combinedloading representsthe
self-equilibratedsecondarystressdistribution. This method of identifying the primary and
secondarystressdistributionsisapproximate,andpessimisticallycombinestheprimaryandnon-self
equilibratedsecondaryloadcomponentsinto asingleeffectiveprimaryload.

The secondaryloads (due to thermaland residualloads) result in the secondarystress
distribution,os.Underlinearelasticconditions,thetotalsecondarystressdistribution,os'°', is equal

to o, plus os(P). The total stress distribution due to all the applied loads, 0'% is equal to o,'°' plus

Op.

If the combined peak values of (Is t°' or o '°`exceeds yield magnitude, then plastic straining and

stress relaxation will occur. A pessimistic estimate for J will result from ignoring these effects, and

basing the analysis on the linear elastic stress results. However, it may be considered desirable to

take credit for the benefits of stress relaxation. Also, as previously mentioned, plasticity can

significantly change the value of the load ratio used in fatigue crack growth analyses.

If o, t°' exceeds yield then the elastic-plastic stress distribution, O_ t, corresponding to o s plus

o,(P) should be calculated for the current primary load level P. The plastically relaxed stress field,

otot, corresponding to the total linear elastic stress distribution, O t°t, should also be determined.

Since the proposed procedure uses only the values of stress that result from the elastic-plastic

stress analysis, then simple methods of stress analysis may justifiably be employed. Chell (1986)

suggests one method, which is briefly described in Endnote F.3. However, this, and other similar

methods, are mainly applicable to uniaxial, and, to a first approximation, biaxial stressing. They

cannot be applied directly to situations involving multiaxial stressing, where a hydrostatic stress can

result in a significant elevation above yield of one of the principal stress components. In these cases,

alternative methods of stress analysis should be sought.

F.7.5 Evaluate the Stress Intensity Factor Due to Secondary Loading

K(a,S) due to the total secondary loads should be determined for the linear elastic stress

distribution, o, ,o,, and, if plastic deformation occurs, K(a,S) should also be calculated for the
_ tot

elastic-plastic stress distribution, o s . The stress distributions will in general be non-uniform and

the SIF's will require computer codes, such as NASCRAC and FLAGRO, for their evaluation.
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F. 7.6 Determine the Effective Crack Size, a_"

The effective crack size, a e', should be evaluated using Equations (F. 13) and (F.3c), with the

value of 13appropriate to the degree of plastic constraint at the crack tip. On occasion, and for severe

secondary loads, the value of the crack tip plastic zone calculated from first order plastic theory may

exceed the remaining uncracked ligament. This situation is physically unacceptable and results from

a breakdown in the first order plasticity assumption that crack tip plasticity is small compared with

typical dimensions associated with the defective section of the structure. To avoid this, it is

recommended that the size of a_' be set to a constant value of (b+a)/2 when a_' > (b+a)/2, where b

is section size.

F. 7. 7 Calculate the First Order Plastically Corrected Stress Intensity Factor

K(a,',S) due to the total secondary loads should be determined for the linear elastic stress

tot, K(a e ,S) should be calculated for the elastic-plastic stressdistribution, 0.3 and, alternatively, ' -
-- tot

distribution, o s if plastic relaxation occurs. In general, these calculations will require computer

codes, such as NASCRAC and FLAGRO.

Making allowance for crack tip plasticity generally increases the crack tip driving force J

with respect a linear elastic estimate of J, but this is not always the case. Therefore, if the applied

loads result in only linear elastic behavior in the defect-free structure, and K(a_',S) < K(a,S), then

K(a_',S) should be given the value of K(a,S). This situation can occur when the value of os '°' rapidly

falls and produces a SIF which decreases with increasing crack length. Similarly, if account is taken

of plastic relaxation and K(a_', S) < K(a,S), then K(ae', S) should be set to the value of K(a,S). This

situation can also occur due to a decreasing stress field, or because stress relaxation has significantly

reduced the stress acting over the defect. The procedure of using the maximum of K(a_',S) and

K(a,S) is a modification to the methodology described in Section 4.3, and avoids the

under-prediction of J values when the defect size is small and embedded in a larger plastic zone.

F.7.8 Derive an Equivalent Load Ratio for the Secondary Loads

The effects of crack tip plasticity due to secondary loads on J can be characterized by an

effective load ratio, Ps/P,.'. This quantity can be interpreted as the ratio of an equivalent primary

load to the value of this load at ligament yielding, the value of the equivalent load being chosen so

that it produces the same crack tip plasticity conditions that result from the secondary loading. It

is not necessary to be specific about the absolute value or nature of the equivalent primary load in

order to derive the equivalent load ratio. The ratio can be determined using Equation (F. 14) and a

knowledge of the values of K(a,S) and K(a,',S), or the values of K(a,S) and K(a,',,_), whichever are

appropriate.

Using the linear elastic relationship between J and K [compare Equation (F.5)], then

Equation (F. 14) can be re-written as
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:I  ae2L aS,
or (F.19)

F(Ps/Py) :
K(a,S)

where the function F(PslPy') is given by Equation (F.7). The value of the ratio P/P,.' is chosen so

that F(P/P,.') reproduces the value on the right hand side of Equation (F. 19).

The form of the function F is dependent only on the material uniaxial stress-strain behavior,

and the load ratio P/Py, and not on the absolute value of the primary load P or on the type of loading

(e.g., internal pressure or bending moment). Thus, the application of the reference stress approach

to determine the equivalent primary load ratio is not dependent on the absolute form of the primary

load which will be superimposed on the secondary loads.

However, if a J solution is available from the EPRI handbooks, or some other source, for the

specific primary load P, then this solution may be used in preference to the reference stress approach.

If this route is taken, then the equivalent secondary load, P,, may be obtained from either the

equation

J(a,P)

J e(a,P)

_ K(ae', S).] z

K(a,S) ]

or (F.20)

_ K(ae',S)] 2

K(a,$) ]

J(a,P)

J "(a,P)

where J(a,P) is the known J solution. The equivalent secondary load ratio, P/Py', is then given by

P,/P,., where P_ is the ligament yield load for the specific primary load P.

F.7.9 Evaluate the Primary Load Ratio

The primary load ratio P/Py is required whether the reference stress approach, or a computed

J solution, was used in Section F.7.8 to determine P/Py'. This ratio can be determined using a

general yield load obtained from the review of Miller (1988), or from the finite element results used

in the computation of J for the primary load.
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F. 7.10 Determine the Equivalent Load Ratio for the Combined Loading

The equivalent load ratio for the combined primary and secondary loads, Pps IP,/, is

calculated from Equation (F. 16) using the load ratios P/Py and PJP._'.

F.7.11 Calculate the SIF for the Combined Loading

K(a,P,S) due to the total primary and secondary loads should be determined for the linear

elastic stress distribution, o'% or, if plastic deformation occurs, K(a, P,S) should be calculated for

the elastic-plastic stress distribution, _ot. The stress distributions will, in general, be non-uniform

and the SIF's will require computer codes, such as NASCRAC and FLAGRO, for their evaluation.

Although K(a,P,S) may be evaluated by linearly adding the components of K corresponding__ to the

individual components of the primary and secondary loads, the same is not true of K(a, P,S) because

this is estimated from the elastic-plastic stress distribution corresponding to the total of all the

applied loads. Thus, K(a,P,S) will vary linearly with changes in the magnitude of the loads P and

S, but K(a,P,S) will not.

F.7.12 Calculate the Value of J for the Combined Loading

In the reference stress approach the value of J(a,P, S) [or J(a, P,S)] for the combined primary

and secondary loads can be determined from Equation (F. 15) using the estimated value for the

equivalent load ratio, Pp,/Py', and the elastic component of J"(a,P,S) [or J'(a, P,S)], where

J e(a,e, S) = mlt..,.a,p,_q2
E'

and (F.21)

j e(a,[_,_): [K(a,/5, S)] 2
E'

If a computed primary load J sol ution, J(a, Ps), had been used in the derivation of PJPr', then

J for the combined loading is evaluated from either the expression

J(a,P,S) = J e(a,P,S) =

or

J(a,P,S) : J e(a,e,s) [J Pp)J

(F.22)
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wherePps can be obtained from Equation (F. 16) by replacing P/Py' by the equivalent secondary load

ratio Ps/Py calculated in Section F.7.8, and using the known or computed ligament yield load Py

corresponding to the load P.

F.8 Issues Still Outstanding and Requiring Validation

One notable area where there is presently no validation is in the treatment of semi-elliptical

surface defects subjected to combined loading. This is a serious omission since surface defects are

of great practical importance. The approximate analysis of semi-elliptical cracks is complicated by

the variation of the crack driving force along the crack front, which produces corresponding changes

to the size of the crack tip plastic zone. This variation is allowed for in the recommended procedure

by re-characterizing the shape and size of the defect using a first order plasticity based correction

(see Endnote F.2). The correction is needed to assess the effects of the secondary loading on crack

tip plasticity. However, the effects of a primary load on the plastic contribution to J also have to be

determined, and this requires use of general yield loads which characterize the plastic deformation

along the crack front. The issue as to whether these yield loads should take local values, or whether

global values are more appropriate, is still not fully resolved (see Endnote F.2).

F.9 Conclusions

Four methods of estimating Jfor combined primary and secondary loads have been reviewed.

These methods are: the EPRI J estimation scheme, the R6 Option 2 J estimation procedure, an

approach due to Chell, and a modified R6 method based on Neuber's principle, Based on this review
the conclusions are:

1) None of the above approaches provide a generally applicable method for estimating J for

combined primary and secondary loads. (See conclusions 2 through 5).

2) The EPRI estimation scheme based on an elastic evaluation of J using an effective crack

length is the simplest method to use. However, this approach does not allow for plastic

relaxation of the secondary stresses, and, hence, may prove to be unacceptably pessimistic

in some cases. An elastic-plastic stress analysis of the defect free structure is required when

peak stresses exceed yield in order to reproduce the correct load ratio for use in fatigue crack

growth.

3) The R6 method based on Option 2 is more complicated than the EPRI scheme, does not

appear to have a well defined physical basis, and although it produces conservative estimates

for J in most cases, there are instances when it under-estimates J.

4) The approach of Chell is based on first order plasticity theory and takes credit for stress

relaxation due to plastic deformation. It is more complicated to apply then the EPRI scheme

and may under-estimate J if the secondary load produces an extensive plastic enclave.
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5) The modified R6 method based on the Neuber principle was proposed in order to allow for

elastic follow-up in the structure due to secondary loads, and the effects of stress relaxation

due to plastic deformation. In cases where the method has been applied, it has been

demonstrated to give a conservative result. However, it is not clear how follow-up is

explicitly incorporated into the methodology. Although the modified R6 approach

strengthens some of the weak areas which were apparent in the original R6 procedures, the

approach is complicated to apply and, because of its empirical basis, the accuracy of the

method is difficult to judge.

6) A new procedure is proposed for determining J for primary and secondary loads based on

modifications and additions to the approach of Chell. The method is capable of treating the

effects of crack tip plasticity due to high local stresses resulting from primary loading and

allows credit to be taken for plastic relaxation of the applied stresses.

7) Parts of the new procedure have not been validated. These include the treatment of defects

with more than one degree of freedom, such as a semi-elliptical surface crack.

g) The effects of secondary loads on J may be enhanced if these are accompanied by elastic

follow-up in the structure. None of the four methods described here rigorously address this

problem. A method for treating elastic follow-up that can be simulated by imposed

displacements over a defined gauge length is described. This method complements the

proposed procedure.
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ENDNOTE F.1

Outline of Treatment for Displacement Imposed Loading

Linear Elastic Analysis

The displacement, A,

Castigliano's theorem

at the point of application of a force F in a body is given by

dU
A - (F.23)

dF

where U is the strain energy of the body. If a moment, M, is applied then the corresponding rotation,

0, is

dU
0 - (F.24)

dM

It is convenient to generalize these equations, and to write them in the form of a generalized force

Q (e.g., F or M) and the resulting generalized displacement, 8(A or 0)

dU
8 - (F.25)

dQ

If a defect is present in the body, then the displacement can be resolved into uncracked and

cracked components, where the displacement due to the defect, 8 d, can be written

6d - dU a
dQ (F.26)

where Ud is the strain energy associated with the defect, given by

. :f K:(A')
E'

A

where A is the area of the defect. The compliance due to the crack is obtained from

(F.27)

C d - d_ d

dQ
(F.28)
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If manyforcesarebeingappliedto thebody,thenthedisplacement5 d in the direction of the

i'th force, Q_, is given by
d

8: = E Cij Qj (F.29)
J

where

d dSdi d2U d(Ql, Q2' "")

Ci j - - (F.30)

Similar expressions to Equations (F.26) through (F.30) apply for the defect free structure.

Signifying these terms by the superscript o, then if there are a total of k independently applied loads,

a set of k equations which are linear in the loads Qi can be written for the total displacements of the

form

[co6i=E ij +Cd _/ (F.31)
J

If m of the displacements 6, are fixed at prescribed values, then the m equations for these fixed

displacements represented by Equation (F.31) can be used to derive the variation of the

corresponding m reactive loads with crack size.

The SIF is given by the sum of the SIF's corresponding to each of the loads Qi. Similarly,

for a given defect size, the load ratio P/Py (see Section F.7.9 of the main text) should be evaluated

for the multiple loads Q_ The load ratio, P/Pv, which characterizes the nearness of the structure to

general yield, will not generally be a simple function of the multiple loads, Qi. The value of J can

then be determined following a similar procedure to that described in Section F.7.3 of the main text.

In general, the instantaneous loads Q, determined from linear elastic theory will be higher (and

hence, more pessimistic) than the equivalent loads derived by taking crack tip plasticity into account.

This is because, as illustrated in Figure F.5, plasticity reduces the crack stiffness (increases the

compliance).

Elastic-Plastic

Similar principles to those described for linear elastic behavior can be applied to determining

the effects of crack tip plasticity on J under displacement imposed loading. However, the situation

is complicated by the fact that crack tip plasticity results in the crack compliances, C_jd, being explicit

functions of the loads Q_ (see Figure F.5). This is because J can no longer be written in terms of the

square of the linear sum of individual SIF's.

In the elastic-plastic case, the compliance due to the defect can still be written as

Equation (F.27) but with the strain energy defined in terms of J

A

(F.32)
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C'_(Qt,02,.... )

C

Figure F.5. Effects of crack tip plasticity on the stiffness [C-I(Q1, Q2 .... )] of the cracked section.
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by
By comparisonwithEquations(F.30)and(F.31)theelastic-plasticdisplacementsaregiven

oj

J 0

where the integral over dQj is performed assuming proportional loading (i.e., dQj = Qj d_., where _,

is a scalar varying from 0 to 1 during the integration).

If m of the displacements 5 i are fixed at prescribed values, then the m equations for these

fixed displacements represented by Equation (F.33) can be used to derive the variation of the

corresponding m reactive loads with crack size. Note that, unlike the elastic counterpart,

Equation (F.33) is non-linear in the loads Q,.

Equation (F. 18) of the main text is recovered from Equation (F.33) for the case of a single

displacement imposed load corresponding to a reactive force Ps, and a primary applied load, Pp.
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ENDNOTE F.2

Defects with more than One Degree of Freedom

The evaluation of J under combined loading for defects with more than one degree of

freedom follows similar procedures to those employed for the one degree of freedom cracks. The

differences arise because of the necessity of calculating J for a number of crack tip positions. This

requires rules for defining the first order plastic correction for the defect when the crack tip driving

force and the plastic zone size vary along the crack front. Rules are also required for applying the

reference stress approach to these situations and, in particular, what is the correct reference stress

and primary load ratio to use for these kinds of defect.

First Order Plastic Correction to the SIF

It is necessary to assume that the plastic zone size at a point on the defect under small scale

yielding conditions is related to the value of the SIF at that point. This assumption immediately

leads to a plastic zone size, 2ry(q), at a point q on the defect, where ry(q) is given by Equation (F.3)

with K t interpreted as the SIF, Kt(q), at q. The effective crack length, ae'(q ), measured on a radial

line from the center of the defect through the point q is then

!

a e (q) = a(q) + r (q) (F.34)

Application of Equation (F.34) will, in general, lead to a re-characterized defect shape which

is not readily amenable to a fracture mechanics analysis based on the available compendia of SIF

solutions. It is, therefore, necessary to simplify the procedure and to restrict the determination of

the effective lengths to selected points on the defect which characterize its shape. For example, for

elliptically shaped defects, these positions will be the tips of the minor and major axes.

To show how this scheme should be applied, consider an embedded elliptical defect of

semi-minor axis length, a, and semi-major length, c (Figure F.6). This defect is characterized by 4

SIF values, corresponding to the points on the defect signified by 1 through 4 in Figure F.6.

Applying Equation (F.34) results in an effective minor axis length of 2a+r,( 1)+ry(3), and an effective

major axis length of 2c+rv(2)+ry(4 ). The center of the re-characterized defect is shifted (ry( 1)-ry(3))/2

along the x-axis, and (ry(2)-ry(4))12 along the y-axis, and has a new semi-minor axis length

ae'=a+(ry( 1)+ry(3))/2, and major axis length ce'=c+(ry(2)+rv(4))12.

The SIF's at the selected 4 points on the re-characterized defect can then be used in

Sections F.7.7 and F.7.9 to obtain the first order plastic corrections and to derive an equivalent load

ratio for each of the points. Thus, in this particular example, 4 values of PJPy' would be derived and
used to obtain values of J for each of the 4 locations on the crack front.
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Figure F.6. First order plastic correction and recharacterization of embedded elliptical defect

centered on C. The effective axes length, a,' and ce', are based on the center of the

recharacterized defect at C'.
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Primary Load Ratio

A general yield load which characterizes J at the selected crack tip locations under fully

plastic conditions is required in order to determine the primary load ratio for use in Section F.7.9.

It is still uncertain whether a global yield load which characterizes the plastic deformation of the

defect as a whole is applicable, or whether local yield loads should be applied to determine the

plastic behavior of specific points on the crack front (Miller, 1986; Chell, 1990). Local conditions

can clearly affect the local value of J prior to fully plastic behavior, as is indicated by the position

specific values of the first order plastic correction to the SIF. However, limited evidence suggests

that the fully plastic behavior of a defect can be quantified using a global yield load which is

independent of the local deformation occurring at different points on the crack front (Miller, 1986;

Chell, 1990).
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ENDNOTE F.3

An Approximate Method of Determining Elastic.Plastic Stress Distributions

A method is described for estimating the elastic-plastic stress distribution in a defect free

structure from the results of a linear elastic analysis (Chell, 1986). The method is limited to cases

where the stressing is predominantly uniaxial or biaxial, and where the shear stress components are

negligible. Furthermore, it is assumed that the maximum component of stress is normal to the plane

of the crack, and only the plastic relaxation of this component is considered.

Following the procedure described in Section F.7.4, the applied stress is resolved into

primary, Op, and secondary, o,, components. Relaxation of o s is first determined using Neuber's

principle (although alternative methods can be employed), and then a bounding theorem is used to

obtain the relaxed stress distribution, 0 t°t, due to the combined relaxed secondary stress, 0 s , and Op.

If e = e(o) defines the uniaxial stress-strain relationship, then a first order approximation to

the plastically relaxed stress 0 at all points in the crack plane can be obtained from solving the

Neuber equation at each point

e(O) = (o) 2/E  .35)

In practice the stress increment o s - 0 is redistributed over the section in order to maintain a correct

force balance between the externally applied loads (these are zero in the case of self-equilibrated

secondary loading) and the forces corresponding to the induced stresses. To maintain this balance,

the force, 6F, consistent with integration of the stress increment, o- 0 s, over the section, is

evaluated and used to define a uniform stress increment, 5o_ = 0F/(area of section). This increment

is then added to as at each point in the section and the Neuber equation is re-applied and the process

repeated until OF becomes negligibly small. When this occurs, the relaxed stress distribution, 0 s,

exactly balances the applied forces.

A first order approximation to the combined plastically relaxed stress distribution is obtained

using the bounding theorem and at each point in the section choosing a value of o r which minimizes

the right hand side of the equation

8min = B(Op + Or) + (O s + Or)

_(OS)- e(Or)

2o
r

(F.36)

The relaxed stress, otot, can be obtained as the stress corresponding to the strain emin which results

from the minimization process. The force, OF, corresponding to the resulting stress difference,

op + 0 - 0 t°t, is calculated as for the secondary loading case, to determine a uniform stress

increment, 6op, which is then added to op and the whole process repeated until OF becomes neglibly

small. The desired stress distribution is given by 0 t°t which balances the applied forces.
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Theproceduredescribedabovefor determiningtheplasticallyrelaxedstressdistributions is

an elaboration on the method described in reference (Chell, 1986), which is based on the assumption

that the stress in the plastic zone is constant and determined by the relaxation of the stresses at the

surface of the structure. In this approximation, the stress increments, _o s and SOp, are redistributed

only onto the part of the section which remains elastic.

F.38



APPENDIX G

SIMPLE J ESTIMATION TECHNIQUES FOR

MODE I CRACKS UNDER MULTIAXIAL LOADS





Rocketdyne experience has shown that multiaxial states of stress frequently occur in reusable

aerospace propulsion system applications, and therefore some attention to the estimation of J under

multiaxial conditions is needed. However, solution of the complete multiaxial Jproblem was clearly

beyond the scope of the current contract effort. The approach taken in the current contract was to

investigate and develop simple estimation techniques for multiaxial effects on two-dimensional

through cracks subjected to Mode I loading, and to characterize the accuracy and limits of

applicability of those techniques. This appendix summarizes the results of these investigations.

In the two-dimensional configuration under consideration here, a stress, S, is applied remote

from the crack in a direction normal to the plane of the crack. Remotely applied transverse stresses,

T, may also be applied normal to the axis of stress S (and therefore parallel to the crack plane). No

remote shear stresses are applied. The biaxiality is characterized by the ratio X = T/S. For uniaxial

loading, T= 0, and the applied stress S is just the usual o. The stress nomenclature is given here as

S and T rather than specific values of the stress tensor oij to emphasize that the formulation is general

and not limited to any specific coordinate system or orientation (e.g., axisymmetric systems are also

admissible).

At the outset, it should be noted that multiaxial corrections to J apply to the plastic

component only. The engineering approach to J assumes that total J can be computed as the sum

of elastic and plastic components,

J = J, + Jp (G.1)

The elastic component, Jc, is calculated directly from the linear elastic stress intensity factor, K,

which is not influenced by multiaxial stresses of the type considered here. The effective crack length

(crack tip plastic zone size) correction term that is often included in the elastic term does have some

dependence on multiaxiality. But since this term is small and the change in the term due to

multiaxiality even smaller, these contributions have been neglected at the present time.

He and Hutchinson (1983a) accommodated multiaxial states of stress in their numerical

solutions for the J-integral in infinite bodies in terms of the von Mises effective stress and strain.

Their normalization procedure for the fully plastic J was given by the form

of era

(G.2)

Here the effective stress o a is defined in the usual way as

3 )1/2Oef = -_ S ijS ij
(G.3)
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wheres o is the stress deviator. The effective strain ea is defined conveniently as

(G.4)

This coincides with the tensile strain in uniaxial tension. The effective stress and strain satisfy the

same fully-plastic power-law constitutive relationship as do the uniaxial stress and strain,

'
_0

n

(G.5)

The nondimensional parameter h I was subsequently expressed as the product of factors in n and S/T;

for example, in plane strain

4 (G.6)

He and Hutchinson showed graphically how this simple analytical form based on a

perturbation solution compared satisfactorily with more rigorous numerical results for both plane

strain and axisymmetric cracks. Dowling (1987) has presented a similar set of comparisons for the

He and Hutchinson data, showing somewhat more clearly that agreement between simple formula

and numerical results was typically within ±10 percent. The only significant exception was for larger

positive values of T/S (0.67 < T/S < 1) under axisymmetric loading (i.e., approaching triaxial

tension), where the simple formulas began to significantly underpredict h_. Dowling went on to

postulate a similar approximate construction for the plane stress case, although validating numerical

solutions were not available for comparison.

The basic multiaxial approximation scheme first introduced by He and Hutchinson and later

amplified by Dowling may be further extended and simplified to give the following result. Begin

first with a uniaxial, fully plastic J solution in the general form

 ,0o0aho( 0) (G.7)

where %, %, and n are material constants in the constitutive relationship, Eqn. (G.5). A

corresponding multiaxial J solution for any T/S ratio can be constructing by replacing the uniaxial
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h' o with a new multiaxial value, which is denoted as h0. For plane strain, the relationship between

h'o and h0 is

/ }n-Ih 0 = h 0 {11- XI (G.8)

where h' o is the uniaxial solution and _. = T/S. For plane stress, the form is

' (G.9)

Note that the other factors in Eqn. G.7 are not influenced by stress state. The new normalization

scheme is related to the previous He and Hutchinson normalization according to h o = hl(oJS) 2.

He (1986) subsequently published more complete sets of numerical results for through-

thickness cracks in infinite plates under both plane stress and plane strain for a variety of biaxiality

ratios. For plane strain, He expressed his results in terms of a slightly different normalization

scheme

h 2 =

' Oo oa Wo)

n+l
(G.IO)

Based on the plane strain expression for h' o given previously by He and Hutchinson (see Eqn. G.6),

Eqn. G.8 can be appropriately modified to predict h 2 by replacing h o and h'o with h2 and h' 2,

respectively, and by setting h' 2 = n Cry. He does not give a comparable expression for h'o in plane

stress. Dowling (1987) suggested that a suitable plane stress estimate for use in Eqn G.9 was

h' 0 = r_ vf_, based on the assumption that plane stress and plane strain results are identical when

appropriate corrections for the effective stress and effective strain are taken into account. Shih and

Hutchinson (1976) had earlier proposed the general form

/
h o = 3.85 _ (1 - 1/n) + rffn (G.II)

for plane stress uniaxial tension, which gives similar but not identical results to the Dowling

suggestion. In this study, the Shih and Hutchinson form was adopted as the uniaxial solution.

The He numerical results for plane stress and plane strain (He, 1986) are compared with the

predictions of Eqns. G.8 and G.9 (based on uniaxial values and effective stress arguments) in

Figure G. 1. The agreement appears to be reasonably strong for all values ofn and T/S. The original

numerical solutions are based on energy principles which give upper and lower bound results, and

their accuracy slowly decays at higher n values. The estimation techniques appear to be entirely

acceptable for the infinite plate (i.e., small crack) configuration.
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Theonly availablesetof biaxial J results for cracks in two-dimensional finite bodies is that

of Jansson (1986), who published fully plastic plane stress solutions for biaxially-loaded

center-cracked plates based on finite element (FE) calculations. He considered nine values of n

ranging from n = 1 to 20, five values of the normalized crack width ranging from a/b = 0.125 to

0.625, and five values of the biaxial stress ratio _. ranging from _. = +1 to -1. Jansson presented his

results in terms of a significantly different normalization scheme, and some algebra is required to

express his results in the framework of Eqn G.2.

Comparisons of the Jansson FE results (in the framework of Eqn G.2) with the predictions

ofEqn G.9 are given in Table G.1. Note that the h o' solutions cited earlier (e.g., Eqn G.11) do not

include the effects of finite geometry. In order to apply the multiaxial estimation scheme to finite

geometries, the appropriate h o' factors must first be determined for uniaxial loading based on elastic-

plastic FE analysis or estimation procedures. Since Jansson modeled the special case where all

remote boundaries were constrained to remain straight, more general uniaxial solutions (i.e., EPRI

handbook) for h' o are not applicable. In this study, the uniaxial h' 0 was based on the Jansson results

for _, = 0. This differs from the Dowling (1987) approach, where he utilized linear elastic geometry

correction factors to estimate h'0 for semi-infinite bodies.

The agreement is reasonably strong for smaller values of a/b and gradually deteriorates for

larger a/b, especially at larger n. The disagreement at large a/b may be due to the influence of the

rigid boundary conditions chosen by Jansson. Note that the Jansson analysis represents not only

straight boundaries but also a square plate geometry. Jansson himself compared Jp results for a/b

= 0.5 for the standard specimen with 3:1 height-to-width ratio (e.g., the EPRI handbook results) to

a square plate with straight horizontal boundaries to a square plate with all boundaries held straight.

His results showed that when the vertical boundaries were held straight, Jp dropped drastically, since

deformation in the highly stressed region adjacent to the crack tip was restrained. This effect was

also shown to be relatively small for low n and large for high n.

This boundary influence would be magnified even more for negative _ since leaving the

boundary unconstrained would tend to further increase boundary curvature. Therefore, it is not

surprising that large overprediction of Jp occurs for the combination of large a/b, large n, and

negative _,. On the other hand, the imposed boundary influence is probably reduced for positive _.

since the positive stress parallel to the crack tip is attempting to straighten the adjacent boundary

itself, replacing the influence of the imposed boundary condition. In this case, using the uniaixial

results to define h' 0 may overstate the beneficial effect of the boundary in reducing Jp and could result

in underprediction for the biaxial case with positive _..

From the perspective of practical algorithms for fatigue crack growth life prediction, the

results are nevertheless encouraging. The predictions are always nearly exact or conservative except

in the vicinity of _. = +0.5 (compare the He plane stress results and corresponding predictions at

larger n in Figures G. 1). The predictions are most accurate for smaller crack sizes, where the

majority of the crack growth life will be expended. Many of the results are accurate within a factor

of 1.5 or better. Since this inaccuracy applies only to the plastic term, which is only one contributor
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to total J, errors in crack growth rate predictions (based on total A J) caused by errors in h 0 should

be considerably less than a factor of two in most cases.

It is somewhat discouraging that the accuracy decays so quickly at the largest n values (e.g.,

20) for some _. values, since low hardening materials are commonplace in reusable aerospace

propulsion systems. However, it should be remembered that any inaccuracies in the J-calculation

scheme (including small errors in estimating the applied stress in service or in estimating the

constitutive relationship) are greatly magnified for such large n. Even an "exact" h0 solution does

not guarantee an accurate Jestimate. Although improved h 0 estimates for large n are clearly needed,

this accuracy may be less significant in some applications in view of other contributors to uncertainty

under these conditions.

It is instructive to review quickly the general trends of h 0 with different stress states, based

on both the He and the Jansson results. In comparison with the uniaxial values, h 0 (and therefore Jp)

increases dramatically with increasingly negative transverse stresses under both plane stress and

plane strain. Even at small n, the difference between _. = 0 and _. = -1 values is often on the order

of 10x or even 100x. It should be remembered, however, that at _. = -1 (which corresponds to pure

shear), even an uncracked elastic-plastic body goes fully plastic at Sloo = 0.577. Since design rules

will typically keep nominal applied stresses at or below this level, the contributions of the Jp term

(which is proportional to (Sloo) "÷_) will sometimes be relatively small. Furthermore, Rocketdyne

experience has suggested that negative _. values are relatively rare in reusable aerospace propulsion

system applications.

For positive _. values, the differences between plane stress and plane strain become very

large. In plane stress, h 0 values pass through a minimum around _ = +0.5 before increasing again

with increasing _.. Values of h 0 at _. = +1 are identical to those at _. = 0, according to the simple

estimation scheme. The results of He and of Jansson suggest that this is nearly true for small cracks

and less true for larger cracks, where h o is somewhat smaller at _. = +1. In plane strain, however, the

simple estimation scheme suggests that the value of h 0 drops to zero at exactly _. = +1, and the He

results confirm this discontinuity in the trend curves. The dramatic difference between plane stress

and plane strain results at _. = +1 suggests that proper assessment of the actual out-of-plane stress

state in applications is paramount for accurate J characterization. A plane stress assumption will

always be conservative relative to a plane strain assumption in this region.

In summary, the simple effective stress approach to estimating the effects of multiaxial

stresses on J for through-crack configurations appears to be acceptably accurate for small cracks and

for some larger cracks at low and intermediate values of n. For deep cracks at large n, the estimates

can be significantly in error, especially for negative _.. Errors are nearly always conservative (i.e.,

h t is predicted too large) except around _. = +0.5 in plane stress.

All of these results are for two-dimensional through cracks. The more significant geometry

for reusable aerospace propulsion systems is the part-through surface crack with a semi-elliptical

perimeter. Only one J result is known to be available for this type of geometry. Dodds et al. (1993)

presented a comparison of J values for remote uniaxial tension vs. remote equibiaxial tension for a
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semi-elliptical surfacecrack with the geometricparametersa/t = 0.25, 2c/a = 6 in a Ramberg-

Osgood material with n = 10. At the deepest point of the crack (_ = 90°), the total J values were

identical in the SSY regime, but at o"/o 0 = 1.1, the biaxial J value was approximately half the

uniaxial J value. This difference was even more pronounced for smaller _ values. It is not

immediately obvious how to derive this result from the simple 2-D rules described above,

particularly given the ambiguity about how to define the stress state in the three-dimensional

configuration. In the absence of additional supporting data, it is not yet possible to develop and

verify a general multiaxial J estimation scheme for three-dimensional cracks in finite bodies.

The multiaxial J estimation scheme presented here was based on methods originally

developed for cracks in infinite bodies. Therefore, the multiaxial modifications to the plastic J

solutions were focused on the nondimensional h factors. Extension of this approach to finite bodies

requires that the effects of the finite geometry be included satisfactorily in an available h value for

uniaxial loading. Such an extension was found to be moderately, but not entirely, successful in

comparison to the Jansson results.

This approach, which follows the spirit of the EPRI formulations, stands in mild contrast to

the reference stress J estimation schemes currently employed for other geometries and other uniaxial

combined loading situations. In these schemes, the effects of finite geometries are introduced

through modifications to the optimum yield load. It may be possible, therefore, to reformulate the

multiaxial approach in terms of modifications to the optimum yield load, which might reflect not

only changes in net section area but perhaps also changes in yielding behavior due to multiaxiality.

Some preliminary work has been carried out to explore this possibility, but resolution of these

questions is beyond the scope of the current contract.
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Table G.I.

_.=+1

a/b = 0.125

Comparison of Jansson FEM results for multiaxial J with simple estimates based on

an effective stress approach for a range of _,, n, and a/b values. Tabulated are the

ratios of h I (predicted) / h m(Jansson FEM).
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APPENDIX H

FINITE ELEMENT ANALYSIS OF SPECIMEN

GEOMETRY EFFECTS ON FATIGUE CRACK CLOSURE





H.1 Introduction

The fatigue crack closure phenomenon is an intrinsic aspect of the mechanics of growing

fatigue cracks, and, in many applications, closure provides a powerful first-order correction to the

crack driving force which facilitates more accurate computation of crack growth rates. Although

closure can be motivated by several different physical mechanisms, including roughness or oxides

on the fracture surface, extensive experimental and computational studies have shown that crack

wake plasticity is often the dominant contribution to closure, particularly at higher values of the

stress intensity factor.

A reasonable approach to the numerical characterization of closure, then, is to conduct an

appropriate elastic-plastic continuum mechanics analysis of a body under cyclic loading with a

growing crack. Numerous researchers have applied the finite element method (FEM) to the closure

problem [some historical perspective is provided in (McClung and Sehitoglu, 1989a; McClung,

1992)]. Several others have explored simpler analytical approaches, such as modified versions of

the Dugdale strip-yield model (see again the review in McClung and Sehitoglu, 1989a). These

mechanics studies have generally agreed that the crack opening stress, typically normalized by the

maximum stress in the fatigue cycle according to SopJSma,,, is a function of the stress ratio (R =

SmiJSmax), the stress state (plane stress vs. plane strain), and the normalized maximum stress Sm_,lo o

(where o0 is the yield stress or flow stress of the material). (Note that in this appendix, the symbol

S is used to denote far-field applied stress, as is customary in FEM closure studies.) These studies

have also shown that crack opening stresses do not, in general, change significantly with further

crack growth (McClung, 1991 c), which suggests that crack opening behavior is not a function of the

applied stress intensity factor alone (which, of course, changes with increasing crack length even

if the applied cyclic loads remain constant). These computational results are consistent with

numerous experimental measurements of crack opening stresses outside the near-threshold regime

and outside the near-net-section-yielding regime (McClung, 1991c).

These numerical studies have typically been limited in scope to relatively few geometric

configurations. The Dugdale model corresponds to a crack in an infinite plate under uniform

tension, and most FEM studies have focused on the similar center-cracked plate (CCP) under

uniform tension, usually with a small ratio of crack length to specimen width (a/W) so that finite

width effects are minimized. Most other FEM analyses have addressed cracks near notches, plates

with very short edge cracks, or an occasional compact tension (CT) specimen. Systematic parameter

studies (methodical investigation of crack length and applied stress effects) are rare. Almost no

researcher has applied the same numerical model to several contrasting geometries. The primary

exceptions here are Sehitoglu and colleagues (McClung and Sehitoglu, 1989b; Sehitoglu and Sun,

1991), who investigated several applied load levels for both CCP and CT geometries, and Fleck

(1986), who directly compared opening behavior for CCP and single-edge-cracked-plate bend

(SECP-B) geometries at a single crack length and single applied Km,x values. Similar experimental

studies comparing different geometries are also very rare outside the near-threshold regime.

Several important questions remain unanswered, therefore. To what extent are the

benchmark CCP or infinite plate closure results applicable to other specimen or structural
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geometries?Doesthesamefunctionaldependenceof Sop,JSm,x on SmJo o hold, or does it somehow

change? Are further changes introduced by very large changes in crack length for the same basic

geometry? And how should closure be characterized for bend specimens or other configurations

where the crack grows through a large, long-range stress gradient? Does an Sm,xlO o criterion apply,

and if so, how? Do crack opening stresses follow changes in the nominal (uncracked) maximum

stress at the current crack tip location?

This appendix summarizes investigations which are designed to answer some of these

questions. A finite element model is used to study closure at three different crack length to width

ratios for three different specimen geometries: CCP, SECP-B, and single-edge-cracked-plate tension

(SECP-T). The results are critically compared, and a single characteristic parameter is proposed to

describe crack length, applied stress, and specimen geometry effects on closure.

H.2 Finite Element Model

The basic FEM model employed here has been described in detail in previous publications

(McClung and Sehitoglu, 1989a; McClung, Thacker, and Roy, 1991). The meshes were composed

of four-noded linear strain elements. At each occurrence of minimum load in the cycle, the boundary

conditions at the crack tip node were changed to allow the crack to "grow" by one element length

through a "nugget" of very small, uniformly sized elements along the crack line. A typical mesh is

shown in Figure H. 1.

Previous studies (McClung and Sehitoglu, 1989a) have found that several criteria must be

satisfied to insure that the crack opening results are free of modeling artifacts. One suggested

criterion was that crack tip elements must be sufficiently small relative to the crack tip plastic zone

size, which implies a limitation on the smallest permissible value of the maximum applied stress

intensity factor in the cycle. Since different specimen geometries were not considered in that earlier

work, however, it is also possible that the crack tip element size criterion should actually reflect the

smallest permissible value of the maximum applied stress in some way. A second criterion was that

crack growth should extend farther than the outer boundary of the crack tip plastic zone emanating

from the initial crack tip position, since crack lengths at the beginning of each analysis were set to

relatively large initial sizes for efficiency. When these two criteria were met, crack opening stresses

were generally stable and did not change with further crack growth, even at high stresses. The

primary exception to this stability was that crack opening stresses sometimes dropped off with

further crack growth if nominal net-section yielding was imminent. This behavior is addressed
further in the discussion section.

All analyses discussed in this appendix were plane stress. The constitutive model followed

linear kinematic hardening with HIE = 0.01, where E is the elastic modulus and H is d-o/dep, the

slope of the plastic line. The flow stress, o o, is the intersection of the elastic and plastic lines.

Remote stresses were applied in many small steps (typical step size was two percent of the maximum

stress). Stresses and displacements along the crack line behind the crack tip were closely monitored

on each load step, and boundary conditions on the crack surfaces were appropriately changed as the

crack opened or closed.

H.2



A
ca \

0

cs_

E

r"

_w4

C_
V

o

c_

o
c_

E

I.d

Q_

E

_P

fu

oll

H.3



Thethreedifferent specimengeometrieswerecreatedusingthesamemeshesby applying
different boundaryconditions. The original configuration,which simulatedthe CCPgeometry,
modeledonequadrantof thecrackedplate. By replacingthecentralplaneof symmetrynormalto
thecrackline with afreeboundary,themeshbecametheupperhalf of asingle-edgecrackedplate.
If the original (CCP)uniform tensionloadingwasretained,theresultingspecimenwasSECP-T.
The applicationof apuremomentto createaSECP-Bconfigurationwassimulatedwith a linear
tractiongradientacrossthetopedgeof themesh,varyingbetween+Sand- S. These configurations

are summarized in Figure H.2.

These different boundary conditions were applied to three different meshes, each with a

different range of crack length to width ratios. The "nugget" of very finely spaced nodes was roughly

centered around a/W = 0.125, 0.3, or 0.5 in each mesh. The fine mesh spacing (i.e., the size of the

smallest elements) was held constant in a given mesh, but was varied from mesh to mesh in order

to keep the Aala ratio in the center of the nugget roughly constant (McClung and Sehitoglu, 1989a).

