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LOW-STORAGE, EXPLICIT RUNGE-KUTTA SCHEMES FOR THE COMPRESSIBLE

NAVIER-STOKES EQUATIONS

CHHIS3OPHEtt A. i_.ENNEDY*, MAitK H. CARPENTER t , AND R. MICttAEL LEWIS 1

Abstract. The derivation of low-storage, explicit Runge-Kutta (ERK) schemes has been performed in the

context of integrating the compressible Navier-Stokes equations via direct numerical sinmlation. Optimiza-

tion of ERI( methods is done across the broad range of properties, such as stability and accuracy efficiency,

linear and nonlinear stability, error control reliability, step change stability, and dissipation/dispersion accu-

racy, subject to varying degrees of nlemory economization. Following van der Houwen and Wray, 16 ERK

pairs are presented using from two to five registers of memory per equation, per grid point and having

accuracies from third- to fifth-order. Methods have been assessed using the differential equation testing

code DETEST, and with the 1D wave equation. Two of the nlethods have been applied to the DNS of a

compressible jet as well as methane-air and hydrogen-air flames. Derived 3(2) and 4(3) pairs are competitive

with existing full-storage methods. Although a substantial e/ficiency penalty accompanies use of two- and

three-register, fifth-order methods, the best contemporary full-storage methods can be nearly matched while

still saving two to three registers of memory.

Key words, explicit. Runge-Kutta, low-storage, numerical stability, error control

Subject classification. Applied and Numerical Mathematics

1. Introduction. Direct nmnerical simulation (DNS) of the colnpressible Navier-Stokes equations is a

means by which researchers may numerically probe the full range of scales in high-speed/fast-lime-scale fluid

behavior. Compressible DNS seeks to resolve all physically relevant tinle and length scales associated with

phenomena such as turbulence, sound generation, and/or chemical reaction. Resolution of these phenomena

is likely to require strict, temporal error tolerances. The correspondingly accurate spatial discretizations

involving possibly billions of grid points then fill the available memory of the computer. Hence, memory

management of the time integrator is an important matter for I)NS. The coml)ination of high accuracy and

low memory use potential for explicit Runge-Kutta (EtlK) schemes makes them ideal for compressible DNS

application.

Efforts to reduce computer memory usage during nnmerical integrat ion of ordinary differential equations

(ODEs) bare received sporadic attention in the past.J14, 27, 30, 56, 67, 90] For users confronted with severe

computer storage constraints, established high-order lnethods such a._ the DOPRI5[21] may be prohibitively

costly. Currently in the fluid dynamics colnmunity, users of ERK methods seeking to reduce mentory usage

have chosen to implement either a Williamson[87] scheme[25, 32, 64] or a van der Houwen[41. 42] (vdIt)

method.J4, 81] Williamson and vdH methods are both so called "2N" schemes, where N is the number of

equations being integrated times the number of grid points.
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When solving the equation

dU

(1.1) d-T = F(t,U(t))

with all ,_-stage ERK method, a cawdier implementation requires the storage of the original //-vector,

an intermediate /'-vector, and all s function evaluations. Williamson iml)licitly assumes that it is only

necessary to be concerned with the memory reqtfirement of a U-vector, what is in effect, a dU-vector, and

that the memory requirement of F is inconsequential. Loosely, he implements the strategy over a single

imermediate stage as

dl_(.i) = Ajdl7(J-I) + (At)F f.i)

(1.2) u(j) = _(.i-t) + BjdU(j)

where A 5 and B/ are functions of the standard Butcher coefficients, F(J) and u(J) are the jth intermediate

values of the function evaluation and the integration vector, and At is the step size. Note that U, dl', and

F must be stored. Unless work is done in a piecemeal fashion, three storage registers per variable will be

required for the Wi[liamson scheme. These methods have been referred to as 2N schemes.

Wray[90], employing van der Houwen's technique, places a set of conditions the scheme must satisfy

that are more restrictive than Williamsou's. Van de," Houwen and Wray devise a scheme where iuformation

alternates between the two available storage registers at each successive ERK stage. Tile procedure is loosely

written over two intermediate stages as

(Register 1)

(Register 2)

(1.3)

(Register 2)

(Register l)

/r(j+l) __. x(j)+ (aj+t,j)AtF(j)

X ('i+1) -- U (j+l) -+- (bj - aj+l,j)-_tF (j)

it(j+2) = .y(j+l) + aj+2,j+l,__tF(J+l )

X (j+2) = U (j+2) + (bj+l - aj+'2,j+l)Alf (j+l).

By overwriting, the (,', F, and X vectors never fully coexist. The symbols aij and bj are the ordinary Butcher

coetticients of the scheme. The X vector may be thought of as a vehicle to bring information from previous

stages into the current stage. To distinguish these methods from the Williamson class of 2N schemes, we

will refer to them a_s 2R schemes.

The primary difference in philosophy between the two methods is that in the vdH scheme, during the

function evaluation, the previous solution vector is overwritten. Clearly there will be cases where this

is not acceptable. Compressible DNS provides a situation where this method may be profitably utilized.

This circumstance occurs because the (r-vector contains, principally, variables which are the products of

variables needed to evaluate the flux terms. Consequently, the U-vector nmst be decomposed into other

variables, leaving the (:-vector itself disposable. Both Williamson (2N) and vdH (2R) schemes may be

easily generalized I() accommodate more than two storage registers (N or R). We make no claim that these

two strategies are the only viable ones. We do suggest, however, that the vdH methodology is extremely

aggressive in its conservation of computer memory usage.

In t.he pursui! of computer memory use reduction, the first, casualty is the retention of the U-vector at.

the beginning stage. Error control, in the more traditional sense, becomes impossible. A rejected step (such

as violation of the error tolerance) cannot be restarted front U (') because with a 2N or 2t1 scheme, U (') is

no tongrr available. Instead, alloting one additional register for an error estimate, one may monitor the error



occuringat eachstepanddetermineanappropriatenextstep.Includingyetanotherregisler,lr(") could

be retained so that action could be taken on a st.ep which exceeds the predetermined error bound. This

additional register al)proach, however, undernlines the fluldamental premise of this work and should not be

used unless all other approaches fail. Schemes in this paper that call be used in error monitoring/control

mode are designated 2I-1+, etc., schemes because, if used in this mode, they require extra storage. Details

of this iinplementation are contained in Appendix A. If overwriting is impossible, t.heI1 the implementation

must be modi/ied and an extra storage register will he required.

The goal of this paper is to derive broadly optilnized, minimal-storage (2B+, 311+, 4B+, and 511+)

E1RK schemes based on only the vdtl methodology and t.o explain how they are implemented. Choices

are offered for storage reduced methods that address the needs of stability efficiency, accuracy efficiency,

linear stability, nonlinear stability, dissipation and dispersion minimization, time-step/error control, and

step-control stability. Invariably users will investigate physical phenomena that require different integrator

properties, different error tolerances, and have different computer memory allocations. Hence, many good

schemes are presented along with a rational basis by which to choose a scheme depending on one's needs.

Based on the existing literature, the fluid dynamics community has been the largest customer for these

lo_r-storage schemes. For this reason (as _'ell as personal research interests}, optimizatiot_ of ER.I( schemes is

made with an eye towards the Navier-Stokes equations. Flows which are strongly viscous or chemically stiff

may not be good candidates for these explicit methods. In addition, integrating the differential-algebraic

equations arising fl'om the discretization of the incompressible or low Mach number equation set. with an

ODE-ERI{ method must be done with great, caution so as to avoid drift-off and/or order reduction.

A recurring criticism that accompanies use of high-order EIIK schemes for discretized partial differential

equations (PDEs) is the boundary "order reduction" phenomenon.[l, 1,3, 47, 49, 61, 66] Without proper

care, order red0ction occurriJ_g at the spatial boundaries can dominate the solutioJJ accuracy throughout

the entire domain. The impact of the order reduction becomes more pronounced with increasing temporal

accuracy. As such, the new schemes presented in this paper will be more susceptible to this prot)lem than

either Williamson's or Wray's third-order schemes.

A second concern is that t/unge-I(utta methods may seek out spurious fixed points of the differential

equations being integrated. Methods exhit)iting this behavior are called irregular.[2, 38, 78, 80, 83] All E11K

methods greater than first-order accurate are irregular. We rely on error control and the fact. that many

equations are I)eing integrated sinmltaneously to avoid st)urions fixed points.

Finally, we largely forsake aesthetic or "nice" coefficients {ones with simple, rational numbers) because

the benefil from using a sub,staz_tially more e/ticie_t imegrator over hundreds of simulations, each taking

tens or hundreds of hours, far outweighs tile inconvenience of typing in twenty or so complicated coefl3cienls

correctly. Most solutions that are presented within this paper have been found numerically with established

nlathematical soft.ware.J18, 28, 29, 58, 88] Attempts were made to solve for schemes symbolically, but il was

found that the assumption of various a O = bj quickly made matters intractable because the equations of

condition become algebraically nonlinear in the bi's. Scheme coefficients are given to at. lea,st 2,5 digils of

accuracy.

Some Ell.I{ background is necessary to facilitate a discussion on the optimization of accuracy efficiency,

stability efficiency, error control reliability, step-control stability, linear stability, nonlinear stability, and

dispersion and dissipation error within the context, of storage reduction in later chapters. This will be done

in sections 1 and 2. Two-register schemes will be reviewed in section 3 while three-, four-, and five-register

schemes will be considered in sections 4, .5, and 6. Merits of the low-storage schemes are discussed in section



7, andcomparisonsaremadewithmoretraditional,full-storageERK methods,in section8, conclusions
aredrawnasto theutility of thevariousschemes.Appendiceslistinganimplenlentationstrategyandthe
relevantequationsofconstraintarealsoincluded.

2. Background.Wecannothopeto reviewtheextensivebodyof Pt,unge-Kuttaliteraturegermaineto
integratingtheNavier-St,okesequations.Thereforeweterselydescribeonlythoseareasofliteraturethat,are
crucial to the development of the new schemes being presented. For further details, appropriate references

are provided.

The compressible Navier-Stokes equations constitute a coupled set of partial differential equations that,

may be spatially discretized into a set, of coupled .ODEs with finite-difference techniques by the method of

lines. We are concerned with the numerical solution of the initial value problem

d_,r

(2.1) d--7- = F(t,U(I)), U(a)=Uo, t E[a,b],

where U = (p, pu,pco,pYi) T is a function of the fluid density, p, velocity vector, u, total specific internal

energy, e_j, and species mass fraction, }}. F contains the inviscid, viscous, reactive, and, possibly, body force

terms of the compressible Navier-Stokes equations.

Temporal discretization of the Navier-Stokes equations can be made with an s-stage ERK scheme, which

may include an embedded error control scheme within the s-stage procedure. The implementation over a

lime step _1, from time level t(n) to time level t (n+l), is accomplished as

F(0

/,(r_+l)

_ , At S-'i-1 t (i) l ('_)-- F(i) (l(i), u(i)) u(i) _- U(n) -_ t.._..,j_--:laij F(j), = Jr- ci_'c_l

l a U (n+l)= (_(") + A y_.i=lbjF (j) = U ('_) + Aty_,_=jbjF (j)

where U ('') = 1:el) = U(t ('')) and U ('*+1) = lr(t('O+At) are the solutions at. time levels _ and 71+ 1 of order

q : p + [ all(:[ _(,,+1) the U-vector associated with the embedded scheme, is of order p. The particular

Butcher coelticients ai i, hi, bi, and ci o![' the respective schemes are constrained by certain equations of

condition, a shorl list of which may be found in appendix B. In reading these conditions we remark that for

a q_h-order EHK, the k 'h equation of condition may be considered as[9, 35]

=rr _' q!'

which defines (I)(kq), a scalar stun of Butcher coefficient products that will appear throughout this paper.

Both _) and cr vary with q and k. The r2.q) conditions are identical to r (q) conditions with bi replacing bi.

We assume that the standard row-sum condition applies: c i -_ Ej=I aij. Extensive dis('ussions of explicit

Runge-Kntta methods may be found in the literature.J9, 21, 24, 35, 54, 69] Our style in this paper closely

follows Dormand et al.[20] Schemes will be referred to as RKq(p)s[rR,nN+]X{ qdi_p, qdi-_., }, where q is the

order of the main scheme, p is the order of the embedded scheme, s is the number of stages, r/_, is the

number of registers used (vdH/Williamson), + denotes that extra storage registers will be needed for error

monitoring/control, X denotes either C (linear stability-error compromise), S (maxinmm linear stability), F

(FSAL - first same as last), M (minimum truncation error), N (maxinmm non'linear stability - contractive), or

P (mininmm phase error), and for "P" melhods, qdisp and qdis_ are the respective dispersion and dissipation

orders of accuracy.



