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COMPARATIVE PROPERTIES OF COLLABORATIVE OPTIMIZATION AND OTHER

APPROACHES TO MDO

NATALIA M. ALEXANDROV* AND ROBERT MICHAEL LEWIS t

Abstract. We discuss criteria by which one can classify, analyze, and evaluate approaches to solving

multidisciplinary design optimization (MDO) problems. Central to our discussion is the often overlooked dis-

tinction between questions of formulating MDO problems and solving the resulting computational problem.

We illustrate our general remarks by comparing several approaches to MDO that have been proposed.

Key words, multidisciplinary design optimization, collaborative optimization, decomposition in non-

linear programming

Subject classification. Applied and Numerical Mathematics

1. Introduction. There are likely as many definitions of multidisciplinary design optimization (MDO)

as there are areas and phases of design. For our discussion, we shall take MDO to mean the systematic

approach to optimization of complex, coupled engineering systems, where "multidisciplinary" refers to the

different aspects that must be included in a design problem. For instance, the design of aircraft involves,

among other disciplines, aerodynamics, structural analysis, propulsion, and control. See [16] and [2] for

overviews of the field.

Broadly speaking, in engineering design problems one attempts to improve or optimize several objectives,

frequently competing and conflicting measures of system performance, subject to satisfying a set of design

and physical constraints. It is the nature of some of these constraints that distinguishes the engineering

design optimization problem from the conventional nonlinear programming problem (NLP). As we discuss,

the method of treating the problem constraints provides the defining characteristics for various approaches

to solving MDO problems.

The problem solution techniques comprise two major elements: posing the problem as a set of mathe-

matical statements amenable to solution and then defining a procedure for solving the problem once it has

been posed. We use the term "formulation" to denote the first element and the term "algorithm" to denote

the second. This distinction is crucial, although it is often blurred in presentations of new approaches to

MDO. An analysis of an MDO formulation considers such attributes as consistency, weU-posedness, equiva-

lence to other formulations, optimality conditions, and sensitivity of solutions to various perturbations. An

analysis of an optimization algorithm for solving a given formulation of an MDO problem then considers local

convergence rates, global convergence properties, and iteration costs. This work discusses the properties of

MDO formulations, including their effect on optimization algorithms.

A sizable body of approaches to solving MDO problems has been proposed over the years. However,

there is as yet only limited computational or analytical substantiation of the practical applicability and

algorithmic properties of the proposed methods. A number of recent efforts (e.g., [3]) have been aimed at
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addressing this deficiency. The present work pursues the following objectives:

• The enunciation of a systematic set of criteria for analytical and practical evaluation of MDO

methods;

• The classification of MDO formulations according to the approach to maintaining feasibility with

respect to analysis and design constraints;

• The analysis of several formulations according to the aforementioned set of criteria in order to give

some understanding of the trade-offs among the various formulations;

• A sketch of how features of some specific formulations of MDO problems affect optimization algo-

rithms.

The paper is organized according to this program. We hope to provide the reader some guidance to under-

standing the algorithmic and performance consequences of choosing one formulation or another for solving

an MDO problem. A more detailed and comprehensive discussion can be found in [5].

2. Characteristics of MDO formulations. By MDO we mean that subset of the total design

problem probably in the conceptual or preliminary ph_that can be formulated as an NLP of the form:

(2.1) mini ze ](x, u(x))
subject to g(x,u(x)) > O,

where x is the vector of design variables and u(x) is defined via a block system of equations,

Al(x, ul(x),...,uN(x)) )
(2.2) = i = 0,

AN(x, ul(x), .... aN(x))

N being the number of blocks. In the context of MDO, the blocks of the system usually represent the state

equations for the disciplinary analyses and the necessary interdisciplinary couplings. The state equations

normally form a set of coupled differential equations. System (2.2) is known as the Multidisciplinary Analysis

(MDA) system. We have simplified the problem by assuming that the multiple objectives of the system have

been synthesized in a single objective f, because most extant MDO formulations make this assumption.

