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LOW-STORAGE, EXPLICIT RUNGE-KUTTA SCHEMES FOR THE COMPRESSIBLE
NAVIER-STOKES EQUATIONS

CHRISTOPHER A. KENNEDY”*, MARK H. CARPENTER!, AND R. MICHAEL LEWIS!

Abstract. The derivation of low-storage, explicit Runge-Kutta (ERK) schemes has been performed in the
context of integrating the compressible Navier-Stokes equations via direct numerical simulation. Optimiza-
tion of ERK methods is done across the broad range of properties, such as stability and accuracy efficiency,
linear and nonlinear stability, error control reliability, step change stability, and dissipation/dispersion accu-
racy, subject to varying degrees of memory economization. Following van der Houwen and Wray, 16 ERK
pairs are presented using from two to five registers of memory per equation. per grid point and having
accuracies from third- to fifth-order. Methods have been assessed using the differential equation testing
code DETEST. and with the 1D wave equation. Two of the methods have been applied to the DNS of a
compressible jet as well as methane-air and hydrogen-air flames. Derived 3(2) and 4(3) pairs are competitive
with existing full-storage methods. Although a substantial efficiency penalty accompanies use of two- and
three-register, fifth-order methods. the best contemporary full-storage methods can be nearly matched while

still saving two to three registers of memory.
Key words. explicit Runge-Kutta, low-storage. numerical stability, error control
Subject classification. Applied and Numerical Mathematics

1. Introduction. Direct numerical simulation (DNS) of the compressible Navier-Stokes equations 1s a
means by which researchers may numerically probe the full range of scales in high-speed /fast-time-scale fluid
behavior. Compressible DNS seeks to resolve all physically relevant time and length scales associated with
phenomena such as turbulence, sound generation, and/or chemical reaction. Resolution of these phenomena
is likely to require strict temporal error tolerances. The correspondingly accurate spatial discretizations
involving possibly billions of grid points then fill the available memory of the computer. Hence, memory
management of the time integrator is an important matter for DNS. The combination of high accuracy and
low memory use potential for explicit Runge-Kutta (ERK) schemes makes them ideal for compressible DNS
application.

Efforts to reduce computer memory usage during numerical integration of ordinary differential equations
(ODEs) have received sporadic attention in the past.[14, 27, 30, 56, 67, 90] For users confronted with severe
computer storage constraints, established high-order methods such as the DOPRI5[21] may be prohibitively
costly. Currently in the fluid dynamics community, users of ERK methods seeking to reduce memory usage
have chosen to implement either a Williamson([87] scheme[25. 32, 64] or a van der Houwen[41. 42] (vdH)
method.[4, 81] Williamson and vdH methods are both so called “2N" schemes, where N is the number of

equations being integrated times the number of grid points.
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When solving the equation

dl’
1.1 — = F{t,U({t
(1) = = FlLUw)
with an s-stage ERK method, a cavalier implementation requires the storage of the original {/—vector,
an intermediate ['—vector, and all s function evaluations. Williamson implicitly assumes that it is only
necessary to be concerned with the memory requirement of a I/ —vector, what is in effect a dl/ —vector, and
that the wemory requirement of F is inconsequential. Loosely, he implements the strategy over a single

intermediate stage as

dirUy = ‘4jd(f(j—1) + (At)FU)

(1.2) U = - 4 BJdUU),

where A4; and B; are functions of the standard Butcher coefficients, F') and [7U) are the 7% intermediate
values of the function evaluation and the integration vector, and Af is the step size. Note that U7, dl’, and .
F must be stored. Unless work is done in a piecemeal fashion, three storage registers per variable will be
required for the Williamson scheme. These methods have been referred to as 2N schemes.

Wray[90], employing van der Houwen’s technique, places a set of conditions the scheme must satisfy
that are more restrictive than Williamson’s. Van der Houwen and Wray devise a scheme where information
alternates between the two available storage registers at each successive ERK stage. The procedure is loosely

written over two intermediate stages as

(Register 1) U = XU 4 (a;4, 5)ALFU)
{Register 2) XU+ — pr+1) + (b; — (lJ'+1,J‘]AfF(j)
(1.3)
(Register 2) UUF = xUHD Lo ALFUTD
(Register 1) XU+2) —prU+2) 4 (bjg1 — (lj+'_>,j+1)AfF(j+l).

By overwriting, the {7, }', and X vectors never fully coexist. The symbols a;; and b; are the ordinary Butcher
coeflicients of the scheme. The X vector may be thought of as a vehicle to bring information from previous
stages into the current stage. To distinguish these methods from the Williamson class of 2N schemes, we
will refer to them as 2R schemes.

The primary difference in philosophy between the two methods is that in the vdH scheme, during the
function evaluation, the previous solution vector is overwritter. Clearly there will be cases where this
is not acceptable. Compressible DNS provides a situation where this method may be profitably utilized.
This circumstance occurs because the [’ —vector contains, principally, variables which are the products of
variables needed to evaluate the flux terms. Consequently, the {7 —vector must be decomposed into other
variables, leaving the ["—vector itself disposable. Both Williamson (2N) and vdH (2R) schemes may be
casily generalized (o accommodate more than two storage registers (N or R). We make no claim that these
two strategies are the only viable ones. We do suggest, however, that the vdH methodology is extremely
aggressive in its conservation of computer memory usage.

In the pursuit of computer memory use reduction, the first casualty is the retention of the {7 —vector at
the beginning stage. Error control, in the more traditional sense, becomes impossible. A rejected step (such
as violation of the error tolerance) cannot be restarted from /(") because with a 2N or 2R scheme, /(") s

no longer available. Instead, alloting one additional register for an error estimate, one may monitor the error



occuring at each step and determine an appropriate next step. Including yet another register, 17 could
be retained so that action could be taken on a step which exceeds the predetermined error bound. This
additional register approach, however. undermines the fundamental premise of this work and should not be
used unless all other approaches fail. Schemes in this paper that can be used i error monitoring/control
mode are designated 2R+, etc., schemes because, if used in this mode, they require extra storage. Details
of this implementation are contained in Appendix A. If overwriting is impossible, then the implementation
must be modified and an extra storage register will be required.

The goal of this paper is to derive broadly optimized, minimal-storage (2R+. 3R+, 4R+. and 5R+)
ERK schemes based on only the vdH methodology and to explain how they are implemented. Choices
are offered for storage reduced methods that address the needs of stability efficiency, accuracy efliciency,
linear stability, nonlinear stability, dissipation and dispersion minimization. time-step/error control, and
step-control stability. Invariably users will investigate physical phenomena that require different integrator
properties, different error tolerances, and have different computer memory allocations. Hence, many good
schemes are presented along with a rational basis by which to choose a scheme depending on one's needs.
Based on the existing literature, the fluid dynamics community has been the largest customer for these
low-storage schemes. For this reason (as well as personal research interests), optimization of ERK schemes is
made with an eye towards the Navier-Stokes equations. Flows which are strongly viscous or chemically stiff
may not be good candidates for these explicit methods. In addition, integrating the differential-algebraic
equations arising from the discretization of the incompressible or low Mach number equation set with an
ODE-ERK method must be done with great caution so as to avoid drift-off and/or order reduction.

A recurring criticism that accompanies use of high-order ERK schemes for discretized partial differential
equations (PDEs) is the boundary “order reduction” phenomenon.[l, 13, 47, 49, 61, 66] Without proper
care, order reduction occurring at the spatial boundaries can dominate the solution accuracy throughout
the entire domain. The impact of the order reduction becomes more pronounced with increasing temporal
accuracy. As such, the new schemes presented in this paper will be more susceptible to this problem than
either Williamson's or Wray's third-order schemes.

A second concern is that Runge-Kutta methods may seek out spurious fixed points of the differential
equations being integrated. Methods exhibiting this behavior are called irregular.[2, 38, 78, 80, 83] All ERK
methods greater than first-order accurate are irregular. We rely on error control and the fact that many
equations are being integrated simultaneously to avoid spurious fixed points.

Finally, we largely forsake aesthetic or “nice” coefficients (ones with simple, rational numbers) because
the benefit from using a substantially more efficient integrator over hundreds of simulations. each taking
tens or hundreds of hours, far outweighs the inconvenience of typing in twenty or so complicated coefficients
correctly. Most solutions that are presented within this paper have been found numerically with established
mathematical software. [18, 28, 29, 58, B&] Attempts were made to solve for schemes symbolically, but it was
found that the assumption of various a;; = b; quickly made matters intractable because the equations of
condition become algebraically nonlinear in the b;’s. Scheme coefficients are given to at least 25 digits of
accuracy.

Some ERK background is necessary to facilitate a discussion on the optimization of accuracy efficiency.
stability efficiency, error control reliability, step-control stability, linear stability, nonlinear stability, and
dispersion and dissipation error within the context of storage reduction in later chapters. This will be done
in sections 1 and 2. Two-register schemes will be reviewed in section 3 while three-, four-, and five-register

schemes will be considered in sections 4. 5, and 6. Merits of the low-storage schemes are discussed 1n section



7. and comparisons are made with more traditional. full-storage ERK methods. In section ¥, conclusions
are drawn as to the utility of the various schemes. Appendices listing an implementation strategy and the

relevant equations of constraint are also included.

2. Background. We cannot hope to review the extensive body of Runge-Kutta literature germaine to
integrating the Navier-Stokes equations. Therefore we tersely describe only those areas of literature that are
crucial to the development of the new schemes being presented. For further details, appropriate references
are provided.

The compressible Navier-Stokes equations constitute a coupled set of partial differential equations that
may be spatially discretized into a set of coupled ODEs with finite-difference techniques by the method of

lines. We are concerned with the numerical solution of the initial value problem

dU/
(2.1) S = FUUW). U@ =Un (€],
where [/ = (p.pu,pc'o,p)})T is a function of the fluid density, p. velocity vector. u, total specific internal

energy, ey. and species mass fraction, Y;. F contains the inviscid, viscous, reactive, and, possibly, body force
terms of the compressible Navier-Stokes equations.

Temporal discretization of the Navier-Stokes equations can be made with an s-stage ERK scheme, which
may include an embedded error control scheme within the s-stage procedure. The implementation over a

time step At from time level 1(*) to time level ¢("+1) is accomplished as

FO = U () )y i) = l"(")+L\tZ;;11 a; FU), (0 = ) 4 e AY
(2.2)
{rinkll o — 4 Atz_‘;:lb_jF(j)‘ [rintl) — yrin) Atz;:l b_iF(j)‘
where {71 = 700 = {7t and U+ = [7(10) 4 At) are the solutions at time levels 7 and n+1 of order
g =p+ Land UUHY the [7—vector associated with the embedded scheme, is of order p. The particular
Butcher coefficients a;;. ;. b;, and ¢; of the respective schemes are constrained by certain equations of
condition, a short list of which may be found in appendix B. In reading these conditions we remark that for
a g'"-order ERK, the &' equation of condition may be considered as[9, 35]
1 a

o (q) (q)
2.3 =97 - —,
(23) K o K q!

which defines @i,q}, a scalar sum of Butcher coefficient products that will appear throughout this paper.
Both o and o vary with ¢ and k. The T,f,(“ conditions are identical to r,f,(” conditions with b; replacing b;.