2.1. Error and Error Control. Error in a qth-order explicit Runge-l(utta schenle may be quantified

ill a general way by taking the L_ and L_ principal error nornls,[62, 86]

(2.4) E q+l) -

j=l

_ " r (_/+1) /

where r (q) = - 9 •j are rile 7)_ {1, 1 2, 4 .... 20, 48, 115,286} error coefficients associated with order of accuracy

q = { 1,2, 3, 4, 5, 6, 7, 8, 9}. For embedded schemes of accuracy p, additional definitions are useful, such as

2(2.5) At,,+,) : ii¢_+,)lb - = (#,,+ll)
j=l

(2.6)

(2.7)

(_.s)

('2.9)

/v-...+-,(_)r+_-)) "-,4(,,+2) [l_(Z'+2)lb VZ_J=_
B(P+_) -

.4(P+1) I]'F(P+I )]]2 IEj=i)'v+t('F(P+l)) "2\ j

¢,,+2) '-'
(,(_,+,_,)_- 11_(_'+2)- r(V+e)ll., = V_J :_ v J - .i )

I1_("+')11'-' V/Ej_-,""+'v,i(¢,,+l)_'-')

D = Max{l<jl, I_)_l,Ib;I, I_1},

E(V+2) = A (p+2)_= [Ir(P+-_)ll='_ V _.i=,

_(p-F1) II_(P+l)][2 i ,)v+, (._jp+a))2

One may also consider A,_ +I), H_ +-_), C_ +='), and L.'_ +_) All eml)edded schemes considered here are

applied iu local extrapolation mode; i.e., the solution is advanced with the higher - order formula. For

a given order of accuracy,, one strives to reduce A (q+l) to as small nmnber as possible. Both B (v+'-') and

('Iv+") should be of order unity. Tile maximum magnitude of any of the Butcher coefficients, D, should

be small, but may approach 20 m some high-quality pairs.[72] Shampine[68] recommends B 0'+2) < 1.5 and

E Iv+'-') < 0.5. Although these error measures are independent of the equations being integrated and hence

only an approximate error metric, they will be used to select, the "best" scheme. Verner[85] points out that

strictly relying on only A (q+l). B 0'+2), and C (v+'-') may not be adequate to distinguish among several good

schelnes. He also presents A_ +1), A_ +1), B_ +2), and C_ +:). In another pa.per, Verner[84] recomlnelMs

that r (q+l) should generally not vanish. Although not a.s frequently mentioned as the above parameters, the

ratio of A(q+2)/A(q+l) is sometimes controlled. For 5(4) pairs, Sharp and Smart[72] choose 5/2, Bogacki and

Shalnpine[6] lilnit it. to 10, while Pa.pakostas and Papageorgiou[60] use 25. The risk of allowing A(q+2)/A (q+l)

t.o grow too large is that the error controller may become less reliable at. lax tolerances. Additionally, we

require thai. all rlr+l) ¢ 0 to avoid a defective embedded method, i.e., H: = 0. The stability domain of the

embedded method is designed to l)e nearly as large as that of the main method to avoid inslability in the

embedded method at large step sizes.

FSAL techniques, where asj = bj, allow for the use of not only all function evah, ations during an

effectively s-stage computation, but also use F In+it After U (''+1) and F (''+1) are evaluated, U (''+1) is

coinputed with s + 1 function evaluations. The principal motivation for doing this is that it. allows more

latitude in the design of the method and usually results in better schemes. Tile high stage numbers found



in low-storage sclmmes make FSAL relatively less advantageous. Deuse output via Runge-Kutta triples is

forsaken here because there is little apparent interest within the DNS user conmnmity for such a feature.

It may, however, find use if users seek global error estimates.[3] Pseudosynlplect.ic or low-drift methods are

also forsaken.

2.2. Linear Stability. The stability function[36] for ERK inethods is given by

(g.10) R(z) = Det [6i.j - (ai.i - eibj)z],

= q_(a) .3 m(4) _4 ,_(5) _.5(2.11) l+_l'_')z-t-_(, u)=2+ '.' + ++.a + +-.q + +"'+di'l,',)x*'

with e -- {1, l,...,1}, di.j is the identity matrix, _i_, ) are the "tall trees," and z contains information

(eigeuvalues) describing the equations being integrated. It is convenient in fluid dynamics to consider linear

stability in the coutext of the prototypical, one-dimensional, convection-diffusion equation

0 0 2Ot_ -a_. + o,,_ } U,(_.12) _ =

where a is a convection or sound velocity and o_, is a diffusivity[48J(mass, momentum, or energy). Other

studies of stability of EI/I( methods applied to the compressible Navier-Stokes equations have been conducted

by Sowa[75] and Mfiller.[59] If the spatial derivatives are considered as high-order, centered, finite-difference

operators then the Fourier image of the convectiol,-diffusion equation becomes

(2.13) z = -A_ + A,._ 2

{2.14) _ = i[2a sin({) + 2b sin(2_) + 2c siu(a_) + ...]
[J + 2o cos(,,) + 2_ eos(2,_) + ...]

In this expression A = _ and A,, = _(a_)2 are the inviscid and viscous CFL numbers, Ax is the local spatial

grid spacing, ,_kt is the maglfitude of one time step, 0 _< ( _< rr is the spatial wavenumber, _ is the Fourier

image of the first, derivative operator, and {a, b, c, (,, .J} are coefficients of the derivative operator used in

evaluating the convection-diffusion equation. As/.he "compact" sixth-order derivative operator is popular in

compressible DNS, these last coefficients will be set. to {7/9, 1/36, 0, l/a, 0 }.[48]

A stable method has In(:)l < l at a particular value of z or for all wavenumbers at the pair (A, Av).

This requirement is necessary but may not be sufficient.[33, 50, 65] Unlike many contemporary ERK pairs,

imaginary axis stability is a high priority to the methods designed in this paper. The derived linear sta-

bility domains, in terms of (A, A,,), are a strong function of which derivative operator is chosen. Reducing

trun('ation error of the spatial derivative operator reduces the extent of the linear stability regime. Use of

the corresl)onding second derivative operator rather than repeated use of the first, derivative operators for

the viscous terms reduces the maximunl viscous CFL number. Nevertheless, determining linear stability

as previously described gives results representative of a broad class of numerical methods used for DNS of

compressil)le [tows.

2.a. Step Control Stability. We consider two step-size control strategies:[3d, 36, 37]

(_.1.5) (At)/''+_/= _(,Xt)(") +

(2.1t_) (±,)<.+t) = ,_(_+,)(.) { lla<"V'>ll_ ,

where ( is sonic choselt iutegratioll error tolerauce, ¢,+ _ 0.9, aud +(n+l) ___ l.,,(n+l) _ UO,++). The first, and

most common method, Eq. (2.15) is an example of an integral feedback (1-) controller. The second, more



sophisticated, Eq. (2.16) adds a proportional feedback componeut and is called a PI-controller. Following

ttairer and Wanner,[a6] we define

, £(2.171 R(:) = 1 + E(:) =
i= l i=p+ 1

as well as the matrices

1 u 0 0 )
(2.18) C= (-"= ' '

-,_ (1 - a.) ' 1 0 0 0

0 1 0 0

In the case oft.he C-matrix corresponding to Eq. (2.15), a = (p+l) -1. For (" corresponding to Eq. (2.16), we

set a = 0.7/p and/] = 0.4/p where p is the order of the embedded method. If at. the regions where [R(z)] = 1

the spectral radius of C or (' is less than unity, then the step-size control mechanism is said t.o be SC-stable.

As DNS runs are often made near the linear stability limits of the integrator, step-size change oscillations

may result, and give rise to a rapid accumulation of global error during oversteps. Still more involved would

be a PID-controller, which we do not use. The PID-controller is obtained by nmltiplying the llHS of Eq.

(2.16) by {¢/lla("-_/Jl_}" and creating a 6 × 6 matrix (' which has the elements _'i.i = C'i.j, i,j = 1.2, 3, 4,

(",5 = -_, (:',c, = -_v, and ('.sa = d',;4 = 1. with all remaining elements being zero.

2.4. Dispersion and Dissipation Error. Dispersion and dissipation of EllK methods[l(), 44, 45] may

be considered by taking the derivative of U = (i,,,t with respect to time, dU/dt = iwU, where ,_ is a temporal

waveimmber (frequency). The stability function for this ODE has the argument iu where v = w(At). An

Ell.K method where R and I, respectively, are the real and imaginary parts of R(iu) is said to be dispersive

of order qdisp and dissipative of order qdiss if

2j+1

(*) E;(2.19) 0(u) = u- arg (R(iu)) = u- arctan _ = 0,j+,u "-'_+1

2.i

j=ll

O ( L,tqdlsv + l ) ,

(2.20) ,_(v) = I -[R(i,)I = 1 - _,,'-' + T-' = _o._,.iu 2j = O(_q_'_'+t).
j=0

Hence R(iu) = _. + iZ = (1 -a(u))_i("-*U')). Some authors rei_r to the phase-lag order of the method,

which, in our notation, would be (qdisp,qdiss- 1). (:ontrol of both spatial and temporal dissipation and

dispersion in acoustics applications has employed ERK methods satisfying only qua(lrature[46, 92] and

subquadrature[93] order conditions. Applied to nonlinear problems like the Navier-Stokes equations, these

methods will generally not exceed second- and third-order accuracy, respectively.

2.5. Nonlinear Stability. Nonlinear stability of llunge-Iqutta methods[53] focuses on the discrete

analog to dissipativity of F(t, U(t)) in some given norm,

(2.21) II?(t + - u(t + zt)ll _<II(:(t) - u(t)il,

where b" is a perturbed approximation to 17 and F(t, U(t)) belongs to any one of the four function classes:

linear (Z2) or nonlinear (.T) and dissipative in an inner product or maximum norm. For El]I< met hods, [15, 52,

,53, 55, 91] the dissipativity criterion is replaced with the so-called circle-condition, and maximmn step-sizes

are related to a eontractivity threshold: the largest possible step-size that ensures ]l/)('+1) -l_("+l)ll _<



]fr(,,)- t,0,)[[. A radius of conditional or circular contractivity for tile four function classes may be denoted

rp_, rc_, rye, re. where r.r__< re__< r_-, and r.,- _< 7",-: _< rc_. We will call a method (conditionally)

contractive if at least. *'Y'2 > 0.

Kraaijevanger[52] (Y'.,) and Dahlquist and .leltsch[16] (5r2) have shown that no ERI( method has ,'7 > 0

and is greater, than fourth-order accurate. Maximum herin cont.ractivity is closely related to positivity.[39]

Positivitv is particularly appealing because it. ensures that physical quantities such a.s temperature and

species concentrations remain R)rever nmmegat.ive. The radius of posit.Jetty is the same a.s the radius of

lllaxilnulll nornl contractivity.

To deterlnine r.;r: we first define the matrices[16] ,llij = biaij + bjaji - bibj, Bi.i = diag{b_, b.2...., bs},
z)-l/2,1t, r_-l/2

and -'_'[il = "ij _'_jkl_kl . If bi > 0. then r r., = -V_ --l where A;'_n is the smallest eigenvalue of the

matrix .t4i_. A nonvanishing value of rF requires that bim_ 0, aij >0, alld the lhmge-l(utta K-function,

If(Z) = det[l- (A- ebr)Z], is absolutely monotonic on t-rye, 0] where Z = {zl, z2,..., z,}. K(Z) is said

to be absohltely monotonic at. a point _ if[52]

(2.22) Oi,+i.,+ +i, ff(_,_,... _) >0.
• ~il • ~i_
0_1 &2"'"OzP

In the case of ERKs, each ij may be equal to either 0 or 1. The largest magnitude of _ on the negative

real - axis for which these 2" inequalities hold is denoted -r:r . Alternatively for ERI(s, Olle may enforce

nonnegativity of

(2.23) R(,_), A(_}=A(I-6A) -_ /4({)=bT(I-_A) -_, _(_)= (I-,_A)-le,

at. _ = -r, where e = {1, 1,..., 1}, b = bi, and A = (lij. Assuming that bi > O, (lij >__>O, these present

1, (s - 2)(.s - 1)/2, (_ - 1), and (, - 1) inequalities, respectively or s(, + 1)/2 in total. It should be noted

that the region of circular contractivity is a circle located at z = -r with radius vj, or rj,2, whichever is

appropriate. This implies the property is likely most useful for parabolic rather than hyperbolic equations.

For comparison purposes we follow Dahlquist and Jeltsch and write re,, = t'_, tile corresponding radius of

the linear l)roblem in an tuner product norm,t57] i.e., the largest, circle centered on the negative real - axis,

fully comained m the left half-plane, that fits within the region where I/¢(:)l = 1. The linear analog of

rT_ is rc_,. The stability function, R(Z), is said to be absolutely monotonic at, a point E, if[,53] O'R(_)/Oz _

_> 0, i=0,1,2,....s. The largest, magnitude of( on the negative real - axis for which all of these s+ 1

nequalities hold is denoted -v_: . Kraaijevanger[.51] gives tile maximum achievable vz_ per stage for an

m-stage method with order p, his optimal scaled threshold factors. We do not consider the internal stability

of I';RKs.[42, 43] Nonlinear instability caused by spurious triad wave interactions[79] in the spatial domain

is outside the scope of this paper, but is probably best, dealt with by using high-order filtering.t48]

2.6. Efficiency. Efficiency of a given .s'-stage ERK scheme may be considered from two decidedly

difl)_reut persl)ectives. One philosophy assulnes that temporal integration error is acceptable and seeks to

time step as briskly as possible. Simulations running on expensive supercomputers for hundreds of hours are

under great pressure to be integrated as quickly as possible. Alternatively, integration may be conducted at,

seine chosen maximum acceptable error. Virtually all DNS efforts that these authors arc aware of implicitly

subscribe to the former philosophy due to computer resource limitations.

Stability-limited t,ime stepping is the more primitive approach and only seeks to compare the relative

efficiency of two schemes by using[69]

(2.24) _/(_,_, t = __(_)A_ A_, -1 _ (At)_ _._,,•,1 (At)._, ._1



where A is understood to be either the inviscid or viscous CFL number and scheme 1 is most efficient for

q(_t_b) > 1. This term compares the distance integrated per unit of work (evaluations of F(I, U(t)) = number

of stages) with no regard for the accuracy of integration and may be used to compare methods with arbitrary

orders of accuracy and numbers of stages. For viscously or reactively dominated I)roblems this term could

be antended by replacing the CFL numbers with the respective r:_2 or r r of each schenie.