At each iteration of a conventional optimization procedure, the design variable vector x is passed to

the MDA system. The system is then solved for the state vector u. This reduces the dimension of the

optimization problem (2.1) by making it a problem in x only. However, each disciplinary analysis may

involve an expensive procedure, say, solving a differential equation. Moreover, to solve the entire MDA

system one has to use an iterative procedure that brings the individual analyses into a multidisciplinary

equilibrium.

It is the expense of implementing and executing a straightforward, conventional optimization approach

to (2.1) that has mainly motivated researchers to propose alternatives. We now turn to a set of criteria that

one can use to evaluate a proposed MDO formulation and gauge the effects of the formulation on optimization

algorithms. Some of these considerations, such as disciplinary autonomy and per-iteration cost, are widely

noted. However, other criteria seem rarely taken into account, despite their paramount importance.

2.1. Equivalence of formulations. If we take (2.1) as representing the MDO problem we ideally

wish to solve, it is natural to ask whether an alternative formulation is equivalent to this original problem.

There is the question of mathematical equivalence: If a vector of design variables solves (2.1), then, suitably

transformed, does it yield a solution of the alternative formulation, and conversely? If the reformulation is



notmathematicallyequivalent,doesimprovementin thereformulationat leastcorrespondto improvement
in theoriginalproblem?

Equallyimportantnotionsof equivalencearemoresubtle.Forinstance,thereis the questionof how
optimalityconditions,constraintqualifications,andsensitivitycalculationsin (2.1)correspondto thosein
analternativeformulation.Theseothernotionsof equivalencehavebearingon thepracticalapplication
of optimizationalgorithmsto thesolutionof formulationsof the MDOproblem.A formulationmaybe
mathematicallyequivalentto (2.1),yetalgorithmsappliedto its solutionmayexhibitdrasticallydifferent
behaviorthanwhenappliedto (2.1),andmayevenfailin somecases.Wewill touchonthispointagainin
ourdiscussionof CollaborativeOptimization;further details can be found in [4].

2.2. Ease of implementation. Typically, a tremendous amount of time and effort is required to

integrate the analysis software needed for any given formulation of MDO and its solution. In particular, at

present there is little MDA capability in existing software, and adding this capability requires a lot of work.

This leads to the next consideration.

2.3. Multidisciplinary analysis. MDA is expensive and requires a considerable effort to implement.

The typical approach to avoiding the expense of an explicit MDA is to introduce a relaxation of this system,

examples of which we will discuss later. One does requires that the full set of MDA equations be satisfied

as one approaches an optimal design.

On the other hand, since the MDA underlies the original problem (2.1), any attempt to avoid an MDA as

an explicit calculation enforced at each step of the optimization must turn some or all of the MDA equations

into consistency constraints in the resulting optimization problem. (Provided, of course, that the resulting

formulation is equivalent to the original problem (2.1).) In turn, this means that the optimization algorithm

used to solve the reformulation of (2.1) must shoulder the effort of solving part of the MDA problem. This

is problematical if the MDA requires specialized techniques. Moreover, if the interdisciplinary coupling in

the MDA has a dominant effect, then avoiding the MDA may be inefficient. Thus, in some cases MDA may

be unavoidable.

2.4. Decomposition and disciplinary autonomy. This is another very important issue. For many

other reasons (e.g., organizational lines of communication, software integration), it is simpler to implement

an approach that avoids the iteration required to solve the MDA. One has a natural coarse-grained decom-

position along the lines of the disciplines; indeed, the question is not one of decomposition but integration.

Unfortunately, in general one should expect disciplinary autonomy to be in direct conflict with overall

computational efficiency in the optimization (see the comments on efficiency below). Nonetheless, where the

coupling between disciplines is not too great, disciplinary autonomy might not have too deleterious an effect

in this regard.

Some decomposition approaches, such as Collaborative Optimization, make use of disciplinary optimiza-

tion capabilities, which is seen by some as an attractive feature. However, the ends to which this capability

is used is often to solve part of the multidisciplinary analysis problem. Attempting true multiobjective opti-

mization or distributed optimization of a separable objective is not widely done in MDO at present, and is

difficult to accomplish for some serious technical reasons.