H.3 Results

Calculated crack opening stresses at R = 0 and R = -1 for all specimen geometries and crack

lengths are given as a function of the normalized maximum applied stress in Figure H.3. Here Sm_

was defined for the SECP-B geometry as the outer fiber stress, S = 6MIWZt, where M is the applied

moment and t is the thickness. The absence of SECP-T results at a/W = 0.5 is due to modeling

limitations, and is explained below in the discussion.

Note, first, that different specimen geometries exhibit different crack opening behaviors. For

example, the SECP-T opening levels are significantly lower than the CCP opening levels, although

both sets of results generally follow a smooth trend of decreasing So_Sm_ with increasing S_Jo 0.

Also note that large changes in crack length sometimes lead to changes in crack opening levels,

especially when cracks become long relative to the specimen width (compare a/W = 0.125 with

a/W = 0.5). However, a large change in crack length does not automatically lead to a large change

in crack opening behavior, as illustrated by the a/W = 0.125 and 0.300 data for CCP and SECP-B.

Note, second, that the bend specimen results follow a similar trend with SmJo0, where Sm_

is defined in terms of the nominal outer fiber stress rather than the local stress. If the crack opening

behavior in this geometry followed the nominal stress at the crack tip location in the uncracked

geometry, which decreases with increasing crack length, then we would expect the crack opening

levels to increase as the crack grows. But the opposite behavior is observed: the crack opening levels

gradually decrease with increasing crack length.

These results are not very appealing for engineering applications, because they suggest that

a different functional relationship between S._IS_ and Sm_o o might be required for every new

geometry, including large changes in crack length. This dilemma prompted the search for a new

correlating parameter to replace SmJO0, some parameter that describes the fundamental differences

between different geometric configurations. The natural selection for such a description is the stress
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intensity factor, K. As noted in the introduction, however, K alone does not lead to a satisfactory

characterization of crack closure. This failure is illustrated further in Figure H.4, based on the

current FEM results. Since Kmax is a dimensional parameter, we have assigned the values o 0 = 1 and

W = 1 in order to provide a consistent numerical basis on which to evaluate K. Since this is an

arbitrary assignment for the purposes of comparison, the absolute units or numerical values of K do

not have meaning. Appropriate expressions for K were based on previously published benchmark

stress intensity factor solutions (Isida, I97I; Brown and Srawley, I966). Note that the half-height

(from the crack line to the top edge of the mesh) h of the simulated specimens was 1.2 times the

specimen width W. A summary of assumed values for the geometry correction factor F, where Kmax

= F Sm_x VF_-S, is given in Table H. 1.

Table H.1. Geometry correction factors used to calculate stress intensity factor

I
0.125

CCP

1.01

SECP-T [

1.22

SECP-B

1.04

0.3 1.07 1.66 1.12

0.5 1.25 2.83 1.50

Although K contains some valuable information about the crack tip stress and deformation

fields, it seems likely that any new correlating parameter for crack closure must still retain some

description of the relationship between the maximum applied stress and the yield or flow stress (the

original Sm_x/Oo). With this motivation, a hybrid parameter was formulated which combined aspects

of both Sm,x/O0 and K. This parameter was expressed as K_,xlK o, where

Kma x FSmax _"d
m

Ko Oo_"_
(H.I)

Here K,,,x is calculated in the usual way, including the geometry correction factor F, while F is

intentionally omitted from the normalizing quantity K0. Note that Km_IK o is equal to F S_/o 0. This

formulation is also suggested by the results in Figure H.3, where the calculated Sop,JS,_a,, results were

approximately layered by values of F. Specimen and crack geometries exhibiting larger geometry

factors tended to give lower opening stresses.

The crack opening results for both stress ratios are replotted in Figure H.5 in terms of the new

correlating parameter KmJK o. Much closer agreement is observed between the various geometries.

This is especially true at small values of Km_,,IK o, where results for all three crack lengths and all
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three specimen geometries converge very closely together. At larger K,_JK o values, the data slowly

begin to spread.

Also shown for comparison in Figure H.5 are results from the modified Dugdale closure

model of Newman (1981), which is implemented in the computer code FASTRAN. The specific

results shown in Figure H.5 are taken from a simple closed-form equation (Newman, 1984) that

describes the FASTRAN computations for a center-cracked plate in which the crack was sufficiently

small that a/W _ 0. These results were originally expressed in terms of S,_,lo o, but since the

appropriate geometric correction factor is F= 1, we may employ the equality Kn,_IK o = S_Ja 0. Also

note that the Newman model assumes elastic-perfectly plastic material response, which is similar

but not identical to the low hardening constitutive model incorporated in the FEM analysis.

Although the Newman opening stresses are somewhat lower than the comparable FEM CCP

(a/W = 0.125) results, they do serve as a convenient (but not necessarily rigorous) lower bound to

nearly all of the FEM results when evaluated on a Km,xlK o basis.

H.4 Discussion

The agreement among crack opening stresses as a function of K_JK o is encouraging. The

strong convergence at small K,_/K o values suggests that KmxlK o may be the theoretically proper

correlating parameter under true small-scale yielding (SSY) conditions. These results are also

consistent with the plane stress results of Fleck (1986) for CCP and SECP-B geometries. Fleck

found identical crack opening stresses when he applied the same value of K_, = 0.157 o_ _ to

both geometries (also keeping a/W = 0.5 constant). This corresponds to K,_,xlK o = 0.125 in the

present nomenclature, well down in the SSY regime.

It perhaps should not be surprising that the quality of K,_,,/Ko as a correlating parameter

gradually deteriorates as K,_,IK o increases. At progressively higher stresses and longer crack lengths,

small-scale yielding gradually gives way to intermediate-scale yielding, and the linear elastic stress

intensity factor Kbecomes less effective in characterizing the crack tip stress and deformation fields.

When KmJK o = 0.5, for example, the nominal crack tip plastic zone width rp is about 0.25 of the

crack length, so the SSY condition rp << a is no longer satisfied. Nevertheless, the K,_,,/K o

correlation of crack opening behavior may still be acceptable for many engineering applications.

At higher K,_/K o values, there is a general trend to slightly lower crack opening stresses with

increasing crack length and, to some degree, with increasing F values among different geometries.

These trends prompted additional searches for improved correlating parameters which would be even

more accurate at large K_,IK o. One parameter considered was K'm,x/Ko, where K' incorporated an

effective crack length, a', defined as the sum of the physical crack length and the radius of the crack

tip plastic zone. A new value of F' was also computed based on a'lW. This is a common first-order

correction to K in the intermediate-scale yielding regime. This parameter gave slightly improved

correlation of crack opening stresses at R = 0 but no improvement (perhaps even a deterioration) at

R = - 1. The alternative parameter F K_IK o (or F 2 Sm,/Oo) also improved the R = 0 correlation

slightly but damaged the R = - 1 correlation. The parameter (Km_/K0) 2 performed poorly at both

stress ratios. It is certainly possible that some other alternative parameter may ultimately prove to
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be the optimumchoice,but baseduponcurrentinformation,Km,flKo appears to be a reasonable

selection.

On the other hand, it is not necessarily true that crack opening stresses for different

geometries should correlate exactly at all applied stresses. For example, differences in the

non-singular stresses parallel to the crack [the so-called T-stresses (Larsson and Carlsson, 1973),

which are second-order terms in the crack tip stress field and do not appear in the customary K

expressions] between different geometries could cause changes in opening behavior. FEM studies

of crack closure in different biaxial stress fields (McClung, 1989a), which are indirectly related to

different T-stresses, found that applying an equibiaxial stress parallel to the crack influenced the

crack opening stress, especially at higher S_Jo o values. On the other hand, different biaxial stresses

did not influence So_JSmax at lower SmJo o values. The T-stresses for CCP, SECP-T, and SECP-B

are all significantly different, and T even changes appreciably with increasing crack length in the

SECP geometries (Leevers and Radon, 1982). The influence of these T-stresses may help to explain

some of the differences in crack opening stresses outside the small-scale yielding regime. On a

different note, differences in COD (even at the same K) between CCP, SECP-T, and SECP-B

geometries may also influence closure behavior as the fracture surfaces move relative to each other.

Furthermore, it is also possible that the quality of the FEM simulation itself gradually deteriorates

at these larger K_x/K o values, in view of the relative coarseness of the model (lower order linear

strain elements and small strain element formulations).

A loss of K dominance with increasing stress and crack length ultimately leads to large scale

plasticity effects, as the crack tip plastic zone size becomes large relative to the remaining ligament

and the nominal net section stress approaches the yield stress. The ASTM criterion (ASTM E 647,

1998) for valid K-based fatigue crack growth (FCG) rate data that the nominal crack tip plastic zone

size (PZS) be less than 0.25 of the remaining ligament (b) appears to correspond roughly to the point

at which crack opening levels begin to drop off significantly with additional crack growth (McClung,

1991c). A related ASTM criterion for valid CCP FCG tests that the nominal net section stresses

remain lower than 0.80 of yield also appears to coincide with a decay in crack opening stresses. This

latter criterion can be interpreted as the applied stress remaining less than 0.80 of the simple limit

load stress for a perfectly plastic material. This alternative interpretation provided a means of

expressing the net section yield criterion for the SECP-B geometry: the applied bending moment

remains less than 0.80 of the simple limit moment for a perfectly plastic material, where the limit

moment per unit thickness was taken as (Miller, 1988)

O0 W2

M L - 1.072 _ (1 - a/W) 2 (I-1.2)
4

These two ligament plasticity criteria (plastic zone size and net section stress) were applied to all of

the FEM closure analyses, and FEM crack opening results were not included on Figures H.3-H.5 if

either criterion was violated. This filter excluded all of the SECP-T results at a/W = 0.5, except

when the applied stress was so low that satisfaction of the mesh refinement criteria was suspect.
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However,it shouldbeemphasizedthatthesecriteriafor "normal" crackopeningbehavior
areonly rough rules-of-thumbat this point, andhavenot beensystematicallyvalidatedfor this
particularpurpose.FigureH.6 showsalimited numberof additionalFEMclosureresultsfor cases
in which oneor both ASTM criteria wereviolated: Sa_ied/Stimit ranging from 0.8 to around 1. l,

and/or PZS/b ranging from 0.25 to 0.35. The trend lines from Figure H.5 (data satisfying both

criteria) were included on Figure H.6 for comparison purposes. In general, the crack opening

stresses dropped off more rapidly with increasing K,_/Ko when either criterion was violated,

especially at R = 0. However, the crack opening stresses continued to follow expected trends for

some configurations, especially at R = - l, and the Newman equation is still an approximate lower

bound for most of the data shown. Reliable closure results were not available at still higher applied

stresses due to various difficulties with the numerical performance of the FEM code. Related

difficulties also raised questions about the reliability of the closure results at large crack lengths

(a/W = 0.5) for the SECP geometries, so most of those results have been completely omitted from

this appendix.

Perhaps one of the most useful implications of the K_,/K o closure correlation is that more

confident predictions can be made of crack opening stresses in other geometries, especially

geometries which are not amenable to the current state-of-the-art in FEM closure modeling. Of

particular interest are three-dimensional geometries such as surface cracks, which are of great

significance in engineering applications. While it will probably not be possible to obtain direct

experimental or analytical validation of closure predictions in these geometries in the near future,

the proposed correlation seems robust enough from an engineering standpoint that it can be used
with some confidence.

One example of such an application is a combined loading configuration, such as the

superposition of uniform tension and bending loads. Since elastic stresses and elastic stress intensity

factors superimpose linearly, it is possible to calculate a total effective Km_, (a total effective Smax and

F) and then predict closure behavior. In order to confirm this approach, an additional FEM closure

simulation was conducted for a SECP geometry, R = 0, a/W = 0.3, with combined bending (outer

fiber Sm_x= _'0.150 o) and tension (uniform Sm_, = 0.1500). The individual geometry correction factors

were F = 1.66 for tension and 1.12 for pure bending. By superposition, the total Km_x was calculated
as

i_ ;moral total, total r---
ax = F d,max .¢'_a (H.3)

where the total Smax = 0.3 and the total F = 1.39. The combined KmJK o value was 0.42. The

computed FEM So_,IS,_,, , value was 0.43, which falls within the scatterband of So_n/Sm_ , results for

single load configurations at Km_IK o = 0.42, bounded closely by the individual SECP-B and SECP-T

results for alW = 0.3.

It was not previously clear how to apply an S_Jo 0 closure criterion to the compact tension

specimen (McClung, 1991c), where a nominal stress is not clearly defined. And it is still not clear,

although the present results do suggest an appropriate role for the stress intensity factor (which, of
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Figure H.6. Normalized crack opening stresses as a function of normalized stress intensity factor

for conditions of significant ligament plasticity. (top) R = 0, (bottom) R = - 1.
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course,increaseswith cracklengthin theCT specimen).Somenormalizationof theappliedload
to a limit loador yield loadis still needed.SehitogluandSun(1991)presentedtheirCT closure
resultsin termsof the normalizedloadPmJPo, where ,no was the limit load corresponding to the

given crack length. They considered only a single narrow range of crack lengths, so it is not possible

to evaluate the utility of their approach as a general correlating parameter. Comparison of their CT

results with earlier CCP results from the same FEM model (McClung and Sehitoglu, 1989b) suggests

that P._xlPo and S._xloo are not interchangeable parameters.

Newman (1992b) has suggested that CT opening levels can be related to CCP opening levels

by using the CCP results and defining an equivalent maximum stress S_mx for the CT specimen as

/ P FCT
Snlax -

Wt Fcc p
(H.4)

where the stress intensity factor for the CT specimen is expressed in the slightly modified form

Kcr = _ Fr-a/-_
Wt _..,t •

(H.5)

Note that defining the equivalent maximum stress according to Equation H.3 in terms of the two

geometry correction factors Fcr and Fco, leads to essentially the same K._IK o relationship proposed

in this appendix. The additional assumption included in the Newman formulation is that the

equivalent CT stress PIWt normalized by the flow stress o 0 is an appropriate characaterization of the

applied stress.

The K,_ IK o relationship, which was demonstrated in this appendix for plane stress, is also

anticipated to correlate crack closure data for plane strain conditions. However, plane stress and

plane strain data will exhibit different K._ IKo dependencies. In plane strain, the predicted

dependence of So_ , ISm,_ on S._/o o is often relatively weak (Newman, 1981), so the additional

influence of the F factor will not be strong and may often be negligible. The unusual finite element

results of Fleck (1986) in plane strain--he found only discontinuous and therefore unstable opening

behavior--may have been dominated by other numerical effects. More recent finite element

investigations into plane strain closure have found stable, continuous closure behavior similar to that

observed under plane stress (McClung, Thacker, and Roy, 1991).

It is also anticipated that the K_,_/K o correlation will hold true for materials with different

strain hardening behavior, although the closure results themselves will change with different HIE

(McClung, 1992). The current analyses focused on low hardening materials under plane stress

because these conditions were known to motivate particularly strong variations in So_, ISm,x with

S,_/% for CCP configurations (McClung, 1992), and because they facilitated more direct

comparisons with the Newman FASTRAN results.

H.14



As noted earlier, the Newmanmodified-Dugdalemodel equationprovides a slightly
conservativelowerboundto nearlyall of theFEM resultsconsideredhere,if appropriatelimits on
plasticity in theremainingligamentareenforced. In order to functionin this way, theNewman
parameterSma,,/Oo must be interpreted as K,_,IK o. For the small center crack on which the FASTRAN

closed-form equation (Newman, 1984) was originally based, these two parameters are essentially

identical. This is an especially useful result, because the closed-form equation addresses a wide

range of stress ratios, S,,_,,/Oo (Km,,,,/Ko) values, and out-of-plane constraint (from plane strain to plane

stress). This explicit equation is much more convenient for engineering applications than the FEM

model, which is strictly a research tool at this time.

H.5 Conclusions

. Different specimen geometries (in particular, CCP, SECP-T, and SECP-B configurations)

exhibit different fatigue crack closure behaviors. The normalized maximum stress S_,,,Ioo,

which successfully describes closure results over small ranges of crack lengths in individual

geometries, does not correlate the effect of different geometries on the normalized crack

opening stress, So_JSm_,,.

. The outer fiber stress, and not the nominal stress in the vicinity of the crack tip, appears to

be the appropriate characterizing stress for crack closure in SECP-bend geometries.

. The normalized stress intensity parameter Km,JK o, where K o = ooVr_'a and o o is the flow

stress, successfully correlates crack opening stresses for the three different specimen

geometries at three different ranges of crack length to width ratios. The quality of the

correlation is very high at small KmJKo, and gradually deteriorates as K_a,,/K o increases

beyond the SSY regime.

. The K_,/Ko approach to characterizing crack closure provides an engineering method to

predict crack opening stresses in many other geometries and load configurations, including

combined loading.

. The Newman modified-Dugdale closure model equations, interpreted in terms of Km,JK o,

provide a slightly conservative lower bound to nearly all of the finite element closure results

presented in this appendix, if appropriate limits on plasticity in the remaining ligament are

enforced.
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APPENDIX I

ALGORITHMS FOR CRACK INSTABILITY





SUMMARY

Criteria for evaluating the instability of cracks subjected to monotonic and cyclic loading

under linear elastic and elastic-plastic conditions are reviewed and practical guidelines provided for

implementing the criteria for brittle and ductile materials. It is shown that incipient instability results

in an acceleration in the fatigue crack growth rate due to the contribution of static failure modes to

crack extension during the load-up part of a fatigue cycle. Fatigue crack growth laws are

recommended for describing this acceleration which depends on the magnitude of the crack tip

driving force at the maximum load in the cycle and the fracture resistance of the material. In general,

the instantaneous enhancement in cyclic crack propagation rate will depend on the previous cyclic

load history. Rules are provided for determining the influence of this load history. In the case of

ductile materials, which can undergo simultaneous stable tearing and fatigue crack growth, the rules

are formulated in terms of Memory and Loss of Memory Models. In the Memory Model, the ductile

fracture process zone at the crack tip retains information about the previous cyclic loading, while in

the Loss of Memory Model this information is assumed lost. The latter model predicts more

conservative crack growth rates than the former. The characterization of fracture properties for use

in the instability criteria are discussed as well as the effects of plastic constraint on fracture

toughness and JR-curves. Practical considerations pertaining to the application of the crack

instability criteria to predicting failure in service life assessments are addressed.
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1.1 Introduction

Fracture mechanics based failure criteria governing crack instability in materials that exhibit

brittle or ductile behavior are well defined. The main feature differentiating fracture in brittle and

ductile materials is that the latter display an increase in toughness as a crack extends under a rising

load, whereas in the former crack extension and instability are coincident.

In this appendix, algorithms are described which define crack instability criteria under

monotonic loading conditions. These criteria are assumed applicable under cyclic loading conditions

and are incorporated into fatigue crack growth algorithms in order to simulate the observed

acceleration in fatigue crack growth rates due to the contribution from monotonic modes of fracture

as crack instability is approached. Emphasis is placed on ductile materials because of the more

complicated instability criterion governing these materials, and because they are a major constituent

of the Space Shuttle Main Engine (SSME) and other advanced propulsion systems. Where possible,

recommendations are proposed for modifying the algorithms for the influence of monotonic and

cyclic crack-tip plasticity, and load history effects (e.g., the effect of a proof test overload on

subsequent fracture behavior). Recommendations are also given regarding the material properties

that are needed to implement the algorithms.

1.2 Criteria for Crack Instability

L2.1 Brittle Fracture Criterion

In terms of linear elastic fracture mechanics (LEFM), the onset of brittle fracture occurs when

K (a,P) = K t (= K1¢ under plane strain conditions) (I.1)

where K(a,P) is the applied stress intensity factor which is a function on the crack depth, a, and the

applied load P. K=,,t is a measure of fracture toughness equal to the plane strain value, Ktc, when flat

fracture occurs, or Kc, under mixed flat and slant (plane stress) fracture conditions. K_ is determined

according to the ASTM test method E399 (1998). K c is a thickness-dependent material toughness

which can be derived from Kt_ for some materials using the relationship proposed in the user manual

for the NASA/FLAGRO (Forman et al., 1994) computer program

K c = Kit I+B kexp- k (1.2)

where
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(1.3)

and A k and B k are empirical constants, t the wall thickness, and ay the yield stress. NASGRO also

gives an equation to estimate the toughness of part-through surface cracks from Ktc according to

gle -- g lc (1 4- C k glc / Oys) (1.4)

where Ck is an empirical constant with units of length -ta.

It is emphasized that Equations (1.2) and (1.4) are empirically derived and should only be

used with great caution outside of their region of empirical validity.

In elastic-plastic fracture mechanics (EPFM), the LEFM fracture criterion is replaced by an

equivalent criterion based on the J-Integral. In terms of the EPFM parameter, J, the onset of brittle

failure occurs when

J (a,P) = J,,_t -

2 2
gma t g'lc

(r--
E / E /

under plane strain conditions) (1.5)

where J,,_, is the toughness expressed in terms of J, and E'=E, Young's modulus in plane stress,

E'=E/(1- vz) in plane strain, and v is Poisson's ratio.

In the limit of small scale crack-tip yielding, J is given by the equation

g 2
j--

E /
(1.6)

and Equation (1.5) reduces to the LEFM fracture criterion, Equation (I. 1). Although J,,_, is related

to K,,_,, the empirical Equations (I.2) and (I.4) are not generally applicable to failures in the EPFM

regime because crack-tip plasticity will change the relationship between toughness and dimensional

parameters, such as the thickness, t.
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1.2.2 Ductile Fracture Criterion

The ductile failure criterion is more complicated than the brittle one as there is no single

unique toughness value: the toughness depends on the instantaneous amount of ductile tearing, zla,.

In this case, the onset of instability occurs under LEFM conditions when

dK dKR
K (a ° + Aat, e ) = KR(Aat) , -

da d (Aa ,)
(I.7)

and under EPFM conditions when

J(ao+ Aat, P ) = Jn(Aat) ,

dg

da d(Aa,)
(1.8)

where ao is the initial crack depth and KR(Aat) and JR(z_,) characterize the toughness at the tear

length Aa,. In ductile materials, K,,_ and J,,_ characterize the toughness at the initiation of crack

extension.

The instability criteria expressed by Equations (1.7) and (1.8) correspond to conditions where

the crack-tip driving force, K or J, becomes tangential to the K Ror JR-curve (Figure I. 1).

More detailed discussions concerning material toughness characterization in terms of JR-

curves are provided in Section 1.4.2.

1.3 Criteria for Accelerated Fatigue Crack Growth Due to Incipient Instability

The brittle and ductile failure criteria also define instability under cyclic loading conditions.

In these cases, it is known that an acceleration in the sub-critical crack growth rate occurs as the

applied value of J at the maximum load in the cycle, Jm,_, approaches J,,_, in brittle materials, and

when J,,_>J,,_, in ductile materials. To allow for this, several fatigue crack growth laws have been

proposed for brittle materials (Weertman, 1969; Irving and McCartney, 1977; Heald, Lindley and

Richards, 1972; Chell, 1984; Forman et al., 1994) and ductile materials (Kaiser, 1983; Chell, 1984;

Nix et al., 1988; Nix et al., 1989) which result in an enhancement in the normal fatigue crack growth

rate as the conditions for instability of a monotonically loaded crack are approached.

L3.1 Contribution of Brittle Fracture Mechanisms to Crack Growth

In its simplest form, the fatigue component of the sub-critical crack extension rate, (da./dN)_

is usually expressed as the Paris Equation
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(1.9)

where COand m 0 are material constants and zlK is the cyclic range of the stress intensity factor, K,,_-

Km_n, where subscripts max and min signify quantities evaluated at the maximum and minimum loads

of a cycle, respectively. This equation is oftentimes modified to explicitly include the effects of R

ratio (K,,JK,,_) and near threshold behavior (e.g., see NASGRO 2.0 equation in Forman et al.,

1994). For simplicity, these additional dependencies are omitted in the discussions that follow

unless it is necessary to explicitly include them. (As previously noted in Section 3.5.1, EPFCG data

do not exhibit traditional threshold behavior.) It is straightforward to extend the developments to

be described to the more general form of the fatigue crack growth laws.

Theoretical and experimental works suggest that Equation (1.9) can be generalized to include

the contribution of monotonic modes of fracture to the growth rate by writing (e.g., Heald, Lindley

and Richards, 1972; Chell, 1984).

.a
dN Kmax _ 2 (I.10)

/1-

The NASGRO 2.0 equation has a different form to this and can be expressed as

.a
dN q (I.11)

Km,x

where q is a material constant.

Both Equations (I.10) and (I.11) incorporate crack instability through the terms in their

denominators, which predict infinite crack growth rates when the brittle fracture criterion is satisfied.

The different forms for Equations (I.10) and (I.11) can be partly explained by the fact that

Equation (I. 10) is applicable to flat (plane strain) fracture, while Equation (I. 11) addresses instability

of through-wall flaws in thin section materials where slant (plane stress) fracture predominates.
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Theform of Equation(I.11),whichcontainsauniquetoughnessterm,K c, is only applicable

to materials which undergo brittle fracture, or materials that fail by a ductile mechanism with no

significant increase in toughness with stable crack growth. Although slant fracture is a ductile

mechanism, some materials used in the aerospace industry, such as some aluminum alloys, fail with

little or no increase in fracture toughness after crack initiation has commenced, and for these

materials Equation (I. 11) provides a description of their crack growth rate behavior when K,,_x

approaches Kc.

Equation (1.9) can be extended to include the effects of cyclic plasticity and crack closure by

writing

(I.12)

where dJeHreduces to (ZlK,#)2/E ' in the limit of small scale c_vclic plasticity, AK, eris that part of the
r_

,,,ol21.1..m,I where " _' "
range of AK where the crack is open, and C=[t.o(E I J/[u 0 ], U0 is the effecnve stress
intensity factor range ratio in the data from which Co and m 0 were derived. Following similar

arguments, the effect of monotonic modes can be accounted for in the elastic-plastic regime by

modifying Equations (I.10) and (I.1 1) to read

1 ,,13,
and

Load history effects, such as arise from overloading, will predominantly influence the fatigue

component of growth, (da/dN) r, through mechanisms associated with crack growth retardation and

acceleration. Although materials that fail by a crack-tip stress controlled cleavage mechanism could

have their toughness values increased by overloads applied at higher temperatures through
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mechanismssuchas warm pre-stressing,theseeffectswill beconservativelyallowedfor in an
assessmentiftoughnessvaluesmeasuredin theabsenceof theoverloadsareused.Furthermore,sub-
critical fatiguecrackextensionaftertheoverloadwill propagatethecracktip throughtheprocess
zoneformedduring theoverloadandintovirgin material,eventuallyeliminatingtheeffectsof the
overload.

L3.2 Contribution of Ductile Fracture Mechanisms to Crack Growth

1.3.2.1 Memory_ Model

A simple model for including the effects of monotonic ductile fracture modes on fatigue

crack growth rates has been proposed by Kaiser (1983) and Chell (1984). In this model, there is no

mechanistic interaction between fracture and fatigue mechanisms, but a synergistic interaction occurs

due to the increase in crack-tip driving forces from physical crack extensions resulting from each

mechanism. In the model, the instantaneous crack extension per cycle, da/dN, is assumed equal to

the linear addition of the crack growth rates from each of the mechanisms

.ad-N f ,
(I.15)

where (da/dN), is the contribution from tearing given by

:o ,.,
t

(1.16)

da) dJRCLN-'777""- dN d(Aa,) ' if Jmax > Jma, ' dJmaXdN
> 0 (I.17)

(--_) -0, if dJmax g 0 (lAg)
t dN

Using Equation (I. 17) and replacing dJma/dN by (dJmJda)(da/dN), then Equation (I. 15) can be re-

arranged into the form (Chell, 1984)
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= d/ma x dj R (I.19)
1 /

da d(Aa t)

which predicts an infinite growth rate when the ductile instability criterion, Equation (I.8), is

satisfied.

During stable crack growth the applied J must be balanced by the material's resistance to

crack extension, JR, and hence after n cycles

Jm,=,n (at + Aaf,,, + Aat,n) = Js(Aat.n) (L20)

where Aa,, n is the total ductile tearing after n cycles given by

n n

Aat,n = E 8Aat, i = E (Aat.i- Aa,,i-l)
i=1 i=l

(I.21)

where t_zla,,_ is the change in tear length per cycle. The total crack extension due to fatigue after n

cycles, da/n is given by

.22,Aa:,n i=l "_ /,i

where (da/dN)/_ is the growth rate on the i'th cycle. The crack depth after n cycles, a, is given by

ao + Aa/,+ zla,.,.

If at the end of n cycles the Memory Model becomes inappropriate due to a "Loss of

Memory" event, then the "memory" of how the total tear length, Aa,._, was accumulated is

permanently lost.

The evaluation of Aa/_+dat. n using Equations (1.20) and (1.21) is a computationally easier

task than integrating Equation (I. 19) over n cycles.
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In theproposedtear-fatiguemodel:

(a) fatiguecrackextensionandductiletearingareassumedto occuron theload-up
partof thecycleandto be independentmechanismsthatdonot interactexcept
throughthe mechanicalinteractionfrom physicalcrackextensionsassociated
with eachmechanism

(b) consistentwith (a),(da/dN)y.n for the n'th cycle, is evaluated for the crack length,

ao+ day.,, l+ da,.n.l

(c) provided (dJ_/dN) n is positive (i.e., dJ,_/da > 0), da,._ is evaluated from

Equation (I.20) as if J,,_n had been applied at the beginning of the n'th cycle to

a crack of initial depth ao+da:_, and no tearing had occurred during previous

cycling

(d) if (dJr_/dN)_ is zero or negative (i.e., J,,_ remains constant or decreases between

the (n-1)'th and n'th cycles, and dJ_lda _ 0), then no tearing will occur on the

n'th cycle even though J,_>J,_,. (This situation could occur if, for example, the

applied loading is displacement controlled, or if the crack is subjected to thermal

stressing which results in steep stress gradients.)

A simple model of fatigue crack extension that supports the assumption in item (a) is

discussed in Endnote I. 1. Items (c) and (d) imply that the crack-tip ductile process zone retains

information about previous tearing events and tearing will not commence until J,_n exceeds J,,_.l

on the load-up part of the n'th cycle. Hence, the proposed model is herein called the Memory Model

for tear-fatigue (see Figure 1.2). In contrast, if a memory of previous cyclic events was not retained

within the ductile process zone, then ductile tearing would be expected to begin as soon as J,_.,

exceeded J,_t on every load-up part of a cycle (see Figure 1.3). This is herein called the Loss of

Memory Model and is described in Section 1.3.2.2.

Limited experimental data supports the assumption underpinning items (c) and (d) and the

application of the Memory Model. This evidence is discussed in Endnote 1.2.

The derivation of Equation (I.20) presupposes that the Memory Model is appropriate for the

n service cycles. Situations where this is not the case are discussed in the next section.

1.3.2.2 Loss of Memory_ Model

In situations where the Memory Model is not applicable, then a conservative approach to

tear-fatigue crack growth should be adopted based on the Loss of Memory Model (see Figure 1.3).

This situation can arise, for example, when:

(i) J,._,.+_ < J.,_. and J_x,_+l>J_r An example of this possibility is where a

proof test or other overload event occurs part way through service.
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(ii) Thereisasignificantchangein thetoughnessof the material at the crack tip

as it propagates by tear-fatigue due to a change in through-wall metal

temperature, or the time evolution of temperature, during cycling. These

temperature changes could result, for example, from start-up and shut-down.

However, such changes should not be an immediate cause for reverting to the

Loss of Memory Model as there may be mitigating circumstances associated

with thermal transient events in ductile materials which can be used to justify

the continued application of the Memory Model under these conditions. (See

the discussion in Item (iv) of Section 1.3.3.1.)

The recommended procedure for evaluating tear-fatigue in the Loss of Memory Model is to

use Equation (I. 15) but with (da/dN) t defined as:

if J, na_n < Jmat (1.23)

( = 6Aat.,, , if J,,_.,, > J, nat

t,n

0.24)

where dAa,.." for the n'th cycle is obtained by solving the equation

•) (8 .)J.,a,,,,, o+ Aaf,,, + Aa,_,,_1+ 5Aa,,,, = JR Aat.n 0.25)

and JR is the toughness pertaining to the current service environment. The total accumulated tear

after n- 1 Loss of Memory cycles is given by

n-l

Aat_n-I = E 6Aa,;
i=1

(1.26)

The superscript * signifies that ductile tearing has occurred during service under Loss of

Memory conditions.

The derivation of Equation (1.25) presupposes that the Loss of Memory Model is appropriate

for all the n service cycles.
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L3.3 Practical Guidelines for Applying the Tear-Fatigue Crack Growth Law

1.3.3.1 Guidelines for Applying the Memory_ Model

The following rules should be followed when applying Equations (1.20) and (1.21) to evaluate

tear-fatigue using the Memory Model:

(i) At the start of the n'th load cycle the condition J,_,.2J._.-1 should be

satisfied for the Memory Model to be applicable ( irrespective of whether the

cyclic loading is of constant or variable amplitude), where subscript n

signifies the n'th cycle. This condition is equivalent to (dJ._JdN). _ O.

This rule takes into account the basic physical assumption underpinning the

Memory Model that the ductile fracture process zone should be unchanged

or increase if the effects of previous load history are to influence the current

toughness of material.

(ii) If J,,,_ > J,,_, is satisfied on the first service load-up then Equations (1.20) and

(1.21) should be applied after the first load-up. Crack extension for the first

load-up should be evaluated as follows:

(a) Determine the amount of ductile tearing due to load-up, Aa,. 0, using

Equation (1.20) with Aaf., set to zero.

(b) Then proceed with the first cycle tear-fatigue calculations by

determining (da/dN)/l using the crack depth ao+Zla,, o.

This rule is intended to make sure that any ductile tearing that occurs during

the first load-up is accounted for when determining crack extension due to

subsequent load cycling.

(iii) If J,,_.,. _" J,,,,_. , where m_n+l then (da/dN)t,, . should be set to zero

(equivalently Aa,,.,=Aa,,.). If, after a further An cycles, J,_..+,_ 2 J,,_., and

provided the fatigue growth in the An cycles, tYai,, . _ 0.1J._,./oy s , then the

following procedure should be followed:

(a) Determine the ductile tear, Aa,,.+,_+ I, at the end of the n+An+l

load-up using Equation (I.20) with fatigue extension Aa:.+n..

(b) Then proceed to calculate the crack growth for the n+dn+2 cycle

using an instantaneous crack depth a.÷n.+l= ao+da:..a.+da,,.÷a.+r

If, however, &_/.a, > 0.1J,,,,_,,/try,, then memory of the preceding load history

should be assumed lost, and the Loss of Memory Model should be applied to

the n+An+l cycle.
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Thisrule recognizesthatvery smallextensionsof thecrackby fatiguealone
which movethetip forwardby only asmall fractionof theductile fracture
processzonewill not significantlychangetheprocesszone,and hence will

not seriously degrade the information (memory) stored there. The condition

doiz , _ O. 1J_,/ay s for retaining the Memory Model has not been validated

but is based on engineering judgement that memory is still retained provided

crack extension is less than 10% of the ductile fracture process zone length,

characterized by the crack-tip opening displacement, J,,_/_s-

(iv) The Memory Model can only be applied if there are no significant changes

in the fracture toughness of the material due to service exposure between

cycles. The Loss of Memory Model should be used when this is not the case.

This rule recognizes that material properties may significantly change during

service due, for example, to thermal transients arising from start-up and shut-

down which result in instantaneous through-wall temperature gradients that

evolve over time. Under these conditions, the temperature in the fracture

process zone changes from cycle to cycle as the crack tip extends at the

maximum load of each cycle. In these circumstances, a conservative

approach would be to assume that the temperature changes wipe out

information in the ductile process zone related to the material's previous

loading history. However, the tensile and fracture properties of ductile

materials do not usually undergo drastic changes as the temperature changes

and engineering judgement would suggest that it should still be possible to

justify the use of the Memory Model in many cases where thermal cycling

occurs. In such situations, the tensile and fracture properties used in the

evaluation of the cyclic growth rate should be chosen to correspond to a time

independent crack tip temperature based on the thermal cycling history and

chosen to result in a conservative crack extension over the distance traveled

by the tip during the growth analysis.

1.3.3.2 Guidelines for Applying the Loss of Memory Model

If cyclic loading conditions that satisfy the Memory Model are interrupted by cyclic

conditions that invalidate the application of this model, then the Memory Model should be replaced

by the Loss of Memory Model in further calculations of tear-fatigue. In this event, the crack depth

at the end of the last cycle (say a, if this occurs after the n'th cycle) for which the Memory Model

was valid should be used as the initial crack depth at the start of the Loss of Memory Model. The

fact that a n consists of both fatigue and tear components is no longer relevant for the purposes of

applying the Loss of Memory Model. The application of the Loss of Memory Model will always

produce conservative crack growth rates compared to the predictions of the Memory Model.

The Memory Model may again become valid after a further number of cycles (say m) where

the Loss of Memory Model was applied. If this occurs, then the crack depth, an. = should be used
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asthe initial crackdepthin theMemoryModel andthefact thatthis consistsof componentsthat
arisefrom fatigueandtearingis notrelevant.

1.3.3.3 Guidelines for Determining the Stress Ratio and its Effect on Fracture

The stress ratio, R, is normally defined as P,,,,,,/Pm_, where P,_i_ and P,,_ are the minimum and

maximum loads in the cycle, respectively. The parameter, R, is frequently used to characterize crack

closure effects since when R=0 linear-elastic fracture theory would predict the crack faces are

touching at the minimum load, P,_,n- In practice, crack-tip plasticity and compressive residual

stresses left behind in the wake of a propagating crack complicate this simple picture.

The definition of R in terms of a ratio of loads is limited to cases where the fatigue loading

arises solely from a single mechanical load, P. It is not applicable to the many practical problems

where thermal cycling is the major contributor to fatigue loading. In these cases, it is more

appropriate to base the definition of R on fracture mechanics principles. A suitable definition for

R based on these principles that has been used successfully in the past to characterize closure effects

is

gmin
R - (I.27)

which reduces to P,,,JP,,ax for the case of a single cyclic mechanical load.

The possible influences of crack closure at different stress ratios on the conditions for tearing

and final instability are not well understood. Traditional instability theories assume that the crack

begins to open at zero load and hence that the simple Pmax value (relative to Pmin = 0) should be

employed in calculating Jmax for comparison with Jmat or JR. However, the possibility that the crack

opens and closes at some nonzero value of load (either positive or negative) raises the possibility that

some other load value besides Pmax is needed to characterize J,_ properly. Newman has shown in

the K domain that crack closure at positive loads during fatigue precracking or service cycling can

elevate the apparent fracture toughness of a material (Newman et al., 1992, 1995). His analysis

indicates that the Kmax value at which fracture occurs is elevated by a quantity approximately equal

to the (positive) Kope, value.

However, due to an absence of information documenting this effect under fully elastic-plastic

conditions, no compensation for crack closure in tear-fatigue algorithms or other instability

calculations is recommended at this time. Note that under severe elastic-plastic cycling, crack

opening levels are often very close to zero load, which would reduce the significance of the effect.

Ignoring the effects of positive crack closure loads on fracture would be conservative. The primary

conditions of potential concern (i.e., nonconservatism) would be the possibility that negative closure

loads could lead to instability at lower values of Pmax. However, limited tear-fatigue studies under

the MCPT contract (McClung et al., 1996) found no significant changes in tearing behavior at

maximum load during severe elastic-plastic cycling at negative stress ratios.
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1.4 Material Property Characterization for Crack Instability and Tear-fatigue

1.4.1 Characterization of JR-Curves

Application of the ductile instability criteria and the tear-fatigue model is dependent on the

availability of suitable material properties data. In particular, a J-resistance curve must be available

for the material of interest. Unfortunately, the standard JR-curve information contained in most

material property databases may not be the most appropriate for many reusable aerospace propulsion

system applications (see Section 1.4.2). However, this data still serves as the appropriate starting

point for the recommended analysis procedure.

Crack growth resistance data should be based on an accepted standard test method, such as

ASTM Test Method E 1737, "Standard Test Method for J-Integral Characterization of Fracture

Toughness" (ASTM E 1737, 1998). This test method specifies the use of either a pin-loaded

compact tension (C(T)) specimen, a single-edge crack bend (SE(B)) specimen, or a pin-loaded

disk-shaped compact (DC(T)) specimen. The dimensions of the specimens used have to meet

minimum requirements to ensure highly constrained plane strain deformation and J characterization

of the crack-tip fields.