Relative etficiencies of two q'h-order schemes based on an error limited time stepping procedure might

best be measured by[40, 69]

where schelne 1 is most etficient for II(_':) > 1. Slightly different from 7j (stab), _'1(acc) colnpares the distance

integrated per unit of work at. fixed integration error, (At)*. We will consider the number of stages in a

FSAL method as the effective number of stages for efficiency purposes. Obviously, for sutficiently large error

tolerances, large time steps might exceed the linear stability bounds. In comparing schemes with different

orders of accuracy we cannot use this last. metric and simply paraphrase Shampine[69]. For sutIiciently small

error tolerances the higher order method is more efficient, but this argument does not imply that the lower

order method is more efficient for large error tolerances. Prince and Dormal,d[62] note that only on the

linear problem are lower order formulae sometimes preferable to higher order formulae. Sharp[71] finds thai

the higher-order inethods are generally more accuracy etticient on nonstiff equations.

The choice of which efficiency measure should be used depends most strongly on what level of error is

acceptable to the user. This, in turn, depends on what physical phenomena are being sought through the

calculation. If integration at the linear stability liinits produces sufficiently small error then, efficiency is best

considered by using 7/(stab); otherwise I1(_) seems more ai)propriate. Spatial accuracy, another inq)ortant

matter thai we do not consider here, must also be addressed. Strict temporal error tolerances make litth"

sense without correspondingly strict spatial error tolerances. A ftllure study on the spatial and temporal

accuracy/resolution requirements associated with particular physical phenomena would be of tremendous

utility to compressible DNS practitioners.

2.7. Simplifying Assumptions. Finally, in the course of designing several of the schemes in this

paper, resorting t.o Butcher[8, 36] silnplifying assumptions will be useful. On occasion, assumptions

" cq

, ,_., i=l,...,., q= l, ..., ,j,
q

j--1

(lij= (1 -- Cj), j=l .... S, q=l ..... q,
q

i=1

will be invoked.



3. Two-Register Schemes. An s-stage ERK method placed in two-register vdH format (see van der

ilouwen[42], equation 2.2.4") takes on the Butcher array fornl

0

c2 321

ca _'l

: i

cs

bl

(132

b2 _/43

b:_ o¸.5.1

b_-2 ct s,_.-- I

b2 ba ... b_-2 bs-l bs

and allows (2s - 1) degrees of freedom (DOF) to satisfy all constraints. In general, for all r-register method,

there will be i" * _ - i" • (I" - 1)/2 DOF available. Conversely, (s - r+ 1) * (s - 7')/2 DOF are sacrificed for

low storage. Setting r = s, the basic ERK method is retrieved with s. (s + 1)/2 DOF.

3.1. Two-Stage, Second-Order: RK2()212R]. All two-stage, second-order ERKs may be used in

2R format. Mininmm .4 (3) = 1/6 occurs at c3 = a31 = 2/3, bl = 1/4, b.2 = 3/4 with (r:r_, rT_) =

(0.791,0.500). Tile maximally L._ contractive second-order method is Huen's method;[54] c__ = 331 = 1,

bt = 1/2. b.2 = 1/2 where v:r 2 = rTo_= 1 and A (3) = v_/6. These are of only academic interest to the

compressible DNS comnmnity because when implemented with centered, finite-difference inethods on the

convection-diffusion equation, the methods are unconditionally unstat)le in the inviscid limit.

3.2. Three-Stage, Third-Order: RKa(2)312R+]. The general solution to the two-register, three-

stage, third-order vdH scheme has a one-parameter family of solutions along with two specific causes. These

are readily derived by following Lan_bert's[54] three ca.ses. For the ca_es when c3 :)b_0, 3' or ca and when

ca # 0, the one parameter, ca, family of solutions is obtained for

,t -- 7e3 + 6cg + V/C_ (17 -- 60c3 + 84c,_ -- 48c_)

(;I. l) "_ = 6 (1 - 2ca+ 2_) '

provided c., is not COlnplex. From this, Wray[90] suggests c3 = 2/3, y'ielding o2 = 8/15. Minimum principal

error norm for tile tlK3(2)312R+]M is found by solving 0A(4)/0c3 = 0 for c3 by using the minus solution

_121481_,_ where A (4) = 0.04,112 and (ry'_ rT_..)above. The result is that the minima occurs at, ca _, 130777641
33833

= (0.521. (1.150). Maximum 7'5r occuI's with RK3(2)312R+]N at, c3 _ _ by using the plus solution where

.4 (4) = 0.05094 and (rT,, ry_ ) = (1.127, 0.838). Asking for contraetivity of the embedded lnethods had tile

unfortunate consequence of increasing E (4) above optimal. Tile minimmn principal error norm achievable for

ally explicit RK3()3 is A (4) = 0.0-11809. Maximum radius ofcontractivity for the general RK3()3 is r:_ = 1

or r_: _ 1.215. All RK3()3 methods have r£_-- 1 and r_:, : 1.256.

In the two specific cases where c,, = ca = 2/3 and b3 = 3/5, then A (4) = 0.046:{0 and (ry:, rye)

= (l.0, 0.6), and where c3 = 2/3, c3 = 0, b3 = (1 :F v/i-7)/8, both solutions have .4 (4) = 0.1326 and are

noncontractive. _Fhe former confluent solution admits oldy a defective embedded nlethod. Stability linfits of

all three-stage, third-order, ERK schelnes are (A, A_,) = (0.87, 0.63) when integrating the convection-diffusion

equal.ion discretized with a sixth-order, tridiagonal, first-derivative operator.

3.a. Four-Stage, Third-Order: RK3(2)412R+]. Using two-registers over four stages allots degrees

of freedom. Enforcing third-order accuracy, r (k) = 0, k = 1,2, 3, leaves three remaining I)OF. For accuracy

efficiency, HK3(2)41211+]C lninimizes A (4) subject to q5}4) = 1/24 in order to maximize linear st, alfility

and dissipation order. The resulting scheme is 6(7(, more accuracy efficient than tiKa(2)312R+]M, and has
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()_,A_:) = (1.42,0.70); this schenle is listed in Tables Iaud 4 and shown in Figure 3.1. For nonlinear

stability, RK3(2)4[2R+]CN seeks maxinlal r._ while achieving sixth-order dispersion error, 05 = 0, by setting

q_4t = 1/30. Of the maximum possible r:x = 2 for any RK3()4152] with A (4) = 0.03608, I_K3(2)4[2B+]CN

achieves v_ = 1.007 while keeping :t (4) = 0.02870. As with the RK3(2)3121_+]N. a contractive embedded

lnethod drove E (4 to slightly greater than 1. If _.t) = 1/48, giving (A, A¢,) = (1 .(18, 1.30), rz_= 2 is possible

for RK3()4 methods.

3.4. Five-Stage. Fourth-Order: RK4(3)512R+]. Adding a fifth stage to a 2R-vdtt scheme provides

nine degrees of freedom. Fourth-order accuracy may now be considered. Eight order-of-accuracy constraints,

r (_') = 0, k = 1,2, 3, 4, leave one DOF to optimize linear stability while maintaining acceptable accuracy via

variation of _(5) Tables 1 and 5 and Figure 3.1 give the _I'_5) 1/206 solution, R1(4(3)512t_+]C. with9 • _--

A (5) = 0.005121 and ()_,A,,) = (1.67, 1.21). Mated to this is an embedded scheme with q_!4) = 1/28. We

were unable to find any contractive methods for the RK4(3)512R+] or l)hase-lag methods having reasonable

principal error uornls. Setting _I, 5) = 1/240 gives ()_, .k,,) = (1.62, 1.48) and the largest, r_:_for the RK4()5

methods is 2.

3.5. Six-Stage, Fourth-Order: RK4(3)612R+]. As additional stages can sometimes make for more

efficient methods,t72] one may consider an RK4(3)612R+] scheme with three residual DOF after satisfying

r (k) = 0, k = 1, 2, 3, 4. Searching for solutions uncovered R K4(3)612R+]C with A (5) = 0.002148 and (A, A_ ) =

(1.97, 1.18). Ilnfortutlately both T](_) and q(st_b) are less than those of RK4(3)512R+]C. No attempt was

made to find a contractive solution. At.-,,a'('_) _ 1/159 and qb!,'(;))_ _ 1/2529 where (A, A_,) = (1.85, 1.62), ,'c_may.

reach _ 2.651. For increased phase-lag accuracy one may set 05 = 07 = 0 to find (A,A,,) = (0.29, 0.96) or

may set. 05 = _,_ = 0 to find (A, A_,) = (0.35, 0.89). Minimizing dissipation error with a,_ : aa : 0 results

: d) ((;)in _I,5) 11128, _._,,)= 111152, and (A,A,) = (1._4.1.09). With .4(_) = 0.00_509, m_4(:_)t_[2R+]P{4,.g} is

such a scheme. Both RK4(3)612R+]C and RK4(3)612R+]I'{4,9} use an enlbedded method with q_4) = 1/26

and a)(5) 1/150

3.6. Nin_Stage. Fifth-Order: RK5(4)912R+]. A tiffh-order, 2R-vdtt scheme may be obtained in

nine stages by solving the 17 unsimplified equatiolls of condition, r (k) = 0, k --- 1, 2,..., 5, for the l? free

Butcher coefficients. Solution properties calmot be optimized. Over 800 distinct real root, s to this system

of equations have been found. The most accurate root found. RK5(4)912R+]M, has A ('_) = 0.0006172, but

()_, A_,) = (0.21, 1.03). The most stable method, t/KS(4)912R+]S, has A (_I = 0.001014, (_, ,k, ) = (1.78, 1.59),

and (A,A,,) = (1.60.1.61). A compromise solution, RK5(4)912R+]C, was fomld with .4 (6) = 0.0008209.

()_,)_ ) = (1.05, 1.29), and (5,,)%) = ( 1.63, 1.15). An embedded method was designed for the three schemes

by satisfying all eight fourth-order constraints plus setting _(5) 1/135. These methods are presented in.q _-

Tables 1 and 6. Stability diagrams are provided in Figure 3.1. The largest, linear positivity radius for these

RK5(4)9 methods appears to be "c_ 4.095 oecuring at O_'i,) _ 1/779, q_s I _ 1/7444, 0V/lS_ _ 1/121935,

4V('_') 1/4494000, where (A,)_. ) (0.34, 2.24).

4. Three-Register Sehelnes. Applications having slightly less stringent memory constraints may add

an additional storage register per ODE. Extending the edit methodology to three-registers, an s-stage scheme
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takes tile Butcher array form

0

('2 o21

('3 (1_1

bl

bl

¢13"2

_t42 043

/)2 _t53 _154

bs-e.

b2 " " " b_-3 b_-2 bs-1 bs

where there are now (3s - 3) independent coefficients that may be used to satist), particular conditions•

Alternatively, (s - 2) . (s - 3)/2 coefficients are lost to low storage.

4.1. Three-Stage, Third-Order: RK3()313R].

implenlented in 3R format. As such, one may seek the

By setting 0A(4)/0c2 = 0 and 0A(4)/0c3 : 0 froln the

Any three-stage, third-order ERK method may t)e

method ]laving the smallest principal error norm.

two-parameter family of solutions it is found that

73459324 245463752 At4) = 0.041809, and (rj:_,, r:r_.) = (0.894, 0.0). The relation ofc., and c3 to theC') _ 1.t7953835 C3 _- ' 326534311 ' .

various other Butcher coefficients may be found ill the lilerature.[9, 21, 35, 54] Stability limits are identical

to the RK3(2)312R+] methods. Maximal eontractivity, r:r = fT.. = 1, is found in Fehlberg's[26, 52, 7,t]

method with o_, = 1, Ca = 1/2, and A (41 = 0.07217, while for Cooper's scheme[15] in an inner product norm

where (r:r_,, rj, ) = (1.215, 0.691), c3 _ 270/251, c3_ 166/305, andA (41=0.07221.

4.2. Foul'-Stage, Third-Order: RK3(2)413R+]. Kraaijevanger[52] has shown that optimizing the

radius of maximuni norm contractivity for general third-order ERKs allows one to obtain r:r = (s - 2)

for s = 3,4. For .s _> 5, rF__< (.s - V'7). A family of third-order schemes given by four unique Butcher

coefficients, bi=(s-2)/(.s(.s-1)), i=1,2,... (s-1),b,=2/s, ao=l/(s_2) ' i=2,3,...,(s-l)>j,

a,j = 1/(2(s- 1)), j = 1,2,..-,(s- 1), which for s = 3,4 constitute the maximally L,_ contractive

tnethods. Froin these relations it is seen that c_-1 = 1 and c, = 1/2. For s = 5, 6, 7, and 8 one finds for

this family that (r:r,, r:r ) is given by (2.449, 2.202), (2.828, 2.347), (3.162, 2.460), and (3.464 2.553). For

reduced storage we set bi = (s - 2)/(s(,_ - 1)) = a_l = 1/(2(s - 1)) to lind .s = 4. The resulting method.

I_K3(2)413|_+]N. is essentially given by Kraaijevanger with r:r = rj,., = rc = r_:. = 2 and A (41 = 0.03608.

A good embedded method for this scheme is bi = {8,9,8 60}/85.

4.3. Four-Stage, Fourth-Order: RK4()413R]. From the general solution to the four-stage, fourth-

order ERK scheme,[9, 21, 35] it. is found that there is a one-parameter family of 3R solutions and three

specific solutions. The one-parameter family of solutions is given by

(co - ._0,-_+ 364) ± v/(-20 + 50c, - 36c_)_ - 4(9 - e6c3 + 16c_)(1(_- a(>_,+ 364)
(4.11 c3 =

2(16 - 36c2 + 36c_)

where 0, c.,_, c3, 1 are all distinct, c2 # 1/2, 3 - 4(c2 - c3) + 6c2c3 # 0, and c3 is not complex. ]'tie principal

error norm is mininfized by setting 0A(5)/0c2 = 0 where RK4{)4[3R]M is found for the plus solution with

C'_ _ 79947-t011
- 181010101' vy.: = 0.718, and ,4 (5) = 0.01263. Maximal v&, = 0.882 occurs with lhe plus solution

RK'I()4[3RJN at c2 ,_ _1613 (with A (51 = 0.01319) for 3It methods and rj 5 = 1.144 for (:ooper's[15] RK4()4

method. These values compare with r:r_, = 1 and A (51 = 0.01450 for the "classical Runge-Kutta" (see

Butcher[9], §313) and A (51 = 0.011977 for the absolute mininmm principal error norm for any four-stage,

fourth-order, ERK sclmme. Kraaijevanger[52] has shown that there exists no L_ contractive RK4()4 method.