One other feature of disciplinary autonomy is its inherent parallelism; computation can bc carried out

independently at the discipline level. However, we do not wish to over-emphasize this as a motivation

for decomposition approaches to (2.1); the simplicity of disciplinary autonomy is its primary attraction.

Moreover, the benefits of parallelism are somewhat limited because of the disparity in computational load



balancingthat oftenoccurs (e.g., computational fluid dynamics takes a much longer time than structural

analysis). Often a sequential processing of the disciplines makes more sense for physical and computational

reasons.

2.5. Work per iteration vs. overall ettleiency. An ostensible attraction of approaches to solving

(2.1) that are based on reformulating and solving the problem decomposed along the disciplinary lines is

that the cost in each optimization iteration may be much less than that in a single iteration of applying an

optimization algorithm directly to the original problem (2.1). However, if the coupling between any of the

disciplines strongly influences the system behavior, this may prove a false economy. As a general rule in

optimization, algorithms based on decomposition or separability applied to truly coupled problems are much

less efficient, overall, than algorithms that work with the entirely coupled system.

This should not be surprising, as the following simple illustration makes clear. Suppose one wishes

to minimize an unconstrained, positive definite quadratic in x, and suppose there are n components of

x. Newton's method costs O(n 2) work for a single iteration, but finds the solution in only one iteration.

Steepest descent, on the other hand, costs only O(n) work for a single iteration, but, if the quadratic has

highly elongated level sets, then steepest descent will take far more than n iterations to arrive near the

solution, negating the smaller per-iteration cost of steepest descent.

This is generally the case for more complicated optimization problems. The Dantzig-Wolfe decomposition

for linear programming problems requires less work per iteration, but typically the overall cost of solving

problems via this decomposition is greater than that of solving the problems directly via the simplex method,

unless the problem exhibits a particular structure. Similar comments hold for solving nonlinear optimization

problems.

2.6. Dimensionality. Another question that arises is the dimension of the optimization problems that

ensue from a given formulation. Arguably, the smaller the dimension, the better. For instance, the MDA

(2.2) can be viewed as a variable reduction method insofar as it treats u as a function of the design variables

x and thus removes u from the optimization problem.

On the other hand, any attempt to relax the MDA will lead to the introduction of the some of the u

into the optimization problem. These additional degrees of freedom in the design problem are then removed

by the requirement that the MDA equations be satisfied at the optimal design.

An attractive feature of some decomposition methods is that one can also eliminate some of the design

variables x from the system-level optimization problem. This can be done, for instance, if the effect of

some of the design variables is restricted to a specific discipline. This strategy is followed in Collaborative

Optimization, as we will discuss.

Another question related to dimensionality is that of the bandwidth and strength of the interdisciplinary

coupling. Depending on how (2.1) is formulated and solved, the amount of information that must be

exchanged between disciplines, and the frequency with which information must be exchanged, may vary

markedly. This, in turn, is related to the extent to which the problem is being treated in a decomposed way,

which is itself related to the efficiency with which the overall problem will be solved.

2.7. Treatment of feasibility. This consideration, central to the taxonomy of MDO methods, forms

the subject of the next section.

2.8. Robustness. Given the expense of design optimization, one should demand robustness from any

proposed formulation and algorithm for its solution. Some approaches to solving the MDO problem (2.1)

actually amount to solving some manner of relaxation or approximation of (2.1), but may encounter difficul-



tiesasonemakestherelaxationmoreliketheoriginalproblem.Wegiveanexampleofthisbelow,wherea
proposedformulationsuffersfromadeficiencythat candefeatnumericaloptimizationalgorithms.Onecan
fine-tunethisapproachsothat for a givenproblemit stablyproducesanswers(thoughanswersonlyto a
relaxedversionof the design problem); the necessity of fine-tuning might be acceptable for some situations,

but not in others. More generally, one would prefer to have a robust approach from the start.

