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Preface

This report contains the 1998 annual progress reports of the postdoctoral Fel-

lows and visiting scholars of the Center for Turbulence Research. It summarizes

the research efforts undertaken under the core CTR program. In addition, earlier

this year a report containing the proceedings of the 1998 CTR Summer Program

was distributed. These reports and other CTR publications are available on the

World Wide Web (http://www-fpc.stanford.edu/CTR). Last year, CTR sponsored

eighteen resident Postdoctoral Fellows, seven Research Associates, one Research

Engineer, three Senior Research Fellows, hosted fifteen short term visitors, and

supported two doctoral students.

For over a decade CTR's core funding has been provided by NASA Ames Research

Center; last year NASA Langley Research Center and NASA Lewis Research Center

joined Ames in supporting CTR. We view this as a positive development and hope

for it to continue in the future, and as a result expect to have more direct interactions

with the technical staff at Langley and Lewis. Turbulence is a major problem for all

of NASA; CTR provides the critical mass needed to address different aspects of this

important problem for aerospace technology by attracting researchers worldwide.

CTR also provides technical and infrastructure support for an extensive array of

programs supported by the U.S. Department of Defense and Department of Energy

at Stanford University. The combination of all these activities has provided a unique
environment for turbulence research at CTR.

The reports in this volume are collected into four groups. The first group deals

with turbulent combustion where modeling efforts in the Reynolds Averaged Navier

Stokes (RANS) and large eddy simulation (LES) techniques are described. New

efforts in numerical methodology for turbulent flows with combustion and a new

experimental activity for validation of the numerical studies are described. The

second group begins with a technical report on CTR's new efforts in simulation and

understanding of Hall thrusters, a propulsion engine used for satellite maneuvering.

This is part of a new research activity for CTR where the tools developed for

prediction of turbulent flows are applied to other areas such as plasma sinmlations.

The remaining reports in this group include an account of progress in using LES

for prediction of flow generated noise and new efforts for prediction of transition

with application to turbomachinery. The RANS activity, presented in the third

group, continues to play a major role in CTR's core program. The list of flows

where CTR's V2F model has been successfully applied was extended to transonic

flows with shocks. In addition, our renewed interest in turbomachinery flows has

motivated our investigation and development of RANS for heat transfer prediction.

The V2F model has now been incorporated in several major NASA codes as well

as other widely used CFD codes. Finally, CTR's effort in LES has focused on the

problem of wall layer modeling for more efficient LES computations and on the

development of high order conservative numerical methods for flows in complex

geometries. These studies are described in the final group of reports in this volume.
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Direct numerical simulation of turbulent

non-premixed combustion with realistic chemistry

By W. K. Bushe AND R. W. Bilger 1

1. Motivation and objectives

Combustion is an important phenomenon in many engineering applications; com-

bustion of hydrocarbons is still by far the most common source of energy in the

world. In virtually every application of combustion processes, the flow in which

the chemical reactions are taking place is turbulent. Furthermore, the combustion

process itself is usually described by a very large system of elementary chemical re-

actions. These chemical kinetic mechanisms are usually extremely stiff and involve,

for long-chain hydrocarbon species, perhaps hundreds of chemical species (which,

if the combustion process is to be completely simulated, implies a need to solve

hundreds of partial differential equations simultaneously). The governing equations

describing the chemical composition are closely coupled to those describing the

turbulent transport. Also, the chemical reaction rates are non-linear and strongly

depend on the instantaneous composition and temperature. For these reasons, a

full understanding of the many processcs at work in devices such as furnaces, diesel

engines, and gas turbines has been lacking.

In many devices of interest such as those mentioned above, the combustion takes

place in what is known as the "non-premixed" regime. The fuel and oxidizer are

initially unmixed, and in order for chemical reaction to take place, they must first

mix together. In this regime, the rate at which fuel and oxidizer are consumed

and at which heat and product species are produced is, therefore, to a large extent

controlled by mixing. The nature of such flows lends itself to a particular variety

of models which attempt to take advantage of this. These models describe mixing

based on what is called the "mixture fraction", or the fraction of fluid which origi-

nated in the fuel stream; they attempt to either describe a steady state flame by a

simple mapping operation--as in fast chemistry models (Bilger, 1980) and laminar

flamelet models (Peters, 1984)----or incorporate reaction rates by expressing them

as functions of the mixture fraction--as in the unsteady laminar flamelet model

of Pitch and Peters (1998), the Conditional Moment Closure (CMC) model pro-

posed independently by Klimenko (1990) and Bilger (1993a,b), and the Conditional

Source-term Estimation (CSE) model of Bushe and Steiner (1998).

Work attempting to improve and validate models for turbulent combustion has

been hampered by a lack of adequate experimental results. Experimental methods

which might provide the necessary insight are also extremely expensive, difficult to

perform, and still quite limited in the information they provide. Direct Numerical

1 The University of Sydney, Australia
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Simulation (DNS) of the governing equations offers an alternative to experiments;
however, such simulations are limited by available computer resources. Previous

simulations have either been limited to extremely simple chemical kinetic mecha-

nisms (Vervisch, 1992; Chen, et al., 1992) or to two-dimensional flows (Smith, 1996;
Chen & Echekki, 1996).

With the advent of new techniques for the systematic reduction of chemical kinetic
mechanisms, new reduced kinetic mechanisms are now available which are still rela-

tively simple but which retain sufficient complexity from the original mechanism to

provide good predictions of flame structure and reaction rates. In a previous study

which implements such a reduced mechanism in DNS (Swaminathan & Bilger, 1997
& 1998a), the flow was assumed to be incompressible so that effects of heat release

on the flow were neglected. While the results of this study have been encourag-

ing, validation of the CMC method against this constant property DNS data is not

completely convincing. There is clearly a need to obtain DNS data using realistic
chemical kinetics in turbulence where effects of the heat release on the flow are
included.

In the present study, a reduced kinetic mechanism has been incorporated into a
fully compressible DNS code. The results of the simulations will be used for the

validation and, hopefully, improvement of current combustion models such as those
mentioned above.

2. Accomplishments

2.1 Chemistry

The chemical kinetic mechanism that was used in the simulations is one repre-

sentative of the oxidation of a methane/nitrogen mixture by an oxygen/nitrogen

mixture. There are three reactions in the mechanism; the first two represent the

oxidation of the methane (Williams, 1991), and the third represents the formation

of nitric oxide and was obtained by putting the Oxygen free radical in the simple
Zel'dovich into partial equilibrium. The reactions are:

Fuel + Ozi --* Int + Prod (I)

lnt + Oxi ---*2Prod (II)

N2 + Oxi _ 2NO (III)

*H 2C0), and Prod is (_H20 +where Fuel is CH4, Ozi is O_, Int is (3 2 + 2 ½CO2).
In order to reduce computational costs and to make the mechanism more tractable

for modeling purposes, the reaction rate expressions were simplified. The chemical

kinetic mechanism was incorporated into a DNS code which solves the governing
equations for fully compressible turbulent flow (Ruetsch et al., 1995), based on the

algorithms of Lele (1992) and Poinsot and Lele (1992). The implementation of the

mechanism was thoroughly tested in one- and two-dimensional simulations; this
work was described previously (Bushe et al., 1997) and will not be discussed here.
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ILI_ Three-dimensional simulations

Having tested the implementation of the chemical kinetic mechanism and hav-

ing established that simulation with turbulence was possible, a series of three-
dimensional simulations were undertaken. Several limitations on initial and bound-

ary conditions had been established in the two-dimensional tests.
For the simulation results to be useful for the purpose of model validation, it

was clear that the bulk pressure in the domain would have to remain constant. In

order to ensure this, fluid had to be allowed to leave the domain; therefore, it was

necessary to use partially non-reflecting outflow boundary conditions (Poinsot &

Lele, 1992) for at least one boundary. An additional constraint was then that the
reaction rates at any such a boundary was required to be zero; otherwise, these

boundary conditions become ill-posed. Also, because the chemical kinetic rates

depend on the hydrogen free radical concentration, the mechanism cannot auto-

ignite; therefore, the fields had to be initialized such that at least some chemical

reaction is already underway.
The species mass fractions were initialized in the one-dimensional simulations by

first defining the mixture fraction as a linear combination of mass fractions such

that the chemical source term in its transport equation is zero:

Z = 6OYF,_el -- 60Yozi - 36YProd -- 32YNo + 18 (1)
27

The mixture fraction was initialized with the analytical solution to the diffusion

equation for a semi-infinite slab of fuel mixing with a semi-infinite slab of oxidizer,

(2)

at an arbitrary time, chosen such that the reaction zone would be sufficiently re-

solved with the available number of grid points. Mass fractions for each species were

then calculated by assuming that an arbitrary fraction of moles for each of reaction I
and II had reacted to completion. This assumption also allowed for the calculation
of the heat released as a function of mixture fraction, from which the temperature

field can be calculated. The initial velocity was zero, and both boundaries in the

one-dimensional simulations allowed for partially reflecting out-flow.

The mass fraction, temperature, density, and velocity fields for the three-dimen-

sional simulations were then initialized by using a stabilized one-dimensional flame

solution. By placing a stable flame in the middle of the three-dimensional domain,

the time until the reaction zone (the region of the flow in which chemical reaction

takes place) reached a boundary could hopefully be maximized. The placement of

the flame is depicted in Fig. 1.
Initial turbulent velocity fluctuations were obtained by using a pseudo-spectral

code (Ruetsch & Maxey, 1991) to solve the governing equations for incompressible

flow and forcing a periodic, three-dimensional flow field on a 1203 grid from quies-
cence until its statistics became stationary. Two identical 1203 boxes were placed
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FIGURE 1.

out-flow

x

Depiction of initial flame placement.

out-flow

next to each other to fill out the 120 x 120 x 240 domain; periodic boundary con-

ditions were retained for the y and z directions and out-flow boundaries used in

the x direction as shown in Fig. 1. Tile turbulent fluctuations near the out-flow

boundaries were filtered to zero to avoid potential generation of unphysical vortic-

ity. The incompressible turbulent fluctuations were taken to be fluctuations in the

momentum; thus, the turbulent velocity was divided by the density so as to satisfy

O(pui)
-- O,

Oxi

in the initial field. The resulting turbulent velocity field was added to the velocity

field induced by dilatation in the one-dimensional flame.

2.3 Results

Six sets of data have been produced. Two simulations were run for 90 time units,

and the remainder were run only for 20 time units. These additional simulations

were run to provide a larger ensemble of points from which to extract statistics.

In each simulation the same initial flame was used, but the initial velocity field

was either shifted or rotated such that the flame saw the same velocity field in

a statistical sense but underwent a very different evolution. In all cases, data

was stored for every 2.5 non-dimensional time units so that the evolution of the

flow and scalar fields could be studied. The data stored included the density, the

temperature, the mass fractions of Fuel, Oxidizer, Intermediate, Product and NO,

and the velocity in each direction for every point in the domain.

2.3.1 Visualization of slices

In Figs. 2-4, eight different properties are visualized for a single plane oriented

normal to the flame brush. These figures show the properties taken from one sim-

ulation at three different times (7.5, 15.0, and 30.0 time units). The properties
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shown are summarized in Table 1, along with a legend to the colors in Figs. 2-4.
The minima and maxima of the properties are kept the same for all three figures to

allow direct comparison between them. Superimposed on these plots are isopleths

of mixture fraction. The black lines are spaced at intervals of mixture fraction of

0.1, and the white line is the isopleth of the stoichiometric mixture fraction of 1/3.

The gas at the right-hand edge of the figures is pure fuel (where the mixture fraction

has a value of unity), and the gas at the left-hand edge of the figures is pure oxidizer

(where the mixture fraction has a value of zero).

sub-figure

a

b

d

g
h

Property

X
T

YInt

YH
(oI

YNO

o)III

Minimum (white)

300K

Maximum (black)

0.0125

2000K

0.032

0.0024

6.5 x 10-5

6.0 x 10 -5

1.4 x 10 -8

2.3 x 10 -_

Table 1. Legend for Figs. 2, 3, and 4.

In Fig. 2, there is a peak in scalar dissipation evident, which coincides with
a saddle point in the temperature. There is considerable fine-scale structure in

the scalar dissipation. In the middle of the slice, there is a fairly large region in

which the scalar dissipation along the stoichiometric isopleth is very low; it is in

this region where the temperature is a maximum. This region also coincides with

the maximum production rate of Nitric Oxide. Furthermore, the Intermediate and

Nitric Oxide mass fractions also peak here. The Hydrogen radical, however, peaks

in a region of moderately high scalar dissipation. Neither of reactions I or II show

any sign of local extinction at this early time in the simulation; however, there are
in both reaction rates double peaks, which may indicate turbulent structure within

the reaction zone, although it is more likely a consequence of out-of-plane folding.

Regardless, it would be difficult to describe the flame shown in this figure as being

locally one-dimensional.

In Fig. 3, the peak in scalar dissipation which was apparent in Fig. 2 has become

larger in magnitude and has been transported by the flow. The scalar dissipation
still exhibits fine-scale structure. The saddle point in the temperature still coin-

cides with the peak in scalar dissipation and has become deeper. The region of

low scalar dissipation where the temperature is high has become larger, and the

maximum temperature is slightly higher here. The Intermediate and Nitric Oxide

mass fractions as well as the Nitric Oxide production rate all peak in this region.

Interestingly, the Intermediate species mass fraction nearly vanishes at the location

of the peak in scalar dissipation, as does the mass fraction of the Hydrogen radical,
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(_)
/
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(d)

(_) (f)
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/

FIGURE 2. Visualization of properties on a slice through the three-dimensional

domain after 7.5 acoustic time units: a) Scalar dissipation, b) Temperature, c) Mass

fraction of Intermediate, d) Mass fraction of Hydrogen radical, d) Reaction rate I,

e) Reaction rate II, f) Mass fraction of Nitric Oxide, g) Reaction rate III. See Table 1

for legend.
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(a) (b)

(c) (d)

(e)

i (f)

(g)

FIGURE 3. Visualization of same properties shown in Fig. 2 after 15.0 acoustic

time units. See Table 1 for legend.
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(a) t (t

£ 6

e
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FIGURE 4. Visualization of same properties shown in Fig. 2 after 30.0 acoustic

time units. See Table 1 for legend.
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even along the stoichiometric isopleth of mixture fraction. This, coupled with the

low temperature at this spot, has the effect of extinguishing the rates of reactions I
and II; that is, the local reaction rates are more than an order of magnitude lower

than they are at other locations with the same stoichiometry; this is what is known

as local extinction. At this later time, reaction I is significant in a very broad region

in space where the scalar dissipation is low (that the scalar dissipation is low here

indicates that this is not merely a consequence of out-of-plane folding); furthermore,

there is also a pocket of unreacting gas surrounded by reacting gas.

In Fig. 4, the peak in the scalar dissipation has been convected further to the

right, but the peak is lower in magnitude. The structure in the scalar dissipation

field is starting to exhibit somewhat larger scales than was seen at the earlier times.

The temperature field still peaks in a region of very low scalar dissipation, and

the saddle point in temperature associated with the peak in scalar dissipation has
become even lower. The Intermediate mass fraction and the rate of reaction II are

both very low in this region, and the Hydrogen radical mass fraction and rates of

reactions I and III are all negligibly small. Peaks in the Nitric Oxide mass fraction
are at the same locations as peaks in the rate of reaction III; these coincide with

peaks in the temperature.

_.3.2 Scatter plo_s

Figure 5 gives scatter plots of the scalar dissipation, temperature, and mass frac-

tions of Oxidizer, Fuel, Intermediate, and Hydrogen radical as functions of the
mixture fraction for the simulation discussed above at a time of 15.0 time units.

The scalar dissipation shows considerable scatter with a peak at a mixture fraction

around 0.5. The peak scalar dissipation in the turbulent flow at this time is over
200 times the peak in the original laminar flow. In the plots of the temperature and

the Fuel, Oxidizer, Intermediate, and Hydrogen radical mass fractions, the laminar

fiame with which the simulation was initialized is superimposed on the scatter plots.

Most of the points in the temperature scatter plot lie below the initial flame, which

is an effect of the increased scalar dissipation caused by turbulent mixing. Almost

all of the points in the oxidizer and fuel mass fractions are higher above the curves

of the initial flame, as are most of the points in the Hydrogen radical mass fraction
plot. In this last plot, however, there are still a few points below the laminar flame

curve; these are points that lie in regions of local extinction such as that discussed
above. The Intermediate species mass fraction exhibits the most scatter of the mass

fraction plots; however, the bulk of the points lie close to the laminar flame curve.

2.3.3 Turbulence statistics

While the field used to initialize the velocity in the turbulent simulations came

from an isotropic simulation, the mixture fraction was initialized with an anisotropic

field, and the turbulent velocity fluctuations were adjusted using the initial laminar

flame density. Also, the viscosity was taken to be a function of the temperature,

and the temperature had, as seen in the previous section, substantial variation even

as a function of mixture fraction. Therefore, the initial velocity field was strongly

anisotropic in the direction across the layer. As such it is difficult to describe the
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FIGURE 5. Scatter plots of a) Scalar dissipation, b) Temperature, c) Mass fraction

of Oxidizer, d) Mass fraction of Fuel, e) Mass fraction of Intermediate and f) Mass

fraction of hydrogen radical. Solid lines are initial laminar flame profiles.
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characteristics of the flow using statistics. In order to examine the characteristics of

the flow field, statistics were taken on planes normal to the direction of anisotropy

in the mixture fraction field; that is, properties were averaged together on planes

normal to the x direction. One unfortunate consequence of this is that there are

only 1202 points on each plane, which may mean that the statistics on these planes

are not properly converged.
The Taylor microscale is defined by Tennekes and Lumley (1992) as

&=V/lO';'_=e

where v = _ is the Favre averaged kinematic viscosity,

= p(u - -
2_

is the Favre averaged turbulent kinetic energy, and

pv \ a_i + ax, ] a_

is the Favre averaged dissipation rate of turbulent kinetic energy (Hinze, 1975). The

Reynolds number based on the Taylor microscale is

Rea = _32-_'__

This is shown as a function of x in Fig. 6 for several times: the initial eondition is
shown, as are those times for which visualizations were given in seetion 2.3.1 (7.5,

15 and 30 acoustic time units) along with the last time for which data is available
at 90.0 acoustic time units.

The Taylor scale Reynolds number was initially around 60 in the cold fluid; how-

ever, the higher viseosity reduced this to only 20 in the flame. The effect of filtering

the velocity fluctuations to zero at the outflow boundaries is apparent in that the

Reynolds number drops dramatically to zero at the boundaries in the initial field.

The diffusive nature of turbulence and the dilatation caused by heat release in

the middle of the domain change this very quickly--by 7.5 time units; the Reynolds
number at the boundaries rose to around 20. While a Taylor scale Reynolds number

of 20 is very low, it can still be taken as an indication that there is turbulent motion

present; this is roughly the Reynolds number of the turbulence in the reaction zone
for all but the latest time shown.

The Kolmogorov length scale, which is

(_) 1/4l_ =
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FIGURE 6. Favre averaged Taylor Reynolds number on planes of constant x

through the mixing layer: _ t = 0.0; ----¢--- t = 7.5; ----o--- t = 15.0; .... t =

30.0; ........ t = 90.0.

is shown in Fig. 7. This is initially almost constant in the domain except at the

edges, where the dissipation is zero because the velocity fluctuations have been

filtered out (this is why the Kolmogorov length shoots up to infinity at the edges).

The Kolmogorov length in the middle of the domain, where the heat is released,

rises with time much faster than it does at the edges of the domain. Initially the

Kolmogorov length is somewhat smaller than the grid spacing (0.067) and this gets

larger with time; this indicates that the turbulence was adequately resolved on the

grid throughout the simulation.

The initial turbulent flow field did not exhibit any inertial range in its spectrum

so it would be inappropriate to consider the integral length scale of the flow field.

Instead, the dissipation length and time scales were examined. The dissipation
length is

Utl3
ldiss =

E

and the dissipation time is
ldiss

tdiss --
uII '

where u" = _/_. These are shown in Fig. 8. The dissipation length is initially

around 0.8L in the middle of the domain and just over 2.5L in the cold fluid near

the edges; it is zero at the boundaries, but this is again due to the filtering of

the fluctuations there. In time, the dissipation length appears to decay to around
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FIGURE 7. Favre averaged Kolmogorov length on planes of constant x through

the mixing layer: _ t = 0.0; + t = 7.5; ---e.-- t = 15.0; .... t = 30.0;
........ t = 90.0.

0.7L throughout the domain. The dissipation time is initially very low--around

2 acoustic time units--in the middle of the domain, but exceeds 50 in the cold

fluid. In time, the dissipation time increases to around 25 acoustic time units in the

middle of the domain but remains around 45 at the edges. The dissipation length

in the middle of the domain is initially about one order of magnitude larger than

the Kolmogorov length. Only at 90 time units do these lengths become comparable.
This is further evidence that the flow is turbulent albeit not very vigorous given the

fairly long dissipation times.
The Favre averaged scalar dissipation is shown in Fig. 9a. Clearly, in the presence

of turbulence the mean scalar dissipation is considerably larger in magnitude than

the initial, laminar profile. The peak in scalar dissipation is at 7.5 time units

and this decays slowly. Only when the turbulence has effectively decayed away,

evidenced by the low Reynolds number, does the mean scalar dissipation return to
near the initial laminar curve.

The Favre average of the temperature is shown in Fig. 9b. The peak mean
temperature drops abruptly in the presence of turbulence; this is likely due more

to the variance of mixture fraction that results from large scale mixing than to

local changes in the flame. The peak mean temperature never approaches that

of the initial curve although the increase in the area under the mean temperature

curve with time indicates that the reactions are still clearly proceeding in earnest

throughout the run.
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FIGURE 8. Favre averaged dissipation length (a) and time (b) on planes of

constant x through the mixing layer: -- t = 0.0; _ t = 7.5; ---o--- t = 15.0;
.... t = 30.0; ........ t = 90.0.
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FIGURE 9. Favre averaged scalar dissipation rate (a) and temperature (b) on
planes of constant x through the mixing layer: -- t = 0.0; _ t = 7.5; ----o---

t = 15.0; .... t = 30.0; ........ t = 90.0.

_.3.4 Conditional reaction rates

In Fig. 10, the conditional averages of the reaction rates are compared to those

predicted by evaluating the reaction rates with the conditionally averaged mass

fractions, temperature, and density in the entire domain at 15 acoustic time units.

This is a test of the validity of the first order CMC hypothesis, which is used to

obtain closure for the chemical source terms in both the CMC and CSE approaches.
The reaction rates for reactions I and II are predicted to within 5%. However, the

under-prediction of reaction III is substantial--over 25%.
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FIGURE 10. Comparison of conditionally averaged reaction rates to reaction rates

predicted using the first order CMC approximation at 15 time units:
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2.4 Discussion

Several interesting findings are seen in the previous section. These will now be

discussed in greater detail.

2.4.1 Extinction effect

Non-premixed flames can be thought of as a competition between loeal chemical

reaction and local mixing. At low values of local scalar dissipation (which is a direct

measure for the rate of mixing), the reactions which consume fuel and oxidizer

are limited by the mixing rate. As the local scalar dissipation increases, these
chemical reaction rates will increase. When the local scalar dissipation rate becomes

very large, the rate of diffusion of heat away from the reaction zone, the region of

space in which chemical reaction is taking place, becomes large and can exceed the
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rate at which chemical reaction replenishes that heat; the local temperature goes

down. Since virtually all chemical reaction rates in flames are strongly temperature

dependent, the reaction rates are slowed. If the high scalar dissipation persists

for a sufficiently long time, these reactions can become quenched. Once this has

occurred, even if the scalar dissipation subsides, the reaction rates will not recover,

and re-ignition occurs either by a premixed front originating from non-extinguished

gas adjacent to the region of local extinction or by auto-ignition.

This local extinction phenomenon is clearly evident in the sequence of Figs. 2-4.

At 7.5 time units, the scalar dissipation peaks at a location where the temperature

reaches a local saddle point, and yet reaction rates I and II are significant at the

same location. It is only at 15.0 time units that these reaction rates appear to be
quenched.

At this time, however, it is not yet clear whether the extinction events seen in the

database are genuinely a result of low-temperature quenching of the reaction rates

or an effect of the form of the steady-state expression for the Hydrogen radical.

The form used contains an exponential term which is a surrogate for a sharp cut-

off function of YFu/Yoxi. It is conceivable that the extinction events were caused

by depletion of the Hydrogen radical and that the low local temperatures are a

consequence of extinction rather than the cause. This shall remain a question for
future work.

2.4.2 Edge-flames

It is interesting to note that the flames at the edges of the extinction event seen in

Figs. 3 and 4 do not exhibit triple flame structure. This was investigated carefully--

where colormaps for the plots were manipulated so as to highlight even very low

reaction rates--and found to be true for all of the times at which data was ana-

lyzed. It has not yet been possible to search through the fields at later times to

establish if this is a persistent phenomenon. Furthermore, given the possibility that

the extinction events may be caused by Hydrogen radical depletion rather than

low-temperature quenching, it is possible that the lack of premixed branches is a

consequence of the form of the reaction rates. In earlier simulations using different

initial conditions (with the same chemical kinetic mechanism), premixed branches

of triple flames were clearly evident; thus this seems an unlikely explanation. Alter-

natively, the lack of premixed branches on the edges of the reaction zones may be

an indicator that the edge-flames are receding or that the local scalar dissipation

is still so high that the premixed branches ordinarily associated with triple-flames

have merged with the diffusion branch (Vervisch & Trouv_, 1998). This, too, will

remain a question for future work.

2.4.3 NO production

It is also interesting to note the correlation between production of Nitric Oxide

and peak temperature. Given the very large activation energy of this reaction, it

would be expected that it would be sensitive to temperature. It also appears to be

sensitive to the mass fraction of the Hydrogen radical.
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2.4.4 Scatter plots

One important effect of the local extinction phenomenon is to cause considerable

scatter in the scalar fields. This could pose considerable difficulty to moment closure

methods such as CMC or CSE; conditional averages of most of the properties shown

in Fig. 5 would fail to represent the wide scatter, and the mean reaction rates,

which are highly sensitive non-linear functions of the scalar fields, would not be well

represented by the first moment CMC closure hypothesis. Thus, local extinction
phenomena, in particular their effect on scatter in the scalar fields, would likely

necessitate either adding an additional conditioning variable to account for the
physical process at the root of the scatter--such as the scalar dissipation--or the
use of a second moment closure.

2.4.5 Favre averaged statistics

The Favre averages make clear the fact that the turbulent flow field is substan-

tially influenced by the presence of the flame. This is true in the initial field as

evidenced by the strong spatial dependence of the Taylor scale Reynolds number.

It is also clear in the Kolmogorov length scale, which is almost constant across

the layer in the initial field, but is almost five times greater in the middle of the

layer, where the temperature peaks, than at the edges of the simulation after 90

time units. While the Kolmogorov length varies more across the layer as time pro-

gresses, the Reynolds number, dissipation length, and time all tend to become more

evenly distributed.

The scalar dissipation and temperature plots (Figs. 9a and 9b) show how mis-

leading mere Favre averages can be. In the scalar dissipation plot, the maximum

mean scalar dissipation is almost one order of magnitude lower than the peak scalar
dissipation seen in the visualizations (Figs. 2-4). If one were using a model that

incorporated scalar dissipation into the prediction of reaction rates, such as CMC or

laminar flamelets, one could conceivably under-predict the significance of extinction

phenomena (which are clearly strongly dependent on scalar dissipation) by using

only the mean scalar dissipation and neglecting fluctuations around that mean.

The temperature plot shows an abrupt drop to around a 1500 K peak temperature,

which is not evident in the visualizations. The drop in the Favre average of temper-

ature appears to be primarily due to the out-of-plane folding across the layer. This

highlights the difficulty in providing closure for the chemical source terms. One
would grossly under-predict the reaction rates if one were to attempt to estimate

these using the Favre averaged values directly.

2.4.6 Implications for modeling

The test of the validity of Conditional Moment Closure for the chemical source

terms is encouraging. It would not be expected that single moment closure using

only mixture fraction as a conditioning variable would give such agreement even in

the presence of the extinction phenomena described above. Indeed, several modi-
fications to the method have been proposed in order to improve closure for cases

where extinction might occur. These include the addition of other conditioning

variables (as in Bilger, 1991 and Bushe & Steiner, 1998) or the use of conditional
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variances (as in Li & Bilger, 1993; Kronenburg et al., 1998; Swaminathan & Bilger,
19985).

While the closure appears to work well for two of the reactions, it appears to

break down for the slower pollutant formation step. Since the activation energy of
the Nitric Oxide formation reaction is very large, it is quite sensitive to variations

in temperature. The considerable scatter in the temperature evident in Fig. 5b has
a significant impact on this reaction. This indicates that a higher moment closure

might be necessary although the potential to use scalar dissipation, with which

variations in temperature appear to correlate strongly, as a second conditioning
variable might improve closure as well.

3. Future work

Several issues remain to be addressed. A more detailed analysis of the affect of
heat release on the flow field is needed so as to better describe the interaction of

the flow with the chemical reactions. Further research into the edge flames present

after extinction events will also be needed to attempt to establish the parameters
which control whether or not triple flames form.

Ultimately, however, the purpose of the database was originally intended to be

the validation of modeling, and it is this direction that attention will be focused in

the near future. Already, the database has been used in a priori tests of models.

Beyond the comparisons shown herewith, Cook and Bushe (1998) have used the
database to test a new model for scalar dissipation for use in LES. The data is also

being used to test the CSE approach in a RANS context. Model validation work is

going to continue; in particular, a priori tests of the CSE approach for LES will be
conducted and statistics relevant to second moment CMC closure will be extracted.
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LES of non-premixed turbulent reacting flows
with Conditional Source term Estimation

By H. Steiner AND W. K. Bushe

1. Motivation and objectives

In the foreseeable future, Direct Numerical Simulation (DNS), a technique in

which all flow scales are resolved, will remain computationally unaffordable for tur-

bulent reacting flows at technically relevant high Reynolds numbers Thus, Large

Eddy Simulation (LES), which resolves only the large scale motion of the flow while

modeling the contribution of the small (subgrid) scales, has been recognized as a

powerful alternative approach. The LES set of equations is obtained by applying a

spatial filter to the governing transport equations of mass, momentum, and energy.

Several subgrid-scale models for the filtered means of the unresolved turbulent trans-

port of momentum and species have been developed. They range from the widely
used constant-coefficient model of Smagorinsky (1963) to dynamic models where the

model coefficients are computed as functions of the instantaneous flow field (Moin

et al., 1991; Germano et al., 1991). These dynamic models, which have proven to
be successful in many types of non-reacting flows, are well established tools in LES.

In combusting flows, however, the subgrid-scale modeling of the chemistry is still a

major challenge; our present study is focused on this issue.
In an LES of turbulent reactive flows, a spatial filter is applied to the governing

set of differential conservation equations. Let

be the density weighted (or Favre) filtered representation of some quantity f. Then,

the filtered transport equations for the mass fraction YI of some species I and

enthalpy h = _pT read

T + ax, ax, +=,, (I)

o_ + _ _(z, + z,) + _](_ho,), (2)

where _ is the spatially filtered density and _1 and h01 are the reactive source term

and the enthalpy of formation of species I, respectively. The turbulent subgrid-scale

fluxes

-- 09,
- = '
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have been modeled in terms of diffusive fluxes involving the corresponding eddy dif-

fusivities :DtI and Kt. Subgrid-scale models providing these quantities have already
been mentioned above.