We assume that the standard row-sum condition applies: ¢; = Z;:] a;;. Extensive discussions of explicit
Runge-Kutta methods may be found in the literature.[9, 21, 24, 35, 54, 69] Our style in this paper closely
follows Dormand et al.[20] Schemes will be referred to as RKq(p)s[rR.nN+]X{ daisp. Qaiss }. where ¢ is the
order of the main scheme, p is the order of the embedded scheme. s is the number of stages, r/n is the
number of registers used (vdH/Williamson), + denotes that extra storage registers will be needed for error
monitoring/control. X denotes either C' (linear stability-error compromise), S (maximum linear stability), F
(FSAL - first same as last), M (minimum truncation error), N (maximum nonlinear stability - contractive), or
P (minimuim phase error), and for “P” methods, daisp and qqiss are the respective dispersion and dissipation

orders of accuracy.



2.1. Error and Error Control. Error in a ¢*P-order explicit Runge-Kutta scheme may be quantified

in a general way by taking the Lo and L., principal error norms,[62, 86]

; fg+1) +1 @D\ ) 4+ 1) (D)
(2.4) qletl) — ”T 1+ )H-’ — Z (qu ) ‘ ;li{" b= HTH+ N = Ma.\{|7'j’ 1},
=1
where T}q) are the n, = {1.1.2,4,9,20, 48,115,286} error coefficients associated with order of accuracy

¢ =1{1,2.3,4,5.6,7,89}. For embedded schemes of accuracy p, additional definitions are useful, such as

(2.5) Alr+1) —

npgo [ 2(p+2) 2
. 4(p+2) “7’1(7‘+3)H,, \/ Z]—z (le )
(2.6) B2 =2 = 2 =
: Ar+D) [Fe+D], moer {20t ]) I
25 (Tj )
npye (242 _ (42"
o ||l ey, \/Z.;?l (Tj} -7 )
(2.7) = =(p+1) - = ‘
”TI “-’ \/i?}p-i—l (f_{}%l))"
i= i
(2.8) | 1Bl leal}
Np42 (l‘+ )9
2 2 =
29) ) A4r+2) I|T(P+ )H \/Z; 1\

Alp+1) Ft+|, ) 7
” I]: Z;Sl (f_}l+l))

One may also consider A PH), B&H’Q), C7§£+2), and E££+2). All emmbedded schemes considered here are
applied in local extrapolation mode; i.e., the solution is advanced with the higher - order formula. For
a given order of accuracy, one strives to reduce A+ to as small number as possible. Both BP+?) and
P+ should be of order unity. The maximum magnitude of any of the Butcher coefficients, D, should
be small, but may approach 20 in some high-quality pairs.[72] Shampine[68] recommends B2 < 1.5 and
E@+2) < 0.5, Although these error measures are independent of the equations being integrated and hence
only an approximate error metric. they will be used to select the “best” scheme. Verner[85] points out that
strictly relying on only AW+!), B(P+2) and C?*+2) may not be adequate to distinguish among several good
schemes. He also presents AlgHh) Al g+ and 2+ 1y another paper, Verner[84] recommends
that (9+1) should generally not vanish. Although not as frequently mentioned as the above parameters. the
ratio of A(4+2) /419+1) is sometimes controlled. For 5(4) pairs, Sharp and Smart[72] choose 5/2. Bogacki and
Shampine[6] limit it to 10, while Papakostas and Papageorgiou[60] use 25. The risk of allowing Alet2) 7 qglat])
to grow too large is that the error controller may become less reliable at lax tolerances. Additionally. we
require that all T}PH) # 0 to avoid a defective embedded method. i.e.. R: = 0. The stability domain of the
embedded method is designed to be nearly as large as that of the main method to avoid instability in the
embedded method at large step sizes.

FSAL techniques, where a;; = b;, allow for the use of not only all function evaluations during an
effectively s-stage computation, but also use Fin4l) After U700+ and F"+1) are evaluated, U+ is
computed with s + 1 function evaluations. The principal motivation for doing this is that it allows more

latitude in the design of the method and usually results in better schemes. The high stage numbers found

pias



in low-storage schemes make FSAL relatively less advantageous. Dense output via Runge-Kutta triples is
forsaken here because there is little apparent interest within the DNS user community for such a feature.
It may. however, find use if users seek global error estimates.[3] Pseudosymplectic or low-drift methods are

also forsaken.

2.2. Linear Stability. The stability function[36] for ERK methods is given by

(2.10) R(z) = Det [5,“]' - ((l,‘j - F,‘bj):],
(2.11) =14 @;1): + @gg):g + <I>£,3):3 + <I>_(44):4 + <I>f5):5 44 @)
with e = {1, 1.---.1}, d;; is the identity matrix, d)fl",) are the “tall trees,” and : contains information

(eigenvalues) describing the equations being integrated. It is convenient. in fluid dynamics to consider linear
stability in the context of the prototypical, one-dimensional, convection-diffusion equation

ov d a2
2.1. -— = < —a— ve=—s ¢ U,
(2.12) at { “or +o 81’2} {

where @ is a convection or sound velocity and a, is a diffusivity[48] (mass, momentum, or energy). Other
studies of stability of ERK methods applied to the compressible Navier-Stokes equations have been conducted
by Sowa[75] and Muller.[59] If the spatial derivatives are considered as high-order, centered, finite-difference

operators then the Fourier image of the convection-diffusion equation becomes
(2.13) 2= =AY 4 AU

_i[2a sin(&) + 2b sin(2€) + 2c sin(3€) + -]
B (1 + 20 cos(§) + 23 cos(2€) + -]

(2.14)

In this expression A = “AA; and A, = ﬁ%’ are the inviscid and viscous CFL numbers, Az is the local spatial

grid spacing., At is the magnitude of one time step, 0 < £ < 7 is the spatial wavenumber, ¥ is the Fourier

image of the first derivative operator, and {a, b, ¢, @, 3} are coeflicients of the derivative operator used in
evaluating the convection-diffusion equation. As the “compact” sixth-order derivative operator is popular in
compressible DNS, these last coefficients will be set to {7/9, 1/36, 0, 1/3, 0 }.[48]

A stable method has |R(z)| < | at a particular value of = or for all wavenumbers at the pair (A, A,).
This requirement is necessary but may not be sufficient.[33, 50, 65] Unlike many contemporary ERK pairs,
imaginary axis stability is a high priority to the methods designed in this paper. The derived linear sta-
bility domains, in terms of (A, A,), are a strong function of which derivative operator is chosen. Reducing
truncation error of the spatial derivative operator reduces the extent of the linear stability regime. Use of
the corresponding second derivative operator rather than repeated use of the first derivative operators for
the viscous terms reduces the maximum viscous CFL number. Nevertheless. determining linear stability
as previously described gives results representative of a broad class of numerical methods used for DNS of

compressible flows.

2.3. Step Control Stability. We consider two step-size control strategies:[34, 36, 37]

p (n+1) _ .. (n) € “
(2.15) (A = r(Al) {*||‘5(”‘+”||m} )

a O‘(n)ll N
2.16 ANPHD = (A ¢ 161~ ’
(2.16) (At) (AL) TR -

where ¢ is some chosen integration error tolerance, x & 0.9, and §"+1) = {7(+1) _ (70n+1)  The first and

most common method, Eq. (2.15) is an example of an integral feedback (I-} controller. The second, more



sophisticated, Eq. (2.16) adds a proportional feedback component and is called a Pl-controller. Following

Hairer and Wanner,[36] we define

o N ; N R'(5)z E'(z):
(2.17T) R(z)=1+ Q) E(z) = o) — @) 2 u=9 [—————] v:.’}?[ - .
( ; ' ( i;} ( b ") R(z) E(z)
as well as the matrices
1 u 0 0
(2.18) ¢ = 1 u ‘ - (1~-au) 2 Sv
—a (1 —ou) i 0 0 0
0 1 0 0

In the case of the C'-matrix corresponding to Eq. (2.15), & = (p+1)~!. For (' corresponding to Eq. (2.16). we
set a = 0.7/pand 3 = 0.4/p where p is the order of the embedded method. If at the regions where |R(z)| =1
the spectral radius of (" or (" is less than unity, then the step-size control mechanism is said to be SC-stable.
As DNS runs are often made near the linear stability limits of the integrator, step-size change oscillations
may result and give rise to a rapid accumulation of global error during oversteps. Still more involved would
be a PID-controller, which we do not use. The PID-controller is obtained by multiplying the RHS of Eq.
{(2.16) by {c/[]dfn—l)“NP and creating a § x 6 matrix ¢ which has the elements (",—_,— = (v‘,-j‘ 1,j=1.2,3,4,

Clag = —7, (a5 = —yv, and Cs3 = Csq = 1. with all remaining elements being zero.

2.4. Dispersion and Dissipation Error. Dispersion and dissipation of ERK methods[10, 44, 45] may
be considered by taking the derivative of I/ = ¢'“! with respect to time, dU7/dt = iwl/, where w is a temporal
wavenumber (frequency). The stability function for this ODE has the argument iv where v = w(At). An
ERL method where R and I, respectively, are the real and imaginary parts of R(iv) is said to be dispersive

of order gqisp and dissipative of order gqiss if

I 2541 o
{2.19) ¢(v) = v —arg (R(iv)) = v — arctan (F) = Z Gaj vt = O(pTdi=etly
A Y

Jj=0

2
(2.20) a(p) =1 |R(iv)] = 1 = VR2+TI? = Y anp™ = O(win=*t),

j=0
Hence R(iv) = R+ = (1 - a(v)) e’ =¢WN . Some authors refer to the phase-lag order of the method,
which, in our notation, would be (¢disp, ¢diss — 1)- Control of both spatial and temporal dissipation and
dispersion in acoustics applications has employed ERK methods satisfying only quadrature[46, 92] and
subquadrature[93] order conditions. Applied to nonlinear problems like the Navier-Stokes equations. these

methods will generally not exceed second- and third-order accuracy, respectively.

2.5. Nonlinear Stability. Nonlinear stability of Runge-Kutta methods[53] focuses on the discrete

analog to dissipativity of F({,U(t)) in some given norm,
(2.21) 10(+ A0 = U+ A< IO = @],

where 7 is a perturbed approximation to {7 and F(t,1/(t)) belongs to any one of the four function classes:
linear (£) or nonlinear {F) and dissipative in an inner product or maximum norm. For ERK methods,[15, 52,
53, 55, 91] the dissipativity criterion is replaced with the so-called circle-condition, and maximum step-sizes

are related to a contractivity threshold: the largest possible step-size that ensures ||I\“'("+” — Uity <

=1



|[{700 — 00| A radius of conditional or circular contractivity for the four function classes may be denoted
PFar Tows PFy o, where vy < vp < repand re < rr, < vy, We will call a method (conditionally)
contractive if at least rx, > (.

Kraaijevanger[52] (F..) and Dahlquist and Jeltsch[16] (Fs) have shown that no ERK method has re >0
and 1s greater than fourth-order accurate. Maximuni norm contractivity is closely related to positivity.[39]
Posi(‘ivi‘ty is particularly appealing because it ensures that physical quantities such as temperature and
species concentrations remain forever nonnegative. The radius of positivity is the same as the radius of
maxinutn norm contractivity.