Adding a third-order embedded scheme to this method is impossible unless FSAL techniques are used but
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wedonot,pursuethismatter.Insteadof a FSALpair,completeuseof tile fifth stagegenerallymakesfor
moreefficientscllemes.Ouepotentialexceptionisinviscidstabilityefficiency(3,/s_ 0.35._)).Thethreeother
specificcasesarefoundusingIh_t(;hel"S cases 3, 4, and 5 in §312.[(`1] In case 3, b3 = -2/15 and A (51 = 0.03416,

ill case 4, b4 = 3/10 and ,41'51 = 0.02330, while ill case 5, c2 = 3/7 and A (51 = (1.01282. None of these last

three schemes is contractiw_. Linear stability limits on the convection-diffusion equation for the IqK4()413H]

are (A,A¢,)=(1.42,0.70),rz = l,aud re, = 1.393.

4.4. Five-Stage, Fourth-Order: RK4(a)513R+]. Three additional degrees of freedom afforded

by adding a third register to the RK4(3)5121/+] method may be put, to good use. Optimizing accuracy,

RK4(3)513R+]M has A ('5) = 0.001884 and ()_,_,) = (0.22,0.81) where r (5) = 0. A similar method of
3,9

r( 51Prince has 4 s 9 = 0. A balance between linear stabilily and low error is found in RK4(3)513R+]C with

A (5) = 0.003859 and ()_,_v) = (1.67, 1.17). It should t)e noted that for the RK4(3)513R+]C, selection of

qb!'51_q= 1/200 forces A (51 _> 0.003333, as can be seen from .,,_a(51. Contractivity appears to be maximized with

RK4(3)513R+]N having (rT_, rye) =(0.995.0.477), A (51 = 0.004587, and (&, k_,) = (1.67, 1.20). Although

not nearly as contractive as Kraaijevanger's RK4()5 scheme, it, has 7c_, better q(_c_). Each of these three

schemes is presented in Tables 2 and 5. Stability plots are given ill Figure 4.1. Two highly accurate

RK4(3)513R+]P{4,7} schemes where 4P_'_, = 1/144 and (A, A, ) = (1.74, 0.8(,t) were tbund with A (s) = 0.002658

and A (5) = 0.002857, but neither would accept an embedded method with a reasonably large linear stability

region.

4.5. Six-Stage, Fifth-Order: RKS()613R]. With only 15 degrees of freedom simpli_qng assumt)tion

D(1) may be invoked to reduce tile number of condition equations from 17 to 15. By doing so, a fourth-

order embedded scheme is no longer possible. At least I:{ schemes like this exist; the lnost accurate found,

RK5()6[3R]M, has A (_) = 0.003678 with ()_, A,,) = (0.20, 0.72).

4.6. Seven-Stage, Fifth-Order: RKS(4)713R+]. To get a 5(4) pair, a seventh stage is added and

only simplifying assumption ('(2) is utilized. This results in 18 equations in 18 unknowns for the main

scheme and 7 equations ill 7 unknowns for the embedded method. Of the 7 schemes found, the best one is

RKS(4)7131q+]M with ,40;) = 0.002213, (A,A,) = (0.28,0.92), (A,)_,) = (0.95, 0.591, and B(';) < 1.0. Adding

an extra stage to this naethod, however, can lead to a method with as much as 38(_: better q(acc) as will

be shown in section 4.7. Maximum re m 2.654 occurs at.-20 _ _ 1/17733 with (A,A,,) =

(0.28, 1.601.

4.7. Eight-Stage, Fifth-Order-RK5(4)8[3R+]. All eight-stage, three-register vdfI scheme has 21

degrees of freedom. Seeking a 5(41 pair, Butcher simplifying assumption ('(21 is applied. T}_e resulting

system of equations necessary to satis_, all order conditions is

" = i = 3,4,...,s,r = 0, k = 1,2,..., 5, }--_j=l ai.icj

(4.U) _41 ---- 7_(5) an --_ Z_=3bi(li2 -._ E_=3bici(,i2 E7,i=3bi(tijctj2 0,
4,5,8 _ - _ , _-

for the main schenae and

(4.3)

i=3

for the embedded scheme. Optimization may now be done with two remaining DOF in the main method

and one in the embedded method. A numerical search found two low-error solution families (among 25 or

so), tile first with more desirable stability properties and the second having lower A (_;). RI(5(4)813R+]C,
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RK5(4)813R+]I'{&7}, al,d RI,:5(4)813FI+]M are give,, in Tables 2 and 6. The frst two come from the ,,,ore

stable family. RKS(4)813R+]C has _4(i;t = 0.0008306 with (A,),,,) = (1.30, 1.52) while RKS(4)813R+]P{8,7}

has .-I('_) = 0.0007923 with (A, A,,) = (1.01, 1.20). RK5(4)813R+]M achieves .4 ('_) = 0.0003240, but (A, A,_) =

(0.32, 1.00). "file final degree of freedom for the embedded methods is used to set qb(5)9= 1/130, 1/135, 1/122.5

in the RK5(4)813R+]C, P, M schemes, respectively. Stability plots for the three schemes are shown in Figure

4.1.

Enhanced dispersion/dissipation order is enforced with

(I)(6) (1 + 2268@]_)_)/756 (1)(478)= (1 + 22680(I)_))/7560 (07 09 = 0),20 _

(,1.4) (p(6)_0= 1/720 qb_7_) = (1 + 5760@_8_)/5760 (o,-; = as = 0),

O!,'_)) = 1/720 (I)_78)= 1/5040 (a6 = 0r = 0).

With tile RK5(4)813R+]M solution family, the methods RK5(4)813R+]PM{10,5}, RKS(4)813R+]PM{8,7},

and RK5(4)813R+]PM{6,9} may be found having A (6) = 0.0005049, 0.0005946, and 0.0005525, and ()_, A,_) =

(0.35, 1.14), (0.88,0.98), and (0.53, 1.04), respectively• Each may be fitted with a high-quality embedded

method by setting -9'r'(5)= 1/130. hi each of these methods, D < 2, B (G),C (_) < 1.5 and E (a) < 0.5. The

largesl possible rc_ for RK5(4)8 schemes is found at 'I)(6)20'_ 1/834, (b_78)_ 1/9862, (I)(8)115_ 1/266413 where

rc_ 3.368 and ()_,)_,,) = (0.30, 1.89).

5. Four-Register Schemes. Further relaxing the memory constraints, the 4R-vdH scheme structure

C2

C3

C4

appears as

Cs

_121

a31 _132

a41 a42 a43

_)1 ¢152 (153 (154

_2 r263 t164

b_--4

aG5

tl., s-_ as,s--2

bl b2 " • • bs-4 b_-2, b_.-,2 bs-I bs

and has (48 - 6) DOF. Storage reduction has consumed (s - 3) * (s - 4)/2 of them.

5.1. Four-Stage, Fourth-Order: RK4()414R]. 11, eases where the number of stages equals the

number of available storage registers, all possible schemes may be ilnplemented ill sR-vdH fashion. For

the four-stage, fourth-order El]I(, we solve for the minimunl error scheme. Setting OA(5)/Oc2 = 0 and

63753230 1318943,,3 ,4(5) 0.0119775, and r_-: = 0.613. Tile relationi)A(5)/?)c3 = O. results in c.,. _,_ 178211381' C3 _' ....8q"')q 68.1'5 ----

])elween the various other Butcher coefficients may be found in the literature.[9.21, 35] Stability limits are

(.k, ,k,. ) = (1.,12, 0.70). Again, a third-order embedded method is impossible with this scheme without FSAL
7723

constructs. Maximal inner product norm contractivity occurs with Cooper's RK4()4 scheme at. o2 ,_ 137,,8

,_075 where ry, = 1.14373 and A ('_) = 0.01755. Gottlieb and Shu[31] use Butcher's[9] case 2 illand c3 _

._3t2, setting b3 = rsra to.get A !5) = 0.01592 and r_-: = 0.945. In all RK,I()4 cases rT_= 0, rL-_= 1, and3o000

r_: = 1.393.

5.2. Five-Stage, Fourth-Order: RK4(3)514R+]. All RK4(3)514R+] method has 14 DOF, having

sacrificed only 1 DOF to low storage. To minimize A (s), Butcher simplifying assumptions ('(2) and D(1)

are applied, redtwing the constraint system to

rl k) =0, /,'= 1,2,3,4, "5 = 1, r_ 5)-_- _, b-,:_ Z:'C=3bigi(li 9_ =0,
(s l)

_:;=, aoe j = e".[12, i= 3,4, E_=_ biaij = bi(1 - e,i ), i = 2,3,4.
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All exact, one-parameter, c4, solution has been found where ,4 (5) may be made arbitrarily small. For _ = 0,

,4 (5) = _/103/1036800(c4 - 1). Unfortunately, both b4 and b5 are proportional to (c4 - 1) -1, a so-called

limiting fornmla. As c4 --+ 1, D = b4 = - [12(c4 - 1)c4(5c4 - 2)] -1 . Setting e = -1/40000 and c4 = 199/200,

RK4(3)514R+]M has A (51 --- 0.00003216, .4('_)/.4 (51 = 130.3, and D = 6.365.

To obtai,, a contractive RK4(31514B+] scheme, we closely follow Kraaijevanger[52] with the excep-

tion of not enforcing (051- r.7_ct54041). Note that we solved 15 equations (8 order conditions and 7 of

his 8 corltractivity conditions) i, 15 unktlow'ns whereas Kraaijev'anger performed an optimization problem.

Kraaijevanger's RK4()5 method has A {5_ = 0.006439, (,_,)_v) = (1.64.1.34), and (rc_, rc_, r_-:, r_- )

= (2.191, 1.861.1.835, 1.508). The I{.K4(3)514R+]N method has A (5t = 0.005635, ()_, A,,) = (1.63, 1.401, and

(r.,%, r.r_) = (1.733, 1.095). We mention that a good embedded method may be added to Kraaijevanger's

RK4()5 scheme by solving the hmr third-order embedded order conditions, linear in the bi's, by setting

b5 = 113/599. Coefficients and properties of the two RK4(3)514R+] methods are listed in Tables 3 and 5.

Stability plots are given in Figure 5.1.

5.3. Six-Stage, Fifth-Order: RK5(41614R+]. By increasing the stage count to six, a 5(4) pair may

be considered with Butcher simplifying assunal_tion (?(3). The general RKS(4)614R+] method has 18 DOF

in the main scheme and 6 [)OF in the embedded method. Of the nine main schemes found, the best scheme

has A {'_) = 0.001961 and ()_, A_,) = (0.28.0.99). A more ambitious agenda uses only simplifying assuml_tion

('(2) while enforcing a condition on _i'2. To do this we solve

r_ k) -- 0, /,' -- 1,2, . .., ,_) _j=laijcj=c_/2,s i = 3,4,5,6, rat4) = r<5.s(5} = 0,

..... (3c_-1__5+,0 a)
(5.2) b,, -= Ei_=3 biai2 -- Ei=3 biciai'_, =- Ei .i=3 biai,ioJ 2 -= O, 042 -- ,_c,(3-12e_+10c_) '

for the main scheme and

(5.3) r{ k) = O, k = 1,2, 3 4 b_,_= O, (I)(5)`.,= 1/130.

for the embedded method. Note that the st ralegies described by Papakostas el a1.[60] and Hairer el a1.[35]

(§II.5) must be modified slightly. Tables ::L and 6 show RK5(4)61411+]M having .4 (';) = 0.0009449 and

(k,A,.) = (0.31,0.9:{). A st.abililv diagram for this schenle is given in Figure 5.1 With (I) ('_) 1/144{}' 2(} ---- '

r_:_ reaches 2 for the RK5(4)6 melhod. A FSAL method akin t.o those of l)ormand el a1.[1.% 20] and

Papakostas el. a1.[60] is 11oi considered.

5.4. Seven-Stage, Fifth-Order- RKS{417141R,+]. A seven-stage, 5{41 pair may be approached in

at. least four ways: using ('(21_ (:(a), C(2) and D(1), or (?(3) and D(1 ). To satis[_, all rifth-order constraints,

these require {8, 20, 18, and 21 DOF. respectively. For sixth-order these increase to 30, 28, 24, and 25. In

addition, use of ('(3) reduces the number of embedded order conditions. The simplest approach is t.o use ('(:{)

and D(I). Set.ling r,_e) _ 2 × 10-';. a solution was found having A I'll = 0.t)003974 and (A,)_,.) = (0.30, 0.87).

With only ('(3), a somewhat better solution has .4 (_) = 0.0003649 and (._, A,,) = (0.32, 0.89).

To decrease A (_;) further, only ('(2) is assulned. Using a FSAL ntethod allows the main scheme to be

designed independently of the embedded method. For fifth order in the main lnethod,

(5.4) rlk) = {}' 1¢ = 1.2,3,,t,5, r34) = r(5)45,g,-- 0,

6.,= = = = 0, = c:/', ,:= a. 4, r,

and for the fourth-order embedded method

8

(5.5) ---0, a.= 1, 3,4, = = = 0
i=3
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The remaining degrees of freedom are chosen so thai r(6)1,7= 0, r6-(6) _, --7.8 X 1(1-7, 7"(';)20,_ --1 xl0-';,

and O! _I = 1/125. The resulting method, RK5(4)8[4R+]FM, has r_¢).,3_11,12 = 0, A le) = 0.00003256,

A 17) = 0.0002906, A (s) = 0.0004815, ,4 f'_') = 0.0005800, (A, Av) = (0.99, 0.98), and ()_, A,) = (1.27, 0.81).