The main challenge faced in modeling combustion is that chemical reaction rates

are usually highly non-linear functions of temperature, density, and species mass
fractions. For a system with N possible species, the K-th chemical reaction can be
written as

N N

Z t A_JK J _ Z TIjKAJ'

J=l J=l

where Aj is the chemical symbol for species J and r/s K and r/_K are the stoichio-
metric coefficients for species J in reaction K. If M chemical reactions are to be

considered, then the chemical source term for species I becomes (Williams, 1985)

M N
d_, = W, Z (r/)'g -- _K)BKT'r_ e-_l_" H \_] '

K=I J=l

(3)

where WI is the molecular mass of species I, T is the temperature, R is the universal

ideal gas constant, EK is the activation energy, and BK is the frequency factor. The

power of the pre-exponential term 7K for reaction K accounts for non-exponential

temperature dependence of the reaction rate. Due to the strong non-linearity of (3),
substituting the filtered temperature, density, and mass fractions into (3), yielding

will generally provide a very poor estimate for the filtered reaction rates. It is

evident that closure for the filtered chemical reaction rates has to be provided. In
non-premixed combustion, where fuel and oxidizer are initially separated and must

mix together before they react, several different approaches have been suggested:
Assuming Fast Chemistry circumvents the estimation of the chemical source

terms. Under this assumption the thermodynamical state is completely determined

as a function of the mixture fraction (Cook & Riley, 1994). However, effects like

ignition and extinction, which may crucially affect many real flames, cannot be ac-
counted for. Fast Chemistry also poorly predicts pollutants whose rates of formation

are kinetically limited.

The Laminar Flamelet model (Peters, 1984; Cook et al., 1997) assumes the flame
structures to be thin in comparison to the turbulent eddies. Within the "laminar

flamelet regime" the flame is considered to be comprised of an ensemble of strained

laminar flames, which themselves merely depend on mixture fraction and scalar

dissipation. Given the filtered means of these two quantities and assuming the shape
of their joint probability density function, the filtered means of the mass fractions

and temperature can be computed. There is still considerable argument on the
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applicability of this method to flames outside the "flamelet regime". Furthermore,
the chemistry is assumed to be in steady-state; for LES, this implies a quasi-steady-

state assumption neglecting important transient effects on phenomena like ignition
and extinction. In order to overcome this drawback, an unsteady Laminar Flamelet

model has been devised for RANS of combusting flows (Peters, 1997). Thereby, an

unsteady flamelet code is running simultaneously with the CFD code. Receiving the

time dependent thermodynamic state and the scalar dissipation from the CFD code

as inputs, the unsteady flamelet solution yields the actual chemical composition as a
function of mixture fraction. Assuming the shape of the probability density function

for the mixture fraction, the updated chemical composition vector in physical space

can be computed and fed into the CFD code. Whether or not the unsteady Laminar
Flamelet model can also be employed in LES has yet to be investigated. Unlike

unsteady RANS, LES provides a time-accurate solution without periodicity in time.

Thus, the number of unsteady flamelets to be tracked might increase continuously;

in the long run, this could make the LES prohibitively expensive.
The PDF-Transport methods solve a transport equation for the Filtered Joint

Probability Density Function of mass fractions, energy, etc. (Pope 1985; Givi,
1989; Colucci et al., 1998). In the transport equation of the PDF, the chemical
source terms occur in closed form; however, the dimensionality increases with the

number of species, and the unclosed molecular mixing term has to be modeled. The

closure problem for the chemical reaction term has apparently been commuted to

the closure for the molecular mixing.

Recently, Bilger (1993a,1993b) and Klimenko (1990) independently proposed a

new approach for modeling turbulent reacting flows, called Conditional Moment

Closure (CMC). The CMC method solves for the transport equations of condition-

ally averaged quantities instead of their spatially filtered counterparts. Variables
on which the chemical reactions are known to depend on are chosen to be the

conditioning variables. Solving the transport equations also in conditioning space
adds a further dimension to the problem which inhibits the application of CMC to

three-dimensional flow simulations due to its high computational cost.

In the present study the Conditional Source term Estimation (CSE) method

(Bushe & Steiner, 1998) has been proposed as an alternative to the aforementioned
methods for closing the chemical source terms. CSE is based on the CMC hypoth-
esis. However, unlike in traditional CMC methods, it is not necessary to solve the

transport equations in the conditioning space; this makes the method computation-

ally affordable. In its present form the proposed model is devised to provide the
filtered means of the chemical source terms needed to close the LES set of equations

in reacting flows. CSE has proven its predictive capability in an a priori test using
DNS data of turbulent reacting mixing layer, and it is currently being tested in an

LES of a turbulent jet diffusion flame.

0 Accomplishments

2.1 Conditional Source term Estimation (CSE)

CSE is based on the CMC closure hypothesis. In the CMC method proposed
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by Klimenko (1990) and Bilger (1993a, 1993b), the transport equations are condi-

tionally averaged, with the condition being some variable on which the chemical
reaction rates are known to depend.

2.2.1 One condition

In non-premixed combustion far from extinction, the reaction rates mainly de-

pend on mixture fraction. Thus, the mixture fraction is clearly an appropriate con-
ditioning variable. In the context of non-premixed combustion, the mixture fraction

represents the local fraction of mass originating from the feeding fuel stream. Thus,

it is zero in pure oxidizer and one in pure fuel. In the following the conditional av-

erage of some quantity f, conditional on the mixture fraction Z having some value
_, will be denoted by an overline:

fIZ=(flZ=¢).

The conditionally averaged reaction term occurring in the conditionally averaged
transport equation for the mass fraction YI is closed with the first order CMC

hypothesis: the conditional average of the chemical source term of some species

I can be modeled by evaluating the chemical reaction rates using the conditional

averages of the composition vector Ya'[Z, temperature T[Z, and density p[Z.
Thus,

dJ,(YK,T,p)[ Z _&I (Y---KKIZ, TIZ,plZ) ) . (4)

It has been established that the CMC hypothesis, based on a single condition-

ing variable, provides adequate predictions of reaction rates for flames fax from

extinction (Bilger, 1993a; Smith 1994). The CSE method makes use of the CMC

hypothesis (4); however, it suggests an alternative way to obtain the conditional av-

erages. Rather than solving the conditionally averaged transport equations, which
would be computationally expensive having the mixture fraction Z as additional di-

mension, it takes advantage of the spatial homogeneity of the conditional averages
on particular surfaces in the reacting flow field. For example, in case of a react-

ing mixing layer, the conditionally averaged quantities show only small variation
on planes normal to the reacting interface. Based on this spatial homogeneity the

"extraction" process of the conditional averages might work as follows: For some

set of m = 1, ..., M cells in an LES domain which lie on the surface of homogeneity,

the conditional average of the temperature is invariant in all m cells:

m

The density weighted, filtered temperature in each cell m can be expressed as

= Pro(z) T IZ dZ, (6)

where Pm(Z) is the probability density function of the mixture fraction within the

filtered cell m. Eq. (6) is an integral equation--a Fredholm equation of the first



LES of non-premixed turbulent reacting flows 27

kind--which, for discrete intervals in Z, can be inverted to yield T IZ. Similar

equations can be written for the density and the mass fractions to obtain p I Z and

YK IZ, respectively. Even in the case of non-homogeneity, where (5) does not hold,

the inversion of (6) would still yield an approximation for the conditional average

of the temperature on the surface constituted by the ensemble of m =

1, ..., M LES cells. The conditional average of the chemical source terms (oi]Z
can now be obtained using the CMC hypothesis (4), and the unconditional mean
chemical source term is then

= Pro(z) lz dZ. (7)

In this manner, it should be possible to obtain closure for the sub-grid scale mean

reaction rate for any chemical kinetic mechanism. No assumptions have been made

regarding the thickness of the regions in which chemical reactions are significant rel-
ative to the turbulent length scales. Only the assumption of statistical homogeneity

of the conditional averages of temperature, density, and pressure on some surface

must be made. As for the probability density function P,,,(Z), a fl - PDF with the

same mean Z,_ and variance Z_ of the mixture fraction has proven to approximate

the real PDF appropriately (Bushe & Steiner, 1998). The mean of the mixture frac-

tion Z,, is obtained as a resolved quantity of the LES. The filtered variance Z_ can

be estimated either through a subgrid-scale model, e.g., a Dynamic Model or using

a similarity approach (Jimdnez et al., 1996), or by solving a transport equation for

Z_. The latter, however, requires modeling of the filtered scalar dissipation

= 2pvzvz. (8)

_.2.1 Two conditions

It is known that conditioning only on mixture fraction is insufficient to account for

phenomena such as extinction or ignition. Since the occurrence of these phenomena

depends strongly on the scalar dissipation X, defined in (8), it seems sensible to
introduce scalar dissipation--or some closely related quantity--as the additional

conditioning variable (Bushe, 1995). Assuming for the functional dependence of
scalar dissipation on mixture fraction the shape of the laminar counter-flow solution

(Peters, 1984), the scalar dissipation can be written as

The sufficiently weak dependence of the new random variable X* on the mixture
fraction Z allows expression of the joint probability density function P(Z, X*) as

P(Z, X*) = P(Z) P(X*),

where P(Z) again can be approximated as a fl - PDF. Analogously to the assump-
tions made for PDF of the scalar dissipation X (Monin & Yaglom, 1975; Eswaran
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&: Pope, 1988; Yeung & Pope 1989), the probability density function of X* is taken

to be approximately log-normal as well. In every LES cell rn, Pro(X*) is determined

in terms of the filtered mean _-m and the standard deviation. The first is provided
by the relation

/01 /01 ( )Xm = Pro(Z) x IZdZ = -X--;,n Pm(Z)'exp -2 [erf-'(Z)] 2 dZ, (10)

and the latter is taken to be unity. The rhs of (10) involves again a fl - PDF

for Pro(Z) and the laminar counter-flow solution. The filtered mean of the scalar
dissipation _,_ has to be modeled.

The "extraction" process of the conditional averages is then straightforward. It

is virtually the same as already described for one condition in the previous section.
Inverting the expression

f0 f0'"Tin : Pm(Z, X*) T IZ, X" dZ dx*, (11)

which is equivalent to (6) in the one-condition case, yields the conditionally averaged
quantities needed for the CMC hypothesis now with two conditions:

_,lZ,_(* _ _(YKIZ, x',TIZ, x*,plZ, x*). (12)

The mean chemical source term becomes

f0 f01-_t,m = Pm(Z,x*) (vllZ, x * dZ dx*. (13)

2.2.3 Effects of density weighted filtering

Dealing with non-constant density flows the LES set of transport equations (1)-

(2) are solved for the Favre filtered averages of mass fractions and temperature. In

this case the CSE equations have only to be adjusted to the density weighted LES

inputs into the model, the closure hypothesis and the extraction process remain the

same. In terms of density weighted averages (6) and (7) read

1
Tin: Pm(Z) TIZdZ,

fo' -'_m =Pm Pro(Z) d_lZ dZ,

respectively, where Pm(Z) = P(Z; _ Z"-'_2_ is the Favre PDF of the mixture frac-
_r¢l, m ]

tion, which will again be approximated using the fl-PDF. Its shape is now deter-

mined by the Favre filtered mean and variance of the mixture fraction Z,, and
_m ,

respectively.
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g.$ A priori test of the model

In order to test the method described above, the output from several different

time steps in the DNS database of Vervisch (1992) was filtered. The simulation is

of a shear-free, temporal mixing layer with fuel and oxidizer mixing in the presence

of turbulence. The domain was rectangular with 128 points across the layer and 64

points in each direction tangential to the layer. A (16 × 8 x 8)-top-hat filter was
used to compute the spatially filtered means on the LES grid.

The chemical kinetic mechanism used in creating the DNS database was a single

step,
F +O--* P,

with F, O, and P being Fuel, Oxidizer, and Product, respectively. The reaction
rate was

& = Dap 2 YFYo exp \1 - t_(1 - 0))'

with
Tad -To T-To

a= =0.8, /3=8 and 0-
Tad To - Tad
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FIGURE 2. Comparison of reaction rate _es, estimated using CSE closure to filtered

reaction rate from DNS data &DlVS : (it) CSE with one conditioning variable Z,

(b) CSE with two conditioning variables Z and X*.

All temperatures--including To (the initial temperature) and T_a (the adiabatic

flame temperature at stoichiometric conditions)--were non-dimensionalized with

the reference temperature Tref = (3' - 1)To, and 7, the ratio of specific heats, was
taken to be 1.4. The DamkShler number Da was unity.

The first test was to try to use the quantities Zm and Z_ at each point to predict

P,,(Z) using the 13-PDF as described above and then to substitute -tim, YFm, Yore,

and Tm and Pro(Z) into (6) to predict the conditional averages. The results of this

a priori test for one time in the simulation (a fairly late time, approximately 1.6
eddy turnover times in the simulation) are shown in Fig. 1, where the results of

the inversion of the integral equation using a simple linear regularization method

is compared to the actual conditional average from the entire flow field. With the
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exception of a slight over-prediction of the maximum temperature, the prediction of

the conditional averages appears to be very good. Similar results have been found
for all other times at which data is available.

The next test is to invoke the CMC hypothesis (4) and use these conditional av-

erages to predict the conditional mean reaction rate & I Z. Then, the unconditional

mean reaction rate is predicted from the prediction of the conditional mean reaction

rate using (7). The estimate _st obtained by this process is compared to the actual

average of the reaction rate "_DNS in every cell in Fig. 2a. The standard error in the
prediction of the cells where _D/VS is significant (greater than 1 × 10 -5) is about
15%. It should be noted that there is some extinction in the DNS database which

cannot be predicted by the single condition version of this method. This is made

evident by the presence of several points where "_DNS is very small but _,st is still

significant. These are cells which contain local extinction events. Nevertheless, that

the method is capable of predicting the reaction rates with such accuracy even in

the presence of heat release and extinction seems to be very encouraging.

As was discussed above, adding a second condition to the inversion process is ex-

pected to make the method capable of modeling extinction and ignition phenomena.

This was tested by simply adding the second condition and inverting the two-di-

mensional problem described by (11), using the conditional averages to estimate the

conditional average of the reaction rate (12) and integrating (13). The result of this

process is shown in Fig. 2b. The standard error in the prediction of the cells where

"_DNS is significant (again, greater than 1 x 10 -5) is about 10%. Not only is the
error in the prediction somewhat smaller than was found with only one condition,

the evidence of over-prediction of the reaction rate in cells containing extinction

events is no longer apparent. It seems that the extinction phenomenon is captured
at least to some extent by the inclusion of the second conditioning variable. Thus,

even though the overall improvement of the prediction for the reaction rate at first

sight seems to be rather small, the additional effort of carrying a second condition

variable is still justified: it makes it possible to account for extinction and ignition

phenomena.

Future plans

The CSE model is at present being tested in an LES of turbulent reacting jets.
The code into which the subgrid-scale models have been introduced originally was

written for DNS of non-reacting jets by Boersma (1998a). The first test considers a

piloted jet diffusion flame at Re = 4000; for this basic test case one-step chemistry
is assumed. Preliminary results of this LES showing temperature and fuel mass

fraction contours when looking at the vertical jet from the side are presented in

Fig. 3. Planes of equal distance downstream from the nozzle exit have been assumed
as statistically homogeneous surfaces. The conditional averages have been computed

using the LES filtered means gathered on these planes. The LES results obtained

so far are going to be compared with the corresponding DNS data. These DNS data

will be provided by a DNS performed by Boersma (1998b) for exactly the same test
case. Further test cases will then consider experimentally investigated methane-

air flames with high Reynolds numbers. The first case will deal with a piloted
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FIGURE 3. Results of LES of piloted jet flame: (a) non-dimensional temperature:

white-black, T/To -- 1 to 5; (b) mass fraction of fuel: white-black, YF _- 0 to 1.
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jet flame experiment performed in the Sandia Turbulent Diffusion Flame Facility

(Masri et al., 1988a,1988b). From these measurements extensive data on chemical

composition and temperature fields are available. Then LES of a lifted methane-air

jet (Mufiiz & Mungal, 1997) will be attempted. There, the main challenge will be
to capture ignition effects. Using a second conditioning variable, it is hoped that it

will be possible to obtain a realistic prediction for the flame liftoff heights.
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Measurements of the three-dimensional scalar

dissipation rate in gas-phase planar turbulent jets

By L. K. Su

1. Motivation and objectives

The scalar dissipation rate, X =- DVC. VC, where C is a conserved scalar and
D is the scalar diffusivity, is a quantity which is of great interest to models of

turbulent non-premixed combustion. Mathematically, it represents the loss term in

the evolution equation for 1 2_C , the scalar energy:

(-_- + u. V- DV2) I c2 = -DVC. VC - -x.

Physically, X can be interpreted as a mixing rate, or equivalently as a rate at which

scalar fluctuations are destroyed. More specifically for combustion applications,

Peters (1983) identified X as a characteristic diffusion time scale, imposed by the

mixing field. Then, local flame extinction could be explained by the scalar dissi-

pation rate exceeding a critical value, thus making the diffusion time smaller than
the chemical time of the local flame structure. Accurate representation of flame

quenching and stabilization poses notable difficulties for diffusion flame computa-

tions, because the scalar dissipation can occur at the finest mixing length scales
of the flow. This means that modeling is required for the scalar dissipation in, for

example, large-eddy simulations (LES) of turbulent combustion, where the filtered
mixture fraction is used as a starting point to describe the combustion.

This study will address two issues regarding the properties of the scalar dissipation

which are of particular significance in the context of combustion. The first concerns

the length scales at which dissipation occurs, in particular their magnitude and

their dependence on Reynolds number. The second issue concerns the scaling of

the mean dissipation values with downstream distance in jet flows. Defining the
thicknesses of the dissipation layers will be of use in determining the resolution

requirements of both DNS and LES computations of turbulent diffusion flames.
Meanwhile, experimental assessment of existing models for the downstream decay

of mean dissipation will provide a fundamental test of our understanding of the

properties of the dissipation rate.
The experimental data used in this study are the planar measurements of the

complete, three-dimensional scalar dissipation rate by Su & Clemens (1998a,b) in

the self-similar region of a gas-phase planar turbulent jet. The data are unique

in providing scalar field information simultaneously in two parallel spatial planes,
with sufficient resolution to permit differentiation in all three spatial dimensions.

Determining the three spatial components explicitly obviates the need to invoke
Taylor's hypothesis, while the planar nature of the measurement volume allows

direct determination of structural properties of the dissipation field.
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Previous planar measurements of the three-dimensional scalar dissipation at the

smallest scales have been demonstrated in water flows (Southerland & Dahm (1994)).

Some difficulties may arise, however, in applying scalar mixing results in the liq-

uid phase to the gas phase, which is of particular interest in combustion applica-

tions. The Schmidt number (Sc = v/D, where v is the kinematic viscosity and D
the molecular diffusivity) of water is approximately 2000, while in gas-phase flows

Sc _ 1. From Batchelor (1952), the ratio of the smallest length scales in the ve-

locity and scalar gradient fields in turbulent mixing scales as Sc -1/2. Thus, while

in water flows scalar gradients can be sustained on scales roughly 45 times smaller

than the smallest vdocity gradient scales, in the gas phase these scales are expected

to be of the same order. It is reasonable to expect that the details of scalar mixing

in the high and low Schmidt number regimes will differ as a result. Results from

analysis of the present gas-phase scalar dissipation data are expected to be directly

applicable to mixing in combustion systems.

1.1 Ezpressions for the dissipation length scale

Some confusion arises in defining the dissipation length scale in turbulent flows

because different expressions are used. Here we will define the scalar dissipation

length scale as

XD = A_Re[314Sc -x/2, (1)

where 6 is the flow width, Re6 is the Reynolds number based on _ and a measure

of large-scale velocity, Sc is the Schmidt number, and the constant A is to be

determined. More commonly, this dissipation scale is expressed in the form due to

Kolmogorov and Batchelor. From dimensional arguments, Kolmogorov showed that

the finest turbulence length scale, XK, should depend on the kinematic viscosity, u,

and mean kinetic energy dissipation rate, e, as

X#_ =_ (v31e) 114. (2)

Subsequently, Batchelor introduced the equivalent expression for the scalar dissipa-

tion length scale,

XB = X_" Sc -1/2

The expressions for )k D and XB are equivalent to within a constant factor. To show

this, begin by expressing the mean kinetic energy dissipation as e c¢ U3/6, were U

and _ respectively are measures of the large-scale velocity and flow width. In the

self-similar region of a round jet, Friehe et al. (1971) found

e=48

where y is the downstream coordinate, U0 the initial jet velocity, and d the jet nozzle

diameter. To convert to the large-scale variables U and _, we use the relations

V/Uo = 6.2 (y/d) -1 and g = 0.37 y (e.g. Chen & aodi (1980)), defining U as the jet
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mean centerline velocity and 6 as the jet full-width at the 5% points of the velocity

profile. Then, Friehe's result becomes

Though derived from results for the round jet, this result should be general to all

turbulent shear flows, under the assumption that the small-scale behavior of fully

developed turbulence is universal and is described by the parameters U and 6.

Inserting this result for e into the definition for An, and using Re6 =- U6/u, we
obtain

( u3 _1/4
,_B = 0.075--1/46 kU363] SC -I/2 = 1.96. Re-63/4Sc-I/2. (3)

Thus the Batchelor scale As is equivalent to /_D with a coefficient A = 1.9. The

coefficient 1.9 appearing in these relations results from assuming a proportionality

constant of 1 in the Kolmogorov/Batchelor scale definition. Since that definition

is purely dimensional, there is no reason to expect that the proper proportionality
constant should be I. Empirical determination of the true value for A is discussed

below (Section 2.2.1).

2. Accomplishments

_.1 Experimental conditions

This section presents a brief discussion of the experimental method. A compre-

hensive description can be found in Su & Clemens (1998a,b).

e. I. 1 Flow field

The flow considered in these experiments is a planar, turbulent jet of propane

issuing into a slow co-flow of air. The nozzle exit has a slot width h = 1 mm
and spans 150 ram. This aspect ratio is sufficiently high that three-dimensional

effects in the mean flow should be negligible in the flow region of interest, which
extends to 127 h downstream of the exit. The nozzle itself has a contraction ratio

of 75 : 1 to provide a uniform exit velocity profile. Jet exit velocities ranged from

5.9 to 10.7 m/s, while the co-flow velocity was 0.3 m/s. For the planar jet, the jet

exit Reynolds number is insufficient to describe the local turbulence because the
centerline velocity decays as y-1/2 (y is the downstream coordinate) while the jet

grows linearly in y, so the local outer scale Reynolds number, Re6, grows as yl/2.

Here, Re6 was determined using the scalings of Bradbury (1965) and Everitt &

Robins (1978), namely
60.05 = 0.39 y (4)

and

V/Vo = 2.4 (pj/p_)ll2(y/h)-'12,

and using the kinematic viscosity of air, v = 0.155cm2/s. For the present mea-

surements, consisting of a total of 906 image pairs, y ranged from 65 to 127 h,

and Re6 ranged from 3200 to 8400. The binary diffusivity of propane and air is
D = 0.114 cm2/s, giving a Schmidt number of 1.36.
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2.1.2 Laser diagnostics

Previous efforts at three-dimensional scalar field imaging in gas-phase flows have

used either simultaneous two-plane Rayleigh scattering (Yip & Long (1986)), or

multi-plane scattering or laser-induced fluorescence (LIF), in which a single laser

sheet is swept through a three-dimensionai volume (Yip et al. (1988)). The for-

mer measurements, however, showed somewhat weak signal levels, while the latter

technique suffers from temporal resolution limitations introduced by the laser sheet

scanning.

The current measurements were performed by simultaneous Rayleigh scattering

and LIF in two planes. This approach eliminates temporal skewing effects, while

the high efficiency of LIF yields much higher signal levels for a given amount of laser

energy than two-plane Rayleigh scattering. In fact, only a single, frequency-doubled

Nd:YAG laser was required. Propane was chosen for the jet fluid because its high

index of refraction results in a Rayleigh scattering cross-section over 13 times that

of air. For the LIF, acetone was seeded into the jet fluid to approximately 5% by

volume. The 532 nm output of the laser was split so that 75% was used for the

Rayleigh scattering, while the remainder was further doubled to 266 nm to excite the

LIF. The resulting laser sheet energies were typically 240 m J/pulse at 532 nm and

30 m J/pulse at 266 nm. To capture the signals, two slow-scan, thermoelectrically

cooled CCD cameras, with 500 × 500 pixel resolution, were used. Optical filters

ensured separation of the LIF signal (which peaks in the range 400-500 nm) from

the 532 nm Rayleigh scattering signal. To obtain the scalar concentrations from

the raw imaging signals, standard background and sheet intensity profile corrections

were performed. For additional accuracy, however, the intensity profiles for the two

sheets were captured for individual pulses rather than on an average basis.

In computing the three components OC/Oxi of the scalar gradient vector, the

out-of-plane component (here, OC/Oz) will be subject to the highest uncertainties,

owing to the need to perform the difference calculation across distinct planes, which

were obtained by different techniques and processed independently. To quantify

the errors incurred, Su &: Clemens (1998a,b) applied the two-plane technique to a

single spatial plane, for which the scalar fields measured in the two imaging planes

should be equal. Deviations from this were used to estimate the errors in the

three-dimensional measurements. It was found that errors in the OC/Oz term were

substantially smaller than the magnitudes of OC/Oz corresponding to significant

events in the dissipation fields.

2.1.3 Spatial resolution

To increase signal levels, the scalar field images were binned 2 × 2; in the data

reduction process it was also necessary to match the fields of view of the two cameras

geometrically, with the resulting pixel resolution being 220 × 220. This measurement

area spanned 34 jet widths, h, per side, giving a grid resolution Ax = Ay of roughly

150 pm. The 266 nm laser sheet showed a Gaussian cross-sectional profile, with a full

width at the 5% points of 200 #m at its waist, while the 532 nm laser sheet showed

a roughly uniform profile with a full width of 180 #m. The laser sheet spacing

Az was 200 #m. These parameters are to be compared with the estimated finest
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FIGURE 1. Scalar fields measured by (a) PLIF and (b) Rayleigh scattering, with a

laser sheet separation of 200/ml. The mean flow direction is upward in the images.

The Reynolds number, Re_, evolves from 5100 to 6200 in the measurenlent area.

dissipation length scale "_D (Eq. 1), here computed using A = 11.2 as suggested

by Buch & Dahm (1991). For these measurements the downstream coordinate y

spanned fl'om 65 to 127 h, and the Reynolds number Re,s ranged from 3200 to 8400.

The resulting A D ranged from 370 tin1 to 720 tim. Therefore 0.21 < A.r/AD < 0.41

and 0.28 < AZ/AD < 0.54, where these non-dimensional grid spacings should be

0.5 or less to satisfy the Nyquist resolution criterion.

2.2 ResMts

A scalar field image pair obtained by this simultaneous Rayleigh/LIF technique is

shown in Fig. 1. The mean flow is upward in the images, so the positive y direction

is streamwise, while the a: direction is cross-span and the z (out-of-plane) direction

is spanwise relative to the mean flow. In these fields C is normalized by < C >, the

mean eenterline concentration value for the full set of 906 image pairs.

Figure 2a shows the scalar dissipation for the scalar field of Fig. 1. The in-

plane derivative components were determined from the LIF image (Fig. la) by two-

point central differencing, and the out-of-plane component, was found by simple

differencing between the LIF and Rayleigh images. The dissipation shown in the

figure is non-dimensional, with the scalar values being normalized by < C >, and

the Axi used in the differencing being normalized by AN (Eq. 1), with A = 11.2.

Figure 2b shows the dissipation layer centers for dissipation field of Fig. 2a. The

layer center field was compiled by first identi_'ing peaks in the dissipation field. A

given point was determined to be a 'peak' if it both exceeded a given threshold,

and represented the local maxinmm of dissipation in both its positive and negative

in-plane scalar gradient directions. A connectivity condition was then imposed on

the peak field to remove noise effects. For Fig. 2a, the threshold value was that

which captures 50% of the total dissipation for the full data set (non-dimensional

X = 0.058), and the connectivity condition required that the dissipation structures

span a minimum length of twice AN.

The probability distribution of the logarithm of the dissipation is shown in Fig. 3.

Also shown is a Gaussian distribution having the same first two moments. The



40 L. K. Su

(a) (b)

FIGURE 2. (a) The non-dimensional scalar dissipation for the scalar fields of

Fig. 1. (b) The layer centers.

FIGURE 3.
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measured distribution follows the Gaussian quite closely, except for a slight negative

skewness. Similar asymmetry has been observed in both experiments (Feikema et

al. (1996)) and direct numerical simulations (Eswaran & Pope (1988)) of scalar

mixing, and has also been seen in the kinetic energy dissipation in DNS (Vincent

&: Meneguzzi (1991)).

2.2.1 Length scales

It is generally accepted that the scalar dissipation field is organized into layers;

the thickness of these layers will scale with the local outer scale Reynolds number,

Re6, in a manner dependent on the strain field on the layers. Where the strain

field is the inner scale strain the normalized layer thickness, AD/5, scales as Re[ 3/4

(Batchelor/Kolmogorov scaling), while if the strain field were the outer scale strain

the thickness would scale as Re-_ 1/2 (Taylor scaling). The traditional view (e.g. Ten-

nekes & Lumley (1972)) holds that the bulk of the scalar dissipation occurs at the

Batchelor scale, though Dowling (1991), based on time-resolved single point scalar
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field measurements, has suggested that the regions of highest dissipation observe

Taylor scaling. Nevertheless, Dowling (1991) found that the smallest dissipation

scales observe Batchelor scaling.

Numerous studies have attempted to find the value of the constant A in Eq. 1

which accurately defines the size of the smallest dissipation scales. These efforts

have generally proceeded by analysis of single-point scalar or velocity time series
data. The difficulties of this approach can be seen by noting that Dowling & Dimo-

takis (1990) found A _ 25 from spectra of scalar concentration fluctuations, while,

using the same scalar time series data set, Dowling (1991) subsequently obtained
A _ 5 from scalar dissipation rate estimates. In contrast, Buch & Dahm (1991)

determined A = 11.2 from explicit measurement of the average thicknesses of dis-

sipation structures in two-dimensional scalar field images. This latter approach is
taken here.

Consistent with Buch & Dahm (1991), we define $D from Eq. 1 as the average

of the full widths of the dissipation layers, where this width is computed as the

distance across a layer between those points where the dissipation is 20% of the

maximum. As a first step in computing the layer thicknesses, the layer center fields

for the images were found, as described in Sec. 2.2 and shown in Fig. 2b. For each of

the points on these layer centers, a search was then performed in the scalar gradient

direction (both positive and negative) until the dissipation value dropped to 20%
of the maximum. The resulting layer half width values were then doubled to give a
measure of the full width. Statistics were not compiled for those layers where the

dissipation failed to drop monotonically, indicating a possible intersection of layers.
Finally, because the dissipation images, and thus the thickness computations, are

strictly two-dimensional, the resulting thicknesses were adjusted by a factor of cos ¢,

where ¢ is the out-of-plane angle of VC.