To determine rx, we first define the matrices[16) Mij = biai; + bja;; — bibj, Bi; = diag{b, ba, -, b,}.

and M, = B;l/"’;lljkB;ll/"). If b; > 0. then rx, = —5=i— where AM is the smallest eigenvalue of the
matrix .M;;. A nonvanishing value of rr_ requires that b, > 0, a;j > 0, and the Runge-Kutta K-function,
K(Z) = det[I — (4 — €bT) Z]. is absolutely monotonic on [-rx,_, 0] where Z = {z1,22. - 25}, N(Z) is said

to be absolutely monotonic at a point £ if[52)

Pt VREE 8

01" 0257 -+ Oz -

(2.22)

In the case of ERKs, each 7; may be equal to either 0 or 1. The largest magnitude of £ on the negative
real - axis for which these 2° inequalities hold is denoted —rx, - Alternatively for ERKs, one may enforce

nonnegativity of
(2.23) R, A(€) = AI-A)™ BE)=bT(I-€A)™! £(6) = (I-¢A) e,

at § = —ry_where e = {I,1,---,1}, b = b;, and A = ¢;;. Assuming that b; > 0. ai; > 0. these present
Lo (s = 2)(s = 1)/2, (s — 1), and (s — 1} inequalities, respectively, or s(s + 1)/2 in total. It should be noted
that the region of circular contractivity is a circle located at = = —r with radius rx,.or rr,, whichever is
appropriate. This implies the property is likely most useful for parabolic rather than hyperbolic equations.
For comparison purposes we follow Dahlquist and Jeltsch and write re, = 1y, the corresponding radius of
the linear problem in an inner product norm,[57] i.e., the largest circle centered on the negative real - axis,
fully contained in the left half-plane, that fits within the region where [R(z)| = 1. The linear analog of
"Fo 18 7. The stability function, R(Z), is said to be absolutely monotonic at a point & f[p3] 9" R(€)/0=
> 0.7=0.1.2.--.s. The largest magnitude of £ on the negative real - axis for which all of these s + |
inequalities hold is denoted —r;_. Kraaijevanger[51] gives the maximum achievable rc.. per stage for an
m-stage method with order p. his optimal scaled threshold factors. We do not consider the internal stability
of ERKs.[42, 43] Nonlinear instability caused by spurious triad wave interactions[79] in the spatial domain

is outside the scope of this paper, but is probably best dealt with by using high-order filtering.[48]

2.6. Efficiency. Efficiency of a given s-stage ERK scheme may be considered from two decidedly
different. perspectives. One philosophy assumes that temporal integration error is acceptable and seeks to
tinie step as briskly as possible. Simulations running on expensive supercomputers for hundreds of hours are
under great pressure to be integrated as quickly as possible. Alternatively, integration may be conducted at
some chosen maximum acceptable error. Virtually all DNS efforts that these authors are aware of implicitly
subscribe to the former philosophy, due to computer resource limitations.

Stability-limited time stepping is the more primitive approach and only seeks to compare the relative

efficiency of two schemes by using[69]

M\ (A s
9 9. (stab) _ AL [ A2 — =t ee
(2.24) " o1 <5:,> (At)s s;



where X is understood to be either the inviscid or viscous CFL number and scheme 1 is most efficient for
2P > 1. This term compares the distance integrated per unit of work (evaluations of F(¢.[7(#)) = number
of stages) with no regard for the accuracy of integration and may be used to compare methods with arbitrary
orders of accuracy and numbers of stages. For viscously or reactively dominated problems this term could

be amended by replacing the CFL numbers with the respective rz, or rx_ of each scheme.

Relative efficiencies of two ¢'"-order schemes based on an error limited time stepping procedure might

best be measured by[40, 69]

1
AFDN T Ay

2.25 placed = 22 [ 22 - L3
(2.25) ! 51 \ qleD) (A1) =1

1

where scheme 1 is most efficient for {2} > 1. Slightly different from ptet2P) | (3¢ compares the distance
integrated per unit of work at fixed integration error, (At)". We will consider the number of stages in a
FSAL method as the effective number of stages for efficiency purposes. Obviously, for sufficiently large error
tolerances, large time steps might exceed the linear stability bounds. In comparing schemes with different
orders of accuracy we cannot use this last metric and simply paraphrase Shampine[6Y]. For sufficiently small
error tolerances the higher order method is more efficient, but this argument does not imply that the lower
order method is more efficient for large error tolerances. Prince and Dormand[62] note that only on the
linear problem are lower order formulae sometimes preferable to higher order formulae. Sharp[71] finds that

the higher-order methods are generally more accuracy efficient on nonstiff equations.

The choice of which efficiency measure should be used depends most strongly on what level of error 1s
acceptable to the user. This, in turn. depends on what physical phenomena are being sought through the
calculation. If integration at the linear stability limits produces sufficiently small error then, efficiency is best
considered by using 7**2P); otherwise 127 seems more appropriate. Spatial accuracy, another important
matter that we do not consider here, must also be addressed. Strict temporal error tolerances make little
sense without correspondingly strict spatial error tolerances. A future study on the spatial and temporal
accuracy /resolution requirements associated with particular physical phenomena would be of tremendous

utility to compressible DNS practitioners.

2.7. Simplifying Assumptions. Finally, in the course of designing several of the schemes in this

paper, resorting to Butcher[8, 36] simplifying assumptions will be useful. On occasion, assumptions

¢ g
{2.26) C(n): Z(L,‘j(‘[;_l =8 =18 g=1...m
, : q
i=1
— ~, - b; ,
(2.27) D) S bt la,-j:(;l'u—g}), j=1,.s g=1...¢
i=1

will be Invoked.



3. Two-Register Schemes. An s—stage ERK method placed in two-register vdH format (see van der
Houwen[42], equation 2.2.4) takes on the Butcher array form
0
2 az]
ek} b1 as

8]

by g2
by asy
Ca 65—2 LN
bl b2 b3 bg._.z bg_l bs

and allows (2s — 1) degrees of freedom (DOF) to satisfy all constraints. In general, for an r-register method,
there will be r s — rx (r — 1)/2 DOF available. Conversely, (s — r + 1) * (s — 7)/2 DOF are sacrificed for
low storage. Setting » = s, the basic ERK method is retrieved with s % {s+1)/2 DOF.

3.1. Two-Stage, Second-Order: RK2()2[2R). All two-stage, second-order ERKs may be used in
2R format. Minimum A®) = 1/6 occurs at ¢co = a9 = 2/3, by = 1/4, b = 3/4 with (rg,. rr.) =
{0.791,0.500). The maximally L.. contractive second-order method is Huen's method;[54] ¢» = a9y = 1,
by = 1/2, by = 1/2 where rx, = rz_= 1 and AG) = V2/6. These are of only academic interest to the
compressible DNS community because when implemented with centered, finite-difference methods on the

convection-diffusion equation, the methods are unconditionally unstable in the inviscid limit.

3.2. Three-Stage, Third-Order: RK3(2)3[2R+]. The general solution to the two-register, three-
stage, third-order vdH scheme has a one-parameter family of solutions along with two specific cases. These
are readily derived by following Lambert's[54] three cases. For the cases when ca £ 0, é or ¢z and when

ca # 0, the one parameter, c3, family of solutions is obtained for

4—=Te3+06¢3 £ /(17T - 60c3 + 84c3 — 48¢3)
6(1 — 2c3 + 2c3)

(3.1) o =

)

provided cs is not complex. From this, Wray[90] suggests c5 = 2/3, yielding ¢ = 8/15. Minimum principal
error norm for the RK3(2)3[2R+]M is found by solving 9.4 /8e5 = 0 for ¢y by using the minus solution
above. The result is that the minima occurs at ¢y & %ﬁ% where At = (.04412 and (rr,. rx)
= {0.521.0.150). Maximum r£_occurs with RK3(2)3[2R+]N at 3 ~ % by using the plus solution where
AN = 0.05094 and (rr,. rr,.) = (1.127,0.838). Asking for contractivity of the embedded methods had the
unfortunate consequence of increasing E™) above optimal. The minimum principal error norm achievable for
any explicit RRK3()3 is AY = 0.011809. Maximum radius of contractivity for the general RK3()3 is ry_= 1
or rr, & 1.215. All RK3()3 methods have =1 and re, = 1.256.

In the two specific cases where ¢y = ¢3 = 2/3 and by = 3/5. then AY = 0.04630 and (rr,, rx_)
= (1.0,0.6), and where ¢» = 2/3. 5 = 0, bg = (1 F V17)/8. both solutions have 4 = (.1326 and are
noncontractive. The former confluent solution admits only a defective embedded method. Stability limits of
all three-stage, third-order, ERK schemes are (A, \,) = (0.87,0.63) when integrating the convection-diffusion

equation discretized with a sixth-order, tridiagonal, first-derivative operator.

3.3. Four-Stage, Third-Order: RK3(2)4[2R+]. Using two-registers over four stages allots degrees
of freedom. Enforcing third-order accuracy, 7%) = 0. &k = 1,2, 3, leaves three remaining DOF. For accuracy
efficiency, RK3(2)4[2R+]C minimizes A subject to <I)f44) = 1/24 in order to maximize linear stability

and dissipation order. The resulting scheme is 6% more accuracy efficient. than RK3(2)3[2R+]M, and has
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(A A) = (1.42,0.70); this scheme is listed in Tables | and 4 and shown in Figure 3.1. For nonlinear
stability, RK3(2)4[2R+]CN seeks maximal r£_ while achieving sixth-order dispersion error, ¢5 = (. by setting
d>g4) = 1/30. Of the maximum possible rz_= 2 for any RK3()4[52] with AW = 0.03608, RK3(2)4[2R+]CN
achieves rr_ = 1.007 while keeping 4M) = 0.02870. As with the RK3(2)3[2R+]N. a contractive embedded
method drove E) to slightly greater than 1. If <I>£14) = 1/48, giving (A, Ay) = (1.08,1.30). r = 2 is possible
for RK3()4 methods.

3.4. Five-Stage. Fourth-Order: RK4(3)5[2R+]. Adding a fifth stage to a 2R-vdH scheme provides
nine degrees of freedom. Fourth-order accuracy may now be considered. Eight order-of-accuracy constraints,
7)Y = 0.k = 1.2.3.4. leave one DOF to optimize linear stability while maintaining acceptable accuracy via
variation of Q)E‘s). Tables 1 and 5 and Figure 3.1 give the QSJ = 1/206 solution, RK4(3)5[2R+]C. with
AG) = 0.005121 and (A Ay) = (1.67,1.21). Mated to this is an embedded scheme with @{" = 1/28. We
were unable to find any contractive methods for the RK4(3)5[2R+] or phase-lag methods having reasonable
principal error norms. Setting 4)5,5) = 1/240 gives (A, A,) = (1.62,1.4%) and the largest re, for the RK4()5

methods is 2.

3.5. Six-Stage. Fourth-Order: RK4(3)6[2R+]. As additional stages can sometimes make for more
efficient methods,[72] one may consider an RK4(3)6[2R+] scheme with three residual DOF after satisfying
) = 0,k = 1,2, 3.4. Searching for solutions uncovered RK4(3)6[2R+]C with AGY = 0.002148 and (X, Ay) =
(1.97,1.18). Unfortunately both 72 and n!st2P) are less than those of RK4(3)5[2R+]C. No attempt was
made to find a contractive solution. At ‘Dﬁ,m ~ 1/159 and d)E_,lz)) A 1/2529 where (A, Ay ) = (1.85, 1.62), rp _ may
reach & 2.651. For increased phase-lag accuracy one may set ¢5 = ¢7 = 0 to find (A Ay) = (0.29.0.96) or
may set ¢5 = ay = 0 to find (A, A,) = (0.35,0.89). Minimizing dissipation error with ag = ag = 0 results
in @ = 17128, &) = 1/1152, and (A, A,) = (1.94.1.09). With A®) = 0.002509. RK4(3)6[2R+]P{4.9} is
such a scheme. Both RKA4(3)6[2R+]C and RK4(3)6[2R+]P{4,9} use an embedded method with <I>(44' =1/26
and @) = 1/150.