There are no established recommendations for fitting an equation to the JR-curve based on

first principle arguments. However, Orange (1990) has proposed several convenient empirical

equations which have been demonstrated to provide satisfactory fits to experimental data. These

models include an exponential form,

(I.29)

a hyperbolic form,

Jr = (R+TAa)Aa
C+Aa (I.30)

an arctangent form,

JR= (R+TAa)2tan-l( rcAal2c) (1.31)

a hyperbolic tangent form,
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(1.32)

and a power law form,

JR = J1 AaJ2 (1.33)

In all of these equations, Aa is the increment of crack advance. In the first four equations,

T represents the asymptotic slope of the tearing line, R the intercept of the tearing line with the

Aa = 0 axis, and C the Aa value on the asymptotic blunting line which corresponds to JR = R. These

parameters are illustrated schematically in Figure 1.4. The specific values of all these constants are

dependent not only on the material resistance data but also on the model chosen. Determination of

the specific model constants involves a simple non-linear least squares regression of available

experimental data. In the power law equation, Ji and J2 are empirical constants determined from a

best fit to the whole of the resistance data, including the blunting line. A similar empirical approach

employs a quadratic equation form, as is developed further in Appendix K.

In general, the equation chosen for subsequent application should be the form which gives

the regression of highest statistical quality for a given set of data, according to traditional measures

of regression error. All the parametric equations include crack-tip blunting prior to physical crack

extension. This allows a complete model of tear-fatigue to be formulated which does not distinguish

between blunting and physical crack growth (see Section 2 in Endnote 1.1). It is particularly

important that the chosen J-R equation describes the resistance data accurately near the "knee" of

the resistance curve where crack-tip blunting transitions into physical crack extension. The majority

of tear-fatigue life will generally be spent in this region of the JR-curve. The ASTM Test Method

E 1737 recognizes the general utility of a power law regression as an aid to some analyses as it is

most easily mathematically inverted, which simplifies ductile tearing computations.

L4.2 Assessing the Importance of Constraint

The dependence of measured brittle and ductile toughness values on geometry and loading

mode is well documented (for example, Anderson, 1995) and is commonly attributed to the effects

of crack-tip plastic constraint. This constraint is generally lower for thinner sections, higher stresses,

and surface cracks under tension and pressure loading, all of which are characteristic of many

reusable aerospace propulsion system applications. Conversely, constraint is higher in thick section

components subjected to relatively low stresses and/or through-wall bending.

Current thinking in the international fracture community is that the change in the measured

fracture resistance with specimen geometry is due to the breakdown of J as a single parameter

characterization of the elastic-plastic crack-tip fields (Dodds et al., 1993). This theoretical
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characterizationprovidesthevital link between the crack-tip driving force expressed in terms of a

calculable engineering parameter, J, and the physical mechanism which governs crack extension.

It has been found that under certain conditions, generally associated with low crack-tip constraint,

the crack-tip fields are no longer characterized by the Hutchinson-Rice-Rosengren stress fields upon

which traditional J theory is based. Current attention on this so-called loss of J-dominance is

focused on using J in conjunction with a stress-based parameter, Q, as a two-parameter

characterization of crack-tip stress fields which includes the effects of loss of constraint.

To date, the practical applications of constraint theories have been primarily focused on

elastic-plastic fracture behavior dominated by brittle fracture (cleavage). The potential applications

of constraint theories to ductile tearing have only recently been explored in any detail (Xia et al.,

1995; Ruggieri, et al., 1996; Gao et al., 1998). Therefore, the analytical construction of a JR-curve

for some new specimen or component geometry from a benchmark JR-curve (e.g., measured using

a C(T) specimen) is still in its early stages of development. It is possible that further advances on

this topic will emerge in the next few years. The problems are much too sophisticated to admit

substantial investigation under the current contract.

1.4.2.1 Brittle (Cleava_,e) Failure

Variations in constraint can have a dramatic impact on the measured value ofJ c for cleavage

(for example, see Anderson, 1995). The effect, in terms of changes in toughness values at a given

temperature, can be much greater than the effect of constraint on measured tearing resistance.

Fortunately, the value of Yc obtained from a C(T) or SE(B) test conducted according to standard

ASTM protocols is generally a lower bound to the toughness in other configurations. Hence,

problems only arise in practice if the conservatism introduced by the use of a lower bound Jc is

sufficiently excessive to unreasonably penalize the integrity assessment of the hardware. However,

this conservatism in the assessment may still be a relatively small contribution to the calculated

fatigue life in some EPFCG problems.

Substantial progress in the use of two-parameter J-Q methods to characterize the effects of

constraint on measured toughness" appears to be imminent in the international fracture community.

However, this progress is still at the "academic" stage, and it is anticipated that a procedure for

explicitly including the effects of plastic constraint in structural integrity assessments is still a

number of years away from being realized.

1.4.2.2 Effects of Constraint on the JR-Curve

The effect of constraint on ductile fracture behavior is illustrated in Figure 1.5 with

Inconel 718 data from variousspecimen geometries (McClung et al., 1993). Shown in the figure are

JoR data from C(T) experiments which meet the validity requirements of ASTM Test Method E 1737

(ASTM E 1737, 1998), surface-crack tension experiments on 0.5-in. (12.7 mm) thick specimens, and

Actually, as discussed previously, constraint influences the effective crack driving force, not the material's
crack growth resistance.
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surface-cracktensionexperimentson0.2-in. (5.1mm) thick specimens. In each case, the data have

been fitted to a power law having the general form of Equation (1.33). These results clearly show

that JR-curve for the low constraint surface crack exceeds that measured on the high constraint C(T)

specimens. Also shown for comparison is the extrapolation of the blunting line corresponding to

J=2ar, Aa (M=2). This line provides an upper-bound resistance curve as it is assumed that blunting

does not correspond to physical crack extension defined as coalescence of the crack tip with voids

in material adjacent to it.

L4.3 Estimating Upper and Lower Bounds for J-R Behavior

Observe in Figure 1.5 that the wide range of possible J-R behaviors is probably bounded by

two extremes. At one extreme, the highly constrained benchmark C(T) specimen JR-curve represents

a lower bound resistance to ductile tearing according to the standard ASTM test method validity

requirements.

At the other extreme, the extrapolated blunting curve will serve as an engineering upper

bound to crack growth resistance behavior (see Endnote I. 1). In this context, it is significant that the

JR-curve for the thinner surface-crack geometry in IN-718 (Figure 1.5) appears to follow the blunting

curve out to greater values of Aa than does the data for the compact tension specimen. The level of

constraint in these surface crack tests was extremely low, because cracks were quite deep (a/t

ranging from 0.6 to 0.9), stresses were extremely high (maximum nominal stresses ranging from

155 ksi to 180 ksi, in comparison to a yield stress of 165 ksi), and the configuration was pure

tension.

A lower bound approach in cases where JR-curve data is not available is to assume that the

resistance to tearing is zero, and to define the JR-curve as equal to J_cfor all tear lengths, zla,. This

approach can be modified for part-penetrating cracks in very thin components where crack extension

due to blunting may be important, by defining J_=0, and equating JR to 2a_,zla for Aa<J:e/2ay _, and

JR=J_cotherwise. The value of J_ccan be equated to the results of a fracture toughness test performed

according to ASTM E 1737 standards, or to KtcZ/E ', where Kit is the plane strain fracture toughness

value obtained following ASTM E399 test procedures. However, care should be taken in following

the latter approach as Ktc is derived using a 5% offset procedure which could result in a toughness

value that is appropriate to a level of ductile tearing equivalent to 2% of the depth of the crack in the

test piece. Although this amount of tearing in a large test piece may be insignificant, its absolute

value could be highly significant in the context of part-through cracks in thin sections.

L4.4 Choice of J,_

Application of the tear-fatigue model requires identification of the J value, J,,_, at which

ductile tearing first initiates. The initiation of ductile tearing has been characterized by the critical

value Jtc measured according to ASTM Test Method E 1737 (1998) and designated in the test

procedures as "a measure of fracture toughness." These quoted words reflect the fact that J_c does

not in general characterize the onset of ductile tearing, which is experimentally almost impossible

to identify. Instead, Jr, is defined by an offset procedure similar to that used to define the
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(0.2 percent offset) yield stress (see Figure 1.6). An offset line of the general form J = May, Zla,

where M is usually equal to 2 is drawn intersecting the abscissa at Aa = 0.2 mm (0.008 in.). The

intersection of this offset line with the power law fit to the J-R data is defined as J_c (assuming that

other validity criteria are satisfied). When J,_ < Jtc, it is commonly assumed that the crack only

extends due to crack-tip blunting. Hence, provided (dJ,,_/dN)/2 ays << (daMN)/when J,,,,_<J,,_,, the

contribution of tearing to (daMN) can be ignored and J,,_, can be equated to Jtc.

The potential difficulty associated with this functional definition is that the total amount of

crack growth Aa which occurs when J,,_= Jk may be relatively large compared with typical

dimensions of reusable aerospace propulsion system components. For IN-718 for example, J_ for

the C(T) data is defined by this procedure as 849 lb./in (see Figure 1.5). The total crack growth Zla

at J,_=J_c is slightly greater than 0.01 inches (0.25 mm). Some wall thicknesses on critical SSME

components are on the order of 0.01 in., so the critical amount of crack growth at instability (if

instability occurs) of a part-through crack is almost certain to be substantially smaller than Aa at an

applied J equal to J:c. If J:c was calculated by this procedure for one of the surface crack JR-curves,

then J:c and the corresponding zla would be much higher and even more clearly inappropriate for

most tear-fatigue analysis of SSME hardware. In these situations, it is recommended that J,,_, is

taken as zero, and a Js--curve, designated as JR', which includes the blunting line, is defined for use

in tear-fatigue analyses instead of JR, where

Js(Aat) = 2°ys Aat, J,,_ <- Jt¢ (I.34)

JR(Aa,)= JR(Aat)' Jmax > Jtc (1.35)

The justification for adopting this approach is presented in Endnote I. 1.

1.5 Practical Considerations in Evaluating the Service Life

L5.1 Characterization of Toughness for Service Applications

In many engineering evaluations, the fatigue service life will be insensitive to the value of

the critical crack size at which instability is predicted. This is because the majority of the fatigue

life of cracked components are spent in propagating small flaws whose size is significantly less than

the critical crack size. However, there are circumstances where the life may be sensitive to the value

of the critical crack size. For example, in cases when the service life consists of only a few severe

fatigue cycles (which is the case for the SSME), and when fracture mechanics analyses of proof

tested components are used to derive maximum flaw sizes that could be present at the start of

service. In the latter case, the size of the calculated hypothetical flaw could be comparable to the
critical size.
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Therecommendedprocedureto assesstheimportanceof constraintfor serviceapplications
_sfirst to perform the FCG calculation(predictinglife, or perhapsfinal crack length)with the
tear-fatiguemodelbasedontheC(T) specimenJrcurve. This should provide a conservative lower

bound to the life, at least as far as the instability calculation is concerned. If this answer is

satisfactory for the specific application at hand, then no further computation is required.

If this answer is not satisfactory, or if the analyst wishes to estimate how much conservatism

may be inherent in this approach, then a second bounding calculation is recommended. In this

computation, the Jrcurve is taken as the extrapolation of the blunting curve, 2aysda and the value

of J,,_, is assumed to be the same as Jic measured for the C(T) Jrcurve. This procedure will provide

an upper bound to the tearing resistance and therefore an upper bound to the life (in terms of tearing

instability).

A comparison of the results for the lower bound (C(T)) and upper bound (blunting line)

Jrcurves should provide an indication of how significant the uncertainty about constraint effects is

for that specific life prediction problem. If the two life answers are relatively close, then further

detailed analysis of the constraint effects is of little benefit. This is expected to be the case for many

applications.

L5.2 Leak-Before-Break

It is anticipated that in some reusable aerospace propulsion system applications, FCG of a

part-through crack will proceed in a stable manner up to and beyond the point at which the crack

fully penetrates the section thickness. This is the so-called "leak-before-break" phenomenon which

is a desirable characteristic of many pressurized systems. However, in some reusable aerospace

propulsion system applications, the leak associated with through-wall penetration will precipitate

the release of volatile gases, potentially causing catastrophic failure of the entire propulsion system.

In these applications, "failure" must therefore be redefined in terms of through-wall penetration, not

the onset of ductile instability. Leak-before-break is most likely to occur where the toughness of the

material is high and the crack-tip driving force is low, situations which will again be satisfied in

many reusable aerospace propulsion system applications.

It practice, the modeling of surface flaw propagation in ductile materials to cause a leak is

limited because of the lack of fracture mechanics solutions for very deep cracks. For example,

Newman and Raju ( 1981 ) reported that the accuracy of their empirical K equations for semi-elliptical

surface cracks (based on 3-D elastic FEM analyses) had not been established for a/t > 0.8, although

they justified the use of these solutions for deeper cracks based on the concept of an equivalent

through-crack. Hence, under leak-before-break conditions, the criterion goveming when a surface

flaw penetrates through the thickness of a structure may have to be based on the validity limits for

the fracture mechanics solutions if these are violated before the failure criterion is satisfied.
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L5.3 Stable Crack Growth After Leak

In applications where full penetration of a previously part-through crack may be tolerable,

it is possible to take advantage of the extra fatigue life associated with the time taken to propagate

the through-wall crack to cause instability. For example, when a surface crack of surface length 2c

first breaks through the thickness, the stability of a through-crack of length 2c should be assessed

against ductile instability. If this through-crack is not stable, then the life calculation is terminated.

If this through-crack is stable, then the FCG life calculation should continue by modeling the

transition of the flaw from a surface crack to a through-crack and beyond, until the appropriate

instability criterion for the through-crack is satisfied. Algorithms are already available for small

scale yielding conditions (e.g., in NASCRAC) to guide the development of crack shape and the

calculation of crack growth rates during the transition period. At this time, no further information

is available on how these transition algorithms might require modification to accommodate the

effects of larger scale-crack tip plasticity.
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ENDNOTEI.I

The Mechanics and Mechanisms of Tear.Fatigue

A Simple Mechanistic Model for Tear-Fatigue

Laird and Smith (1962) have proposed a simple model of fatigue crack growth. In this

model, the first load-up part of the cycle causes crack-tip blunting, which creates new surface area

at the crack tip due to the intense strain generated at the free surface. The load-down sharpens and

closes the crack tip by an amount A ¢i where • is the crack-tip opening displacement. Reloading

causes the crack tip to blunt and extend by an amount AO/2. Under small-scale yielding conditions,

AC_=-AK2/ME'ars, where the dimensionless constant M usually has a value of 2 under plane strain

conditions. This model predicts that the value of n in Equation (1.9) should be 2. Fatigue occurs due

to surface stretching and the production of new surface area at the crack tip due to cyclic load

changes.

If J,,_>J,_, on the first load-up then the crack will extend by tearing. Tearing occurs through

the ductile mechanism of void growth in material in front of the crack tip, and the link-up of

these voids with the tip.

These simple models show why the ductile and fatigue crack propagation mechanisms may

not interact in any significant way except through an increase in crack-driving force due to the

physical increase in crack depth which each one produces.

Combined Blunting and Fatigue Crack Extension

The tear-fatigue model can be extended to include the effects of crack-tip blunting prior to

ductile tearing and fatigue crack extension using the simple model described in immediately above.

The interaction between blunting and fatigue can be important for cracks in very thin-walled

components, as encountered in reusable aerospace propulsion systems.

Under monotonic loading conditions the degree of blunting, _, is determined from the

equation

_ ao+-_) = J_ -_)
(1.36)

where Jb is related to • through the equation

O
Jb = M°ys 2

(1.37)
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whereao is the initial crack depth. Equation (I.36) is a mathematical statement that the crack is

stable when the applied J is balanced by the materials resistance to cracking, characterized by its

ability to blunt. A similar equation to Equation (1.36) must be satisfied during fatigue crack

propagation if the crack is to remain stable. Hence

J_ao+Aaf+-_) = J(-_-) (1.38)

where _ is a function of the total crack depth, ao+Aap and Aa/is the crack extension due to fatigue
mechanisms.

Let 6a/be the fatigue crack extension per cycle, and 6_ the corresponding increase in

blunting resulting from the extension, then

J,_(ao+Aa/+Saf+-_+6-_-'_2 ) = J_ _28_) (1.39)

Subtracting Equation (1.38) from Equation (1.39) and expanding the appropriate functions

to first order yields

( °° 0,,8a/+ 8a 2 8(_/2)
(I.40)

Let _,o,=6afl,-d¢_/2 be the total crack extension (fatigue plus blunting) per cycle, then

Equation (1.40) can be re-expressed in the form

8a to t "-
8a:

(I.41)
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Thisequationshowsthatbluntingwill causeanaccelerationin thefatiguecrackpropagation
rate. In general,the denominatorin Equation(1.41)is usually very nearly equalto 1because
dlb/d(_lV2) > > 8J,,J&l under normal fatigue conditions.

Note the similarity of Equation (1.41) to Equation (1.19) in the main text. These two

equations would be the same if the blunting line was included as part of the JR-curve with

ddb/3( _r2)= 3Jd'd(Aa ,) on the blunting line, and J,_,, set to zero.

Equation (1.41) predicts that d_to,=d_iwhen dd,,,_d_=0, which physically means that J,,_, and

hence Jb and _, remains constant during fatigue growth and blunting does not contribute to the crack

extension per cycle.
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ENDNOTEI.2

Evidence for Use of the Memory Model for Evaluating

JR Behavior Under Constant Amplitude Loading

The limited experimental evidence to date where the test conditions satisfied the

requirements of Section 1.3.3.1 show a good correlation between the measured crack growth rates

and the predictions of Equations (I. 15) and (I. 17). This evidence encompasses the results of Kaiser

(1983), Nix et al., (1988), and Nix et al., (1989) on steels. Figure 1.7, taken from Nix, et al. (1988)

shows typical results when the predicted growth rates are plotted against the measured rates.

Recent tear-fatigue behavior observed in fracture tests on IN-718 (a common material in

reusable aerospace propulsion systems) as part of companion proof test contracts performed at S wRI

for NASA-Marshall has also been analyzed and found to be in agreement with the predictions of the

tear-fatigue model (McClung et al., 1996b; Chell et al., 1997a).

The prediction of the Memory Model that tearing will cease during tear-fatigue if dJ,,_/dN_ag,

even though J,,_>J,,,,_, has been substantiated in test results reported by Nix et al., (1988), Joyce and

Culafic (1988) and Chell et al. (1997a). Nix et al., reported a dramatic reduction in measured growth

rates when a change in test conditions was made from a constant plastic load line displacement

increment per cycle (where the measured dJ, JdN increased each cycle), to a constant energy input

per cycle (where dJ,,_/dN was nominally zero) (see Figure 1.8). Before the mode change, the

measured and tear-fatigue predicted growth rates were 103 lam/cycle and 107 lam/cycle, respectively.

After the mode change, the measured and predicted rates were 16 larn/cycle and 11.5 larn/cycle,

respectively, and consistent with propagation occurring by fatigue only. This result is even more

remarkable when it is realized that the measured value of J,,_ after the mode change was about 1500

kN/m, and ductile tearing was suppressed even though the measured value of J,_, was only 141
kN/m.

Joyce and Culafic (1988) investigated load history effects in a HSLA steel. In their tests,

they periodically imposed large tear steps at high load levels on specimens after they had undergone

about 1 mm crack extension due to continuous cycling at lower load levels. They showed that the

tearing steps had little measurable effect on the fatigue crack growth rate. In other words, tearing

was suppressed after the load (J,_) was reduced.

Similar qualitative behavior was observed by Chell et al. (1997a) in two tests on IN-718

which involved subjecting cracked specimens to a simulated proof test overload up to incipient

instability, unloading, followed by simulated service load cycling to failure. Although J,_ at the

maximum load in the service cycle exceeded JM, there was clear evidence from recorded load-line

displacements that tearing did not occur under simulated service conditions until significant crack

extension due to fatigue cycling had occurred.
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SUMMARY

A methodology is described for evaluating creep-fatigue crack growth under cyclic loading

conditions involving a hold time at steady load. The crack growth rate per cycle is expressed as the

linear sum of 2 contributions: that due to fatigue crack extension, and that due to creep crack growth

during the hold time. The fatigue crack growth per cycle is characterized by a Paris Law equation,

where the growth constants are dependent on the hold time, and cyclic crack tip plasticity is taken

into account by using the cyclic change in the J-Integral. The creep crack growth rate per cycle is

related to an integral over the hold time of the creep crack velocity, which is characterized by the

time dependent fracture mechanics parameter, C,.

The parameter Ct consists of transient (short time) and steady state (long time) components.

It is shown that these can be calculated from appropriate creep deformation data, and time

independent fracture mechanics parameters. The value of Ct is influenced by the ability of the crack

tip material to cyclically recover, the presence of secondary loading (thermal and displacement),

crack tip plasticity and constraint. Other factors which relate to creep-fatigue are discussed, such as

crack growth incubation, loading ramp rate, and temperature changes during the cycling.

A brief description is given of a procedure for evaluating the remaining life of a cracked

structure under creep-fatigue conditions.

J.1 Introduction

The concepts of linear elastic (LEFM) and elastic-plastic fracture mechanics (EPFM) are now

widely used by many industries to analyze defective structures. LEFM applies to situations where

crack tip plasticity is small, and the stress intensity factor, K, characterizes the stress and strain fields

at the tip, as well as the energy available to overcome the work to fracture when the crack extends.

EPFM is applicable when large crack tip plastic zones develop, and the J-Integral replaces K as the

appropriate characterizing parameter.

Unfortunately, although K and J have proven to be successful parameters in describing time

independent fracture behavior, and this success has also carried over into the field of continuous

cycling fatigue crack growth (Dowling and Begley; 1976, Dowling, 1976), they are not appropriate

for characterizing time dependent creep deformation at a crack tip. This point is illustrated in

Figure J. 1, which shows that K fails to correlate creep crack growth rates, da/dt, in Cr-Mo-V steels

obtained from compact tension (CT) specimens of different sizes containing various crack depths

(Saxena, 1991).

A time dependent fracture mechanics (TDFM) parameter which correlates da/dt data for

different cracked geometries and loading systems is essential if laboratory measured data are to be

transferable to the assessment of structural components, such as the Space Shuttle Main Engine

(SSME).
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To overcome the shortcomings of K and J, Landes and Begley (1976) proposed the use of

a parameter, C °, to characterize creep deformation under steady loading conditions. C* does not

depend explicitly on time; it is a steady state parameter. It was later generalized to include transient,

as well as steady state, creep deformation by Saxena and co-workers, and called C, (for example, see

references: Saxena, 1986; Saxena and Liaw, 1986; Leung, McDowell, and Saxena, 1988, 1990;

Leung and McDowell, 1990; Bassini, Hawk, and Saxena, 1989). A much improved correlation is

obtained when the da/dt data shown in Figure J. 1 is plotted against Ct, see Figure J.2, verifying that

C, is a creep characterizing parameter which can be used for evaluating creep crack growth in

structures. Unlike C*, 6", is an explicit function of time as well as crack size and applied load.

Ct does not characterize the crack tip fields, except under steady state conditions when it

reduces to C °, but it does have an interpretation related to the rate of change of the power input from

the loading system as the crack extends (Saxena, 1986). A time dependent crack field characterizing

parameter, C(t), has been developed by Riedel (1987). This parameter also reduces to C ° under

steady state conditions. The parameter C(t) provides important information on typical transition

times between the transient and steady states, and between small and large scale crack tip creep
conditions.

This appendix describes the linear elastic, elastic-plastic and time dependent fracture

mechanics parameters needed to implement a creep-fatigue crack growth assessment methodology.

It concentrates predominantly on reviewing TDFM parameters (as these are usually less familiar than

time independent fracture parameters), and how they can be calculated from readily accessible or

measurable engineering quantities. Section J.2 describes the creep-fatigue crack growth law used

to characterize crack propagation under cyclic loading conditions where there is a steady load hold

period. A brief outline of the development of the TDFM parameter, Ct. is given in Section J.3,

together with methods of calculating it. Section J.4 addresses more general aspects of creep-fatigue,

including material property requirements, and the effects of cycling on creep deformation at a crack

tip. Section J.5 discusses other topics related to operating conditions, such as the effects of thermal

and displacement loading, crack tip plasticity, loading rate and temperature cycling. Crack closure,

constraint and crack growth incubation are also mentioned. The procedures to be followed in

performing a remaining life assessment are briefly described in Section J.6. The conclusions drawn

from this study are detailed in Section J.7.

J.2 Creep-Fatigue Crack Growth

At high operating temperatures and under steady loading conditions creep deformation and

the resulting damage at the tip of crack-like defects can cause crack propagation. If the loading is

cyclically applied, and the cycle includes a steady load hold period, then crack extension can occur

during the cycle due to both creep and fatigue mechanisms. In this situation, a synergistic interaction

can occur between the two mechanisms resulting in acrack propagation rate which exceeds the value

determined by simply adding the steady state creep and continuous cycling fatigue components of

crack growth (Ainsworth, Ruggles, and Takagashi, 1992). An enhancement in the fatigue

component of the growth rate cannot be ruled out due to creep damage occurring in the hold time,

even when no creep crack extension occurs during the hold time.
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Thedatashownin FigureJ.2stronglyindicatesthatthecreepcrackpropagationrate,da/dt,

can be correlated with C, through an equation of the form

da/dt = nct q (J.1)

where H and q are material constants. Thus, Ct offers a powerful TDFM parameter for assessing

creep crack growth provided that it can be expressed in a form which is relatively easily evaluated

for structures.

Since C, allows for transient effects, it has also been used to characterize creep crack

extension during the hold period in a load cycle. The total crack growth rate per cycle, da/dN, under

these creep-fatigue conditions is usually written as the simple sum of 2 components (Ainsworth,

Ruggles, and Takagashi, 1992; Yoon, 1990)

da/dN = (da/dN)f + (da/dN)time (J.2)

where (da/dN)/is the fatigue growth rate

(da/dN)f = D(AK) l 0.3)

D and I are temperature dependent material constants, and (da/dN)a,, _ is the creep crack extension

that occurs during the hold time, t h, and is evaluated by integrating Equation (J. 1)

I h t h

(da]dN)tim e = f (da/dt)dt = f nft q dt (J.4)

o o

Creep crack extension does not always immediately occur after the application of a load. An

incubation period is frequently observed during which creep crack damage accumulates at the tip

until a critical value is attained (Ainsworth et al., 1987). However, even if this incubation period is

not exceeded in the hold time, creep may still affect the rate at which the crack extends by weakening

the grain boundaries in the region of the crack tip, possibly causing crack advance during the cyclic

part of the loading to be accelerated, or resulting in a change from transgranular fracture (typical of

continuous cycling conditions) to intergranular fracture (typical of creep crack extension). Thus, the

Paris equation constants, D and l, may themselves depend on the hold time at steady load.
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TheParisequationmaybeextendedinto the low cyclefatigueregimeby replacingAK by

(E' A J) lt2 in Equation 0.3), where AJ is the cyclic change in the J-Integral (Ainsworth, Ruggles, and

Takagashi, 1992; Yoon, 1990). Thus, a similar equation to Equation (J.1) can, in principle, be

applied to describing creep-fatigue crack growth under these conditions. However, in cases where

crack tip plasticity is important, these effects should also be included in the calculation of 6", (Liaw,

Saxena, and Schaeffer, 1989; Joch and Ainsworth, 1992a) (see also Section J.5.2 of this appendix).

J.3 Time Dependent Fracture Mechanics and Ct

J.3.1 Constitutive Creep Laws

At elevated temperatures, the relationship between stress (o) and strain (e) depends on time

(t) through a constitutive equation of the general form

c = f (o, t) 0.5)

Under constant stress conditions, creep deformation is usually characterized by three stages:

a primary stage at early times where the strain rate decreases with time; a secondary stage where the

strain rate is nominally constant and independent of time; and a tertiary stage where the creep rate

increases rapidly, leading to creep rupture. These three stages can occur at a loaded crack tip as a

creep zone develops and spreads across the uncracked ligament. The first two stages of deformation

play an important part in this phenomenon, and are usually described by the following constitutive

equation

= Ep + Es (J.6)

where _ is the total creep strain rate and the subscripts p and s signify primary and secondary,

respectively. The following primary creep law is frequently used for strain hardening

dp = B e p (I m(l +p) (J.7)

and the following for time hardening

1
-p

_- [B(1 +p)j_\l1+p o m t l +p (J.S)

P l+p
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In the strainhardeningapproximationusedin theevaluationof creepdeformationundervarying
stressconditionstheinstantaneouscreepstrainrateisrelatedto thetotal instantaneouscreepstrain,
while in thetimehardeningapproximationthestrainrateis relatedto thecurrenttime.

Thesecondarycreeprateis givenby Norton'sLaw,

= Ao n (J.9)
$

A, n, B, p, and m are material constants and e is the total accumulated creep strain.

J.3.2 Transition Times and C t

Riedel (1987) has shown that for cracked linear elastic materials under creep conditions,

crack tip fields are characterized by different parameters at different times and for different creep

constitutive laws. There is initially a transient phase, where the crack tip stresses relax as creep

strains replace elastic strains, and simultaneously a creep zone spreads out from the tip. Eventually,

after the creep zone has extended across the untracked region of the cracked section and the primary

component of the strain rate has been exhausted, steady state conditions are attained, and the crack

tip stresses remain constant and no longer vary with time. The development of this large scale creep

(LSC) situation from small scale creep (SSC) conditions can be described using transition times

which characterize the boundaries between each stage of the process (Riedel, 1987).

For a material undergoing primary and secondary creep, the key times are:

t_: the time taken for primary creep to develop from SSC to become LSC

t 2" the time taken for SSC due to secondary creep deformation in a zone embedded in

a relatively larger primary creep zone, to develop into LSC involving predominantly

secondary creep.

These transition phases are shown schematically in Figure J.3, where it is indicated how they

may be combined to describe the actual creep zone development from small scale primary through

to large scale secondary.

For a material which only undergoes secondary creep, the important transition time is:

t3: the time taken for SSC due to secondary deformation to develop into large scale

secondary creep.

Riedel (1987) gives the following expressions for the transition times
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t_ - (m+ 1) (J.lO)lC J

Ch 1)

t 2 = , (J.11)

(1 +p)C s

and

J
e

t 3 -- • 0.12)
(n+l)C s

where Je = (1 - ve)g2/E, Kis the stress intensity factor, E Young's modulus, v Poisson's ratio, and C h

and C_" are integrals which are path independent (compare the J-integral) and characterize the crack-

tip stress fields under large-scale primary and secondary creep, respectively.

These times can be used in an interpolation procedure which describes the time evolution of

a creep characterizing parameter, C,(t), from small-to-large scale creep (Chell et al., 1993). The

result is an approximate expression for C,(t) which is applicable to combined primary and secondary

creep, and for all times

Ct(t) = C* + Ct(t-'O ) (J.13)

where

C* = Cp + C s (J.14a)

and

G=
Ch

(1 +p)t (T_+p) (J.14b)

J.6



and, C,(t "-* 0) describes the variation of C, under the transient conditions which pertain in the SSC

regime.

_t

Equation (J. 13) also holds for materials that only undergo secondary creep, but in this case, Cp

is zero.

J.3.3 Expressions for Ct

The behavior of C t at short times is dominated by the second term in Equation 0.13).

Following Saxena (1986), this can be written in the form

(J.15)

where b is the uncracked section size of the component, 1;c is the rate of expansion for the crack-tip

creep zone at an angle of 0 = 90 °, 13= 1/3, and F and F "are derived from the stress intensity factor,

K, as

F = K/ob 1/2 F / _ dF (J.16)
' d(a/b)

where o is the nominal stress.

Before Equation (J. 13) can be used in a practical situation, C_', C; and i"c have to be defined

in terms of quantities which can be evaluated for the structure. Riedel (1987) has given expressions

for the creep zone size, _c, under small-scale primary and secondary creep. These can be easily

differentiated with respect to time to obtain the equivalent expressions for _c for primary creep

K 2

c 2_ 2_ ---v2)] - [(1 +m)(1 +p)B] (l+e)'m')_ 1(2)(l+p) _ t

[ 2 1]
"(1+p)(m- 1)

¢
(J.17)

where ? = 0.38 for 0 = 90 °, I,, is a numerical constant dependent on the value ofm which is related

to the crack tip stress field and has been tabulated by Shih (1983). For secondary creep
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g 2
f -

C

r_(n- 1)
(J.18)

Equation (J. 17) should be used for combined primary and secondary creep, and Equation (J. 18) for

secondary creep alone.

Note that Cr(t-O ) depends on F ; essentially the derivative of K with respect to a. This

means that Ct(t_O ) can become negative if F "is negative, a situation which can occur in steeply

falling stress gradients. It is not clear what the physical significance of this is in terms of crack tip

creep deformation. In plasticity, the equivalent to Ct(t-.O ) is the first order plastic correction to Je,

and in this instance, if F "is negative, it implies that plasticity decreases J with respect to J,, rather

than increases it, as is usual. This interpretation does not carry over to the creep case, and it is

suggested that Ct(t_O ) be set to zero if F 'becomes negative.

The LSC components of 6", can be derived from the available fully plastic solutions, Jp, for

the J-Integral by invoking the creep/plastic analogy. This states that steady state creep solutions can

be obtained from the solutions for a fully plastic material by replacing strains and displacements in

the equivalent fully plastic solution by strain rates and displacement rates. Thus, for example, the

EPRI solutions for Jr contained in the elastic-plastic handbooks (Kumar, German, and Shih, 1981)
can be written in the form

Jp = t_ o ° e ° c h_ b' (J.19)

for a Ramberg-Osgood law of the form

(';/= (x (J.20)

where c = b - a is the uncracked ligament, c p the plastic strain, and %, o o, t_, and n are material

constants. The function h I depends on a/b and n. Values of h_ are tabulated in the EPRI handbooks

(for example, see Kumar, German, and Shih, 1981) for various structural and laboratory geometries.

P is the applied load and Po a characterizing yield load which depends on a/b and oo.

By writing the Norton law coefficient as A = _d,/o,_, the Jp solutions can be converted

immediately, using the analogy between plasticity and creep, into an expression for C_"
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C_ = Ao o c h I _-,n 0.21)

n+l

Also, by writing the primary creep law, Equation (J.8), in the form of the product

= B(t)o m (J.22)

where

B
B(t) = 0.23)

[(1 +p)t] p/1 +p

then an equation similar to Equation (J.21) for Cs* is also applicable to C; if the constants A and

n are replaced by B(t) [defined in Equation (J.23)], and m, respectively.

_t

The reference stress solutions for Jp can also be used to derive expressions for C_* and Cp

following similar procedures to those employed to convert the EPRI solutions (Ainsworth et al.,

1987; Chell et al., 1993). The results are

Cp = O ErPef Orme_ ,+p)-I K 2 (strain hardening) (J.24a)

I

* m-I K 2 (time hardening) (J.24b)Cp = [B(I+p)]I+P Pt I +p Oref

1 +p

C; = Ao;_ 1 K 2 (J.25)

In Equation (J.24a), %el is the total accumulated strain due to both primary and secondary creep.
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Thereferencestress,Ore/ is defined by the equation

P
-" --O

°re:" p o
o

(J.26)

and Ere! is the corresponding reference strain rate at the total accumulated strain e.ey or time t

obtained using uniaxial creep data.

Thus, all the terms appearing in Equation (J. 13) for 6", are derivable from engineering data
which should be available or calculable for the defective structure.

J.4 Considerations Related to Cyclic Loading

J.4.1 General Aspects of Creep.Fatigue

The operating histories of high temperature components cover a wide variety of

circumstances, which can span the whole creep-fatigue spectrum from creep under steady load

conditions without load cycling, to continuous cycling without a hold period. If a defective structure

is subjected to steady load conditions over its operating lifetime, then (da/dN)y is zero, and the time

integration of equation (da/dN),,. is from zero up to the design life. At very high temperatures, or

for very long hold times, crack extension by creep can still be the dominant mechanism for crack

growth. In these situations (da/dN),. >> (da/dN)/, so that the latter can be neglected in determining

crack propagation behavior. Similarly, at low temperatures, or for short hold times, where fatigue

mechanisms dominate, (da/dN)/ >> (dafdN)tim_, and creep effects may be neglected. Thus,

consideration of the operating temperatures and cyclic load histories can often lead to simplifications

in a creep-fatigue crack growth evaluation.

The crack growth law, Equation (J. 1), is integrated numerically to determine the amount of

crack extension that results from a specified cyclic load history. The evaluation of crack propagation

during a steady load period in the cycle involves integrating (da/dN),. over the hold time,

remembering that C, depends on both time and crack size [see Equation 0.4)]. If the hold time is

short, or if the temperature is relatively low, so that little crack extension is expected during the hold,

then the integration may be made over time only, keeping the crack size constant at its initial value.

J.4.2 Material Property Requirements

To evaluate crack propagation by creep-fatigue mechanisms requires knowledge of creep

deformation behavior as well as the constants which appear in the laws which relate (da/dN)yto AK,

and (dMdN),_ to the time dependent fracture mechanics parameter, Ct. Creep deformation

mechanisms are thermally activated processes which are usually very sensitive to temperature

changes, especially at very high temperatures. Hence, the material constants appearing in the creep

constitutive laws specified by Equations (J.7) through (J.9) should be obtained from data derived

from standard uniaxial tensile creep tests at the appropriate operating temperature. Similarly,
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althoughtheyareusuallylesssensitivetosmalltemperaturechanges,thecrackgrowthlawconstants
shouldalsobeobtainedat therelevantoperatingtemperatures.

In measuringthe fatigue componentof growth, considerationshould be given to the
dependenceof theParislaw constantsonhold time. Ideally, fatiguecrackgrowth datashouldbe
obtainedfrom teststhat simulatetheactualoperatingconditionsof thecomponent,whichcould
involvebothfatigueandcreepcrackextensionduringatypicalloadcycle. In thesecases,extreme
careshouldbetakenin testingandmeasurementto separatecrackextensionduring thecyclic part
of thecycle,fromtheextensionthatoccursexplicitly dueto creepduringtheholdpartof thecycle.

It is generallyacceptedthatcreepcrackgrowthdataobtainedfrom laboratorytestsunder
steadyloadconditionscanbeusedin theevaluationof Ct and (da/dN)ti,,_ under service conditions,

even when the fatigue component of the total growth rate, (da/dN)y, is also significant. An ASTM

standard procedure for creep crack growth testing is now available and provides information

regarding testing technique and data analysis (ASTM E 1457, 1998). The value of C, can be inferred

from the creep contribution to the load pin displacement rate. The ASTM test standard is designed

so that only crack growth behavior under conditions of widespread creep occurs. In other words, the

tests should be over in a time scale >> t_ or t3, so that the contribution of Ct(t-O ) to C t is negligible.

Currently, there appears to be no standard covering the testing of materials under creep-

fatigue conditions. It is not recommended that the creep growth rate be derived by subtracting the

continuous cycling fatigue rate from the total measured cyclic crack growth rate. This could lead

to erroneous and non-transferable data if the fatigue component of the growth is accelerated by the

presence of crack tip creep damage that accumulates during the hold time.

J.4.3 Cyclic Deformation and Crack Tip Recovery

Other factors, related to the cyclic history dependence of creep deformation in the region of

the crack tip, can strongly influence the computed value of C, used in the determination of

(da/dN)tim e. These factors are related to the ability of the material to recover its creep deformation

behavior as a result of cyclic changes in the crack tip stress field due to the cyclic changes in the

applied load (Chell et al., 1993).

During load cycling, which may involve creep deformation, the crack tip region will undergo

cyclic yielding. Upon reloading after the unloading and hold parts of a cycle, the crack tip stress

field may return to a state similar to that which it had prior to the start of the cycle, and before any

creep relaxation resulting from the hold period had occurred. Under these circumstances, the

deformation history related to previous cycling events is lost. In contrast, in regions removed from

the crack tip, where elastic cycling occurs, the stress field will return to a state similar to that which

pertained prior to the cycling. These effects are illustrated in Figure J.4.

Figure J.4(a) shows an idealized pressure-time history with start-ups occurring during OA

and DE, and a shut-down BC. The stress-strain history corresponding to the pressure history is

shown in Figure J.4(b) for a material point within the cyclic plastic zone at the tip of the defect, and
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FigureJ.4(c)for apoint outsideandundergoingelasticcycling. Creep relaxation for the stress fields

occurs during the steady running periods, AB and EF. The effect of the cyclic plasticity at the crack

tip after the cycle OABCDE is to return a material point in the plastic zone to a stress-strain state

similar to that which it had at time A, i.e., cyclic recovery occurs.

However, outside of the plastic zone elastic cycling occurs, and the effect of the cycle

OABCDE is to return the deformation state of a material point to what it was just prior to the shut-

down. In this case, cyclic recovery would not be expected and creep relaxation during the steady

running period EF would continue from the relaxation period AB as if no cycling had occurred.

The significance of cyclic recovery in the crack-tip plastic zone will clearly depend on the

size of the cyclic plastic zone (which is related to the cyclic stress intensity range corresponding to

the pressure change), and the length of the steady running period (which determines the size of the

creep zone relative to the cyclic plastic zone), both of which depend on material constitutive
behavior.

Cyclic effects may be included in a creep crack growth methodology based on C, by

considering the following three possibilities:

1) The length of the steady running period is so long that large-scale

creep deformation has occurred and the immediate crack-tip region

has a negligible influence on Ct and C s_ + C; > Ct(t-.0).