Figure 4 shows the distribution of layer thicknesses, expressed in terms of A, as
determined from Eq. 1. The threshold and connectivity conditions used for the layer
center determination were the same as those used to compute the layer center field

of Fig. 2b. To minimize the effect of the cos ¢ correction, only dissipation maxima

where ¢ < 60 ° were considered. The mean of the distribution is A = 14.8, indicating

the the layers in these data are somewhat thicker than predicted by Buch & Dahm

(1991), and are over seven times larger than the Batchelor scale determined using
a proportionality constant of 1 in the Kolmogorov scale definition (Eqs. 2, 3).

In Fig. 5, the dependence of )_D on the local outer scale Reynolds number Re6

is shown. The curve was compiled by dividing the Reynolds number range 3200
to 8400 into 26 bins, then computing the thicknesses for each bin as above, with

the same threshold and connectivity conditions. The curve thus represents the

average layer thickness for the given Re6. The dashed line in the plot is the curve

14.5 • Re-_ 3/4. The actual least-squares fit gives a Reynolds number dependence of

Re-[ "74. From this plot it is quite evident that the average layer thicknesses observe

the Re-[ 3/4 Batchelor scaling. (The constant A = 14.5 differs slightly from that
found from the curve of Fig. 4 because the data are not evenly distributed in Re6

sp ace. )
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FIGURE 4.
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However, Dowling (1991) concluded that while the majority of the dissipation oc-

curred at scales which followed Batchelor scaling, a substantial portion of the dissi-

pation, in particular the highest local dissipation values, occurred at the larger Tay-

lor scales. With the present data this can be assessed by considering the Reynolds

number dependence of the extremes of the thickness distribution. Figure 6 shows

the Res dependence of the average thickness of the thickest and thinnest 25% of

layers, together with the overall average as shown in Fig. 5. There is no evidence

of Taylor scaling of the thickest layers. The least-squares fit to the thickness curve

for the thickest 25% of the layers has dependence Re_ "'73, while the curve for the

thinnest 25% has dependence Re-_ "_5. The trend of weaker Re6 dependence for

thicker layers is consistent with Dowling's hypothesis, but this very slight difference

of Re-_ "73 versus Re'_ "75 is likely within experimental tolerances, and certainly gives

no indication of Re-_ 1/2 scaling.

Figure 7 shows the dependence of A on the threshold value of the dissipation rate.

Again, in contradiction to the idea that high dissipation values take place on length
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scales observing Taylor scaling, it can be seen that higher values of X are associated

with thinner layers.

2._._ Dissipation rate scaling

The scaling of mean scalar dissipation rates with downstream distance in turbu-

lent jets is of interest in certain models of the stabilization properties of turbulent jet

diffusion flames. Peters & Williams (1983) suggest that the mean scalar dissipation

rate should scale linearly with the global strain rate, with the square of the local

mean centerline scalar concentration, and with the inverse square of the local jet

width. For the planar turbulent jet, we thus expect X _ (Uo/h)(y/h) -3. The few

existing measurements for the downstream dependence of the mean dissipation fail

to observe the expected scalings, however. In round jets, both Lockwood & Moneib

(1980) and Effelsberg & Peters (1988) found that the decay of X in the self-similar

region was significantly weaker than the predicted (y/d) -4 dependence.

The present measurements span from 65 to 127 jet widths downstream, and
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so can provide useful information on the decay of the dissipation rate. However,

because the present measurements were intended primarily for investigation of the

structure of the scalar dissipation rate field, no direct effort was made to correlate

the measured scalar concentrations to the initial jet value. We account for the scalar

decay here by assuming that the recommended scaling from Chen & Rodi (1980)
applies, namely

< C(y) >/Co = 2.46 (y/h) -1/2,

where < C(y) > and Co are the local mean centerline concentration and initial

jet concentration, respectively, and the effect of the jet and ambient fluid density

difference has been included. For each data set of 15 or 30 image pairs, the centerline

average is found, the effective Co value is computed from the above formula, and

this Co is then used to normalize the scalar field values for the purpose of compiling
the dimensional dissipation rate X.

Figure 8 shows the conditional average of x/(Uo/h) with downstream distance,

for off-center positions [xl/df < 0.05, i.e. near the centerline. The dissipation rate

X is computed here as X = D (OC/cOxi)(OC/Ox_), where D is the propane-air dif-

fusivity, 0.114 cm2/s, C is the scalar concentration normalized by Co, and the xi

are dimensional. The global strain rate Uo/h has been divided from X to isolate

the dependence of the decay on (y/h). The dotted line is the best linear fit to the

data, which has a slope of-1.4. Consistent with previous results, the data predict a

much slower decay than anticipated by the theory of Peters & Williams (1983). It

should be pointed out that for both planar and round jets, the fine scales increase

in size with downstream distance, and thus resolution requirements are relaxed as

the measurement area moves away from the nozzle. It is therefore possible that the

decay rates are underestimated because high dissipation rates are more accurately

measured further downstream. For the present measurements, however, the relative

resolution differs at most by a factor of two between the y = 65 h and y = 127 h

locations. Considering only these two locations, a dependence of X on y-a would

require that X decay by a factor of 7.5 from y = 65 h to 127 h, while the measured
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y-l.4 dependence corresponds to a X decay factor of 2.5. From the evidence of

existing measurements which assess the effects of varying resolution (e.g. Dowling

(1991), Antonia & Mi (1993)), this factor of three discrepancy cannot be accounted
for by the resolution difference between near and far downstream positions. Rather

it appears, based on these limited results, that the current understanding of the

scaling of dissipation rates is quite incomplete.

3. Future plans

While this paper has focused on the fine scales of the mixing field, the data are

also well suited to analysis of larger scale properties and, perhaps more significantly,

to analysis of the interactions of the large and small scales. At the upstream limit
of the measurement domain, y = 65 h, the jet width (Eq. 4) is 6 _ 25 h, while at

the downstream limit, y = 127 h, we find that the jet width is 6 _ 50 h. Since each

imaging plane spans 34 h, each scalar field image covers a range of scales from the

finest mixing scale to in excess of 0.68 6. It is therefore possible, for example, to

investigate scale similarity over the full range of flow length scales. As pointed out

by Frederiksen et al. (1996), information on the full three-dimensional dissipation

rate is necessary to assess the true scale similarity of the mixing process. Direct, a

priori assessments of subgrid models for LES can also be performed, by filtering the
scalar and scalar dissipation results and comparing the model predictions based on

these filtered quantities with the actual values on the original, resolved measurement

grid. Similar tests have been demonstrated both on DNS data for Sc -- 1 mixing,
and on experimental liquid-phase mixing results (Cook & Riley (1994)).
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Direct simulation of a jet diffusion flame

By B. J. Boersma

1. Motivation and objective

The main energy source in the Western world is the combustion of fossil fuels, and

it will remain to be the major energy source for at least several decades to come.

Everybody is aware of the problems connected to the combustion of these fuels.

First, their supply is finite, and this means that they should be used economically.

Second, during combustion of fossil fuels, air pollution is generated, e.g., in the form

of toxic gases such as NOx or S02 but also in the form of gases harmless for man

such as C02, which are nevertheless considered harmful because they may influence

our climate by processes such as the greenhouse effect. In view of these problems,

it will be clear that combustion of fossil fuels with an optimal fuel efficiency and

with a minimal production of pollutants must have a high priority.

The process of combustion is highly complex. It involves fluid mechanical pro-

cesses such as turbulent mixing and heat transfer but also other processes such as

radiation and chemistry. The fact that the combustion involves these very different

processes makes it not only a highly multidisciplinary topic for research, but also

a highly challenging one. For this reason the scientific problem of combustion has

been nominated as one of the "Grand Challenges'to be solved when a Tera-flops

computer becomes available, and this is the background of the project that we

propose here.

In this project we aim to perform a numerical simulation of a non-premixed

turbulent diffusion flame. The objective is to shed light on one of the important

processes in combustion that have been mentioned above, namely turbulent mixing,

which is an essential link in the modeling of combustion. In the past researchers and

designers have used so-called Reynolds-averaged turbulence models to predict the
combustion in various appliances. However, these models have their weaknesses,

especially in the complicated environment of a flame, and they have, in general,
failed to produce acceptable results. A factor contributing to this failure has been

the fact that it is very difficult to perform measurements in the hostile environment

of a combustion flame, and such measurements are needed for validating and de-

veloping turbulence models. Therefore, the problem of turbulent mixing within the
combustion process is to be considered as unsolved.

Recently, new methods have become available for combustion research as a result

of increasing computer power (especially due to the appearance of parallel com-

puters). Two very powerful new methods are direct numerical simulation (DNS)

and large eddy simulation (LES). The first technique (DNS) solves the governing
equations for the combustion without any model. In the second method, a model

is used for the small scales of motion. The first method is computationally very

expensive but gives in general very reliable results. The second method (LES) is
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Coflow

FIGURE 1. The geometry of the coflowing jet.

much cheaper, but the modeling of the small scales introduces an error. In this

paper we will use DNS; there is also LES and experimental work going on for the

same problem (see e.g. Steiner, and Su this volume).

1._ The geometry

In Fig. 1 we show the geometry of the problem. The jet fluid (in general fuel) is
injected in a slower flowing air (oxidizer) stream. In the experiment the Reynolds

number based on the jet fluid is approximately between 5,000 and 50,000. The

coflow velocity is typically 1 to 5% of the jet velocity.
For the DNS we will use a very simple binary reaction:

[Fuel] + [Oxidizer] ---*2[Prod]

The factor 2 is included to conserve mole fractions. The reaction rate of this reaction

is given by

d_ = DapYI pY o exp[-(_]. (1)

In which Da is the Dahmkbhler number, p is the density, IT/the fuel mass fraction,
Iio the oxidizer mass fraction, and

6=]3.1 1-0- a(1 - 0)" (2)

In which a is the heat release parameter and fl the Zeldovich number. The non

dimensional temperature 0 is defined as # = (T - To)/(T,, - To) with Ta as adiabatic
flame temperature and To as room temperature.

2. Low Mach number approximation

There are basically two ways to compute chemically reacting flows with significant

heat-release. The first option is to use a fully compressible flow solver (including
acoustic waves). The second one is to use an incompressible solver with variable
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density. The second method is very attractive for flows with low Math numbers

because numerical time steps are not related to the speed of sound. Furthermore,

the formulation of the boundary conditions is much simpler than in the fully com-

pressible case.
The low Mach number approximation of the equations of motion can be found

in the literature (see e.g. Williams 1985) For completeness we will give the non-

dimensional governing equations here. Conservation of mass reads

Op
+V. (pu) = 0, (3)

where u is the fluids velocity vector. Conservation of momentum

Opu L v .+ V.(puu) = -VP + Re (Vu + (Vu) T) (4)

In which P is the pressure, Re the Reynolds number, and # the dynamic viscosity.

The energy or temperature equation reads:

OpT 1---_V. P----VT + 2& (5)
---_ + V . puT = RePr #o

with Pr the Prandtl number. Furthermore, we have two equations for the chemical

species, i.e. one for the fuel and oxidizer.

z--L--v • LvY, - (6)
+ V. puYi =ReSc po

with Sc the Schmidt number. The equation of state gives a relation between density

and temperature:

P = pT (7)

For the temperature dependent viscosity p we will use the following relation

_,.=(T'_ 3/4 (8)

The main assumption in the low Mach number approximation is that the pressure
P can be written as:

P = Po(t) + 7Ma2P1 (9)

In which Po(t) is the total pressure, which is only a function of time. For an open
domain like our jet, the pressure Po(t) is a constant with an arbitrary value, say

1. This means that in the Navier-Stokes equations (4) P1, which will be further on

denoted by p, plays only a role and that pT = 1 at the lowest order.
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3. Numerical method and parallel implementation

In this section we will give an outline of the numerical method which will be used

to solve the governing equations. The spatial terms in the continuity and momentum
equations are discretized with help of a second-order finite volume method on a

staggered three-dimensional spherical grid (see e.g. Boersma et al. 1998). The

convective term in the transport equations are treated with a TVD scheme (see
e.g. Vreugdenhil and Koren 1993) to keep the scalar concentrations between the

specified minimum and maximum, say 0 and 1. For this, we had to recast the

transport equations in the following form:

OT 1 1 2 _
0--_ + V. uT - TV. u - V. P-_-VT + - (10)

p PrRe Po p

The diffusive part of the transport equations is treated in a similar way as in the
momentum equations.

The time advancement is accomplished with a predictor-corrector method similar

to the one used by Najm, Wyckoff and Knio (1998). First the transport equations

are integrated from time level n with an explicit Adams-Bashforth step to an inter-
mediate level, i.e.

T* - T n = At[ (-At + Dr) n - "_(-At + Dr) "-1] (11)

where At and Dt stand for the advective and diffusive terms in the transport equa-
tions (equations for Y_ are similar). The equation of state, P = pT, is then used

to find the density at the intermediate level. Also the momentum equations are
integrated to the intermediate level,

p'u* p"u n 3 1
= [_(-Am + Din) n - ¼(-Am + Din) n-l] (12)At L5

In which AT, and Dr, stand for the advective and diffusive terms in the momen-

tum equations. The intermediate hydrodynamic pressure is determined from the
pressure Poisson equation

1 COp*.
* = (p'u*) + (13)

The derivative COp*/Ot is calculated with help of a backward difference formula using
p*, p" and pn-l. Once the Poisson equation is solved, p'u* can be corrected in the
following way

p'u* := p'u* - AtVp* (14)

The next step is to use the Adams-Moulton corrector for the transport equations:

T n+l -- Tn 1
= _[(-A, + Dr) n + (-A, + D,)*I. (15)
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The equation of state again gives the density, but now at time level n + 1 Again the

momentum equations are integrated:

plUl -- pnun 1

At - 2[(-A., + Din)" + (-A., + Din)*] (16)

The Poisson equation is used to obtain the pressure at n + 1, and the velocity

correction gives the final velocity (or flux) at n + 1.

The scheme above is quite similar to the one used by Rutland (1989) and the

one used by Najm ef al. (1998). In Rutland's work the predictor corrector method
is replaced by a fully implicit method using Crank-Nicolson. The advantage of
this method is that there is no restriction on the time step. However, for a full

three-dimensional calculation, the solution of the matrix vector equation is very

expensive. Najm ef al. (1998) use the predictor-corrector strategy only for the

transport equations (5), (6) and not for the full system of equations (4), (5) and

(6). In Fig. 2 we show the stability regions of the method proposed by Najm et

al. (1998) mad of our method. It is clear that the full predictor corrector method

has a considerably bigger time step without much extra work. Furthermore, the

predictor-corrector scheme does not have the weak instability for advection which
the second-order Adams-Bashforth method has.

3.1 Boundary conditions

In this section we will describe the boundary conditions for the coflowing jet

calculations. At the inflow all components of the velocity are prescribed on the

staggered grid:
ur = UcosO (17)

uo = -U sinO (18)
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u¢=O

T=I, YI=I, Yo=O,

T=I, YI=O, Yo=I,

In the orifice

In the coflow

(19)

where U is the velocity (jet or cofiow) in a Cartesian system. This boundary con-

dition will be used for both the velocity and predicted velocity (u*).

At the lateral boundary of the jet, several boundary conditions can be used, for

instance, the frequently used free-slip conditions (Gresho 1991) which read:

Ou,. _ Ou¢ _ O. (20)
uo- O0 O0

With this boundary condition no entrainment of fluid into the jet is possible because

u0 is set equal to zero. Another possible boundary condition is the so-called traction
free boundary condition, i.e. the traction of the stress tensor with the unit normal

on the boundary, Gresho (1991)

(-PSij + vii) • no = O, (21)

For simplicity we will assume that the pressure p at the lateral boundary is constant.

Without loss of generality we can also assume that the pressure at this boundary

is zero. In the computational domain the pressure is calculated by the model, and

the pressure difference between the pressure at the border and the pressure in the

computational domain will determine the entrainment of fluid in or out of the jet.

At the outflow boundary we apply a convective boundary condition (see e.g.
Akselvoll and Moin 1996).

Opu_ vOpU (22)
Ot Or

where U = U(O) is the mean velocity at the outflow boundary. This boundary

condition is applied to the predicted velocity u*. The convective boundary condi-

tions are discretized using a first-order upwind method in space and a first order
discretization in time.

From numerical experiments, we found that the flow is rather sensitive to the

convective outfow velocity U. It turns out that errors in the outflow boundary con-

dition generate rather high pressure gradients near this boundary, and this influences

the entrainment over the lateral boundary, which changes the total behavior of the

jet. These large pressure gradients can be avoided by enforcing that the integral,

j J [(Op* _-dVol + (23)

is exactly zero. We enforce this by chancing pu. at the outflow boundary.
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3.2 Parallel implementation

The numerical method outlined above has been implemented on parallel machines

using the message passing interface (MPI). Let Nr, Ne and N¢ be the number of

grid points in the coordinate directions and Np the number of processors. It is clear
that from a physical point of view Nr will be larger than No and N¢. Therefore, we
have decided to distribute the radial direction over the CPU's. Thus on every CPU

there are Nr/Np × No × N¢ points. To minimize the communication we have added

two ghost points in the radial direction, so actually there are (N_/Np+ 2) × No × N o

point on every CPU. With these ghost points all the explicit updates can be carried
out without communication.

The Poisson equation is solved with a combination of Fast Fourier and Cyclic-

reduction methods (see e.g. Boersma et al. 1998). The Fast Fourier transform of

the right-hand side of the Poisson equation in the ¢ direction is local (no commu-

nication). The results of Fourier Transform are then redistributed to a distribution

N,. × No x No/N p. The two-dimensional (Helmholtz) problems in r and 0 can
be solved efficiently with the BLKTRI routine from the public domain package

FISHPAK. The solutions of the Helmholtz problems are again redistributed to

the N,-/Np × No × N¢ distribution, and another local Fast Fourier Transformation

gives the pressure in physical space.
The parallel strategy outlined above scales very well as can be seen from Table 1.

Table 1. Scalability of the parallel code

Np Grid CPU/At

4 128 a 62.1 see

8 1283 31.2 sec

16 1283 16.1 sec

32 1283 8.6 see

64 1283 5.1 sec

4. Results

To validate the parallel code we performed a calculation of a cold coflowing jet

with a Reynolds number based on the diameter of 4,000 and a velocity excess of

10. The important parameters for this simulation are listed in Table 2.
Table 2. Some important parameters for the cold jet.

N_ x No x N¢ 768x128x96

.Lr 45 D

Np 48

Red 4,000

10
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FIGURE 3. Contour plots of the fuel concentration (left) and the axial velocity
(right) in the cold jet.
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FIGURE 4. The mean velocity profiles obtained from the DNS (--) and from

the experiment of Nickels and Perry, 1996 ( .... ).

In Fig. 3 we show a contour plot of the distribution of the scalar field in the cold

jet. Close to the jet orifice an axisymmetric Kelvin-Helmholtz instability is present.
Further downstream these structures break up in fully three-dimensional ones. In

Fig. 4. we show that the mean self-similar velocity profile obtained from the DNS

and also the curve fit through the experimental data of Nickels and Perry (1996).
It should be noted that the profiles are scaled with the width A and not with the
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FIGURE 6. The distribution of the fuel (left) and the temperature (right) in the

hot jet.

distance to the virtual origin. The agreement between experiment and simulation is

rather good. This can also be seen from Fig. 5 in which we compare the computed

Reynolds stress (DNS) with the experimental data of Nickels and Perry (1996).

Finally, we show some qualitative pictures of a heated jet. The jet geometry

shown in Fig. 1 together with the assumed chemistry might lead to a lifted flame,
which requires a very long domain. At this stage we do not want to do a calculation

for such a flame because it requires a huge amount of CPU time. Therefore, we have

chosen a jet with a pilot, which keeps the flame attached to the orifice. The fluid
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leaving the pilot has a temperature of 0.99Ta and corresponding fuel and oxidizer

concentrations. The effect of the pilot on the flow itself will be small because it

has a very small momentum flux compared to the jet (approximately 5%). Figure 6

shows a contour plot of the concentration of fuel. It is clear that the combined effect

of temperature/density variation plus increased viscosity due to higher temperature

strongly suppresses the Kelvin-Helmholtz instability, leading to an almost laminar

flow close to the jet orifice. (The high temperature in the initial shear layer increases

the viscosity by more than a factor of three.) Further downstream there is still a

clear transition to a fully turbulent state. Figure 6 (right) shows the density in the

jet. Here we see more or less the same behavior as in Fig. 6 (left).

5. Conclusions and future work

We have shown that the developed numerical method is capable of simulating

cold coflowing jets quite accurately. This gives us confidence for the heated case in

which there is hardly any reliable experimental data available. From the preliminary

results for the heated jet, it is clear that the combined effect of density variation

and increased viscosity has a strong damping influence on the Kelvin-Helmholtz

instability, leading to a delayed transition and a flow with considerably less small

scales. Therefore, in future calculations it is probably possible to increase the

Reynolds number and still resolve all scales of motion for the hot jet. In the near

future the results of the DNS will be compared with the LES data obtained for the

same geometry by Steiner (this volume) and with the experimental data obtained

by Su (this volume).
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On the use of interpolating wavelets in the
direct numerical simulation of combustion

By R. Prosser AND W. K. Bushe

1. Motivation

Direct Numerical Simulation (DNS) of turbulent flows is an activity severely

limited by presently available computer power. It has long been known (e.g. Corrsin

1961) that in order to resolve accurately the governing Navier-Stokes equations,
the number of computational cells required scales as a super-linear power of the

Reynolds number. Reacting systems add additional complexity to this already bleak
picture. In many flows of industrial interest, the length and time scales associated
with the reaction mechanism are much smaller than those of the fluid turbulence,

and the resolution requirements for chemically active flow simulations are thereby

considerably increased. When this is added to the computational expense incurred

by the stiffness of highly non-linear reaction rate source terms, it appears that

reacting flow simulations of significant complexity will remain firmly out of reach
for the foreseeable future. Nonetheless, the same spatial and temporal stiffness that

gives rise to such demanding computations may paradoxically provide a foothold
for efficient numerical methods. Many industrial processes involving combustion

occupy the laminar flamelet regime (Libby & Bray 1980, Bray, Libby & Moss 1985)
where the turbulent flame can be regarded as a highly localized sheet of chemical

activity, either side of which the fluid composition remains relatively constant.
The ability of wavelet based methods to analyze functions in terms of their local

rates of change appears eminently suited to the numerical investigation of non-

linear partial differential equations, the solutions to which often contain a large

number of disparate length scales. In particular, the efficient discretization of fluid

flow problems have been the focus of a number of recent investigations, both with

chemical reaction (Bockhorn, FrSlich & Schneider 1995, FrSlich & Schneider 1996,

FrSlich & Schneider 1997,) and without (Bacry, Mallat & Papanicolaou 1992, FrSlich
& Schneider 1995, Bihari 1996). Many of the discretizations proposed to date have

been limited to periodic domains although recent efforts have led to advances in

non-periodic discretizations (Vasilyev, Paolucci & Sen 1995, Vasilyev & Paolucci

1996, Vasilyev & Paolucci 1997).

In this paper, we discuss the generalization to two spatial dimensions of an ex-

isting wavelet based scheme intended for combustion problems (Prosser & Cant
1998a). The approach adopts a collocation strategy but, unlike traditional colloca-

tion methods, the solution to the set of governing equations is obtained on a grid of

collocation points located in a hierarchy of wavelet subspaces. The solution is only
returned to the physical space in order to evaluate non-linear inertial and chemical

reaction rate terms. The key advantage of this approach, and the motivation for its

derivation, is that while the solution is expressed in terms of the wavelet spaces, it
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is possible to develop an elegant algorithm to exploit the sparsity of the representa-

tion in order to reduce both the amount of storage required and the computational

effort expended in resolving the chemistry fields.

2. Accomplishments

As a preliminary step towards a fully adaptive wavelet based scheme, a 2-D code

has been developed. The governing equations for density, momentum, stagnation

internal energy, and species mass fractions are solved using a collocation strategy.

Unlike traditional collocation methods, the governing equations are satisfied at col-

location points within the hierarchy of wavelet spaces. Due to the ability of the

wavelets to identify regions of changing continuity properties, an adaption strategy

based on the wavelet coefficients' absolute magnitude will automatically track the

flame front during the course of a simulation.
The wavelet discretization is based on a tensor decomposition of the two dimen-

sional computational domain and takes the form

= ®
= ® e • o
= •

V(a2) and W (2) are used to denote the two-dimensional scaling function and wavelet

spaces, respectively. We observe that the definition of W (2) involves a set of 'cross

correlation' spaces, denoted here by W (1), which arise via the definition of the 2-

D vector space V(a2) and by the causal property of the multiresolution analysis:

V (2)= V(_x 0 W(j2_)1. The dimensionality of the subspaces are

dim(V_ @ V_) = (2 J + 1) × 2 J = dim(V_ ® W_)

dim(W] ® V_) = (2 J) × 2 2 = dim(W_ ® W]'),

The disparity between (say) V_ and V_ arises through the span-wise periodicity in
the computational domain and is discussed further in Prosser & Cant (t998a).

For this investigation, we have chosen an initial finest resolution for the compu-

tational domain of 257 × 64 grid points. In the language of the previous equations,

this implies V(a2) = V_ ® V_. The reorganization of the domain under the action

of the bi-dimensional wavelet transform is depicted in the lower half of Fig. 1. Note

that the spanwise decomposition of the domain only occupies two subspaces while

the streamwise direction employs four subspaces. This reflects the fact that the

principal structure in the domain, the planar flame, is oriented with its normal

initially pointing in the streamwise direction.

Figures 2 and 3 show the u-velocity surface through the flame structure and its
corresponding decomposition onto a set of wavelet spaces. We see that, due to

the considerable irregularity in the physical space representation of the velocity,
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FIGURE 1. 2D tensor decomposition of initial computational domain into wavelet

subspaces.

the transform domain is not sparse. This is demonstrated in Table 1 by the large

number of wavelet coefficients greater than the prescribed thresholds.

Figure 4 shows a contour plot of the progress variable profile. We note that,

due to the comparatively short simulation time, the degree of flarne wrinkling is

not great. The wrinkling that has taken place, however, is confined mainly to the

preheat zone, which places the flame in the thin reaction zones regime discussed by

Peters (1998). The considerable length scale separation between the flame structure

and that of the computational domain leads to a non-trivial sparsity in the wavelet

representation of the progress variable profile. Table 2 presents this sparsity in
terms of the number of non-trivial wavelet coefficients measured with reference to

a given datum. The table shows that, for a threshold of 10 -5, 85.4% of the original

wavelets used to discretize the profile are redundant. The reduction in accuracy

incurred by this surgery is expressed in terms of the normalized 12 reconstruction

error shown in the rightmost column of Table 2. From the small values of these

errors, it is apparent that the approximation introduced by thresholding is very

small.

3. Future plans

3.1 Discretization of operators
on

In the present formulation, the discretization of the differential operators _ is
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e #[di,kl _ e possible compression

10 -s 16401 1.0029

10 -7 15979 1.0294

10 -6 12734 1.2917

10 -5 10010 1.6432

10 -4 5477 3.0031

Table 1. Number of u-velocity wavelet coefficients with absolute magnitude greater

than a prescribed threshold e > 0. Third column shows the possible compression

obtainable through thresholding.
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FIGURE 4. Contour plot of progress variable. Products are at the top of the plot,
and reactants are at the bottom.

via the standard decomposition;

/ }°/ ,1 }0_= Pv__,+_ Pw, 0x--T.-_-'+ _ _'
i=J-p i=J--p

While this approach is the simplest to implement, it suffers from two drawbacks:
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e #[di,k [ _> e possible compression

10 -s 8625 1.9070 2.3690 x 10 -9

10 -7 5877 2.7987 2.7555 x 10 -s

10 -6 4032 4.0794 2.7105 x 10 -7

10 -s 2407 6.8334 2.4788 x 10 -6

10 -4 1349 12.1297 2.8931 x 10 -5

Table 2. Number of progress variable wavelet coefficients with absolute magni-

tude greater than a prescribed threshold e > 0 and corresponding reconstruction

accuracy. Third column shows the possible compression obtainable through thresh-
olding.

• The number of non-zero coefficients in the 0_ operators scale asymptotically as

O(N log2 N) (Beylkin, Coifman & aokhlin 1991).

• The structure of the operator is not readily amenable to an unbounded adaption

strategy, in which an arbitrary number of discretizing nodes are introduced. Using

the standard decomposition, 0_ needs to be recalculated every time a new set of

wavelet subspaces W(j 2) are added or removed.

An alternate, more sophisticated approach is to represent the differential oper-

ators in terms of the non-standard decomposition (Beylkin, Coifman & Rokhlin

1991). In this latter technique, an arbitrary operator T can be represented as an
integral kernel;

J k(z, y)f( )dy.Tf(x)

The integral kernel is then expanded over a set of square wavelet subspaces (i.e. of

the form W_ ® W_'). The advantages of this approach are twofold:

• The number of entries in the non-standard decomposition is O(N).

• The decomposition is self-similar across resolutions and can be implemented as

a finite difference like scheme. Such an approach is much more readily amenable

to truly adaptive calculations.

3.$ Evaluation of non-linear terms

The principal expense incurred using this algorithm is during the evaluation of

non-linear terms. Presently, non-linearities are evaluated by first inverting the terms

to physical space where, after evaluation, they are re-projected onto the hierarchy

of wavelet spaces. While reasonably quick to execute, such a technique does not

provide insight into the interactions between scales in the wavelet domain nor into

the generation of aliasing errors.

Some preliminary work has been carried out in the evaluation of arbitrary non-

linearities for one dimensional wavelet expansions (Prosser & Cant 1998b). As may

be expected, the interactions produced by (say) a quadratic non-linearity introduces

mixing between the subspaces occupied by the multiplicands. More importantly,
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a new term is created, which cannot be represented on a fixed resolution grid and

which represents the generation of un-resolvable wavelet coefficients. This term
arises as a result of the increasing departure of the non-linear term from the set of

polynomials spanned by the scaling function bases alone.

From a practical point of view, the new method of evaluation is approximately
twice as fast in execution as the earlier method, and there are grounds for cau-

tious optimism that this increased execution speed may scale geometrically with

the spatial dimension of the problem.
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On the use of a dynamically adaptive
wavelet collocation algorithm in DNS

of non-premixed turbulent combustion

By Oleg V. Vasilyev 1 AND W° Kendal Bushe

1. Motivation and objectives

The ability to model non-premixed combustion is very important; many practical

combustion devices operate with non-premixed flames in the presence of turbulent

flows (Vervisch & Poinsot, 1998). Non-premixed turbulent flames are characterized

by a large spectrum of temporal and length scales. Additional complexity is added

by the large number of unknowns and by the stiffness of highly nonlinear chemical
source terms associated with realistic kinetic mechanisms. Conventional numerical

algorithms are not able to resolve all the characteristic scales affordably. As a
consequence, most of the current efforts are focused on developing model equations

using either RANS or LES methodologies.
The ability of wavelet based numerical algorithms to locally resolve the structures

appearing in the solution without drastic increase in the number of the unknowns
enables us to pursue a different avenue of research. Since most flames occupy a

relatively small volume within the domain of interest, dynamically adaptive wavelet

collocation algorithms are ideally suited for direct numerical simulations of non-

premixed turbulent flames with realistic chemistry.