3.6. Nine-Stage. Fifth-Order: RK5(4)9[2R+]. A fifth-order, 2R-vdH scheme may be obtained m
nine stages by solving the 17 unsimplified equations of condition. r&Y = 0k = 1,2,---,5, for the 17 free
Butcher coefficients. Solution properties cannot be optimized. Over 800 distinct real roots to this system
of equations have been found. The most accurate root found. RK5(4)9[2R+]M, has AU = 0.0006172, but
(A A) = (0.21,1.03). The most stable method, RK5(4)9[2R+]S, has A = 0.001014, (A, A) = (1.78,1.59),
and (A X)) = (1.60.1.61). A compromise solution, RIK5(4)9[2R+]C. was found with AP = 0.0008209.
(A Ac) = (1.05.1.29), and (A, A.) = (1.63,1.15). An embedded method was designed for the three schemes
by satisfying all eight fourth-order constraints plus setting <I>g5) = 1/135. These methods are presented in
Tables 1 and 6. Stability diagrams are provided in Figure 3.1. The largest linear positivity radius for these
RK5(4)9 methods appears to be o= 4.095 occuring at ng,) &~ 1/779, fbg;) ~ /7444, @gﬁg ~ 1/121935,
@2 A 174494000, where (A, X, ) = (0.34,2.24).

4. Three-Register Schemes. Applications having slightly less stringent memory constraints may add
an additional storage register per ODE. Extending the vdH methodology to three-registers, an s-stage scheme
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takes the Butcher array form

[49] (1331

by a2 ag

by asa  asg

Cs bs—S Qg 22 Ta,e—]

bl b2 e bs—3 bs—2 bs—l bs

where there are now (3s — 3) independent coefficients that may be used to satisfy particular conditions.

Alternatively, (s — 2) x (s — 3)/2 coefficients are lost to low storage.

4.1. Three-Stage, Third-Order: RK3()3[3R]. Any three-stage, third-order ERK method may be
implemented in 3R format. As such, one may seek the method having the smallest principal error norm.
By setting 4 /3¢y = 0 and dAM /9ez = 0 from the two-parameter family of solutions it is found that
o R quﬁ—% 3 R~ %%—f AW =0.041809, and (rx,,rx,.) =(0.894,0.0). The relation of ¢» and ¢3 to the
various other Butcher coefficients may be found in the literature.[9, 21, 35, 54] Stability limits are identical
to the RK3(2)3[2R+] methods. Maximal contractivity, 75 = rz, = 1, is found in Fehlberg's[26, 52, 74]
method with o =1, ¢3 = 1/2, and A™ = 0.07217, while for Cooper’s scheme[15] in an inner product norm

where (rx,, 17 ) = (1.215,0.691), c2 & 270/251, 3 & 166/305, and A = 0.07221.

4.2. Four-Stage. Third-Order: RK3(2)4[3R+]. Kraaijevanger[52] has shown that optimizing the
radius of maximuni norm contractivity for general third-order ERKs allows one to obtain rr.= (s —2)
for s = 3.4 For s > 5. rx_< (s — /5). A family of third-order schemes given by four unique Butcher
coefficients, b; = (s —2)/(s(s—1)). i=1,2,--- (s—1), by = 2/s, aj; =1/(s=2), i=23,--- (s=1)> ],
aj = 1/(2(s = 1)), 4§ = 1,2,---,(s = 1), which for s = 3,4 constitute the maximally L., contractive
methods. From these relations it is seen that ¢;_; = | and ¢ = 1/2. For s =5, 6, 7. and 8 one finds for
this family that (rz,, rx_) is given by (2.449,2.202), (2.828,2.347), (3.162,2.460), and (3.464,2.553). For
reduced storage we set by = (s — 2)/(s(s — 1)) = a5, = 1/(2(s — 1)) to find s = 4. The resulting method.
RIK3(2)4[3R+]N. is essentially given by Kraaijevanger with rr =rr, =re = rg, = 2and 4 = 0.03608.
A good embedded method for this scheme is b; = {8,9. 8, (50}/8'5.

4.3. Four-Stage, Fourth-Order: RK4()4[3R]. From the general solution to the four-stage, fourth-

order ERK scheme,[9, 21, 35] it is found that there is a one-parameter family of 3R solutions and three

specific solutions. The one-parameter family of solutions is given by

(20 = 50c2 + 36¢3) £ \/(—20 4 50cs — 36¢3)2 — 4(9 — 26¢2 + 16¢2)(16 — 360 + 36c3)
2(16 — 364 + 36c2) '

(4.1) 3=

where 0,¢3,03. 1 are all distinct, ¢p # 1/2, 3 — 4(ca — ¢3) + Geacs # 0, and ¢ is not complex. The principal
error norm is minimized by setting 4% /dcs = 0 where RK4()4[3R]M is found for the plus solution with
cy RN %7011(—::]1 rr, = 0.718, and AG) = 0.01263. Maximal rr, = 0.882 occurs with the plus solution
RK4()4[3R]N at ey & £22 (with AG) = 0.01319) for 3R methods and rr, = 1.144 for Cooper’s[15] RK4()4
method. These values compare with rz, = 1 and A® = 0.01450 for the “classical Runge-Kutta” (see
Butcher[9], §313) and A = 0.011977 for the absolute minimum principal error norm for any four-stage,
fourth-order, ERK scheme. Kraaijevanger[52] has shown that there exists no L., contractive RIK4()4 method.

Adding a third-order embedded scheme to this method is impossible unless FSAL techniques are used but
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we do not pursue this matter. Instead of a FSAL pair, complete use of the fifth stage generally makes for
more efficient schemes. One potential exception is inviscid stability efficiency {A/s &~ 0.355). The three other
specific cases are found using Butcher’s cases 3,4, and 5 in §312.[9] In case 3, by = —2/15 and A5 =0.03416.
in case 4, by = 3/10 and A = (0.02330, while in case 5, o = 3/7 and ABG) = (.01282. None of these last
three schemes is contractive. Linear stability limits on the convection-diffusion equation for the RK4()4[3R]

are (A A) = (1.42,0.70), ro =1, and rz, = 1.393.

4.4. Five-Stage, Fourth-Order: RK4(3)5[3R+]. Three additional degrees of freedom afforded
by adding a third register to the RK4(3)5[2R+] method may be put to good use. Optimizing accuracy,
RK4(3)5[3R+]M has A®) = 0.001884 and (A, X} = (0.22,0.81) where 5% = 0. A similar method of
Prince has 'rﬁj]vs_g — 0. A balance between linear stability and low error is found in RK4(3)5[3R+]C with
A) = 0.003859 and (A, A,) = (1.67,1.17). It should be noted that for the RIK4(3)5[3R+]C, selection of
@gs) = 1/200 forces A > 0.003333, as can be seen from AL Contractivity appears to be maximized with
RK4(3)5[3R+]N having (rx,, r7..) =(0.995.0.477), AB) = 0.004587, and (A A,) = (1.67,1.20). Although
not nearly as contractive as Kraaljevanger’s RK4()5 scheme, 1t has 7% better 1'3<). Each of these three
schemes is presented in Tables 2 and 5. Stability plots are given in Figure 4.1. Two highly accurate
RKA4(3)5[3R+]P{4.7} schemes where @' = 1/144 and (A, A,) = (1.74,0.89) were found with A®) = 0.00265%
and A®G) = 0.002857. but neither would accept an embedded method with a reasonably large linear stability

region.

4.5. Six-Stage, Fifth-Order: RK5()6[3R]. With only 15 degrees of freedom simplifying assumption
D(1) may be invoked to reduce the number of condition equations from 17 to 15. By doing so, a fourth-
order embedded scheme is no longer possible. At Jeast 13 schemes like this exist; the most accurate found.

RK5()6[3R]M, has A% = 0.003678 with (X, A,) = (0.20,0.72).

4.6. Seven-Stage, Fifth-Order: RK5(4)7[3R+]. To get a 5(4) pair, a seventh stage is added and
only simplifving assutuption ('(2) is utilized. This results in 18 equations in 18 unknowns for the main

-

scheme and 7 equations in 7 unknowns for the embedded method. Of the 7

RKS(4)T[3R+]M with 4 = 0.002213, (A, A,) = (0.28,0.92), (A, A,) = (0.95.0.59), and B'® < 1.0. Adding

acc)

schemes found, the best one is
an extra stage to this method, however, can lead to a method with as much as 38% better 52 as will
be shown in section 4.7. Maximum r¢_~ 2.654 occurs at d)E_,?)) ~ 1/955, QQQ /R 1/17T733 with (A A) =

(0.28,1.60).

4.7. Eight-Stage. Fifth-Order -RK5(4)8[3R+]. An eight-stage. three-register vdH scheme has 21
degrees of freedom. Seeking a 5(4) pair. Butcher simplifying assumption ((2) is applied. The resulting

system of equations necessary to satisfy all order conditions is

(42) =0, k=125 Yo age=ci/2 i=3.4 8
' i = i g = b = Yisg biavz = Yisg biciain = 37 g biaizaje = 0,

for the main scheme and
(4.3) =0, k=1234 by=1" =) ban=0,
i=3
for the embedded scheme. Optimization may now be done with two remaining DOF in the main method

and one in the embedded method. A numerical search found two low-error solution families (among 25 or

so), the first with more desirable stability properties and the second having lower A RK5(4)8[3R+]C.,

13



RK5(4)8[3R+]P{8.7}, and RK5(4)8[3R+]M are given in Tables 2 and 6. The first two come from the more
stable family. RK5(4)8[3R+]C has A} = 0.0008306 with (X, A,) = (1.30,1.52) while RK5(4)8[3R+]P{8.,7}
has A = 0.0007923 with (A, A,) = (1.01.1.20). RK5(4)8[3R+]M achieves 4() = (.0003240, but (A, A,) =
(0.32,1.00). The final degree of freedom for the embedded methods is used to set <1>£,5J =1/130.1/135,1/122.5
in the RK5(4)8[3R+]C. P, M schemes, respectively. Stability plots for the three schemes are shown in Figure
4.1.

Enhanced dispersion/dissipation order is enforced with

B = (1 +22680%L)/756 L) = (1 + 22680@115 /7560 (7 = ¢a = 0),
(4.4) &l = 1/720 <1>£,8) = (1 +57600{3)/5760  (as = as = 0),
ol = 1/720 o' = 1/5040 (ag = é7 = 0).

With the RK5{4)8[3R+]M solution family, the me!hods RK5(4)8[3R+]PM{10,5}, RK5(4)8[3R+]PM{8,7},
and RK5(4)8[3R+]PM{6,9} may be found having A®) = 0.0005049, 0.0005946, and 0.0005525. and (A A) =
(0.35.1.14), (0.88,0.98). and (0.53,1.04), respectively. Each may be fitted with a high-quality embedded
method by setting ®%) = 1/130. In each of these methods, D < 2, B %) < 1.5 and EF(®) < 0.5. The
largest possible 7 for RK5(4)8 schemes is found at &%) ~ 1/834, &) ~ 179862, 1% & 1/266413 where
reo~ 3.368 and (A A.) = (0.30, 1.89).

5. Four-Register Schemes. Further relaxing the memory constraints, the 4R-vdH scheme structure
appears as

C2 az]
ca a2y a2

Cq a4 aq2 aqz

br  asy  asz  asyg
ba  wea  aeq ags
Cs be_q  a.._z Qs =2 Og e
by b2 -- be_g  beon bey bs—y b

and has (4s — 6) DOF. Storage reduction has consumed (s — 3) « {s —4)/2 of them.