2.9. Solubility by available algorithms / convergence. One question that is, surprisingly, some-

times overlooked, is the existence of optimization algorithms that will solve a particular formulation of the

MDO problem. It is possible to reformulate the MDO problem in a way that is difficult to solve reliably. We

touch on this in an example below; in [4] one can find a detailed illustration of two equivalent formulations

that manifest drastically different behavior when conventional optimizers are applied to their solution. In

particular, formulations that lead to nonconvex bilevel and multilevel problems axe hard to solve reliably,

and are expensive to solve, as well.

We must also ask about the convergence properties of optimization algorithms applied to a given formu-

lation of the MDO problem. At the very least, one would ask for a guarantee of convergence from an arbitrary

starting design to at least a local optimizer of the design problem, since such guarantees are typically part

of the analysis of modern nonlinear optimization algorithms. There is also the question of the rate at which

optimization algorithms will converge, which in part determines overall efficiency of the optimization.

The availability of algorithms to solve a particular formulation of the MDO problem may limit the set

of problems for which the formulation is useful. Similarly, proposed algorithms for the solution of a given

approach will be limited by their convergence properties.

3. Classification of MDO formulations. We now turn to a classification of MDO formulations. The

taxonomy we propose differs from other schemes that have appeared (e.g., [6, 10]).

The proposed classification is based on the way that a formulation handles the constraints explicit and

implicit in (2.1). These constraints comprise the following:

• Disciplinary analysis constraints, which are equality constraints implicit in disciplinary analyses;

• Design constraints, which are general nonlinear constraints, some at the disciplinary level, others

that couple outputs from different disciplines;

• Interdisciplinary consistency constraints, which are auxiliary constraints introduced to relax inter-

disciplinary coupling.

We will illustrate these distinctions for the following two-discipline instance of the MDO problem (2.1):

(3.1)

minimize

subject to

f(x0, R1 (Ul (x)), R2 (it2 (x)))

g0(x0, sl(ul(z)), s2(us(_))) > 0

gl(xo,xl,ul(_)) >_o

g2(xo,_2,_2(z)) > o,

where, given x, (ul, u2) is the solution of the MDA

Al(XO, xl, Ul, Tl(u2)) = 0

A2( xo, xs, u2, T2(ul )) = O.

The design variables x have been partitioned into x -- (x0, xl, x2). The system-level design variables x0 are

shared by both disciplines. The disciplinary design variables Xl and x2 are specific to disciplines 1 and 2.



TheoperatorsR_ and Si indicate that perhaps only a subset of the state variables u_ is required to

evaluate the system-level objective f and the design constraint go. The constraints gl, g2 are the disciplinary

design constraints.

The operators T_ indicate that the output of one disciplinary analysis may need to be transformed before

being passed to the other discipline. Equations (3.2)-(3.3) are the disciplinary analysis constraints. They dis-

tinguish the design problem from the conventional NLP. At this stage, there are no explicit interdisciplinary

consistency constraints.

Alternative formulations of (3.1) rely on the introduction of auxiliary variables and consistency con-

straints. For instance, we can rewrite the MDA (3.2)-(3.3) as

(3.4) AI (x0, Xl, ul, Ul_) = 0

(3.5) a2(x0, x2, us, u21) = 0

(3.6) u12 - TI(U2) = 0

(3.T) u21 - T2(ul) = 0.

Thus we can rewrite (3.1) as an equivalent problem in (xo, Xl, x2, u12, u21):

minimize f(xo, Rl(Ul(X, u12)), R2(u2(x, u21))

su.bject to gs(xo, Sl(Ul(XO, xl, u12)), S2(u2(xo, x2, u21))) _> 0

(3.8) gl(xo,xl,ul(xo,x_,u12)) > 0
g2(xo, _2, u2(xo, z2, u21)) > 0

u12 - Tl(u2(zo, x2, u21)) = 0

U21 -- T2(ul(xO,Xl,Ul2)) -- 0,

where, given (x, u12, u21), ul and u2 are found by solving the disciplinary analysis equations

Al(zo, Zl, Ul, U12) = 0

A2(x0, x2, u2, u21) = 0.