Wavelet analysis is a new numerical concept which allows one to represent a
function in terms of basis functions, called wavelets, which are localized in both

location and scale (Meyer, 1990; Daubechies, 1992). Good wavelet localization

properties in physical and wavenumber (spectral) spaces can be contrasted with the
spectral approach, which employs infinitely differentiable functions but with global

support and small discrete changes in the resolution. On the other hand, finite-

difference, finite-volume and finite-element methods have small compact support

but poor continuity properties. Wavelets appear to combine the advantages of both

spectral and finite-difference bases. One can expect that numerical methods based

on wavelets will attain both good spatial and spectral resolution.
Recently Vasilyev and Paolucci (1996, 1997) have developed a dynamically adap-

tive multilevel wavelet collocation algorithm for partial differential equations in

multiple dimensions. The basic idea behind the multilevel wavelet approximation

is that a function can be approximated as a linear combination of wavelets hav-

ing different scales and locations. Adaptation is achieved by retaining only those

wavelets whose coefficients are greater than a given threshold. This property of the

1 Present address: Department of Mechanical and Aerospace Engineering, University of Missouri,

Columbia, MO 65211
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multilevel wavelet approximation allows local grid refinement up to an arbitrary

small scale without a drastic increase in the number of collocation points; thus,

high resolution computations can be carried out only in those regions where sharp
transitions occur.

The dynamically adaptive wavelet collocation algorithm is ideally suited to han-

dling problems with localized structures, which might occur intermittently anywhere

in the computational domain or change their locations and scales in space and time.

Conventional adaptive algorithms are costly because grids can change drastically

within a short time interval, thus the use of conventional algorithms on a uniform

grid is impractical. Thus, the main advantage of the dynamically adaptive wavelet

collocation algorithm is that it will use far fewer grid points than the other algo-

rithms when applied to problems with a great diversity of spatial-temporal scales.

In addition, the computational grid can be refined locally to an arbitrary small size

grid. We emphasize here that the adaptation of the computational grid does not

require additional effort and consists merely in turning on and off wavelets at differ-

ent locations and scales. Other robust properties of this algorithm are that it can

handle general boundary conditions and the relative error can be actively controlled

by prescribing a threshold parameter. All of these features make this algorithm an

attractive candidate for direct numerical simulation of combustion.

The objective of this report is to present initial results which demonstrate the

potential benefits of the use of the dynamically adaptive wavelet collocation algo-

rithm in turbulent combustion simulations. The use of wavelets in modeling com-

plex physical phenomena is something of a novelty, and as a first step to achieve the

ambitious goal of efficient numerical simulations of non-premixed turbulent flames,

we consider a simple model of laminar flame-vortex interaction.

2. Accomplishments

2.1 Wavelet approximation

The most important property of wavelet analysis is that a function is decomposed

in terms of basis functions having different discrete scales and locations. These basis

functions are constructed by the discrete (typically dyadic) dilation and translation

of a single function, which has good localization properties in physical as well as

wave-number spaces. In other words, wavelet analysis can be viewed as a multilevel

or multiresolution representation of a function where each level of resolution con-

sists of basis functions having the same scale but located at different positions. In

this report we will only describe the main points necessary to introduce the dynam-

ically adaptive wavelet collocation method. A more detailed description is given by

Vasilyev (1996) and Vasilyev and Paolucci (1997).

In one-dimensional space the wavelet basis consists of a doubly indexed function

set {_L,_(z): j, k e Z, x • R} given by

cJ a-fll2¢(x-b_)k(z) = aj ' (1)
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where ¢(x) is a one-dimensional wavelet and ¢_(x) is a wavelet of scale aj =

ao2 -j located at position bJk = ajk. Superscripts denote the level of resolution

and subscripts denote the location in physical space (with the exception of a j).

Wavelet bases can be introduced the same way in multiple dimensions, provided

that one uses an n-dimensional wavelet function ¢(x) (x E R"). We will use bold

symbols to denote n-dimensional vectors, e.g. x = (Xl,..., xn), k = (kx,..., k,),

bk = (bkl,.. •, bk.). Following this notation, an n-dimensional wavelet basis is given

by

/¢_(x) = a,,, ¢ ,..., --- , (2)
ki=l / axlj az.j

whereax,j and bj (i = 1,. ,n, j E Z, k E Z") are wavelet scales and locationskl ""

at the jth level of resolution.

Let us consider a function u(x) defined on a closed n-dimensional domain _. Let

j = 0 and j = J be the coarsest and finest levels of resolution respectively. Due

to the compact or effectively compact wavelet support, at each level of resolution

j = 0,..., J there exists a finite n-dimensional integer set Z_ such that function

u(x) can be approximated as

J

uJ(x) = _ci o v,(x),
j=O

(3)

where CJ and qJ(x) are n-dimensional arrays of wavelet coefficients and basis func-

tions correspondingly. Operator ® denotes the summation over the n-dimensional

array of indices Z_ and is given implicitly by

c, ® ¢,(x)= _ 4_(x). (4)
kEZ_

Equation (4) applies to wavelets of any dimensionality.

The next issue is how to compute wavelet coefficients for a given function u(x).

Following the standard collocation approach, wavelet coefficients are found based on

the values of a function at certain locations called collocation points. In a wavelet-

collocation algorithm a set of collocation points {x_, : k E Z_ } is defined such that

the collocation points of the coarser level of resolution are a subset of the collocation

points of the finer level of resolution. In other words, for any j (0 _< j _< J - 1) the

following relation between the collocation points at different levels of resolution is
satisfied:

Every wavelet is characterized by its location b_. Wavelets whose centers are

located within the domain will be called "internal" wavelets; those whose centers

are located outside the domain will be called "external" wavelets. The choice of
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collocation points for wavelets is not unique. For internal wavelets, the location of

the center seems to be the most natural choice for the collocation point, provided

that the wavelets are non-zero at b_. We choose the collocation points of exter-

nal wavelets to correspond to the locations of internal wavelets at finer levels of

resolution. This ensures that relation (5) preserved.

Wavelet coefficients are found in a recursive manner. We start from the coars-

est level of resolution and progressively move to the finest level. On each level of

resolution the coefficients of the lower levels are fixed so that we only obtain the

coefficients corresponding to that level. The procedure of finding wavelet coeffi-

cients can be described as a consecutive recursive application of two steps. For

each level of resolution j (0 < j < J), we first find the residual between the

approximation uS(x) and the contributions of lower levels of resolution given by

AJ(x) = uS(x) - Y_d=oJ-1C t (9 _(x) (A°(x J) = uJ(x)). We then obtain wavelet

coefficients by evaluating A/(x) at x_ collocation points and requiring the values

of the residual A/(x_) to be the same as the wavelet contribution at that level of

resolution. This requirement yields the equation:

(6)

Solving this equation gives us the values of wavelet coefficients at the j level of

resolution. We repeat this two-step recursive procedure until we reach the finest
level of resolution.

The absolute value of the wavelet coefficient c_ depends upon the local regularity

of u(x) in the neighborhood of the wavelet location. The wavelet approximation

(3) can be written as a sum of two terms composed respectively of wavelets whose

amplitudes are above (uJ>(x)) and below (u2<(x)) a threshold e:

uJ(x) = u_(x) + uJ<(x), (7)

where uJ>(x) is given by

J J

j=o j=o k_ z n

(8)

and uJ<(x) is calculated analogously with the exception that the sum includes only

wavelets whose coefficients are below the threshold, i.e. Ic_l < e. It is easy to show
that

Ibm(x)- -< (o)

where C is a constant of order unity. Thus, a good approximation is maintained

even when wavelets whose coefficients are below a certain threshold are omitted,

and only those wavelets whose coefficients are above the threshold are kept.
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_._ Dynamically adaptive wavelet collocation algorithm

In order for the algorithm to resolve all the structures appearing in the solution

and yet be efficient in terms of minimizing the number of unknowns, the basis of ac-

tive wavelets and, consequently, the computational grid should adapt dynamically
in time to reflect local changes in the solution. The adaptation of the computa-

tional grid is based on the analysis of wavelet coefficients. The contribution of a

wavelet into the approximation is significant if and only if the nearby structures

of the solution have comparable size with the wavelet scale. Thus, we may drop

a large number of fine scale wavelets with small coefficients in regions where the

solution is smooth. Every wavelet is uniquely associated with a collocation point

and, consequently, the collocation point should be omitted from the computational

grid if the associated wavelet is omitted from the approximation. This property of

the multilevel wavelet approximation allows local grid refinement up to an arbitrary

small scale without a drastic increase in the number of collocation points.

To ensure accuracy, the basis should also consist of wavelets whose coefficients

can possibly become significant during the period of time when the basis and, con-

sequently, the computational grid remain unchanged. Thus, at any instant in time,
the basis should not only include wavelets whose coefficients are above a prescribed

threshold parameter e, but also the surrounding wavelets. In other words, at any
instant in time, the basis should include wavelets belonging to an adjacent zone of

wavelets for which the magnitude of their coefficients is within an a priori prescribed

threshold. We say that the wavelet ¢_(x) belongs to the adjacent zone of wavelet

_b_(x) if the following relations are satisfied:

Ij-ll <_z, Ibik,-b_,l <_Mia_,,, (10)

where L determines the extent to which coarser and finer scales are included into

the adjacent zone and Mi defines the width of the adjacent zone in physical space.

Let us denote by G_ the irregular grid of collocation points that are retained to

approximate the solut-ion at time t. Following the classical collocation approach

and evaluating partial differential equations describing flow evolution at collocation

points, we obtain a system of nonlinear ordinary differential equations. Functional

derivatives appearing in the equations axe found by differentiating the wavelet ap-

proximation and evaluating the result at collocation points.

The present numerical algorithm consists of three steps:

1. Knowing the values of the solution u_(t), we compute the values of wavelet coef-

ficients at all levels of resolution. For a given threshold e we adjust G_+zxt based
on the magnitude of the wavelet coefficients.

2. If there is no change between computational grids G_ and _+_,t at time t and

t + At, we go directly to step 3. Otherwise, we compute the values of the solution

at the collocation points G_,+at, which are not included in G_,.

3. We integrate the resulting system of ordinary differential equations to obtain new
values ukJ(t + At) at positions on the irregular grid G_.+at and go back to step 1.
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The basic hypothesis motivating the algorithm is that, during a time interval

At, the domain of wavelets with significant coefficients does not move in phase

space beyond the adjacent zone. With such an algorithm the grid of collocation

points is dynamically adapted in time and follows the local structures that appear
in the solution. Note that by omitting wavelets with coefficients below a threshold

parameter e we automatically control the error of approximation. Thus the wavelet

collocation method has another important feature: active control of the accuracy of
the solution. The smaller e is chosen to be, the smaller the error of the solution is.

In typical applications the value of e varies between 10 -2 and 10 -5, assuming that

the unknown dependent variables have been properly normalized. As the value of

e increases, fewer grid points are used in the solution.

2.3 Model problem formulation

The model problem involves a diffusion flame interacting with a vortex pair in a

rectangular two-dimensional domain containing fuel and oxidizer on either side of

the flame. The chemical mechanism we consider is represented by single reaction
between fuel and oxidizer:

F+O=P,

where unity stoichiometric coefficients were assumed for simplicity. The reaction
rate behaves according to the Arrhenius form:

(v = KpYFPYoexp (-_-_) , (11)

where p is the density, Tac is the activation temperature, K is the pre-exponential
factor, and YF and Yo are the fuel and oxidizer mass fraction.

The characteristic scales are the length scale L*, the speed of sound c_, and the

density p_). The subscript 0 refers to the reference value at some location, and
superscript "*" denotes dimensional quantities. The reference state is that of the

unburned gas; the reference temperature Tr*ef = (7 - 1)T0* is obtained from the

equation of state, where 7 is the ratio of specific heats 7 = %/Cv. With this nor-

malization, the non-dimensional governing equations are given by (Ruetsch, 1998):

Op 0
-_ + _ (pu,) = o,

Opu_ 0 OP Or0

--_ + _ (pu,uj) - ox, + Ox----;'i = 1,2

Oe 0 1 0 1 0 (O_xj)_- + _xj [(e + P) uj] - Re Oxj (u_rij) + RePr Oxj tt

OpYF 0 1 CO ( COYF+ _ (pYFui) = -t ReScF COzj tt-_xj] - _tS,,

COpYo CO 1 CO f COYo"I

-5- + _ (pYo_j)- R_ScoCO_j_,"-5-;-/_,)-¢*w_'

p_7-1 pT,
7

(12a)

(12b)

+u;_, (12c)

(12d)

(12e)

(12f)
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where

rij =

#=

e=

__

( Oui Ouj 20uk 6ij) ,P \Oxj + Oxi 30xk

[(7- 1)T]",

1 P

_puiui + _'7-1

Ep2YFYoexp(1----fl(l(_O)'o) ) ,

1-_((7- 1)T- 1),

T(-T0
Tf '

__ I l-a(7_ i),
1+@ a

(13a)

(13b)

(13c)

(13d)

(13e)

(laf)

(13i)

(13j),

a = 0.76, -Z is the pre-exponential factor, Tf is the adiabatic flame temperature, and

@ is the equivalence ratio. Note that Eq. (13d) is the non-dimensional version of

the Eq. (11), rewritten in a form suggested by Williams (1986). The independent

non-dimensional parameters appearing in the equations are

* * * #* #*
Re- P°c°L Pr- p*C*p SCF- Sco --

I_ ' _* ' P*D*F ' p* Db '

where #* is dynamic viscosity, A* is thermal conductivity, and D,_ and D_) are fuel

and oxidizer diffusivities respectively. It is assumed that the Prandtl number Pr
and the Schmidt numbers SCF and Sco are constant throughout the flow.

The initial conditions are given by

p(xa,x2,0) = 1, (14a)

ul(xl,x2,0) = - E _@._(x_ - x2,i)exp (xl - xl,i) 2 + (x2 - x2,i) 2 (14b)
i=1 " 0"2 '

( )U2(Xl'X2'0) : E (Xl--Xl,i)exp--(Xl--Xl'i)2-}-(X2--X2'i)2= , (14c)

i=1 Ori

1
T(xl,x2,0) -- (14d)

7-1

YF(Xl,x_,O) = YF, oo - _erf , (14e)

Yo(xl,x2,0) = Yo,oo + _erf , (14e)
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conditions.
Schematic of the model problem and the computational boundary

where Ai (i = 1,2) are vortex intensities, (xl,i,x2,i) (i = 1,2) are initial vortex

locations, and erf(x) = 27r-1/2 fo e-_2d( • The domain is chosen to be [-L_,, L_,] x

[-L_2, L_], and that the initial flame is located at xl = 0. The boundary conditions

are non-reflecting outflow boundary conditions of Poinsot and Lele (1992) in xl
direction and periodic boundary conditions in x2 direction. A schematic of the

model problem with initial and boundary conditions is shown in Fig. 1.

_.4 Results

The model problem is solved using the dynamically adaptive wavelet collocation
algorithm described in Section 2.2. The tensor product of two one-dimensional

correlation functions of Daubechies scaling function of order five (Beylkin & Saito,
1993) was used to construct _b(x). The threshold parameter is set to e = 5 × 10 -3.

The adaptation of the computational grid is based on the analysis of coefficients

associated with all six dependent variables of Eqs. (12) and the chemical source

term _b_. The irregular grid G_ of wavelet collocation points is constructed as a

union of irregular grids corresponding to each dependent variable and the chemical

source term. In the present work we use the 5th order Gear implicit time integration
algorithm implemented in the IMSL routine IVPAG. The time integration step is

chosen so that the truncation error associated with the time integration algorithm
is less than e.

The problem is solved for the following set of parameters:

Re= 102 , Pr=l, SCF=SCO= 1, 7=1.4,

a=0.6, fl=4, 7_=10 a, (I)=l, YF, o_ =Yo,_= 1,

L_ =4, Lx2 = 1, A=5x10 -2 , A1 =-A2=5x10 -2 , or1 =a2 =0.15,

(Xl,i,x2,,) = (-0.25,0.2), (xl,2,x2,2) = (-0.25,-0.2).

These parameters were chosen such that the mixing layer was initially cold; the
diffusion thickness A was initially very thin so that the reaction zone would have

been difficult to resolve with a conventional numerical method. The vortex intensi-

ties and locations were chosen to mimic turbulent eddies. The chemical parameters

were chosen such that the ignition delay time would be relatively short, but the

layer would still be affected by the strain induced by the vortices prior to ignition.
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In Fig. 2, the reaction rate in the entire domain is shown at several times. The

autoignition of the mixing layer occurs between t = 2.50 and t = 3.50 acoustic time

units. At t = 3.50, the ignited diffusion flame at x = 0 is clear, as are two premixed
flames propagating away from the diffusion flame. It is clear that the reaction zone

associated with the diffusion flame is very narrow and requires a very fine grid for
adequate resolution. The reaction zones associated with the two premixed flames

are quite narrow, and to adequately resolve these would also require a fine grid;

the additional challenge here is that the reacting fronts are propagating, so refining

the mesh adaptively provides an enormous computational savings. In these figures
the affect of the vortex pair appears to be almost negligible; the mixing layer still
appears to be effectively one-dimensional.

The pressure associated with the autoignition process is shown in Fig. 3. At

t = 0.50, the hydrodynamic pressure field induced by the vortex pair is still ap-
parent. This is overwhelmed by the enormous pressure wave associated with the

autoignition process by t = 1.50 and thereafter. At the later times, two shock

waves associated with the premixed flames are clearly evident, indicating that these

premixed fronts are weak detonations--weak because, while they are initiated in

nearly stoichiometric gas, they rapidly burn into the extremes of flammability on
either side of the diffusion flame such that the heat release decreases as the flames

propagate and the strength of the associated shock wave goes down. The steep
gradients in the pressure field also pose a challenge in terms of grid resolution.

Fig. 4 shows the computational grid for each of the times shown in Figs. 2 and 3.

At t = 3.50 and t = 5.00, it is clear that the grid has adapted to resolve the steep
gradients in the reaction rate and pressure fields.

Fig. 5 shows a zoomed-in view of the reaction rate during the autoignition event,

and Fig. 6 shows a zoomed-in view of the temperature. During autoignition, the

peak reaction rate is more than an order of magnitude greater than either before

or after autoignition. The affect of the vortex pair on the mixing layer is apparent.
The vortex pair drifts towards the interface, causing strain in the middle of the

mixing layer; this in turn results in a non-uniform reaction rate along the interface.
In particular, the vortex-flame interaction results in the appearance of two hot

spots which eventually lead to autoignition. Since the reaction rate increases with

the temperature, the flame ignites locally at these spots. This process is similar

to that seen by Mastorakos et al. (1997) in two-dimensional turbulent simulations

of autoignition. The ignition process creates two triple-flame structures, similar

in character to those studied by Ruetsch et al. (1995), which propagate rapidly

towards each other and meet at t _ 3.14. After that time the triple-flames form

into the diffusion flame and two premixed detonation waves traveling away from it.

Figure 7 shows the time evolution of the total number of collocation points or,

effectively, active wavelets as a function of time. We see that the number of grid
points increased at t _ 3 when the autoignition event occurred. As the detona-

tion waves traveled away from the diffusion flame, their intensity diminished; this
resulted in a decrease of the number of grid points.
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The efficiency of the grid adaptation can be demonstrated by studying the com-
pression coefficient C = NJ/./V " which measures the ratio of the number of grid

points needed in non-adaptive computations N s (J is the maximum level of res-

olution used in the computations) and the actual number of grid points used in

the calculations .A/'. In the present calculations we used up to 5 levels of resolution

with an effective resolution (the resolution of the non-adaptive computational grid

needed to perform the same calculation) of 513 x 160 grid points. The time evolution

of the compression coefficient is shown in Fig. 8. We see a drop in the compression
coefficient at t _ 3; the compression coefficient decreases approximately three times,

which is explained by the appearance of the triple flame structure.

3. Future plans

In spite of the progress made thus far, there are still features of the algorithm

which can be improved upon. In the future we plan to improve algorithm in the

following areas:

1. To extend the existing code to three dimensions.

2. To develop an efficient implicit time integration algorithm which takes advantage

of the multilevel character of the wavelet approximation.

3. To extend the method to complex geometries, which needs to be done if one wants

to attack problems of more general relevance.

4. To adapt the algorithm for efficient use on parallel computers.

In the short term, we plan to incorporate turbulence into the problem. The ability

to resolve local flame structures and pressure waves without a drastic increase in
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the number of grid points should enable us to study turbulent flames at a Reynolds

number higher than currently possible using conventional numerical algorithms such

as those used by Bushe et al. (1997, 1998). As the numerical algorithm becomes

more computationally efficient, we will increase the complexity of the problem in

terms of incorporating a more realistic chemical kinetic mechanism and increasing
the Reynolds number.
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2D simulations of Hall thrusters

By Eduardo Fernandez, Mark Cappelli, AND Krishnan Mahesh

1. Motivation and objectives

Closed-Drift (Hall) thrusters constitute an important electric propulsion technol-

ogy for certain applications requiring low thrust levels, e.g. satellite station keeping

and orbit transfer (Gulczinski and Spores, 1996). The thrust in Hall thrusters is

generated by ions being accelerated through an annular plasma by the electric field

set up between an anode and a cathode. This electric field is strongly coupled to

an externally applied radial magnetic field which typically localizes the electric field

near the channel exit. The ions axe generated through electron-impact ionization

of Xenon neutrals. Due to their large inertia, the ions are not magnetized, and

stream out of the device without experiencing very many collisions. The electrons,

on the other hand, collide with the background neutrals as they migrate to the an-

ode across the magnetic field. The cathode is located a few centimeters downstream

of the channel exit and provides enough electrons to supply much of the discharge

current, ionize the incoming neutrals, and neutralize the beam of exiting ions.

While the overall operational characteristics of Hall thrusters are understood,

some key issues remain to be resolved. In particular, the relationship between the

various types of fluctuations in these devices and the overall engine efficiency needs

to be determined. Electron conductivity is critical in the operation of Hall thrusters

since it impacts the ionization of neutrals and the potential drop which accelerates

the resulting ions. However, it's expected (classical) value, arising from electron-
neutral and Coulomb collisions, is far too low to account for the measured electron

current (Morozov et al. 1972). Two mechanisms have been proposed to account for

the enhanced electron transport (often termed 'anomalous' in the plasma physics

literature): electron wall interactions and azimuthal fluctuations in electron density

(Morozov et al. 1972).

It is important that electron diffusion be accurately modeled if the essential

physics of the thruster are to be represented by one- or two-dimensional compu-

tations. State of the art approaches (e.g. Fife et al. 1997) assume that the electron

mobility is given by the 'Bohm model':

1 (1)
# -- 16B

where # is the electron mobility and B is the magnetic field. It is known from

experimental work that this coefficient is only approximate. 'Bohm diffusion' is

commonly used to refer to diffusion which 8cale_ as -b where the scaling coefficient

is arbitrary within a factor of 2 or 3. Early experimental (Janes and Lowder, 1960)

and theoretical (Yoshikawa and Rose, 1962) work has shown that this diffusion
arises from the correlation between fluctuations in the azimuthal electric potential
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and electron density. Given a certain phase between potential and density, the
diffusion coefficient can be cast in terms of the ratio of the rms level of electron

density to the mean electron density. One of the objectives of this work are to

evaluate the modeling of electron diffusion using Eq. (1) and develop alternative
approaches.

Another issue of interest is the experimentally observed emergence of a virulent

ionization instability in the current saturation part of the I-V curve for these engines
(Meezan et al., 1998). Unlike the azimuthal drift wave fluctuations associated with

axial electron transport, the ionization instability is believed to be deleterious to

engine performance. The more one pushes the engine into the saturation region, the
larger the amplitudes of these modes (rms levels on the order of the mean are not

uncommon). This instability appears to be caused by the non-uniform ionization

of the neutral Xenon atoms. These atoms, emerging from the back of the thruster,

enter a region (ionization zone) in which they are ionized upon colliding with the

electrons. Once ionized, the resulting ions axe quickly accelerated, thus creating a

void of both neutral and charged particles. As neutrals replenish the empty region,

ionization takes place and the sequence repeats itself. Since the ion velocity is so

much greater than that of the neutrals, the relevant timescale of the instability
should be proportional to the velocity of the incoming neutral atoms. However,

theoretical work (Fife et al., 1997) suggests that the mode frequency is, in fact,

proportional to the geometric mean of the neutral and ion velocity. That theory
implies that as the ion velocity increases, it actually dominates the mode frequency.

The heuristic picture above, however, suggests that as the ion velocity increases it

progressively decouples from the mode frequency. One of the objectives of this work
is to test the scaling of mode frequency with neutral velocity.

2. Accomplishments

_.1 Approach

Our first step has been to perform two-dimensional hybrid simulations where the

electron mobility is modeled assuming Bohm diffusion (Fife 1995). The govern-
ing equations are those used by Fife, however, details such as the computational

grid, integration scheme, treatment of nonlinear terms, and tracking of heavy PIC
particles in non-uniform grids are different.

The thruster modeled in our work is the SPT 100 Russian thruster for which a

lot of experimental data exists. The computational geometry is as that used by
Fife: it covers the channel and part of the plume.

Figure 1 shows a schematic of the computational geometry. A non-uniform or-

thogonal grid is used to span the thruster annular channel and part of the plume.

The externally imposed magnetic field is obtained by solving a Laplace equation

for the magnetic potential, having specified the geometry of the magnetic poles and

assumed infinite permeability for the pole pieces. The algorithm is a mixture of par-
ticle and fluid approaches. The electrons are treated as a fluid since their effective

mean-free-path is their gyro-radius. The ions, however, typically leave the channel

without colliding with other particles. Also, experiments show that the ion velocity
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FIGURE 1. Schematic of the computational geometry.

distributions vary markedly from Maxwellian. Therefore, the ions are treated as

particles. The neutrals are also treated as particles since they, like the ions, have

mean-free-paths longer than the length of the thruster. The details of the governing

equations are given in Fife (1995); only a short summary is provided here.

The electron momentum equation perpendicular to the magnetic field (mostly

in the axial direction since B is mostly in the radial direction) is given in terms

of a drift-diffusion equation, representing a balance between electric, pressure, and

drag forces. This form neglects inertial terms which are small in the Hall thruster.

The equation can be cast in terms of an electron mobility and diffusion coefficient,

representing the electron momentum response to electric and pressure forces applied

in the axial direction in the presence of collisions; i.e.,

n_(u_ - ui_) = -n_#(E_ + k_aT,)
ene Oh + e Oh (2)

However, there is an added contribution to the axial flux which does not arise from

axial electric or pressure forces, but rather from an E x B drift (azimuthal electric

field crossed with radial magnetic field). This component is thus given by nEo/B.

Although there is no mean Eo, this term is not zero if there are correlated n and Eo
fluctuations. A two-dimensional approach has no azimuthal direction and, therefore,

cannot capture this component. The effect of this term is, therefore, included

through an effective mobility and diffusion. So far, a lIB diffusion coefficient has
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been used. Work is underway to incorporate a more realistic, axially dependent
coefficient. Parallel to the magnetic field, the electric and pressure forces balance

each other, yielding a Boltzman relation.

¢ = kW In(- ) + ¢" (3)
e

with the electric field given by E = -V¢.

An electron temperature equation is also solved. Ionization of neutrals is a strong
function of electron temperature, which makes the electron temperature equation

an important part of the model. The equation is given by:

--_(_n, kT_) + _n _n_u_akT_ - K--_n = -n_n,_(T_)_o(T_)Ei + j_aEa (4)

where ((T,), _0(Te), and K are the ionization rate parameter, the ion production

cost, and the thermal diffusivity respectively. The functions ((T,) and _0(T,) have
exponential terms and thus are highly nonlinear. These terms are evolved in their

original forms and are not linearized, unlike Fife (1995). As in the momentum

equation, the diffusivity can be expected to be anomalous. Presently, a simple

(constant) value is taken as described by Lentz (1992). The terms on the right-

hand side of Eq. (4) are the ohmic heating source term and the ionization-induced

sink term. Since thermal conductivity parallel along field lines is much higher than
across field lines, magnetic streamlines are assumed to be isothermal. We use this

assumption and solve the temperature equation along magnetic stream lines as done
by Fife (1995).

Electron continuity is enforced via a total discharge current conservation con-

straint. Since the plasma is assumed to be quasineutral, charge cannot build up

anywhere in the device. Combining electron and ion continuity equations and in-

tegrating (along magnetic field lines) yields an equation stating discharge current
conservation. This is given by:

f

]A ne(uii, -- uei,)dS (5)

A fourth order Runge-Kutta scheme is used to time advance the temperature

equation - other variables such as electron velocity and electric potential are given

by algebraic expressions once the temperature has been obtained. The boundary
conditions on the temperature are Dirichlet at the cathode and Neumann at the

anode. For the electric potential Dirichlet boundary conditions are specified at the
cathode and anode.

The boundary condition at the anode can pose problems. Several magnetic
streamlines intersect the anode. The issue arises as to what streamline to choose

to impose the boundary condition. As far as the physics is concerned, this region
is clearly not being accurately modeled since the sheath is not being resolved. The
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model equations already imply this: Poisson's equation is not solved, but rather

quasineutrality is imposed. The concern is, therefore, not whether the the region
close to the anode is accurately modeled, but whether the boundary condition causes

numerical problems. The situation is most problematic in the transient period of

the simulation when the particles and fields have not yet esta.blished an equilibrium.

Large oscillations at the anode in temperature and potential, which turn into large
oscillations in ion velocity and plasma density, develop and are convected down-

stream. If severe enough, these oscillations can terminate the simulation. These
anode oscillations are also very problematic when one changes the diffusion coeffi-

cient.

As stated before, the ions and neutrals are evolved with a PIC approach. Since

quasineutrality is enforced, determining the ion density by interpolating to the grid

points also determines the electron density. Ion-neutral elastic, and charge exchange
collisions are ignored since their cross sections are small. Therefore, a neutral

changes its velocity only when it encounters a wall, in which case it is repelled back
in a random direction. The only force acting on the ions is the electric field (the

magnetic force is ignored due to the large ion inertia). When an ion strikes the

wall, it recombines to form a neutral which is injected back in the domain at a

random angle. Since the thruster has regions with sharp contrast of plasma and

neutral density, the ion or neutral superparticle masses are not identical. Also, the

algorithm uses a fractional time-advance step method. The fast time scale in the

system is tied to electron dynamics whereas neutral and ion motion is much slower.
In view of this fact, the neutrals and ions are time advanced every so many electron

time steps. A standard leap frog scheme is used for the time advancement in the

PIC approach.