5.1. Four-Stage, Fourth-Order: RK4()4[4R]. In cases where the number of stages equals the
number of available storage registers, all possible schemes may be implemented in sR-vdH fashion. For
the four-stage, fourth-order ERK, we solve for the minimum error scheme. Setting dA®) /dcy = 0 and
dABY/des = 0, results in Co A 16‘.387,_,5131233801. 3 R éi%f};gg;? A®) = 0.0119775. and rr, = 0.613. The relation
between the various other Butcher coefficients may be found in the literature.[9. 21, 35] Stability limits are

(A Ar) = (1.42,0.70). Again, a third-order embedded method is impossible with this scheme without FSAL
constructs. Maximal inner product norm contractivity occurs with Cooper’s RK4()4 scheme at c» & ]737%3

and c3 & 222 where rr, = 1.14373 and A®) = 0.01755. Gottlieb and Shu[31] use Butcher's[9] case 2 in
§312, setting by = L83 to.get 4% = (.01592 and rF, = 0.945. In all RK4()4 cases rx_=0, r;_= 1, and

30000

5.2. Five-Stage, Fourth-Order: RK4(3)5[4R+]. An RK4(3)5[4R+] method has 14 DOF. having
sacrificed only | DOF to low storage. To minimize A'®), Butcher simplifying assumptions ('(2) and D(1)
are applied. reducing the constraint system to
(5.1) Tl(k) =0, k= 1234 5 = 1, Tés) =g, bo= Z: 3biffqig =0,

Zj’:l aijc; =i 2, i=3,4, Y biai; =bi(1—c;), i =234

14



An exact one-parameter, c,y, solution has been found where A1) may be made arbitrarily small. For £ = 0,
AB) = m(q — 1). Unfortunately, both b4 and bs are proportional to (¢4 — 1)~1. a so-called
limiting formula. As ey — 1, D = by = —[12{cq — )ca(Des — 2)]_1. Setting ¢ = —1/40000 and ¢4 = 199/200,
RK4(3)5[4R+]M has A®) = 0.00003216, AW /A = 130.3, and D = 6.365.

To obtain a contractive RK4(3)5[4R+] scheme, we closely follow Kraaijevanger[52] with the excep-
tion of not enforcing (asi— 77, assas1). Note that we solved 15 equations (8 order conditions and 7 of
his 8 contractivity conditions) in 15 unknowns whereas Kraaijevanger performed an optimization problem.
Kraaijevanger’s RIK4()5 method has A} = 0.006439, (A, X,) = (1.64.1.34), and (re,. res 770 re.)
= (2.191.1.861.1.835,1.508). The RK4(3)5[4R+]N method has AB) = 0.005635, (A, A) = (1.63,1.40), and
(rF,, rr.) = (1.733.1.095). We mention that a good embedded method may be added to Kraaijevanger’s
RK4()5 scheme by solving the four third-order embedded order conditions, linear in the b;’s, by setting
bs = 113/599. Coefficients and properties of the two RK4(3)5[4R+] methods are listed in Tables 3 and 5.

Stability plots are given i Figure 5.1.

5.3. Six-Stage, Fifth-Order: RK5(4)6[4R+]. By increasing the stage count to six, a 5(4) pair may
be considered with Butcher simplifying assumption (*(3). The general RK5(4)6[4R+] method has 18 DOF
in the main scheme and 6 DOF in the embedded method. Of the nine main schemes found, the best scheme
has A® = 0.001961 and (A, A,) = (0.28.0.99). A more ambitious agenda uses only simplifving assumption
('(2) while enforcing a condition on a;z. To do this we solve

(k) _ P ) P . (1) _ _(5)
n =00 k=125, Yioac=c/2 i=3.45.6, T3 =Ty,

_ s . s s _ _ (‘;q(3('4—12('j+l()(':)
by =3 iogbiain = Foigbiciain = 3 joabitijaj2 =0, a2 = SEmm iy

a=0,
(5.2)

for the main scheme and
(5.3) =0, k=1,2.34, ba=0, & =1/130.

for the embedded method. Note that the strategies described by Papakostas et al.[60] and Hairer et al.[35]
(§11.5) must be modified slightly. Tables 3 and 6 show RK5(4)6[4R+]M having A% = 0.0009449 and
(A A) = (0.31,0.93). A stability diagram for this scheme is given in Figure 5.1. With <I)£‘,T)) = 1/1440,
re_reaches 2 for the RRK5(4)6 method. A FSAL method akin to those of Dormand et al.[19, 20] and

Papakostas et al.[60] is not considered.

5.4. Seven-Stage, Fifth-Order - RK5(4)7[4R+]. A seven-stage, 5(4) pair may be approached in
at least four ways: using ('(2), C'(3), ('(2) and D(1), or (°(3) and D(1}. To satisty all fifth-order constraints,
these require 18, 20. 18, and 21 DOF. respectively. For sixth-order these increase to 30, 28, 24, and 25. In
addition, use of ('(3) reduces the number of embedded order conditions. The simplest approach is to use ('(3)
and D(1). Setting 7',5,6) ~ 2 x 10~". a solution was found having 4% = 0.0003974 and (X, A,) = (0.30,0.87).
With only (7(3), a somewhat better solution has A% = 0.0003649 and (A, A,) = (0.32.0.89).

To decrease A(®) further, only ('(2) is assumed. Using a FSAL method allows the main scheme to be

designed independently of the embedded method. For fift h order in the main method,

(5.4) =0 k=1.23.45 =Y =rnYi=0

by =50 _sbiain = S gbiciais = 2‘;“}-:3 biajjajo =0, Z;=1 a;jej = /2. i=3.4.5.6.7.
and for the fourth-order embedded method,
(5.5) A 0 k= 1284, b= bap=1y =0,

=3
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The 1emammg degrees of freedom are chosen so that rl(_) =0, TFG) A —T.8 x 1077, T,,O) A -1 x 1077,

and ) = 1/125. The resulting method, RK5(4)8[4R+]FM, has Tl(fs.d,‘&‘-l“‘,._, = 0. A = 0.00003256,
AT = 0.0002906, A = 0.0004815. A = 0.0005800, (A.A,) = (0.99,0.98), and (A X)) = (1.27,0.81).

Details of the method are found in Tables 3 and 6, and the stability characteristics are show n in Figure 5.1.

For phase-lag methods, which we do not pursue, select (¢7; = ¢, = = 0) by settmg <l> = 1/756 and
(I)Am = 1/7560 [(A. A) = (0.36,1.16)], (ag = ¢7 = 0) by setting <I>f,0 = 1/720 and <I>48 = l/.)()4() (A A) =
(0.88.0.99)], or (ag = ag = 0) by placing <I>qo = 1/720 and 4)28 = 1/5760 [(A, A,) = (0.53, 1.05)]. Note that
RKA5{4)8[4R+]FM has ag &~ ¢r & 0.

6. Five-Register Schemes. With five registers, the Butcher array is given by

0
C [253)
ca | a3 az
cy | g1 age  aga
cs | ast uwsy  aga asy

by agx  aex  agg ags

by aza  an ars are

c T T D S S S SN

by by -ee he_y be_y bs_n bas2 beot  bs

and allows (5s — 10) degrees of freedom while having forfeited (s — 4)(s — 5)/2.

6.1. Seven-Stage. Fifth-Order: RKS5(4)7[5R+]. A seven-stage, five-register, 5(4) pair may be
approached as if it were a 6(4) pair. Both pairs (7(2), D(1) and ('(3). D(1) enable a sixth-order main
method that requires 24 and 25 DOF, respectively. We will follow the strategy of Sharp and Smart[72] and
Bogacki and Shampine[6] by solving for the sixth-order method and then will pollute it ever so slightly. For

a sixth-order main method with (*(3) and D(1) we enforce

(6.1) 1 "= 0. k=12, 3,456, bo=m; ':Zfzzibic,-a,'g:z;f 3b»c?a,-n:Z”_3b (',a,,(zj:_(]
D Yaiad T =g i=3.45.6. g =23 Yi_ biay; = bj(1—¢;). j=2.3.4.5 cr =1,

aud for the fourth-order embedded method.

(6.2) =0, k=1.2,34. by = Siabiaiz =0, &% =1/125.

Interestingly, in spite of the nonlinearit) in the b;"s, b7 = 1/12. Setting 7'1(0) =2x1075, r,n(ﬁ) = Z:_; bictay =

Zx = Jb Ciljjajy = Hx 10", all 20 T " are nearly equally corrupted. The resultmg method, RK5(4)7[5R+]M,
has A1) = 0.000008959, A7 = 0.0005771, A®) = 0.0008997, A®) = . 001007, A7) /A0 = 64,42, (A, A,) =
(0.92,0.99). and (A, A.) = (1.05, 1.19). Tables 3 and 6 and Figure 6.1 display this scheme.

7. Discussion. In the pursuit of reduced-storage integrators for application to the DNS of compressible
flow fields. we present 16 different ERK schemes. Schemes vary from third to fifth order in accuracy and
use from two to five registers of memory per equation per grid point, not including memory used for error
monitoring/controlling. Schemes have been optimized for accuracy and stability efficiency, linear stability,
nonlinear stability, dispersion/dissipation error, error control reliability, and step control stability, all under
the constraint of reduced memory usage. All presented schemes have been tested by using DETEST,[23] by
simulating the one-dimensional inviscid wave equation, and by computing standard quantifiable properties of

the Butcher coefficients, as well as using two of the methods in large scale DNS runs. For comparison purposes



we have chosen to contrast our third-order schemes to that of Sharp and Smart[73][SS-RK3(2 )4]. fourth-order
schemes to that of Prince [21][P-RK4(3)5], and fifth-order methods to those of Bogacki and Shampine.[6]
[BS-RK5(4)7], Sharp and Smart,[72] [SS-RK5(4)7]. Dormand and Prince,[19] [DOPRI5-RK5(4)7FM]. and
Papakostas and Papageorgiou,[60] [PP-RK5(4)7 F]. These reference methods have been chosen because they
appear to be the best available full-storage methods within their respective classes. The memory requirement
of these full-storage methods is not less than the stage number for non-FSAL methods or the effective nuniber

of stages for FSAL methods.

All schemes presented in this paper have been designed, at a minimum. to avoid any obvious problems.
As is usual in the design of ERK methods, great emphasis is placed on reducing A4t to as low as possible.
DETEST results are well correlated with this measure. DETEST runs involve 25 separate integrations (Al-
E5) in 5 general catagories (A-E). Error is computed by taking the geometric mean of the worst performances
in each of the 5 catagories by using the Pl-controller. 409+ may sometimes be seen to affect scheme
performance at lax tolerances. Embedded “quality” parameters B P+2) P+ and E®+?) of the low-
storage schemes are generally quite reasonable. and embedded linear stability domains are commensurate
with their main methods. The largest Butcher coefficient, D, never exceeds 7 in any low-storage method
and for most schemes is near unity. In addition, none of the low-storage methods have defective embedded

methods.