Details of the method are found in Tables 3 and 6, and the stability characteristics are shown in Figure 5.1.

For phase-lag methods, which we do not pursue, select (07 = 0u = 0) by setting _'_) = 1/756 and

= = 1172o 115040 =_4sd_(7)= 1/7560 [(A, A,,) = (0.36, 1.16)], (aG Or 0) by setting _0 = =

(0.88, 0.99)], or (06 = o8 = 0) by placing (I)_'_o)= 1/720 and (I)_) = 1/5760 [(A, )%) = (0.53, 1.05)]. Note that

RN5(4)8[4R+]FM has nG _ 07 _, O.

6. Five. Register Schemes. With five registers, the Butcher array is given by

0

C2

c3

C4

C5

C,_

O21

Ct31 (/'32

(:t.t l t142 fl 4:?.

(/51 (152 (I53 (t54

bl a62 a67, o_4

b2 a73 a74

bs-5

af,5

q75 a76

a _,,,-4 0 s,y--3 t/s,'--2 f/e,_--- 1

bl b2 • • • bs-5 b._-4 bs-,_ b_.-2 b_-i bs

and allows (5s - 10) degrees of freedom while having forfeited (s - 4)(s - 5)/2.

6.1. Seven-Stage, Fifth-Order: RK5(4)g[5R+]. A seven-stage, five-register, 5(4) pair may be

approache(l as if it were a 6(4) pair. Both pairs (7(2), D(1) and (_(3), D(1) enable a sixth-order main

method that requires 24 and 25 DOF, respectively• We will follow the strategy of Sharp and Smart|72] and

Bogacki and Shampine[6] I)3' solving for the sixth-order method and then will pollute il ever so slightly. For

a sixth-order main method with (:(3) and D(1) we enforce

rl k) 0, k 1,2,3,4,5,6. b., 7-(6_ _ , , s- ,; = Ei=3 biciai2 --- El=3 bit|a|" = O,_--- = = ' - = El,j=3 biciaijaj2(_.1)
3

_-_.i=, aiJ('_ -_ = cq/q' i = 3, ,1, 7),6. q = 2, 3, _-_'_=1 bial.i = bj(1 - cj), j = 2, 3, 4, 5, 6. ('7 = 1,

and for the fourth-order embedded method,

$

(6.')) rl k) = 0, k = 1,2,3,4. b,. = _-_d=3biai,. = O, _(5)_, = 1/125.

Interestingly, in spite of the nonlinearity in the bi's, b7 = 1/12. Setting r_ G) = 2 × 10 -5, rrl'_t = _}'=a bie]ai,, =

_-_..i=a b_c_aijaj__ = 5× 10-;, all 20 7-,.('3t are nearly equally corrupted. The resulting lnethod, RK5(4)715R+]M,

has .4 (';) = 0.000008959, ::t(7) = 0.0005771, .4 (8) = 0.0008997, ,4 (u) = 0.001007, AI7)/A (c_)= 64.42, (A, A,,) =

(0.92, 0.99), and (A, A,) = (1.05, 1.19). Tables 3 and 6 and Figure 6.1 display this scheme.

7. Discussion. In the pursuit of reduced-storage integrators for application to the DNS of compressible

flow fields, we present 16 different ERK schemes. Schemes vary from third to fifth order in accuracy and

use from two to five registers of memory per equation per grid point, not including lnemory used for error

monitoring�controlling. Schemes have been optimized for accuracy and stability etticiency, linear stability,

nonlinear stability, dispersion/dissipation error, error control reliability, and step control stability, all under

the constraint of reduced memory usage. All presented schemes have been tested by using DETEST,|23] by

simulating t he one-dimensional inviscid wave equation, and by computing standard quantifiable properties of

the Butcher coetticients, as well as using two of the methods in large scale DNS runs. For comparison purposes
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we have chosen to contrast our third-order schemes to that of Sharp and Smart[73][SS-R.l_3(2)4], fourth-order

schemes t.o that of Prince,[21][P-RK4(3)5], and lift.h-order methods to those of Bogacki and Shampine,[6]

[BS-RK5(4)7], Sharp and Smart,[72] [SS-RK5(4)7]. Dormand and Prince,[19] [DOI'I_/IS-RI£5(4)TFM]. and

Papakostas and Papageorgiou,[60] [PP-RI'_5(4)7F]. These reference methods have been chosen because they

appear to be the best available full-storage methods within their respective classes. The menlory requirement

of these full-storage nlethods is not less than the stage nulnber for non-FSAL methods or the effective number

of stages for FSAL methods.

All schemes presented in this paper have been designed, at. a minimum, to avoid any obvious problems.

As is usual in the design of ERI'_ methods, great emphasis is placed on reducing _1 (q+l) to as low as possible.

DETEST results are well correlated with this measure. DETEST runs involve 25 separate integrations (Al-

E5) in 5 general catagories (A-E). Error is computed by taking the geometric nlean of the worst performances

in each of the 5 catagories by using the H-controller. A Iq+e) nlay sometimes be seen to affect scheme

performance at lax tolerances. Embedded "quality" parameters B (p+-'), (,t_,+2), and E (I'+2) of the low-

storage schemes are generally quite reasonable, and embedded linear stability domains are conmlensurate

with their main methods. The largest Butcher coefficient, D, never exceeds 7 in any low-storage method

and for most schenles is near unily. In addition, none of the low-storage methods have defective embedded

methods.

Reduced-storage, third-order schemes appear to forfeit little relative to corresponding full-storage schenles.

At. 3 stages, linear stability is identical among all schemes. Accuracy-based efficiency may be brought t.o

99% of the lnaximuna achievable with RK3(2)3121q+JM. Nonlinear stability may be made equal to 84_, of

Fehlberg's three-stage, third-order method with R.N3(2)3121q+]N while simultaneously requiring 9c_, less

work for similar error tolerances. High quality embedded methods are easily, added to these schemes.

Adding a fourth stage t.o a 3(2) pair appears to lead to 6% higher z/(ac_) with RK3(2)412R+](? relative

to RKa(2)312R+]M. Inviscid stability efficiency also jumps fronl ,_/s = 0.290 to )_/s = 0.355. If accuracy or

inviscid stability efficiency is a priority, this scheme is tile best. third-order method presented and behaves

similarly t.o the a(2) pair of Sharp and Smart [SS-RI,:3(2)4]. Efficiencies of these last, two inethods may be

seen in Figure 7.1, a comparison of third- and fourth-order methods using 1)ETEST, as well as in Table 4.

Viscous stability efficiency and contract iv((y, however, favor the three-stage a(2) pairs, )%/s = 0.210 versus

,_,,/s = 0.175. RKa(2)a[2I_+]N has r:r_/s = 0.279, compared tovj: /s = (/.252 for RK3(2)4[2R+]CN. while

also being 16(7(, more accuracy efficient. Where contractivity is the primary concern, RKa(2)413R+]N nearly

doubles the normalized contractivity radius of Fehlberg's H I,:3(2)a method (rs_/s = 0.333), while still only

using 3 registers. The price of achieving rT-_/s = 0.500 is relatively' poor 71(.... ), 77_. of SS-RK3(2)4.

A quick survey of existing third-order methods includes several reduced storage methods by (!arpenter

and KennedY, ill, 12] Williamson[87], and Wray[90]. Neither tile original Williamson nor Wray schemes has

an embedded method; they have accuracy etficiencies within 0.1_7_,of each other. Of the two methods given

by Carpenter and Kennedy, both Williamson-type schenles, one is clearly the most accurate third-order

scheme given in Table 4 but. has no error control capabilites, an easily rectifiable lnatter, while the other

sacrifices efficiency to achieve an embedded method with no storage penalty. Bogacki and Shampine[5] have

clearly improved upon Fehlberg's two 3(2), or 2(a), pairs but the method of Sharp and Smart appears to be

the best, full-storage a(2) pair.

Comparing FIK4(3)5[2R.+]C with the third-order schemes, the fourth-order method is generally not

only more stability efficient, but a DETEST comparison of all 2R+ methods, given in Figure 7.2, shows

that it. call achieve nloderate error tolerances at. a small fraction of t.he work needed by the lower order
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methods.RK4(3)512tq+](?seemsthemoreprudentchoiceoverany,3(2) pair for all tolerances below _ 10 -1

(;ontractivity aside. RN4(3)5[2R+]C is quite a bargain.

Opt.imizing within fourth-order methods may take many directions, with RK4(3)5[2R+]C serving as a

good reference. Figures 7.1 and 7.3 show DETEST results on the relative efliciencies of all fourth-order

schemes and of all three register methods. Table 5 shows that adding a third register, in principle, allows for

a 6c7(, increase in efficiency with RK4(a)5[aR+]C. Using RI,14(3).5[2R+]C or RK4(a)5[aR+]C enables A/s =

().3:],t and A(,/s _, 0.238. Where accuracy but not. stability efficiencies are most important. RK4(3)5[3R+]M

and RN4(3)5[4R+]M are 22(7c, and 17(i_7(.more efficient, according to Table 5. It may be seen in Figure 7.1 that

those numbers are not achieved until quite tight tolerances are reached. DETEST results of 4R+ methods,

Figure 7.4. show that RK4(3)5[4R+]M is as efficient as RKY(4)6[4R+]M, whose 71(_) is (i2(7c,, to tolerances

of m 10-s! RK4(a)5[4R+]M is acting like a fifth-order method having an 71(_¢¢) of 58(_, as determined by

comparing .40_). [Both of these 4(3) "M" methods compare favorably with the best. contenlporary full-storage

4(3) pair of Prince.[21] Maximum norm contractivity of fourth-order methods, on a per stage basis, offers

slightly less possibility, than third-order methods. Kraaijevanger's RK4()5 method is the most contractive

I_N4()5 with r:r=/s -- 0.302, a bit less than Fehlberg's _':v_/s = 0.333. This reduction is particularly

noticeable when additional requirements like low-storage are imposed. With four registers, at. least rT_c/s

= 0.21. t) is l)ossible, but this result, is likely reduced t.o r_- /s = 0.0_)5 at three registers. These results, along

with the fact that contractive ERNs do not exist at fifth order suggest that there is a trade-off between

(-ontractivity and order of accuracy'. This trade-off may not be so unfortunate because the linear positivity

radius, rc:_, relnains substantial for many high-order methods and it is likely that the perceived need for

large r:r-values is partially attributable to poor temporal error control. Gottlieb and Shu[31] compare two

second-order methods and find that the noucontractive method, although it has 43.85 times the principal

error norm of the contractive method performs less well. We inspect existing 4(3) pairs and avoid the

methods of Fehlberg[26] and Merson[35] because they have defective embedded schemes when used in local

extrapolation mode. Neither Zonneveld's method[35] nor Norsett's method[22] are particularly efficient even

with full storage. The former method may also have an unreliable error estimate on inviscid problems at,

lax tolerances. Even though Stanescu and Haba.shi[77] offer a 2N method, it lacks both error control and

efficiency. In the event that overwriting of the l_-vector is not possible, the 1"/1(4()512N]C method of Carl)enter

and Kennedy,[l 1] fitted with an embedded method, would be preferable to RK4(3)5[2R+]C because the 2N

method is 4_7_more efficient. ('ompared to Prince's RK4(3)5 method, Rb_4(a)5[3R+]M is largely, the same

yet uses ouly three registers, while RN4(a)5[41R.+]M is substantially more efficient.

The burden of low storage becomes apparent relative to corresponding contemporary pairs at fifth order

because of the large number of forsakeu degrees of freedom as well as the large amount of research that has

gone into optimizing existing 5(4) pairs. This burden may easily be seen in Figure 7.5, a DETEST comparison

of fifth-order n_ethods. Optimization of lower order methods would seem to have taken a back seat to those

fifth order and higher for reasons of efficiency. In order to achieve fifth order iu 2 registers and 9 stages,

28 DOF are sacrificed! Not surprisingly, 11{_) of 41-45% relative to BS-RK5(4)? is seen in Table (_. This

relatiw' ineflqcien,'y makes the RK5(4)912R+] methods clearly lnore efficient than the RK4(a)512R+](' only

at tolerances of _ 10 -'_ to 10 -_, and DETEST shows both R N4(:_)5[alR+]M and RI,_4(a)514R+]M to always

be more efficient. To their defense, the RK5(4)9121_+] methods have been derived with no residual DOF for

optimization purposes, used no simplifying assumptions, and by virtue of the low-storage strategy, the order

conditions became horribly uoulinear in the bi's. The brighter side of the relatively high stage number is that

stability etflciency can be quite high for 5(4) pairs. We hasten to add that. if stability efficiency is desired
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thenRKq(a)5[2R+]Cshouldbeaccurateenoughwhileallowingfor muchlargertimesteps.Acceptinga
third registerin afifth-ordermethodallowsforaccuracy,eiticienciesto movefrom41-:15c7(ofBS-IrlK5(4)7to
48-56%,whilestabilityefficienciesstaythesameordecline.Foracousticapplications,RI,i5(4)8[aR.+]P{8,7}
offershighdispersionanddissipationaccuracyonthelinearproblelnwhilesacrificingnothingonthenonlinear
problem.Whencomparingall+ schemes,for "M" and"'C"methods,fifth-ordermethodsappearto bemore
efficientthanfourth-ordermethodsfor toleranceslessthan_ 10-a to 10 -4. Comparing RK5(4)8131R+]C

to the RKr)(4)7FC and R.I,25(4)7FS methods of Dormand and Prince,J19, 20] Table 6 indicates that the

low-storage method is nearly as accuracy efficient and viscous stability efficient while being more stability

efficient on inviscid problems. In this case, the penalty of low-storage is relatively small. One of ! he surprises

ill designing low-storage methods was finding ba = b4 = 0 in the l/.KS(4)8[:IR+] methods as well as the

RK5(4)713It+] method. There are also many other cases of unexpected linear dependencies. We snspect

that there is an interesting reason behind the order conditions when certain aij = bj, but. a theory eludes us,

Adding a fourth register to a fifth-order method allows for efficiencies that approach more traditional

schemes. For RK5(4)6 schemes, RK5(4)614R+]M is arguably better than both of Fehlberg's methods[26] and

that of Dormand and Prince[19] ill spite of the loss of three DOF to low storage. The inost accurate I_K.5(4)6

published seems to be that of Papakostas and Papageorgiou with A (6) = 0.0008694, 1.4_7(, better 1}(_) than

t/K5(4)614B+]M (A (_) = 0.0009449). Sharp[70] offers two t/K5(4)6M methods, with At';) = 0.0009399

and A (6) = 0.0009775. He also states that the global minima for ttK5(4)6 schemes is A 0;) = 0.00087.

consistent with what. Papakostas and Papageorgiou have presented. A FSAL method based on RKg(4)6[4R+]

type schemes has not been pursued. Moving to seven-stage methods, ttK5(4)8[4tl+]FM is our only' FSAL

method. With A (6) = 0.00003256, Table 6 suggests that it is 30% more accuracy efficient than the DOPRI5.