2.2 Results

2.2.1 Evaluation of Bohm diffusion

The Bohm diffusion model for electron transport (Fife 1995) is evaluated in this

section. Our simulations show that for the SPT configuration, the use of Bohm

diffusion, as given by Eq. (1), yields electron density and ionization profiles that

peaks too far upstream as compared to experimental data, while the temperature
and electric field actually peaks downstream of the channel exit. Experimentally

it is observed that all the above profiles tend to peak roughly at the same axial

location, at the exhaust of the channel (Bishaev and Kim 1972).

This discrepancy is interpreted as being due to a diffusion coefficient which is too

large: the larger electron current produces too much ionization upstream, thereby

quickly depleting the neutral density. This results in ionization-induced temperature
losses downstream that are low while the temperature source term is still high

through the large electric field. Consequently, the electron temperature peaks too

far downstream.

It is instructive to note that that a 1D version of the numerical model which used

1 diffusion coefficient was previously used by Lentz (1992) to simulate a shortal-- _
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FIGURE 2. Time history of the discharge current in a simulation with discharge

voltage of 200 volts and mass flow rate of 3mg/s.

channel, high magnetic field Japanese thruster. In that case, the simulated and ex-

perimental profiles were in better agreement. This suggests that different thrusters

are likely to have different fluctuation characteristics and electron transport, and

that the often quoted 1 is not likely to apply to every thruster. In fact, a recent

study aimed at modeling an American-designed thruster showed that the model

reproduces the overall characteristics with a mobility of .25 (Szabo, et al. 1998).

Even if it applies to a given thruster, it's not likely that a fixed 1 value would be

successful as one varied the operational parameters since the fluctuations themselves

are a strong function of the current-voltage operational point. The relative impor-

tance of fluctuation-induced electron transport versus collisional transport depends

on the relative value of the gyro-frequency and collisional frequency. While in the

Japanese thruster the electron gyro-frequency was much larger than the collision

frequency throughout the channel (due to the broad, large magnetic field), in the

SPT these frequencies are not disparate close to the anode. However, at the channel

exit the electron gyro-frequency is more than two orders of magnitude larger than

the collision frequency. Therefore, one expects the diffusion to be a function of axial

position.
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FIGURE 3. Time history of the discharge current in a simulation with discharge

voltage of 200 volts and mass flow rate of 3mg/s. The difference from Fig. 2 is the
wall ion-neutral recombination mechanism.

2._._ Importance of heavy particle-wall interactions

The importance of electron-wall interactions has been discussed in the literature.

Our simulations indicate that wall interactions involving heavy particle collisions

also have a large influence on overall discharge dynamics. When ions strike the

walls, they recombine to form neutrals. If the recombined neutrals have large kinetic

energy they have a greater chance of leaving the channel before being ionized. This

will tend to lower the discharge current for a given discharge voltage. The converse
hold as well.

Figure 3 shows the time history of the discharge current for the same parameters

as those of Fig. 2, but with different heavy particle-wall interaction. In Fig. 2,

ions that strike the walls recombine to form neutrals which emerge at random
direction with the ion's velocity. In Fig. 3, the recombined neutrals are injected

back with random directions with the inflow neutral velocity. We see that the effect

on discharge current is significant. The average discharge current is 2.5 amps as

compared to the experimentally measured 3.1 amps. Given the strong sensitivity of

the results to the chosen diffusion coefficient, it is not that meaningful at this point

to comment on the quantitative difference between simulation and experimental

results. The effect of the heavy particle wall interaction is also seen on plasma
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density: Fig. 3 corresponds to a higher plasma density than Fig. 2. The reason
for the rise in discharge current (or plasma density) in the second case is that

the neutrals coming off collisions with the walls, having lower speed, have a larger
chance of being ionized. In reality, the speed of the neutrals after the collision will

depend on the wall temperature as well.

_.I_.3 Scaling of low frequency/oscillations

Recall that characterizing the strong, ionization instability is of special interest for

Hall thrusters as it sets limits to the operation of these engines. Figure 2 shows the

time history of the discharge current for a simulation with discharge voltage of 200

volts, mass flow rate of 3rag/s, and peak magnetic field of 180 gauss. One observes

that the steady state achieved is non-stationary, with large 7 kHz oscillations. This

mode corresponds to the ionization instability described above. Superimposed on

the dominant mode lie higher frequency components. The discharge current oscilla-
tions are about 20 per cent of their mean values. A simulation run with a flow rate

of 5mg/s but with otherwise same parameters (including the same neutral velocity

at the inflow) gives oscillations of about 60 per cent. Similarly, as one increases

the voltage in the current saturation portion of the current-voltage curve, the rms

oscillations are expected to increase. While high mass flow rates and high voltages

are desirable, the ionization instability becomes very virulent and can extinguish
the discharge, thus setting a limit on the operation of these engines.
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Fife's et al. (1997) analysis of the ionization instability shows that the mode

frequency scales as the geometric mean on the neutral and ion velocities. However,

the theory is based on a small perturbation analysis which may not apply given the

large rms levels of the instability. Intuitively, ene rather expects the frequency to

scale linearly with the neutral velocity, especially as the ion velocity tends to be

much larger than the neutral velocity. The linear relationship is, in fact, observed in
Fig. 4. The parameters for the simulation are the same as those in Fig. 2. We only

changed the velocity of the neutrals at the inflow, while keeping the mass flow rate

constant. The inverse of the slope of the linear fit through the data points yields a

length of 4.3 cm. This length should reflect the extent of the ionization region. In

fact, this region in the simulation is probably only 3 cm. The characterization of the

mode frequency as the neutral velocity divided by the ionization region thus appears
to be only qualitatively valid in view of the simulation results. Similar simulations

with other voltages and mass flow rates should be performed to better characterize

this mode. In particular, the notion that this mode is non-propagating (in the axial
direction) and thus acts more as a standing wave needs to be reexamined. Present

simulations suggest that the peak of the ionization rate profile moves back and forth

about .75 centimeters axially, which would imply that the mode in fact propagates.

Further simulations are warranted in view of the fact that previous simulations have

not reported or seen this effect.

3. Conclusions and future plans

Two-dimensional simulations of the Hall thruster have been performed as a first

step in an ongoing computational effort at CTR. The simulations reproduce some

of the overall features observed in experiments such as the strong ionization insta-

bility. A linear relationship between the frequency of the instability and the neutral

velocity at the inflow is predicted.

Modeling electron transport assuming Bohm diffusion is found to be problem-

atic. The model results strongly depend upon the Bohm diffusion coefficient and
can disagree strongly with experiments if appropriate values are not chosen. The

thruster dynamics are also strongly influenced by heavy particle-wall interactions.

We believe that improving the form of the diffusion coefficient will greatly improve

the results. The theory of Yoshikawa and Rose serves as an excellent starting point

in this task: the diffusion coefficient will no longer be a fixed value, but will rather

depend on fluctuation amplitudes, becoming an axially-dependent 'eddy diffusiv-

ity'. Alternatively, work is underway to extract a diffusion coefficient by fixing the

location of the ionization region, which can also be obtained from the magnetic field
profiles.

Preliminary numerical experiments in which a magnetic field perturbation has

been superposed to the equilibrium were performed. The results (not shown) sug-

gest that the strong discharge current oscillation can be affected by applying a

perturbation of the same frequency as the natural mode. By adjusting the phase of

the applied perturbation, we were able to suppress the mode for about one and one

half periods before it developed again. We must caution, however, that the form of

the diffusion coefficient could greatly affect these results.
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Another numerical experiment to be attempted in the near future consists of in-

jecting a small amount of xenon neutrals from the exit computational boundary.
This is meant to model the experimental situation in the laboratory in which a

vacuum is never completely achieved. The neutrals can potentially affect ioniza-

tion rates, electron temperature, and maybe even more importantly, the ionization

instability. A quantitative prediction on the effect of these neutrals on engine per-
formance would prove to be quite useful.
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Computation of trailing-edge noise at low
Mach number using LES and acoustic analogy

By Meng Wang

1. Motivation and objectives

The present work is a continuation of the work described in the previous annual

research briefs (Wang 1996, 1997). The objectives of the project are twofold: (1) to

develop numerical prediction methods for trailing-edge noise, using a combination

of large-eddy simulation (LES) and Lighthill's theory; and (2) to generate a reliable

numerical database for the study of noise source mechanisms.

Trailing-edge aeroacoustics is of importance in both aeronautical and naval ap-

plications. It is, for example, related to airframe noise, rotor and propeller noise,

and noise from underwater vehicles. When turbulent boundary layer eddies are

convected past the trailing edge of a large (relative to acoustic wavelength) body,
their aeroacoustic source characteristics are modified by the edge, and a more efll-

cient source results (Ffowcs Williams & Hall 1970; Crighton & Leppington 1971).

This scattering mechanism produces strong, broadband radiation to the far-field.
If there is coherent vortex shedding, typically associated with blunt trailing edges

and/or high angles of attack, tonal or narrowband noise is also present. In addi-

tion, the highly unsteady edge flow may cause low frequency vibration of an elastic

strut and hence noise radiation. To determine the structural vibration modes, the

space-time characteristics of surface-pressure fluctuations are frequently required as

a forcing-function input.

The case under study corresponds to the experiment conducted by Blake (1975).

The flow configuration is shown in Fig. 1. A flat strut with a circular leading

edge and an asymmetrically beveled trailing-edge of 25 degrees is placed in a uni-
form stream at zero-degree angle of attack. The strut's chord is C = 21.125h and

span is L = 23.5h, where h is the thickness. The Reynolds number based on free-

stream velocity Uoo and the chord is 2.15 × 10s. The free-stream Mach number

M = Uoo/coo ,._ 0.088. Statistical measurements of velocity and fluctuating surface

pressure fields in the trailing-edge region are available for comparison with compu-

tational results. Acoustic measurements were not made in this experiment although

they were made in a separate experiment (Blake & Gershfeld 1988) under different
flow conditions, using trailing-edges similar but not identical to the one in Fig. 1.

In the next section we first summarize the LES of the near-field, which pro-

vides the acoustic source functions (the fluctuating Reynolds stress) as well as the

space-time characteristics of surface pressure fluctuations. The statistics are fully

converged and should supersede the preliminary results presented in Wang (1997).

Next, we discuss the computation of the radiated far-field noise. The calculations

are based on an integral-form solution to the LighthilI equation with a hard-wall

Green's function (Ffowcs Williams & Hall 1970).
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FIGURE 1. Flow configuration and computational domain. The experimental

measurement stations B-G are located at x/h = -4.625, -3.125, -2.125, -1.625,

- 1.125, and -0.625, respectively.

2. Accomplishments

2.1 Update on near-field LES

2.1.1 Methodology

A detailed description of the numerical algorithm and procedure can be found in

Wang (1997). The spatially filtered, unsteady, incompressible Navier-Stokes equa-

tions are solved in conjunction with the dynamic subgrid-scale model (Germano et
al. 1991; Lilly 1992). The numerical scheme employs second-order central differ-
ences in the streamwise and wall-normal directions and Fourier collocation in the

spanwise direction. A semi-implicit (Crank-Nicolson for viscous terms and third

order Runge-Kutta for convective terms), fractional-step scheme is used for time

advancement. The pressure Poisson equation is solved at each Runge-Kutta sub-

step using a multi-grid iterative procedure.

Simulations are conducted in a computational domain containing the aft section

of the strut and the near wake, as illustrated schematically in Fig. 1. Except for

the inlet, the other three sides of the domain have been truncated for clarity. The

actual domain size is approximately 16.5h, 41h, and 0.5h, in the streamwise (xl),
wall normal (x2), and spanwise (xa) directions, respectively. The computational

grid, defined in curvilinear coordinates in the xl-x2 plane and Cartesian coordinate

in xa, uses a total of 1536 × 96 × 48 points, with appropriate clustering in the

near-wall and trailing-edge regions. Of the 1536 streamwise grid points, 640 are

distributed along the upper surface, 512 along the lower surface, and 2 × 192 along

the wake line (branch cut). The maximum grid-spacing along the strut surface,

measured in wall units, is Ax + ,_ 62, Ax + _ 55, and Ax + _ 2. The simulation,
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FIGURE 2. Profiles of the normalized mean velocity magnitude as a function of

vertical distance from the upper surface, at stations (from left to right) C, D, E,

F, and G. _ LES; • Blake's experiment. Individual profiles are separated by a

horizontal offset of 1 with the corresponding zero lines located at 0, 1, ..., 4.

running at a maximum CFL number of 1.5, requires 200 single processor CPU

hours on a CRAY C90 to advance one flow time across the streamwise domain

length, and over 1000 CPU hours for the complete simulation. The velocity and

pressure statistics presented below are collected over a period TsUoo/h ._ 60.62, or

3.67 flow-through times based on free-stream velocity.

The inflow velocity profiles outside the boundary layers are provided by an auxil-

iary RANS calculation in a C-grid domain enclosing the entire strut, using Menter's

(1993) SST k-w model. Within the turbulent boundary layers, the time-dependent

inflow velocities are generated from two separate LES's of flat-plate boundary layers

with zero pressure gradient, using the method described by Lund, Wu _z Squires

(1998). The local momentum thickness and Reynolds number are matched with
those from the RANS simulation. At the downstream boundary the convective out-

flow condition (Pauley, Moin & Reynolds 1988) is applied. The top and bottom

boundaries are placed far away from the strut to minimize the impact of the im-

posed velocities obtained from RANS calculations. A no-slip condition is applied

on the surface of the strut.

The letters B, C, D, E, F, and G in Fig. 1 indicate measurement stations in

Blake's experiment. They are located at xl/h = -4.625, -3.125, -2.125, -1.625,

-1.125, and -0.625, respectively (the Cartesian coordinate system originates from

the trailing edge). In Section 2.1.2 representative results are presented at these

stations, and comparisons made with experimental values.

2.1.2 Simulation result_

In Fig. 2, the magnitude of the mean velocity U = (U 2 + U2) 1/2 normalized by its
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FIGURE 3. Profiles of the rms streamwise velocity fluctuations as a function of

vertical distance from the upper surface, at stations (from left to right) B, D, E,

F, and G. _ LES; * Blake's experiment. Individual profiles are separated by

a horizontal offset of 0.15 with the corresponding zero lines located at 0, 0.15, ...,
0.60.

value at the boundary-layer edge Ue is plotted as a function of vertical distance from

the upper surface at streamwise stations (from left to right) C-G. The solid lines are

from LES, and the symbols represent Blake's experimental data. Good agreement

with the experimental results is obtained at station C and all the upstream locations.

At stations D and E, where the boundary layer is subject to strong adverse pressure

gradient (cf. Fig. 4) but remains attached to the wall, the LES profiles are more full

in the near-wall region than those from the experiment. Further downstream, as an

unsteady separated region develops, the discrepancy diminishes, and the computed

profiles compare well again with the experimental results at stations F and G.

Figure 3 compares the computational and experimental profiles of the rms stream-

wise velocity fluctuations at stations (from left to right) B, D, E, F, and G. The

agreement between the LES and the experimental results is quite good except in

the near-wall region and at the last two stations. The experimental profiles are

seen to consistently miss the near-wall peaks known to exist in turbulent boundary

layers, suggesting a possible lack of spatial resolution or high-frequency response

as the probe approaches the wall. The large discrepancy observed in the separated

region (stations F and G) may be caused by both simulation and measurement

errors. In general, hot-wire readings become increasingly difficult to interpret if the

rms turbulence intensity exceeds 30% of the local mean velocity (Bradshaw 1971),

which is the case in the separation bubble where the mean velocity is very small

(cf. Fig. 2).

The dimensionless mean pressure (= Cp/2) is depicted in Fig. 4 as a function of
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FIGURE 4. Mean surface pressure distribution near the trailing edge.
• Blake's experiment.

LES;

xl/h. The comparison between the LES and experimental results is reasonable in

the trailing-edge region but unsatisfactory upstream of it. The experimental data

plotted here differ from those documented by Blake (1975) and referenced by Wang

(1997) earlier. The new data set, based on the original record of his 1975 experi-

ment, was provided by Blake (1998, private communication) after the completion of
the present LES. Of particular interest is the additional data point measured on the

lower surface (the upper point at xl/h = -7.125 in Fig. 4), which sheds some light
on the fidelity of inflow velocity conditions used in the simulation. Based on this

point and assuming that the mean pressure is approximately constant on the lower

surface as suggested by the LES prediction, it is evident that the lift and hence

circulation in the experiment are much smaller than those in the LES. Since the

circulation in the LES is imposed through the unequal mean velocity profiles on the

two sides of the strut at the inlet boundary (cf. Fig. 2 in Wang 1997), one concludes

that the inflow velocity difference has been exaggerated. Indeed, an estimate using
Cp and the Bernoulli equation indicates that in the experiment the inflow veloc-

ities at the boundary layer edges are U_ ppcr ,,_ 1.071Uoo and U_°w*r '_ 1.032Uo_,

compared with U: pp*r _ 1.093Uoo and Ut,°we" ,_ 0.979Uoo used in the LES. Unfor-

tunately, the several RANS calculations conducted earlier using different turbulence

models all predict circulations much larger than the experimental value. The one
chosen to provide the LES inflow profiles actually has the smallest circulation.

Figure 5 shows the space-time correlations of the upper:surface pressure fluctua-
tions as a function of temporal and spanwise separations at stations C-G and the

trailing edge (actually, one half grid spacing from the edge on the staggered mesh).

The iso-correlation contours show relatively small variations of the spanwise spatial

and temporal scales from stations C to E underneath the attached boundary layer

with adverse pressure gradient. A dramatic increase of spatial and temporal scales

occurs, however, after the turbulent boundary layer becomes separated (stations
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FIGURE 5. Contours of space-time correlation of the upper-surface pressure fluc-

tuations as a function of spanwise and temporal separations, at stations (a) C; (b)
D; (c) E; (d) F; (e) G; and (f) trailing-edge. Contour values are from 0.1 to 0.9,
with increment 0.1.

F, G, and the trailing edge). The wall pressure fluctuations inside the separated
zone are dominated by the effect of large scale fluid motion. The small scale eddies

from the upstream boundary layer are lifted away from the wall and hence their

contribution to the wall pressure is diminished. At the trailing edge, the correlation
contours exhibit some features of small-scale correlation superimposed on the ex-

tremely large overall scales, because of the contribution from the attached boundary

layer on the lower side of the edge.

It is noted that the correlation contours in Fig. 5 show insufficient drop at max-

imum spanwise separations inside the separated region, particularly at station G

and the trailing edge. This suggests that the computational domain is too restric-

tive in the spanwise direction to allow the development of fully three-dimensional
large-scale flow structures. The effect of the small spanwise domain size on the low-

order flow statistics described above has not been investigated. In addition, it has

important implications to the acoustic prediction, as will be discussed in Section
2.2.

Figure 6 depicts the frequency spectra of wall pressure fluctuations calculated

from LES and compares them with those from Blake's experiment. The variables

used for normalization are Uoo, h, and the dynamic pressure qoo = pU_/2. The

calculated spectra agree relatively well with the experimental data at most stations

except station G, where the spectrum is significantly overpredicted. One notices

that before the boundary layer separation (stations C-E), the LES spectra drop
off more quickly than the experimental spectra at the high frequency end due to

limited grid resolution and finite difference errors. The high frequency content
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FIGURE 6. Frequency spectra of wall pressure fluctuations at stations (a) C; (b)
D; (c) E; (d) F; (e) G; and (f) trailing-edge. _ LES; * experiment.

corresponds to fine spatial structures not resolved on the simulation grid. After the
separation, however, the small scale effect is diminished, and the LES is capable of

capturing the entire frequency range measured by the experiment. The spectrum

at the trailing edge, where no experimental data are available, again consists of

contributions from the upper (separated) and lower (attached) boundary layers.
The latter is responsible for the high frequency peak shown in the figure.

_.2 Noise computation

_. 2.1 Formulation

The noise radiation to the far-field is calculated in the framework of Lighthill's

theory (Lighthill 1952). Crighton & Leppington (1971) show that the trailing-
edge noise field has a non-multipole character, which is caused by the fact that the

scattering surface is noncompact relative to the acoustic wavelength. To account for
the surface reflection effect, a hard-wall Green's function, whose normal derivative
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FIGURE 7. Coordinate system for calculating the radiated noise of flow past the

trailing-edge of a semi-infinite flat plate.

vanishes on the surface, must be employed in an integral solution to the Lighthill

equation.

When the acoustic wavelength is much longer than the thickness of the strut but

much shorter than the chord (h << Aa << C), the strut is reasonably approximated

by a semi-infinite plane with zero thickness, for which the far-field Green's function

is known analytically. The far-field pressure perturbation in the frequency domain

can be written in the form (Ffowcs Williams & Hall 1970)

2c-i 2 O/v e'kR (sin¢)½ { ( _Oo_a(a:,w) _ -------r--k sin u2_-u2r) sin
rr_ 2 4rrR (2kr0)_ p_o 2

O0) a

-2p_u'Tgo cos --_ _ d y. (1)

where the caret denotes temporal Fourier transform, w is the circular frequency,

and k = w/co_ the acoustic wavenumber. The velocity components ur and ue are

defined in a cylindrical-polar coordinate system shown in Fig. 7. Position vectors a:

(r, 0, z) and y (r0, 00, z0) represent far-field and source-field points, respectively,

with R = Ix - y[ and sine = r/[r 2 +(z - z0)2]½.

In addition to the approximate Green's function, several assumptions are implied

in (1). The viscous stress is assumed unimportant as a noise source at high Reynold

numbers. The convection, refraction, and scattering of acoustic waves by the tur-

bulent flow are ignored, which is justifiable in the low Mach number limit except

at very high frequencies and/or at 8 values close to zero or 7r. Furthermore, the
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integrand in (1) is derived for a source region well within one acoustic wavelength

(kr0 << 1 or r0 << Aa). Although only eddies within this distance contribute to the

amplified scattering noise, from a computational point of view it may be desirable

to integrate further out for better convergence (boundary-independence of the vol-

ume integral), given the (kr0) -3/2 decay of the Green's function factor. A more

general integral expression valid for all r0 values is given in Wang (1996). However,

noise calculations using both integrals show only a small difference, and hence the

simpler expression (1) will be used here.

2.2.2 Evaluation of source terms

In the context of LES, the Lighthill stress is formally expressed as Tij = puiuj +

pvu, where the overline indicates spatial filtering and the entropy and viscous terms

are ignored. It consists of nonlinear interactions among resolved scales (first term)

and the subgrid scale contribution to the resolved scales (second term). Piomelli,

Streett, &: Sarkar (1997) examined the effect of small scales on sound generation

using a channel flow DNS database. In the present computation, the Lighthill stress

terms are evaluated using the resolved velocity components only, assuming that the

subgrid scale contribution is relatively small. It is noted that the dynamic SGS

model used in the source-field simulation gives only the anisotropic part of the

SGS stress tensor, TU -- tfijvkk/3, and thus the normal stress components cannot be

determined. If one desires to include prii in the noise calculation, an alternative

formulation of the SGS model such as the dynamic localization model (Ghosal et

al. 1995), which solves an additional equation for the subgrid-scale kinetic energy

.rkk/2, should be used.

To compute the source terms u2_-u 2 and -2u'7_-0 in (1), the Cartesian velocity

components Ul and u2 on the entire computational grid are saved every 10 time

steps during the source-field LES. The sampling resolution At_Uoo/h _ 0.029. The

total record of N = 1152 time samples, covering a period T_Uoo/h ,_ 33.47, is

divided into 8 segments with a 50% overlap. For each segment, which contains 256

2 and -2uruo are computed. The aperiodicsamples, the source quantities u_ - ur

time series are multiplied by the Hanning window function, and discrete Fourier

transforms are performed. To compensate for the energy loss due to the Harming

window tapering, the resulting Fourier coefficients are renormalized such that the

power spectrum computed from them, when integrated over all positive frequencies,

gives the mean-square fluctuations of the original function.

As a result of the above procedure, 8 sets of the source terms as a function of

frequency w and spatial coordinates y are available. Each set can be used in (1)

to give a sample noise field. The noise power spectra are obtained as the ensemble

average of the spectra from all sample fields.

Figure 8 depicts the magnitude of the Reynolds shear-stress source term (nor-

malized), [ - 2u-'(ffol/U_, in the trailing-edge region at 4 selected frequencies. The

other source term representing the normal stress behaves in a qualitatively similar

manner. The source magnitudes are averaged over the 8 samples and the spanwise

direction. The contour lines show that the spatial distribution of the acoustic source

varies significantly with frequency. The low frequency source, associated with the
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FIGURE 8. Contours of the magnitude of the acoustic source term -2u"_ffo/U_ at
four different frequencies. Contour levels (× 102): (a) 0.20 to 3.40, with increment

0.20; (b) 0.20 to 3.00, with increment 0.20; (e) 0.10 to 1.40, with increment 0.10;
(d) 0.03 to 0.42, with increment 0.03.

large scale unsteady flow structures, exhibits strength in a large region including

the wake (cf. Figs. 8a and 8b). The largest values are found in the shear layers em-
anating from the upper (separated) and lower (attached) boundary layers. As the

frequency increases (Figs. 8c and 8d), the source distribution becomes more con-

centrated, particularly in the lower shear layer close to the trailing edge. The wake
region farther from the edge contributes little to the high-frequency source terms
due to a lack of the corresponding small-scale flow structures. In the convolution

integral (1), the source terms shown in Fig. 8 are weighted by a (kro) -3/2 factor,

and thus the effective noise source is much more concentrated in the trailing-eddy
region.

2._.3 Radiated field

Trailing-edge noise from a source region consisting of the computational domain

can be readily obtained by evaluating the volume integral (1) numerically. As an

example, Fig. 9 shows the contours of the real part of the acoustic pressure pa/Po_

in the xl-x2 plane crossing the mid-span, for wh/U_ = 1.68 and 6.75. The trailing

edge is located at xl = x2 = 0, and the Math number used in this example is

M = 0.1. In the figure the frequency dependence of the wavelength and amplitude
0

is evident, as is the distinct edge-noise direetivity pattern dictated by the sin
factor in (1). The noise spectra can be obtained from the product of _a and its

complex conjugate. It should be mentioned that Fig. 9 is based on a single sample

of source functions. Statistical averaging can be done after the noise spectra from
multiple source samples have been obtained.
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FIGURE 9. Contours of the real part of the acoustic pressure pa(X,w)/Pac from

sources within the LES Domain at M = 0.1, at two different frequencies. Contour

levels (× 106): (a) -5.70 to 3.90, with increment 0.60; (b) -0.255 to 0.255, with

increment 0.03.

In a typical LES, the spanwise width Lz of the computational domain is only a

small fraction of the actual span L. For example, L/Lz = 47 for the present LES

of Blake's experiment. To predict the frequency spectrum of the sound pressure

radiated from the entire span, one requires knowledge about the spanwise coherence

of the source field. Kato et al. (1993) discussed this issue in their calculation of

noise from a cylinder wake. Let Az = Az(w) denote the coherence length for a given

frequency, two limiting cases can be found for which the total noise is well defined.

(a) If Lz > Az, source regions separated by the computational box size radiate

in a statistically independently manner. Hence, the total noise spectrum is the sum

of contributions from L/L_ independent source regions along the span: ¢I:'_,°_at

(L/L_)'_pa.

(b) If L < Az, the source is coherent along the entire span (2-d source). Based

on (1), if the spanwise variation of the retarded time is ignored, _otat ,._ (L/L_) _,,

and hence -p_t°t_l ,_ (L/L_) 2 _p_.

In the intermediate regime L: < A: < L, an accurate prediction of the total

sound pressure is difficult to achieve. The computational domain is too small to

accommodate the spanwise flow scales, and thus the acoustic source functions are

not computed reliably. The rigorous remedy is to increase the computational box

size L: so that case a or b described above applies. This is, however, often pro-

hibitively expensive. Kato et al. (1993) resorted to an ad hoc approach in which

A: is approximated by extrapolating from the slowly-decaying coherence function,

and a hybrid formula based on cases a and b is used to estimate the total noise

radiation.
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FIGURE 10. Frequency spectra of the far-field noise at r/h = 150 and M = 0.088.

-- Spectrum calculated from a partial source field (the LES domain); .... total

spectrum assuming Lz >_ Az; ----- total spectrum assuming L _< Az; ........ total

spectrum using periodic source extension in span.

Another ad hoe approach employed by previous investigators is the periodic ex-

tension of the computed source field to the entire span. The volume integral (1) is

then taken over the expanded domain. This approach is essentially equivalent to

the approach used in ease b described above except that the integration takes into

account retarded-time variations along the span. Manoha, Troff & Sagaut (1998)

used this method in their calculation of the noise from a blunt trailing edge of a fiat

plate.

In Fig. 10 several noise spectra are plotted as a function of frequency at r/h = 150

and M = 0.088. Note that the normalization factor for the spectra includes Mach

number dependence and direetivity. The solid line is computed from the thin slab

of the source field within the LES domain. The total noise spectrum under the

incoherent source assumption (case a) is given by the dashed line, whereas the

coherence source calculation (ease b) gives the chain-dashed line (the top curve).

These two curves serve as the lower and upper bounds of the true noise spectrum.

The spectrum calculated using periodic source extension in xa, shown as the dotted

curve, coincides with that from the coherence-source calculation at low frequencies

but drifts to lower values at higher frequencies due to the increasing importance of
retarded time variations.

The frequencies corresponding to ,ka = C and h are given by wh/Uoo _, 3.38 and

71.4, respectively. They define the frequency range in which the half-plane Green's
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function is approximately valid. Outside this range other appropriate Green's func-
tions should be used. In particular, when Aa >> C, the strut is acoustically compact

and thus the free-space Green's function is applicable. Curle's (1955) integral solu-

tion to the Lighthill equation provides a useful tool for noise computation (Wang,

Lele, & Moin 1996). At high frequencies (Aa < h), the Green's function must in

principle be tailored to the specific trailing-edge shape. However, the potential accu-

racy improvement is limited, given the relatively small tip-angle of the edge and the

competing high-frequency errors caused by the neglect of flow-acoustic interaction

and subgrid-scale contribution to the acoustic source functions. The local spectrum

peak in Fig. 10 near wh/Uo_ = 23.6 is caused by the diffraction of boundary layer
eddies from the lower side.

As pointed out previously, Blake's (1975) experiment does not include acoustic

measurements, and thus a direct comparison with the numerical predictions cannot
be made. As a qualitative assessment, the acoustic pressure spectra from a different

experiment (Blake _: Gershfeld 1988) have been used to compare with the spectra

shown in Fig. 10. The experimental data (not shown) are found to be concentrated
at the low frequency end and lie between the coherent-source and incoherent-source

predictions.

A complete determination of the far-field noise requires the spanwise coherence

of the source-field to be computed. For a given field quantity q, the coherence is
defined as

tCqq(X' r'w)12 (2)
72(Z,_,W) = ]_qq(X,O, o2)ll_qq( _ + r,O, al)l'

where the cross spectrum function Cqq is the Fourier transform of the space-time
cross correlation function

£Oqq(X,r,w) = (q(x,t)q(x + r,t + _'))e-i_dv. (3)

An estimate of 3'2 is made based on the fluctuating surface pressure (q = p) in

the vicinity of the trailing edge under the premise that it is representative of the
overall coherence of the volume distribution of source terms in (1). Figure 11 shows

the spanwise pressure coherence on the upper surface, one half grid spacing from

the trailing edge. The left plot shows the iso-coherence contours as a function of

frequency and spanwise separation. The coherence is seen to drop rapidly with

spanwise separation except at the low frequency end. The coherence at selected
low frequencies is depicted in the right plot as a function of spanwise separation.