Reduced-storage, third-order schemes appear to forfeit little relative to corresponding full-storage schemes.
At 3 stages, linear stability is identical among all schemes. Accuracy-based efficiency may be brought to
99% of the maximum achievable with RK3(2)3[2R+]M. Nonlinear stability may be made equal to 84% of
Fehlberg's three-stage, third-order method with RK3(2 )3[2R+]N while simultaneously requiring 9% less
work for similar error tolerances. High quality embedded methods are easily added to these schemes.
Adding a fourth stage to a 3(2) pair appears to lead to 6% higher 72" with RK3(2)4[2R+]C relative
to RK3(2)3[2R+]M. Inviscid stability efficiency also jumps from A/s = 0.290 to A/s = 0.355. If accuracy or
inviscid stability efficiency is a priority, this scheme is the best third-order method presented and behaves
similarly to the 3(2) pair of Sharp and Smart [SS-RK3(2)4]. Efficiencies of these last two methods may be
seen in Figure 7.1, a comparison of third- and fourth-order methods using DETEST, as well as in Table 4
Viscous stability efficiency and contractivity, however, favor the three-stage 3(2) pairs. A, /s = 0.210 versus
Av/s = 0.175. RK3(2)3[2R+]N has 1, /s = 0.279, compared to P /s = 0.252 for RK3(2)4[2R+]CN, while
also being 16% more accuracy efficient. Where contractivity is the primary concern. RK3(2)4[3R +]N nearly
doubles the normalized contractivity radius of Fehlberg's RK3(2)3 method (rz_, /s = 0.333), while still only
using 3 registers. The price of achieving rx_ /s = 0.500 is relatively poor ntaccl 77% of SS-RK3(2)4.

A quick survey of existing third-order methods includes several reduced storage methods by Carpenter
and Kennedy,[11, 12] Williamson[87], and Wray[90]. Neither the original Williamson nor Wray schemes has
an embedded method; they have accuracy efficiencies within 0.1% of each other. Of the two methods given
by Carpenter and Kennedy, both Williamson-type schemes. one is clearly the most accurate third-order
scheme given in Table 4 but has no error control capabilites, an easily rectifiable matter, while the other
sacrifices efficiency to achieve an embedded method with no storage penalty. Bogacki and Shampine[5] have
clearly improved upon Fehlberg's two 3(2), or 2(3), pairs but the method of Sharp and Smart appears to be
the best full-storage 3(2) pair.

Comparing RK4(3)5[2R+]C with the third-order schemes, the fourth-order method is generally not
only more stability efficient, but a DETEST comparison of all 2R+ methods, given in Figure 7.2, shows

that it can achieve moderate error tolerances at a small fraction of the work needed by the lower order



methods. RK4(3)5[2R+](" seems the more prudent choice over any 3(2) pair for all tolerances below a 10~!.

Contractivity aside. RK4(3)5[2R+]C is quite a bargain.

Optimizing within fourth-order methods may take many directions, with RK4(3)5[2R+]C serving as a
good reference.  Figures 7.1 and 7.3 show DETEST results on the relative efficiencies of all fourth-order
schemes and of all three register methods. Table 5 shows that adding a third register, in principle, allows for
a 6% increase in efficiency with RK4(3)5[3R+]C. Using RK4(3)5[2R+]C or RK4(3)5[3R+]C enables A/s =
0.334 and A, /s ~ 0.238. Where accuracy but not stability efficiencies are most tmportant. RK4(3)5[3R+]M
and RK4(3)5[4R+]M are 22% and 176% more efficient according to Table 5. It may be seen in Figure 7.1 that
those numbers are not achieved until quite tight tolerances are reached. DETEST results of 4R+ methods,
Figure 7.4. show that RK4(3)5[4R+]M is as efficient as RK5(4)6[4R+]M, whose 72 is 62%, to tolerances
of & 107 RK4(3)5[4R+]M is acting like a fifth-order method having an 2°) of 58% as determined by
comparing A%}, Both of these 4(3) “M™ methods compare favorably with the best contemporary full-storage
4(3) pair of Prince.[21] Maximum norm contractivity of fourth-order methods, on a per stage basis, offers
slightly less possibility than third-order methods. Kraaijevanger’s RK4()5 method is the most contractive
RK4()5 with rr_/s = 0.302. a bit less than Fehlberg's rr./s = 0.333. This reduction is particularly
noticeable when additional requirements like low-storage are imposed. With four registers. at least rr_ /s
= 0.219 is possible, but this result is likely reduced to rF. /8 = 0.095 at three registers. These results, along
with the fact that contractive ERKs do not exist at fifth order, suggest that there is a trade-off hetween
contractivity and order of accuracy. This trade-off may not be so unfortunate because the linear positivity
radius, r¢_, remains substantial for many high-order methods and it is likely that the perceived need for
large 7, values is partially attributable to poor temporal error control. Gottlieb and Shu[31] compare two
second-order methods and find that the noncontractive method, although it has 43.85 times the principal
error norm of the contractive method performs less well. We inspect existing 4(3) pairs and avoid the
methods of Fehlberg[26] and Merson[35] because they have defective embedded schemes when used in local
extrapolation mode. Neither Zonneveld’s method[35] nor Ngrsett’s method[22] are particularly efficient even
with full storage. The former method may also have an unreliable error estimate on inviscid problems at
lax tolerances. Even though Stanescu and Habashi[77] offer a 2N method, it lacks both error control and
efficiency. In the event that overwriting of the {/-vector is not possible, the RK4()5[2N]C method of Carpenter
and Kennedy [11] fitted with an embedded method, would be preferable to RK4(3)5[2R+]C because the 2N
method is 4% more efficient. Compared to Prince's RK4(3)5 method, RK4(3)5[3R+]M is largely the same
yet uses only three registers, while RK4(3)5[4R+]M is substantially more efficient.

The burden of low storage becomes apparent relative to corresponding contemporary pairs at fifth order
because of the large number of forsaken degrees of freedom as well as the large amount of research that has
gone into optimizing existing 5(4) pairs. This burden may easily be seen in Figure 7.5, a DETEST comparison
of fifth-order methods. Optimization of lower order methods would seem to have taken a back seat to those
fifth order and higher for reasons of efficiency. In order to achieve fifth order in 2 registers and 9 stages,
28 DOF are sacrificed! Not surprisingly, 2} of 41-45% relative to BS-RK5(4)7 is seen in Table 6. This
relative inefficiency makes the RK5(4)9[2R+] methods clearly more efficient than the RK4(3)5[2R+]C only
at tolerances of & 10=° to 10=%, and DETEST shows both RK4(3)5[3R+]M and RK4(3)5[4R+]M to always
be more efficient. To their defense, the RK5(4)9[2R+] methods have been derived with no residual DOF for
optimization purposes, used no simplifying assumptions, and by virtue of the low-storage strategy, the order
conditions became horribly nonlinear in the b;’s. The brighter side of the relatively high stage number is that

stability efficiency can be quite high for 5(4) pairs. We hasten to add that if stability efficiency is desired
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then RI4(3)5[2R+]C should be accurate enough while allowing for much larger time steps. Accepting a
third register in a fifth-order method allows for accuracy efficiencies to move from 41-45% of BS-RK5(4)7 to
48-56%. while stability efficiencies stay the same or decline. For acoustic applications, RK5(4)8[3R+]P{8.7}
offers high dispersion and dissipation accuracy on the linear problem while sacrificing nothing on the nonlinear
problem. When comparing 3R+ schemes, for “M” and “C methods, fifth-order methods appear to be more
efficient than fourth-order methods for tolerances less than &~ 1073 to 107%. Comparing RK5(4)8[3R+]C
to the RK5(4)TFC and RK5(4)7FS methods of Dormand and Prince,[19, 20] Table 6 indicates that the
low-storage method 1s nearly as accuracy efficient and viscous stability efficient while being more stability
efficient on inviscid problems. In this case, the penalty of low-storage is relatively small. One of the surprises
in designing low-storage methods was finding b3 = by = 0 in the RK5(4)8[3R+] methods as well as the
RK5(4)7[3R+] method. There are also many other cases of unexpected linear dependencies. We suspect

that there is an interesting reason behind the order conditions when certain a;; = b;, but a theory eludes us.

Adding a fourth register to a fifth-order method allows for efficiencies that approach more traditional
schemes. For RIK5(4)6 schemes, RK5(4)6[4R+]M is arguably better than both of Fehlberg’s methods[26] and
that of Dormand and Prince[19] in spite of the loss of three DOF to low storage. The most accurate RK5(4)6
published seems to be that of Papakostas and Papageorgiou with A6) = 0.0008694, 1.4% better n(2°¢) than
RIK5H(4)6[4R+]M (A = 0.0009449). Sharp[70] offers two RK5(4)6M methods, with A® = 0.0009399
and A®) = 0.0009775. He also states that the global minima for RK5(4)6 schemes is A = 0.00087.
consistent with what Papakostas and Papageorgiou have presented. A FSAL method based on RK5(4)6[4R+]
type schemes has not been pursued. Moving to seven-stage methods, RK5(4)8[4R+]FM is our only FSAL
method. With A% = 0.00003256, Table 6 suggests that it is 30% more accuracy efficient than the DOPRI5.
Efficiencies based on A{™, A® and A are even more encouraging. The schemes are would be expected
to perform similarly to compared to Sharp and Smart [SS-RK5(4)7]. Papakostas and Papageorgiou recently
designed an extremely accurate 5(4) pair [PP-RK5(4)7F] with 6 effective stages. As with the DOPRIS5,
the disadvantage of this approach relative to fully seven-stage methods is the relatively high values of A
and D, and relatively poor linear stability. On paper, the best 5(4) pair appears to be the Bogacki and
Shampine [BS-RK5(4)7]. DETEST results show that RK5(4)8[4R+]FM performs as well as or better than
SS-RK5(4)7, PP-RK5(4)7F, DOPRI5, or BS-RK5(4)7 while saving two to three registers of memory. These
results are slightly controller dependent. The threshold for switching from fourth- to fifth-order 4R+ “M"
methods (RK4(3)5[4R+]M and RK5(4)8[4R+]FM) appears to be ~ 1073

The five-register 5(4) pair RIK5(4)7[5R+] is considered to address any yta<c) or A6 ghortfall of the
2R, 3R, and 4R 5(4) pairs relative to existing methods. Designing 5(4) methods based on a sixth-order
main scheme has been done, first by Sharp and Smart [SS-RK5(4)7] and later by Bogacki and Shampine
[BS-RK5(4)7], as well as a (g — 2)-pair by Tsitouras and Papakostas[82] [TP-RK6(4)7]. For the 5(4) pairs
A may be set rather arbitrarily, and for these methods A) is given by 0.9, 7.1. 2.2, and 0.0(x 107%),
respectively. What may be a better measure of the accuracy of these methods is A In the same order,
A for these methods is 5.8, 1.8, 2.1, and 2.1 (x 107%). Our DETEST results show RK5(4)7[bR+] per-
forming better than DOPRIS, the same as SS-RK5(4)7, and worse than BS-RK5(4)7, PP-RK5(4)7F. and
RK5(4)8[4R+]FM.

It is important to consider the benefits of additional registers so that these benefits may be weighed
against the cost of the additional memory usage. At fourth order. switching from RK4(3)5[2R+]C to
RE4(3)5[3R+]C nets a 6% efficiency gain. For “M” schemes, RK4(3)5[4R+]M is 126% more efficient

than RK4(3)5[3R+]M in Table 6. Maximum norm contractivity radius increases 130% by going from
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RK4(3)5[3R+]N to RK4(3)5[4R+]N. with an attendant 4% loss in accuracy effictency. With fifth-order
schemes, moving from RK5(4)9[2R+](" to RK5(4)8[3R+]C yields a 12% efficiency gain. Adding registers
to RK5H(4)9[2R+]M gives a 25% gain with RK5(4)8[3R+]M, 110% with RK5(4)8[4R+]FM, and 160% with
RK5H(4)7[BR+]M.