Equations (3.6) and (3.7) are examples of interdisciplinary consistency constraints. The degrees of freedom

introduced by expanding the set of optimization variables to include u12, u21 are removed by the consistency

constraints.

Approaches to MDO problems are generally based on techniques for eliminating variables from transfor-

mations of the original problem. The variables are eliminated by enforcing various subsets of the constraints

in different ways. We will say that an MDO formulation is closed with respect to a given set of constraints

if the formulation--rather than an optimization algorithm for its solution--assumes that these constraints

are satisfied at every iteration of the optimization. If the formulation does not necessarily assume that a set

of constraints is satisfied, we will say that that formulation is open with respect to the set of constraints.

For instance, consider conventional optimization applied to the formulation (3.1). We perform a mul-

tidisciplinary analysis at each step. This corresponds to maintaining closure of all the disciplinary analysis

and interdisciplinary consistency constraints in (3.8).

More generally, MDO formulations are characterized by the constraint sets with respect to which they are

open or closed. In addition, a particular optimization method applied to the formulation may enforce closure

with respect to additional sets of constraints. However, we again stress the importance of differentiating

between the properties of a formulation and the properties of an algorithm for its solution.



Wedistinguishthefollowingclassesofformulations,basedontheir treatmentof constraints.Werefer
thereader to [5] for details.

• CDA/OD/CIC: Closed disciplinary analysis, open design constraints, closed interdisciplinary con-

sistency constraints. This is the conventional formulation (3.1), also known as the Multidisciplinary

Feasible (MDF) formulation in [10]. Further closure with respect to disciplinary and system-level

design constraints is determined by the kind of optimization algorithm used. Another example of a

formulation included in this large class is Bi-Level Integrated System Synthesis (BLISS) [15].

• CDA/CD/OIC: Closed disciplinary analysis, closed design constraints, open interdisciplinary con-

sistency constraints. Examples of this class include Collaborative Optimization [8, 9] and the for-

mulation proposed in [1].

• CDA/OD/OIC: Closed disciplinary analysis, open design constraints, open interdisciplinary consis-

tency constraints. The Individual Discipline Feasible (IDF) approaches discussed in [10] and [13] are

examples of this class. Again, closure with respect to disciplinary and system-level design constraints

is determined by the kind of optimization algorithm used.

• OA/OD/OIC: Open analysis, open design constraints, open interdisciplinary consistency constraints.

Simultaneous Analysis and Design [11] is an example of this class of formulation. Once again,

closure with respect to disciplinary and system-level design constraints is determined by the kind of

optimization algorithm used.

4. A study of two formulations. We now consider members of two classes of formulations and

comment on some of their features in terms of our previous discussion. We choose the two representatives

because their approaches are very similar, but a seemingly slight difference in the problem statements causes

their analytical behavior and the effect on optimization algorithms to differ significantly. For simplicity of

exposition, the discussion will proceed in terms of the two-discipline problem of the preceding section.

4.1. Collaborative Optimization. In our classification scheme, Collaborative Optimization (CO)

[8, 9] is closed with respect to disciplinary analyses, closed with respect to design constraints, and open with

respect to interdisciplinary consistency constraints. CO has three salient features.

First, CO is a nonconvex, nonlinear bilevel optimization problem of a special structure.

Second, the only constraints of the system-level problem are the interdisciplinary consistency constraints

that are designed to drive the discrepancy among the disciplinary inputs and outputs to zero. The values

of the system-level constraints are computed by solving disciplinary optimization problems. The number of

the consistency constraints is related to the number of the disciplines, the number of variables shared among

the disciplines, and the number of outputs exchanged among the disciplines. The form of the consistency

constraints characterizes different instances of CO.

Finally, the disciplinary problems are NLP whose objective is to minimize the discrepancy between the

system-level variables and their local, disciplinary copies, subject to satisfying the design constraints. The

disciplinary constraints do not depend explicitly on the system-level variables that are passed down to the

disciplinary problems as parameters.