2) The influence of the crack-tip region is comparable to the size of the
S

creep zone so that C_" + Cp = C,(t-. 0).

3) The steady running period is short enough so that the elastic crack-tip

fields still dominate creep deformation and C_ + C;<C,(t-.O).

Possibility (1) implies that no significant cyclic recovery occurs due to start-up/shut-down

and the defective structure behaves as if it was subjected to a steady load. In this case, a static

analysis is required and the expression for C, given by Equation (J. 13) is appropriate, with time t

being set equal to the sum of the hold times to date. In this case the transient component, Ct(t-O )

becomes less important the longer the operating time.

Possibility (2) implies that cyclic recovery will occur near to the crack tip but not some

distance away from it. This situation can be called partial recovery and may be simulated by

modifying C, so that the transient component (corresponding to t-0) is calculated assuming

recovery, but the steady-state component (corresponding to t >> 0) does not. In this case,

Equation (J. 13) becomes (Chell et al., 1993)
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c, = c:(,)+ C(') + o_c('-") r' (_-:) K: (_._,
b F E

where t is the current time and t_ the time of the last cycle.

Finally, possibility (3) implies that full cyclic recovery occurs in the whole of the creep zone.

In this case, all previous loading history effects are lost after cycling and the expression for C,

becomes (Chell et al., 1993)

C, : Cf(t-ti)+ C;(t-ti)+ _ i'c(t-ti) F/ (l-v2) K 2
b F E

(J.28)

It is pessimistic to assume that full crack tip cyclic creep recovery occurs, as this maximizes

the value of 6", and hence (da/dN)ti,, _. This point is illustrated in Figure J.5 which schematically

shows how 6", varies with time during cyclic loading, based on the assumptions that full recovery

occurs (dotted line) and no recovery takes place, the latter being equivalent to steady state loading.

Full recovery is to be expected in situations where the creep zone size is small compared to

the crack tip cyclic plastic zone, and no recovery when this situation is reversed. This conclusion

has been born out by recent creep-fatigue finite element studies (Adefris, Saxena, and McDowell,

1996).

The creep zone size, rc, which increases with time, is given by Riedel (1987) for primary and

secondary creep as:

,: [ l--
r c -- 2_ [:_(1-:)J

2 2

(m-l) [(1 +m)(1 +p)Bt] (l+p)(m-l) _ (J.29)

and, for secondary creep,

r = K___:[l_EA(n+l)t 1 :

c 2n [ 2r:(1-v_ J _ (J.30)

The cyclic plastic zone size, Ary, can be estimated using the equation
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Ary- 4 p'
0.31)

where AK is the stress intensity factor range, oys the yield stress, and _" = 2 for plane stress, and 6

for plane strain deformation. Thus, if rc _ Ary during the hold period, then full recovery should be

assumed. It would be prudent to continue to assume full recovery even when rc > Arv, or at least to

assume partial recovery. Only if rc >> Ary should the assumption of no recovery be assumed in the

absence of supporting experimental evidence.

The type of differences that can occur between predicted remaining lives based on the

assumption of full, partial and no recover, are illustrated in Figure J.6, based on an example fitness-

for-service assessment of a petrochemical processing vessel obtained using the computer code

COBRA developed at Southwest Research Institute (Chell et al., 1993). These results are calculated

assuming 1- and 3-year intervals between start-up and shut-down. Note that the partial and full

recovery results are the same for the material that undergoes only secondary creep, this is because

for these materials the steady state, or long time, component of C, ( Cs ) does not depend explicitly

on time [compare Norton's Law, Equation (J.9)], and hence recovery effects only influence the

transient (Ct(t-O)) component of C,.

ff the hold periods occur at different temperatures during the life of the component, then it

is prudent to assume full recovery.

J.5 Other Aspects of Creep-Fatigue

J.5.1 Combined Mechanical and Thermal Loading

Frequently thermal stressing due to start-up and shut-down is one of the major cyclic loading

conditions that components experience. For example, components of the SSME undergo severe

temperature changes over very short time scales, and although the walls can be very thin, high

thermal stresses are still induced because of the rapid rate of change of temperature.

Since high thermal stresses will be relaxed over time by the substitution of creep strains for

thermal strains, these stresses will not influence the long term steady state creep behavior of cracks.

On the other hand, at short times into a hold period, they will load a defect and produce a

corresponding stress intensity factor which will add on to the value produced by mechanical loading.

This suggests the following procedure should be followed for incorporating thermal stresses into the

calculation of Ct : add the thermal component of K to the mechanical component and use this value

in the expression for the transient component of 6", [Equations (J.15) through (J.18)], but only
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includethe mechanicalcomponentin the value of K which determines the steady state value

[Equations (J.24) or (J.25)] J.

These aspects have been investigated by Joch and Ainsworth (1992b) using the finite element

stress analysis method. Their calculated results support the expected behavior trends, and show that

it is pessimistic (i.e., produces an over-estimate of C, ), to follow the procedure suggested in the

previous paragraph. (Figure J.7 shows their results plotted in terms of Riedel's (1987) crack tip

characterizing parameter, C(t). Very similar behavior is to be expected when C(t) is replaced by C,).

In particular, the results of Joch and Ainsworth show that although Ct(t-.O) will be increased by the

presence of thermal stresses, C* will not change, and will depend only on the primary loading.

Adding the initial value of the thermal K to the primary component will increase the calculated

transition time, t t or tj, with respect to computed finite element values, as it does not take account

of the relaxation in the nominal thermal stresses due to creep, and the corresponding reduction in the

thermal K with time.

J.5.2 Crack Tip Plasticity

The presence of widespread crack tip plasticity increases the crack driving force with respect

to a linear elastic calculation based on K, and significantly changes the crack tip stress field

compared to the linear elastic field. An initial first approximation to incorporating the effects of

plasticity suggests itself: replace Kin the appropriate creep equations by its elastic-plastic equivalent,

(E/j)t/2. However, after more detailed deliberations it is clear that this approach is not correct.

The reason is that under fully plastic conditions, where the cracked section has undergone

general yielding, the resulting stress field will be very similar to the steady state creep stress field.

(This can be seen immediately from the analogy between creep and plastic deformation.) Hence, the

transition time between the initial and steady state creep solution should reduce to zero as plasticity

spreads across the cracked section of a component. This behavior will not be reflected by

Equation (J. 15) if J, in that equation is simply replaced by Jr. Furthermore, the reference stress

solution for C*, through its dependence on the reference stress and strain rates, already incorporates

the effects of a crack tip stress field whose distribution is similar to a fully plastic field, only the

magnitude of the distribution differs from the fully plastic field. However, when the applied loads

are sufficient to result in general yielding, then the reference stress appearing in Equations (J.24) and

(J.25) will equal the general yield value, as required. Hence it is to be expected that under fully

plastic conditions, the solution for C, will reduce to the solution for C*.

This approach is remarkably simple compared with the problems faced in developing

elastic-plastic J estimation schemes for combined primary and secondary loads (see

Appendix F). One of the reasons is that secondary stresses, although reduced by the

spread of plasticity, are not totally eliminated by it. Only stresses exceeding the yield

point are relaxed, and then only to the yield point level. In contrast, there is no restriction

on the creep strains that can accumulate with time, and, under strain control, these will

continue to replace elastic strains and relax the stress as long as a self-equilibrated stress of

non-zero magnitude exists.

J.15



Theseconclusionshavebeeninvestigatedandsubstantiatedby the results of limited finite

element calculations (Joch and Ainsworth, 1992a). They have been discussed in the context of

practical applications of C* by Ainsworth (1992a). These two works suggest that crack tip plasticity

can be incorporated into 6", by modifying the equation which approximates the transition from

Ct(t-O ) to C"

At this time it is premature to recommend a general formulation for C, which includes crack

tip plasticity. Clearly, if in the fully plastic regime, C t can be replaced by C" at all times, then C, will

be overestimated under these conditions by adding Equation 0.15) to Equation (J.24) or

Equation (J.25) (see Figure J.8). Hence, in the absence of a more developed elastic-plastic procedure

for creep situations, these equations should continue to be used to assess creep crack growth for all

levels of plasticity, as they will overestimate the amount of crack extension compared to the actual

elastic-plastic results.

J.5.3 Constraint

Unlike fully plastic behavior where large strains are generated after general yielding, large

scale creep deformation can occur at reference strain levels which are moderate by comparison.

Even so, the effects on calculated creep crack growth rates of assuming either plane strain or plane

stress constraint can be dramatic. This is because the steady state component of C, depends on the

reference stress raised to the power n-1 [see Equation (J.25)], where the creep exponent n is

typically about 10. The reference stress in turn is dependent on the assumed constraint conditions

through its dependence on the general yield load, Po [see Equation (J.26)].

Different creep deformation mechanisms can be driven by different equivalent stresses, so

that their characterization by von Mises or Tresca equivalent stresses, or some other combination of

principal stresses, may be less clear cut than is the case for plasticity. If it is not clear which

constraint to assume for a particular application, it is prudent to use a plane stress reference stress

based on the Tresca yield criterion. This will generally produce a higher reference stress than von

Mises and plane strain solutions.

J.5.4 Crack Closure

Crack closure during cyclic crack growth can significantly change the cyclic crack tip driving

force, and thus influence the crack propagation rate. In the absence of creep deformation at the crack

tip, crack wake plasticity and the associated residual stress in the vicinity of the crack tip is often the

dominant contribution to closure (McClung, 199 lc). If significant creep deformation occurs in the

load cycle, then this may influence the closure behavior. However, the crack closure phenomenon

is not so well understood under creep-fatigue conditions as it is for continuous cycling.

Sehitoglu and Sun (1989) have used an elastic-plastic finite element (FE) model of a growing

fatigue crack similar to that employed in Appendix H to study the effects of creep deformation on

crack closure. The FE model employed a constitutive model with time-independent plastic
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deformation obeying a Ramberg-Osgood type of power law, and a time-dependent creep deformation
similar to Norton's law.

Sehitoglu and Sun found that creep deformation modified the crack-tip stress-strain fields

and crack tip displacements, and as a result caused crack opening stresses to be lower: creep strains

increased the effective stress range ratio, U, over which the crack was open. The effect was most

pronounced for the higher creep rates studied. A simple semi-empirical expression was developed

to predict the change in U due to creep for different applied stresses, hold times, and material

properties. However, the investigations of Sehitoglu and Sun (and their resulting semi-empirical

equation) were limited to R = 0 loading with tensile hold periods at maximum load. It is not possible

at the present time to generalize these results to a wider range of load histories.

In the absence of more comprehensive analysis or any correlating experimental measurements

of closure during creep-fatigue, it is not currently possible to recommend an engineering algorithm

to characterize closure. When creep deformation is limited, it appears reasonable to employ the

usual time-independent (plasticity-generated) estimates of crack opening stresses. When creep

deformation is significant, it may be prudent to assume that no closure occurs (U= I ), so that the full

cyclic change in the crack tip driving force is used to characterize the fatigue component of the cyclic

crack growth law.

J.5.5 Displacement Loading and Elastic Follow-up

The effects of imposed displacement loading and the resulting elastic follow-up on the

calculation of C, have been discussed by Ainsworth (1992b). He concluded that the transient

component of C r at very short times, Ct(t_O), is independent of the remote boundary conditions.

Essentially, the creep zone size is too small in this regime to significantly perturb the time

independent linear elastic solution. At later times, creep deformation results in stress relaxation

which lowers the reference stress. In this regime, Ainsworth found that it is conservative to estimate

6", from the steady state component of C,, C', provided

Z i
0 ef < -Z (l+n)

o [z-l]
O ref

(J.32)

0

where Oref is the initial value of the reference stress, and Ores its instantaneous relaxed value. The

parameter Z characterizes the amount of elastic follow-up in the structure: Z = 1 corresponds to

creep deformation under constant strain conditions (such as may result from thermal loading), and

Z = co to constant load conditions. (In fact, Z = ec/Ae, where Ae is the elastic strain corresponding

to the incremental reduction in the initial stress after time t, and c c is the accumulated creep strain

after time t.) In many service situations it may be difficult to characterize the elastic follow-up in
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the structure (i.e., define a value for Z) without performing a detailed and expensive time dependent

stress analysis. In these cases, it is prudent to assume that no stress relaxation occurs (Z = co).

J.5.6 Crack Growth Initiation

Cracks undergo an incubation period during which creep damage accumulates at the crack

tip until a critical value required for propagation is attained. Ainsworth and coworkers describe a

methodology for estimating the incubation time (Chell et al., 1993; Ainsworth, 1982). An

overestimate of the amount of creep crack extension will be obtained if the incubation time is

assumed to be zero.

J.5.7 Effects of Loading Ramp Rate

Significant creep deformation can occur during slow loading ramps at elevated temperatures.

In these cases, it is prudent to add the time of the ramping to the hold time at constant load for the

purposes of calculating (da/dN)a_.

J.5.8 Effects of Temperature Changes During a Load Cycle

The effects of changes in temperature during load cycling on creep-fatigue behavior are very

complex. Although synergistic effects can occur between fatigue and creep mechanisms under these

conditions, it is usually considered safe, for assessment purposes, to use material property values

derived for the maximum temperature experienced during the cycle.

J.6 Remaining Life Estimation under Creep-Fatigue Conditions

The remaining life is obtained by integrating the crack growth rate, da/dN, per cycle between

an initial defect size, a o, and a final size, at. The latter can be estimated by applying fracture

mechanics, and is usually equated to the value of the maximum tolerable defect size that can just

survive the worst case loading scenario to which the structure will be subjected during its design life.

The number of allowable service cycles, N, is obtained from the equation:

aI

f 1 da (J.33)

where, in Equation (J.2) for da/dN,

da ) : A(th)(AK)m(th) (J.34)
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and

da •

= Ct(a,t +t qdt
t 0

(J.35)

In Equation (J.35), the value of t* depends on whether cyclic recovery occurs in the crack tip

region. If it does, then t" = 0. If no recovery takes place then t' should be set equal to the operating

time up to the start of the current load cycle.

Equations (J.33) through (J.35) can be readily generalized to the case where the cyclic

loading conditions vary during the operating history.

J.7 Conclusions

Cyclic crack extension under creep-fatigue conditions can be determined by linearly adding

the growth rates per cycle due to fatigue and creep. The fatigue growth rate can be estimated using

the Paris equation, but the constants appearing in that law will, in general, depend on the hold time

in the cycle. The effects of cyclic plasticity can be accounted for by replacing AK in the Paris

equation by (E/A J) 1/2 .

The creep crack growth rate per cycle is calculated by integrating a creep crack growth law,

characterized by the time dependent fracture mechanics parameter, Ct, over the hold time. It has

been shown that laboratory measured C, values correlate creep crack growth rates from different test

specimens, and hence, this parameter facilitates the transfer of these data to structural components.

The parameter, C,, consists of transient and steady state components, both of which depend

on the constitutive law which relates creep strain rate to stress. The value of C, is also dependent on

whether creep deformation recovery due to cycling can occur at the crack tip. If the zone of creep

deformation which spreads out from the tip is smaller than the cyclic crack tip plastic zone, then

creep recovery will occur and all history effects from previous cyclic load changes are lost. If the

creep zone is much larger than the cyclic plastic zone, then recovery is unlikely, and information

regarding the previous load history is retained with creep deformation evolving with time as if no

cyclic loading had occurred.

The transient component of Ct is characterized by the applied stress intensity factor, and

derivatives of it. Expressions for the steady state component can be readily derived from available

fully plastic J solutions, or a reference stress approach, by employing the analogy between plastic

and creep deformation. Hence, 6', can be calculated from material property data and fracture

mechanics parameters. The effects of thermal loading can be incorporated into C, by adding the

thermal stress intensity factor to the stress intensity factor arising from primary loading, and

evaluating Ct(l_O ) using the total value. The steady state component, C °, is unaffected by thermal
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loadinganddependsonly on the appliedprimaryload. The foregoingareapplicableevenwhen
widespreadcracktip plasticityis present.
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1.0 Introduction to the Elastic-Plastic Fracture Mechanics Module in NASGRO

The application of linear elastic fracture mechanics (LEFM) to assessing critical

crack sizes and critical applied loads is non-conservative in situations where significant

crack tip plasticity develops at fracture. This situation is frequently encountered in

hardware manufactured from ductile materials that are tough (display a high resistance to

crack extension under monotonically increasing loads). Elastic-plastic fracture mechanics

(EPFM) was developed in order to extend the concepts of fracture mechanics to defective

structures where the influence of plasticity on the crack tip driving force could not be

ignored in a safety evaluation without incurring an unacceptable risk of fracture during
service.

The J-Integral is the most widely employed of the available EPFM parameters. As

a result, several successful methods have been developed for evaluating this parameter.

For example, the Electric Power Research Institute (EPRI) has sponsored the generation

of J solutions using the finite element method and their inclusion in a series of elastic-

plastic handbooks (Kumar et al., 1981, 1982, 1984a). Relatively simple analytical

expressions for J have also been derived using so-called reference stress methods

(RSM's) (Ainsworth, 1984). The form of these solutions is closely related to the J

estimation scheme developed by EPRI.

The EPRI and RSM J estimation schemes were incorporated into NASGRO in a

previous release of this module. These J solutions include through central (NASGRO

model type TC01) and through edge (TC02) cracks, as well as surface (SC01), corner

(CC01) and embedded (EC01) flaws. These J solutions utilize the results of elastic-

plastic J computations obtained from several sources. The EPRI handbook solutions

(Kumar et al., 1981) were used for plane strain and plane stress J solutions for the TC01

geometry subjected to uniform stressing, and the TC02 geometry subjected to uniform

stressing and bending. New J solutions derived under the current contract were used to

develop the EPFM module solutions for surface (SC01) and comer (CC01) cracks

subjected to uniform stressing. The RSM was used to generalize these limited three-

dimensional solutions to geometries of arbitrary size, and to provide new J solutions for

an embedded flaw subjected to uniform stressing (EC01), and surface (SC01) and comer

(CC01) cracks subjected to through-wall bending. In addition, guidance on the

development of the RSM solutions for the SCO1 geometry subjected to bending was

provided by the limited J solutions reported by Yagawa et al. (1993).

The new, enhanced EPFM module consists of three major routines which perform

J calculations (JMODULE), failure assessments (FAILALGO) and elastic-plastic fatigue

crack growth life predictions (EP_LIFE), respectively. Elastic-plastic J solutions to

account for the effect of combined (primary and secondary) loading have also been

implemented. The position of the three major modules in the NASGRO EPFM program

structure is shown in Figure 2 where they are indicated by text boxes highlighted by

dashed lines.
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The structure for the elastic-plasticJ module remains similar to that in the

previous release. However, the J estimation routines for various model types have been

modified to account for cyclic loading and the effects of secondary loads. The failure

algorithm gives users the option to estimate crack lengths and loads at crack initiation and

instability. These critical crack and critical load calculations can be performed for brittle

and ductile fracture under combined primary and secondary loads. The effect of blunting

and tearing is taken into account in the analysis. The elastic-plastic fatigue crack growth

(EPFCG) and life prediction module estimates numbers of fatigue cycles and crack

growth rates based on user-defined load spectra or schedules. The definition of load

spectrum, or load schedule, is consistent with that of the NASGRO LEFM module. The

elastic-plastic fatigue crack growth rate is governed by a modified Paris type of fatigue

crack growth equation based on AJe0'. The EPFCG computations are terminated when one

of the following criteria is satisfied: (1) crack initiation leading to failure or ductile

tearing is predicted at the maximum load in a cycle; (2) the load spectrum has been

applied for a maximum number of times specified by the user; or (3) LEFM or EPFM

geometrical validity limits are violated.
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2.0 Theoretical Background

2.1 J and AI Integral

The EPFM parameter, J, provides a natural extension of the concepts

underpinning LEFM to situations where crack tip plasticity is important. Under

conditions of plane strain and plane stress J characterizes the stress and strain fields at a

yielded crack tip, and the potential energy release rate due to crack extension. Its value

reduces to the value of the elastic strain energy release rate, G, under small scale yielding

conditions, and LEFM is recovered in this fracture regime. The relationship between the

stress intensity factor, K, and the solution for J in a linear elastic material, Je, is

g 2

Je = G = E' (1)

In this equation, E' = E/(1 -v 2) for plane strain and E' = E for plane stress, where E is

Young's modulus and v is Poisson's ratio.

Under cyclic loading conditions, the range of J, AJ, is the correlating parameter

used in the elastic-plastic fatigue crack growth (EPFCG) analysis. By the same token,

under small scale yielding conditions, LEFM is recovered in this fracture regime, and the

solution for AJe is related to the range of stress intensity factor AK. The relation is given

by

_kg 2
---m

AJ, E' (2)

2.2 EPRI J and AJ Estimation Scheme for Combined Primary and Secondary Loads

The EPRI-based J and AJ estimation schemes described here are developed for

materials whose stress-strain behavior can be described by a Ramberg-Osgood equation.

For monotonic loading, the equation is

(3)

where _ is the total strain (elastic plus plastic) due to the stress, f, o_ and n are material

constants, and _o is a "yield" strain corresponding to the "yield" stress fro, where _=fc/E.

The first term on the right hand side of this equation represents the component of elastic

strain, Ee, and the second term represents the plastic strain, ev.

Equation (3) also represents the general form of the cyclic stress-strain curve.

This curve is derived from the hysteresis stress-strain curve, by replacing E and f with AE

and Aft, respectively, and Eo and fro, with 2Eo and 2fo, respectively.
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The Ramberg-Osgood parameters a, n, co, and _ in Eqn (4) will be different if the

material cyclically hardens or softens.

The Ramberg-Osgood equation can be written in terms of engineering stress and

strain or true stress and strain as derived from tensile test data. True stresses and strains

are corrected for changes in the instantaneous cross-sectional area and length of the

tensile specimen due to deformation during the test, whereas engineering quantities are

based on the original nominal dimensions of the tensile specimen at the beginning of the

test (Bannantine et al., 1990). The engineering and true stress-strain curves are very

similar except at large values of strain approaching necking, and so values of the

Ramberg-Osgood constants will generally be similar for engineering and true quantities

unless the data from which they were derived include very large strains. Current usage of

the Ramberg-Osgood equation in EPFM applications by various practitioners is mixed

between engineering and true quantities. Pragmatically, the engineering stress and strain

values will be more commonly available, and their use in this context appears acceptable.

Engineering quantities were recommended in the recently completed proof testing

handbook (Chell et al., 1997a). However, true values are also acceptable in the current

context, and are preferred by some users of J-integral methods.

J Estimation Scheme for Monotonic Loading

In the EPRI elastic-plastic J estimation scheme, J is resolved into elastic and

plastic components, Je and Jp, where

J(c,P):Je(ce,P)+J,(c,P) (5)

/3 is used to denote a combined primary (P) and secondary (S) load. Je is a first order

plastic corrected value of the linear elastic solution and is used to interpolate between

linear elastic and fully plastic behavior. It is a function of primary and secondary loads

resulting from thermal, residual, and other self-equilibrated stress fields. In contrast, Jp is

a function only of primary loads, since, by definition, secondary loads cannot influence

the plastic collapse load of a cracked structure and hence cannot contribute to fully plastic

deformation. Je is related to the stress intensity factor K evaluated at an effective crack

length, ce, by the equation

)
E'

(6)

The effective crack length c_ is given by

Ce =c+Ory (7)
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and includesa plastic zonesize correctiondeterminedby the terms_ and ry that are

defined respectively as

1

fin" n+l tro J

(8)

where cro and n are Ramberg-Osgood parameters. The non-dimensional parameter, 13,

equals 2 for plane stress, and 6 for plane strain. Po(c) is a characteristic normalizing net

section yield load corresponding to a crack length c.

Although the analytical forms of the plastic component, Jp, used in the EPRI

scheme differ slightly depending on the cracked structure, for illustrative purposes the

following expression is used here

c ¥ p )""
(9)

where W is the section width. The values of the function hi are tabulated in the EPRI

handbooks for various cracked geometries and values of c/W and n. The handbooks also

give equations for evaluating the yield load Po. This parameter depends on the Ramberg-

Osgood yield stress, _o, and structural dimensions (for example, wall thickness and

radius in the case of cylindrical pressure vessels).

The elastic component, J, (c,,_fi)can be evaluated from the K solutions already

available in NASGRO. Hence, the major part of the J modules which have been added to

NASGRO address the evaluation of Jp.

__.___yEstimation Scheme for Cyclic Loading

The cyclic change in J due to the cyclic load range, A/3 =/3 _ p,_., comprises

elastic and plastic components where

M._ (c,A/5) = z.v. _c., (10)

and /3 and /3 are the combined primary and secondary loads at the maximum and

minimum loads in a cycle, respectively. The elastic component, AJ, "g , includes a plastic

correction and a crack closure correction, U, and is related to the cyclic range of the stress

intensity factor, AK, by the equation
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E'
(11)

where the effective crack length for cyclic loading c_ is

c,a = c +¢aAry (12)

The effective stress intensity factor range ratio, U, which characterizes crack closure, is

defined in Section 2.6. The terms ¢¢aand Ary, respectively, are evaluated as

_ = 1

1+
2_ (-c)

_,
Ary _/17 .'_I L 20" 0 J

(13)

where AP=Pmo_,'P,,,s,, stands for the primary load range, Po(c) is the normalizing net

section yield load corresponding to a crack length c, and O'o and n are the Ramberg-

Osgood parameters defining the cyclic stress-strain curve.

For illustrative purposes, the following expression is used to show one of the

analytical forms of the plastic component AJp used in the EPRI-based scheme in

accordance with the definition used in equation (9).

c (c y y"AJ _M(c'AP)= 4UcXg'oao -_( W -c)h, -_'n )k 2Po (C) )
(14)

The multiplier 4 and the factor 2 multiplying Po(c) come from the conversion of cyclic

stress-strain data into cyclic hysteresis data. Note that the plastic Ajar term includes the

factor U, while the elastic Ajar term includes the factor U2. The energy considerations

motivating this formulation are outlined in Section 3.2 of the main body of the final

report.

2.3 Jp and AJ _II Estimation Scheme for Combined Loads using Reference Stress

Method (RSM)

The RSM-based J estimation scheme provides an alternative way of estimating Jp

and AJ; lr in equations (9) and (14). The details of the method are described in reference

[6]. The elastic components, J, and AJT, are given by equations (6)-(8) and (11)-(13)

but with Po(c) replaced by Po*(C), the load at net section yield evaluated using the
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Ramberg-Osgoodyield stress,_o. In general,Po* will not equal the EPRI normalizing

yield load, Po, although it may have a form very similar to it.

J--aEstimation Scheme for Monotonic Loading

The RSM approximation to Jp for a Ramberg-Osgood material is

(15)

where V is a dimensionless "structural" parameter that, in general, has a value of around

1, and

1-v_ (plane strain), ,tt l (plane stress)
/2 1 -v_

(16)

where ve is the elastic value of Poisson's ratio, and vp is the plastic value.

The advantages of including the RSM solution in NASGRO are clearly apparent

from equation (15). Making the assumption that V=I, then equation (15) provides a

relatively simple expression for Jp that can be used for defective hardware for which
EPRI handbook solutions are not available. This is possible because Je can be readily

evaluated for a wide rang, e of geometries using existing NASGRO K solutions, and the
net section yield load, Po, can be estimated from an available compendium of solutions

(Miller, 1988), or estimated using plastic limit analysis. In addition, if the material stress-
RSM

strain curve cannot be adequately represented by a Ramberg-Osgood equation, then Jp

can still be evaluated using a generalized version of equation (15),

p w,P) = uW,(c,P)t, )
(17)

where the reference stress, t_rey, is defined as

(18)

v is the uniaxial plastic strain corresponding to t_ref.and the reference plastic strain, ereI ,

For a Ramberg-Osgood material,
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a_e_o(crr_ ]"
ere;=a E _ o"o ) (19)

Equation (17) can be implemented in a future version of the NASGRO EPFM

module to extend the J solutions in the module to materials that display arbitrary stress-
strain behavior.

AJ_ _" Estimation Scheme for Cyclic Loading

For cyclic loading, the following expression is used to show one of the analytical

forms of the plastic component, zk/_ H using the RSM in accordance with the definition

used in equation (15).

¢ zSd_ _-t., J
2.4 Brittle and Ductile Fracture Criteria

In the NASGRO EPFM failure algorithm, the J solutions incorporated into

NASGRO are used to determine the structural integrity of defective hardware that

fractures by brittle or ductile mechanisms. This will enable the user to calculate critical

crack sizes and loads based on the following failure criteria.

Brittle

The onset of fracture in brittle materials occurs when the applied crack tip driving
force equals or exceeds the fracture toughness of the material. This failure criterion is

mathematically expressed as

+ ac ,p)> (21)

where the fracture toughness, signified as Jmat, is expressed in the same units as the

driving force, J. In this equation, ci is the initial crack length, and Act, is the amount of

crack tip blunting up to the point of fracture. Act, is approximately given by

Acb = J _ l(2_rys ) (22)

where try, is the yield stress. Normally Ac b /c i << 1, and Act, can be ignored, but this

may not be the case for surface flaws in very thin walled structures, which, for example,
are sometimes encountered in the aerospace industry.

Jm,,t Can be derived from toughness values expressed in terms of critical stress

intensity factors using the expression
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KL
(23)

J,_a, E'

Here Kmat can be equated to the appropriate toughness, such as the plane strain toughness,

Klc; the thickness dependent toughness, Kc; or the surface flaw toughness, Kt,.

Alternatively, J,,,at could be equated directly to Jtc, a measure of fracture toughness as
defined in ASTM Standard E813.

Ductile

The ductile fracture toughness does not have a unique value but is dependent on

the amount of ductile tearing that has occurred. Hence, as the crack tip driving force (J)

increases, the crack will extend and the ductile toughness will increase to balance the

increase in the driving force. This situation will not, however, continue indefinitely, and

eventually the increase in J with crack extension will exceed the corresponding increase

in the toughness. This defines the ductile failure criterion and is expressed mathe-

matically as

J(c,P) = J.(Ac, ) (24)

while, simultaneously, satisfying the equation

dc d(Ac,)
(25)

where c = c,,_t is the instantaneous crack length corresponding to the load, P, and is given

by Co.,+Ac. where c_,_t is the critical crack length and JR is the toughness corresponding to

an amount of tearing, Act which includes crack tip blunting and ductile crack extension.

A schematic representation of the failure criterion defined by equations (24) and (25) is

shown in Figure 3. The criterion corresponds to the conditions where the applied J curve

as a function of crack length forms a tangent to the JR-curve.

The crack growth resistance curve or JR-curve is needed for ductile analysis. This

can be specified in quadratic form or as a power law. Respectively, they are

( 1) Quadratic form:

=lJ0 +j, (Ac)+J2(Ac)2,
JR 1/0 + J2(Ac )2,

Ac < AC,_x (26)

Ac > Ac_

(2) Power law:
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= ,_J, (acy 2, Ac _<Ac_
J_ tJ I (Ac_,)h, ac > ACm_

(27)

where Jo, ./1 and ./2 are material constants, dc is the blunting and tear length, and (Ac),_x

is the tear length at which the JR-curve saturates (i.e., at which JR attains its maximum

value).

2.5 Elastic-Plastic Fatigue Crack Growth

Existing fatigue crack growth (FCG) data bases are nearly all for small scale

yielding (SSY) conditions in which AK has been used as the parameter characterizing the

growth rate per cycle, dc/dN. Fatigue crack growth data correlated with AK can be readily

converted to a correlation in AJ. Typically, the Paris equation is given as

d-L = Co(AK)'o (28)
dN

where Co and mo are material constants. Equation (28) does not address any crack closure

that may occur during the FCG testing. A similar Paris type of elastic plastic fatigue

crack growth equation based on A/eft, which does address crack closure, is

dc

-_-_- = C(A/¢ )" (29)

Here the constants C and m can be estimated from Co and mo according to m=mo/2 and

(30)

Uo is an estimate of the crack closure in the original FCG tests used to generate the SSY

data base from which Co and mo were determined. It is a measure of the cyclic driving

force determined by the part of the primary load cycle where the crack is open. For

typical SSY FCG baseline testing (relatively low stresses and small plastic zone sizes

relative to specimen thickness), plane strain conditions are satisfied and Uo is about 0.75.

2.6 Corrections for Plasticity-Induced Crack Closure

The proper form of AJ for correlation of EPFCG data must include corrections for

plasticity-included crack closure. This correction is particularly important because the

crack opening stress aot,e,, under EPFCG conditions can be significantly different from

that under typical SSY conditions. The effective stress intensity factor range ratio U is

applied to AJe and AJp as shown in equations (11), (14) and (20), respectively. The form

of U is defined by the following equation.
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u x..-Xo.. 1-Ko.e./x = - (31)
K,_,x - K,u, 1- R

whre R is the stress ratio due to the combined primary and secondary cyclic loads with no

plastic zone correction,

R = K._. (32)
K._,

and Kope, is the value of the stress intensity factor at which the crack opens. Kope, is

evaluated using Newman's modified Dugdale crack closure model. This model is used in

NASGRO and leads to the following equation for Kope,, as

Kop_,, _ :Ao + AIR + A2 R2 + A3R3

K,_ [A o + A t R

R>0
(33)

-2<R<O

and the coefficients are given by

Ao- (0.825-0.34  +0.0 : co

At = (0.415- 0.0710_c )K_ _

A 2 = I - A o - A I - A 3

A 3 = 2,40 + A l - 1

(34)

K.aow is a normalizing parameter given by er:,,,,,.f-_ where the flow stress cr,aow is the

average of the yield stress and the ultimate stress, and a is the crack length at the crack

tip location a. For the crack tip location c, K:o _ = era,,, 4_. The value of the constraint

factor _ is set as an option for the user to feed into the program. Typically it varies from

1 to 3, where o_= 1 corresponds to plane stress and o_=3 corresponds to plane strain.

No rigorous algorithm is available at the present time to select the optimum value

of _ in a given situation. For elliptical embedded cracks, semi-elliptical surface cracks,

quarter-elliptical comer cracks, _ = 3 (full plane strain) is generally a conservative
selection, and this choice is recommended if additional information is not available.

Further discussion of stress state effects on the selection of the optimum o_, including

general guidelines for two-dimensional cracks, is provided in Section 3.3.1 in the main

body of the final report.
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2.7 Surface Correction Factor due to Crack Closure

The evolving shape of cracks with multiple degrees of freedom (e.g., the depth

and surface length of a semi-elliptical surface crack) is captured in NASGRO by

performing crack growth calculations at two different points around the perimeter of the
crack. In current versions of NASGRO, this is done in LEFM with K solutions at the

• ---0° and @--90 ° positions. The new EPFCG module follows a similar approach, but

employs J solutions at the • = 9 ° and • = 90 ° locations due to numerical difficulties

associated with determining J at the q_ = 0* location. However, since the EPFCG module

depends on the current NASGRO capabilities for LEFM calculations, the K solutions

employed in the J RSM estimation schemes correspond to the • = 0 ° and <b=90 °

positions. Validation exercises have shown that this is an acceptable approach.

An additional surface correction factor 13Ris used in the current NASGRO code to

multiply AK for crack locations where the front intersects a free surface (c-tip for SC01

or a- and c-tips for CC01). It is given by

= I0.9+0.2R2 - 0.1R4, R>0
fir [0.9, g < 0

(35)

This factor compensates for surface constraint effects that are not predicted by LEFM,

since the AK solutions alone do not predict the correct shape of semi-elliptical surface
cracks.

The surface constraint effects characterized by the I_R factor are thought to be

primarily caused by changes in crack closure at the near-surface crack tip positions.

Therefore, it should be possible to account for these effects by choosing different values

of the Newman constraint factor ff_:at the near-surface positions. However, at the present

time, it is not clear how to choose appropriate values of o_ at different positions around

the perimeter of a semi-elliptical or quarter-elliptical crack so that the correct crack shape

is predicted. It also may be possible that 13R should exhibit some dependency on

Km_xlKnow if crack closure is a key issue in surface constraint. Again, however,

insufficient information is available at the present time to formulate a more complex ISR

factor for EPFCG conditions. Therefore, until further information is available, it is

recommended to choose a common value of _ at both locations for a two-degree-of-

freedom crack, and to use the current NASGRO I$a factor to accommodate near-surface

changes in constraint. Although the applicability of the I_R factor to elastic-plastic

conditions has not been widely demonstrated, the experimental verification exercises

conducted under the current contract (Appendix L) indicate that this approach (near

surface 13Rfactor and a position-independent 0¢) gives the correct crack shape for semi-

elliptical surface cracks under uniform tension in the SSY, ISY, and LSY regimes.
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J, Constant load

/
/

/// JR, resistance curve

._ _ / Instability occurs when

-"" ._f" j(_)_-j_(Ac,)
........................._ dJ _ dJ R _

dc d(^c,)

Act

Ccrit

I I

C inst

v

c, crack length

Figure 3. The toughness of ductile materials has no unique value but depends on the tear

length. Instability is defined when the applied J curve as a function of crack

length, c, becomes tangential to the JR-curve.
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3.0 Jp and A/p Solutions in the EPFM Module

3.1 EPRI Solutions

Solutions

The EPRI solution scheme defined here is based on equations of the form:

ooo oc(  c= (_-,n_-o / , for TC01 and TC02 under tension

¢_oeo(b-c_ C,n _( M-_)"+I, for TC02JP = (o _tvt o under bending

(36)

where b=W/2 for geometry TC01 and b=-W for TC02. 2c and c are the through crack

lengths for TC01 and TC02 respectively, hi is a bivariant function of c/b and n. Values of

ht are available in the EPRI elastic-plastic handbooks for discrete values of c/b and n.

These values are shown Tables 1-6 for plane strain and plane stress deformation. The

NASGRO Hermite curve fitting routine is used to interpolate hi values for values of c/b

and n not given in the tables. The characteristic yield load Po is a function of defect size

and ty 0 •

TC01"

= I4(b-c)tCro/_f3 , for plane strain
Po L 2(b- c)ta o , for plane stress

(37)

TC02 under tension:

_l.455r/(b - c)ta o

Po = [1.072r/(b c)tcy o

, for plane strain
(38)

, for plane stress

where 77= 41 +[c/(b-c)] 2 -c/(b-c).

TC02 under bending:

_0.364O'ot(b - c) 2

M° = [ 0.2680"ot (b - c)2
, for plane strain (39)

, for plane stress
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Table 1.hl(2c/W,n) values for TC01, plane strain.

n

2c/W I 2 3 5 7 10 13 16 20

0.125 2.80 3.61 4.06 4.35 4.33 4.02 3.56 3.06 2.46

0.250 2.54 3.01 3.21 3.29 3.18 2.92 2.63 2.34 2.03

0.375 2.34 2.62 2.65 2.51 2.28 1.97 1.71 1.46 1.19

0.500 2.21 2.29 2.20 1.97 1.76 1.52 1.32 1.16 0.978

0.625 2.12 1.96 1.76 1.43 1.17 0.863 0.628 0.458 0.300

0.750 2.07 1.73 1.47 1.11 0.895 0.642 0.461 0.337 0.216

0.875 2.08 1.64 1.40 1.14 0.987 0.814 0.688 0.573 0.461

Table 2. hl(2c/W,n) values for TC01, plane stress.

n

2c/W 1 2 3 5 7 10 13 16 20

0.125 2.80 3.57 4.01 4.47 4.65 4.62 4.41 4.13 3.72

0.250 2.54 2.97 3.14 3.20 3.11 2.86 2.65 2.47 2.20

0.375 2.34 2.53 2.52 2.35 2.17 1.95 1.77 1.61 1.43

0.500 2.21 2.20 2.06 1.81 1.63 1.43 1.30 1.17 1.00

0.625 2.12 1.91 1.69 1.41 1.22 1.01 0.853 0.712 0.573

0.750 2.07 1.71 1.46 1.21 1.08 0.867 0.745 0.646 0.532

0.875 2.08 1.57 1.31 1.08 0.972 0.862 0.778 0.715 0.630

Table 3. hl(c/W,n) values for TC02; plane strain under tension.

n

c/W 1 2 3 5 7 10 13 16 20

0.125 4.95 6.93 8.57 11.50 13.50 16.10 18.10 19.90 21.20

0.250 4.34 4.77 4.64 3.82 3.06 2.17 1.55 1.11 0.712

0.375 3.88 3.25 2.63 1.68 1.06 0.539 0.276 0.142 0.0595

0.500 3.40 2.30 1.69 0.928 0.514 0.213 0.0902 0.0385 0.0119

0.625 2.86 1.80 1.30 0.697 0.378 0.153 0.0625 0.0256 0.0078

0.750 2.34 1.61 1.25 0.769 0.477 0.233 0.116 0.0590 0.0215

0.875 1.91 1.57 1.37 1.10 0.925 0.702
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Table4. hl(c/W,n) values for TC02; plane stress under tension.

n

c/W 1 2 3 5 7 10 13 16 20

0.125 3.58 4.55 5.06 5.30 4.96 4.14 3.29 2.60 1.92

0.250 3.14 3.26 2.92 2.12 1.53 0.960 0.615 0.400 0.230

0.375 2.81 2.37 1.94 1.37 1.01 0.677 0.474 0.342 0.226

0.500 2.46 1.67 1.25 0.776 0.510 0.286 0.164 0.0956 0.0469

0.625 2.07 1.41 1.105 0.755 0.551 0.363 0.248 0.172 0.107

0.750 1.70 1.14 0.910 0.624 0.447 0.280 0.181 0.118 0.067

0.875 1.38 1.11 0.962 0.792 0.677 0.574

Table 5. hl(c/W,n) values for TC02; plane strain under bending.