Below fifth order there does not appear to be a compelling reason to use full-storage methods. At fifth
order, users must establish the cost of memory relative to CPU time to establish the optimal methods. On
parallel machines, low-storage methods may enjoy some advantage because of less required communication.
When sufficient memory is available and fifth-order accuracy is required, RK5(4)8[4R+]FM is essentially
as good as BS-RK5(4)7, SS-RK5(4)7, PP-RK5(4)7F, and RK5(4)7[5R+]M. Low-storage methods will also
be relatively more valuable when the number of equations becomes large (i.e. many species). The value
increases because the storage required of the integrator is directly proportional to the number of integration

variables yet storage for items like grid metrics is not.

Stability plots show that step-control stability is enhanced by switching from an I-controller to a PI-
controller in all of the methods presented as well as the reference methods. Whereas with the I-controller
schemes are predominantly SC-unstable on their linear stability boundaries, they are predominantly SC-
stable with the Pl-controller. When methods are SC-unstable with the Pl-controller. it is often at either
the real axis (viscous) or at the imaginary axis (inviscid}, or both. Some room for optimization for each
of the methods is possible via @ and 3. Doing this optimization requires some caution because it is not
sufficient in the design of a good controller for each of the eigensolutions to be damped. The time constants
associated with these eigensolutions must not be too large or too small. We do not pursue this optimization.
Possibly a PID-controller could find use in certain DNS runs. Coping with SC-instability is probably best
accomplished by reducing step sizes. In cases where A/9t2) /4041 5, 1 a4 Pl-controller was found to make
error control more reliable. Surprisingly, RK4(3)5[4R+]M with A4(%)/45) = 130 was reliable on DETEST
with both I- and Pl-controllers. In most cases DETEST was able to run at more lax tolerances with the
Pl-controller than the I-controller. All low-storage schemes were able to run at tolerances as lax as 10!
to 1077, except. RK4(3)5[3R+]M, which would not run above 102 with the Pl-controller. BS-RK5(4)7
had the worst behavior in this regard, possibly because R(:z) and R{z) are so similar. With the I-controller,
DOPRIS. BS-RK5(4)7, and RK5(4)7[5R+]M, especially the last two, had difficulty at lax tolerances.

Linear advection of information along characteristics is often used as a model problem for studying
the hyperbolic limit of the Navier-Stokes equations. An extremely difficult test case is the advection of
information over long distances, because it tests both the spatial and temporal resolving capabilities of a

scheme. We formulate this test problem with the model equation AU ot + al7/dx = 0, solved on the interval

—H0 < r < 450. The initial and exact solutions are given by the expression U (x,1) = %exp[—( ‘T;’ )')] The
exact solution is a wave packet of energy, spread over an interval approximately six units wide, moving with
unit velocity in time. Note that this test case has information content at all wavenumbers. The spatial
discretization of the first-derivative operator is done with a sixth-order compact operator, known to have
adequate spatial resolving capability. The boundary conditions are imposed to ensure that no order reduction
occurs.[13]

Figure 7.6 shows linear advection results. obtained with four temporal operators at three spatial res-
olutions. The logarithm of the global error is plotted as a function of the work. We assume that the
spatial resolution dictates the desired accuracy level in the calculation, and that spatial and temporal error
components should be approximately equal. Note that as the time-step is decreased (increasing work), all

formulations asymptote to a uniform error that corresponds to the spatial operator component. At coarse
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error tolerances (six grid points resolving the wave packet), the CFL condition (temporal stability constraint)
of all schemes produces temporal and spatial error components that are nearly matched. The fifth-order
schemes have no apparent advantage over the fourth-order formulations. At moderate and fine error toler-
ances (12 and 24 four points), the fifth-order formulations become more efficient. The larger C'FL condition
of the fourth-order scheme allows a larger time step, but produces inadequate temporal resolutions.

To choose a scheme for a DNS run, all of this information must be sorted. First must be established
the relative cost of memory to CPU time in relation to the CPU and memory requirements of the run.
The next step is to establish whether the simulation will be more stability bound or accuracy bound.
Stability bound simulations favor (" or “S" methods and the 4(3) pairs. For accuracy bound problems,
“M" methods are probably best, and 5(4) pairs for tighter tolerances. For runs where nonlinear stability is
deemed important, “N” methods should be used. Acoustic or temporally periodic problems might best use
“P> methods. Ultimately. 52} and 5{s'3®) are the most important quantities. DETEST quantifies 52
nicely. independent of order-of-accuracy, while A/s and Av /s quantify 7t well. An interesting strategy
for users may be to choose an acceptable number of registers and then switcli between methods of the same
storage requirements. For instance, at three registers one could use RI4(3)5[3R+]C when stability dictates
the time step and then switch to RK5(4)8[3R+]C as accuracy becomes more important. When accuracy
is paramount RK5(4)3[3R+]M could be used. On stability dominated problems, the general shape of the
stability domain in terms of (A.X,) may be loosely inferred from the stability plots in terms of =. For the
sixth-order, tridiagonal derivative operator, the axes on the stability plots may be replaced with 3(z)/2~ A
and —R(z)/4 ~ A,. This guideline can be misleading at the imaginary axis. What tolerance should be
used for a DNS run? Given the second sentence in the introduction to this paper, atleast 10~3 would seem
appropriate. This value also depends on the spatial tolerance. as well as the demands of the phenomena we

are attempting to resolve. Lax spatial tolerances will negate tight temporal error tolerances.

It is also useful to consider the effects of simplifying assumptions. Experience in the literature[60]
suggests that the best schemes are found by using the minimum number of simplifying assumptions. Our
experience with RK5(4)6[4R+] and RK5(4)7[4R+] shows that as long as the embedded method can be
designed, using (*(2) will reduce A5) substantially over ('(3). Assumption I){1) did not appear to have as
dramatic an effect. Judging from RK5(4)8[4R-+]FM, it is not unreasonable to think that both BS-RK5(4)7
and RK5(4)7[5R+]M could be improved upon slightly by using only (*(2). RK5(4)8[3R+] methods are not
possible using C'(3). RK5(4)s[2R+] methods have been designed in 9 stages with no simplifying assumptions
but would require 10 with D(1) and 12 with ('(2). Adding an extra stage to the minimum number necessary
for a q(p) pair also appears to be beneficial .[72]

To demonstrate the usefulness of the methods, both RK4(3)5[2R+]C and RK5(4)9[2R+]S have been
applied to the DNS of a heated, planar, compressible air jet as well as to methane-air, methanol-air, and
hydrogen-air flames. We remark that these choices were made long before many of the other schemes
here were created. In the case of the jet, observing sound generation from the flowfield might be useful.
Detecting this sound is nontrivial numerically and requires selection of a variable that noticably manifests

acoustic waves traversing the media. Figure 7.7 shows the volumetric acceleration in this jet flow and the
sound waves coming off the jet column and leaving the vortical structures.

Considering an infinitesimal, spherical material volume element, d\", the volumetric acceleration is given
by (3/dr)(D*dr/Dt*) where dr is the infinitesimal radius of the sphere. Figures 7.8 and 7.9 show the
corresponding vortical and temperature fields.

An important question in each simulation is at what tolerance does the order-reduction from boundary
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error show itself. Users seeking tight tolerances would be well advised to consult the literature for known
solutions to this problem. It may be that hybrid step-controllers similar to the PI- and PID-controllers in
combination with those for ¢(¢—2) pairs[82] could add reliability. It would also be very useful to establish the
stability contours that correspond to rx_, rx,, and r¢__, because comparing rz, to the region of |R(z)| = 1
shows that r., is terribly conservative. It grossly underestimates stability on hyperbolic problems. Two of
these contours would require determining the absolute monotonicity of a polynomial, R(z) or A'(z), with a

complex argument.

8. Conclusions. The derivation of low-storage, explicit Runge-Kutta (ERK) schemes has been per-
formed in the context of integrating the compressible Navier-Stokes equations via direct numerical simulation
(DNS). Unlike previous derlvatlons of ERK schemes which focus on only a few characteristics, we attempt to
optimize methods across a broad range of properties, subject to varying degrees of memory economization.
With a storage reduction methodology introduced by van der Houwen and Wray, schemes are optimized for
stability and accuracy efficiency, linear and nonlinear stability, error control reliability, step change stability,
and dissipation/dispersion accuracy. The methods in this paper may be reasonably expected to span the
range of needs for compressible DNS when numerical stiffness is not an issue.

Sixteen ERK pairs are presented using from two to five registers of memory per equation, per grid
point, and having accuracies from 3(2) to 5{(4). All schemes have high-quality error controllers and generally
exhibit step change stability when used with a Pl-controller. Methods have been tested by means of not
ouly DETEST, but also the 1D wave equation. Two of the methods have been applied to the DNS of a
compressible heated jet as well as methane-air and hydrogen-air flames. Derived 3(2) and 4(3) pairs, where
few degrees of freedom are sacrificed for low storage, are competitive with existing full-storage methods.
Generally, 4(3) pairs are more accuracy and stability efficient than 3(2) pairs. When stability efficiency is
paramount, certain 4(3) pairs are best. For accuracy limited problems, 5(4) pairs are more efficient than
4(3) pairs as tolerances drop below 1073 to 105, The transition error tolerance for this switching depends
on how many registers are being considered. Although a substantial efficiency penalty accompanies use
of 2R and 3R fifth-order methods because of the enormous number of forfeited degrees of freedom, state-
of-the-art full-storage methods can be nearly matched while still saving two to three registers of memory.
Ultimately. the data presented herc should help users determine which method is most appropriate based
on the properties most valued and the relative cost of the CPU time to memory usage. Users will need to
decide which properties are most valued, make a determination of the relative cost of CPU time to memnory,

and then choose the appropriate method.
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Appendix A. Implementation of the van der Houwen scheme.

A.1. Two registers. We now consider the details of implementing a five-stage explicit Runge-Kutta

method with the van der Houwen methodology for the integration of

dv

(A1) — = F.U),

from time step n to time step n + 1 with only two storage registers. It is understood that {7 he comprises
R variables . Third and fourth registers may be used to store an error estimator and the starting (/-
vector. Assume register 1 (R1) contains the [7-vector at time t(") = (1) (7(") = 7()  The function
P ¢my = FOY = PO g evaluated and the result is placed in register 2 (R2). We now perform the

operations (error estimation and retention of I7(") are optional)

Rod = RI
Rerr = (b1 — b)) (A)R2
Rl =Rl + asn(Af)R2
(A2) R2 = R1 + (by — as1)(A)R2,

which translate to

Roia = U1

R = (by — by) (A1) F)

UE =00 4 gy (A FM)

N =073 4 (b — auy )(AHFM)
(A3) = U0 4 b (AHFM),

where the X-vector is an intermediate vector that is used to pass information from one stage Lo the next.
Boundary conditions for the {7()-vector are evaluated at t(}) = ¢(n) 4 c;(At). This constitutes the end of
stage 1. The function is now evaluated with the contents of R1 and the result is then overwritten onto R1.