Efficiencies based on A (7), A (s). and A (_) are even more encouraging. The schemes are would be expected

to perform similarly to compared to Sharp and Smart [SS-t/K5(4)7]. Papakostas and Papageorgiou recently

designed an extremely accurate 5(4) pair [PP-RK5(4)7F] with 6 effective stages. As with the DOPRI5,

the disadvantage of this approach relative to fully seven-stage methods is the relatively high values of A (r)

and D, and relatively poor linear stability. On paper, the best, 5(4) pair appears to be the Bogacki and

Shampine [BS-RKS(4)7]. DETEST results show that RK5(4)8[4R+]FM performs as well as or better than

SS-R.K5(4)7, PP-RK5(4)7F, DOPRI5, or BS-RK5(4)7 while saving two to three registers of memory. These

results are slightly controller dependent. Tile threshold for switching from fourth- t.o fifth-order 4R+ "M'"

methods (lqK4(3)514[/+]M and RK5(4)8[4R.+]FM) appears to be _ 10 -3.

The five-register 5(4) pair RK5(4)715R+] is considered to address any _/(ac¢) or A (_) shortfall of tile

2R, 3R., and 4R 5(4) pairs relative to existing methods. Designing 5(4) methods based on a sixth-order

main scheme has been done, first by Sharp and Slnart [SS-RK5(4)7] and later by Bogacki and Shampine

[BS-RK5(4)7], as well as a q(q - 2)-pair by Tsitouras and Papakostas[82] [TP-I1.I,26(4)7]. For the .5(4) pairs

A ('3) may be set, rather arbitrarily, and for these methods ..4('_) is given by 0.9, 7.1. 2.2, and 0.0(x 10-5),

respectively. What may be a better measure of the accuracy of these methods is A (r). In the same order,

A (r) for these methods is 5.8, 1.8, 2.1, and 2.1 (x 10-4). Our DETEST results show RKS(4)715R+] per-

forming better than DOPRI5, the same a.s SS-[/K5(4)7, and worse tha.ll BS-RK5(4)7, PP-I/.K5(4)7F, and

Rl,i5(4)S[4It+]FM.

It is important to consider tile benefits of additional registers so that these benefits may be weighed

against the cost of the additional memory usage. At fourth order, switching from RK4(a)512R+](: to

RK4(3)513R+]C nets a 6% etficiency gain. For "M" schemes, RK4(3)514R+]M is 126% more efficient

than t/K4(a)5[:IR+]M in Table 6. Maxinmm norm contractivity radius increa_es 1309{, by going from
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RK4(3)513R+]N to RK4(3)514R+]N, with an attendant 4_, loss in accuracy efficiency. With fifth-order

schemes, n,ovmg from RNS(4)912R+]C t,o RK5(4)8[3R+]C yields a 12% efficiency gain. Adding registers

to RKS(4).q[2R+]M gives a 25% gain with RKS(4)8[3R+]M, 110% with RK5(4)8[4R+]FM, and 160% with

m_s(4 )_[:,H+] M

Below fifth order there does not appear to be a compelling reason to use full-storage methods. At fifth

order, users must establish the cost of memory relative to CPU time to establish the optimal methods. On

parallel machines, low-storage methods may enjoy some advantage because of less required communication.

Whel! sufficient memory is available and rifth-order accuracy is required, RK5(4)8[4R+]FM is essentially

as good as BS-RKS(4)7, SS-RK5(4)7, PP-RK5(4)7F, and RK5(4)715R+]M. Low-sl.orage methods will also

be relatively more valuable when the number of equations becomes large (i.e. many species). The value

increases because the storage required of the integrator is directly proportional to the number of integration

variables yet storage for items like grid metrics is not,.

Stability plots show that step-control stability is enhanced by switching from an l-controller to a PI-

controller in all of the methods presented as well as the reference methods. Whereas with the 1-controller

schemes are predominantly SC-unstable on their linear stability boundaries, they are predominantly SC-

stable with the Pl-controller. When methods are SC-uustable with the Pl-controller, it. is often at. either

the real axis (viscous) or at the imaginary axis (inviscid), or both. Some room for optimization for each

of the methods is possible via o and 3. Doing this opt, imization requires some caution because it, is not

sufficient in the design of a good controller for each of the eigensolutions to be damped. The time constants

associated with these eigensolutions must not be too large or too small. We do not. pursue this optimization.

Possibly a PlD-controller could find use in certain DNS runs. Coping with SC-instability is probably best

accomplished by reducing step sizes. In cases where A(q+2)/A(q+I) >> 1, a Pl-controller was found to make

error control more reliable. Surprisingly, RK4(3)514R+]M with ,'t(";)/A (5) = 130 was reliable on DETEST

with both I- and PI-controllers. In most eases DETEST was able to run at more lax tolerances with the

PI-controller than the I-controller. All low-storage schemes were able to run at tolerances as lax as 10 -1

to 10 -2. except RK4(3)513R+]M, which would not run above 10 -2.5 with the PI-controller. BS-RK5(4)7

had the worst behavior in this regard, possibly because R(z) and R(z) are so similar. With the l-controller,

DOPR15, BS-RKS(4)7, and RKS(4)715R+]M, especially the last. two, had difficulty at lax tolerances.

Linear advection of information along characteristics is often used as a model problem for studying

the hyperbolic limit of the Navier-Stokes equations. An extremely difficult test case is the advection of

information over long distances, because it tests both the spatial and temporal resolving capabilities of a

scheme. We formulate this test problen_ with the model equation OU/Ot + OU/Ox = 0, solved on the interval

e ,r-t 2-50 _< x < 450. The initial and exact solutions are given by the expression l_(x,t) = ._ xp[-(-_-) ]. The

exact solution is a wave packet of energy, spread over an interval approximately six units wide, moving with

unit velocity in time. Note that this test case has information content at all wavenumbers. The spatial

discretization of the first-derivative operator is done with a sixth-order compact operator, known to have

adequate spat ial resolving capability. The boundary conditions are imposed to ensure that no order reduction

occurs.[l 3]

Figure 7.6 shows linear advection results, obtained with four temporal operators at three spatial res-

olutions. The logarithm of the global error is plotted as a function of the work. We assume t.hat the

spat, ial resolution dictates the desired accuracy level in the calculation, and that spatial and temporal error

components should be approximately equal. Note that as the time-step is decreased (increasing work), all

formulations asymptote to a uniform error that corresponds to the spatial operator component. At coarse
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error tolerances (six grid points resolving the wave packet), the CFL condition (temporal stability constraint)

of all schemes produces temporal and spatial error components that are nearly matched. Tile fifth-order

schemes have no apparent advantage over the fourth-order formulations. At moderate and fine error toler-

ances (12 and 24 four points), the fifth-order formulations become more efficient. The larger CFL condition

of the fourth-order scheme allows a larger time step, but produces inadequate temporal resolutions.

To choose a scheme for a DNS run, all of this information illnst t)e sorted. First. must be established

the relative cost of memory t.o CPU t.ime in relation to the CPU and memory requirements of the run.

The next st, ep is to establish whether the simulation will be more stability bound or accuracy bound.

Stability bound simulations faw)r "(:" or "S" methods and the 4(a) pairs. For accuracy bound problems,

"M" methods are probably best, and 5(4) pairs for tighter tolerances. For runs where nonlinear stability is

deemed important, "N" methods should be used. Acoustic or temporally periodic problems might best. use

"P" nlethods. Ultinlately, ,/(_) and 11(_b) are the Inost important quantities. DETEST quantifies 7/(_)

nicely, independent of order-of-accuracy, while )_/s and A,,/s quantify TI/st_l_) well. An interesting strategy

for users may be to choose an acceptable number of registers and then switch between methods of the same

storage requirements. For instance, at. three registers one could use RK4(a)5[aR+](: when stability dictates

the time step and then switch t.o RI,_5(4)8131_+]C as accuracy becomes more important. When accuracy

is paramount RK5(4)8[aR+]M could be used. On stability dominated problems, the general shape of the

stability domain in terms of ()_, _,,) may be loosely inferred fl'om the stability plots in t.erms of z. For the

sixth-order, tridiagonal derivative operator, the axes on the stability plots may be replaced with _(z)/2 m ,_

and -})_(z)/4 _ )_.... This guideline can be misleading at the imaginary axis. What tolerance should be

used for a DNS run? Given the second sentence in the introduction t.o this paper, at.least 10 -3 would seem

appropriate. This value also depends on the spatial tolerance, as well as the demands of the phenomena we

are attempting to resolve. Lax spatial tolerances will negate tight temporal error tolerances.

It. is also useful to consider the effects of simplifying assumptions. Experience in the literature[60]

suggests that the best. schemes are found by using the minimum lmmber of simplifying assumptions. Our

experience with RK5(4)614R+] and 1Rhi5(4)714R+] shows thai as long as the embedded method call be

designed, using ('(2) will reduce A (6) substantially over (:(3). Assumption D(l) (lid not appear to have as

dramatic an effect.. Judging from RI(5(4)814R+]FM, it is not unreasonable to think that I)oth BS-RKS(4)7

and RK5(4)715R+]M could be improved upon slightly by using only ('(2). RK5(4)8[aR+] methods are not

possible using C(3). RKS(4)s[2R+] methods have been designed in 9 stages with no simplifying assumptions

but. would require 10 with D(1) and 12 with C(2). Adding an extra stage to the minimun, number necessary

for a q(p) pair also appears to be beneficial.[72]

To demonstrate the usefulness of the methods, both RK4(3)512R+]C and RK5(4)912R+]S have been

applied to the DNS of a heated, planar, compressible air jet, as well as t.o methane-air, lnethanol-air, and

hydrogen-air flames. We remark that these choices were made long before many of the other schemes

here were created. In the case of the jet, observing sound generation from tile flowfield might be useful.

Detecting this sound is nontrivial numerically and requires selection of a variable thai not.icably manifests

acoustic waves traversing tile media. Figure 7.7 shows the w)lumetric acceleration in this jet. flow and the

sound waves coming off the jet colunm and leaving the vortical structures.

Considering an infinitesimal, spherical material volume element, dl', the volumetric acceleration is given

by (3/dr)(D'-'dv/Dt'-') where dv is the infinitesimal radius of the sphere. Figures 7.8 and 7.9 show the

corresponding vortical and temperature fields.

An important question in each simulation is a.t what tolerance does the order-reduction from boundary
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error show itself. Users seeking tight tolerances would be well advised to consult tile literature for known

solutions to this problem. It. may be that. hybrid step-controllers similar to tile Pl- and PID-controllers in

combination with those for q(q-2) pairs[82] could add reliability. It. would also be very usefid to establish tile

stability contours that correspond to rs_, rT:, aud v£_, because comparing v,& to the region of IR(z)] = 1

shows that vc_ is terribly conservative. It grossly underestimates stability on hyperl)olic problems. Two of

these contours would require determining the absolute monotonicity of a polynomial, R(:) or Ix(z), with a

complex argument.

8. Conclusions. The derivation of low-storage, explicit Runge-Kutta (ERK) schemes has been per-

formed in the context of integrating the compressible Navier-Stokes equations via direct numerical simulation

(I)NS). I,inlike previous derivations of ERK schemes which focus on only a few characteristics, we attempt to

optinfize methods across a broad range of properties, subject to varying degrees of memory economizatiolt.

With a storage reduction methodology introduced by van der Houwen and Wray, schemes are optimized for

stability and accuracy efficiency, linear and nonlinear stability, error control reliability, step change stability,

and dissipation/dispersion accuracy. The methods in this paper may be reasonably expected t.o span the

range of needs for compressible DNS when numerical stiffness is not an issue.

Sixteen ERK pairs are presented using from two to five registers of memory per equation, per grid

point, and having accuracies from 3(2) to .5(4). All schemes have high-quality error controllers and generally

exhibit step change stability when used with a PI-controller. Methods have been tested by means of not

only I)ETEST, but. also the 1D wave equation. Two of the methods have been applied to the DNS of a

compressible heated jet. as well as methane-air and hydrogen-air flames. Derived 3(2) and 4(3) pairs, where

few degrees of freedom are sacrificed for low storage, are competitive with existing full-storage methods.

(;enerally, 4(3) pairs are more accuracy and stability efficient than 3(2) pairs. When stability efficiency is

paramount, certain 4(3) pairs are best.. For accuracy limited problems, 5(4) pairs are more efficient than

4(3) pairs as tolerances drop below 10 -a to 10 -5. The transition error tolerance for this switching depends

on how many registers are being considered. Although a substantial efficiency penalty accompanies use

of 211 and 3B fifth-order methods because of the enormous number of forfeited degrees of freedom, state-

of-the-art fllll-storage methods can be nearly matched while still saving two to three registers of memory.