It is observed that for wh/Uo_ > 5.26, the coherence exhibits sufficient drop within

the computational domain, and thus ¢btotal_p_ _ (L/Lz)_p_ applies. The dashed
curve in Fig. 10 gives the total noise spectrum. Below this frequency, however, the

coherence length is larger than the spanwise dimension of the computational box,
and the total noise cannot be determined with certainty. Given the fiat shape of 72

at large separations shown in Fig. 11 (the solid and dashed lines), it is not possible
to obtain the coherence lengths by extrapolation as in the case of Kato et al. (1993).
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FIGURE 11. Spanwise coherence of the fluctuating surface pressure on the upper

surface near the trailing edge. (a) Contour plot (contour levels from 0.1 to 0.9,

with increment 0.10). (b) Coherence at frequencies wh/Uoo ,_ 1.75 (_), 3.51
(.... ), 5.26 ( ........ ), 7.01 (-----), and 8.76 (-----).

3. Summary and future work

A large-eddy simulation has been carried out for turbulent boundary layer flows

past an asymmetrically beveled trailing-edge of a flat strut at a chord Reynolds
number of 2.15 × 108. The asymmetric edge of 25 degree tip-angle produces a

separated boundary layer on one side and an attached boundary layer on the other.

The computed mean and fluctuating velocity profiles compare reasonably well with

the experimental measurements of Blake (1975). The discrepancies observed at some

stations (D, E for mean velocity and F, G for fluctuating velocity) may have been
caused by inadequate inflow velocity conditions and small computational domain

size as well as possible experimental errors near the wall and inside the separated
region.

The inflow velocity profiles constitute a major uncertainty for the LES since they
are not available from Blake's experiment. Based on the additional mean surface

pressure data provided recently by Blake, it appears that the RANS calculations

used to provide the inflow mean velocities have exaggerated the difference between
velocities on the two sides of the strut, and hence the circulation. This is evidenced

by the significant discrepancy between the mean surface pressure distributions from
LES and the experiment.

Thus, future simulations should use more accurate inflow velocity profiles associ-

ated with a smaller circulation. The exact profiles are, however, difficult to obtain
without additional experimental measurements. While it is possible to deduce from

the experimental Cp data the approximate velocity magnitudes at the boundary

layer edges near the inflow boundary, this approach does not give the detailed pro-
files extending to the outer computational boundary.
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The objectives of the trailing-edge flow LES are to predict the space-time charac-

teristics of surface pressure fluctuations and to provide the acoustic source functions

for the far-field noise calculation. The frequency spectra of surface pressure fluc-

tuations obtained from LES agree well with experimental measurements at most

stations. The cause for the significant overprediction at station G needs to be fur-

ther investigated. The spaze-time correlations of the flucttiating surface pressure

demonstrate a dramatic increase in temporal and spanwise spatial scales beneath

the unsteady separation region. The correlation functions near the trailing-edge
show insufficient drop at maximum spanwise separations, suggesting the need for a

wider computational domain.

The far-field acoustics is computed from an integral-form solution to the Lighthill

equation using a hard-wall Green's function (Ffowcs Williams & Hall 1970). The

Green's function is approximated by that for an infinitely thin half-plane, given

the thin foil (relative to acoustic wavelength) and the small included angle of the

trailing-edge. The acoustic evaluation is performed in the Fourier frequency domain

and requires the storage and processing of large amount of time-dependent, three-

dimensional source field data obtained from LES. Computations have been carried
out to determine the source-term characteristics and the fax-field noise spectra. To

accurately predict the noise radiation from the entire span using a partial source field
included in the LES domain, it is required that the spanwise domain size be larger

than the coherence length of the source field in that direction. The present LES is

found to be adequate for predicting noise radiation over a wide frequency range. At

low frequencies, however, the spanwise source coherence estimated based on surface

pressure fluctuations does not decay sufficiently. This issue will be addressed in

future simulations using an expanded computational domain.
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Weakly nonlinear modeling of the
early stages of bypass transition

By S. A. Maslowe

1. Motivation and objectives

Under ideal conditions, boundary layer transition occurs in a six-stage process

described, for example, by Stuart (1965). The first stage is that of linear instability,
and its onset is predicted accurately by two-dimensional normal mode solutions

of the Orr-Sommerfeld equation. In the Blasius case, the critical Reynolds number

based on displacement thickness is approximately Re6. = 520 and the exponentially

growing modes observed at slightly larger values of Re_. are known as Tollmien-

Schlichting instabilities.

In many important engineering applications, however, transition to turbulence

is known to occur at sub-critical Reynolds numbers, and in extreme cases the

Tollmien-Schlichting stage may be entirely bypassed. Responsibility for this by-

pass phenomenon may be linked, for example, to surface roughness or structural

vibrations, but in this report we shall be concerned with free-stream turbulence
as the source. The reason is that the application of primary concern here is to

turbomachinery, where a high level of free-stream turbulence is often produced by

upstream stages.
We also wish to investigate the effect of streamwise pressure gradients on bypass

transition. The adverse pressure gradient case is of most concern because transition

on compressor blades, as well as flow over airplane wings, usually takes place in

a region of adverse pressure gradient. However, transitional flows in the presence

of a favorable pressure gradient are also of interest. This is particularly true in

low-pressure turbines and occurs occasionally in compressors as well.

Experimental studies of the influence of free-stream turbulence on transition re-

veal the presence of longitudinal vortices with a quasi-periodic structure in the
spanwise direction; these are sometimes termed Klebanoff modes. At some point,

what may loosely be termed secondary instabilities are observed, and these cause a

breakdown of the organized structures into turbulence. The secondary instabilities

are usually attributed in the Blasius case to a distortion of the velocity profile such

that it develops inflection points (see, e.g., Wundrow & Goldstein (1998)).

Nonlinearity is an essential feature of bypass transition, and the process is clearly

of such complexity that only a numerical simulation could describe all the stages.

However, DNS simulations are time consuming, and there are many parameters in
the problem that can be varied. Analytical methods are needed to suggest optimal

initial conditions and also to provide insights that can be helpful in interpreting the
results of both experiments and numerical simulations.

An idealization that has proved useful in numerical simulations of bypass tran-

sition is to consider an initial disturbance comprised of a pair of oblique modes



108 S. A. Maslowe

inclined at equal and opposite angles to the primary flow direction. This has been

done in studies of the Blasius boundary layer by 3oslin, Streett & Chang (1993) and
also by Berlin, Lundbladh & Henningson (1994). In both studies, Orr-Sommerfeld

modes were used as initial conditions. However, they were superimposed in the

latter paper in such a way that the vorticity component normal to the wall was
zero and a smaller Reynolds number was used in the simulations. Experiments on

"oblique transition" were reported recently by Elofsson (1998), and comparisons
with the numerical simulations were encouraging.

The objective of the research reported here is to formulate nonlinear analyses to
be employed in conjunction with numerical simulations of boundary layer transition

influenced by free-stream turbulence. Following discussions with Professors Sanjiva
Lele and Paul Durbin, it was decided to represent the perturbations at lowest order

by modes belonging to the continuous spectrum of the Orr-Sommerfeld equation.
Grosch & Salwen (1978) noted that a patch of vorticity in the free stream can be

expanded in terms of these eigenfunctions. Their speed of propagation is close to the

free-stream value, and their amplitude is largest around the edge of the boundary

layer and very small within the boundary layer. These features are exhibited clearly

by the computations of some spatially damped eigenfunctions for a Blasius boundary
layer reported by Jacobs & Durbin (1998). The weakly nonlinear approach involves

a perturbation about a superposition of modes belonging to the continuous spectrum
of the Orr-Sommerfeld equation, so the following section consists of an outline and

preliminary results for that problem.

2. Accomplishments

We wish to investigate the evolution of free-stream disturbances to boundary

layers with velocity profiles belonging to the Falkner-Skan family of similarity solu-

tions. These solutions are obtained for flows in which the free-stream velocity varies
with distance along the surface according to

u:(x*) = u; (1)

where an asterisk denotes a dimensional variable. The Hartree form of the governing
equation yielding the velocity profile is

f"' + ff" +/3H(1 - f' 2) = O, (2)

where f'(_7) = ulU_ and r/is a similarity variable.

In linear stability calculations, it is usual (but not universal) to use the boundary
layer displacement thickness in non-dimensionalizing the Orr-Sommerfeld equation,
which then takes the form

O)

iaRe6.
(¢"" _ 2a2¢ '' + a4¢), (3)

where the perturbation stream function is given by ¢ = ¢(y)exp{i(ax -wt)} and,
for spatially evolving waves, w is real and a is complex. Some care is required in



Weakly nonlinear modeling of the early stages of bypass transition 109

employing the velocity profiles obtained from similarity solutions in (3) because the

derivatives in _" are with respect to y, which is non-dimensionalized with respect
to 6", whereas t/is the independent variable in (2). The required relationship is

_0 °°
fi"(y)=A2f'"(r/), where A-- (1-f')dr/. (4)

Equation (4) is analogous to (12b) of Obremski, Morkovin & Landahl (1969)

who have presented in some detail the linear stability characteristics of Falkner-

Skan profiles for different values of t3H. Their non-dimensionalization utilizes 6, the

boundary layer thickness, as the length scale in the Orr-Sommerfeld equation rather

than 6*. This accounts for the different factors in treating the fi" term.

What differentiates the continuous spectrum from the normal mode solutions of

(3) is the asymptotic form of the free-stream boundary conditions. Whereas the

Tollmien-Schlichting modes decay exponentially as y ---*oo, those of the continuous

spectrum are required only to be bounded. Outside the boundary layer, fi = 1; as

a result, (3) has constant coefficients, and four linearly independent solutions are

readily obtained. One grows exponentially with increasing y and must be rejected.

The eigenfunction is then a linear combination of the remaining three, two of which
are oscillatory while the third decays exponentially. In the spatial case, it can be

shown that all modes are damped (i.e., t_i > 0), and the details for the boundary

conditions can be found in §2.3 of Grosch & Salwen (1978).

A collocation method has been used to obtain solutions of (3) for values of 13H, the

pressure gradient parameter, ranging from zero to _H = -0.1988, which corresponds
to separation. Only two cases are shown here because of the preliminary nature of

our work. Specifically, the sensitivity of the eigenfunctions to pressure gradient was

found to depend on which feature is plotted. Whereas previous articles have shown

separately the real and imaginary parts of ¢, in this study examining the variation

of [¢1 turned out to be more informative.

In Fig. 1, the modulus of the spatial eigenfunction for a Blasius boundary layer is

shown. The magnitude is seen to be very small for the roughly 1/3 of the boundary

layer adjacent to the wall. The "penetration depth" is, nonetheless, noticeably

greater than in the cases illustrated in Figs. 3 and 4 of the article by Jacobs &

Durbin (1998). Our result is consistent with their prediction, based on an analysis
of the two-layer Tietjens model, that at lower Reynolds numbers the penetration

depth will be greater.

The computations reported here were done at Re6. = 500 to agree with the

experiments of Boiko et al. (1994), whereas those of Jacobs & Durbin were at

a considerably higher Reynolds number. However, our frequency is smaller than
theirs, so further comparisons would be desirable to confirm these trends.

As shown in Fig. 2, when there is a moderate adverse pressure gradient, /3H =

--0.12, the penetration depth is slightly less than in the Blasius case. However, near
the edge of the boundary layer the magnitude nf the oscillations around the far field

value of I¢1 is seen to be much greater. This suggests that the details of transition
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FIGURE l. Modulus of the spatial eigenfunction for a Blasius boundary layer at
Re6. = 500, w = 0.18, and ar = 0.1799.

induced by free-stream disturbances might be significantly different for boundary

layers developing in an adverse pressure gradient.

3. Future plans

As discussed near the end of the introductory section, the longer term goal of this

research is to formulate an amplitude expansion involving a perturbation about a

linear state whose eigenfunction is derived from the continuous spectrum. The
streamwise vortices and streaks observed in experiments can be modeled most sim-

ply by starting with a pair of oblique waves. A number of new features would

be present in such a formulation, and certain mathematical difficulties must be
addressed.

To simplify the discussion, let us consider first the simpler problem of formulating

a weakly nonlinear analysis for a single plane wave. We expect the amplitude in

the spatially evolving case to satisfy a Stuart-Landau equation having the form

dA
-- = -c_iA + a2 A I A I (5)
dx

where a2 is the Landau constant. When the basic disturbance is a Tollmien-

Schlichting wave, the Landau constant is given by the ratio of two definite inte-

grals. These integrals are obtained from imposing an orthogonality condition and
the homogeneous boundary conditions. However, because the eigenfunctions of the

continuous spectrum do not vanish as y _ oo, the corresponding integrals do not

exist, and an alternative solvability condition must be employed.
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FIGURE 2. Spatial eigenfunction for an adverse pressure gradient boundary layer
with/3H = -0.12, Re6. = 500, w = 0.18, and ar = 0.1799..

A second difficulty is that in the usual Stuart-Watson theory the perturbation

is about a neutral mode. However, the modes of the continuous spectrum are

weakly damped. The consequences of this may be minor, perhaps a slower rate

of convergence of the amplitude expansion. A possible solution may be to include

nonlinearity at the lowest order to obtain a neutral mode. In any case, the matter
is one that must be considered.

Returning now to the pair of oblique modes as an initial perturbation, some
aspects of the development can be anticipated from the paper by Benney (1961)

which provides the most detailed description of the analysis leading to the Benney-

Lin vortices. A plane wave in addition to a pair of oblique waves is considered

in Benney (1961); however, setting the parameter # = 0 in §3 of his paper yields

equations analogous to those anticipated in our analysis. Of particular significance
is a sort of resonance that occurs between the waves and the mean flow at the first

order beyond the linear problem. In the nearly-neutral case, this resonance was
shown to produce a secondary flow whose u-component velocity grows like t 2 while

the mean longitudinal vorticity has a growth proportional to t.

In the formulation under consideration here, the perturbation at lowest order is
of the form

u (1) = {A(X) fi(y) e '(a_-"') + c.c.} cos/3z

,(1) = {A(X) + c.c.}cosZz (6)
w (') = {a(X)tb(y)e i("x-_'') + c.c.} sin/3z

p(1) = {A(X)_(y) e i(a'-"_') + c.c.} cos/3z,
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where a is now real and X is a slow variable in the streamwise direction. The

quantity _3(y) satisfies the Orr-Sommerfeld equation (3) with a 2 replaced everywhere
by a2 + _2 . Once ,3 has been determined, the continuity and vertical vorticity

equations can be used to obtain the other velocity components, and the pressure

perturbation is obtained from the z-component momentum equation.
It can be expected based on the considerations discussed above that at the next

order a large mean flow response will occur. The amplitude equations will not arise

until the following order in the amplitude expansion. One result that is hoped to be

obtained after deriving and solving these equations is the obliqueness angle leading
to the largest amplification rate. Because we are dealing with the sub-critical case

here, an estimate of the amplitude of turbulence in the free stream required to

promote instability will also come out of the analysis.
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Interactions between freestream

turbulence and boundary layers

By J. C. R. Hunt 1, P. A. Durbin AND X. Wu 2

1. Motivation and objectives

The interaction between free-stream turbulence and boundary layers is one ex-

ample out of many that involve different types of fluid motion in overlapping or

adjacent regions of flow. We are concerned here with flows at high Reynolds and
Peclet numbers, so that the effects on the interactions between these flows of molec-

ular diffusion are small except close to the boundary [B] between them. In these

complex configurations the overall flow is not generally dominated by a single mech-

anism; for example, perturbations do not grow everywhere at the same rate (Hunt

& Carruthers, 1990), but in zones of limited extent with characteristic flow pattern

such as thin shear layers, and on certain ranges of time and/or length scales, the
flow can be dominated by specific mechanisms. These tend to be defined by only a

few parameters. Interactions between the flow regions, say IF1] and IF2], are often

dominated by such mechanisms in layers lying along the interface [B]. Some effects

propagate into the interior of the regions by advection or wave motion (Fig. 1),

while others act upon the boundary.

A large class of such flow problems that are of fundamental and practical interest
are characterized by interactions between two distinct and weakly correlated tur-

bulent velocity fields in adjacent regions. The turbulence in each region may have

been generated by different kinds of instability, or they may simply differ in their

statistics such as their integral length scales. Such interactions occur continually

and randomly within turbulent flows and ionized fluids, for example, where small

eddies impinge on large coherent structures or where the outer and inner parts of

a turbulent boundary layer meet (Terry, Newman & Mattor 1992). In engineering

these problems occur in the design of turbomachines. There, the flow approaching

the rotating airfoil blade or centrifugal impeller contains turbulent eddies that are
much larger than the small scale turbulence in the boundary layers on the solid

moving parts. In order to determine the effects of this external turbulence on heat

transfer or on the pressure distribution, it is necessary to understand how the intense

small scale turbulence grows in the boundary layers that are initially laminar. This
can occur at lower values of the Reynolds number than without external turbulence

- the mechanism of 'bypass' transition. Is it caused by the external turbulence be-

ing simply advected into the growing boundary layers (an advected interaction AI),
or, alternatively, does the external turbulence directly induce pressure and velocity

1 Permanent address: Cambridge University, DAMTP, Silver Street, Cambridge, UK

2 Center for Integrated Turbulence Simulation, Stanford University
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FIGURE 1. Schematic diagram of interactions between external region [F1], con-
taining disturbances, and vortical region [F2], that may be turbulent. Regions

separated by interface [B] of finite thickness whose mean position is indicated by a
dashed line.

fluctuations in the shear profile of the boundary layer, which may be unstable? This

external interaction (EI) mechanism may be very weak because of the tendency of

a shear profile to be sheltered from external fluctuations. Experiments and nu-

merical simulations for weak and moderate levels of freestream turbulence (e.g.

Goldstein & Windrow 1998, Liu & Rodi 1991) cannot really discriminate between
these competing mechanisms without a better theoretical framework, to which we

are contributing in this study. Recent measurements by Thole & Bogard (1996)

show quite different interactions when the external turbulence is strong relative to
the turbulence in the boundary layer.

Similar problems arise on a range of larger scales in meteorology (e.g. Collier
et al. 1994). For these types of complex flow, practical models are needed; one

approach is to make simplifying assumptions about the nature of the interactions

and broadly classify them as: (i) superposition (S) of flows in overlapping regions so

that interactions can be ignored, (ii) exclusion of flows, or flow processes, in certain

regions because a particular mechanism is dominant, especially near the boundary

[B]; or (iii) significant interactions (AI and EI) between the flows in the adjoining

regions, in which new phenomena or mechanisms may arise.

Theoretical analysis of the appropriate vorticity dynamics and some new direct

numerical simulations is the method we use to study these interactions. The the-

oretical approach is different from but complementary to that based on the hy-

drodynamic stability theory for small disturbances (Jacobs & Durbin 1998). Both
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approaches demonstrate how a shear layer can block certain kinds of external distur-
bances so that the flow inside the layer is 'sheltered' from them. If the boundaries

of the shear layer are highly contorted, then the interactions are different, and it is

possible for the weak mean vorticity of the outer part of the shear layer to be dis-
torted and dispersed into the freestream - the process of 'vortex stripping' (Legras

& Dritschel, 1993).

2. Analysis of external perturbations to boundary layers

2.1 Long length scale, low amplitude perturbations, and shear sheltering

Our object here is to analyze the external interactions (EI) between perturbations

u [_] (x, t) in the freestream, where the streamwise mean velocity is _ = Uoo and the

mean velocity profile U(y) in the adjacent boundary layer over a rigid surface at

y = 0. We are not considering the advected interactions (AI) of the perturbations
as they enter the growing layer; in fact, we assume here that the layer has constant
thickness h. Thus

V(y) = UooU(y_, where _"= y/h

and

0--, 0=0at (2.1)

We consider a relatively weak 2-dimensional fluctuation with magnitude u0 < < Uoo,

with a length scale L, and that moves with a velocity c in the freestream. In

order to obtain analytic solutions and demonstrate the key processes, we assume

that L >> h; this approximation is relevant to many experiments and practical

configurations (see Fig. 2). Because of their long length scale, any of these external

perturbations interacting with a turbulent boundary layer effectively interact only
with the smoothly varying mean profile. So any initial boundary layer fluctuations

are ignored here but not in §2.2.
Thus in the freestream, as y/L ---* oo, the total velocity field u* is given by

u* = u + _, where the perturbation field is expressed in moving coordinates as

u = u [°°l = u0f(_, y), where

L ' = L' and f = fy, 0). (2.2)

Either the maximum value fx ..m1, or if it is random its rms value f'x _ 1, so that

u0 indicates the magnitude of the freestream disturbance. We assume that

uo << Uoo. (2.3)

We now consider how u changes above and within the layer as it is advected down-
wind. Previous studies by Grosch K: Salwen (1978) and Jacobs & Durbin (1998) have

considered small disturbances, where f is periodic in x and y, that travel at the same

speed as the mean flow, i.e. c = Uoo. They showed that as Re(= hUoo/v) ---* oo,



116 J. C. R. Hunt, P .A. Durbin g_ X. Wu

U® [FI]

/ / / / / // /// /////

(b)

-'/ _.,,"

,,"Tf ;/
/'/[ k

s_ S %%

......"I; ....................... ....
////'7777"7 27-777 2_/ / / /

l u,p at y - h

FIGURE 2. External interactions between a boundary layer flow in [F2] and

small amplitude disturbances traveling with the freestream speed U_ in [F1]; (a)

schematic diagram with scales showing the flow zones {b/} in [F1] and {A,t}, {S}
in IF2]; (b) the perturbation streamlines in a moving wake traveling outside the
boundary layer (after Hodson 1985) and profiles in the streamwise direction of the

perturbation velocity u and pressure p at the top of the middle {.A4 } zone.

external disturbances are damped within the boundary layer. If only linear distur-

bances are considered, they are exponentially small, below a penetration distance
of order

h(hRe/L)-l/3

so that as h/L decreases, 6/h increases. In the rest of this study we assume Re is

very large, and we ignore such viscous effects except where they are very large in

a thin zone, denoted as S, at the surface. These results demonstrate the principle
of shear sheltering for linear disturbances when c = U_¢. What happens if these
constraints are relaxed? The experimental and numerical evidence is that some

penetration can occur.

Consider the problem of a mathematically 'compact' moving disturbance such

that If] --, 0 as I_1--, ¢¢. This could be the wake of a body moving across the stream

ahead of the plate (Hodson 1985, Liu & Rodi 1991); in that case f_,fy < 0. Since
f_ # 0 on y = 0, the external disturbances impact on the boundary layer and the
plate. This creates a perturbation velocity Au, which is analyzed in different zones
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corresponding to different mechanisms, namely: upper {H}, where y > h; middle

{.hd}, where h < y < hs; and surface {S} with depth h., where h. > y > 0. As in
other rapid distortion problems, the changes to the initial or freestream disturbances

are linear over a travel time T = x/Uoo less than Td, provided that Td is much less
than the time scale of the disturbance TL '-' L/uo. In the zone {/4} above the

boundary layer where the only vorticity is that of the disturbance, this vorticity

field is simply advected by the mean flow and is not distorted by the changes to

the perturbation velocity near the plate (Hunt & Graham 1978). This implies

that the perturbation velocity field is the sum of the initial freestream field and an

irrotational field, i.e.,

u = u [°°1 + Au, where u = (u, v), and (Au, Av) = V¢. (2.4a)

To satisfy continuity
V2¢ = 0. (2.4b)

Since the scale of the freestream perturbation u [_] is large compared to the bound-

ary layer depth h, the boundary condition on Au near the plate is that

0¢ -u0h. (2.4c)
as y/L _ O, Av = O-y =

In the free stream as y/L _ _, Au = IV¢] -+ 0. This linear calculation implies
that Au and ¢ are also functions of £ and _ and are not varying in time as they

move downstream.

Note that further downstream where T > TL, the impingement of the free stream

perturbations onto the plate leads to significant distortion of their vorticity, typically
rolling up into vortex tubes near the surface (Hodson 1985, Perot & Moin 1995)

In the middle layer {A/I}, the equation for the vertical velocity perturbation v is

essentially the long wave Rayleigh equation for small perturbations to a shear flow

(Drazin & Reid 1980). It can be expressed in coordinates moving at the speed of
the disturbance c as

07 - _ - c) = 0, (2.5)

a_ dx Towhere _(_, _) = v(x,y, t), and, for consistency,_(_, _')= u(x, _,t) = - $ a_ •
solve (2.5) it is convenient to write U = U(_) - c, noting that _"= _h/L and that

d2U/d_ 2 = d2-U/d_ 2 ,._ UooL2/h 2. If c = U_, then U .._ 0 at the top of the layer,

and U _ -c at the plate (_ = 0).

The solution for (_, _) can be expressed as a separated variable (Lighthill-Stewart-

^ d_
_(_,_) = A(x)--;_ +

ay

B(_)Z(_)
Voo

son) solution so that

_" _ _-_(_')] u_2(Y)=[(dU/dy)/_-U-(y+)dY++

where

(2.6)
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and A(_), B(_) and Y'I are determined by satisfying the velocity and pressure con-

ditions. In order that v = 0 on y = O, and since U(O) # O, it follows that, A(_) = O,
and _'1 =0.

To leading order p[_a] does not vary with y in {A/I} and is, therefore, equal to its

value p[U](x) at the bottom of the upper layer {U} above the boundary layer. Thus

B(£) = -p[_](£) = _p[U](£, _- _ 0) (2.10)

Note that v and p at these two levels at the bottom of {/4} and the top of part of
{JP[} match each other.

~ (hlL) u lVoo. (2.11)

Thus in {st4}, fi becomes very much less than u0. Therefore the blocking bound-

ary condition for v in the upper zone {b/} is applicable at the level y ,-_ h. For
y < ht, the streamwise velocity is given in terms of pill by

u = p[_](_)Z(_)lVo_ (2.12)

Thus in {3¢f} fi ,_ (u2/Uo¢) and is much less than in {/g}. But fi >> fi if h/L << 1.

At the top of {.Ad }, non-linear or viscous processes determine the smooth transition
between these layers. An approximate form for u that is finite and continuous across

the critical layer at y ~ h and is asymptotically correct when L >> y > h and when
y<<his

-P[_](£) where _ = -p[a_]/(u(_,_--, 0)) in {U}. (2.13)
= +

To illustrate these effects of the blocking of the external normal velocity v [_] by

the vorticity in the boundary layer, when c = Uo_, and the sheltering of the flow

within the layer, we consider an example of a small but finite amplitude freestream

perturbation that moves with the freestream and is of such a form that the pressure

perturbation far above the plate is exactly zero. We take thepractical example of
a weak jet or wake such that u = -(cosa, sina)uofwhere f = 1/(1 + £2). This

corresponds to a traveling wake impacting on the boundary layer (Hodson 1985) if
7r/2 > a > 0 or an atmospheric downburst if 7r > a > r/2.

Then for T < Td, at the bottom of the zone {/4} just above the boundary layer

the solution to (2.4) shows that Au(£, _ = 0) = $u(_)u0, where

_u = _sina/(1 + _2), (2.14)

so that for the wake the streamwise velocity perturbation just above the boundary

layer consists of the negative freestream perturbation and a forward jet on the

leading side of the perturbation and a negative one on the trailing edge. See Fig. 2b.
The re.sults (2.10) and (2.12) show that to first order the velocity fluctuations in

the boundary layer (y < h) are zero, but to second order are finite and depend on

the pressure perturbation ps in {U}, where

p[_] = -(1/2)(uo¢ + Au(y/L --, 0)) 2. (2.15a)
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In this example

p[_](x) = -lug [(- cos a -_ _sina)/(1 + 22)] 2 . (2.15b)

J

Note that the form of u(x) in {A4}, derived from (2.12) differs from that in {U},

being negative and having two minima. In the surface zone {,9}, viscous effects

induce velocity profiles with inflexion points and may trigger instability there.
These results change as the travel time T increases so as to become comparable

with TL, when the vorticity of the impacting disturbance is significantly distorted.

In addition, if the boundary layer is laminar, instabilities tend to be stimulated and

modulated by the traveling disturbance above the layer, as recent direct numerical

simulations demonstrate (Wu et al. 1998). The experimental flow studied by Liu L:

Rodi (1991) corresponds to that of our example, and the results in the early stages
of the interaction are very similar to these theoretical results. Both the DNS and

experiments demonstrate the sharp difference between the form and magnitude of
the fluctuations in the zones {U} and {.A/I}, and both show that the instabilities

are initiated very near the surface.
If the disturbances travel at speeds c significantly different from the freestream

speed, as occurs in atmospheric downbursts, shear sheltering does not occur. Indeed
the surface may be quite large, and their form may be strikingly different from those

generated in normal conditions (Collier et al. 1994).
In terms of the concepts of interacting flows proposed in the introduction, these

flows demonstrate the phenomena of exclusion (X) in some circumstances and es-

sentially superposition (S) in others, depending largely on the parameter c/U and

to a lesser extent on the amplitude uo/U.

2.2 Finite amplitude perturbations and vortex stripping

In our previous analysis it was assumed that across the bounding interface [B]
between the external region [F1] and the vortical region [F2], the vorticity O712]in the

latter decreases abruptly to a much lower level in [F1]. However, in many vortical

regions there is a gradual decrease in the magnitude of o7[2] from characteristic
value we in the core to a significantly lower value wn near the interface [B] where

it is comparable with or smaller than the strain rate in the external region IF1].

Following Legras & Dritschel (1993), we review here the mechanisms for how in

these flows external perturbations in IF1] cause large distortions and displacements

of the interface [B] over distances of order h, the length scale of [F2]. These are

associated with changes to the vorticity field in [F2] that are overwhelming in the

outer part and small though significant in the core. Such interactions, involving a

different type of inhomogeneity in [F2], plays a critical role in the formation and

persistence of large scale vortical motions in the atmosphere and oceans and in the
structure of shear flows with high levels of external turbulence.

We consider the interaction between a compact vortical region and a coplanar

straining motion U(x) in the external region [F1], having a length scale L that is

large compared with h and a characteristic strain rate U_/L, see Fig. 3. We make

the following assumptions for simplicity: in the core part of [F2], whose length scale
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FIGURE 3. Schematic diagram of the mechanism for how external straining motion

in IF1] remove, by 'vortex stripping', the low vorticity flow in the outer part [F2o] of

the vortical region, while the inner core [F2c] is only slightly distorted; (a) showing
the vortex sheet surrounding IF2] when the straining motion is initiated and the

convergence points Xc where viscous diffusion leads to detrainment of vorticity.

is hc(<< h) and is denoted by [F2c], the initial vorticity is assumed to be much

greater than the external strain rate so that we >> Uo_/L, and in the larger outer

part of the region, [F2B], the initial vorticity is much smaller and is of order wB
where WB < Ucc/L.

The evolution of this flow can be analyzed by inviscid vortex dynamics following
G. I. Taylor (See Batchelor 1970) and the theoretical and experimental methods of
Rottman et al. (1987).