/I

c/W 1 2 3 5 7 10 13 16 20

0.125 0.936 0.869 0.805 0.687 0.580 0.437 0.329 0.245 0.165

0.250 1.20 1.034 0.930 0.762 0.633 0.523 0.396 0.303 0.215

0.375 1.33 1.15 1.02 0.840 0.695 0.556 0.442 0.360 0.265

0.500 1.41 1.09 0.922 0.675 0.495 0.331 0.211 0.135 0.0741

0.625 1.46 1.07 0.896 0.631 0.436 0.255 0.142 0.0840 0.0411

0.750 1.48 1.15 0.974 0.693 0.500 0.348 0.223 0.140 0.0745

0.875 1.50 1.35 1.20 1.02 0.855 0.690 0.551 0.440 0.321

Table 6. hl(c/W,n) values for TC02; plane stress under bending.

n

c/W I 2 3 5 7 10 13 16 20

0.125 0.676 0.600 0.548 0.459 0.383 0.297 0.238 0.192 0.148

0.250 0.869 0.731 0.629 0.479 0.370 0.246 0.174 0.117 0.0593

0.375 0.963 0.797 0.680 0.527 0.418 0.307 0.232 0.174 0.105

0.500 1.02 0.767 0.621 0.453 0.324 0.202 0.128 0.0813 0.0298

0.625 1.05 0.786 0.649 0.494 0.357 0.235 0.173 0.105 0.0471

0.750 1.07 0.786 0.643 0.474 0.343 0.230 0.167 0.110 0.0442

0.875 1.086 0.928 0.810 0.646 0.538 0.423 0.332 0.242 0.205
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Solutions

The analytical forms of the plastic component used in the EPRI-based AJ

estimation scheme are listed below for model types TC01 under tension and TC02 under

tension and bending.

TC01 with b=W/2 and TC02 with b=W under tension:

(40)

TC02 under bending:

ZkI_"_(c,AP;b)= 4UOt_oeo(b-c)h,_ b, )k 2M ° (41)

AM is the range of bending moment corresponding to the range of the NASGRO primary

bending stress. U is a correction factor related to crack closure and is defined in
Section 2.6.

3.2 Optimized Reference Stress Solutions

J--eSolutions

In this approach, the Jp estimate is based on the reference stress method (RSM)

which is optimized to reproduce as accurately as possible existing finite element Jp
solutions. For the cracked geometries considered here:

TC01 with b=W/2 and TC02 under tension with b=W:

n-1

Rsu c V cot P

TC02 under bending with b-W:

n-|

c vCa M
j_SU(b)=J.(-_) # (-_-)(-_-_) (43)

SC01 (a surface crack) and CC01 (a comer crack) under tension:
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jr(t a'<' tT'cJ (44)

The optimized yield loads, Po or M 2 , and the structural parameter, V, are dependent on

geometrical parameters only and are independent of the strain hardening exponent, n.

Discrete values of the optimized yield loads and V's are given in Tables 7-10. Values of

Po" and V that are not shown in the tables are calculated in the program using

interpolation procedures based on Hermite or cubic spline curve fitting. Note that the

values of Po* and V in Tables 9 and 10 are only valid for c/b---0.25. To facilitate

generalizing of the RSM solutions to arbitrary c/b values, a hybrid approach is

implemented in NASGRO for SC01 and CC01 under tension. The hybrid solution is
written as

¢1'"Rsu(t a bl (t a c_u _'f•"e , c' = Jr , c"bjV°_ , for CC01 or SC01 under tension

ac)._,(,oa=" _'b " 'c'b7 CMo)

(45)

where V is a constant associated with each specific model type and the crack front

location. It is independent of a/t and a/c ratios. For model type SC01 under tension or

bending, two values of V for the deepest crack tip and the near surface crack tip, (Va)avs

and (Vc)a_s, are evaluated as the arithmetic mean of optimized V values for all a/t and a/c

ratios. Respectively, (V,,),,, s and (Vc)a_s are equal to 1.8164 and 1.2561 for SC01 under

tension and 1.0412 and 0.9730 for SC01 under bending (see Table 9). For model type

CC01 under tension, V is taken as the maximum of the two arithmetic means at the q)=9 °

and q_=81 ° near surface crack tip locations. In this case, V=V,,_= max((Va)avg,(Vc)avg)=

1.4329 (see Table 10). Po" and M_ are approximated using plastic limit analysis. For

CC01 or SC01 under tension, Po" is used, based on load redistribution due to area

reduction as described in Section 4.1. These derived values are included in Tables 9 and

10 where they can be compared with the optimized results for Po'- For SC01 under

bending, M_ is used, as described in Section 4.2.

Solutions

The expressions for AJ_ derived from the optimized RSM solutions for Jr, are

given below. Values for the structural parameter V in the AJ t, solutions are the same as in

the corresponding Jr, solutions.

TC01 with b=WI2 and TC02 with b=W under tension:
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b" av(c¥ ae Y-'

TC02 under bending with b=W:

AJ __ (c, AP; b ) = Uzkl, (c, AP; b )uotV (47)

SC01 and CC01 under tension:

AJ;" (a'c'AP;b't)=UAJ'(a'c'AP;b't)_t_v(a'a T_ f -'_t c ,zt" o (48)

CCO1 or SCOI under tension:

AJ_ (a,c,AP;b,t)=UAJ,(a,c, AP;b,t)gaV( __, ]"-' (49)

_,2Po )

SC01 under bending:

A];" (a,c,AP;b,t)=UAJ,(a,c, AP;b,t)l_aV( _-__,]"-' (50)

 2Mo)

Note that the EPFM module includes both EPRI and RSM solutions for TC01 and

TC02. Since the RSM solutions were derived from the EPRI solutions, the two solutions

should give nearly identical results, and the EPRI solution may be preferred within its

regime of applicability. The advantage of the RSM formulation is (unlike the EPRI

solution) that it permits n > 20 and that it will facilitate future extension to materials that

do not follow a Ramberg-Osgood stress strain equation.

Table 7. Optimized yield loads and V's for TC01 under tension.

Plane Strain Plane Stress

2c/W Po /(2bttro ) V P;/(2bttro ) V

0.125 1.0055 1.360 0.8537 1.307

0.250 0.8730 1.239 0.7553 1.216

0.375 0.7490 1.189 0.6456 1.129

0.500 0.6074 1.094 0.5260 1.036

0.625 0.4802 1.0248 0.4048 0.9489

0.750 0.3262 0.9233 0.2703 0.8588

0.875 0.1569 0.8241 0.1339 0.7628
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Table8. Optimizedyield loadsandV's for TC02.

Tension Bending
Plane Strain Plane Stress Plane Strain Plane Stress

* * * 2 * 2
c/W Po /(aobt) V PoI(aobt) V Mo/(aob t) V Mol(crob t) V

0.125 1.0025 1.353 0.8301 1.385 0.3040 1.020 0.2236 0.9654

0.250 0.8693 1.253 0.6748 1.228 0.2238 0.9325 0.1722 0.9536

0.375 0.6445 1.055 0.4411 0.9535 0.1555 0.9317 0.1175 0.9091

0.500 0.4048 0.902 0.2754 0.8090 0.1058 0.8905 0.0790 0.8715

0.625 0.2054 0.847 0.1311 0.7670 0.0614 0.8816 0.0436 0.8491

0.750 0.0750 0.870 0.0516 0.7720 0.0265 0.8948 0.0194 0.8294

Table 9. Optimized yield loads, V's and net section yield loads based on area reduction
for SC01 for the case where c/b=0.25.

Surface Crack (SC01) under Tension

Deepest Pt. Near Surface Pt. Normalized

a/t a/c Po/(2btao) V P_/(2btao) V Reduction in Area

0.2 0.2 0.9600 1.6298 0.9598 1.0480 0.9607

0.2 0.6 0.9609 1.6937 0.9712 0.9883 0.9607

0.2 1.0 0.9586 1.7569 0.9720 1.0490 0.9607

0.5 0.2 0.9046 2.2289 0.8756 1.3986 0.9018

0.5 0.6 0.9036 1.9312 0.9093 1.1880 0.9018

0.5 1.0 0.9062 1,9044 0.9197 1.1755 0.9018

0.8 0.2 0.8456 1.6482 0.8369 1.7449 0.8429

0.8 0.6 0.8482 1.7490 0.8679 1.3693 0.8429

0.8 1.0 0.8526 1.8052 0.8763 1.3430 0.8429

(Va)av_ = 1.8164 (Vc)ava= 1.2561

Surface Crack (SC01) under Bending

Deepest Pt. Near Surface Pt.

a/t a/c 4Mo/(bt2ao) V 4Mo/(bt2cro) V

0.2 0.2 1.0616 1.0457 0.9943

0.2 0.6 0.9484 0.8426 1.0129

0.2 1.0 0.9578 1.0397 1.0319

0.5 0.2 0.9868 1.2213 0.9357

0.5 0.6 0.9390 1.0465 1.0736

0.5 1.0 0.9028 1.0511 1.0347

1.0848

0.9964

0.9439

0.9305

0.8712

1.0113

(Va),,va= 1.0412 (Vc)avi$= 0.9730
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Table10.Optimizedyield loads,V's and net section yield loads based on area reduction
for CC01 for the case where c/b=0.25.

Comer Crack (CC01)

Near Surface Pt.

(q_81 °)

Near Surface Pt. (q>=9 °)

a/t a/c P_I(bttr ° ) V P_ I(bttro ) V

Normalized

Reduction in Area

0.2 0.2 0.9506 1.3895 0.9494 1.0667 0.9607

0.2 0.6 0.9593 1.2132 0.9595 1.1425 0.9607

0.2 1.0 0.9634 1.1667 0.9624 1.1577 0.9607

0.5 0.2 0.8914 1.8186 0.8603 1.5485 0.9018

0.5 0.6 0.9026 1.4200 0.9052 1.3341 0.9018

0.5 1.0 0.9140 1.3087 0.9192 1.3187 0.9018

0.8 0.2 0.8192 1.4976 0.8082 1.9051 0.8429

0.8 0.6 0.8316 1.5387 0.8487 1.4603 0.8429

0.8 1.0 0.8417 1.5432 0.8614 1.4187 0.8429

(Va)avg = 1.4329 (Vc)avg-" 1.3725

3.3 Reference Stress Solutions

Solutions

In the absence of finite element Jp solutions to use as data to optimize the RSM

solutions, the RSM approach is still used but with Po and M o estimated from plastic

limit theory and with V=1.873. This value of V corresponds to plus two standard

deviations from the mean value derived from a statistical analysis of V values for a wide

range of cracked structures (Chell et al., 1997b). There is a 97% confidence that

computed V values will fall below this statistical upper bound. This approach is used to

estimate Jp for an embedded crack under tension (EC01), and a comer (CC01) crack

under bending. The equations used in the program are

for EC01:

a a , , j <5l)-, =j a aJ 7'c "7c

for CC01 under bending:

je.su¢a,a b)(a aP kt c" =J" "c , b]. 1.873. u=¢ _M_,]"-'
tMo)

(52)

where M is the moment corresponding to the NASGRO bending stress, S# (see Figure 1).
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zld_.Solutions

For EC01 under tension and CC01 under bending, a RSM AJ_ _ estimation

scheme is used in which Po and M o are estimated from plastic limit theory and V=1.873

for all crack tip locations. The equations used in the program are

EC01 under tension:

AP f-i

AJ'eH (a,c, Al;';b,t)=U_J, (a,c,AP;b,t)l_ot.l.873._ _ )

CCO1 under bending:

AJ _g (a,c,AP;b,t)= UAJ, (a,c,AP;b,t)laOt.1.873. AM

(53)

(54)

4.0 Net Section Yield Load used in the RSM

4.1. Net Section Yield Loads for ECO1, SCOI and CCO1 under Tension

The net section yield loads for the model types EC01, SC01 and CC01 under

tension are derived from the load redistribution due to area reduction. They are given by

* --"

for CC01 where W = b

¢ro(Wt - zrac), for EC01 (55)

for SC01 where W = 2b

4.2 Net Section Yield Moments for SCO1 and CCO1 under Bending

The net section yield moments, M o , for model types SC01 and CC01 under

bending can be derived from plastic limit analysis assuming a neutral axis midway across

the net section thickness, t,,et. In reference to the cross section defined in Figure 4, the net

section thickness varies with the flaw size and is given by

t -- a _-_t_et

t

(56)
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The net section yield moment or the limit moment for a comer flaw (CC01) and a surface

flaw (SC01) can thus be determined analytically as

M:-_4 (-3atTr+6t2+4a2)+lt2(b-c)

l bt2ao l bt2
4 4

(57)

x

a

c

._---- b --------_

Z
lID

Figure 4. Geometric configuration for plastic limit analysis.

5.0 Re-characterization of Arbitrary Secondary Stress Fields

The effects of secondary loads corresponding to self-equilibrated thermal and

residual stresses are taken into account in the Elastic Plastic Fracture Mechanics (EPFM)

module of NASGRO. This secondary load capability extends the applicability of

NASGRO to the loading conditions shown in Table 11. In contrast to primary loading

which is limited to either tension or bending, the secondary loading can be represented by

an arbitrary non-linear univariant stress distribution. However, due to the limited K

solutions in NASGRO for model types TC01, TC02, SC01, CC01 and EC01,

approximation techniques are used to conservatively generate uniform and linear stress

fields from the user-specified arbitrary stress distributions for secondary loads. These

techniques are detailed in the following sub-sections.

5.1 Linearization of Arbitrary Secondary Stress Field for use with CCO1 and TC02

For CC01 the univariant secondary stress variation is specified along the

thickness direction, and for TC02 it is along the width direction as defined in the
NASGRO LEFM module. Since the K solutions for CC01 and TC02 are limited to

combined tension and bending loads, the arbitrary secondary stress distributions have to

be linearized and decomposed into tension and bending components so that the NASGRO
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K solutions can be utilized. Referring to Figure 5, the linearized secondary stress

variation is represented by a dotted line while the actual loading distribution is indicated

by a dash line. The stress level at the position corresponding to the crack tip depends on

the stress distribution. The procedure below illustrates how to determine its value.

Step A.

Step B.

Step C.

Step D.

Use the actual secondary stress level at the crack tip location as the
default value.

Calculate the load over the crack area corresponding to the linear stress

approximation and compare this with that from the actual secondary
stress.

If the approximated load is larger than the actual load, then use the

linear stress approximation as a conservative estimate of the actual

stress variation as shown in Figure 5(a).

However, if the actual load is larger than the load corresponding to the

linearized stress, then adjust the linear stress approximation until the

loads are the same. Use the adjusted linear stress as a conservative

representation of the actual secondary stress. The dotted line in Figure

5(b) illustrates a linear stress distribution resulting from this procedure.

The crack tip locations referred to correspond to the c tip in TC02 and the a tip in CC01.

Further decomposition of the linearized secondary stress variation is made to

define tension and bending components. For example, in the CC01 model where the

univariant secondary stress varies along the thickness or x-direction, the mathematical

forms for the tension and bending components are

o"a - cro t
a t -- bO- °

2 a

0" b -- x-
a

(58)

respectively, where cro is the stress at the location of crack tip a, cr0 is the secondary

stress at the origin of coordinates where the flaw emanates, and t is the thickness. Similar

expressions can also be obtained for TC02. These components are used as the input to the

NASGRO linear elastic fracture mechanics (LEFM) module for model types TC02 and

CC01 to calculate K for the secondary load.
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" "'Z:::_. o(x)

Crack Crack

Figure 5(a) Figure 5(b)

Figure 5. Linear stress approximation for CC01 and TC02.

Model type
TCO 1

TC02

SC01

CC01

EC01

Geometry Description

Through crack at center

of plate

Through crack at edge

of plate
Surface crack in a

rectanl_ular plate
Comer crack in a

rectangular plate

Embedded crack in plate

Primary load

Tension only

Tension or

bending

Tension or

bending
Tension or

bending

Tension only

Secondary load
Univariant in width

direction

Univariant in width

direction

Univariant in thickness

direction

Univariant inthickness

direction

Univariant in thickness

direction

Table 11. Applicable loading conditions in NASGRO EPFM.

5.2 Geometry Substitution of SCOl by SC02

Since the NASGRO LEFM module for SC01 only accepts uniform tension and

bending loads, the SC02 model is used to evaluate K for combined primary and

secondary loading. In the SC02 model an arbitrary univariant stress distribution can be

specified and no re-characterization of the actual stress distribution is needed.

5.3 Uniform Stress Approximation for ECO1 and TCO1

Current EC01 and TC01 model types in the NASGRO LEFM module only accept

uniform stress distributions. Hence, the actual stress field has to be re-characterized as a

uniform stress. In addition, the secondary stress field is restricted to one that is

symmetrically distributed about the center of the crack. The mathematical equation for

the uniform secondary stress approximation for use with TC01 is
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[o(z z
u •13"-

C
(59)

Note that for this model, the stress variation is in the z-direction. A similar equation can

be derived for the model type EC01 where, however, the uniform stress is evaluated for a

secondary stress that varies in the thickness or x-direction, and the integral corresponding

to equation (59) is evaluated between x=-0 and x=a.

6.0 Evaluation of J and _J for Combined Loading

For TC01 and TC02 in which the crack dimension is described by one parameter,

c, equations (6-8) for Je and equations (10-13) for zk/e are used in the program. However,

for SC01, CC01 and EC01 whose crack dimensions are described by two parameters, a

and c, the plastic correction needs to be defined differently. For instance, for the surface

crack problem (SC01), the material at the deepest point on the crack front is subjected to

plane strain deformation, whereas the surface point will undergo plane stress deformation

and, accordingly, the equations for the plastic zone correction are different. For model

types SC01, CC01 and EC01, the following equations are used to evaluate Je and _re.

Solutions for SC01, CC01 and EC01

J(a,c, fi)= J,(a,,c,,fi)+ Je(a,c,P) (60)

with

E"
(61)

and Jp defined according to equations (44-45) and (51-52). The effective crack lengths ae
and ce are defined as

a e =a +¢ry, ce =c+¢r_ (62)

with
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and

1
_=

2

[ ^'l2 FC(aA)12ra - 1 n-1 K _a,c,P) c_ 1 n-1 K ,c,P (63)
, fla_. _ °'o J , ry flc_ n+l L ao j

where superscripts a and c refer to the crack tips at locations a and c, respectively.

AJe Solutions for SCO 1, CC01 and EC01

with

_,,,(a,c,_):_,:_(a:,c:,_)+_,_ (a,c,_)

_S:,(a:,c:,_): V_C_(a:'c:'_)
E'

(64)

(65)

and AJp defined according to equations (48-50) and (53-54). The effective crack lengths

a and aa, c, are defined as

A A a

a, =a+¢ (Ar;), ca_ =c+_?a(Ar;) (66)

with terms

(Arya)=

1+

[ (° )a ^
1 n-1 AK ,c,AP

fla;c n+lL _oo

1

AP 2

=, t'A ' 1[ _(a ^)l =1 n - AK ,c, AP

"r;'--,c_n+lt _o J (67)

Table 12 shows the values of_ and/_ for model types SC01, CC01 and EC01.
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Table 12. Deformation conditions applied to model types EC01, SC01 and CC01.

Model type Deformation condition

a c

Plane strain

P

6 6EC01 Plane strain

SC01 Plane strain Plane stress 6 2

CC01 Plane stress Plane stress 2 2

7.0 Algorithms for Failure Analysis

The failure algorithm computes critical crack sizes and critical loads for model

types TC01, TC02, CC01, SC01, and EC01 subjected to combined primary and

secondary loading. The critical load computation is based on the primary load, while the

secondary load is held fixed. For brittle materials containing cracks with two degrees of

freedom, the assessments are made with respect to J values evaluated at the c-tip or a-tip,

whichever is the first to violate the brittle failure criterion. For ductile materials, the

assessments are restricted to the a-tip. To facilitate the computations when assessing the

critical crack sizes, the crack geometries with more than one degree of freedom (i.e.,

CC01, SC01, and EC01) are reduced to one degree of freedom flaws by restricting crack

shape development to either cracks with constant aspect ratio, or to cracks which can

only extend in the a-direction (through the thickness) and whose length in the c-direction
remains constant.

7.1 Determining Critical Crack Sizes

Algorithm for Determining the Limit Crack Length (ALIMIT)

The limit crack length ati,,at is the crack length at which plastic collapse will occur

for the given applied load. It serves as an upper bound value in the search for initial and

critical crack lengths. Plastic collapse is assumed to occur when the reference stress

defined by equation (18) equals the material flow stress 0.5(oru+ay). While the routine is

searching for atimi, a check for geometry bounds and NASGRO validity bounds is

constantly carried out. The flow diagram describing the search method is shown in Figure
6.

Algorithm for Calculating Critical Crack Sizes (Brittle Materials) and Initiation Crack

Sizes (Ductile Materials) (ANIT)

The initiation crack size ainit is determined by numerically solving the equation

J(ain_t + Aab,/3)= J_, (68)

where J,,_t is the material toughness evaluated at the blunting tear length and dab is the

blunting length defined as
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Brittle materials:

Ductilematerials:

Jma/

Aa_-
20",

(69)

4J?+4J2(Jmt-Jo)-J,
, for quadratic JR curves

2J 2

I

Aa b ( J, ) , for power law JR curves

(70)

For brittle materials, the initial crack size will extend by blunting under combined loads

/3 to fail at J,,,at. For ductile materials, this routine provides the crack size at the initiation

of ductile tearing which provides a lower bound value in the search for the critical crack

size. Figure 7 shows the flow diagram indicating how the search for ai,,it is performed.

Note that the initiation crack length does not include the blunting tear length.

Algorithm for Calculating Critical Crack Sizes in Ductile Materials (ACRIT)

This routine calculates the critical crack size for ductile instability preceded by
ductile tearing. The following equations simultaneously are solved

J(a)=JR(_,)

dJ dJ R

da d(_a,)

(71)

for a =act . + Act, by finding the maximum ac,u that satisfies both equations. The

searching starts from a crack size ai,,it where ain,t is the initiation crack size. During the

search, the tear length /_ta t corresponding to the current J value is needed. This is
calculated as follows.

Aa, = 4J2 +4J2(J - Jo)- J, ,for quadratic JR -curves
2J 2

I

Aa, = (J))_,for powerlaw JR-curves

(:,)

(72)
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The critical crack size, ac_it, is defined as that size that will extend by tear and eventually

result in ductile instability under the prescribed combined primary and secondary loads.

Hence, the crack size when ductile instability takes place, ainst, is given by

a,_, = acri, + Aa, (73)

The flow diagram describing the search procedure is shown in Figure 8.

7.2 Determining Critical Loads

Algorithm for the Limit Primary Load (PLIMIT)

The limit load Pl_m_tis the load at which plastic collapse will occur for the given

crack size. It serves as an upper bound in the search for initial and critical loads. The

value of the limit load is given by the net section yield load multiplied by the ratio

0.5(ou-_y)/O r.

Algorithm for Calculating Critical Loads (Brittle Materials) and Initiation Loads (Ductile

Materials) (PINIT)

The load to initiate crack growth is determined by numerically solving the

equation

+s):J_ (74)

for Pin,, where a is the given crack size and P and S indicate primary and secondary

loads, respectively. Aab is given by equations (69) and (70). For brittle materials,

Pcrit=Pmit, while for ductile materials Po,, provides a lower bound in the search for the

critical load. The flow diagram indicating illustratively how the search routine is

performed is shown in Figure 9.

Algorithm for Calculating Critical Loads for Ductile Materials (PCR1T)

The critical load for ductile materials is obtained by finding the maximum value,

Pcr_t, of P as a function of tear length, Aat, where P is the solution to the equation

J(a+Aa,,P + S): JR(Aa,) (75)

Figure 10 illustrates the search mechanism used to solve for Pcat.
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Routine 1
ALIMIT

I
a=a-Aa

Aa=0.25Aa

a=a-Aa

No

I Am_---0.5 (a,,+oy)/ao I

a_0I

Aa---thickness/50. [

a=a+Aa

CalculateAr=-Ore//Oo I

J._s No

I a",_aI

Figure 6. Procedure to determine the limit crack length at,re,.
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RoutineANIT

la-ol

Aa=alimitl50 ]

a=a-Aa

Aa=O.25Aa

a=a-Aa

Calculate J

Yes

e>0?
No

"-(Jmat-J')]Jmat

lel < err ?

Yes

Calculate crack

tip blunting,Aab

la_ 'I

Figure 7. Procedure for the initiation crack length ai,,_t.
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ACRITR°utine 1

atemp=aJ.2+_i-2

Aa--O. 1(ai+Si-at_mp )

a_--a-Aa

Evaluateamax by solving I

J( a,,,,_ )-.-._s( Aa,,,_ ) I
!

I Aa=(al,,,,t-a,,a,-Aabh,_)llOI

ao-...a_n_t-Aa ]

I_va'°a_a,_I

Evaluate the temAat [by solving/(a0--JR(Aa0

o_,=-ai-Aat

E=_/"-O[i-I

+"Yes

T=IE/°__I [

ar,lr--a_,m-Aat

Figure 8. Iteration procedure for the critical crack length acre.
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l Routine 1
PINIT

I EvaluatethebluntingAab

EvaluatetheLit load Plirait

corresponding to ab=a+Aab

AP=Plimitl50 II
-_ _1

__i- I_v_ua_'_a"_I

Figure 9. Procedure to determine the initiation load P_t.
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Aa_--(avaJia-a)

where a_tia is the validity
limit of the NASGRO K solutiol

, N° 1

la"abao--a-Aa

EvaluateJR(Aa,+01

EvaluatePi.l corresponding to

JR(Aai+0 using PINIT

Oi+l=ai+ l-2A a

Aa=0.2Aa

ai+t--.ai+_-Aa

No

No Yes

I 7=le/Pi-,I I

Figure 10. Procedure to determine the critical load Pc,-it.
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8.0 Rules for Calculating J, AJ and the R ratio

Consistent with similar rules encoded in NASGRO for cyclic crack growth under

linear elastic conditions, rules have been drawn up to take into account the relative

magnitudes of Kmax and Kmin. For instance, under some circumstances the maximum and

minimum loads specified by the user may result in a Kmax value less than the Kmin value,

and, therefore, the values of/('max and Kmin have to be interchanged in determining AK.

The rules are summarized in Tables 13 and 14, where superscripts P and S refer to

primary and secondary loads. Table 13 lists the rules for calculating the elastic

components, Je and AJe, as well as the R ratio, Kmx/Kmi,. It identifies the maximum and

minimum loads used in the computation for combined loading. Similarly, Table 14 lists

the rules for calculating plastic components, Jp and Alp, in which only the primary load is
of consideration.

Table 13. Rules for calculating Je, Ale and R.

Initially calculated values

Ke+S K ,7 K e*,_s - K e+s--rffln

Parameters used in the calculation of Je, Ale, and R

Positive Positive Positive K_,_ s

Positive Positive Negative Ke_m_S

Positive Negative Positive Ke_ s

Negative Positive Negative Stop

PositiveNegative

Negative

Negative

Negative Negative

Monotonic Cyclic

K,_ K,,_, AK

g e+S
nfm

s
s

Stop Stop Stop

Stop Stop Stop

R

1-aK/K 

K_S-K_ s 1-AK/K,_

s 1-ar/K, 
K e+S _ K e+s 1 - AK/K,,_xrain --tmx

Stop

Stop

Table 14. Rules for calculating Jp and Alp.

Initially calculated values Parameters used

MonotonicKL re,_ -K_n

gmax

in the calculation of Jp and Alp

Cyclic

gmax AK

Positive Positive Positive Ke_ K_p K,_P - K,m.p

Positive Positive Negative Ke_ K,_n K_n - K e

Positive Negative Positive K_ K_,x_' K_ - K_

Negative Positive Negative Stop K_ K_ - Ke_x

Positive Stop

Stop

Negative

Negative Negative

Stop

Stop

Negative

Negative

Stop

Stop
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9.0 Validity Limits for J Solutions

Table 15 lists the validity limits of the J solutions incorporated in the NASGRO

elastic-plastic J module and the NASGRO linear elastic fracture mechanics module.

Table 15. Validity limits in elastic-plastic J module

Model Loading EPRI Reference stress NASGRO elastic

type method module
TC01 Tension 103<2clW<0.875 10-3<2c/W<0.875 O<c<W/2

1<n<20 n> 1

TC02 Tension 10-3<c/W<0.875 103<clW<0.75 0<c<W

1<n<20 n> 1

Bending 10_<c/W<0.875 10-3<clW<0.75 0<c<W
1<n<20 n> 1

EC01 Tension N/A O<2c<W, 2clW<0.5 0<2c<W, 2c/W<0.5

0<a<t/2, a/c>O 0<a<t/2, a/c>O

n>l

CC01 Tension N/A 0<c<W, 0<a<t O<c<W, 0<a<t
10-3<a/c< 1000 103<a/c< 1000

n>l

Bending N/A O<c<W, O<a<t 0<c<W, 0<a<t
103<a/c< 1000 103<a/c< 1000

n>l

SC01 Tension N/A O<c<W/2, 0<a<t O<c<W/2, 0<a<t

0.05<a/c< 1.2 O.05<a/c< 1.2

n>l

Bending N/A O<c<W/2, 0<a<t O<c<W/2, 0<a<t
O.05<alc< 1.2 0.05<a/c< 1.2

n>l

10.0 How to use the NASGRO EPFM Module

Figure 11 shows how the EPFM module interfaces with NASGRO. New users are

encouraged to use the flow diagrams illustrated in the following examples as a road map

to help them navigate the available options.

I0.I How to Run an Elastic.Plastic J-Integral Calculation

The flow diagram showing the menu structure of the elastic-plastic J module is

displayed in Figure 12. Figure 13 displays its execution structure. Both figures provide

enough information for the available options for the user to navigate the program.

When the program is executed, the main menu of NASGRO shows the available

analysis modules. In this release, the menu is
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Enter one of the following options:

1 Safe Life Analysis
2 Critical crack size computation
3 Stress-intensity factor solution
4 da/dt life analysis (e.g., for glass)
5 Elastic-Plastic J computation
6 Elastic-Plastic failure analysis
7 Elastic-plastic fatigue life analysis
0 Terminate session

Notes:
1. Once an analysis option is chosen and data input

is in progress, entering a minus sign (-)
will cause moving back to the previous prompt.

2. Always press Enter key to complete an entry.
SYSTEM_PROMPT> 5

where the system prompt for the user's input is denoted by SYSTEM_PROMPT>. Users

should choose option 5 for the elastic-plastic J calculation. Following this choice, the

sub-menu below lets the user choose the type of session.

Enter type of session for elastic-plastic J module:

0 -- Interactive - Input and computation
1 m Interactive input while creating a batch file
2 m Batch - computing only (run using a batch data file)
3- Edit an existing batch file
(Note: option I must be used before option 2 or 3)
SYSTEM_PROMPT> 0

Option 0 provides users a line-by-line interactive input mode. In addition to the simple

functions given by option 0, option 1 records every data entry and saves them as a batch

file which can be executed later by the user choosing option 2. Option 3 can be used to

modify the batch file created by option 1.

Interactive Input Mode

When the interactive input mode (either option 0 or 1) is activated, NASGRO will

prompt the user to enter the filename for storing output data and the units for the analysis.

The filename can be any alpha-numeric combination up to 12 characters long. The sub-

menu shown below follows. This displays the available models in the NASGRO elastic-

plastic J module. At any data entry stage from this point on, the user can type "-" to go

back to the previous prompt.

Enter a model type from the following:
TC Through Crack
CC Comer Crack
EC Embedded Crack
SC Surface Crack
SYSTEM_PROMPT> tc
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Selectthe desiredmodel type. Dependingon which model type is chosen,anothersub-
menuwill appearright afteryour selection.For instance,for aTC (throughcrack)model,
two subsequentsub-menuswill be

Which method is to be used for estimating the elastic-plastic J?
1... EPRI (Electric Power Research Institute) Solution Scheme
2... RSM (Reference Stress Method) Solution Scheme
SYSTEM_PROMPT> 1

and,

Select the deformation constraint:
1... Plane Strain (PE)
2... Plane Stress (PS)
SYSTEM_PROMPT> 2

However, there are no such options for model types; CC, EC, and SC. After the selection

is made, another sub-menu shows available geometries for a specific model type. For the

model type TC, the sub-menu should be

Enter a Number from left column to select a THROUGH crack case:
1 .... TC01 - in center of plate
2 .... TC02 - single edge crack
SYSTEM_PROMPT> 1

After deformation constraint, geometry and model types are selected, another sub-menu

indicating the loading type will appear. At present, model types TC02 (edge crack), CC01

(comer crack), and SC01 (surface crack) have available tension and bending loads as

separately applied loads, and model types TC01 (center crack) and EC01 (embedded

crack) have only tensile loading available. For example, after option 2 (TC02-single edge

crack) of the above sub-menu is selected, another sub-menu appears as follows:

Enter a Number from left column to select the loading option for the TC02
geometry:
1 .... TENSION - single edge crack in remote tension
2 .... BENDING osingle edge crack subjected to bending
SYSTEM_PROMPT> 1

The next selection is to define the geometry dimensions. The number of required

geometric parameters depends on the model type being selected. Nonlinear material

properties are required next in the form of a Ramberg-Osgood uniaxial stress-strain

equation

e cr ,7 (76)- t-o_
_.o Go _,Go

where E is the total strain, G is the applied stress, and 4, Oo, a and n are material

constants. The program will prompt the user to provide the elastic modulus, E=t_o/_,
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elasticPoisson'sratio v, and the Ramberg-Osgood constants (x, n and (_o. The interactive
session continues as follows.

Geometric Model in use: TC01

Enter Plate Width, W:
SYSTEM_PROMPT> 20

Plate Width, W = 20.0000

Enter Plate Thickness, t:
SYSTEM_PROMPT> 0.1

Plate Thickness, t = .1000

ELASTIC-PLASTIC J CALCULATION FOR TC01

DATE: 14-Ju1-98 TIME: 14:05:25
(computed: NASA/FLAGRO Version 3.00, October 1995.)

Elastic-Plastic Fracture Module (EPFM) V.1.01, Feb. 1998
SI units [mm, MPa, MPa sqrt(mm)]

Input Filename = test.dat
Output Filename = test.out

Plate Thickness, t = .1000
" Width, W = 20.0000

Specify the Nonlinear Material Behavior

Eps/Eps0=-Sigma/Sigma0+alpha*(Sigma/Sigma0)**n

with Elastic Modulus defined by Sigma0/Eps0

Enter Elastic Modulus:
SYSTEM_PROMPT> 3000.0

Elastic Modulus= .3000E+05

Enter Poisson"s Ratio:
SYSTEM_PROMPT> 0.3

Poissons Ratio= .3000E+00

Enter alpha:
SYSTEM_PROMPT> 1.0

Alpha = .1000E+01

Enter Sigma0:
SYSTEM_PROMPT> 100.0
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Sigma0 = .1000E+03

Enter n:
SYSTEM_PROMPT> 10.0

n = .1000E+02

Enter Material Yield Stress
SYSTEM_PROMPT> 100.0

Material Yield Stress = 100.00

Enter Material Ultimate Stress
SYSTEM_PROMPT> 150.0

Material Ultimate Stress = 150.00

The next section is to specify the combined primary and secondary loads. The applied

loads are defined in terms of nominal (P/A) or linear elastic stresses as indicated in the

NASGRO user's manual. The following illustrates the interactive session.

Specify the loading condition
1 -- Primary Load only
2 -- Primary Load and Secondary Load

SYSTEM_PROMPT> 1

PRIMARY LOAD:
Enter stress, S0: Tensile Stress

SYSTEM_PROMPT> 40.0

PRIMARY LOADS: SO:Tensile Stress
S0 = 40.00

NO SECONDARY LOAD SPECIFIED

After all the material constants, geometry parameters and applied loads are

defined, the next phase is to define the flaw sizes. There are two data input formats as

shown in the following prompt.

Interactively input the crack size or tabulate the data incrementally?
1... Interactive input
2... Tabulate the data incrementally
SYSTEM_PROMPT> 1

Option 1 prompts the user to provide the defect size interactively (line-by-line) and use

"-1" to terminate the data entry. Option 2 gives the user the option to specify the range of

the defect size with a preferred increment size to create a tabular output format. For

example, for the model type TC01, a specified number of increments, n_, with a

preferred range of defect sizes defined by c,,,ax and c,,,in gives a tabular output of J,, Jp, and
J as a function of defect size with increment size cinc =(c,,_,-c,,u,,)/ni,,c. In this example,

option 1 is selected.
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Enter crack size, c (or -1 to stop) :
SYSTEM_PROMPT> 0.3

Enter crack size c (or -1 to stop) :
SYSTEM_PROMPT> 0.6

Enter crack size, c (or -1 to stop) :
SYSTEM_PROMPT> 1.0

Enter crack size, c (or -1 to stop) :
SYSTEM_PROMPT> 1.5

Enter crack size, c (or -1 to stop) :
SYSTEM_PROM PT> 2.0

Enter crack size, c (or -1 to stop) :
SYSTEM_PROMPT> 3.0

Enter crack size, c (or -1 to stop) :
SYSTEM_PROMPT> -1

Once the flaw sizes are specified, NASGRO will start the computation and display the

results on screen. The results for the forgoing input are shown as follows.

*** EPRI Solution Scheme***

Model Code= TC01 (Plane Stress Condition)

c Je Jp
.3000 .531463E-01 .381383E-04 .531845E-01
.6000 .106655E+00 .930886E-04 .106748E+00

1.0300 .179282E+00 .204742E-03 .179486E+00
1.5000 .273589E+00 .445110E-03 .274034E+00
2.0000 .373905E+00 .893188E-03 .374799E+00
3.0000 .603615E+00 .360880E-02 .607224E+00

*tt*_t*/r*t _ Q /_ it tt /_ tt /r _ *

< PRESS RETURN TO CONTINUE >

Batch Mode

Option 1 (interactive input while creating a batch file) in the session menu for

elastic-plastic J module needs to be completed prior to activating this batch-job mode.

The system prompt in the batch mode requests the user to provide the filename of an

existing batch data file. This batch data file can also be modified by using option 3 in the

session menu for elastic-plastic J module without running the time-consuming interactive

data input mode again. This editing feature can be used after creating a data file in

option 1 without quitting NASGRO. However, users can modify an existing batch file

using any ASCII editor. The following lists the content of the batch file just created.
test.out Output file name*12

2 1=US units; 2=-Sl units
tc Crack Model Type
1 I=EPRI, 2=RSM
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2 1=plane strain (PE), 2=plane stress(PS)
1 Crack Model Number
.2000E+02 Width
.1000E+00 Thickness
.3000E+05 Elastic Young"s modulus
.300 Poisson"s ratio

1.000 Alpha
.1000E+03 Sigma0

10.000 n
.1000E+03 material yield stress
.1500E+03 material ultimate stress
1 1: Primary, 2: Primary+Secondary

.4000E+02 loading stress
1 1=lntereactively iRput, 2=create a table
.3000E+O0 c(1)
.6000E+O0 c(2)
.1000E+01 c(3)
.1500E+01 c(4)
.2000E+01 c(5)
.3000E+01 c(6)

-.1000E+01 end of input
P P(lst col.): to print
0 1:to resume, O: stop

Begin
NASGRO

Execution

Choose

Analysis
Module

NASFLA

Module

_r 'r

NASMAT NASBEM

Module Module

Elastic-Plastic

Module

Terminate

Session

Figure 11. Overall program flow diagram.

K.45



ITC01 :
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I TC: Through Crack

CC: Comer Crack
EC" Embedded Crack
SCI Surface Crack
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Input Nonlinear
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!
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Figure 12. Menu structure of the elastic-plastic J module
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Figure 13. Computing scheme of the elastic-plastic J module

K.47



10.2 How to Perform a Failure Analysis

An example showing how to perform a step-by-step failure analysis for model

type SC01 is demonstrated. After the greeting screens pass, the main menu of NASGRO

follows. To activate the option for failure analysis, option 6 should be chosen. The

system prompt for user's input is denoted by SYSTEM_PROMPT>. The user may refer to

Figure 14 for the program structure of this module.