[rltimately, the data presented here should help users determine which method is most appropriate based

on the properties most valued and the relative cost of the CPU time to memory usage. !!sets will need to

decide which properties are most valued, make a determination of the relative cost of CPI ! time to memory,

and then choose the appropriate method.
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Appendix A. Implementation of tile van der Houwen scheme.

A.1. Two registers. We now consider the details of implementing a five-stage explicit Runge-l(utta

method with tile van der ttouwen methodology for the integration of

dl;
(A1) -- = Iq_, lr(t)),

dt

from time step n to time step n + 1 with only two storage registers. It is understood that (7 be comprises

R variables . Third and fourth registers may be used to store an error estimator and the starting U-

vector. Assume register 1 (RI) contains the _:-vector at time t (n) = 1(1) U(,) = 1:(t) The function

F(l:I"),t ('_)) = F l'') = F tl) is evaluated and the result is placed in register 2 (R2). We now perform the

operations (error estimation and retention of U ('_t are optional)

(A_)

which translate to

/1_ol d = _]

R1 = R1 + a21(AI)R2

H'2 = Rl + (bl - a_l)(At)R2.

(A3)

He,.,. = (bl - bl)(AI)F (n)

_r(2) = U(n) + a21(_._/)F(n)

X ('-') = F ('-') + (b_ - _._,l)(_kt)F '(")

= U!")+ba(At)Ft")

where the X-vector is an intermediate vector that is used to pass information from one stage to the next.

Boundary conditions for the /;(/)-vector are evaluated at, t (i) = 1(') + ci(At). This constitutes the end of

stage 1. The function is now evaluated with the contents of R1 and the result is then overwritten onto R1.

With this we compute

(A4)

R<_,. = R_,. + (b2 - b._,)(Lt)Rl

R2 = R2 + aa._,(AI)H1

RI = R2 + (b., - aa._,)(At)Rl,

or

(AS)

R_,.,. = R_,.,. + (b._,- b.,)(At)F ('-')

= (b._,- b._,)(_t) /el2) + (bl - bl)(At)F f')

1_(3) = X(2) 9- aa2(,-XI)F (2)

= It(") + aa.2(At)F (2) + bl(At)F (")

X (3) = U (3) + (be - a3"_,)(At)F (2t

= ! :('') + b2(At)F I'-') + b_(At)F(").
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Stage two is COlnl)let.e. Stage 3 begins with the evalua!ion of the function with tile contents of R.2. Overwriting

the contents of tt.2, U (a), with the result, of tile function evaluation, F (a),

(A6)

Rt, r,- = Rerr-I'- (b3 - b:_)(At)R2

RI = /_1 + a43(Al)/_'2

R2 = R1 + (b3 - a43)(At)R2,

giving

(A7)

/_err = Rerr + (b3 - ba)(Al)F (3)

= (b3 - ba)(AI)F (3) + (b2 - b2)(At)F (2) + (bl - bl)(At)F ('')

{;(4) = X(3) + a43(Al)F(:3)

= _(") + a43(At)F (3) + b,,(At)F('-')+ b_ (At)F f'')

X (4) _-- U (4) -1- (b3 - a43)(At)F (3)

= it(") + ba(AI)F (3) + b_(At)F('-') + bl (At)F (').

To begin st, age 4, tile function is now evaluated with the contents of R1 and the result is then overwritten

into R1. Hence,

R_,.r = R_,. + (b4 - b4)(At)R1

R2 = R2 + (_54(_/)R1

(A8) RI = R2 + (b4 - a54)(At)R1,

or

/fen" = Rerr -4- (b4 - b4)(A/)F (4)

= (b4 - b4)(AI)F (4) + (b3 - b3)(-'X-/)F (3)

+ (b2- b,)(At)F(2)+ (bl -bl)(At)F(")

1;(5) = .\-(4) + aa4(AI)F(4)

= l:(") + a54(At)F (4) + bz(At)F(3) + b,_(At)F ('-) + bl(At)F (')

X(5) --- /;(5) + (b4 - a54)(.'kt)F (4)

lAg) = U (_) + b4(At)F (4) + b3(AI)F (3) + b2(_t)F (2) + b_(At)F ('').

Stage four is finished. On the final stage, stage 5, the evaluation of the fimetion is done with the contents of

1/2. Overwriting the contents of R2 with the result of tl|e function evaluation, we finally arrive at

(A10) R1 = R1 +b._(At)R2,

or

[_err= [_err-[- (55 -- bs)(At)F (5)

= (b5 - bs)(At)F (5) + (b4 - b4)(At)F (4) + (b3 - ba)(At)F (:_)

+ (b_ - b2)(At)F(2)+ (ba - bl)(At)F ('')
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= .\-(s) + bs(At)F(S)

= I,(") + bs(,_Xt)F <5) + b4(,St)F(4)+ b3(AI)F (3) + b._,(AI)F ('2) + bl(AI)F ('),

+ (At). It, may lye desirable to write /:(n+l) back into the register that contained [_(") at,

the beginning of the time step ill cases where tile schelne has an even nmnber of stages. If a FSAL scheme

is being used, then l T(''+1) is used to compute F ('+1) and

(At:2) R,rr = R.,.,. + (0 - b6)(At)R1

or

R_,.r = R_r,. + (0- bs)(At)F (''+')

= (0 - b6)(At)F (''+1) + (b5 - b.5)(At)F ('5) + (b4 - b4)(At)F (4)

(A 13) + (b3 - b3)(At)F (3) + (b_ - b.)( At)F (2) + (ba - ba )(At)F (').

Note that register one has F ('+1) and that if the step is accepted then F (''+1) = F (1) in the new step. To

control solution error in a vdH scheme, first some appropriate solution error tolerance is chosen, ( _ 10 -3

to 10 -'_'. Then one may determine the (At) (''+a) based on either the I- or el- step controller. If U ('+1) and

l ,'i''+1) are computed to q = (p + 1)-th and p-th order accuracy, respectively, then we may define 5 ('+1) at,

time n + 1 as 5 (''+l) = (T(''+I) -/O,+1) = Revr. Then 5 ('+l) is a local truncation error estimate for the lower

order formula. It is also wise to place a limit on how quickly the time step is allowed to increase, factors of

t)etween 2 and 5 being the maximum.[69]

A unique problem of the vdH schemes is that if/Cold is not employed, then when a step size is taken

thai exceeds the error tolerance it is too late to correct matters. In this case, more conservative values of

the "'safety factor" _" might be advised. Norlnally K = 0.9 is chosen, but this might be reduced slightly here.

Alternatively, the error tolerance, (, could be reduced so that any transgressions of the reduced tolerance

mighl not be a t ransgi'ession of the original tolerance. It should also t)e remembered that this procedure

makes no sense if the (:-vector is not normalized in some way so that ineaningful comparisons may be made

between, say, the energy equation and the lllonlentulll equations. A possible ehoice would be

_(n+l)
(A14) (f(''+1)* -

/_(n+l )

in cases where ]/_(,,+t)[ is greater than, say, 10 -s (depending on machine [)recision), and where _(n+l)*

replaces (f(''+1) in Eq. (2.15) or (2.16).

A.2. Three registers. Extending the vdH concept to allow for three available storage registers for

a five-stage, non-FSAL ERK scheme, our discussion follows directly from the 2R case but is more terse.

Assume register t (R1) contains U (') at, time t ('). The function, F ('), is evaluated and the result is placed

in register 3 (R3). We now perform the operations

(hiS)

Rol d = RI

R_H. = (b_ - hi)tAt)R3

R1 = RI + a21(At)R3

R2 = Rl + (bl - a_.l)(At)R3,
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(A16)

(A17)

(AlS)

H_.r,. = Her,. + (b._,- b2)(At)Rl

R2 : R2 + (132(At)1_1 -4-(a31 - bl)(._kt)R3

R3 = /_2 + (52 -- (t32)(--_t)]_] + (bl - a31)(,-_t)R3,

R_rr = Rerr + (b3 - b3)(AI)R2

R3 -----R3 + a43(AI)R2 + (a42 - b2)(.Xl)Rl

RI = R3 -4- (b3 - a43)(Al)R2 + (b2 - a.12)(,-M)R1,

R_rF = R_rr + (b4 - b4)(AI)R3

R1 = R1 + a54(At)R3 + (a53 -- b3)(AI)R2

R2 = R1 + (b4 - az4)(At)R3 + (b3 - a53)(At)R2,

(A19)

R_,.,. = R_,. + (b5 - bs)(At)Rl

R2 = R2 + bs(AI)R1.

t.3.

(A20)

(A21)

(A22)

(A23)

Four registers.

_old = R I

R_,._ = (bl - b_)(:_Xt)R4

R1 = R1 + a.u(At)R4

R2 = R1 + (bl - a21)(At)R4

R_,.,. = R_,-,. + (b._,- b2)(At)R1

R2 = R2+ a32(AI)R1 + (a31 - bl)(At)R4

R3 = R2 + (b_ - (132)(A/)R1 + (bl - a31 )(At)R4

R_rr ---- /_crr -4- (b3 - b3)(AI)R2

R'{ -- R3 A- a43(,--_/)R2 q- (a42 - b2)(At)Rl + (a41 - bl)(At)R4

R4 = R3 + (b3 - a43)(At)R2 + (b._,- a4.,)(At)R1 + (bl - a41 )(At)R,'!

R_,. = t_ + (b4 - b4)(At)R2

1"14= R4 + a54( At)R3 + (a53 -- b3)( At)R2 + (as,_ - b;)( At)R1

HI = R4 + (b4 - a54)(At)R3 + (b3 - a53)(At)R2 + (b._,- a.5,)(At)R1

(A24)

R¢,_ = R._ + (b5 - bs)(At)R4

R1 = RI + b._,(At)R4
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A.4°

(A25)

Five registers.

HuH = RI

R:,.,. = (b, - b, )(At)l¢5

RI = RI + w_,t(.X/)R5

R2 = RI + (bl - a._,l)(,_kt)R5

(A26)

t¢¢,.,.= R_r,. + (b._,- b._,)(,_Xt)tll

R2 = f52 + a32(At)H1 + (a31 -- bl)(At)R5

R3 = R2 + (b., - _t:v.,)(_/)Rl + (bt - azt)(-kt)R5

(A27)

tL,.,. = t?_,.,. + (b3 - b3)(AI)R2

R3 = R3 + a43(AI)R2 + ((142 -- b2)(Al)Rl + (a41 - bl )(At)R5

R4 = t_':l + (b3 - a43)(At)R2 + (b._,- a4.,)(At)R1 + (bl - a4_ )(At)R5

(A28)

(A2{})

f_rr = Rerr + (b4 - b4)(At)R2

R4 = R4 + a54(At)R3 + (a53 - b3}(At)R2 + (a52 - b2)(At)R1 + (a51 - bl)(Al)R5

1¢5 = 161 + (b4 - a54)(A/)R3 + (b3 - a53)(A/)R2 + {b2 - a.52)(At)Rl + (bl - as1){At)R5

/_eI'l" : /_#l'l" + (b5 -- bs)(At)R4

R5 = R5 + bs(At)R4.
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Appendix B. Explicit Runge-Kutta Order Conditions.

Equations of conditions[19] for various orders of accuracy are are found in many places, e.g., §3A[21].

Higher order conditions may be derived by using ButcherMath found in Mathematica.[88, 89] To provide

completeness ill this work, up t.o sixth order, these conditions given by

8
7"11)= _-_i=lt)i _!

7"13t_ ....-- $ _i=1 bic[ 3!

7"I 4 ) _ 1 s 1- _Ei=lbi _a 4_

"3(4) __ 1 s "2 1-- '7 _i,j=l biaije.i 4!

7-_5) 1 s I- ._,_Zi=l I,i_ .5,

r_5) _ 1 s biaiic a 1• -- 73 _i,./=1 , . 5:

3

7-(5) 1
9 = Z}'.j.k,l=l biaijaj_.aklcl 5!

7".I6) __ 1 bic_aijcj lo

1 bi " . 1o')) = _ ,j=l 6!C_ aij C-i

(6) 1 s bieiaije 3 5r,., -- _ _i,.i=l 6_

6) 1 s .* 10bie'( aijajkck-- 7) Zi,j,k=l G!

7-(_) s 15
lO = _i,j k=l bieiaijcjaj kck 6!

7"16) _1 s-- __ Zi,j,k',l=l biaijajkckajlcl -- --

,s ") 4

7"(i_) 51_ = )_J,j./,.,l=l biclaijajkal,.lct e,!
$

i ,j,k ,l ,m = 1 bi aij (t.j k (lkl (tim em -- --
1

(;! •

1T'!31 = E_,.j=,b, aiie_ 3_

s 1
7"_4) = _-_i,i k=l biai.iaj _,'c_," 4!

7"!'_) = '7_E_,j=l bic_ai.ieJ 2,

7-_5) 1 s " 4_- 5 Zi,j=l biciaijcj 5t

$

s ') 1

(G) 1 s 1
7"1 -- 1"20 _i=1 hie5 (;:

7"3 -- "7 _-'_,,i,k=l bieiaijejaikek -- --

75 -- _ i.j.k=l bi°ijc._ (likek - --

1 4 1
T_ _) -- 24 Z;'=I biaijcj ,;,

_I ';) = 7"_i',.i,k,l=l biaijaikckailcl -- --

rll -- 7 _"2_ j #=1 biaijc.-iajkek -- --

(6) " 5
7"13 ---- } _-_=1 biciaij(ljkCk ';r

1 s 1

( 6 ) ._
7-1r = _i,j k/=1 biaijcjajkaklct -- --

7-(6) _ _ s "_1[) -- 2 _i..],k,l=l bioijajkaklCff -- --

15

G!

i[)

G)

1 (}

G

6!