Imagine that the boundary [B] is rigid up to the time t = 0 (which means that the
external flow passes round the vortex) and is then dissolved (or consider the flow

to be generated by a rapidly growing instability); then a vortex sheet is generated
around [B]. This vorticity distribution induces the fluid in the interface to follow

the direction of the streamlines of the flow in [F1] but does not travel at the same

speed. (This is analogous to how, when a cylinder of fluid is suddenly introduced
into a cross flow, it distorts itself into a vortex pair and moves downstream at about
half the speed of the flow).

The form of [B] as it moves depends on the relative strengths in the outer part

of IF2] of the strain rates induced by the external flow and by the core vorticity,
indicated by the parameter

_B = (Uo/L)/(wch/hc) ,'., (Uo/L)/wB.

If _B > 1, much of the fluid and the vorticity in [F20] is swept away in two vortices,
leaving a trail behind them back to the core vortex. But if _B < 1, the fluid and

outer vorticity are carried round the core vortex in the form of an elliptical ring.
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There is a sharp transition between these two outcomes as _B increases as a result

of the formation of singular (zero velocity) position on [B].

Note that, although the core vortex is strong enough that it is only slightly

deformed, it is rotated by a finite angle until it reaches a position of equilibrium
where it induces a velocity field that is opposite to that of the strain field.

This simple example demonstrates how weaker vorticity can be 'stripped' from

the outer region of a vortical region by an external straining flow. Legras & Dritschel

(1993) have quantified this process for different types of rotational and irrotational
straining motion, and shapes, and orientations of the vortical regions. They find
results that are consistent with observations of the changing shape of the the polar

vortex and its accompanying 'ozone hole'.

The effect of finite amplitude external perturbations 'stripping' away the weak

vorticity at the outer edge of shear layers has been demonstrated in two earlier

laboratory studies. Hancock & Bradshaw (1990) measured the interactions between

large scale freestream turbulence with rms velocity Uo and length scale Lx and the
outer, low vorticity (..- WB) part (or 'wake') of a turbulent boundary layer whose

depth is h. Their results show that when uo/L, > wB "_ u./h (or u0 > u. the

friction velocity or rms turbulence in the boundary layer), the mean vorticity Wo

in the outer part is stripped away and the thickness and structure of the boundary

layer is reduced to that of the higher shear logarithmic region. For lower values
of the external turbulence, there was no structural change. Rottman et al. (1987)

obtained similar results when they measured how the the outer shear region of a

gravity current was stripped away by external turbulence when uo/L, > wo.

This model problem also shows how when vorticity is 'shed' from the boundary

of a vortical region, it tends to develop into coherent patches of vorticity even in

flows where the two regions are not coplanar as in jets in cross flow Coelho & Hunt

1989). These may have significant dynamical back effects on the region IF2] it 'left

behind' and may transport matter and heat away from [F2].

In real rather than model complex flows, the vortical regions have finite gradients

of vorticity, evolve on finite time scales, and, at their interface with the external

flow, viscous diffusion of vorticity is part of the process of detrainment or shedding

of vorticity. We have considered the first two of these idealizations; what about the
third?

Vorticity tends to diffuse from a fluid interface around 'convergence' points, de-

noted by Xc in Fig. 3a, where the flow parallel to the surface converges and stream-
lines move into the exterior region [F1] from near the surface. Once a vortical region

IF2] has developed into a steady form, if it is located in a unidirectional external
flow U, the vorticity that diffuses from Xc can be advected away from [B]. Because

of the converging flow, this detrained vorticity tends to be confined to 'wakes' whose

width is small compared with h, as is observed below rising vortex rings (Turner

1963). Therefore, in such a flow over most of the exterior side of the interface [B],
there is little shed vorticity so that the large scale interactions and the dynamics

determining the response of [F2] to external perturbations is essentially inviscid,

as we have assumed. In support of this hypothesis, one notes that in the above
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example of a deformed vortical region, the detrainment of vorticity by unsteady

vortex induced motions is very similar to that produced in a slowly changing flow

with viscous diffusion, as is also found in many other flows (e.g. Dritschel 1990).

3. DNS study

A direct simulation of transition induced by turbulent wakes incident on a laminar

boundary layer has been performed as part of the ASCI/CITS program at Stanford.

The ideas discussed in the previous section have been applied to that study. Details

can be found in Wu et al. (1998).

4. Implications and future work

The analysis in §2 of external fluctuations, with long streamwise length scale,
traveling with the flow has shown how they are distorted by the mean shear of the

boundary layer so as to be blocked above the layer and to be diminished within

the layer. This interaction is not covered by the receptivity theory of Goldstein &

Wundrow (1998), which is relevant to the disturbances advected into the layer and
inducing long wave Klebanoff mode instabilities there. The transition phenomena

simulated here do not have a ready theoretical explanation - this requires a more

detailed look at the simulated flow fields (for example, the form and the effective

Reynolds number of the inflected profile induced below the traveling disturbance)
and perhaps more simulations with different initial conditions. Nevertheless, it be-

came clear that the even the reduced level of velocity perturbations induced by

the external unsteady wakes was sufficient to trigger transition, depending on the

amplitude of the free stream fluctuations caused by the wake eddies. For low ampli-
tudes the types of instability induced by infinitesimal disturbances were simulated;

but as their amplitude became large enough, the instabilities could grow to the
non-linear stage within the time of passing of the finite length external disturbance

- a quantitative estimate of this threshold is desirable. Once this threshold was

reached, the transition process did not change when the frequency of the external

disturbances (i.e., its average level but not its peak) was increased. This suggests a

saturation level was reached that is consistent with non-linear, dynamical systems

concepts (Reddy et al. 1998).

To discuss the continuing effect in our simulations of the external disturbances

once the boundary layer had become fully turbulent, it is helpful to relate them
to previous studies of the interactions between external turbulence and turbulent

boundary layers. These can be categorized into three groups. When 'weak' external

turbulent eddies have a scale L that is of the order of the thickness h of the boundary

layer and are less energetic than those of the boundary layer (i.e., Uo < u.), they
are swept round by the swirling movements of the large eddies at the edge of the

boundary layer and entrained; their energy adds slightly to that of the turbulence

in the boundary layer. But if their scale is large, they are essentially blocked by the
mean shear.

When the eddies are of moderate strength (i.e., uo > u.), where L ,-_ h, the vortex

stripping process can operate, and, although this disperses the vorticity upwards,
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this effectively means that the outer vorticity is negligible, and the thickness of the

boundary layer is reduced to a new level h/t where the mean shear is comparable

to the external strain i.e., du/dy _ uo/L. This implies that the structure of the

layer is changed to one where there is no outer 'wake' element, and only a 'log' law

profile extends to the outer edge of the layer. As explained in §2.2, this is consistent

with previous turbulence experiments. The simulations show that as the average

vale of Uo is raised by increasing the frequency of the wake passing, the same trend

in the profile is observed. This explanation needs to be tested in studies of the eddy

structure in the outer region, for example, using interface sampling methods.

When the external eddies axe much stronger than those of the undisturbed layer,

(i.e.u. << Uo "_ Uoo), then its structure becomes more like that of a shear free

turbulent boundary layer with the downdrafts and updrafts of the external eddies

dominating the structure of the turbulence near the plate, including the surface

shear. Thole & Bogard (1995) suggest that theoretical models and simulations

(Perot & Moin 1995) for this limiting case are appropriate approximations when

uo/U_ ~ 0.25.

The next challenge is to investigate which of these results can be modeled with

Reynolds averaged statistical equations. Some of the first attempts were reviewed

by Pironneau et al. (1992).
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Interfaces at the outer boundaries
of turbulent motions

By D. K. Bisset, J. C. R. Hunt 1, X. Cai AND M. M. Rogers

1. Motivation and objectives

Most fully developed turbulent flows are inhomogeneous as a result of being

blocked by rigid surfaces or by being in contact with regions of very low turbulence

or even no motion at all. Inhomogeneity is a pronounced feature of all the canonical

shear flows of engineering interest, e.g. wakes, jets, shear layers, and boundary

layers. It is observed that the properties of the turbulent motions vary very rapidly

at a bounding surface, either approaching a wall or across a highly contorted, moving

interface separating the turbulent from the non-turbulent motions.

In relation to the eddy dynamics and statistical properties of the turbulence, the
interface

1. delineates the largest scales of the turbulent velocity field Lz;

2. defines the rate of growth of the turbulent velocity field via the mean velocity of

the bounding interface normal to itself (Eb);

3. defines, by its convoluted shape, the statistics of intermittency;

4. contains regions of intense local diffusion of vorticity, and of heat and matter;
and

5. embodies a vorticity discontinuity where the normal component has to turn itself

into a direction parallel to the interface since vortex lines cannot end within the
fluid.

The interface is contorted over a range of length scales at least as great as that

of the turbulent velocity field, which implies that the local diffusion is very intense

(point 4 above); but this does not necessarily imply that the interface becomes

diffuse because the eddy motions continuously rebuild the diffusion front. The

usual presence of mean velocity E normal to the interface also plays a part. Even

when there is no ambient flow, the turbulence generates such mean flows itself

through the gradients of the Reynolds stresses provided that it is developing or

is non-symmetrical. This motion E induced by the turbulence is also termed an

entrainment velocity, but its magnitude and direction are invariably different from

those of Eb (Turner 1986).

Components of velocity parallel to the interfa_:e might be increased by a vorticity

discontinuity (point 5 above), but on the other hand they might decrease because

they have no contribution from induction by the vortex lines that would have been

1 Permanent address: Cambridge University, DAMTP, Silver Street, Cambridge, UK
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there in the absence of the interface (Carruthers & Hunt 1986). The fact that the

vorticity is parallel while there is some component of fluctuating velocity normal to

the interface suggests that the local helicity (h _ 0U. if) is small; in fact, normalized

h may become smaller as Eb becomes g=eater (Hunt & Hussaln 1991).

Knowing more about the kinematic features of these interfaces will be useful for

examining the implications of concepts and models that make simplifying assump-

tions about their large- and small-scale shape [which range from being flat (Phillips

1955) to fractal (Sreenivasan & Menevean 1986)] and about their intermittency

(Townsend 1976). The dynamics will be better understood when the rapid changes
in the vorticity and velocity components are measured and studied in local frames

to see if they are locally determined or whether they are essentially determined by

the largest scales of the flow (Gartshore 1966). Additionally, the movement of fluid

particles relative to the interface is the essential quantity to simulate, measure, and

analyze in order to calculate how the interface affects the mixing of scalar quanti-
ties and thence how it controls chemical reactions and combustion. The turbulent

interface considered here is not the viscous superlayer (Corrsin & Kistler 1955) that
has a thickness of the order of the Kolmogorov lengthscale, though the superlayer
could fall within it.

Some of the specific questions we are examining are the following.

1. What determines the interface propagation velocity Eb? In other words, for an
unbounded turbulent shear flow, how does non-turbulent fluid become turbulent?

We know that, in the limit, it happens through molecular diffusion across local

regions of large velocity gradient and that such regions occur because of:

• engulfment of irrotational fluid, which is then mixed deep within the flow, and

• straining (stretching) motions in the vicinity of the turbulent/non-turbulent
interface.

• Are there other possibilities?

Consider also detrainment, where isolated regions of rotational fluid detach and

drift outwards. (See also the studies of Hunt, Durbin _ Wu in this volume.)

2. What are the essential features of the interface (whether defined in terms of

velocity, vorticity, and combinations such as helicity or scalar quantities and/or
their derivatives) and are they distinct enough to define the interface?

3. (a) How can such an interface be defined unambiguously, especially since it may

be multiply connected? (b) How can its 3D position and orientation (outward
normal) be determined as f(x, y, z, t) in the DNS data? [The answer depends on
how distinct it is.]

4. What are the values of various properties in the vicinity of the interface (vector

and scalar variances, correlations, ...)?

• Are there systematic variations, e.g. differences between the outer face and

inner face of a protrusion?

• Are there any interesting changes in properties over time or changes in the
interface shape (e.g. during engulfment)?
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5. What are the characteristics of irrotational fluid that has moved away from its

free-stream state? [Such fluid may contribute to mass flux, for example.]

6. Is there a dependence on Reynolds number, spreading rate, flow type, the nature

of the DNS simulation, or other parameters (for example forcing, which clearly

increases intermittency and the depth of the convolutions) for any of the above?

2. Accomplishments

The project is still in its early stages, and only a few of the above questions have
been addressed so far. All of the work mentioned here utilizes the simulations of a

temporally growing, self-preserving turbulent far-wake reported by Moser, Rogers
& Ewing (1998). The data set stored at r = 43 was used for scalar detection work,

and the data from r = 91 were used for vorticity-based detection.

_.1 Interface detection through scalar level

A preliminary investigation of interface properties was carried out by X. Cai

using the level of a passive scalar as the interface detection criterion. Under some

conditions the scalar can mark vortical regions quite accurately, and unlike vorticity,

the scalar has exact, constant bounds to its range of values. Two main advantages

result from this. First, detection threshold levels are likely to remain constant over
time, and second, the level of numerical noise relative to thresholds can be assessed

through examination of out-of-range values of the scalar. However, the way in which

the scalar was initialized within the present DNS was aimed at a study of the transfer

of fluid from one side of the wake to the other, and therefore the correspondence

between scalar-marked regions and vortical regions is not always close, even at later

times. The scalar was initialized with value 0.0 in the free-stream below the starting

field of the turbulent wake and at 1.0 aSove it, with a smooth gradation of values

within the turbulence. Nevertheless, these initial results suggest that the interface

is very sharp, but that results may depend on the details of the detection procedure

and threshold values used. A summary of this work is attached as an appendix.

_.2 Interface detection through vorticity

For current work we are using w, the magnitude of the vorticity vector, for detec-

tion of the turbulent/non-turbulent interface, which should be more reliable than
the passive scalar for the present DNS data. At very low levels, however, w is

affected by numerical noise. The magnitude of the noise problem depends on the

intrinsic sharpness of the interface; if the interface is sharp, its detection should be

relatively independent of the level of w over some range, and a level slightly above

any background noise can be used. Noise particularly affects the calculation of the
direction of the normal to the interface.

Conditional averaging outside and inside the interface should be carried out along

a line normal to the interface, which involves careful interpolation of data. Stored

data in spectral form were projected onto a relatively fine, uniform physical grid

of 385 × 400 × 97 points so that linear interpolation between gridpoints would be
accurate. For simplicity, the present results are confined to a subset of the data for
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FIGURE 1. Effects of detection parameters on (a) vorticity magnitude, and (b)

level of passive scalar, relative to the turbulent/non-turbulent interface. _ inner

group for C_ = 0.7Uo/b; .... outer group for C,_ = 0.TUo/b; _-_ C,,, = 7Uo/b

which the surface normal is within 25 ° of the y-axis (normal to the wake center-

plane), and conditional averaging is carried out in the y-direction only (with linear

interpolation). Both sides of the wake are used, with sign reversal as appropri-

ate. Only the outermost crossing of the vorticity threshold for any (x, z) position

is considered in each case. Further interface positions resulting from irrotational

fluid intruding below the detected vortical fluid (which certainly happens here and

there) are ignored.

The lowest level of the detection threshold C_ that seemed to give reliable inter-

face detections was 0.TUo/b (Uo is the centerline velocity defect and b the wake width

across the half-mean-velocity points); this level is used below unless stated other-

wise. The interface indeed appears to be quite sharp in that substantial increases

in C_ had only small effects on detected positions, and conditional averages show

little vorticity outside the interface. After application of the 25 ° angle criterion,

about 26% of the surface area projected onto the centerplane was accepted.

The direction of the normal may in itself be significant for the properties of the

interface, as may be its position on a protrusion or at the depths of an irrotational

intrusion, and therefore other criteria may be used in conjunction with w level.

In particular, the main set of interface positions was split into three equal-size

subsets according to whether the interface was roughly its average distance from

the centerplane, or significantly closer, or further away (the last two being the 'inner'

and 'outer' subsets for the following results).

The effects of threshold level and the inner/outer split on (w) are shown in Fig la.

Angle brackets indicate conditional averaging relative to the detected interface at yi

while an overbar indicates a conventional average. For the main set of detections,
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the distribution of (w) (not shown) is very similar to the inner and outer curves.

Increasing C,, by a factor of ten results in the appearance of a thin layer of very

high (w), but there is a significant 'leakage' of vortieity into the irrotational region

(Fig la). Also there is a reduction in the number of accepted points from 26%

to 17% of the projected surface area here, leaving only the strongest regions for

averaging. It turns out that there is very little difference for (w) between the inner

and outer subsets (other quantities behave differently, as will be demonstrated).
The turbulent zone of the wake has almost uniform vorticity (Fig la), and the gra-

dient at the interface is quite sharp. This gradient is not an artifact of the detection

process: the tiny rectangle near y = yi shows a typical separation between adjacent

data levels/gridpoints that confine the detected interface, and the threshold-based
detection merely requires that the @) curve should pass down through that rect-

angle.

Corresponding to the region of high gradient in (w), there is a large gradient of

the scalar (T) (Fig lb) that is almost identical for the inner and outer subsets.
In terms of conditional averages, agreement between the interface and the edge of

the scalar-marked zones seems remarkably good given the reservations expressed

earlier, but it could be worse for surfaces not roughly parallel to the centerplane.
Within turbulent zones there is a divergence between the inner and outer subsets,

presumably related to the greater distance from the source of 'cold' scalar in this

case, but it is not clear why there should then be such similarity within the interface.

Reynolds stresses relative to the interface and a breakdown of the components of

w are shown in Fig. 2 (all subsets combined). As expected, Reynolds stress levels

for the interior of the wake are much the same as for the conventionally ave__[aged

case (Moser, Rogers & Ewing 1998) with some flattening of the peaks in w 2 and
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u'W. The levels of fluctuations induced in the irrotational zone are not negligible and

decrease only slowly outside the interface -- these are potential fluctuations, not
'leakage'. Gradients within turbulent zones near the interface (i.e. the slopes of the

curves shown) are not as steep as for (w/, which is presumably because of the greater

contribution from large-scale structures to Reynolds.stresses than to vorticity. It is

conceivable that large increases in Reynolds number would steepen these gradients

and eventually cause local maxima in (u 2) and (w2), as suggested by Carruthers

& Hunt (1986). The moderate-sized peak in (u 2) presently existing just inside the
interface, which continues into the irrotational zone, is a result of the conventional

(i.e. Reynolds averaging) definition of u 2 as (U - _'(y))2, to be discussed shortly.

Results for the inner and outer subsets taken separately (not shown) differ a little
quantitatively but not qualitatively.

By symmetry (wx) and (wy) should be zero for surfaces parallel to the centerplane,

so their magnitudes ([wx[) and (Iwyl) are presented along with -(_2z) and (Iftz[) in

Fig. 2b (f/, includes the non-zero mean spanwise vorticity). As noted earlier, the

normal component wu is expected to decrease first as the interface is approached,
which is verified by the results, while the parallel components exhibit sharper cutoffs.

The peak in -(_,) is a result of the direct contribution from mean shear d-U/dy
for surfaces in the present orientation, and it appears that almost all wz has the

same sign close to the interface. Spanwise vorticity (fl,) changes sign across the

midplane while its magnitude (1_ I) is nearly constant and similar to the other two

magnitudes. Results for surfaces in other orientations may turn out differently.

The conventional mean velocity U(y) is compared to (U) in Fig. 3a, with the
latter curve offset along the x-axis by the average height of interface detections.

The gradient in (U) is quite sharp, and it is clear that the gentle rolloff in U is

a result of a statistical distribution of superimposed instantaneously sharp dU/dy
events. The larger difference between the two curves in the vicinity of the interface

is the explanation for the extra peak in (u 2) seen in Fig. 2a, given the conventional
definition of fluctuation u.

Conditional mean velocities for the inner and outer subsets show considerable

differences (Fig. 35). Both groups show a large gradient and sharp cutoff in (U),
but just outside the interface the level of (U) is quite different: it is well below

its free-stream value for the inner subset and significantly above free-stream for the

outer subset. Presumably these are potential-flow effects caused by large protrusions
of turbulent fluid either blocking or 'squeezing' the free-stream flow. Transverse

velocity (Y) for the outer group is dominated by a strong outwards flow ((V) reaches

more than 12% of U0) in the region inside the interface, suggesting quite active
growth of the outer regions of the interface. The dominant feature for the inner

group is an inwards flow in the region outside the interface; it is tempting to call this

an entrainment flow although we don't know how the interface is moving relative
to the fluid at this stage.

2.3 Tentative conclusions

The picture emerging so far, largely in agreement with the concepts of Townsend
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(1976) and others, is that the far-wake consists of relatively uniform zones of well-

developed turbulence bounded by a convoluted, rather sharp interface. Gradients of
velocities, vorticity, and passive scalar are very steep through the interface until they

suddenly flatten out at the free-stream. Both velocity fluctuations and systematic

deviations in mean velocities (U) and (V) are quite significant within the irrotational

regions near the interface. It will be very important to investigate and describe

quantitatively the shape and movement of the interface, which is likely to be a

function of the large-scale organized motion of turbulent flow. Additionally, there

is at least the possibility of differences at much higher Reynolds numbers than that

of the present simulation.

3. Future plans

Because this project is at an early stage, the quickest summary of future plans

is to say that we will continue to study the six questions posed in Section 1. To

begin with, we will extend the current procedures to regions where the interface is
not roughly parallel to the wake centerplane.

In addition to the above, we plan to

• examine locally interesting regions including topological features both on and just
inside the interface

• develop a means of describing concisely the shape of the interface

• use the unique time-dependent DNS results to determine how the interface moves

and changes shape and to determine where and how it moves into irrotational
fluid.

Data from the wake simulations with large-scale forcing (Moser, Rogers & Ewing

1998), which show a large increase in the sizes and heights of protrusions and
intrusions, may be very useful for these purposes.
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Appendix: Passive scalar detection of turbulent/non-turbulent interfaces

by Xiaodan Cal

A passive scalar has been used to outline the boundary of turbulent and non-

turbulent flow in experimental works, e.g. Weir, Wood and Braxishaw (1981). A tra-
ditional reason for this is that the passive scalar obeys the same advective-diffusive

equations as the vorticity for two-dimensional flow (given a Prandtl/Schmidt num-
ber of order 1). In some flows, such as wakes and mixing layers, the interface be-

tween turbulent and non-turbulent flow is dominated by two-dimensional vortical

structure. Hence, it is expected that the passive scalar can give a good description

of the interface. Based on such observations, an interface-detector is developed in

this study. The algorithm for it is to search through the whole scalar field, which

is constructed by a linear-interpolation from the calculated discrete values, for the

surface with a specific scalar concentration (Cs). This technique is applied to a

DNS database of a three-dimensional time-evolving plane wake (Moser, Rogers &
Ewing 1998). The wake has reached an approximately self-similar state with a

mass-flux Reynolds number (equal to the momentum thickness Reynolds number

in spatially developing wakes) of 2000, which is high enough for a short k -5/3 range
to be evident in the streamwise one-dimensional velocity spectra. A passive scalar

is advected within the wake and has a value of one (or zero) in the upper (or lower)

external nonturbulent region. Here only the upper interface is analyzed. Fig. A1
shows the scalar contours for typical configurations of the interfaces at the threshold

levels of 0.90 and 0.99. The interfaces are almost continuous, and there exist only
very few islets.

Five threshold values have been tried for the passive scalar to define the upper

interface in this study. Fig. A2 shows the probability density functions for the
interface locations. All of the pdf's are approximately Gaussian with a skewness

around zero and a flatness around 3.0, as shown in the Table. It is noted that
the mean locations of the interface increase with the threshold values and that the

interface can even cross the centerline to the lower part of the wake when C8 < 0.9.

Based on these observations, two sampling methods were investigated to calculate
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TABLE. Statistics of the interface positions

Ca _/b y;/b Si Fi
0.85 0.27 0.18 0.34 3.05
0.90 0.36 0.19 - 0.016 2.96

0.95 0.46 0.19 0.025 2.93

0.98 0.55 0.19 0.072 2.89

0.99 0.59 0.21 - 0.69 2.92

the conditional ensemble averages along y relative to the interface. Method I is to

select the lowest y points as the locations of the interface whenever islets or multi-
folded regions appear. Method II is to leave off the regions from the sampling space

whenever islets or multi-folded regions appear. The sampling space is limited to

the upper half of the wake. In order to increase the sampling points and reduce the

statistical errors, a bar with 0.2 length-unit (based on the momentum thickness)

wide is used to collect the samples and labeled according to the distance of its

center from the interface. The conditional velocity intensities from the two sampling

methods displayed very similar characteristics; Method II is used for the following
results. Distributions of u 2, v2, and w 2 (longitudinal, transverse, and spanwise

components respectively) relative to the interface are shown in Fig. A3. Inside the

turbulent region, (v 2) is relatively uniform while (u 2) and (w _) increase to a peak

value when approaching the interface, which is consistent with the linear theory

prediction by Carruthers and Hunt (1986). In the non-turbulent region, it can be

seen that all of the velocity intensities decay towards zero sufficiently far from the

interface, and there exists a region where (u 2) _ (v 2) + (w 2) and (v 2) _ (w2), as
predicted by the Phillips (1955) theory on the irrotational motion induced by the

turbulent boundary flow. These phenomena prevail even when the threshold values

are changed (Fig. A3).

Fig. A4 presents the distributions, for different threshold values, of conditional
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averages of turbulent energy q2, dissipation rate e, turbulent shear stress -(uv}, and

turbulent viscosity q4/e. Vorticity, and hence dissipation rate, should drop sharply

across the turbulent/nonturbulent interface, which is demonstrated in Fig. A4(b).
Furthermore, it is noted that the larger the threshold values, the sharper the edge

between the turbulent and nonturbulent region, which is a good indication that
the above-proposed interface detector works well in this wake flow. It also can be

seen that the larger the threshold values, the more physical the results appear to

be. As the threshold value increases, the peaks around the interface in Fig. A4(b)
are weakened and finally disappear, and the peaks of turbulent shear stress in

Fig. A4(c) shift from the nonturbulent side to the turbulent side. Physically, it

can be argued that the turbulent shear stress cannot be generated by mean shear

rate in irrotational flow, and therefore the peak values in the nonturbulent flow are

unphysical. Meanwhile, it can be argued that there may exist different fluctuating

kinetic energy-generation mechanisms inside and outside the interface. Inside the

interface, the velocity fluctuations are generated by the mean shear rate, which

results in a quite uniform value for q4/e in Fig. A4(d), while outside the interface,

the velocity fluctuations are generated by the turbulent interface, which is the topic

studied by Phillips (1955). This argument may explain why there is a big dip around

the turbulent/nonturbulent interface in Fig. A4(d).
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The largest scales of turbulent

By Javier Jimfinez I

wall flows

1. Introduction

The small scales of wall-bounded turbulent flows have received a lot of attention in

recent years, especially in the near-wall region, in part because of the availability of
direct numerical simulations that made their detailed study possible (Kim, Moin &:

Moser 1987). Since those simulations had necessarily moderate Reynolds numbers
and little or no separation between their largest and smallest scales, the study of

the former independently of the latter in them was difficult. The purpose of this

paper is to study the flow scales which are of the order of or larger than the channel
width or the boundary layer thickness. We will see that their contribution to the

integral flow quantities is not negligible.
The resolution of experiments and simulations is usually adjusted so that the

discretized variables are smooth while the size of the numerical box, or of the exper-

imental record, is chosen so that the correlation functions at distances comparable

to the box size decay to a negligible level. The latter is intended to guarantee that

there is little energy at scales larger than the box size, but it has to be interpreted

with care. The energy in a flow that has been low-passed filtered at scales of order

is proportional to the integral of the correlation function over separations longer
than A and decays slower than the function itself. Since singular spectra such as

those in turbulent flows give rise to algebraically decaying correlation tails, it is

possible to have correlations which appear to have decayed but which still have a

substantial fraction of the energy in their tails.

The peak of the one-dimensional spectrum is moreover typically at k = 0. This

becomes important if the filtered signals are the interesting ones such as in acoustics,
where sound attenuation decreases with wavelength and only long waves survive at

long distances.
Large structures are also physically interesting because long wavelengths imply

long lifetimes and large volumes, and their integrated coherent effect can be com-

parable to those of the smaller ones even when their power per unit volume is not.
Thus if the one-dimensional power spectrum of a signal tends to a constant E0 as

k _ 0, the power is contained in wavelengths longer than ,_ is O(Eo/,k), but since

the lifetime of each structure is proportional to ,k, the total energy per structure

is independent of the wavelength. As an example, even a small transverse velocity

acting for a long time would lead to substantial modifications of the velocity profile.
For a flow to be well represented in this sense implies that its resolved spectrum

should decay at the lowest wavenumbers as well as at the highest ones, which may
never be true in turbulent flows.

1 Also with the School of Aeronautics, U. Polit_cnica Madrid.
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A less restrictive spectral criterion, involving only considerations of power per
unit volume and, therefore, roughly equivalent to the condition on the correlation
function, is that the product

= kE(k), (1)

should decay for the lowest observed wavenumbers since that pre-multiplied spec-

trum is proportional to the power in a logarithmic band centered at k (Bullock,
Cooper and Abernathy, 1978). Note that the same is true if the wavelength, A =

2_r/k, is used in the abscissae instead of the wavenumber since dlog A = -dlogk

and the integral is the same in both cases. In this paper we will generally use $(A).
There is another reason for studying these largest scales of wall turbulence. We

have already mentioned that in some parts of the flow they carry a substantial

fraction of the kinetic energy and are, therefore, important by themselves. They

may also be simpler to study than regular turbulent structures in the inertial range.

Since they are large but their velocity fluctuations are still small compared to the

velocity differences in the mean flow, their velocity gradients are weak compared to
the mean shear and can be approximately described as quasi-linear. We will in fact

see that they share some of the characteristics of rapidly distorted turbulence.

This suggests the appealing possibility that wall flows could be described, as in

the case of many free-shear ones, in terms of large-scale quasi-linear structures mod-
ulated by essentially isotropic small scales. This would contribute to the unification

of an area of turbulence research, the study of the large scales, which has usually
been considered non-universal.

2. Experimental evidence

2.1 Spanwise scales

Almost all the available information on the energy-containing spanwise scales in
wall turbulence comes from direct numerical simulations. Spectra from two channels

at ReT = 180 (Kim, Moin & Moser, 1987) and Re_ = 590 (Mansour, Moser & Kim,
1996) are given in Fig. 1. The spectra of u and w near the wall show the well-known

peak at )_+ _ 100 corresponding to the spanwise periodicity of the streaks. It is

interesting that the wall-normal v spectrum peaks at a wavelength which is twice
shorter than the other two. This was already observed in the transverse correlation

functions by Kim et al. (1987), who explained it as corresponding to the diameter

of the streamwise vortices. That explanation is only partly convincing since it is

not clear why it would not apply as well to the spanwise velocity, which is also
presumably associated with the vortices. The same effect is, moreover, observed at

all distances from the wall, where coherent vortices are not necessarily present, and
the effect should probably still be considered unexplained.