Enter one of the following options:

1 Safe Life Analysis
2 Critical crack size computation
3 Stress-intensity factor solution
4 da/dt life analysis (e.g., for glass)
5 Elastic-plastic J computation
6 ElaMic-plestic failure analysis
7 Elastic-plaMic fatigue life analysis
0 Terminate session

Notes:
1. Once an analysis option is chosen and data Input

is in progress, entering a minus sign (-)
will cause moving back to the previous prompt.

2. Always press Enter key to complete an entry.
SYSTEM_PROMPT>6

A sub-menu indicating available ways of file handling mainly concerning input and

output appears. It lists the standard NASGRO ways of file processing. Option 0 prompts

the user for input without saving. Option 1 lets the user save the input as a separate file

and later the user can use (option 2) or modify (option 3) that batch data file. Option 2 is

to run the program using the batch file created using option 1. The last option provides

the user a line editing capability to modify any text file. In this example, option 1 was
selected.

Enter type of session for elastic-plestic J module:

0 Interactive - Input and computation
1 Interactive Input while creating a batch file
2 Batch - computing only (run using a batch data file)
3 Edit an existing batch file

(Note: option I must be used before option 2 or 3)
SYSTEM_PROMPT>I

Following this option, the program proceeds to prompt for filenames of batch processing

and data output as well as the units in the analysis.

Enter the name of batch file to use (up to 12 alpha-numeric characters):
Enter RTN only to return to main menu

SYSTEM_PROMPT>fasc01.dat

Enter file name for output (up to 12 alpha-numeric characters):
SYSTEM_PROMPT>fasc01.out
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Enter type of units:

1 U.S. Customary Units [inches, ksi, ksi sqrt(in)]
2 Sl Units (International System) [mm, MPa, MPa sqrt(mm)]

SYSTEM_PROMPT>2

Next, NASGRO will prompt for the model type, the primary loading type, geometric

dimensions, and parameters describing nonlinear material behavior. In this release, only

Ramberg-Osgood type of material behavior was implemented. Required parameters

include Go, E, oc, and n in the Ramberg-Osgood equation as well as yield and ultimate

stresses, ays and G, tI, for the assessment of limiting values. The interactive session is

given as

Enter a Model type from the following :

TC Through Crack
CC Comer Crack
EC Embedded Crack
SC Surface Crack

SYSTEM_PROMPT>SC

Enter a Number to select a SURFACE crack case:

1 .. SC01 - in finite width plate
SYSTEM_PROMPT>I

SC01

Geometric Model in use: SC01

Enter a Number to select the loading option for the SC01 geometry:

1 .. TENSION - surface crack in remote tension
2 .. BENDING - surface crack under bending in the thickness direction

SYSTEM_PROMPT>I

Enter Thickness, t:
SYSTEM_PROMPT>1.0

Thickness, t = 1.0000

Enter Width, W:
SYSTEM_PROMPT>20.0

Width, W = 20.0000

[Note: Solution accurate if a/c > or = 0.05 AND a/c < or = 1.2]

ELASTIC-PLASTIC ANALYSIS FOR CRITICAL CRACK/LOAD FOR SC01

DATE: 17-Jun-98 TIME: 15:18:47
(computed: NASAJFLAGRO Version 3.00, October 1995.)

Elastlcoplastic Fracture Module (EPFM) V.1.01, Feb. 1998
SI units [mm, MPa, MPa sqrt(mm)]

K.49



Input Filename = fasc01.dat
Output Filename = fasc01.out

Plate Thickness, t = 1.0000
" Width, W = 20.0000

Specify the Nonlinear Material Behavior

Eps/Eps0=Sigma/Sigma0+alpha*(Sigma/Sigma0)**n

with Elastic Modulus defined by Slgma0/Eps0

Enter Elastic Modulus:
SYSTEM_PROM PT>30000.

Elastic Modulus= .3000E+05

Enter Poisson"s Ratio:
SYSTEM_PROMPT>0.3

Poissons Ratio= .3000E+00

Enter alpha:
SYSTEM_PROMPT>I.0

Alpha = .1000E+01

Enter SigmeO:
SYSTEM_PROMPT>100.

Sigma0 = .1000E+03

Enter n:
SYSTEM_PROMPT>10.

n = .1000E+02

Enter Material Yield Stress
SYSTEM_PROM PT>100.

Material Yield Stress =

Enter Material Ultimate Stress
SYSTEM_PROM PT>150.

Material Ultimate Stress =

100.00

150.00
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Figure 14. Flow chart for the failure algorithm in the NASGRO EPFM module.
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To facilitate the computations when assessing crack geometries with more than one

degree of freedom, these are reduced to one degree of freedom flaws by restricting crack

shape development either to maintaining a constant aspect ratio, or to cracks extending

only in the a-direction (through the thickness) with the c-tip being fixed. The following

system prompt asks the user's input for the proper reduction method.

Specify the following data for elastic plastic
failure analysis

Analysis with constant aspect ratio or constant crack length (c-tip)
1... constantaspect ratio
2... constant crack length along c-direction

SYSTEM_PROMPT>I

iasp = 1

Enter aspect ratio:
SYSTEM_PROMPT>0.2

Constant aspect ratio = .2000E+O0

Next, the user specifies whether a critical crack or critical load analysis is required.

Search for critical crack length or critical load
1... critical crack
2... critical load

SYSTEM_PROMPT>I

icrit = 1

The user then specifies whether a brittle or a ductile failure analysis should be performed.

Specify the type of failure analysis
1... brittle analysis
2... ductile analysis

SYSTEM_PROMPT>2

imech = 2 : Ductile analysis is performed

A critical toughness, Jnutt, is required for both types of failure analysis. For ductile failure

analysis, that characterizes the onset of crack extension. In addition, the user needs to

specify the form of the resistance curve, JR, as well as the maximum tearing length, _La_x

for which the form is valid. JR can be expressed as either a quadratic or power law in the

tear length, _a,. In this example, a quadratic form is selected.

Enter material toughness value (Jmat):
SYSTEM_PROMPT>0._

Material toughness value (Jmat) = .2000E+00

Enter the function type of resistance curve
1 ... quadratic form (J--dj0+djl*x+dj2*x^2)
2... power law (J=djl*xAdj2)
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SYSTEM_PROMPT>I

npow = 1 (1: quadratic, 2: power law)
Values for dj0, djl, dj2, and da(max)
Enter d|0 first

SYSTEM_PROM PT>0.175

dj0 = .1750E+00

Enter djl
SYSTEM_PROMPT>IS.0

dil = .1500E+02

Enter dJ2
SYSTEM_PROMPT>-75.0

dj2 = -.7500E+02

Enter da(max)
SYSTEM_PROMPT>0.1

da(max)= .1000E+00

Model Code= SC01 under uniform tension

The following interactive session illustrates how to provide NASGRO loading

information including the specification of primary and secondary loading. In this

example, model type SC01 can have univariant stress distribution along x-direction as

discussed in Section 5.2. Loads are specified as nominal or linear-elastic stresses.

Interactively input the load increment or tabulate the data Incrementally?
1... Interectively Input
2... Tabulate the data incrementally?

SYSTEM_PROMPT>I

1... Primary Load only
2... Primary Load plus Secondary Load

SYSTEM_PROMPT>2

0... Stop input
1... Input new loading data

SYSTEM_PROMPT>I

PRIMARY LOAD:
Enter stress, SO: Tensile Stress

SYSTEM_PROMPT>100

SECONDARY LOAD:
Enter values of non-dimensional positions and

stress for the Secondary Load (Linear or NonUnear)

*Nondimensional positions for SC01 are defined as x/t
x is along the thickness (t) direction and from the
surface where the crack initiates
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Enter Non-dimensional position 1 (terminate input by -1)
SYSTEM_PROMPT>0.

Enter Stress 1
SYSTEM_PROMPT>100.

Enter Non-dimensional position 2 (terminate input by -1)
SYSTEM_PROMPT>0.2

Enter Stress 2
SYSTEM_PROMPT>96.

Enter Non-dimensional position 3 (terminate input by -1)
SYSTEM_PROMPT>0.4

Enter Stress 3
SYSTEM_PROMPT>84.

Enter Non-dimensional position 4 (terminate input by -1)
SYSTEM_PROMPT>0.6

Enter Stress 4
SYSTEM_PROMPT>64.

Enter Non-dimensional position 5 (terminate input by -1)
SYSTEM_PROMPT>0.8

Enter Stress 5
SYSTEM_PROMPT>36.

Enter Non-dimensional position 6 (terminate input by -1)
SYSTEM_PROMPT>I.0

Enter Stress 6
SYSTEM_PROMPT>0.

Enter Non-dimensional position 7 (terminate input by -1)
SYSTEM_PROMPT>-1

SECONDARY LOAD DISTRIBUTION:
Norm. x Stress

.00 .1000E+03

.20 .9600E+02

.40 .8400E+02

.60 .6400E+02

.80 .3600E+02
1.00 .0000E+00

0... Stop input
1... Input new loading data

SYSTEM_PROMPT>I

PRIMARY LOAD:
Enter stress, S0: Tensile Stress

SYSTEM_PROMPT>130.
0... Stop input
1... Input new loading data

SYSTEM_PROM PT>0

At this stage, the input phase for the necessary information is completed, and NASGRO

will perform the necessary computation and display the results on screen.

TABLE OUTPUT (Fixed a/c= .200E+00):
Pri. Load a_init a_crit a_inst da(tesr) P/P0_init P/P0_crit P/P0_inst
.100E+03 .276E-01 .567E-01 .108E+00 .510E-01 .100E+01 .100E+01 .100E+01

ERROR[JSC01]: exceeds plastic collapse Ioadl
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a= .198E-01, c= .540E+00 Smax= .130E+03

ERROR[JSC01]: exceeds plastic collapse Ioadl
a: .198E-01, c= .540E+00 Smax: .130E+03

ERROR[JSC01]: exceeds plastic collapse Ioadl
a= .168E-02, c=- .540E+00 Smax: .130E+03

.130E+03 .397-308 .397-308 .510E-01
* (1) : exceed plastic collapse load!

/t /_ It tt /w _ # /It _ t

< PRESS RETURN TO CONTINUE •

*(1)

Press RTN to continue (or P and RTN to obtain the print file)
(Note: The results will be in the output file.
Use the appropriate Print command for your machine)

SYSTEM_PROMPT>P

The first set of results, for a primary load of 100 ksi, shows calculated values of the

significant crack depths (initiation depth, critical depth, instability depth, and the tear

length). The second set of results, for a primary load of 130 ksi, demonstrates the error

messages that the user receives when the input primary load exceeds the plastic collapse

load.

The batch file just created can be used to re-run the program using option 2. For

reference, the content of the batch file is listed below.

fasc01.out Output file name*12
2 1=US units; 2=Sl units

sc Crack Model Type
1 Crack Model Number
1 1--tension, 2=bending
.1000E+01 Thickness
.2000E+02 Width
.3000E+05 Elastic Young"s modulus
.300 Poisson"s ratio

1.000 Alpha
.1000E+03 SigmaO

10.000 n
.1000E+03 material yield stress
.1500E+03 material ultimate stress
1 1: const, asp. 2: const, length

.2000E+00 constant aspect retio
1 1: crit. crack 2: crit. load
2 1: brittle, 2: ductile
.2000E+00 matl toughness
1 1: quad. 2: power

.1750E+00 dj0 - quadratic

.1500E+02 djl - quadratic
-.7500E+02 dj2- quadratic
.1000E+00 da(max) - quadratic
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1
2
1

.1000E+03
.0000E+00
.1000E+03
.2000E+00
.9600E+02
.4000E+00
.8400E+02
.6000E+00
.6400E+02
.8000E+00
.3600E+02
.1000E+01

1= interactively input, 2= create a table
1= pri., 2=pri. & sec.
0:atop, 1: cont

loading stress
Non-Dimensional position
Stress value
Non-Dimensional position
Stress value
Non-Dimensional position
Stress value
Non-Dimensional position
Stress value
Non-Dimensional position
Stress value
Non-Dimensional position

.0000E+00 Stress value
-.1000E+01 Non-Dimensional position
1 0:sto.p.,.l: cont

•1300E+0g loading stress
0 0:stop, 1: cont

P POst col.): to print
0 1:to resume, 0: stop

10.3 How to Run an Elastic.Plastic Fatigue Crack Growth Calculation

The user should refer to Figure 15 as the roadmap to help them understand the

main program flow for the elastic-plastic fatigue crack growth computation. After the

program is executed and the screen displays the main menu of NASGRO, option 7 should

be chosen to initiate an EPFCG calculation. In this release, the main menu and the user

input (after SYSTEM_PROMPT>) should be

Enter one of the following options:

1 Safe Life Analysis
2 Critical crack size computation
3 Stress-intensity factor solution
4 da/dt life analysis (e.g., for glass)
5 Elastic-plastic J computation
6 Elastic-plastic failure analysis
7 Elastic-plastic fatigue life analysis
0 Terminate session

Notes:
1. Once an analysis option is chosen and data input

Is in progress, entering a minus sign (-)
will cause moving back to the previous prompt.

2. Always press Enter key to complete an entry.
SYSTEM_PROMPT> 7

A sub-menu for option 7 now appears. It lists the available ways of NASGRO file

processing. Option 0 prompts the user for input without saving. Option 1 saves the input

as a separate file that can be run later as a batch file. Option 2 is the option to run the

program with the batch file created using option 1. Option 3 lets users modify the batch
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file and thenuseoption 2 to re-run the program.In this example,option 1 wasusedto
step by step create a batch file for future reference.

Enter type of session for elastic-plastic J module:

0 Interactive - input and computation
1 Interactive input while creating a batch file
2 batch - computing only (run using a batch data file)
3 Edit an existing batch file

(Note: option 1 must be used before option 2 or 3)
SYSTEM_PROMPT> 1

Then the program proceeds to prompt for the filenames of the batch and data output files,

as well as the units used in the analysis.

Enter the name of batch file to use (up to 12 alpha-numeric characters):
Enter RTN only to return to main menu

SYSTEM_PROMPT> fgsc01.dat

Enter file name for output (up to 12 alpha-numeric characters):
SYSTEM_PROMPT> fgsc01.out

Enter type of units:

1 U.S. Customary Units [inches, ksi, ksi sqrt(in)]
2 SI Units (International System) [mm, Mpa, Mpa sqrt(mm)]
SYSTEM_PROMPT> 2

After filenames for file processing and units have been provided, NASGRO will prompt

for the model type, the primary loading type, geometric dimensions, and parameters

describing nonlinear material properties used in the elastic-plastic fatigue analysis. The

available primary loading type depends on the model type that was chosen. In this

example of model type SC01, the primary load can be either tensile or bending. For the

material behavior, in addition to yield stress and ultimate stress, NASGRO requires

Ramberg-Osgood material parameters to describe the nonlinear material stress-strain

relation given by e/e 0 =ty/tr 0 + t_(ty/tr 0 )" where a, n, e.o, and tr0 are material constants.

Under elastic-plastic cycling, the constitutive properties of some materials change

gradually from their monotonic values towards stable cyclic values due to cyclic

hardening or softening. The resulting stable cyclic Ramberg-Osgood properties are

sometimes denoted by adding a "prime" to the material constant symbols: og, t_0', Co', n'.

The selection of monotonic or cyclic constitutive properties can have a significant effect

on the calculated values of AJeff. In general, cyclic properties should be chosen when the

(uncracked) component in question experiences reversed plastic deformation. In the

absence of reversed plastic deformation, monotonic properties are generally an

appropriate choice. When in doubt, calculations should be completed with both

monotonic and cyclic properties, and the more conservative answer selected. Guidelines

for the estimation of these material properties, along with further discussion of these

issues, are provided in Section 3.5.2 of the main body of the final report.
The interactive session continues as follows.
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Enter a Model type from the following :

TC Through Crack
CC Comer Crack
EC Embedded Crack
SC Surface Crack

SYSTEM_PROMPT> SC

Enter a Number to select a SURFACE crack case:

1 .. SC01 - in finite width plate
SYSTEM_PROMPT> 1

SC01

Geometric Model in use: SC01

Enter a Number to select the loading option for the SO01 geometry:

1 .. TENSION - surface crack in remote tension
2 .. BENDING - surface crack under bending in the thickness direction

SYSTEM_PROMPT> 1

Enter Thickness, t:
SYSTEM_PROM PT> 0.2055

Thickness, t = .2055

Enter Width, W:
SYSTEM_PROMPT> 1.24

Width, W = 1.2400

ELASTIC-PLASTIC FATIGUE LIFE CALCULATION FOR SC01

DATE: 11-Jun-98 TIME: 10:19:24
(computed: NASA/FLAGRO Version 3.00, October 1995.)

Elastic-Plastic Fracture Module (EPFM) V.1.01, Feb. 1998
SI units [mm, Mpa, Mpa sqrt(mm)]

Input Filename = fgsc01.dat
Output Filename = fgsc01.out

Plate Thickness, t = .2055
" Width, W = 1,2400

Specify the Nonlinear Material Behavior

Eps/Eps0=Sigma/SigmaO+alpha*(Sigma/Sigma0)**n

with Elastic Modulus defined by Sigma0/Epa0
Enter Elastic Modulus:

SYSTEM_PROMPT> 0_969e+5
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Elastic Modulus= .2969E+05

Enter Poisson's Ratio:
SYSTEM_PROMPT> 0.3

Poisson's Ratio= .3000E+00

Enter alpha:
SYSTEM_PROMPT> 1.0

Alpha = .1000E+01

Enter Sigma0:
SYSTEM_PROMPT> 158.3

Sigma0 = .1583E+03

Enter n:
SYSTEMPROMPT> 6.15

n = .6150E+01

Enter Material Yield Stress
SYSTEM_PROMPT> 158.3

Material Yield Stress = 158.30

Enter Material Ultimate Stress
SYSTEM_PROM PT> 211.7

Material Ultimate Stress = 211.70
Model Code= SC01 under uniform tension

It is necessary to create a fatigue load spectrum or schedule for the fatigue analysis. A

block case is defined as one cyclic load step with user-specified maximum and minimum

loads and the number of cycles this load step is to be applied. A fatigue load spectrum or
schedule consists of a random combination of user-defined block cases and the

corresponding number of times to be applied. The following illustrates the interactive

session of how to build a fatigue load spectrum. Loads are specified as nominal or linear-

elastic stresses.

BLOCK CASE DEFINITION (max. 60 cases)
Block Case ID 1: define MAXIMUM cyclic load

1 - Primary load only
2 - Primary and secondary loads

-1 - Terminate input
SYSTEM_PROMPT> 1

PRIMARY LOAD:
Enter stress, SO: Tensile Stress

SYSTEM_PROMPT> 135.0

NO SECONDARY LOAD SPECIFIED!
Block Case ID 1: define MINIMUM cyclic load
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1 - Primary load only
2 - Primary and secondary loads

SYSTEM_PROMPT> 1

PRIMARY LOAD:
Enter stress, S0: Tensile Stress

SYSTEM_PROM PT> -135.0

NO SECONDARY LOAD SPECIFIED!
Specify number of cycles with max/mln load applied in Blk Case ID

SYSTEM_PROMPT> 1

Block Case ID 2: define MAXIMUM cyclic load
1 - Primary load only
2 - Prlmary and secondary loads

-1 - Terminate Input
SYSTEM_PROMPT> 1

PRIMARY LOAD:
Enter stress, S0: Tensile Stress

SYSTEM_PROMPT> 50.0

NO SECONDARY LOAD SPECIFIED!
Block Case ID 2: define MINIMUM cyclic load

1 - Prlmary load only
2 - PHmary and secondary loads

SYSTEM_PROMPT> 1

PRIMARY LOAD:
Enter stress, SO: Tensile Stress

SYSTEM_PROMPT> -80.0

NO SECONDARY LOAD SPECIFIED!
Specify number of cycles wlth max/mln load applied In Blk Case ID 2

SYSTEM_PROMPT> 3

Block Case ID 3: define MAXIMUM cyclic load
1 - Primary load only
2 - Primary and secondary loads

-1 - Terminate Input
SYSTEM_PROMPT> -1

BLOCK CASE DEFINITION:
Blk Cse. Maximum Load Values

Primary Load

2

I Si
0 0.1350E+03
1 0.0000E+00
2 0.0000E+00
3 0.0000E+00

Primary Load
I Si
0 0.5000E+02
1 0.0000E+00
2 0.0000E+00
3 0.0000E+00

Minimum Load Values
Primary Load

I Si
0 -0.1350E+03
1 0.0000E+00
2 0.0000E+00
3 0.0000E+00

Primary Load
I Si
0 -0.8000E+02
1 0.0000E+00
2 0.0000E+00
3 0.0000E+00

Cycles
1

3
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Define the Load Spectrum or Schedule using previously-defined block cases
(max. 80 block cases):
Input the Block Case ID for the Schedule (end with -1):

SYSTEM_PROMPT> 2

How many times to apply Block Case ID 2 ?
SYSTEM_PROMPT> 5

Input the Block Case ID for the Schedule (end with -1):
SYSTEM_PROMPT> 1

How many times to apply Block Case ID 1 ?
SYSTEM_PROMPT> 2

Input the Block Case ID the Schedule (end with -1):
SYSTEM_PROMPT> -1

DEFINITION OF LOAD SPECTRUM (or SCHEDULE):
BIk. Case ID No. of Times Applied

2 5
1 2

NASGRO will then prompt for the Paris law fatigue parameters Co and mo and the

fracture toughness J,,,,,t which determines the onset of failure. Note that the fatigue life

module currently defines failure when J,,,a,, > J,,_t at either crack tip location,

conservatively taking no credit for rising toughness with tearing in ductile materials

(resistance curve analysis). The parameters Co and mo in the Paris equation (Eqn. (28))

da/dN = C0(AK) "° are transformed internally into the material constants that govern

fatigue crack growth characterized by A/(see Section 2.5). The baseline crack closure

parameter, Uo, consistent with the experimental conditions under which the Paris law
constants were derived also needs to be specified. A typical value for Uo when baseline

FCG data satisfy plane strain conditions is 0.75. The values of t_ in Newman's closure

equation are also needed for each crack tip position. It is currently recommended to select

the same value of _ at both crack tip positions. The interactive session is illustrated as

follows.

Input matl toughness value J(mat):
SYSTEM_PROMPT> 0.433

Toughness = .4330E+00

Input the parameters for the Paris equation
da/dN=C(dK)^m

Input C in Paris Law:
SYSTEM_PROMPT> 0.7066e-10

Input m in Paris Law:
SYSTEM_PROMPT> 3.235

Input the baseline U0 (possible value 0.75):
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SYSTEM_PROMPT> 0.819

Input alp for a tip (from I to 3) :
SYSTEM_PROMPT> 3.0

Input alp for c tip (from I to 3) :
SYSTEM_PROMPT> 3.0

Once the initial crack lengths, the maximum allowable number of times the load

spectrum is to be repeated and the print interval are set, NASGRO will start the

computation, show the results on screen, and write these to the output file. Step by step

interactive input for the forgoing is shown below.

Input initial CRACK length(s)
Input a:

SYSTEM_PROMPT> 0.112e-1

Input c:
SYSTEM_PROMPT> 0.112e-1

Specify max. no. of SCHEDULES, N_max, to terminate fatigue analysis?
SYSTEM_PROMPT> 200
Max. No. of Schedules = 200

Specify print interval, N_print, to control output?
SYSTEM_PROMPT> 20
Print interval = 20 schedules

RESULTS OF FATIGUE ANALYSIS:
Skdl. a c D_Jeff(a) D_Jeff(c) Jmax(a) Jmax(c) U(a) U(c)

20 1.136E-02 1.133E-02 1.702E-02 1.646E-02 1.512E-02 1.796E-02 0.43 0.44
40 1.151E-02 1.146E-02 1.721E-02 1.672E-02 1.529E-02 1.823E-02 0.43 0.44
60 1.167E-02 1.159E-02 1.740E-02 1.697E-02 1.547E-02 1.850E-02 0.43 0.44
80 1.184E-02 1.173E-02 1.760E-02 1.723E-02 1.565E-02 1.877E-02 0.43 0.44

100 1.201E-02 1.187E-02 1.780E-02 1.749E-02 1.583E-02 1.905E-02 0.43 0.44
120 1.218E-02 1.201E-02 1.800E-02 1.776E-02 1.602E-02 1.933E-02 0.43 0.44
140 1.235E-02 1.216E-02 1.822E-02 1.803E-02 1.622E-02 1.962E-02 0.43 0.44
160 1.253E-02 1.231E-02 1.844E-02 1.831E-02 1.642E-02 1.992E-02 0.43 0.44
180 1.271E-02 1.246E-02 1.866E-02 1.859E-02 1.662E-02 2.022E-02 0.43 0.44
200 1.289E-02 1.262E-02 1.889E-02 1.888E-02 1.683E-02 2.052E-02 0.43 0.44

EXCEED MAX. NO. OF LOAD SPECTRUMS (200) with a= .1289E-01, c= .1262E-01
, J_bury(max)= .1683E-01, J_surf(max)= .2052E-01, J(mat)= .4330E+00
, total no. of cycles= 3400

,1' t t ,k' t _ t Q Itl' _ tl" t IW Ilt _r tt _ Ib _

< PRESS RETURN TO CONTINUE >

Press RTN to continue (or P and RTN to obtain the print file)
(Note: The results will be in the output file.
Use the appropriate Print command for your machine)

SYSTEM_PROMPT> P
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Thebatchfile createdby NASGRO,in this case"fgsc0l .dat",canbemodified usingany
text editor or the line editing function embeddedin NASGRO. For reference,the
following lists thecontentof thebatchfile just created.

fgsc01.out Output file name
2 1-US units; 2=SI units
sc Crack Model Type
1 Crack Model Number
1 1=tension, 2=bending
.2055E+00 Thickness
•1240E+01 Width
.2969E+05 Elastic Young"s modulus
.300 Poisson"s ratio

1.000 Alpha
.1583E+03 Sigma0

6.150 n
.1583E+03 material yield stress
.2117E+03 material ultimate stress
1 1: p(max), 2:p+s(max)

.1350E+03 loading stress
1 1: p(min), 2:p+s(min)

-.1350E+03 loading stress
1 no. of cycles

1 1: p(max), 2:p+s(max)
.500E+02 loading stress
1 1: p(min), 2:p+s(min)

-.800E+02 loading stress
3 no. of cycles
-1 terminate input
2 block case no.

5 no. of times
1 block case no.

2 no. of times
-1 block case no.
.4330E+00 Jmat
.7066E-10 C in Paris Law
.3235E+01 m in Paris Law
.8190E+00 :baseline UO
.3000E+01 : alp_bury
.3000E+01 : alp_surf
.1120E-01 initial a
.1120E-01 initial c

200 max. no. of cycles
20 print interval
P P(lst col.): to print
0 1:to resume, 0: stop
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Define block case and load spectrum I
I

I
Input Paris law parameters Coand mo I

I Convert (Co, mo) into(C,m) J

I

I

I Update a=a+_a i

I

I J._x from JMODULEI

Figure 15. Flow chart for the elastic plastic fatigue crack growth and life prediction

analysis in the NASGRO EPFM module.
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11.0 Program Validation

11.1 Validation of the RSM J Solutions

Validation of the J solutions in NASGRO is accomplished by comparing the

NASGRO results with the results of elastic-plastic finite element computations of J. The

J solutions for geometries TC01 and TC02 are compared with the EPRI handbook

solutions (Kumar et al., 1981), the geometries SC01 and CC01 under tension with new
solutions from the current contract and solutions from Sharobeam and Landes (1995) and

geometry SC01 under bending with the Yagawa et al. (1993) solutions. There are no

finite element solutions available presently to substantiate the J solutions for geometry

CC01 under bending, and EC01 under tension.

TC01 under Tension and TC02 under Tension and Bending

The computed h_ values evaluated in the EPFM module of NASGRO using the

RSM are denoted by (h_) RsM and are defined in the following equations. They are

compared with values of hi from EPRI solution scheme as defined in Tables 1-6. The

jpRSM solutions used to derive (h,)RSM for the TC01 and TC02 models were derived using

the optimized RSM.

TC01 under tension:

j_sM
(h,) = : c-'e "°'' (77)

with b = W/2. The comparisons are shown in Figures 16 and 17.

TC02 under tension:

(h,) = j

with b=W. The validation results can be found in Figures 18 and 19.

TC02 under bending:

RSM

(I71)Rs" = J p

Ot_o eo b( l _ C _( M ]"+'

with b=W. Figures 20 and 21 contain the comparison between (h_)RSM

EPRI.

and h I

(78)

(79)

from

K.65



10

0.1

Ti0li.laY

/J÷ • n=5

o :n=lO

J,,,,,,,,, ":n:'I....
0.1 1 10

hi

Figure 16. Comparison of computed hi values from optimized RSM with EPRI results;

TC01, plane strain under tension.
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Figure 17. Comparison of computed hi values from optimized RSM with EPRI results;

TC01, plane stress under tension.
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Figure 18. Comparison of computed hi values from optimized RSM with EPRI results;

TC02, plane strain under tension.
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Figure 19. Comparison of computed hi values from optimized RSM with EPRI results;

TC02, plane stress under tension.
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Figure 20. Comparison of computed ht values from optimized RSM with EPRI results;

TC02, plane strain under bending.
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Figure 21. Comparison of computed h_ values from optimized RSM with EPRI results;

TC02, plane stress under bending.
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SC01 under Tension and CC01 under Tension

Validation of optimized RSM

RSM

In this validation, Jp evaluated from equation (44) is based on optimized

results of V and Po" derived from original FE results (see Appendix C) by Orient I. The

numerical values of (h I )RSM are obtained from

j_M (80)
(h,)"s=- ( o,:,

<<<,.=ott-zj
and these are validated against Orient's hi values, (hl)o,i=nt. The data matrix of these

results for hj values is shown in Tables 16 and 17 for SC01 and CC01 under tension
RSM

respectively where, in all cases, c/b=0.25. There are two numerical values of Jp ; one

for the crack tip location a corresponding to 0=90 ° for SC01 (the deepest point) and

O=81 ° for CC01 (a near surface point) and the other one corresponding to the near

surface crack tip location c corresponding to 0=9 ° for both SC01 and CC01. In all cases,

the near surface values of Je that are needed to evaluate Jve'sM were based on the

NASGRO surface K solutions. The validation against the finite element results for the

SC01 and CC01 geometries are shown in Figures 22-25. These results validate the

optimized RSM approach to surface and comer cracks and demonstrate the maximum

accuracy that can be expected from using the RSM to derive J solutions for model types

SC01 and CC01 in the absence of optimized values for Po and V, as is done in the next

section.

Table 16. Matrix of finite element hi results for SC01 under tension and c/b=0.25.

h1(_=90 °) h1(_=9 °)

a/t a/c n=5 n=lO n=15 n=5 n=lO n=15

0.2 0.2 1.117 1.416 1.644 0.252 0.320 0.370

0.2 0.6 0.672 0.847 0.981 0.352 0.416 0.465

0.2 1.0 0.435 0.556 0.646 0.383 0.450 0.503

0.5 0.2 8.516 14.811 22.309 2.139 4.512 7.615

0.5 0.6 2.976 5.186 7.881 1.916 3.205 4.808

0.5 1.0 1.630 2.804 4.198 1.658 2.599 3.738

0.8 0.2 19.369 47.496 98.941 11.273 29.512 63.511

0.8 0.6 6.178 14.780 30.806 6.449 13.685 25.890

0.8 1.0 3.270 7.625 15.533 4.728 9.472 17.231

In NASGRO, for SC01 and CC01 under tension, a hybrid reference stress method is applied as discussed
in Section 3.2. Validation of the hybrid method is presented in the next sub-section.
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Table 17. Matrix of finite element h_ results for CC01 under tension and c/b=0.25.

hi(O=81 °) hi(d#=9 °)

a/t a/c n=5 n=lO n=15 n=5 n=lO n=15

0.2 0.2 1.337 1.838 2.218 0.269 0.363 0.439

0.2 0.6 0.745 0.913 1.077 0.436 0.552 0.648

0.2 1.0 0.486 0.568 0.659 0.456 0.565 0.657

0.5 0.2 10.408 21.153 32.896 2.620 6.230 10.808

0.5 0.6 3.687 6.399 9.751 2.351 4.069 6.137

0.5 1.0 2.016 3.189 4.673 2.032 3.208 4.611

0.8 0.2 38.762 109.398 260.682 16.218 50.183 130.370

0.8 0.6 14.105 33.628 78.743 9.171 21.145 46.897

0.8 1.0 7.510 17.090 37.577 6.621 14.118 29.158

100

10

-- I I I I I I ii I

- 7 • : n=5

I I I I IIIll I I I I IIIli I I I I I II

1 10 100

(hi)orient

Figure 22. Comparison of predicted hx from optimized RSM with FE results for the near

surface crack tip location c (_=9°); surface crack under tension.
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Figure 23. Comparison of predicted hj from optimized RSM with FE results for the crack

tip location a (@=90°); surface crack under tension.
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Figure 24. Comparison of predicted hi from optimized RSM with FE results for the near

surface crack tip location c (_=9°); comer crack under tension.
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Figure 25. Comparison of predicted ht from optimized RSM with FE results for the near

surface crack tip location a (@=81 °); comer crack under tension.

Validation of the hybrid RSM module of NASGRO

In this validation, the (h,) Rsu results derived from the EPFM calculation of

NASGRO are compared with original finite element results (Tables 16 and 17). The

results are presented in Figures 26-29. In the calculations of (h t )V.SM,the net section

yield load is based on area reduction (equation (55) and Tables 9 and 10), and the value

of V with its associated model type and crack tip position was assumed constant (see

equation (45)). The corresponding value used in the analysis can also be found in the

figure. Note that arithmetic mean values of optimized V values at crack tip positions a

and c were separately used in the RSM solutions for SC01 under tension, while, for CC01

under tension, the maximum of both arithmetic mean values denoted by V,n_ was used.

The results from the EPFM module are in good agreement with the FE results even

though the hybrid approach was used. The good agreement is demonstrated by the

narrow distribution bandwidth of data points which are scattered evenly about the one-to-
one line.
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Figure 26. Comparison of predicted h, from the EPFM of NASGRO with FE results for

the near surface crack tip location c (_=9°); surface crack under tension.
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Comparison of predicted hi from the EPFM of NASGRO with FE results for

the crack tip location a ((I)=90°); surface crack under tension.
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Figure 28. Comparison of predicted hi from the EPFM of NASGRO with FE results for

the near surface crack tip location c (0=9°); comer crack under tension.
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Figure 29. Comparison of predicted hi from the EPFM of NASGRO with FE results for

the near surface crack tip location a (0=81 °); comer crack under tension.
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Additional validation of the hybrid RSM module

Further validation for the model type SC01 under tension is provided by

comparing the results for (h l)RsM derived from the EPFM module with the finite element

results of Sharobeam and Landes (1995), (hl)Sharobeam. Sharobeam investigated an almost

random combination of geometric ratios; i.e., h/t, b/c, a/t, and a/c (see Table 18). The
• "_

comparisons" are presented in Figures 30 and 31. Note that the validation for the near

surface crack tip location a is performed at _=7.5 °. As expected from the comparison

with Orient's results, the results for the deepest point obtained from the EPFM module of

NASGRO agree welt with Sharobeam's finite element results (Figure 31). For the near

surface crack tip where plane stress deformation prevails, the RSM solution gives a

conservative overestimate of hi, again consistent with the comparison between the RSM

results and Orient's solutions.

Table 18. Matrix of Sharobeam's finite element hi results for SC01 under tension.

h/t b/c a/t a/c n h1(_=90 °) hl(_= Z5 °)

8 11.429 0.700 2.000 5 0.772 1.682

4 5.425 0.600 1.627 5 1.007 1.757

4 3.397 0.589 1.000 15 8.313 8.255

4 3.951 0.506 1.000 10 2.887 2.766

8 4.000 0.500 0.500 5 3.760 2.271

12 6.849 0.400 0.457 5 2.352 1.110

8 17.133 0.400 1.713 5 0.472 0.797

4 5.425 0.300 0.814 5 0.874 0.667

4 9.385 0.213 1.000 5 0.436 0.392

4 6.053 0.160 0.484 5 0.542 0.234

4 2.439 0.820 1.000 5 5.172 10.497

4 2.283 0.600 0.685 10 15.268 12.596

4 2.994 0.668 1.000 10 8.103 9.809

4 4.378 0.800 1.751 15 4.742 9.945

16 11.978 0.668 1.000 5 2.097 2.518

2For a/c>l.2, the validation was not performed because of the validity limitations imposed by the K
solutions in NASGRO for model type SC01 (see Table 15).
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Figure 30. Comparison of predicted hi from the EPFM of NASGRO with Sharobeam's

FE results for the near surface crack tip location c (@=7.5 °) for the case of SC01 under
tension.
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Figure 31. Comparison of predicted hi from the EPFM of NASGRO with Sharobeam's

FE results for the crack tip location a (@=90 °) for the case of SC01 under tension.
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Figure 5. Linear stress approximation for CC01 and TC02.

Model type

TC01

TC02

SC01

CC01

EC01

Geometry Description

Through crack at center

of plate

Through crack at edge

of plate
Surface crack in a

rectangular plate
Comer crack in a

rectangular plate

Embedded crack in plate

Primary load

Tension only

Tension or

bending

Tension or

bending
Tension or

bending

Tension only

Secondary load
Univariant in width

direction

Univariant in width

direction

Univariant in thickness

direction

Univariant in thickness

direction

Univariant in thickness

direction

Table 11. Applicable loading conditions in NASGRO EPFM.

5.2 Geometry Substitution of SCOl by SC02

Since the NASGRO LEFM module for SC01 only accepts uniform tension and

bending loads, the SC02 model is used to evaluate K for combined primary and

secondary loading. In the SC02 model an arbitrary univariant stress distribution can be

specified and no re-characterization of the actual stress distribution is needed.

5.3 Uniform Stress Approximation for EC01 and TC01

Current EC01 and TC01 model types in the NASGRO LEFM module only accept

uniform stress distributions. Hence, the actual stress field has to be re-characterized as a

uniform stress. In addition, the secondary stress field is restricted to one that is

symmetrically distributed about the center of the crack. The mathematical equation for

the uniform secondary stress approximation for use with TC01 is
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(7-
C

(59)

Note that for this model, the stress variation is in the z-direction. A similar equation can

be derived for the model type EC01 where, however, the uniform stress is evaluated for a

secondary stress that varies in the thickness or x-direction, and the integral corresponding

to equation (59) is evaluated between x=0 and x=a.

6.0 Evaluation of J and AJ for Combined Loading

For TC01 and TC02 in which the crack dimension is described by one parameter,

c, equations (6-8) for Je and equations (10-13) for AJe are used in the program. However,

for SC01, CC01 and EC01 whose crack dimensions are described by two parameters, a

and c, the plastic correction needs to be defined differently. For instance, for the surface

crack problem (SC01), the material at the deepest point on the crack front is subjected to

plane strain deformation, whereas the surface point will undergo plane stress deformation

and, accordingly, the equations for the plastic zone correction are different. For model

types SC01, CC01 and EC01, the following equations are used to evaluate Je and AJe.

Solutions for SC01, CC01 and EC01

J(a,c,P):J,(a,,c,,P)+Jp(a,c,P) (60)

with

E"
(61)

and Jp defined according to equations (44-45) and (51-52). The effective crack lengths a,
and c_ are defined as

a, =a+dpr_, ce =c +¢r _ (62)

with
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and

1
_=

2

[_a A)12 FC(a_)12ra - 1 n-I K _ ,c,P , rC - 1 n-1 K ,c,P (63)

where superscripts a and c refer to the crack tips at locations a and c, respectively.

AJ, Solutions for SCO1, CC01 and ECOI

with

AJe# (a,c,A/3)= AJ_ # (a a,, ca, , Afi )+ AJ _ (a, c, AP )

2 2 & t_ ^

A A E t

Aj:#(a,,c,,Afi)=U AK (a,,c, ,AP)

(64)

(65)

and AJp defined according to equations (48-50) and (53-54). The effective crack lengths

a and aa_ ce are defined as

a, =a+g& c, = r_ (66)

with terms

1
_" =

I #2Po(a,c

F °(a,c")1_1 n-1 _ ,AP , (Ar_)= 1 n-1
#°_n+lL 2ao j #c_+I

(67)

Table 12 shows the values of ff and ff for model types SC01, CC01 and EC01.
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Table 12.Deformationconditionsappliedto modeltypesEC01,SC01andCC01.

Model type Deformation condition

a

Plane strain

C

6 6EC01 Plane strain

SC01 Plane strain Plane stress 6 2

CC01 Plane stress Plane stress 2 2

7.0 Algorithms for Failure Analysis

The failure algorithm computes critical crack sizes and critical loads for model

types TC01, TC02, CC01, SC01, and EC01 subjected to combined primary and

secondary loading. The critical load computation is based on the primary load, while the

secondary load is held fixed. For brittle materials containing cracks with two degrees of

freedom, the assessments are made with respect to J values evaluated at the c-tip or a-tip,

whichever is the first to violate the brittle failure criterion. For ductile materials, the

assessments are restricted to the a-tip. To facilitate the computations when assessing the

critical crack sizes, the crack geometries with more than one degree of freedom (i.e.,

CC01, SC01, and EC01) are reduced to one degree of freedom flaws by restricting crack

shape development to either cracks with constant aspect ratio, or to cracks which can

only extend in the a-direction (through the thickness) and whose length in the c-direction
remains constant.