4

6_

1

G!

Verner[86] divides these order conditions into four general categories: quadrature 7-if'), /,' = 1.2.3, 4.5.6;

subquadrature r.! 3), 7 .(4) _(5) (,;) (,;)3,4' r5,&9' rr,_5,a_,,20; extended subquadrature 7-.!4) (.5). . 7-2 4 ,;.7, 7-2 4.6 8 10 11 13,14,1G,17,18; and

nonlinear 7":05), (';)7"3,.5,_A-'" Several higher-order "tall-tree" conditions of constraint, importan! in the design of

linear stal)ility, are given by

7"_>=
" 1

Z biaija.j_aktam) a..,c,) 7[
i,j,k ,l ,m,n = l

_(8) Z _" 1'_ 115 : uiftijfl.J kakl(thnamnat_oco
8!

i,j,k,l,m,n,o=l

i j.k.l,mm,o.p=l

7"(9)
1

biaijajkaklat"_am"a')°a°1)ep 9!
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Table l: Two-register ERK schemes

¢'121

O32

(143

t]54

a 7 ¢;

a_7

(198

bl

b2

b3

b4

b5

b6

b7

b6

b9

bl

b4

i,6

b7

b.

RK3( 2 )412R+]C

11847461282814

@ 31;547543011857

t_945225443063
7137815573223o

34¢;793006927

4O29903576067

1017324711453
9774461848756

8237718656693
@ 13685301971492

57731312506979
@ 19404895981398

101169746363290

37734290219043

15783415370699
46270243929542

514528521746
@ 5659431552419

27030193851939
+ 9429696342944

69_44964788955

30262O26368149

RK4(3)512R+]C

970286171893

@ 4311952581923

6584761158862
@ 12103376702013

+ 2251704453980
15575788980749

26877169314380
@ 34165994151039

1153189308089
22510343858157

17726452913293
+ 4663164025191

-- 1672844663538
4480602732383

2114624349019
3568978502595

5198255088312
14908931495163

lO16888040609
+ 741078476990(I

11231460423587
+ 58533540763752

-- 1563879915014
6823O10717585

606302364029
+ 971179775848

1O97981668119
+ 59_13877426909

RK5(4)9['2R+]S

1107026461565
+ 8417078080134

38141181049399
41724347789894

493273079041
11940823631197

1851571280403
@6147894934346

11782306865191
62590030070788

9452544825720
@ 13648368537461

4435885630781
@ 26285702406235

2357900744247
11371140753796

2274579626619
23610510767302

693987741272
@ 12394497460941

347131529483
15096185902911

1144057200723
+ 32081666971178

1562491064753
@11797114684756

13113619727965

@44346030145116

393957816125
q 7825732611452

720647959663

6565743675477

3559252274877
+ 14424734981077

266888888871
@ 3040372307578

34125631160
@ 2973680843601

653811289250

926722O972999

323544662297
2461529853637

1105885670474
4964345317203

1408484642121

@ 8758221613943

+ 1454774750537
11112645198328

772137014323
@ 4386814405182

27742O6O4269

1657595682210

RK5(43912R+]C

2756187973529
+ 16886029417639

11436141375279
@ 13592993952163

88551658327
+ 2352971381260

1882111988787
@5590444193957

846820081679
+ 4754706910573

4475289710031
642O120086209

1183947748311
9144450320350

+ 3307377157135
13111544596386

+ 1051460336009
14326298067773

93O517604889
@7087438519321

311910530586

11769786407153

410144036239

7045999268647

16692278975653
@ 83604524739127

3777666801280

@ 13181243438959

@ 286682614203
12966190094317

@ 3296161604512
22629905347183

2993490409874
@13266828321767

3189770262221
@ 351377884776239

@ 780043871774
11919681558467

483824475979

5387739450692

1306553327038
@9528955984871

4 65211138697498
22565577506855

1400555694605

@ 19764728594468

@ 1183541508418
13436305181271

30362547_2728
1549357261)6329

638483435745
4187244659458

RK5(4)912R+]M

5573095071601

11304125995793

315581365606
4729744040249

8734064228157
30608564589118

8457785058448
+ 14982850401353

5771559441664
+ 18187997215013

190671212926_
+__

311585568784
+ 2369973437185

4840265693866

775838336172_

549666665O15
5899839355879

548816776320

9402908589133

1672704948363
+ 13015471661974

1025420337373
@ 5970204766762

1524419752016

+ 6765273790179

-- 10259399787359

43440802207630

4242280279850

@ 10722460893763

1887552771913
609905819680,%

453873186647

15285235680030

330911O65672
9937126,192277

-- 87299193O416
11147305689291

@ 2575378033706
14439313202205

3O46692121673
@11013392356255

1780164(_58018
692949931_;295

102651491163

@ 209874112642_

@ 1643090076625
489129477(1654

1161067%o967
@ 395580(1826265

866866642¸257
_ 4233132187t_877
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Table '2: Three-register ERI( schemes

(Z21

a32

a4,*

(a54

¢/65

a76

(,187

a31

(142

(153

d64

a86

bl

52

b3

b4

b5

b6

b7

bs

&2

b:_

b4

&5

&7

b8

RK4(3)51311+]C

23,;5592473904
-_" 8146167614645

4278267785271

"4- 6823155484066

2789585899612
+ 8986505720_31

15310536689591
3f 24358t1126711437

722262345248

10870640012513

1365858026701

@ 8494387045469

3819021186
2763618202291

.__ 846876320607
6523801458457

3032295699695
"{-12397907741132

61261810172_
653465226512:3

1155401934595
2954287928812

7O7644755468
502_292464395

12964_9667021
9516889378644

2590064989233
-_11990680747819

1882083615375
_- 8481715831006

1577862909606

Jc 5567358792761

328%34985361
2316973589007

RK4(a)513R+]M

17396840518954

49788467287365

21253110367599
+ 14558944785238

+ 4293647616769
14519312872408

89418868¢36937

7464816931160

RK4(a)513R+]N

4745337637855
+ 22:_86579876,1119

68081571135527
+ 1319784464117t+

+ 4367509502613
10454198596847

m<5(q)a[aR+](:

14123608173_
"{-3630543850841

7367658691%40
+258818281_75080

61852694913911
13597512850793

12587430488023

11977319897242

6191878339181
+ 13848262311063

19121824165801

+ 12321025968027

1977388745448
+ 17714523675943

6528140725453
+ 14879534818174

4395900531415
55649460397719

6567440254658

15757960182571

43601181589643

94%3681332953

390601394181
3503O51550916

31150720071161

+ 686o4711794052

416927665232
+ 6953044279741

3879867616328
8869216637(/07
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123696242987_

"{-3.129868O89329

+ 546509042554
9152262712925

625707605167

+ 5316659119056

582400652113
+ 7078426(/049(/6

314199625218
7198350928319

641034437264 l
"_" 1700(1082738695

292278564125
+ 55957526327,t4

5010207514426
21876O07855139

5597675544274
1878,1428342765

1276689330531
10575835502045

267542835879
+ 1241767155676

1564039648689
9024646O69760

3243722451631

@ 13364844673806

6064114709716
+ 2447238536635

2669739616339
18583622645114

42158992267337
-{- 96¢34249(173111

070532350qt,18
4459675494195

1415616989537
@ 71o8576874996
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2523150225482

4r_7757969325

1824_604264081
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0

0

0
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.{.. 4857652849
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+ 2822036_t15401
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-_" 15645656763044

126929945"6316

0
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.{_ 2303038467735
18(180122447354
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101_81205039574

3430095334143
10786306938509

38118726110015

23644487528514:_

RK5(4 )813R+]P _ 8,7}

12982711711151
-_- 6074840_385661

14078610000243
"1- 4187749131111127

553998884433
+ 11502231311613

15656478150918
+ 92423611770207

+ 18843935397718
7227975568851

+ 620656o082614
27846110321329

2841125392315
14844217636O77

2491873887327

11519757507826

3833614938189

14183712281236

628609886693
817739911O319

4943723744483

-- 255807478O976

+ 1024001]83754o
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249281)9296391

-- 9084568868273
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3124407780740

0

o

0

814249513470
"+ 2.,2148300701)9
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3570_96951509
+ 9788921605312

1886338382073
+ 998167173O68O

(579447319381
_- 8240:_?.2772531

f)

79847243O005
-I 13882421602211

97¸2791992243
-_" 1359767730:_897
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14247O5874463
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+ 351 ¸56367926O¸59
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136941441¸103001

RK514 )813R+]M

_167290 I 0221 Ii

6283494269639

8529¸59821¸5211I

T 56038062¸51407

81_4_26151 I_47

"_ 8¸583649637008

11594113918_4

8O 15933834062

2151445634296

"_ 774992O058933

15619711431787

+ 74684159414562

12444295717883
+ 11188327299274

475331134681

+ 73960711923784

8677837986O29

16519245648862

22245007_2467

+ 10812521810777

12453614226171

+ 0717287139116%

1652070198131
37884588241528

5225103653628
858.1162722535

83759458317
-['- 101897115651 _t_

0

o

o

696889109125o

"[- 16855527649349

783521911841*
+ 8570887289572

+ 3686104854_;13
11232O32898210

517396786175
_ 610447_356879

2632_78767757

9365288548818

0

13883277858481_2
-_- 30:_6_4_3697_ 7:_

742q 139574:_15

_ 56o3229040046

3299322_35151_

688341 _.0422_

39273847353(; 1

798245454371H

92242931 _t_931
_ 157[_816231154 _

624338737541
+ 7691046757191
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87*,
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63
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i'4

&5
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Table 3: Four-

RIq4 (3)514 R+]N R 1<.4 ( 3 ) 514 R+]3,1

_J435338793489
+ 32856462_03258

+ 0195609865473
14441396468602

7502928572378
+ 280988509720O3

452778129O407
+ 9280&87680514

+ 293459332492O
16923654741611

+ 16352725096886
101421723321009

+ 300424358059_
163653204473,4

+ 3903524460_7
5989890148791

+ 902830387041
8154716972155

+ 9293109224]8
8329727308495

+ 43434201494_9
15735497610667

8852523992211
+ _490460654667

+ 3341719902227
13464012733180

2 3 9 3067577
+ 716_713702050

2920323122013
+ 17725327880387

437979_01587
+ 358381,1763617

+ 226732513_73_
9725002913543

1519467 56643
+ 5852430_86130

3636375423974
+ 16%47514622627

+ 7142524119
20567653057

15196616

-- 2262441_36_7
80359280000

+33_11687_0 p
6703531091

+_
80359280000

+_

i)

+_

+_

2927
-- "_iZ7

+ _21286694859
931793198516

0

9080751416357
+ 17201392077364

+ 6633076090000
1042143269349

-- 127961558623
21123456354

and five-register

RI<.5(4)6[4R+]M

+ 1611061732419
6538712036350

936386506953
651O757757683

+ 8253430823511
9903985211908

4157325866175
+ 11306150349782

3299942024881
+ 13404534943033

+ 968127049827
6993254963231

-- 4242729801665
12001587034923

196095667163
+ 301744765953_

+ 208873753013_
14638867961951

3328030374_7
7529436908221

195900893439 5751.... 31o622_

38113668280_9
+ 1o653298326636

14377173111 )561
+ 14622899446031

0

3070006287879
+ 9321175678070

_]_ 227697027363_
7940670647385

-- 1086149936631
7427907425963

_57 845656138
'+ 601_342010435

+ 399352205828
2843676810615

0

.+ 460449895996
4301836608005

1 _9687461_8666
+ 21690343195681

_ I_281717001604

299116O7353389

5058427127221
+ 7651806618075

ERK schemes

RKS(4)8[4R+]FM

+_

+ 16440040368768
7262463661539

1)819507918_
+ 659915537161_

18466735994_5
7_94178462407

+ 2786140924985
14262827431161

283270998 56
+214708402_43

-- 16195115415505

7808461210678

-- 1316066362688

1O281382634081

23893ooo19.y2r
-- 961451237,0,5

6556890593075
+ 12530787773541

_ 5015572218207
5719938963072

+ 334167490531
1677017272502

+ 4579492417936
7930641522963

_ 2255846922_3
30066310003000

3212719728776

+ 7037340048693

+ 1147876221211
13910763665259

o

+ 162134362610
9852075053295

3396705O55007
+ 8495597747463

3630060 9050
"+ 22366003_78600

60788251_3673
+ 15200143133108

583593328277
+ 702892946416O

+ 2023383632057
26525303340911

¢)

48099006_147+ 12o9.... 7.23

145020145978 1
+ 369790655298_1

-- _663966523914
63014133260123

+ 1643296191892
¸3432451463915

2576984903812
+ 11692468803935

_ 23938897(13671
166412O287846O

RKS(4)r[sR+]M

9848946_4_
6216792334776

9_4694634849
5'526037630912

132563 5 0 7+ ...... _4_o_7

+ 5380479425293
11045691190948

-- 1717767]68952

11602237717369

_ 100546795244_()
10306651287569

+ 89085225148
149951565103_9

_ 18544705752398
18426539884027

+ 5538441135605
13014942352969

23 5585"01)1162+20_6615_5564o5

1722683259017
+ 5669183367476

+ 3429611719_7
6505721096886

-- 14472869265404
19736(345536601

-- 8169744035268
542473845936.3

762111618422
+ 5198184381557

+ 28962635o5307
6364015805090

60049403517654
+ 26787923986855

1008141064049
+ 9867084721348

0

+ 82221864918_|
18352662300888

514621697208
+ 8712119363831

1808964136873
+ 4546032443428

-- _6_754645_97
3989911846061

599706619333
+ 7161178965783

+ 1633018545125
120164659n7206

0

5960415897_93
+ 14726168927560

9"0770261899
+ Ii_34660916874
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