Reformulating (3.8) along the lines of CO, we introduce new disciplinary design variables x01, x02 that

serve to further relax the coupling between the disciplines through the shared system-level design variables

x0. At the system level, we introduce new variables Yl, Y2 to relax the coupling between disciplines through

the system-level constraint go. The system-level constraint g0 will be treated as an additional, artificial



discipline.Theresultingsystem-levelNLP in (x0, u12, u21, Yl, Y2) is

minimize f(xo, Rl(Ul (Xo, u12, u21, yl)), R2(uu(xo, u21, u12, Y2)))

subject to Co(z0, Yl, Y2, Xo° (x0, Yl, Y2), zl (x0, Yl, Y2), z2(x0, Yl, y2)) -- 0,
(4.1)

cl(zo, u12,yl, z_(zo,u12,u21,yl), zl (zo,u12,u21,yl), ul(zo, u12,u21,yl)) = 0
c2(xo,1521,y2,x2(xo,_21,1512,y2),x2(*o,u21,_2, y2),u2(_o,1521,_12,y2)) = 0,

where the c_ are the consistency constraints we will shortly describe. We compute x_(xo,u12,u21,yl),

xl (xo, u12,1521, yl), and ul (xo, 1512,1521,Yl) by solving the following minimization problem in (x_, xl) at the

discipline level:

minimize [[2:1 - xo [[2 .__[[ S1(151(x1,xl)) _ Yl [[2 + [[ T2(ul(x_,xl)) - 1521 [12
(4.2)

subject to 91(x_,x1,u(x1,xl)) >_ O.

An analogous problem for discipline 2 defines x_(xo, 1521, U12, Y2), X2(X0, 1521, 1512, Y2), and u2(xo, U21, U12, Y2):

minimize [IXo2 -xo [I2+ I[ S2(u2(x2,x2)) -Y2 ][2+ I[ Tl(u2(x20,x2)) -u12 ][2
(4.3)

subject to g2(x_o,x2,u(x_,x2)) :> O.

In the disciplinary problems, ul and u2 are computed via the disciplinary analyses

AI(X O, Xl, 151, U12) ---- 0

A2(x_, z2, u2, u21) --- O.

"Discipline 0" is introduced to treat the system-level design constraints; the associated disciplinary problem

in (xo o, Zl, z2) is

minimize
(4.4)

subject to

II_o° - _o II2+ IIz1 - y_ II2+ II_2- y2112

go(z°, zl, z2) _>o.

The introduction of disciplinary minimization subproblems of this form is the distinctive characteristic of

CO. The subproblems are independent of one another and can be solved autonomously at the discipline

level. In doing so, the disciplinary design variables xi and the disciplinary state variables u, are eliminated

from the system-level problem.

Information from the solutions of the disciplinary problems (4.2)-(4.4) is then used to define the system-

level consistency constraints c,. Here we will discuss two definitions of c/.

The first instance of CO we discuss is the form in which CO is usually presented [7, 8, 9, 14]. In this

formulation, the consistency condition is to drive to zero the minimum value of subproblems (4.2)-(4.4). The

system-level consistency constraints are simply the optimal values of the objectives in (4.2)-(4.4). Bearing

in mind that

(4.5)

X_ -'_ X_(Xo,_12, U21,Y1)

x_ 2-- Xo(Xo, u21,u12, y2)

U 1 = 151(X_(Xo,1512, U21,Y1),Xl(XO,_12, U21, Yl) )

152 "_ U2(X_(Xo,U21,U12, Y2),X1(XO,1521,U12, Y2))

Zl = Zl(XO,Yl,Y2)

z2 = z2(xo,yl,y2),



we have the consistency constraints

C0(x0,Yl,_/2) _-- II X00 --X0 I12 -1- I] Zl -- Yl II 2 q- ]1 Z2-- Y2 112

(4,6) Cl(Xo, U12'U21,Yl) = ]1 X01 -- X0 H2 "_- ]1 Sl(Ul) - Yl ]12 _-II T2(Ul) -- U21 I] 2

c_(z0, u_,, ul_, y2) = JIx] - xo IP_ + IJs_(_2) - y_ JI_ + IJT, (_2) - .,_ JI_.