7.1 Determining Critical Crack Sizes

Algorithm for Determining the Limit Crack Length (ALIMIT)

The limit crack length ati,,,it is the crack length at which plastic collapse will occur

for the given applied load. It serves as an upper bound value in the search for initial and

critical crack lengths. Plastic collapse is assumed to occur when the reference stress

defined by equation (18) equals the material flow stress 0.5(o,.+Oy). While the routine is

searching for atirat, a check for geometry bounds and NASGRO validity bounds is

constantly carried out. The flow diagram describing the search method is shown in Figure
6.

Algorithm for Calculating Critical Crack Sizes (Brittle Materials) and Initiation Crack

Sizes (Ductile Materials) (AN1T)

The initiation crack size ainit is determined by numerically solving the equation

J(ai,,, + Aab,/3): J,,a, (68)

where Jmat is the material toughness evaluated at the blunting tear length and dab is the

blunting length defined as
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Brittle materials:

Ductilematerials:

Jmat

20"y_
(69)

4J_+4J2(Jmat-Jo)-J1
Aa b = , for quadratic JR curves

2J 2

I

IJI)
, for power law JR curves

(70)

For brittle materials, the initial crack size will extend by blunting under combined loads

/3 to fail at Jmat. For ductile materials, this routine provides the crack size at the initiation

of ductile tearing which provides a lower bound value in the search for the critical crack

size. Figure 7 shows the flow diagram indicating how the search for ainit is performed.

Note that the initiation crack length does not include the blunting tear length.

Algorithm for Calculating Critical Crack Sizes in Ductile Materials (ACRIT)

This routine calculates the critical crack size for ductile instability preceded by

ductile tearing. The following equations simultaneously are solved

J(a)= J R(Aat )

dJ dJ R

da d(Aa,)

(71)

for a =acrit +Aa, by finding the maximum ac,_t that satisfies both equations. The

searching starts from a crack size ainit where ainit is the initiation crack size. During the

search, the tear length z_t corresponding to the current J value is needed. This is
calculated as follows.

_ 4J? +4J2(J-Jo)-Jl
, for quadratic JR - curves

2J2

I

_, = J J_ , for power law JR -curves

(72)
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Thecritical cracksize,acrit, is defined as that size that will extend by tear and eventually

result in ductile instability under the prescribed combined primary and secondary loads.

Hence, the crack size when ductile instability takes place, ainst, is given by

ai_ , = acri, + Act, (73)

The flow diagram describing the search procedure is shown in Figure 8.

7.2 Determining Critical Loads

Algorithm for the Limit Primary Load (PLIMIT)

The limit load Pl_,,at is the load at which plastic collapse will occur for the given

crack size. It serves as an upper bound in the search for initial and critical loads. The

value of the limit load is given by the net section yield load multiplied by the ratio

0.5(cru+er)/Cy.

Algorithm for Calculating Critical Loads (Brittle Materials) and Initiation Loads (Ductile

Materials) (PINIT)

The load to initiate crack growth is determined by numerically solving the

equation

J(a+ +s)- (74)

for Pmit, where a is the given crack size and P and S indicate primary and secondary

loads, respectively. Aab is given by equations (69) and (70). For brittle materials,

Pc,it=P_,it, while for ductile materials Pi,,it provides a lower bound in the search for the

critical load. The flow diagram indicating illustratively how the search routine is

performed is shown in Figure 9.

Algorithm for Calculating Critical Loads for Ductile Materials (PCRIT)

The critical load for ductile materials is obtained by finding the maximum value,

Pcr_t, of P as a function of tear length, Aat, where P is the solution to the equation

J(a + Aa,,P + S): JR (Aa,) (75)

Figure 10 illustrates the search mechanism used to solve for Peat.
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Routine 1ALIMIT

I A,,,_--O.5(a,,+oy)/oo [

la:OI

I Aa=thickness/50. ]

_l _ +_ I

C cul

Ai:!'?}!Cl I _ r o I

/ j_s

v _ Yes

I o',-',:aI

Figure 6. Procedure to determine the limit crack length a.m..
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RoutineANiT1

a=a+Aa

a=a-Aa

Aa=0.25Aa

a=a-Aa

Calculate J

Yes

e>0?
No

E =(Jmat-J)/Jmat

lel < err ?

.Yes

Calculate crack

tip blunting,Aab

la" 'l

Figure 7. Procedure for the initiation crack length ain..
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Rou6ne 1
ACRIT

dtemp=ai-2+_)i-2

Aa=O. 1 (ai+_)_-a,,mp)

ai---a-Aa

I Evaluatea,,_ by solvingJ( a,,_ )------_(Aa_ )

t

l aa=<a,,.,_a,.,_aa_,u.,)/lol

I

Evaluate the teaJAar I

Iby solving/(a0--,/R(Aa0

_=Aar

oc,=a_-Aar

£=O_i-(Zi-I

Yes

I 'y=l£/Oa-/I J

ac,_-a_t-Aa¢

Figure 8. Iteration procedure for the critical crack length acrit.
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RoutinepiN1T1

EvaluatethebluntingAab

Evaluatethe limit loadP,.,.

corresponding to ab=a+Aab

I,=ol

I AP=Pli_id50 l

Return)

Figure 9. Procedure to determine the initiation load Pin_t.
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I RoutinepCRiTl!

Aa_(a_ona-a) ]

wherea_ud is the validity ]
limit of the NASGRO K solutionl

1

_N° 1
I :. _11_°--°._a_

ain=aao---a-Aa

i

[Evaluat_,,a,,,,_]
't'

ai+ l-.=g_i+ l-2_a

Aa=O.2Aa

ai+1=ai+ l-Aa

i EvaluatePi+t corresponding toJR(Aai+l) using PINIT

No+
I "_r,o",I

Figure 10. Procedure to determine the critical load Pcrit.
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8.0 Rules for Calculating J, AJ and the R ratio

Consistent with similar rules encoded in NASGRO for cyclic crack growth under

linear elastic conditions, rules have been drawn up to take into account the relative

magnitudes of Kmax and K_an. For instance, under some circumstances the maximum and

minimum loads specified by the user may result in a Km_x value less than the Kmin value,

and, therefore, the values of Km_ and Kmin have to be interchanged in determining AK.

The rules are summarized in Tables 13 and 14, where superscripts P and S refer to

primary and secondary loads. Table 13 lists the rules for calculating the elastic

components, Je and AJe, as well as the R ratio, KmaxlK_n. It identifies the maximum and

minimum loads used in the computation for combined loading. Similarly, Table 14 lists

the rules for calculating plastic components, Jp and A/p, in which only the primary load is
of consideration.

Table 13. Rules for calculating Je, AJe and R.

Initially calculated values Parameters used in the calculation of J,, AJe, and R

MonotonicK_ K e+S
man K_' -K_:

gmllx

Positive Positive Positive K e+s

Positive Positive Negative Kr,_+s

Positive Negative Positive KV+_s

Negative Positive Negative Stop

PositiveNegative

Negative

Negative

Negative Negative

g II'_x

K__
K,_;s
K__

Stop Stop Stop

Stop Stop Stop

Cyclic

AK R

r _ _- r,_;_ 1- aK/ r_
K_ s - r e+s 1 - AK/Kr_--max

K_ _- K,_;_ 1- _ /r_
K,_7- K,Zs 1- _ /K,,.

Stop

Stop

Table 14. Rules for calculating Jp and Alp.

Initially calculated values

KL

Positive

K£

Positive

KL - K,_n

Positive

Parameters used

Monotonic

gnlalt

KL

in the calculation of Jp and Alp

Cyclic

K_ AK

KL K L -K_n

Positive Positive Negative Kmaxe K_ Ke_ - Ke,_

Positive Negative Positive K_e K,_e

Negative Positive Negative Stop

Positive Stop

Stop

Negative

Negative Negative

Ken_¢ -K_n

K_i _ K_,, -Ke,_

Negative

Negative

Stop

Stop

Stop

Stop
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9.0 Validity Limits for J Solutions

Table 15 lists the validity limits of the J solutions incorporated in the NASGRO

elastic-plastic J module and the NASGRO linear elastic fracture mechanics module.

Table 15. Validity limits in elastic-plastic J module

Model Loading EPRI Reference stress NASGRO elastic

type method module
TC01 Tension 103<2clW<0.875 10-3<2clW<0.875 O<c<WI2

1<n<20 n> 1

TC02 Tension 103<clW<0.875 103<clW<0.75 0<c<W

1<n<20 n> 1

Bending 103<clW<0.875 10-_<c/W<0.75 0<c<W
l<n<20 n>l

EC01 Tension N/A O<2c<W, 2clW<0.5 0<2c<W, 2c/W<0.5

O<a<tl2, alc>O 0<a<t/2, alc>O

n>l

CC01 Tension N/A O<c<W, 0<a<t O<c<W, O<a<t
103<a/c< 1000 10-3<a/c< 1000

n>l

Bending N/A 0<c<W, 0<a<t 0<c<W, 0<a<t
103<a/c< 1000 10-3<a/c< 1000

n>l

SC01 Tension N/A 0<c<W/2, 0<a<t O<c<W/2, 0<a<t

0.05<a/c< 1.2 0.05<a/c< 1.2

n>l

Bending N/A O<c<W/2, 0<a<t 0<c<W/2, 0<a<t
O.05<alc< 1.2 0.05 <a/c< 1.2

n>l

10.0 How to use the NASGRO EPFM Module

Figure 11 shows how the EPFM module interfaces with NASGRO. New users are

encouraged to use the flow diagrams illustrated in the following examples as a road map

to help them navigate the available options.

10.1 How to Run an Elastic-Plastic J.Integral Calculation

The flow diagram showing the menu structure of the elastic-plastic J module is

displayed in Figure 12. Figure 13 displays its execution structure. Both figures provide

enough information for the available options for the user to navigate the program.

When the program is executed, the main menu of NASGRO shows the available

analysis modules. In this release, the menu is
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Enter one of the following options:

1 Safe Life Analysis
2 Critical crack size computation
3 Stress-intensity factor solution
4 da/dt life analysis (e.g., for glass)
5 Elastic-Plastic J computation
6 Elastic-Plastic failure analysis
7 Elastic-plastic fatigue life analysis
0 Terminate session

Notes:
1. Once an analysis option is chosen and data input

is in progress, entering a minus sign (-)
will cause moving back to the previous prompt.

2. Always press Enter key to complete an entry.
SYSTEM_PROMPT> 5

where the system prompt for the user's input is denoted by SYSTEM_PROMPT>. Users

should choose option 5 for the elastic-plastic J calculation. Following this choice, the

sub-menu below lets the user choose the type of session.

Enter type of session for elastic-plastic J module:

0 m Interactive - Input and computation
1 m Interactive input while creating s batch file
2- Batch - computing only (run using a batch data file)
3- Edit an existing batch file
(Note: option 1 must be used before option 2 or 3)
SYSTEM_PROMPT> 0

Option 0 provides users a line-by-line interactive input mode. In addition to the simple

functions given by option 0, option 1 records every data entry and saves them as a batch

file which can be executed later by the user choosing option 2. Option 3 can be used to

modify the batch file created by option 1.

Interactive Input Mode

When the interactive input mode (either option 0 or 1) is activated, NASGRO will

prompt the user to enter the filename for storing output data and the units for the analysis.

The filename can be any alpha-numeric combination up to 12 characters long. The sub-

menu shown below follows. This displays the available models in the NASGRO elastic-

plastic J module. At any data entry stage from this point on, the user can type "-" to go

back to the previous prompt.

Enter a model type from the following:
TC Through Crack
CC Comer Crack
EC Embedded Crack
SC Surface Crack
SYSTEM_PROMPT> tc
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Select the desired model type. Depending on which model type is chosen, another sub-

menu will appear right after your selection. For instance, for a TC (through crack) model,

two subsequent sub-menus will be

Which method is to be used for estimating the elastic-plastic J?
1... EPRI (Electric Power Research Institute) Solution Scheme
2... RSM (Reference Stress Method) Solution Scheme
SYSTEM_PROMPT> 1

and,

Select the deformation constraint:
1... Plane Strain (PE)
2... Plane Stress (PS)
SYSTEM_PROMPT> 2

However, there are no such options for model types; CC, EC, and SC. After the selection

is made, another sub-menu shows available geometries for a specific model type. For the

model type TC, the sub-menu should be

Enter a Number from left column to select a THROUGH crack case:
I .... TC01 - in center of plate
2 .... TC02 - single edge crack
SYSTEM_PROMPT> I

After deformation constraint, geometry and model types are selected, another sub-menu

indicating the loading type will appear. At present, model types TC02 (edge crack), CC01

(comer crack), and SC01 (surface crack) have available tension and bending loads as

separately applied loads, and model types TC01 (center crack) and EC01 (embedded

crack) have only tensile loading available. For example, after option 2 (TC02-single edge

crack) of the above sub-menu is selected, another sub-menu appears as follows:

Enter a Number from left column to select the loading option for the TC02
geometry:
1 .... TENSION - single edge crack in remote tension
2 .... BENDING - single edge crack subjected to bending
SYSTEM_PROMPT> 1

The next selection is to define the geometry dimensions. The number of required

geometric parameters depends on the model type being selected. Nonlinear material

properties are required next in the form of a Ramberg-Osgood uniaxial stress-strain

equation

e G + o_ (76)
F.o G o

where E is the total strain, c is the applied stress, and _,, Go, (x and n are material

constants. The program will prompt the user to provide the elastic modulus, E=_o/Eo,
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elasticPoisson'sratiov, andthe Ramberg-Osgoodconstantsct,n and Oo. The interactive
session continues as follows.

Geometric Model In use: TC01

Enter Plate Width, W:
SYSTEM_PROMPT> 20

Plate Width, W = 20.0000

Enter Plate Thickness, t:
SYSTEM_PROMPT> 0.1

Plate Thickness, t = .1000

ELASTIC-PLASTIC J CALCULATION FOR TC01

DATE: 14-Jui-98 TIME: 14:05:25
(computed: NASAJFLAGRO Version 3.00, October 1995.)

Elastic-Plastic Fracture Module (EPFM) V.1.01, Feb. 1998
SI units [mm, MPa, MPa sqrt(mm)]

Input Filename = test.dat
Output Filename = test.out

Plate Thickness, t = .1000
" Width, W = 20.0000

Specify the Nonlinear Materlal Behavlor

Eps/Eps0=Sigma/Slgma0+alpha*(Slgma/Slgma0)**n

with Elastic Modulus defined by Slgma0/Eps0

Enter Elastic Modulus:
SYSTEM_PROMPT> 3000.0

Elastic Modulus= .3000E+05

Enter Polsson"s Ratio:
SYSTEMPROMPT> 0.3

Polssons Ratio= .3000E+00

Enter alpha:
SYSTEM_PROMPT> 1.0

Alpha = .1000E+01

Enter Slgma0:
SYSTEM_PROMPT> 100.0
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Sigma0 = .1000E+03

Enter n:
SYSTEM_PROMPT> 10.0

n = .1000E+02

Enter Material Yield Stress
SYSTEM_PROMPT> 100.0

Material Yield Stress = 100.00

Enter Material Ultimate Stress
SYSTEM_PROMPT> 150.0

Material Ultimate Stress = 150.00

The next section is to specify the combined primary and secondary loads. The applied

loads are defined in terms of nominal (P/A) or linear elastic stresses as indicated in the

NASGRO user's manual. The following illustrates the interactive session.

Specify the loading condition
1 -- Primary Load only
2 -- Primary Load and Secondary Load

SYSTEM_PROMPT> 1

PRIMARY LOAD:
Enter stress, S0: Tensile Stress

SYSTEM_PROMPT> 40.0

PRIMARY LOADS: S0: Tensile Stress
S0 = 40.00

NO SECONDARY LOAD SPECIFIED

After all the material constants, geometry parameters and applied loads are

defined, the next phase is to define the flaw sizes. There are two data input formats as

shown in the following prompt.

Interactively input the crack size or tabulate the data incrementally?
1... Interactive input
2... Tabulate the data incrementally
SYSTEM_PROMPT> 1

Option 1 prompts the user to provide the defect size interactively (line-by-line) and use

"-1" to terminate the data entry. Option 2 gives the user the option to specify the range of

the defect size with a preferred increment size to create a tabular output format. For

example, for the model type TC01, a specified number of increments, n,,,_, with a

preferred range of defect sizes defined by c,,,_ and c,,,i_ gives a tabular output of J,, Jp, and

J as a function of defect size with increment size c_,,_ =(c,,,,=-c,,_,,)/n_,,_. In this example,

option 1 is selected.
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Enter crack size, c (or -1 to stop) :
SYSTEM_PROMPT> 0.3

Enter crack size, c (or -1 to stop) :
SYSTEM_PROMPT> 0.6

Enter crack size, c (or -1 to stop) :
SYSTEM_PROMPT> 1.0

Enter crack size, c (or -1 to stop) :
SYSTEM_PROMPT> 1.5

Enter crack size, c (or -1 to stop) :
SYSTEM_PROMPT> 2.0

Enter crack size c (or -1 to stop) :
SYSTEM_PROMPT> 3.0

Enter crack size c (or -1 to stop) :
SYSTEM_PROMPT> -1

Once the flaw sizes are specified, NASGRO will start the computation and display the

results on screen. The results for the forgoing input are shown as follows.

*** EPRI Solution Scheme***

Model Code= TC01 (Plane Stress Condition)

c Je Jp J
.3000 .531463E-01 .381383E-04 .531845E-01
.6000 .106655E+00 .930886E-04 .106748E+00

1.0000 .179282E+00 .204742E-03 .179486E+00
1.5000 .273589E+00 .445110E-03 .274034E+00
2.0000 .373905E+00 .893188E-03 .374799E+00
3.0000 .603615E+00 .360880E-02 .607224E+00

********** *_********

< PRESS RETURN TO CONTINUE >

Batch Mode

Option 1 (interactive input while creating a batch file) in the session menu for

elastic-plastic J module needs to be completed prior to activating this batch-job mode.

The system prompt in the batch mode requests the user to provide the filename of an

existing batch data file. This batch data file can also be modified by using option 3 in the

session menu for elastic-plastic J module without running the time-consuming interactive

data input mode again. This editing feature can be used after creating a data file in

option 1 without quitting NASGRO. However, users can modify an existing batch file

using any ASCII editor. The following lists the content of the batch file just created.
test.out Output file name*12

2 1=US units; 2=SI units
tc Crack Model Type
1 I=EPRI, 2=RSM
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2 1=plane strain (PE), 2=plane stress(PS)
1 Crack Model Number
.2000E+02 Width
.1000E+00 Thickness
.3000E+05 Elastic Young"s modulus
.300 Poisson"s ratio

1.000 Alpha
.1000E+03 Sigma0

10.000 n
.1000E+03 material yield stress
.1500E+03 material ultimate stress
1 1: Primary, 2: Primary+Secondary

.4000E+02 loading stress
1 l=lntereactively input, 2=create a table
.3000E+00 c(1)
.6000E+00 c(2)
.1000E+01 c(3)
.1500E+01 c(4)
.2000E+01 c(5)
.3000E+01 c(6)

-.1000E+01 end of input
P P(lst col.): to print
0 1:to resume, 0: stop

Choose
Analysis
Module

NASFLA

Module

Ir lr

NASMAT NASBEM

Module Module

r

Elastic-Plastic

Module

Terminate

Session

Figure 1 l. Overall program flow diagram.
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Through Crack [(TC01 & TC02)

TC02C:enter cracked plate

Edge cracked plate

I
1 1

I Bending or >Tension

I
1

Input Nonlinear
Material Properties

and Dimensions

EPRI or

Optimized
Reference Stress

J Estimate

T C: Through Crack

CC: Comer Crack
EC" Embedded Crack
SCI Surface Crack

I

I Comer Crack I(CC01)

Tension orBending

I S(UrfscoC;ack [
Embedded Crack }

(EC01 ) [

i p

Input Nonlinear
Material Properties

and Dimensions

1
Reference Stress

J Estimate

Figure 12. Menu structure of the elastic-plastic J module
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if

MODE="IPUT"

Call IJXXXX

to Input Geometr_
Data

Through
Center Crack
under Tension

Through Edge Crack[

under Tension [

or Bending ]

I I

Interpolation

Choose Geometry,Model type

1
if _MODE="CALC"

or "PRUF"

1
Start

J Module

MODE="OPUT"

Perform Geometry,

Accuracy, Net Section
Stress Check

Call SIXXXX

for Stress

Intensity Factor

Embedded

Elliptical Crack
under Tension

Optimized
Reference

Stress J Est.

Comer Crack
under Tension

or Bending

Reference
Stress J Estimate

Surface Crack
under Tension

or Bending

Figure 13. Computing scheme of the elastic-plastic J module
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10.2 How to Perform a Failure Analysis

An example showing how to perform a step-by-step failure analysis for model

type SC01 is demonstrated. After the greeting screens pass, the main menu of NASGRO

follows. To activate the option for failure analysis, option 6 should be chosen. The

system prompt for user's input is denoted by SYSTEM_PROMFI'>. The user may refer to

Figure 14 for the program structure of this module.

Enter one of the following options:

1 Safe Life Analysis
2 Critical crack size computation
3 Stress-intensity factor solution
4 da/dt life analysis (e.g., for glass)
5 Elastic-plastic J computation
6 Elastic-plastic failure analysis
7 Elastic-plastic fatigue life analysis
0 Terminate session

Notes:
1. Once an analysis option is chosen and data Input

is in progress, entering a minus sign (-)
will cause moving back to the previous prompt.

2. Always press Enter key to complete an entry.
SYSTEM_PROMPT>6

A sub-menu indicating available ways of file handling mainly concerning input and

output appears. It lists the standard NASGRO ways of file processing. Option 0 prompts

the user for input without saving. Option 1 lets the user save the input as a separate file

and later the user can use (option 2) or modify (option 3) that batch data file. Option 2 is

to run the program using the batch file created using option 1. The last option provides

the user a line editing capability to modify any text file. In this example, option 1 was
selected.

Enter type of session for elastic-plastic J module:

0 Interactive - Input and computation
1 Interactive Input while creating s batch file
2 Batch - computing only (run using a batch data file)
3 Edit an existing batch file

(Note: option I must be used before option 2 or 3)
SYSTEM_PROMPT>I

Following this option, the program proceeds to prompt for filenames of batch processing

and data output as well as the units in the analysis.

Enter the name of batch file to use (up to 12 alpha-numeric characters):
Enter RTN only to return to main menu

SYSTEM_PROMPT>fasc01.dat

Enter file name for output (up to 12 alpha-numeric characters):
SYSTEM_PROMPT>fasc01.out

K.48



Enter type of units:

1 U.S. Customary Units [inches, ksi, ksi sqrt(in)]
2 SI Units (International System) [mm, MPa, MPa sqrt(mm)]

SYSTEM_PROM PT>2

Next, NASGRO will prompt for the model type, the primary loading type, geometric

dimensions, and parameters describing nonlinear material behavior. In this release, only

Ramberg-Osgood type of material behavior was implemented. Required parameters

include Go, E, o_, and n in the Ramberg-Osgood equation as well as yield and ultimate

stresses, O'ys and _ult, for the assessment of limiting values. The interactive session is

given as

Enter a Model type from the following :

TC Through Crack
CC Corner Crack
EC Embedded Crack
SC Surface Crack

SYSTEM_PROMPT>SC

Enter a Number to select a SURFACE crack case:

1 .. SC01 - in finite width plate
SYSTEM_PROMPT>I

SC01

Geometric Model in use: SC01

Enter a Number to select the loading option for the SC01 geometry:

1 .. TENSION - surface crack in remote tension
2 .. BENDING - surface crack under bending in the thickness direction

SYSTEM_PROMPT>I

Enter Thickness, t:
SYSTEM_PROMPT>1.0

Thickness, t = 1.0000

Enter Width, W:
SYSTEM_PROMPT>20.0

Width, W = 20.0000

[Note: Solution accurate if a/c > or = 0.05 AND aJc < or = 1.2]

ELASTIC-PLASTIC ANALYSIS FOR CRITICAL CRACK�LOAD FOR SC01

DATE: 17-Jun-98 TIME: 15:18:47
(computed: NASA/FLAGRO Version 3.00, October 1995.)

Elastic-Plastic Fracture Module (EPFM) V.1.01, Feb. 1998
SI units [ram, MPa, MPa sqrt(mm)]
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Input Filename = fasc01.dat
Output Filename = fasc01.out

Plate Thickness, t = 1.0000
" Width, W = 20.0000

Specify the Nonlinear Material Behavior

Eps/Eps0=Sigma/Sigma0+alpha*(Sigma/Sigma0)**n

with Elastic Modulus defined by Sigma0/Eps0

Enter Elastic Modulus:
SYSTEM_PROMPT>30000.

Elastic Modulus= .3000E+05

Enter Poisson"a Ratio:
SYSTEM_PROMPT>0.3

Poissons Ratio= .3000E+00

Enter alpha:
SYSTEM_PROM PT>1.0

Alpha = .1000E+01

Enter Sigma0:
SYSTEM_PROMPT>100.

Sigma0 = .1000E+03

Enter n:
SYSTEM_PROMPT>10.

n = .1000E+02

Enter Material Yield Stress
SYSTEM_PROMPT>100.

Material Yield Stress =

Enter Material Ultimate Stress
SYSTEM_PROMPT>150.

Material Ultimate Stress =

100.00

150.00
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Figure 14. Flow chart for the failure algorithm in the NASGRO EPFM module.
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To facilitate the computations when assessing crack geometries with more than one

degree of freedom, these are reduced to one degree of freedom flaws by restricting crack

shape development either to maintaining a constant aspect ratio, or to cracks extending

only in the a-direction (through the thickness) with the c-tip being fixed. The following

system prompt asks the user's input for the proper reduction method.

Specify the following data for elastic plastic
failure analysis

Analysis with constant aspect ratio or constant crack length (c-tip)
1... constant aspect ratio
2... constant crack length along c-direction

SYSTEM_PROMPT>I

iasp = 1

Enter aspect ratio:
SYSTEM_PROMPT>0.2

Constant aspect ratio = .2000E+00

Next, the user specifies whether a critical crack or critical load analysis is required.

Search for critical crack length or critical load
1... critical crack
2... critical load

SYSTEM_PROMPT>I

icrit = 1

The user then specifies whether a brittle or a ductile failure analysis should be performed.

Specify the type of failure analysis
1... brittle analysis
2... ductile analysis

SYSTEM_PROMPT>2

imech = 2 : Ductile analysis is performed

A critical toughness, Jmat, is required for both types of failure analysis. For ductile failure

analysis, that characterizes the onset of crack extension. In addition, the user needs to

specify the form of the resistance curve, JR, as well as the maximum tearing length, Aamax

for which the form is valid. JR can be expressed as either a quadratic or power law in the

tear length, Aat. In this example, a quadratic form is selected.

Enter material toughness value (Jmat):
SYSTEM_PROMPT>0._

Material toughness value (Jmat) = .2000E+00

Enter the function type of resistance curve
1... quadratic form (J=dj0+djl*x+dj2*x^2)
2... power law (J=dll"x^d|2)
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SYSTEM_PROMPT>I

npow = 1 (1: quadratic, 2: power law)
Values for dj0, d]l, dj2, and da(max)
Enter dj0 first

SYSTEM_PROMPT>0.175

dj0 = .1750E+00

Enter djl
SYSTEM_PROMPT>IS.0

djl = .1500E+02

Enter dj2
SYSTEM_PROMPT>-75.0

dj2 = -.7500E+02

Enter da(max)
SYSTEM_PROMPT>0.1

da(max)= .1000E+00

Model Code= SC01 under uniform tension

The following interactive session illustrates how to provide NASGRO loading

information including the specification of primary and secondary loading. In this

example, model type SC0! can have univariant stress distribution along x-direction as

discussed in Section 5.2. Loads are specified as nominal or linear-elastic stresses.

Interectively input the load increment or tabulate the data Incrementally?
1... Interactively Input
2... Tabulate the data incrementally?

SYSTEM_PROMPT>I

1... Primary Load only
2... Primary Load plus Secondary Load

SYSTEM_PROMPT>2

0... Stop input
1... Input new loading data

SYSTEM_PROMPT>I

PRIMARY LOAD:
Enter stress, S0: Tensile Stress

SYSTEM_PROMPT>100

SECONDARY LOAD:
Enter values of non-dimensional positions and

stress for the Secondary Load (Linear or Nonlinear)

*Nondimensional positions for SC01 are defined as x/t
x is along the thickness (t) direction and from the
surface where the crack Initiates
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Enter Non-dimensional position 1 (terminate input by -1)
SYSTEM_PROMPT>0.

Enter Stress 1
SYSTEM_PROMPT>100.

Enter Non-dimensional position 2 (terminate input by -1)
SYSTEM_PROMPT>0#.

Enter Stress 2
SYSTEM_PROMPT>96.

Enter Non-dimensional position 3 (terminate input by -1)
SYSTEM_PROMPT>0.4
Enter Stress 3

SYSTEM_PROMPT>84.
Enter Non-dimensional position 4 (terminate input by -1)

SYSTEM_PROMPT>0.6
Enter Stress 4

SYSTEM_PROMPT>64.
Enter Non-dimensional position 5 (terminate input by -1)

SYSTEM_PROMPT>0.8
Enter Stress 5

SYSTEM_PROMPT>36.
Enter Non-dimensional position 6 (terminate input by -1)

SYSTEM_PROMPT>1.0
Enter Stress 6

SYSTEM_PROMPT>0.
Enter Non-dimensional position 7 (terminate input by -1)

SYSTEM_PROMPT>-1

SECONDARY LOAD DISTRIBUTION:
Norm. x Stress
.00 .1000E+03
.20 .9600E+02
.40 .8400E+02
.60 .6400E+02
.80 .3600E+02

1.00 .0000E+00

0... Stop input
1... Input new loading data

SYSTEM_PROMPT>I

PRIMARY LOAD:
Enter stress, SO: Tensile Stress

SYSTEM_PROMPT>130.
0... Stop input
1... Input new loading data

SYSTEM PROMPT>0

At this stage, the input phase for the necessary information is completed, and NASGRO

will perform the necessary computation and display the results on screen.

TABLE OUTPUT (Fixed a/c=- .200E+00):
Pri. Load a_init a_crit a_inst da(tear) P/P0_init P/P0_crit PIP0inst
.100E+03 .276E-01 .567E-01 .108E+00 .510E-01 .100E+01 .100E+01 .100E+01

ERROR[JSC01]: exceeds plastic collapse Ioadl
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a=. 198E-01, c= .540E+00 Smax=. 130E+03

ERROR[JSC01]: exceeds plastic collapse load!
a= .198E-01, c= .540E+00 Smax: .130E+03

ERROR[JSC01]: exceeds plastic collapse load!
a: .168E-02, c: .540E+00 Smax: .130E+03

•130E+03 .397-308 .397-308 .510E-01
* (1) : exceed plastic collapse Ioadl

_t It Q /It tt ttt tt ft #

< PRESS RETURN TO CONTINUE >

_Q_t_Qtt

*(i)

Press RTN to continue (or P and RTN to obtain the print file)
(Note: The results will be in the output file.
Use the appropriate Print command for your machine)

SYSTEM_PROMPT>P

The first set of results, for a primary load of 100 ksi, shows calculated values of the

significant crack depths (initiation depth, critical depth, instability depth, and the tear

length). The second set of results, for a primary load of 130 ksi, demonstrates the error

messages that the user receives when the input primary load exceeds the plastic collapse
load.

The batch file just created can be used to re-run the program using option 2. For
reference, the content of the batch file is listed below.

fasc01.out Output file name*12
2 1=US units; 2=SI units

sc Crack Model Type
1 Crack Model Number
1 1=tension, 2=bending
.1000E+01 Thickness
.2000E+02 Width
.3000E+05 Elastic Young"s modulus
.300 Poisson"s ratio

1.000 Alpha
.1000E+03 Sigma0

10.000 n
.1000E+03 material yield stress
.1500E+03 material ultimata stress
1 1: const, asp. 2: const, length

.2000E+00 constant aspect ratio
1 1: crit. crack 2: crit. load
2 1: brittle, 2: ductile

.2000E+00 matl toughness
I I: quad. 2: power

.1750E+00 dj0 - quadratic

.1500E+02 djl - quadratic
-.7500E+02 dj2- quadratic
.1000E+00 da(max) - quadratic
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1
2
1 0:stop,

.1000E+03
.0000E+00
.1000E+03
.2000E+O0
.9600E+02
.4000E+00
.8400E+02
.6000E+00
.6400E+02
.8000E+00
.3600E+02
.1000E+01

1= interactively Input, 2= create a table
1= pri., 2=pri. & aec.

1: cent
loading stress

Non-Dimensional position
Stress value
Non-Dimensional position
Stress value
Non-Dimensional position
Stress value
Non-Dimensional position
Stress value
Non-Dimensional position
Stress value
Non-Dimensional position

.0000E+00 Stress value

-.1000E+01 Non-Dimensional position
1 0:stop,.1: cent

.1300E+0:_" loading stress
0 0:stop, 1: cent

P POst col.): to print
0 1:to resume, 0: stop

10.3 How to Run an Elastic.Plastic Fatigue Crack Growth Calculation

The user should refer to Figure 15 as the roadmap to help them understand the

main program flow for the elastic-plastic fatigue crack growth computation. After the

program is executed and the screen displays the main menu of NASGRO, option 7 should
be chosen to initiate an EPFCG calculation. In this release, the main menu and the user

input (after SYSTEM_PROMPT>) should be

Enter one of the following options:

1 Safe Life Analysis
2 Critical crack size computation
3 Stress-intensity factor solution
4 da/dt life analysis (e.g., for glass)
5 Elastic-plastic J computation
6 Elastic-plastic failure analysis
7 Elastic-plastic fatigue life analysis
0 Terminate session

Notes:
1. Once an analysis option is chosen and data input

is in progress, entering a minus sign (-)
will cause moving back to the previous prompt.

2. Always press Enter key to complete an entry.
SYSTEM_PROMPT> 7

A sub-menu for option 7 now appears. It lists the available ways of NASGRO file

processing. Option 0 prompts the user for input without saving. Option 1 saves the input

as a separate file that can be run later as a batch file. Option 2 is the option to run the

program with the batch file created using option 1. Option 3 lets users modify the batch
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file andthenuseoption 2 to re-runthe program.In this example,option 1 wasusedto
stepby stepcreateabatchfile for futurereference.

Enter type of session for elastic-plastic J module:

0 Interactive - input and computation
1 Interactive Input while creating a batch file
2 batch - computing only (run using a batch data file)
3 Edit an existing batch file

(Note: option 1 must be used before option 2 or 3)
SYSTEM_PROMPT> 1

Then the program proceeds to prompt for the filenames of the batch and data output files,

as well as the units used in the analysis.

Enter the name of batch file to use (up to 12 alpha-numeric characters):
Enter RTN only to return to main menu

SYSTEM_PROMPT> fgsc01.dat

Enter file name for output (up to 12 alpha-numeric characters):
SYSTEM_PROMPT> fgsc01 .out

Enter type of units:

1 U.S. Customary Units [inches, ksi, ksi sqrt(in)]
2 Sl Units (International System) [mm, Mpa, Mpa sqrt(mm)]
SYSTEM_PROMPT> 2

After filenames for file processing and units have been provided, NASGRO will prompt

for the model type, the primary loading type, geometric dimensions, and parameters

describing nonlinear material properties used in the elastic-plastic fatigue analysis. The

available primary loading type depends on the model type that was chosen. In this

example of model type SC01, the primary load can be either tensile or bending. For the

material behavior, in addition to yield stress and ultimate stress, NASGRO requires

Ramberg-Osgood material parameters to describe the nonlinear material stress-strain

relation given by e/e 0 =o'/cr o +tr(tr/tro)" where ct, n, co, and tr0 are material constants.

Under elastic-plastic cycling, the constitutive properties of some materials change

gradually from their monotonic values towards stable cyclic values due to cyclic

hardening or softening. The resulting stable cyclic Ramberg-Osgood properties are

sometimes denoted by adding a "prime" to the material constant symbols: og, ts0', Co', n'.

The selection of monotonic or cyclic constitutive properties can have a significant effect

on the calculated values of AJeff. In general, cyclic properties should be chosen when the

(uncracked) component in question experiences reversed plastic deformation. In the

absence of reversed plastic deformation, monotonic properties are generally an

appropriate choice. When in doubt, calculations should be completed with both

monotonic and cyclic properties, and the more conservative answer selected. Guidelines
for the estimation of these material properties, along with further discussion of these

issues, are provided in Section 3.5.2 of the main body of the final report.
The interactive session continues as follows.
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Enter a Model type from the following :

TC Through Crack
CC Corner Crack
EC Embedded Crack
SC Surface Crack

SYSTEM_PROMPT> SC

Enter a Number to select a SURFACE crack case:

1 .. SC01 - in finite width plate
SYSTEM_PROMPT> 1

SC01

Geometric Model in use: SC01

Enter a Number to select the loading option for the SC01 geometry:

1 .. TENSION - surface crack in remote tension
2 .. BENDING - surface crack under bending in the thickness direction

SYSTEM_PROMPT> 1

Enter Thickness, t:
SYSTEM_PROMPT> 0.2055

Thickness, t = .2055

Enter Width, W:
SYSTEM_PROMPT> 1.24

Width, W = 1.2400

ELASTIC-PLASTIC FATIGUE LIFE CALCULATION FOR SC01

DATE: 11-Jun-98 TIME: 10:19:24
(computed: NASA/FLAGRO Version 3.00, October 1995.)

Elastic-Plastic Fracture Module (EPFM) V.1.01, Feb. 1998
SI units [mm, Mpa, Mpa sqrt(mm)]

Input Filename = fgsc01.dat
Output Filename = fgsc01.out

Plate Thickness, t = .2055
" Width, W = 1.2400

Specify the Nonlinear Material Behavior

Eps/Eps0=Sigma/Sigma0+alpha*(Sigma/Sigma0)**n

with Elastic Modulus defined by Sigma0/Eps0
Enter Elastic Modulus:
SYSTEM_PROMPT> 0.2969e+5
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Elastic Modulus= .2969E+05

Enter Poisson's Ratio:
SYSTEM_PROMPT> 0.3

Poisson's Ratio= .3000E+00

Enter alpha:
SYSTEM_PROMPT> 1.0

Alpha = .1000E+01

Enter Sigma0:
SYSTEM_PROMPT> 158.3

Sigma0 = .1583E+03

Enter n:
SYSTEMPROM PT> 6.15

n = .6150E+01

Enter Material Yield Stress
SYSTEM_PROMPT> 158.3

Material Yield Stress = 158.30

Enter Material Ultimate Stress
SYSTEM_PROMPT> 211.7

Material Ultimate Stress = 211.70
Model Code= SC01 under uniform tension

It is necessary to create a fatigue load spectrum or schedule for the fatigue analysis. A

block case is defined as one cyclic load step with user-specified maximum and minimum

loads and the number of cycles this load step is to be applied. A fatigue load spectrum or
schedule consists of a random combination of user-defined block cases and the

corresponding number of times to be applied. The following illustrates the interactive

session of how to build a fatigue load spectrum. Loads are specified as nominal or linear-

elastic stresses.