With this we compute

Rsrr = Rerr + (bQ - b_))(Af)Rl
R2 = R2 + as-(At)RI1
(A4) R1 = R2+ (by — az2)(At)RI,

or

Rere = Repe + (by — bs) (A1) PO
= (by — bo) (A1) FP 4 (by — by ) (A F™
U3 = X 4 g, (AP
= U 4 aga(AFP 4 b (A F
X = U 4 (by — ago)(AHFD)
(AD) = U0 4 by (A F® 4 by (A FO),
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Stage twois complete. Stage 3 begins with the evaluation of the function with the contents of R2. Overwriting

the contents of R2, U with the result of the function evaluation, F!,

Rere = Rere + (bs — b3)(At) R2
Rl = Rl + aq3(At)R2
(A6) R2 = R1 + (b — a43)(AL)R2,
giving
Rere = Rere + (bs — b3) (A1) F®)
= (by — ba) (A F™ + (by — ba) (A FP) 4 (b — by) (AL FU)
UM = XO 4 agy(At) F®
= U 4 agy(AL)FO) 4 bo( AP 4 by (AL F)
X = 1) 4 (by — ag3)(AHF®
(A7) =110 L by (A F® 4 by (A F 4 by (A FM)

To begin stage 4. the function is now evaluated with the contents of R1 and the result is then overwritten

into R1. Hence,

Rerr = Rerr + (b4 - b.;)(Af)Rl
R2 = R2+(154(A1)R1
(AB) Rl = R2+(b4—(l54)(Af)Rl,

Rere = Rere + (b4 — ba) (A1) FY
= (by — bs)(A)FW 4 (b3 — b3)(AL)FD
+ (b — b2) (A F™) 4 (by — b)) (A P
U = X ogg (A FM
=00 4 oagy (A FY 4+ bg(AOF® 4+ by (A1) FP) 4 by (AL FT)
X® =00 4 (by — asg) (A FY
(A9) = U0 L by (AO)F@ 4 by(AHFE) 4 b (AOYFP 4 b (A F,

Stage four is finished. On the final stage, stage 5, the evaluation of the function is done with the contents of
R2. Overwriting the contents of R2 with the result of the function evaluation, we finally arrive at

Rerr = Rere + (b5 — bs) (A1) R2
{A10) R1 = R1+ bs{At)R2,

or

Herr = Rerr + (b5 - 1)5)(A1)F(5)
= (bs — bs)(AYF®) 4 (by — by )(AHFY 4 (bs — ba)(At)FP)
+ (by — b)) (A FP 4 (by — by ) (A)FUV



Ut = X4 (A FE)
= U0 by (A FO 4 by (A FD 4 by(AO)F®) 4 by(ANFD 4 by (AN FO,
(Al1)

where 1771 = ") L (A#). It may be desirable to write I7("+1) back into the register that contained [TV at
the beginning of the time step in cases where the scheme has an even number of stages. If a FSAL scheme

is being used. then {7"**1) is used to compute F("+!) and
(A12) , Rery = Rere + {0 — b6) (At)RI
or

Rerr = Rerr + (0 - bﬁ)(At)F(n‘*-l)
= (0 — b ) (A FTHD) 4 (b — bs) (A FO) + (by — by) (A F
(A13) + (b3 — b3)(A)F'® 4 (by — ba) (A F?) 4 (by — by )(AL)F™),

Note that register one has F("+1 and that if the step is accepted then F"*+1) = F(!) in the new step. To
control solution error in a vdH scheme, first some appropriate solution error tolerance is chosen, ¢ ~ 1073
to 1075 Then one may determine the (A#)("*+1) based on either the I- or PI- step controller. If I7{?+1) and
{7"+1) are computed 1o ¢ = (p + 1)-th and p-th order accuracy, respectively, then we may define §("+1) at
time n+ L as O+ = et _prin+ld — B Then §("+Y) is a local truncation error estimate for the lower
order formula. It 1s also wise to place a limit on how quickly the time step 1s allowed to increase, factors of
between 2 and 5 being the maxinum.[69)]

A unique problem of the vdH schemes is that if R4 1s not employed, then when a step size is taken
that exceeds the error tolerance it 1s too late to correct matters. In this case, more conservative values of
the “safety factor”™ » might be advised. Normally & = 0.9 is chosen, but this might be reduced slightly here.
Alternatively, the error tolerance, ¢, could be reduced so that any transgressions of the reduced tolerance
might not be a transgression of the original tolerance. It should also be remembered that this procedure
makes no sense if the {7-vector is not normalized in some way so that meaningful comparisons may be made
between, say, the energy equation and the momentum equations. A possible choice would be

s+1)

b1 _
(A14) 0 T [T(n41)

in cases where |[7("+1)| is greater than, say, 10™® (depending on machine precision), and where §(*+1)*
replaces "+1) in Eq. (2.15) or (2.16).

A.2. Three registers. Extending the vdH concept to allow for three available storage registers for
a five-stage, non-FSAL ERK scheme, our discussion follows directly from the 2R case but is more terse.
Assume register 1 (R1) contains 7" at time {U"), The function, FU) is evaluated and the result is placed

in register 3 (R3). We now perform the operations
Rold =Rl
Rere = (b1 — bi) (A R3
Rl = RI + (l'_)](Af)RB
(A1D) R2 = Rl + (by — aq21) (A RS,
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Rerr = Rew + (bs — bo) (A RL
R2 = R2 + ags( AR + {as1 — b)) (A1) R3
(Alﬁ) R3 = R2 + ([)Q - (ng)(Ai)R] + (bl - (131)(A1)R:3,

Rewrr = Repr + (’)‘3 - ()3)(..31)1?2
R3 = R34+ aus(A)R2 + (@ — b2) (A1) R1
(A7) Rl = R3 + (bs — aas)(Af)R2 + (bs — aqa)(Al)RI,

Rerr = Rerr + (ba — by) (A R3
(AlS) R2 = Rl + (b.q - (154)(A1)R3 + (1)'} - (Is\;)(Af)RQ,

Rerr - Herr + (b", — bs)(Af)]fl
(A19) R2 = R2 + bs(A1)RI.

A. 3. Four registers.

Roq = RI
Rewe = (by — by) (A1) R4
Rl = Rl + as (At)R4
(A20) R2 = R1+ (by — as)(At)RA

Rr = Ruve + (ba — ba) (A1) R
R2=R2+ (l3g(Af)Rl + ((131 — bl)(Af)R4
(A21) R3 = R2+ (hs — aga) (AR + (b — az1)(Al) R4

Rerr = Rere + ([)'3 - bg)(A[)R'Z
R3 = R3+ asz(A1)R2 + (a4 — ba) (A RL + (as1 — b1)(At) R4
(A22) R4 = R34+ (b3 — aa3)(At)R2 + (b — aqu)(A)RI + (by — aq1){(At)RA

Rewr = Rery + (bs — bs)(At)R2
R4 = R4+ asa(AR3 + (as3 — b3)(At)R2 + (as2 — ba)(At)R1

(A23) Rl = R4+ (bs — a53) (A1) R3 + (b3 — as3) (A} R2 + (bs — aza)(Af)RI

Repr = Ropr + (bs - bS)(Ai)R4
(A24) R1 = R1 + bs(At) R4
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A.4. Five registers.

(A26)

(A27)

(A28)

(A29)

Ro = Rl
R = (by — b)) (AR5

Rl = Rl + as1 (AR5

R2 = R1+ (b — as (AR5

Rere = Rore + (b..' - b..’)(A,)ffl
R2 = R2 + aga( ADR1 + (az; — b1 )(ADRD
R3= R2+ (bs — (l;;g)(A[)Rl + (b, - az ) (AR5

R = Rewe + (b3 — b3) (A1) R2
R3 = R34+ a43(A)R2 + (aqn — bg)(Al‘)Rl + (aq; — by YA RS
R4 = R3 + (bg — (143)(.3”[1’2 + (b_g - (I4Q)(Af)Rl + (b] - H1])(A1)R5

Rerr = Rerr + (b4 - b1)(Af)R2
RA= R4+ asa(A)R3 + (asz — b3)(A)R2 + (ass — bs)(A)RL + (as: — by ){A)R5

RHh= R4 + (b4 - (l',.q)(Af)[{:{-f- (b3 - (153)(._\f)R2+ (bg e (lsg)(Af)]?l + (b} - 051)(.31)1?5

Rerr - Rerl' + (’)5 — bs)(Af)R‘i
R5 = RS + by (A R4
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Appendix B. Explicit Runge-Kutta Order Conditions.
Equations of conditions[19] for various orders of accuracy are are found in many places, e.g., §3.4[21].
Higher order conditions may be derived by using ButcherMath found in Mathematica.[88, 39] To provide

completeness 1 this work, up to sixth order, these conditions given by
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Verner[86] divides these order conditions into four general categories; quadrature 'rl(k), kA= 1.2.3,4.56

3 4 5 { 4 ¢
subquadrature 74 ) 7':2 4). 7 ’8)_9. 7 )1) 19 20 extended subquadrature r.f )l 4' 6.7 rq(g 8.10.11.13.14.16.17.18> and

. 5 [§ .
nonlinear T:i ), rfg ’))L, 12- Several higher-order “tall-tree” conditions of constraint, important in the design of

linear stability, are given by

S
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Table 1: Two-register ERK schemes
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Table

Three-register ERK schemes
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Table 3: Four- and five-register ERK schemes
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F1c. 3.1. Stability limits of the main and embedded methods for two register schemes. RN8(2)4[2R+]C. RK4(3)5[2R +]C,
RK5(4)9{2R+]C, RK5(4)9[2R+]M. RK5(4)9[2R+]S. Circles denote regions of Yoo and rpo, contractivity, Shaded regions

denote locations along the contour |R(2)| = | where the methods are SC-stable with either an I- or Pl-controller.
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FiG. 4.1. Stability limits of the main and embedded methods for three-register schemes, RK4(3)5{3R+]C, RK4(3)5[3R+]M.
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Fis. 7.1. DETEST comparison of 2(2) and §({3) pairs: low-storage schemes and the reference methods of Sharp and

Smart [S5-RK3(2)4] and Prince [P-RK}(3)5].
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FiGg. 7.2. DETEST comparison of two-register schemes.

42

15000



Log (geometric mean error)

i I 1

V| I T I ’

\ L X X X X J
[] "
L]

L)
L) ocosssss
... - . - B

RK4(3)5[3R+]C
RK4(3)5[3R+]M
RK4(3)5[3R+]N
RK5(4)8[3R+]C
RK5(4)8[3R+]M
RK5(4)8[3R+]P{8,7}

| |

2500 5000 7500

Work

10000

12500

Fi1G. 7.3. DETEST comparison of three-register schemes.
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Fi1G. 7.4. DETEST comparison of four- and five-register schemes.
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F1G. 7.5. DETEST comparison of 5(4) pairs: low-storage schemes and the reference methods of Sharp and Smart [SS-
RK5(4)7]. Papakostas and Papageorgiou [PP-RK5(4)7F], Bogacki and Shampine [BS-RK5(4)7]. and Dormand and Prince
[DOPRI5-RK5(4)7TFM].
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FiG. 7.7. Volumetric acceleration, 5] = V.a (s72), for a heated, planar, compressible air jet. The self-similar Majer =

0.95 air jet exhausts into a quiescent body of air. Sound waves are seen emanating from the jet column and vortical region.
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FiG. 7.8. Vorticity. ¥ x u (s™'). for a heated. planar. compressible air Jet. Large instability growth rates of the high

Reynolds number jet give rise fo intense regions of vorticity.
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Fi. 7.9. Temperature (°K) for a heated, planar, compressible air jet. The Tier = 900°K air jet rapidly generates finer
scale motion duc to strong flow instability as it issues into the quiescent Ty = 300°K air. A Kelvin-Helmholt: instability may

be seen in the downstream portion of what remains of the jet column.
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