We call this version COs, where the subscript 2 refers to the fact that the c_ are sums of squares.

An alternative to the system-level consistency condition (4.6) is to explicitly match the system-level

variables with their subsystem counterparts computed in subproblems (4.2)--(4.4):

co(xo,vl,y2) = (x°o- xo, zl - yl, z2 - y2)

(4,7) Cl (X0, _t12, Yl) : ( xl -- X0, S1 (_tl) - Yl, T2(Ul) - u21)

c2(xo, u21, Y2) = (x20 - x0, $1 (u2) - Y2, TI(u2) - u12),

again, keeping in mind (4.5). We will denote this approach as CO1. In general, this leads to more system-level

equality constraints than does CO2. The latter usually reduces this vector of information about inconsistency

into as many constraints as there are subsystems [8], but the vector may be reduced to a single scalar.

Note that the number of system-level variables in the system-level problem (4.1) depends on the number

of shared variables x0 and the bandwidth of the interdisciplinary coupling, as manifest in u12, u21, Yl, Y2-

The introduction of these auxiliary variables suggest that CO will be best suited for problems with a narrow

coupling bandwidth. CO possesses a marked degree of disciplinary autonomy. However, as computational

experience [3, 12] and analysis [4] reveal, the approach has a number of intrinsic analytical and computational

difficulties.

For instance, in CO2, one can show that Lagrange multipliers never exist for the system-level constraints

(4.6). This means that nonlinear optimization algorithms will fail if one attempts to truly enforce the con-

sistency conditions ci = 0; instead, one must be content with a relaxation I] c/ H < ¢ for some suitably small

c. In practice, the larger c at the system level and the tighter the convergence criteria for the subsystems,

the better are the chances that an optimization algorithm applied to CO2 will find a solution.

This problem does not occur in CO1. However, in order to compute the first derivatives in the system-

level optimization problem we must compute second derivatives at the disciplinary level; this is a consequence

of the fact that CO involves a bilevel optimization problem, in which the system-level optimization problem

involves the output of the disciplinary level optimization problems.

Other difficulties in both CO1 and CO2 derive from the fact that CO leads to a nonlinear bilevel

optimization problem. In particular, the constraints (4.6) and (4.7) possess features that can cause distress

for standard optimization algorithms. These include the potential for nonsmoothness due to multiple local

minima in the disciplinary problems (4.2)-(4.4). For further details, see [4].

5. Individual Discipline Feasible approaches. The IDF formulation provides another way to avoid

the expensive MDA iteration. It is closed with respect to disciplinary analyses, open with respect to design

constraints, and open with respect to interdisciplinary consistency constraints. Further closure with respect

to design constraints or system level constraints is determined by the kind of optimization algorithm used.

Various forms of IDF were discussed in I10} and [13]. The term "Individual Discipline Feasible" originally

referred to maintaining closure with respect to the disciplinary analysis constraints at each optimization

iteration, but not closure with respect to multidisciplinary analysis coupling until a solution is reached.

However, the question of disciplinary design constraints was not really treated in earlier discussion of IDF.

Here we discuss the original IDF approach and its elaboration that treats the design constraints explicitly.



We begin with (3.8). The IDF formulation discussed in [10, 13] is closed with respect to the disciplinary

analysis constraints:

minimi_e f(z0, nl(Ul), R2(u2))

subject to go(xo, sl(Ul),S2(u2)) _> 0

(5.1) gl(xO,Xl,Ul) _ 0
g2(xo, x2, u2) _>0

u12 - Tl(u2) = 0

u21 - T2(ul) = 0,

where U l = u l (xo, x i, u12) and u2 = u2(xo, x2, u21) are required only to satisfy the disciplinary analysis

constraints; i.e., Ul and u2 are defined by solving

Al(xo,xl,ul,u12) = 0

A2(zo, z2, u2, u21) = O.