BLOCK CASE DEFINITION (max. 60 cases)
Block Case ID 1: define MAXIMUM cyclic load

1 -- Primary load only
2 -- Primary and secondary loads

-1 - Terminate input
SYSTEM_PROMPT> 1

PRIMARY LOAD:
Enter stress, SO:Tensile Stress

SYSTEM_PROMPT> 135.0

NO SECONDARY LOAD SPECIFIED!
Block Case IO 1: define MINIMUM cyclic load
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1 - Primary load only
2 -- Primary and secondary loads

SYSTEM_PROMPT> 1

PRIMARY LOAD:
Enter stress, SO: Tensile Stress

SYSTEM_PROMPT> -135.0

NO SECONDARY LOAD SPECIFIED!
Specify number of cycles with max/min load applied in BIk Case ID

SYSTEM_PROMPT> 1

Block Case iD 2: define MAXIMUM cyclic load
1 - Primary load only
2 - Primary and secondary loads

-1 - Terminate input
SYSTEM_PROMPT> 1

PRIMARY LOAD:
Enter stress, SO: Tensile Stress

SYSTEM_PROMPT> 50.0

NO SECONDARY LOAD SPECIFIED!
Block Case ID 2: define MINIMUM cyclic load

1 - Primary load only
2 - Primary and secondary loads

SYSTEM_PROMPT> 1

PRIMARY LOAD:
Enter stress, SO: Tensile Stress

SYSTEM_PROMPT> -80.0

NO SECONDARY LOAD SPECIFIED!
Specify number of cycles with max/rain load applied in BIk Case ID

SYSTEM_PROMPT> 3

Block Case ID 3: define MAXIMUM cyclic load
1 - Primary load only
2 - Primary and secondary loads

-1 - Terminate input
SYSTEM_PROMPT> -1

BLOCK CASE DEFINITION:
BIk Cse. Maximum Load Values

Primary Load
1 I Si

0 0.1350E+03
1 0.0000E+00
2 0.0000E+00
3 0.0000E+00

Primary Load
2 I Si

0 0.5000E+02
1 0.0000E+00
2 0.0000E+00
3 0.0000E+00

Minimum Load Values
Primary Load

I Si
0 -0.1350E+03
1 0.0000E+00
2 0.0000E+00
3 0.0000E+00

Primary Load
I Si
0 -0.8000E+02
1 0.0000E+00
2 0.0000E+00
3 0.0000E+00

Cycles
1
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Define the Load Spectrum or Schedule using previously-defined block cases
(max. 80 block cases):
Input the Block Case ID for the Schedule (end with -1):

SYSTEM_PROMPT> 2

How many times to apply Block Case ID 2 ?
SYSTEM_PROMPT> 5

Input the Block Case ID for the Schedule (end with -1):
SYSTEM_PROMPT> 1

How many times to apply Block Case ID 1 ?
SYSTEM_PROMPT> 2

Input the Block Case ID the Schedule (end with -1):
SYSTEM_PROMPT> -1

DEFINITION OF LOAD SPECTRUM (or SCHEDULE):
BIk. Case ID No. of Times Applied

2 5
1 2

NASGRO will then prompt for the Paris law fatigue parameters Co and mo and the

fracture toughness J,,_t which determines the onset of failure. Note that the fatigue life

module currently defines failure when J,,_ > Jmat at either crack tip location,

conservatively taking no credit for rising toughness with tearing in ductile materials

(resistance curve analysis). The parameters Co and mo in the Paris equation (Eqn. (28))

da/dN = C0(AK) m° are transformed internally into the material constants that govern

fatigue crack growth characterized by zSJ (see Section 2.5). The baseline crack closure

parameter, Uo, consistent with the experimental conditions under which the Paris law

constants were derived also needs to be specified. A typical value for Uo when baseline

FCG data satisfy plane strain conditions is 0.75. The values of (7< in Newman's closure

equation are also needed for each crack tip position. It is currently recommended to select

the same value of _ at both crack tip positions. The interactive session is illustrated as
follows.

Input matl toughness value J(mat):
SYSTEM_PROMPT> 0.433

Toughness =.4330E+00

Input the parameters for the Paris equation
da/dN=C(dK)^m

Input C in Paris Law:
SYSTEM_PROMPT> 0.7066e-10

Input m in Paris Law:
SYSTEM_PROMPT> 3.235

Input the baseline U0 (possible value 0.75):
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SYSTEM_PROMPT> 0.819

Input alp for s tip (from 1 to 3) :
SYSTEM_PROMPT> 3.0

Input alp for c tip (from I to 3) :
SYSTEM_PROMPT> 3.0

Once the initial crack lengths, the maximum allowable number of times the load

spectrum is to be repeated and the print interval are set, NASGRO will start the

computation, show the results on screen, and write these to the output file. Step by step
interactive input for the forgoing is shown below.

Input initial CRACK length(s)
Input a:

SYSTEM_PROMPT> 0.112e-1

Input c:
SYSTEM_PROM PT> 0.112e-1

Specify max. no. of SCHEDULES, N_max, to terminate fatigue analysis?
SYSTEM_PROMPT> 200
Max. No. of Schedules = 200

Specify print interval, N_print, to control output?
SYSTEM_PROMPT> 20
Print interval = 20 schedules

RESULTS OF FATIGUE ANALYSIS:

Skdl. a c D_Jeff(a) D_Jeff(c)
20 1.136E-02 1.133E-02 1.702E-02 1.646E-02
40 1.151E-02 1.146E-02 1.721E-02 1.672E-02
60 1.167E-02 1.159E-O2 1.740E-02 1.697E-02
80 1.184E-02 1.173E-02 1.760E-02 1.723E-02

100 1.201E-02 1.187Eo02 1.780E-02 1.749E-02
120 1.218E-02 1.201E-02 1.800E-02 1.776E-02
140 1.235E-02 1.216E-02 1.822E-02 1.803E-02
160 1.253E-02 1.231E-02 1.844E-02 1.831E-02
180 1.271E-02 1.246E-02 1.866E-02 1.859E-02
200 1.289E-02 1.262E-02 1.889E-02 1.888E-02

Jmax(a) Jmax(c) U(a) U(c)
1.512E-02 1.796E-02 0.43 0.44
1.529E-02 1.823E-02 0.43 0.44
1.547E-02 1.850E-02 0.43 0.44
1.565E-02 1.877E-02 0.43 0.44
1.583E-02 1.905E-02 0.43 0.44
1.602E-02 1.933E-02 0.43 0.44
1.622E-02 1.962E-02 0.43 0.44
1.642E-02 1.992E-02 0.43 0.44
1.662E-02 2.022E-02 0.43 0.44
1.683E-02 2.052E-02 0.43 0.44

EXCEED MAX. NO. OF LOAD SPECTRUMS (200) with a= .1289E-01, c= .1262E-01
, J_bury(max)= .1683E-01, J_surf(max)= .2052E-01, J(mat)= .4330E+00
, total no. of cycles= 3400

_t /It ¢t /f /_ ¢t ttt _ t /r /s /_ It It /_ _ tt tt

< PRESS RETURN TO CONTINUE >

Press RTN to continue (or P and RTN to obtain the print file)
(Note: The results will be in the output file.
Use the appropriate Print command for your machine)

SYSTEM_PROMPT> P
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Thebatchfile createdby NASGRO,in this case"fgsc01.dat",canbemodified usingany
text editor or the line editing function embeddedin NASGRO. For reference,the
following lists thecontentof thebatchfile just created.

fgsc01.out Output file name
2 1=US units; 2=SI units
sc Crack Model Type
1 Crack Model Number
1 1=tension, 2=bending
.2055E+00 Thickness
.1240E+01 Width
.2969E+0G Elastic Young"s modulus
.300 Poisson"s ratio

1.000 Alpha
.1583E+03 Sigma0

6.150 n
.1583E+03 material yield stress
.2117E+03 material ultimate stress
1 1: p(max), 2:p+s(max)

.1350E+03 loading stress
1 1: p(min), 2:p+s(min)

-.1350E+03 loading stress
1 no. of cycles

1 1: p(max), 2:p+s(max)
.600E+02 loading stress

1 1: p(min), 2:p+s(min)
-.800E+02 loading stress
3 no. of cycles

-1 terminate input
2 block case no.

5 no. of times
1 block case no.

2 no. of times
-1 block case no.
.4330E+00 Jmat
.7066E-10 C in Paris Law
.3235E+01 m in Paris Law
.8190E+00 :baseline U0
.3000E+01 : alp_bury
.3000E+01 : alp_surf
.1120E-01 Initial a
.1120E-01 Initial c

200 max. no. of cycles
20 print interval

P P(lst col.): to print
0 1:to resume, 0: stop
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Figure 15. Flow chart for the elastic plastic fatigue crack growth and life prediction
analysis in the NASGRO EPFM module.
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11.0 Program Validation

11.1 Validation of the RSM J Solutions

Validation of the J solutions in NASGRO is accomplished by comparing the

NASGRO results with the results of elastic-plastic finite element computations of J. The

J solutions for geometries TC01 and TC02 are compared with the EPRI handbook

solutions (Kumar et al., 1981), the geometries SC01 and CC01 under tension with new

solutions from the current contract and solutions from Sharobeam and Landes (1995) and

geometry SC01 under bending with the Yagawa et al. (1993) solutions. There are no

finite element solutions available presently to substantiate the J solutions for geometry

CC01 under bending, and EC01 under tension.

TC01 under Tension and TC02 under Tension and Bending

The computed hi values evaluated in the EPFM module of NASGRO using the

RSM are denoted by (h_) RsM and are defined in the following equations. They are

compared with values of hi from EPRI solution scheme as defined in Tables 1-6. The

jpRSM solutions used to derive (h_)RSM for the TC01 and TC02 models were derived using

the optimized RSM.

TC01 under tension:

RSM

(hi) RsM = JP (77)

atY °E°c( l -- b )l-_o )C" : P _ n+l

with b = W/2. The comparisons are shown in Figures 16 and 17.

TC02 under tension:

j_sM

(h') Rs_= { c "_("p "__+'

with b=W. The validation results can be found in Figures 18 and 19.

TC02 under bending:

RSM

(h,:TM = J,

(cMatYoeob 1-_ -_o

with b=W. Figures 20 and 21 contain the comparison between

EPRI.

(78)

(79)

(h_) RsM and h_ from
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Figure 16. Comparison of computed ht values from optimized RSM with EPRI results;
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Figure 17. Comparison of computed h: values from optimized RSM with EPRI results;
TC01, plane stress under tension.
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Figure 18. Comparison of computed ht values from optimized RSM with EPRI results;
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Figure 19. Comparison of computed hi values from optimized RSM with EPRI results;

TC02, plane stress under tension.
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Figure 21. Comparison of computed hi values from optimized RSM with EPRI results;

TC02, plane stress under bending.
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SC01 under Tension and CC01 under Tension

Validation of optimized RSM

RSM

In this validation, Jp evaluated from equation (44) is based on optimized

results of V and Po derived from original FE results (see Appendix C) by Orient 1. The

numerical values of (h L)RSMare obtained from

j_M
(80)

(h, )Rsu : ( cr .].+,

and these are validated against Orient's hj values, (hi)orient. The data matrix of these

results for h_ values is shown in Tables 16 and 17 for SC01 and CC01 under tension
RSM

respectively where, in all cases, c/b=0.25. There are two numerical values of Jp ; one

for the crack tip location a corresponding to 0=90 ° for SC01 (the deepest point) and

O=81 ° for CC01 (a near surface point) and the other one corresponding to the near

surface crack tip location c corresponding to 0=9 ° for both SC01 and CC01. In all cases,
RSM

the near surface values of Je that are needed to evaluate Jp were based on the

NASGRO surface K solutions. The validation against the finite element results for the

SC01 and CC01 geometries are shown in Figures 22-25. These results validate the

optimized RSM approach to surface and comer cracks and demonstrate the maximum

accuracy that can be expected from using the RSM to derive J solutions for model types

SC01 and CC01 in the absence of optimized values for Po" and V, as is done in the next

section.

Table 16. Matrix of finite element hi results for SC01 under tension and c/b=0.25.

h1(_=90 °) hj(_=9 °)

a/t a/c n=5 n=lO n=15 n=5 n=lO n=15

0.2 0.2 1.117 1.416 1.644 0.252 0.320 0.370

0.2 0.6 0.672 0.847 0.981 0.352 0.416 0.465

0.2 1.0 0.435 0.556 0.646 0.383 0.450 0.503

0.5 0.2 8.516 14.811 22.309 2.139 4.512 7.615

0.5 0.6 2.976 5.186 7.881 1.916 3.205 4.808

0.5 1.0 1.630 2.804 4.198 1.658 2.599 3.738

0.8 0.2 19.369 47.496 98.941 11.273 29.512 63.511

0.8 0.6 6.178 14.780 30.806 6.449 13.685 25.890

0.8 1.0 3.270 7.625 15.533 4.728 9.472 17.231

i In NASGRO, for SC01 and CC01 under tension, a hybrid reference stress method is applied as discussed
in Section 3.2. Validation of the hybrid method is presented in the next sub-section.
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Table 17.Matrix of finite elementhi results for CC01 under tension and c/b=0.25.

h_(_=81 °) h_(_=9 °)

a/t a/c n=5 n=lO n=15 n=5 n=lO n=15

0.2 0.2 1.337 1.838 2.218 0.269 0.363 0.439

0.2 0.6 0.745 0.913 1.077 0.436 0.552 0.648

0.2 1.0 0.486 0.568 0.659 0.456 0.565 0.657

0.5 0.2 10.408 21.153 32.896 2.620 6.230 10.808

0.5 0.6 3.687 6.399 9.751 2.351 4.069 6.137

0.5 1.0 2.016 3.189 4.673 2.032 3.208 4.611

0.8 0.2 38.762 109.398 260.682 16.218 50.183 130.370

0.8 0.6 14.105 33.628 78.743 9.171 21.145 46.897

0.8 1.0 7.510 17.090 37.577 6.621 14.118 29.158

100

10

- I I I I I IIIj

i 7 • :n-5

nl0
I I I I I II1[ I I I I I III1 I I I I I II

1 10 100

(hi)orient

Figure 22. Comparison of predicted hj from optimized RSM with FE results for the near

surface crack tip location c (0=9°); surface crack under tension.
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Figure 23. Comparison of predicted hj from optimized RSM with FE results for the crack

tip location a ((I)=90°); surface crack under tension.
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Figure 24. Comparison of predicted ht from optimized RSM with FE results for the near

surface crack tip location c ((I)=9°); comer crack under tension.
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Figure 25. Comparison of predicted ht from optimized RSM with FE results for the near

surface crack tip location a (0=81°); comer crack under tension.

Validation of the hybrid RSM module of NASGRO

In this validation, the (hi) asM results derived from the EPFM calculation of

NASGRO are compared with original finite element results (Tables 16 and 17). The

results are presented in Figures 26-29• In the calculations of (h_) RsM, the net section

yield load is based on area reduction (equation (55) and Tables 9 and 10), and the value

of V with its associated model type and crack tip position was assumed constant (see

equation (45)). The corresponding value used in the analysis can also be found in the

figure. Note that arithmetic mean values of optimized V values at crack tip positions a

and c were separately used in the RSM solutions for SC01 under tension, while, for CC01

under tension, the maximum of both arithmetic mean values denoted by Vmo._was used.

The results from the EPFM module are in good agreement with the FE results even

though the hybrid approach was used. The good agreement is demonstrated by the

narrow distribution bandwidth of data points which are scattered evenly about the one-to-
one line.
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Figure 26. Comparison of predicted hi from the EPFM of NASGRO with FE results for

the near surface crack tip location c (_=9°); surface crack under tension.
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Comparison of predicted hz from the EPFM of NASGRO with FE results for

the crack tip location a (_=90°); surface crack under tension.
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Figure 28. Comparison of predicted hi from the EPFM of NASGRO with FE results for

the near surface crack tip location c (0=9°); comer crack under tension.
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Figure 29. Comparison of predicted hi from the EPFM of NASGRO with FE results for

the near surface crack tip location a (0=81 °); comer crack under tension.
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Additional validation of the hybrid RSM module

Further validation for the model type SC01 under tension is provided by

comparing the results for (h 1)RSM derived from the EPFM module with the finite element

results of Sharobeam and Landes (1995), (hl)sharobeam. Sharobeam investigated an almost

random combination of geometric ratios; i.e., h/t, b/c, a/t, and a/c (see Table 18). The

comparisons- are presented in Figures 30 and 31. Note that the validation for the near

surface crack tip location a is performed at 0=7.5 °. As expected from the comparison

with Orient's results, the results for the deepest point obtained from the EPFM module of

NASGRO agree welt with Sharobeam's finite element results (Figure 31). For the near

surface crack tip where plane stress deformation prevails, the RSM solution gives a

conservative overestimate of hi, again consistent with the comparison between the RSM

results and Orient's solutions.

Table 18. Matrix of Sharobeam's finite element h_ results for SC01 under tension.

h/t b/c a/t a/c n hi (_ = 90 °) hl(O = 7. 5 °)

8 11.429 0.700 2.000 5 0.772 1.682

4 5.425 0.600 1.627 5 1.007 1.757

4 3.397 0.589 1.000 15 8.313 8.255

4 3.951 0.506 1.000 10 2.887 2.766

8 4.000 0.500 0.500 5 3.760 2.271

12 6.849 0.400 0.457 5 2.352 1.110

8 17.133 0.400 1.713 5 0.472 0.797

4 5.425 0.300 0.814 5 0.874 0.667

4 9.385 0.213 1.000 5 0.436 0.392

4 6.053 0.160 0.484 5 0.542 0.234

4 2.439 0.820 1.000 5 5.172 10.497

4 2.283 0.600 0.685 10 15.268 12.596

4 2.994 0.668 1.000 10 8.103 9.809

4 4.378 0.800 1.751 15 4.742 9.945

16 11.978 0.668 1.000 5 2.097 2.518

z For a/c>1.2, the validation was not performed because of the validity limitations imposed by the K
solutions in NASGRO for model type SC01 (see Table 15).
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Figure 30. Comparison of predicted hi from the EPFM of NASGRO with Sharobeam's

FE results for the near surface crack tip location c (4)=7.5 °) for the case of SC01 under
tension.
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Figure 31. Comparison of predicted hi from the EPFM of NASGRO with Sharobeam's

FE results for the crack tip location a (@=90 °) for the case of SC01 under tension.
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Surface Crack under Bending

The results of Yagawa et al. (1993) are used in this section for validation

purposes. However, two issues need to be addressed. First of all, in Yagawa's paper, the

expression for Jr, is different from the one used in the EPFM module in NASGRO.

Yagawa's expression is of the form

(m'_ "+' ( o. "_"÷'

Jp = OttToeof_,t_--_o j = otcroeoh, tl_l{,30.o )
(81)

However, the expression used in NASGRO is

"-'= tfM ]"+' ]"+'

. tMo) t ooj t oo J
(82)

0"_ 2 (7o t2 M Go t2

-- . 2b M o = _. 2b , m= and m o=
where M= 6 ' 4 _" 2

conversion factor between equations (81) and (82) given by

• Therefore, there is a

h, = 2""' h, (83)

Secondly, there is a discrepancy between Yagawa's Je results and NASGRO's. This is

demonstrated in Figures 32 and 33 where results using optimized yield loads (determined

by applying the RSM) and NASGRO's Je solutions in equation (82) are compared with

Yagawa's results. The discrepancy can be eliminated by replacing NASGRO's J_
RSM

solutions by Yagawa's J, results when evaluating Jp as shown in Figures 34 and 35.

The comparisons indicate that Yagawa's elastic solutions for J, are in error. Therefore,

for valid comparisons, the RSM results from NASGRO (based on the hybrid reference

stress method and the net section yield moments derived in Section 4.2) are multiplied by

a factor equal to the ratio of Yagawa's and NASGRO's values for Je.

(J , ) ragawa fz,

(h,)NaSaRO (j,)uas_,o versus (h,)ra_,,_ :

The results shown in Figures 36 and 37 demonstrate that the RSM J solutions in

NASGRO are conservative with respect to the finite element results.
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Figure 32. Comparison of (h_)rar, w_ with (hi) RsM determined using NASGRO's Je
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Figure 33. Comparison of (hl)Yagawa with (hi) RsM determined using NASGRO's Je

solutions for the near surface crack tip location c (@=9°); surface crack under bending.
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Figure 34. Comparison of (hl)Yagawa with (hi) RsM determined using Yagawa's Je solutions

for the crack tip location a (0=90°); surface crack under bending.
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Figure 35. Comparison of (hl)Yagawa with (hi) Rsta determined using Yagawa's Je solutions

for the near surface crack tip location c (0=9°); surface crack under bending.
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Figure 36. Comparison of RSM results with Yagawa for the crack tip location a (q)=90°);

surface crack under bending.

o

L_

<
Z

*

m

10
I I ! ! I ! ! ! I

(Vc)avg=0.9730

• ' n=2
o • n=3
4- • n=5

0.1

0.1 1 10

(hl)yagawa
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11.2 Validation of the J Solution due to Secondary Loads

Since there are no independent J solutions available characterizing the variety of

possible secondary loads, verification of the J routines for secondary loads in NASGRO

was based on a self-consistency check. Self-consistency requires that when crack tip
P s

plasticity effects are negligible, J(o're )= J(crrs ) provided crr = o"r , where superscripts P

and S refer to primary and secondary loads, respectively, and the subscript T signifies

uniform tension. This self-consistency was confirmed using the test matrix for each

model type shown in Table 19.

Model type
TCOI

ECO 1

TC02

SC01

CC01

Test runs involved

1. Primary (uniform tension), J, (o're )

2. Secondary (uniform tension), J, (o"s )

3. Secondary (tension with triangular variation), J, (_-rs )

I. Primary (uniform tension), J, (o're)

2. Secondary (uniform tension), J, (o"s )

1. Primary (bending), J, (o'se

2. Secondary (bending), J, l yns )

1. Primary (uniform tension), J,(tyr e )

2. Primary (bending), J, (cr_)

3. Secondary (tension & bending), Je (tYs+B)

Check

J.(o:)_--

J.(o:)--
J.(o:)
J.(o:)---
J.(o:)

_+

J.(o:.,)

Table 19. Test matrix for the verification of secondary load formulation.

11.3 Validation of the EPFM Failure Algorithm

Self-Consistency Between Critical Crack and Critical Load Calculations

A self-consistency check was done by comparing the results of failure analysis

based on critical crack and critical load calculations. The logic of the applied self-

consistency check is as follows - If PC is the calculated critical load corresponding to flaw

size, a c, then a c should be the calculated critical crack size corresponding to the load pc.

This logic is also valid for combined loading, P':+S. This consistency requirement was

verified using the test matrix shown in Table 20 for a variety of model types. The

properties, dimensions and fracture parameters used for the consistency verification are in

batch files residing in a sub-directory called OPTION6 included with this release of

NASGRO. This sub-directory also contains the corresponding output files.
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Independent Check

An independent check of the failure algorithm in the NASGRO EPFM module

was made by comparing NASGRO's results with those derived from a SwRI in-house

program. This in-house program utilizes the SwRI copyrighted program, KCALC, to

calculate stress intensity factors. Table 21 lists the material properties, Ramberg-Osgood

parameters and the dimensions used in the verification test matrix. Table 22 shows the

comparison between results from NASGRO and the SwRI in-house program for different

combinations of loading, constraint, model type, and JR curve. The two sets of results are

close, and the major differences come from different stress intensity factors employed by
KCALC and NASGRO.
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11.4 Validation of the NASGRO EPFCG Module

The NASGRO EPFCG module was independently verified by comparing its

predictions with actual experimental crack growth data for Inconel 718. Details of this

verification exercise are provided in Appendix L.

Experiments included three different specimen geometries (TC01, SC01, and

CC01), a wide range of deformation conditions (SSY, ISY, and LSY), and stress ratios

ranging from R = 0 to R = -1. The SSY tests were used to determine baseline crack

growth properties, and then these properties were used to make independent predictions

for the remaining tests. The NASGRO module was found to be highly successful in

predicting crack growth lives and correlating crack growth rate data. All lifetime

predictions were conservative and within a factor of two of the actual observed life. The

NASGRO module also generally predicted the correct crack shape development for two-

degree-of-freedom surface cracks.
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APPENDIX L

EXPERIMENTAL VERIFICATION OF NASGRO

ELASTIC-PLASTIC FATIGUE CRACK GROWTH MODULE





L.1 Introduction

Fatigue crack growth tests on specimens of Inconel 718 were used to verify the NASGRO

elastic-plastic fatigue crack growth module. Some of these tests were originally performed to

support methods development activities under the multiple-cycle proof testing contract (McClung

et al., 1996b), while others were performed solely to support NASGRO verification. For

completeness, all tests are fully documented in this appendix.

Tests were conducted on three different specimen geometries, identified here according to

their NASGRO designation: TC01, central through-crack in a plate; SC01, semi-elliptical surface

crack in a plate; and CC01, quarter-elliptical corner crack in a plate. Some tests were conducted

under small-scale yielding conditions, while other tests were conducted under intermediate or large-

scale yielding. Stress ratios were R = 0, R = 0.1, or R = - 1.

The new NASGRO EPFCG module was used to predict the crack growth behavior of all

tests. The small scale yielding tests with TC01 specimens were used to determine baseline crack

growth properties, and then these properties were used to make independent predictions for the

remaining tests.

L.2 Material Characterization

Due to its wide application in SSME components and its use as a model material in related

contracts, Inconel 718, a precipitation hardenable, nickel-base superalloy, was chosen for the

experimental verification studies. Age hardening in this alloy is achieved through precipitation of

a columbium-rich intermetallic phase which results in good corrosion and oxidation resistance, as

well as good mechanical properties, which permit its use to temperatures of 1200°F (649°C).

To ensure that the results generated were applicable to SSME components, the test material

was purchased according to Rockwell Specification RB0170-153 in the form of 1.25 in. (31.8 mm)

diameter round bars. The Inconel 718 was machined into tension specimens and then heat treated

according to the following procedures:

(1) Vacuum solution treat at 19000F (1038°C) for 10-30 minutes

(2) Argon back fill; cool to room temperature

(3) Age in vacuum at 14000F (760"C) for 10 hrs.

(4) Furnace cool to 1200°F (6490C) and hold for a total time [1400°F (760°C) plus

furnace cool plus hold time at 1200°F (6490C)] of 20 hours

(5) Argon back fill; cool to room temperature

L.1



This particularheattreatment(denotedSTA-1) is usedin SSMEcomponentsto achieveoptimum
resistanceto hydrogenembrittlement.

Thechemicalcompositionof theInconel718materialusedis givenin TableL. 1. Baseline
mechanicalpropertiesweredeterminedfrom standardtensiletestsas0.2%offsetyield strength=
166.4ksi, ultimatetensilestrength= 195.1ksi,elongation= 25.8%,andreductionin area= 32.3%.
Thesetensiletestresultsarein conformancewith theRB0170-153specifications.Analysisof the
load-displacementrecordsfrom thesetensiletestsproducedarelationshipbetweenstress(inksi)and
plasticstrainof theform

o = 248.4 (gp)°'°633 (L.I)

The elastic modulus is 29.69 x 103 ksi. The stress- total strain relationship may also be written in

the general Ramberg-Osgood form,

Co °o (L.2)

where % = 0.006, o o = 179.8 ksi, tt = 1, and n = 15.8.

Formal cyclic stress-strain curves were not generated. Unpublished Rocketdyne data indicate

that Inconel 718 in the STA-1 condition exhibits cyclic softening. Ramberg-Osgood properties

generated from stable hysteresis loops obtained in low cycle fatigue tests were %' = 158.3 ksi,

%' = 0.00533, n' = 6.15, and tt' - 1.

Table L.1. Chemical Composition of the Inconel 718 Test Material

Heat No. [ ]

6L9364

I

C Mn Si

0.044 0.09 0.12

Cu [ A! Ti

0.05 0.53 0.99

S

0.001

Cb+Ta

5.17

P II Cr
0.006 18.5

Mgl Pb [

23 ppm 0.8 ppm

II Ni [IMol
52.3 3.03

Sn IIFel
25 ppm Bal

Co

0.31

L.3 Specimen Geometries

The baseline specimen geometry is shown in Figure L.1. TC01 and SC01 specimens had a

rectangular cross-section with a nominal 1.25-in. width and either a 0.2-in. or 0.5-in. thickness.

Initial cracks were formed by first electro-discharge machining a narrow notch and then fatigue pre-

cracking at low cyclic loads. Different EDM notch configurations were used to generate different
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Figure L.1. Baseline specimen geometry for NASGRO EPFCG verification experiments
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NASGRO geometries. Shown in Figure L. 1 is the placement of the EDM notch for a semi-elliptical

surface crack geometry, SC01.

The comer-crack geometry, CC01, tested in this program was generated by electro-discharge

machining the width of a 0.5-in. thick specimen down from 1.25-in. to 0.5-in., so that the specimen

had approximately a square cross-section. A small EDM notch was then machined into one comer

of the specimen.

L.4 Crack Growth Experiments

All experiments were conducted in a laboratory air environment at room temperature. Crack

lengths were generally measured by optical inspection at the specimen surface under low

magnification, with some supplementary measurements from the fracture surfaces of broken

specimens following the test. Some SC01 specimens were heat tinted following the precrack to aid

identification of the initial crack size after the specimen was broken open.

TC01 tests were conducted with specimens D1, SD1, and SD2. Specimens SD1 and SD2

were nominally 0.2-in. thick, while D1 was nominally 0.5-in. thick. Initial crack sizes were

approximately 2c = 0.3 in. Constant amplitude load cycling was conducted at a stress ratio of 0.1

and a frequency of 5 Hz. Maximum stresses varied from 20 ksi to 56.3 ksi, and actual specimen

lives varied from 9820 cycles to 270,118 cycles.

Six tests were conducted with the SC01 (semi-elliptical surface crack) configuration.

Specimens $7 and $33 both contained small semi-circular surface cracks (initial a = 0.01 in., initial

2c = 0.02 in.) in a rectangular cross-section of thickness t = 0.20 in. Both specimens were cycled

in load control to a maximum stress of 135 ksi. Specimen $7 was cycled at a stress ratio of R = -1

(i.e., Omi,= - 135 ksi), and specimen $33 was cycled at R = 0 (minimum load just slightly greater than

zero to avoid backlash in the specimen gripping fixtures). Global strains were monitored with a

0.50-in. extensometer mounted on the side of the specimen.

Cyclic crack growth in specimen $33 continued stably until the surface crack had grown

almost completely through the specimen (a _ 0.20 in.). Cyclic crack growth in specimen $7 was

interrupted by premature failure of the specimen due to initiation and growth of comer cracks from

naturally initiating defects on the specimen edge. The depth of the surface crack just prior to failure

was about a = 0.08 in.

Nominal cyclic strains in specimen $33 (R = 0) were fully elastic, since the total Ao was

considerably less than 2Oy_. Therefore, the plastic component of AJ for this specimen was effectively

zero, and the usual AK was a valid measure of the cyclic crack driving force. Nominal cyclic strains

in specimen $7 (R = -1) included both elastic and plastic components. Although the total ,xo was

less than the nominal 2 o y_based on monotonic properties (o ys= 165 ksi), cyclic softening occurred

gradually during the test. The cyclic 0.2% offset yield stress is about 135 ksi. As we will see, this

cyclic softening is important for the characterization of FCG rates under elastic-plastic conditions.
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Specimens$25 and$29 werebothSC01geometrieswith thickness= 0.2 in. andrelatively
largeinitial flaw depths(a_= 0.149in. and0.164in., respectively,sothatai/t was approximately

0.8). Constant amplitude load control cycling was conducted at a stress ratio ofR = 0 and maximum

stresses of 145 and 135 ksi, respectively. The initial crack shape was determined following the test

to be a/c = 0.915 and 0.89, respectively. Cycling continued until specimen failure occurred in 385

and 378 cycles, respectively.

Specimens S 11 and S 13 were both SC01 geometries subjected to very severe cycling. Both

specimens had thickness = 0.2 in. and relatively deep initial crack sizes (a_ = 0.146 in. and 0.129 in.,

respectively). Initial a/c values were about 0.96 in both specimens.

These two tests were conducted under crack mouth opening displacement (CMOD) control.

A small CMOD gage with a gage length of 0.2 in. was placed across the crack mouth, the gage pins

located in diamond indentations on the front surface of the specimen. The loads on the specimen

were continuously monitored and recorded as CMOD was cycled between zero and a fixed

maximum quantity. The maximum stresses on the specimens slowly decreased as cycling continued

and the specimen compliance increased. The absolute value of the minimum stresses also slowly

decreased with cycling.

Compliance data (load vs. CMOD) were used to estimate changes in crack size on a cycle-by-

cycle basis. Initial and final crack depth and length were measured exactly from the specimen

surface following the test.

The very first excursion to maximum CMOD produced some crack growth by ductile tearing.

The specific amount of crack growth occurring on this first cycle was estimated from similar

resistance curve experiments with SC01 specimens in which the specimen was subjected to a single

zero-max CMOD ramp and then broken open to determine the amount of crack growth (McClung

et al., 1996b).

Fatigue crack growth during these tests was relatively severe. The crack depth in S 11 grew

from 0.146 in. to 0.162 in.--an increase of 0.016 in.---during only 4 cycles. The crack depth in S 13

grew from 0.129 in. to 0.154 in. during only 32 cycles.

Specimen $44 was a CC01 (comer crack) configuration. The initial crack sizes were

a = 0.034 in. and c = 0.0345 in., and the crack grew such that a =c throughout the test. Crack growth

continued until specimen failure occurred at around a = 0.275 in.. However, due to the formation

of multiple cracks in the intensely deformed plastic zone ahead of the main crack tip, visual

determination of the correct physical crack length was difficult for cracks longer than a = 0.150 in.

Growth after this point may have also been affected by crack linking. Therefore, only data for cracks

shorter than about a = 0.150 in. were analyzed as part of the NASGRO verification exercises. These

data correspond to the first 2950 fatigue cycles.

For convenience, all test conditions are summarized in Table L.2.
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Table L.2. Summaryof NASGROEPFCGverificationtestconditions

Specimen# Geometry

D1 TC01

SD1 TC01

SD2 TC01

$7 SC01

$33 SC01

$25 SC01

$29 SC01

S11 SC01

S13 SC01

$44 CC01

R o,_,x (ksi) Cycles

0.1 56.4 9820

0.1 55.8 13470

0.1 20.0 270118

- 1 135 5900

~0 135 44900

~0 145 385

~0 135 378

~-1 165- 157 4

~-1 158- 138

-1 135

Comments

baseline SSY test, thick specimen

baseline SSY test

baseline SSY test

reversed plasticity

deep cracks

deep cracks

severe reversed plasticity

32 severe reversed plasticity

2950 reversed plasticity

L.5 NASGRO Calculations

The NASGRO EPFCG module was used to predict the crack growth life of all verification

experiments. The inputs to NASGRO, as summarized in the User's Manual, Appendix K, include

basic tensile properties and baseline fatigue crack growth rate properties, in addition to specification

of test conditions such as crack sizes and applied stresses.

Tensile and constitutive property inputs are as summarized in Section L.2. The flow stress

(used in the closure model) was estimated as 180 ksi for the monotonic condition and 185 for the

stable cyclic condition. This cyclic value was estimated with the procedures outlined in

Section 3.6.2.

In the NASGRO calculations, monotonic constitutive properties were employed for all SSY

and R = 0 tests, while stable cyclic properties were employed for all R = - 1 tests (all of which

exhibited substantial cyclic plasticity). As discussed in Section 3.5.2, the selection of monotonic or

cyclic properties can have a substantial impact on the calculated values of AJeff and total crack

growth life. In this particular case, calculations of &Jeff for R = -1 tests based on monotonic, rather

than cyclic, constitutive properties could decrease the calculated AJeff by up to a factor of two. In

reality, of course, the actual constitutive response is changing during these short term tests from

monotonic towards stable cyclic behavior, but it is not practical to model this transient change, and

it is conservative to use stable cyclic properties. This approach follows the recommendations set

forth in Appendix K.
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Baselinefatiguecrackgrowthpropertiesfor input to NASGROweredeterminedfrom tests
D1, SD1, andSD2. The da./dN vs. AK data from these SSY tests were regressed to determine

appropriate values for the Paris exponent and coefficient, m 0 and Co in Eqn 3.28. The resulting

values were m 0 = 3.235 and Co = 0.706(10) l° when the units of stress intensity were taken as ksi,/in.

Note that crack closure corrections were not included in this regression step, so that the baseline

FCG constants would be representative of typical handbook data. The crack closure level for these

tests was estimated from the NASGRO closure equations themselves (with t_ = 3) to be Uo = 0.819.

Initial crack sizes for input to NASGRO were based on actual measured values, including

independent measurements of a and c for SC01 and CC01 geometries. NASGRO was used to

compute crack sizes with increasing numbers of cycles until observed final crack lengths were

reached. No attempt was made in this particular set of verification calculations to predict specimen

failure from instability considerations. Therefore, actual and predicted numbers of cycles represent

the numbers of cycles for a crack to grow from one fixed crack size to another fixed crack size. For

SC01 geometries with two degrees-of-freedom, the crack depth, a, was the target parameter.

The key remaining input to the NASGRO EPFCG module is the constraint factor, a, for the

crack closure model. As discussed in the User's Manual, Appendix K, a can be chosen based on a

number of different considerations. In this verification study, the two limited cases of tt = 1 and

a = 3 were both considered. Traditionally, semi-elliptical surface cracks are regarding as having

high constraint consistent with a high value of a. However, the severe plasticity associated with the

elastic-plastic cycling can be argued to cause some loss of constraint, and therefore a somewhat

lower value of ¢t. In the absence of any clear quantitative means to choose a, it seemed prudent to

determine the sensitivity to this choice. In these particular experiments, for the particular maximum

stress levels (and therefore the particular Kma,,/Kno,,, values) experienced, constraint was found to have

only a limited effect on the calculated crack opening levels, because the oo_n/o_,ax vs. K,,ax/Kno,,,

curves for different a values actually cross over at higher values of KmJKno,,,.

A summary of the comparisons between actual experimental numbers of cycles and predicted

numbers of cycles is given in Figure L.2. Note that the open symbols denote predictions based on

t_ = 3, while the closed symbols denote predictions based on a = 1. In general, all of the predictions

are excellent, over a very wide range of cyclic lives. The worst prediction is for the CC01 specimen,

$44, which is conservative by about a factor of two. All other predictions are closer than a factor

of two, and most of them are much closer. The predictions based on a = 3 are always more

conservative than the predictions based on a = 1, but the differences between these two limiting

assumptions are generally not very large. No predictions based on a = 3 are non-conservative

(predicted numbers of cycles greater than actual numbers of cycles).

Another method of evaluating the quality of the NASGRO calculations is to consider

correlations of crack growth rate data based on Ajar These correlations are shown in Figure L.3.

Here the &Jeff values calculated with the NASGRO module for specific observed values of crack size

are correlated with the actual experimentally observed crack growth data. The crack growth rates

were computed from actual a vs. N data using standard incremental polynomial techniques (2 noorder
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polynomials with a five-point regression window). The correlation was carried out at either the a-tip

or the c-tip for the SC01 cracks depending on which value was most reliably measured

experimentally. Specimen S 13 was not evaluated in this manner, and therefore does not appear on

Figure L.3, because reliable measurements of crack size were not available at cycle numbers other

than the first and last cycle of crack growth. The predicted AJef f values were all based on the

conservative (x =3 value.

The figure demonstrates a very strong correlation of FCG rates by Ajar over a very wide

range of FCG rates--more than four orders of magnitude in da/dN. The only test that demonstrates

any significant deviation from the central tendencies of the pooled data is the comer crack specimen,

$44. Calculated &Jeff values for the larger crack sizes in this test appear to be slightly too large, but

would have been slightly smaller if a smaller (x value was used. All other data generally fall within

a factor-of-three scatterband that can be typical of test-to-test scatter under ordinary SSY conditions.

It is particularly striking that the AJcf f parameter is successful in correlating data from conventional

SSY tests with data from tests with significant reversed plasticity. It is this success (the ability to

describe all the data in Figure L.3 with a single Paris regression line) that makes it possible to

perform accurate EPFCG life predictions based on Paris crack growth constants from baseline SSY

tests.

The NASGRO calculations also appear to give the correct trends for the shape of two-degree-

of-freedom cracks such as SC01. Comparisons of the predicted a and c values for specimens $7 and

$33 (both SC01 geometries) are shown in Figure L.4. The predicted crack aspect ratio a/c is

approximately 1 until the crack fronts begin to approach the back surfaces, when a/c begins to slowly

decrease. These predictions are in harmony with literature observations of stable semi-circular crack

shapes (a/c = 1) under elastic-plastic conditions (Obrtlik and Polak, 1985; Dowling and Iyyer, 1987;

Earthman, 1991). This agreement suggests that the NASGRO 13R factor used to obtain the

experimentally observed crack shape under SSY conditions is approximately applicable to EPFCG
conditions as well.

L.6 Discussion and Conclusions

This verification study has found the NASGRO EPFCG moduleto be highly successful in

predicting crack growth lives and correlating crack growth rate data. All predictions were

conservative and within a factor of two of the actual observed life. It may be prudent to choose tx = 3

to perform conservative life calculations, but it appears that a somewhat smaller value of tt may give

slightly more accurate life predictions.

Predictions for the single CC01 specimen were more conservative than any other test. This

could indicate that the NASGRO J solution for CC01 is slightly conservative itself. This particular

J solution is based on a single set of finite element calculations that exhibited slightly more scatter

than similar calculations for other geometries. It may be useful to investigate this J solution further

in future work. In the meantime, however, it appears prudent and practical to maintain the current

solution in view of its slight conservatism.
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This studyis notacomprehensiveverificationof theNASGROEPFCGmodule,of course.
As with anygeneralpurposeFCGcode,extensiveexperiencewith manydifferentconfigurationsis
neededto assesstheaccuracyandlimitationsof thecode. In particular,furtherwork is neededto
investigatethesuitabilityof thecodefor bendingstressfields andalternativematerials.However,
thecurrentstudyservesto validatethegeneralAJafapproachto theanalysisof fatiguecrackgrowth
underelastic-plasticconditions,andto verify thatthedevelopedNASGROmodulessatisfactorily
implementthebasictechnicalapproach.
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