In contrast to CO, the IDF formulation is a single-level NLP.

In the IDF approach, further closure with respect to disciplinary design constraints or system level

constraints is determined by the kind of optimization algorithm used. Ideally, one would be able to start

with design variables (xo, xl, x2) for which the disciplinary design constraints defined by the gi are satisfied.

One could then apply an optimization algorithm that maintained feasibility with respect to these constraints

so that all subsequent designs obtained in the course of the optimization satisfied the disciplinary design

constraints, thereby accomplishing the same end that CO achieves through the definition of its disciplinary

optimization problems.

On the other hand, one might rightly object that it will, in general, be difficult to find initial design

variables (Xo, Xl, x2) for which the disciplinary design constraints are satisfied. To address this problem, we

can expand the space along the lines of CO as follows:

minimize f(xo, R1 (Ul), R2(u2))

subject to go(x °, Yl, Y2) _> 0

gl(xl,xl,Ul) __ 0

g2(x_, x2, u2) > o

u12 - T1 (u2) -- 0

(5.2) us, - T2(ul) = 0

XO -- XO0 = 0

X0 -- X 1 _---0

X0 -- X02 _-_0

Yl -- SI(Ul) = 0

y2 - S2(u2) = o.

This relaxes the requirement that the disciplinary design constraints be satisfied with the system-level values

of x0. In particular, we now have the flexibility to select the initial x_ and yi in a way that the disciplinary

design constraints are satisfied, exactly as in CO. One can then apply an optimization algorithm that enforces

feasibility with respect to the disciplinary design constraints.

It is straightforward to verify that IDF is equivalent to the original MDO. This makes IDF easy to analyze;

for instance, if standard constraint qualifications are satisfied by the original problem, then they also hold
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for the IDF formulation. The convergence properties of optimization algorithms applied to IDF are those

of the algorithms applied to conventional NLP. Given a good solver for equality constrained optimization

problems, the method is expected to be efficient.

Similarly to CO, IDF is intended for problems with small bandwidth of interdisciplinary coupling, and

the problem of decomposition is similar to that of CO. Also similarly to CO, formulations that arise from

IDF have more optimization variables that those arising from MDF.

Importantly, although IDF maintains autonomy with respect to analyses, it lacks CO's autonomy with

respect to disciplinary optimization. That is, while the analyses are performed autonomously during the

analysis stage, the coupling is restored during the optimization step computation. This brings back the

difficulties of integration. On the other hand, as previously noted, the disciplinary optimization in CO is

actually part of addressing the MDA, not actually improving the disciplinary objectives of the true design

problem, such as weight or the lift-to-drag ratio.

6. Concluding remarks. This paper has introduced a portion of an extensive effort aimed at further-

ing the understanding of the analytical and computational properties of methods for solving MDO problems

and at proposing efficient methods based on this understanding. We emphasized the distinction between an

MDO formulation and an optimization algorithm and discussed a new, comprehensive classification of MDO

formulations based on the way the constraint sets are explicitly treated in a formulation. Members of two

formulation classes were discussed as an example.

When considering an MDO problem statement, both the problem formulation and the available nonlinear

programming algorithms for solving the formulation must be examined carefully with the following questions

in mind: How is the new formulation related to the basic NLP formulation of the MDO problem? Does the

new formulation lead to an optimization problem that is not amenable to solution by existing optimization

algorithms? For instance, is the new formulation a nonconvex multilevel optimization problem?

The motivation for a prospective formulation must be continually re-examined. It may be discovered

that what one attempts to accomplish via a formulation with a difficult structure is more easily accomplished

by a judicious choice of an optimization algorithm.

As a rule, full disciplinary autonomy with respect to optimization is in direct conflict with computational

efficiency for. general problems. If the coupling between the disciplinary subsystems is sufficiently broad and

strong, one may wish to consider formulations that sacrifice some degree of autonomy for the sake of efficiency,

especially since there are optimization algorithms to which such problems are amenable.
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