As we move away from the wall, the spectral peaks move to longer wavelengths

and, near the center of the channel, show signs of being constrained by the peri-

odicity of the numerical box. This is specially noticeable in the u spectrum of the

high-Reynolds number channel, but all the u and w pre-multiplied spectra above

y/h _ 0.5 have their maxima at the second numerical wavelength, making it im-

possible to predict which their behavior would be in a wider box. It is clear, on the
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FIGURE 1. Pre-multiplied power spectrum kzE(kz), as a function of _+. (a) and

(b), E,,,,; (c) and (d), E..; (e) and (SO, E,,,,. (a), (c) and (e), Re,- = 180 channel
from Kim et al. (1987): y+ = 4, 17, 23, 38, 50, 66, 84, 107, 141, 180. (b), (d) and

(sO, Re, = 590 channel from Mansour et al. (1996): y+ = 5, 19, 39, 60, 77, 99, 129,
167, 215,274,357,461,590. In both cases increasing y+ corresponds to a rightward

shift of the short-wavelength end of the spectrum, and lines rotate between solid,

dashed, dotted and chaindotted. All the spectra are normalized to unit area, to

emphasize their frequency content.
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other hand, that the range of scales at Re_ = 590 is wider than at Re_ = 180, sug-

gesting that, since the wavelengths near the wall clearly scale in wall (Kolmogorov)
units, those near the center-line probably scale in outer units and are proportional
to the channel width.

The spanwise wavelengths of the energy maxima for the different pre-multiplied

spectra are given in Fig. 2. They were extracted manually from the data in Fig. 1

and should, therefore, be only taken as rough approximations. Only spectra whose

maxima are not in one of the two rightmost points have been used in the figure. It

is apparent that the data from both Reynolds numbers collapse very near the wall

to approximately 100 wall units for Euu and E_0w and grow approximately linearly
as fractions of the channel height beyond y+ _ 50. The maxima of Evv follow the

same trend but are shorter by roughly a factor of two.

The data from v have a somewhat longer useful range near the center of the

channel although it is clear from the inspection of Fig. 1 that even they should be
treated with care. If we take them at face value and assume that their relation with

the other two scales holds all the way to the center-line, the maximum size of of

the v structures would be ,kz,/h ._ 1, and those of u and w would be .kz/h _ 2.

This agrees with the result of Kim et al. (1987) that the velocity correlations decays
beyond z / h ._ 2.

Note that the scales given by these maxima represent the size of the energy-
containing structures and are different from the integral scale

7r E(0)

)_o - 2 /o E(k)dk' (2)

which can be shown to be roughly proportional to the width of the graph of ¢, when

plotted against log _, rather than to its maximum. It is actually easy to construct
families of spectra such as

E(k) = [1 + a(a - 1)k]e -ak, (3)
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the numerical wave numbers.

which have a fixed integral length and an arbitrary location of the energy-containing

peak. In this example _0 is always r/2, while the location )_,,,a_ of the maximum

of ¢ varies from approximately 2r for a = 1 to 7ra for a >> 1.
We will later find cases in which the position of the peak is not enough to charac-

terize the energy-containing scales since the spectrum is dominated by an E ,-_ k -1

range, which appears as a broad plateau in ¢()_), but that is not the case here.

_._ Streamwise scales

There is evidence of very long streamwise wavelengths in pipes and channels

even if the numerical simulations of Kim et al. (1987) show that the correlations

decay beyond x/h _ 4 in the streamwise direction. In this section we will use h to

represent either the half-width of a channel or the radius of a pipe, while/_ will be

reserved for the boundary layer thickness.

Priymak and Miyazaki (1994), using coarse numerical simulations of a low Reynolds

number pipe (Re_ _ 150), find that their pre-multiplied streamwise spectra have an

E ,-_ k -1 range that only decays beyond A_/h _ 5r (Fig. 3). This low-wavenumber
behavior was found below y+ _ 60 (y/h = 0.4). Note that as mentioned above

a substantial part of the pre-multiplied spectrum extending beyond the longest

resolved wavelength implies that part of the energy is not properly represented.

Bullock et al. (1978) found a similar low-wavenumber behavior in their exper-
imental investigation of a turbulent pipe at Rer = 2600. Their pre-multiplied

longitudinal velocity spectra contain two 'peaks'. The one at the shortest wave-

length is at A+ _ 600 and is the only one present near the wall. Above y+ _ 60

another peak appears, or rather a k -1 range develops between the near-wall peak
and a mild maximum at low wavenumbers which vary from A_/h _ 3 at y+ = 60 to
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,k,/h _ 20 at y/h ._ 0.6. Beyond this point, the long-wavenumber peak disappears

and is replaced by a shorter one at ,k, _ h, which can be traced to the migration

to longer wavelengths of a weakened version of the near-wall peak.

Both wavelength ranges are different. Radial correlations of the streamwise veloc-

ity show that the low wavenumbers are correlated across a wide radial range while
the high ones are local in the radius.

Perry, Henbest and Chong (1986) made a detailed study of the streamwise u and

v spectra in smooth pipes with Rer = 1,600 - 3,900, with a special emphasis on the

extent and scaling of the E -.. k -1 range. They find that, in the region y+ > 140

and y/h < 0.3, E,u has a k -1 range which extends between a short-wavelength

limit at ,kx/y _ 5 and a longer one at _x/h _ 15. They present no measurements

within the near-wall region, but if their short-wavelength limit were extrapolated to

the inner edge of the logarithmic layer at y+ _ 100, it would fall in the same range

as the near-wall peak mentioned above. Beyond y/h ._ 0.3 the short-wavelength

end of the k -1 range is no longer proportional to y and settles around ,kx/h .._ 3.

Although the uncertainties from reading printed spectra are large, the order of

magnitude of these wavelengths is comparable to the two 'peaks' found by Bullock

et al. (1978). The marching short-wavelength limit would originate from the near-

wall peak and eventually connect with the _, ._ h outer peak observed in the center

of the pipe by Bullock et al., while the long-wavelength peak would be the same in

both experiments. It is interesting that in both cases the k -1 range is only found in

what is usually considered the logarithmic region and disappears towards the center

of the pipe.

In a previous paper Perry and Chong (1982) had presented results for rough

pipes at comparable Reynolds number, although only for Euu in a narrow range of

y stations within the logarithmic region. The k -1 is very apparent and appears to

be longer than in the smooth case. Its long-wavelength limit is at the same location

as in the latter, but it extends to shorter wavelengths of the order of ,kx ._ y.

The streamwise spectra for the two numerical channels discussed in the previous

section are shown in Fig. 4. There is a clear difference between the spectra of the

streamwise fluctuations and those of the other two components. While the latter

show only a mild drift to longer scales as they get farther from the wall, the former

have most of their energy at very long wavelengths, in agreement with the previous

discussion, and are clearly constrained by the numerical box. Note that in the

Rer = 180 channel the short end of the k -1 range at the edge of the similarity

region would be 5y + _ 300, shorter than the expected viscous length near the

wall. As a consequence the position of the spectral peak moves towards shorter

wavelengths as it moves away from the wall.

The short-wavelength peak found near the wall in all these cases is probably re-

lated to previous observations in experiments and numerical simulations. Clark and

Markland (1971) report that the mean streamwise spacing between near-wall vor-

tices is _+ = 440, while various investigators have reported that the mean distance

between substructures within turbulellt boundary layer spots is _+ _ 200 - 500 (see

Sankaran et al. 1988, and references therein). Jim_nez _ Moin (1991) observed that
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this case the spectra for Re,- = 180 move to shorter wavelengths with increasing

distance from the wall.

turbulence could not be maintained in numerical boxes with a streamwise periodic-

ity shorter than A+ _ 350, while Jim_nez & Pinelli (1998) showed that turbulence

decays if the streamwise coherence of the velocity streaks near the wall is disturbed
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below A+ _ 400. In both cases the minimum streamwise period corresponds to

boxes containing a single pair of streamwise vortices flanking each sublayer velocity
streak.

The long wavenumber range has been reported less often, probably in most cases
because of insufficient extent of the numerical or experimental records. Choi and

Moin (1990), for example, while studying the wall pressure spectra in the channel

of Kim et al. (1987), noticed a spurious peak at their lowest wavenumber, k,h = 0.5

(A,/h = 47r), which they attributed to the periodicity of the box, suggesting that
the long wavelengths were poorly resolved.

In boundary layers, whose low-wavenumber characteristics need not be identical

to those of internal flows, Farabee and Casarella (1991) measured spectra of the
wall pressure fluctuations down to very low frequencies. They found that the low-

wavenumber end of their pre-multiplied spectra collapses well in outer flow variables

and only decreases beyond k,6 ,._ 0.25 (A/6 _ 81r), where 6 is a boundary layer

thickness roughly equivalent to the pipe radius. Their Reynolds numbers are Re,.
I,000 - 2,000.

Nagib and Hires (1995) and Hites (1997) measured longitudinal velocity spectra
in boundary layers with Reo = 4 - 20 x 103, corresponding to Re,. ,._ 1.5 - 6 x 103.

They report a k -1 range above y+ = 50, extending from a short-wavelength limit

at X+ ._ 600 to a longest wavelength of X,/8 _ 4. The latter is substantially shorter
than the long-wavelength limit observed in pipes and channels and also shorter than

the wavelength implied by the pressure spectra of Farabee and Casarella (1991).

This might be due to a procedural artifact. Their spectra are computed digitally

from records which limit them to wavelengths shorter than about A+ _ 105, which
at their highest Reynolds numbers corresponds to A,/_ _ 20. Since the last few

points in the spectrum are generally corrupted by the windowing algorithm, this

implies that the location of their low frequency peak is uncertain. It is interesting
that their k -1 range is only present below y+ _ 200 and that above that range

their pre-multiplied spectra contain a single peak at long wavelengths, suggesting

again, when compared to other results, that their longest wavelengths may have

been missed by the experimental procedure. In fact, in a different analysis of the

same data, Hites (1997) measured the fraction of the streamwise kinetic energy in a
low-pass filtered version of his velocity signals and found that about 30-50% of the

energy was associated with wavelengths longer than the long-wavenumber peak in
his spectra and that this fraction increased with the Reynolds number. About 15%

was associated with wavelengths longer than A_/_ = 10. This was observed at the
only two locations studied in this way, y+ = 100 and 300.

The experimental results for the longitudinal extent of the streamwise velocity
fluctuations are summarized in Fig. 5. Figure 5agives the location of the short-

wavenumber end of the energy-containing range. This is the only longitudinal scale
which exists at all positions across the flow. Near the wall it corresponds to an

isolated energy peak in the pre-multiplied spectrum near X+ _ 600. It grows away
from the wall until y/h .._ 0.3, and it remains constant or decreases slightly above

that level. The few data available do not collapse well in either wall or outer units,
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and the support for a linear growth with wall distance is only moderate. The range

of useful experimental Reynolds available is not large, Re,. = 1,000- 6,000, but

in that range the maximum wavelength of this peak near the center of the channel

is AJh = 1 - 2. We have seen in the previous section that the spanwise extent of

the structures containing the streamwise kinetic energy varies from A+ = 100 near

the wall to Az _ 2h at the center. Assuming that the structures involved are the

same in both cases, this would imply that the large scales vary smoothly from a

streamwise aspect ratio of about 6 near the wall to approximate isotropy near the

center.

The real picture is more complicated. Between y+ _ 100 and y/h ,_ 0.3 - 0.5 a

second limit appears, which is given in Fig. 5b. It scales well in outer units within

the present range of Reynolds numbers and constitutes the long-wavelength limit
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of an E -_ k -1 spectral range which contains essentially all the streamwise kinetic

energy. The available data, except for those in Perry et al. (1986), suggest that the

ratio between those two limits is always approximately equal to 10 (Fig. 5c) and
that both scales grow as yl/2. The long-wavelength limit disappears in the center

of the channel, and the k -1 range again collapses to a single spectral peak. The
existence of the k -1 range approximately coincides'in these experiments with the

logarithmic region of the mean velocity profile.

The square-root dependence on wall distance is surprising and would imply that

the length scale is determined by some viscous mechanism, probably based on an
eddy viscosity which stays constant across the flow. This would be difficult to

understand, and there is enough scatter in the data to leave open the possibility of

a linear dependence, but this is one of the many points in these data that call for

urgent clarification.
The data on the other velocity components are scantier. The wall-normal com-

ponent v has been measured in several occasions, and there is general agreement

that it does not contain a k -1 range (Perry et al., 1986). The k -5/3 inertial range

in its one-dimensional streamwise spectrum connects directly with a low-frequency
range which is essentially flat. The corner between the two regimes is at about

the same scale as the short-wavelength end of the k -1 range in E==, and it is at

those scales that most of its energy is concentrated. The data in Fig. 4 support this
interpretation.

There are even less data on the spanwise component w. The numerical data

in Fig. 4 suggest that there is no k -1 spectrum for this component and that its

characteristic wavelengths are those of v rather than u. The same can be deduced

from the spectra given by Lawn (1971), in a pipe at Re_ _ 2,000. Although his

spectra are noisy and clearly truncated at low frequency, they fall in two groups:
long ones for E_, which continue growing at his lowest measured frequencies, and

short ones for E_ and Eww, which flatten beyond A_/h ,_ 2.

Perry, Lim and Henbest (1987) suggest that Ew_ has a short k -1 range in contrast

to E._, but inspection of their data reveals that if this range exists it is much

narrower than that of E_ and is located at wavelengths which are an order of
magnitude shorter than those of u.

Saddoughi & Veeravalli (1994) and Saddoughi (1997) made measurements in

rough perturbed boundary layers at Re_ = 30,000 - 160,000. Although their anal-

ysis is centered on the isotropy of the inertial range, the long-wavelength behavior
of their spectra can be used as a check of the Reynolds number independence of the

previous conclusions since their Rer are at least an order of magnitude larger than
those discussed up to now. Their spectra also fall clearly in a short group for v and

w and a long one for u.

_.S Reynolds stresse_

Perry et al. (1987) suggest, mostly on theoretical grounds, that no k -1 range

should be found in the E_ cospectrum. The basic argument, which goes back to
Townsend (1976) and which is implicit in the classical distinction between 'active'

and 'inactive' motions, is that, since Reynolds stresses depend on the presence of v,
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FIGURE 6. Pre-multiplied power co-spectra. (a) and (b) kzEuv(kz), as a function
of ,k+. (c) and (d) kxE,,,,(k_), as a function of ,k+. (a) and (c) Re,. = 180 channel

from Kim et al. (1987): y+ = 17, 23, 38, 50, 66, 84, 107, 141. (b) and (d), Re,. = 590

channel from Mansour et al. (1996): y+ = 16, 60, 77, 99, 129, 167, 215, 274, 357,

461. In both cases lines rotate between solid, dashed, dotted, and chaindotted.

The spectra are not normalized to unit area, and decreasing amplitudes generally
correspond to larger distances from the wall. Note that, as for the velocity spectra

in Fig. 4a, the scale of the Rer = 180 cospectrum in (c) decreases away from the
wall.

they can not be present at scales at which the latter is not active. A little thought
reveal that this is not necessarily so. Consider the low-frequency spectral range in

which E.,, --, k -_ and E_ ,,+ 1. The only limitation for the cospectrum is that

E2v g E.,,E,,,_, and it is possible to have substantial Reynolds stresses even at

wavenumbers at which the v spectrum is already constant.

The streamwise and spanwise cospectra from the two numerical channel simula-

tions are given in Fig. 6. The drift in _ away from the wall is similar to that of

u and w in Fig. 1, and there is a clear suggestion of a k_-_ range in the streamwise

cospectrum of the higher Reynolds number case. A comparison with Fig. 4 shows
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that the characteristic wavelengths of the cospectra are those of u rather than those
of V.

Krogstad, Antonia and Browne (1992) give spectra for Euu, E_,v, and E_,, in

a boundary layer at Re_ _ 2,000. The pre-multiplied Euu and Eu_ have broad

maxima, both of which only decay beyond A_/6 _ 6,.while E_. has a narrower peak
at wavelengths which are an order of magnitude shorter.

Saddoughi & Veeravalli (1994) measured Eu. at y/8 = 0.1 and 0.4. The cospectra

at the near-wall station have a well-developed k_"1 range that extends from A/$ _ 0.5

to A/_ _ 7. Note that these values are very close to the limits of the k_"1 range for

E,,, given in Fig. 5 at this distance from the wall. Their cospectra at the mid-layer
location have essentially no k -1 range.

Lawn (1971) measured some cospectra. They are generally short, like v and w,

but it is interesting that the two cospectra for which y+ > 200 and y/h < 0.5 are

'long' and continue to increase beyond their lowest wavenumber A_:/h = 50.

3. Discussion

The general picture suggested by the data discussed above is that there exist in

the region of the flow generally associated with a logarithmic velocity profile very

long structures with longitudinal aspect ratios of the order of 10, which essentially
consist of streamwise velocity fluctuations. They contain most of the streamwise ki-

netic energy. Spanwise and wall-normal velocities have shorter wavelengths, roughly

coincident with the shorter end of the scales of the u structures, and are only slightly
elongated in the streamwise direction.

Long streamwise structures which contain predominantly streamwise velocity can

best be described as a system of longitudinal jets and are reminiscent of the sublayer
low- and high-velocity streaks, although in this case they would clearly be turbulent

themselves. In the sublayer streaks, for example, the quasi-streamwise vortices

responsible for the v and w fluctuations are also shorter than the streaks, and the

latter are the result of the action of several vortex pairs (Jeong, Hussaln, Schoppa
& Kim 1997).

In Fig. 7 we give an instantaneous picture of the u and v contours for a wall-

parallel plane of the numerical Rer = 590 numerical channel from Mansour, Moser

and Kim (1996), even if we have seen that their box is too short to represent these

structures correctly. There is clearly a large low-velocity streak on the upper half
of the u-plane which is not present in v. The transverse section in the lower frame

of the figure shows that this is not an isolated case and that there are several jets

at roughly the same scale. They are distinct from the sublayer streaks, being much
larger, but they seem to form from the joint effect of several of them.

Komminaho, Lundbladh, and Johansson (1996), who have observed streamwise

structures of the order of 40h in low-Reynolds-number Couette flow, publish snap-
shots of their simulations which look strikingly similar to Fig. 7.

Very large streaky features with widths and heights of several hundred meters

are known to occur in the atmospheric boundary layer, apparently associated with

storms having a large geostrophic shear (J. C. R. Hunt, private communication), and
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FIGURE 7. Instantaneous filtered velocities in the channel of Mansour et al.

(1996), Re_ = 590. (a) and (b): y+ _ 300 from the lower wall. Flow is from left

to right. Velocities are filtered by averaging on a 133 stencil (Ax + x Ay + x Az +

130 x 75 x 60). (a) Streamwise velocity fluctuations; contours are u' = 5=0.75(1).

Negative contours are dashed, and the fluctuations are computed with respect to the
instantaneous mean velocity on the x-z plane. (b) Wall-normal velocity; contours

are v' = 5=0.375(0.5). (c) Transverse section of u' at x + _ 2500. Fluctuations, filter

and contours as in (a), but there is no filtering in y.



150 Javier ]imdnez

have been observed underneath tropical hurricanes (Wuman and Winslow, 1998).

Smaller scale features, although still much larger than sublayer streaks, are observed

in wind-blown sand in beaches (Jimdnez, personal observation), and in blowing snow

in snow fields (Adrian, private commur.ication).

Perry et al. (1986) describe their results in terms of an 'attached eddy' model

which is an elaboration of an earlier one proposed by Townsend (1976). Briefly, in

the logarithmic region, the v structures are blocked by the presence of the wall and

are constrained to sizes at most of order y. This argument has been extended by

Hunt (1984) to any turbulent flow in the presence of a wall, independently of the

presence of shear, and to wall-normal correlations lengths. These blocked eddies

would form the 'short' At ",_ y peak in both v and u. A similar peak would also be

expected to appear in _z, and we saw evidence for it in Fig. 2. For the tangential

components there is no blocking effect, and much larger structures are possible.

The peak at A ,,_ y would only constitute a short-wavelength limit for them, and

one could expect a range of eddies, large in the tangential directions but attached

to the wall in the wall-normal one. Perry et al. (1986) give a very specific model for

these eddies as attached hairpin vortices and use it to derive the k -1 form of the

spectrum. The latter behavior is, however, more general than the hairpin model
and can be derived from simple dimensional considerations for near-wall structures

that are so large that their distance to the wall should not be important (Perry and
Abell, 1977).

We have mentioned in the introduction that the internal velocity gradients associ-

ated with these large structures are so low that their dynamics should be dominated

by the shear in the mean velocity profile. They can, to a first approximation, be

considered linear and described by rapid distortion theory. The blocking of v men-

tioned above is one such linear effect, but it is independent of the mean shear and

depends only on the presence of an impermeable wall. It is easy to see that the effect

of a mean shear is that any initial turbulence gets deformed into a series of stream-

wise jets. In essence, any spectral component with a non-trivial dependence on x

gets damped by the shear, and only the x-independent motion in the cross-plane

is left. This transverse motion depends on the initial conditions and is uncoupled

from the streamwise velocity. Except for viscosity, which would be negligible at

these large scales, it is undamped and will last for long times. The u component

is transported by this transverse velocity as a passive scalar (Orlandi and Jimdnez

1994). Wherever v moves towards the wall, u increases, and vice versa. Even if

the transverse flow is weak, the modulation of u increases linearly in time and will

grow to form large amplitude longitudinal jets until either viscosity or nonlinear

effects halt the growth. It was shown by Orlandi & Jimdnez (1994) in the context

of 'laminar' near-wail streaks that this processes changes the mean velocity profile
and, therefore, carries Reynolds stresses.

4. Conclusions and open questions

We have shown that eddies with streamwise lengths of the order of 10- 20 bound-

ary layer thicknesses are present in the logarithmic region of wall-bounded flows.
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They contain a substantial fraction of the streamwise kinetic energy and, probably,

also of the Reynolds stresses. They can be approximately visualized as a system of

streamwise turbulent jets, roughly comparable to the sublayer velocity streaks at a

much larger scale.

We have given arguments that they should be describable to a first approximation
by the combined linear effects of the blocking by the wall mad of the mean shear.

The first effect has been treated, for example, by Hunt (1984), who showed that it

explains the difference between v and the two tangential spectra. In the absence of

a mean shear, there should be no difference in the behavior of the u and w spectra,
both of which should be 'large'. We have shown that shear breaks that symmetry

and leads directly to longitudinal jets and to a u spectrum which is much longer

than the one for w.

The appeal of this argument is that it provides some unification to the arguments

on the largest scales of turbulent flows. It has been understood for some time that

the large structures of)tree shear flows correspond closely to the most unstable eigen-
functions of their mean velocity profiles (Cimbala, Nagib and Roshko, 1988; Gaster,

Kit and Wygnanski, 1985). This explanation does not work for wall-bounded flows,

whose profiles are typically stable, but it is easy to convince oneself that the linear
mechanism described at the end of the last section is nothing but the result of the

neutrally-stable Squire's modes of the inviscid Rayleigh stability equation for the

mean profile (Betchov and Criminale 1967).

A unified theory for all these largest structures would treat them as solutions of

the linear, inviscid stability equations. If an unstable eigenvalue exists, it dominates

the initial value problem. Otherwise, the linearly growing Squire's modes prevail.

As satisfying as that conclusion might be, it is clear that it should only be con-

sidered a preliminary step of a wider work program. Many questions are left unan-
swered.

Some of them are experimental. There is essentially no information on the span-

wise structure of these large scales. We lack experimental data, and the Reynolds
numbers of the numerical simulations are too low to draw scaling conclusions. The

data on the streamwise scales is better but partially contradictory. Most of the

available high Reynolds number experiments either lack spectral information, have

too few y-stations, or have data records which are too short to capture the largest

scales. The situation is specially bad for the spanwise velocity component w and

for the cospectrum, for which contradictory interpretations exist.

Except with the use of massive probe rakes it is unlikely that experiments would

give geometrical information about the structure of these eddies. Numerical simula-
tions should help, but the twin requirements of very long boxes and high Reynolds
numbers make direct simulations difficult. It should be possible, however, to at-

tempt large eddy simulations of a few cases to clarify both the scaling an the ge-

ometry.

On the theoretical side, the linear model outlined above is clearly only a first

approximation. Nonlinearity has to be taken into account although, hopefully, only

as a secular perturbation. In free shear flows it appears in the form of Reynolds
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stresses that modify the mean profile responsible for the instability. This is probably
the root of the 'marginal instability principle' used by Lessen (1978) and co-workers
to explain some of their properties. This nonlinear mechanism does not work in wall

flows because the mean profile does no*_feed back into the transverse velocities of

the Squire's modes. Weakly nonlinear models of the near-wall streaks have been

proposed by Waleffe (1997) and others, and they could perhaps be adapted to the

present case. A cycle for the generation of large streamwise structures in a turbulent

profile was proposed by Townsend (1976).

Two especially troublesome aspects of the experiments are related to the question
of nonlinearity. The first is the difference of about a factor of 2 between the observed

spanwise wavelengths of v and of the other two velocity component (see Figs. 1 and
2). It is difficult to explain it as a linear property. The second is the apparent

yl/2 scaling of the longitudinal scales in Fig. 5 and the corresponding finite range

of wavelengths associated with the k -1 range, which is supported by the cospectral

measurements of Saddoughi and Veeravalli (1994) at higher Reynolds numbers.

The square-root scaling suggests a mechanism which is more global than strict self-

similarity based on local conditions, but the finite extent of the k -1 range suggest
the opposite. More experimental results are needed in both cases.

The pay-off of this work should come in various ways. By far the most interesting

would be the already discussed possibility of unifying the understanding of the large

turbulent scales, which are at present considered non-universal and usually treated
in separate 'botanical' ways. Some practical applications may also follow. Since

these structures contain energy and Reynolds stresses, they are of practical impor-

tance, but their large size makes them expensive to compute. A quasi-linear model

would open the way for their 'super-grid' modeling (S. Lele, personal communica-

tion). We have already mentioned that they probably control the low frequency
noise from boundary layers.
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The instability of streaks in near-wall turbulence

By G. Kawahara, J. Jim6nez, M. Uhlmann 1 AND A. Pinelli 1

1. Motivation and objectives

Several aspects of the self-sustaining mechanism of near-wall turbulence have been

studied recently (see Jim6nez & Moin 1991; Hamilton, Kim & Waleffe 1995; Waleffe
1997; Schoppa & Hussaln 1997; Jimdnez & Pinelli 1998). It is well-known that there

are two key structures, streamwise vortices and streaks, in the near-wall region.

Streamwise vortices generate streaks through the deformation of the mean flow by
their induced cross-flow advection. The streaks, which are nearly uniform in the

streamwise direction, become unstable, bending along the strearnwise direction and

leading to the production of streamwise vorticity. Finally, the produced streamwise

vorticity evolves nonlinearly into streamwise vortices. In this manner streamwise

vortices and streaks generate each other sequentially to sustain near-wall turbulence.

The instability of streaks, to be discussed in this report, is expected to be a crucial

ingredient in the self-sustaining cycle. If the streaks were not unstable, then the
streamwise vortices should decay under the action of viscosity and so also should the

streaks. This decay would mean a termination of the regeneration cycle. Therefore,

controlling the streak instability could reduce drag or enhance heat and momentum
transfer in near-wall turbulent flows. The control of streaks seems to be easier

than that of streamwise vortices since streaks have much larger length scale in the

streamwise direction compared to that of streamwise vortices. Because streaky flows

over a wall depend on the spanwise direction as well as the wall-normal direction,

we cannot apply Squire's transformation to the streak instability, and thus we must
consider the three-dimensional mechanism for the instability.

Waleffe (1995, 1997) and Waleffe & Kim (1997) examined numerically the lin-

ear stability of streaks in a plane Couette flow at a low Reynolds number. They

employed the streamwise velocity field deformed by assumed streamwise rolls as
a base flow to demonstrate that sinuous modes, which have often been observed

experimentally and numerically, actually grow via the instability mechanism. They
stated that the instability originates from inflection points, i.e. wake-like instability,

in the spanwise variation of streaky flows. Reddy et al. (1998) investigated the same

instability systematically in plane Poiseuille flow as well as in plane Couette flow

to study subcritical transition. For a turbulent channel flow, on the other hand,

Schoppa & Hussain (1997, 1998) examined the time-evolution of small disturbances
embedded in a model flow for streaks (on only one wall) by using direct numerical

simulations. They found an exponential growth of sinuous modes and discussed the

mechanism of the instability. They remarked that the streak instability is not the

1 The School of Aeronautics, U. Polit6cnica Madrid
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same as the wake-like instability; rather, it is similar to the oblique instability of a

shear layer. However, at least in the initial linear phase, the structure of growing
disturbances which Schoppa & Hussain (1998) observed in their turbulent channel

flow is similar to that in a plane Couette flow where the streak instability has been
considered to be the same as the wake-like instability, as mentioned above. Much

effort has been devoted to investigating the streak instability, but we must admit

that our knowledge is still poor concerning the mechanism and the structure of the
instability.

The main objectives of our present work are to elucidate the conditions for the

streak instability in a turbulent channel flow and to demonstrate the generation

mechanism of the streamwise vorticity through the streak instability. We expect
that the understanding of the conditions and the streamwise vorticity generation in
the streak instability could provide useful information for turbulence control in near-

wall flows. In order to accomplish these objectives, we have performed numerically

the linear stability analysis of a turbulent-channel-type base flow with a periodic
undulation in the spanwise direction.

2. Accomplishments

2.1 Base flow

In the following linear stability analysis, x, y, and z are used to represent the

streamwise, the wall-normal, and the spanwise coordinates, respectively. Friction

velocity u, and channel half-width h (and a resulting time scale h/u,) are taken as
reference velocity and length (and reference time) for non-dimensionalization.

The base flow to be considered here is a unidirectional flow and has only the
x-component of dimensionless velocity, U. U is dependent on both y- and z-
coordinates as

V(y, z) = Uo(y) + UI(y)cos(Tz), (1)

where Uo(y) stands for a typical mean velocity profile of a turbulent channel flow

and is given by numerical integration of (see Reynolds & Tiederman 1967)

dU Re,(y - 1)

1+ - 1) (o < < 2/. (21

The function Ut(_) is expressed as

1{ (ut(_)= _ 1+ (1-)(1+2_ 2) 1-exp _4" 2"

(3)
Here

urh
Re, - (4)u

is a Reynolds number, and u is the kinematic viscosity of the fluid. In this work

we restrict ourselves to a low-Reynolds-number turbulent channel flow by setting
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FIGURE 1. Contour plot on (y, z)-plane of the streamwise velocity of the base flow

(1) for (a) AU = 3.0, 7 = 0.9; (b) AU = 4.0, _ = 10.8; and (¢) ZXU = 4.0, 7 = 27.0.
Contour increment is 2. Only half the height of the channel is shown in (b) and (c).

Modes I, II and III in Fig. 4 have been obtained respectively for the base flows (a),

(b), and (c).

Re,- = 180. In this case the value of the Reynolds number based on the channel

centerline velocity is 3300. We have set the values of the adjustable parameters in

(3) as K = 0.525, A = 37 so that the velocity profile Uo(y) can fit a realistic profile

for Re,. = 180 (Waleffe, Kim & Hamilton 1991). On the right-hand side of (1)

the second term represents low- and high-speed streaks alternating in the spanwise

direction with dimensionless wavenumber 7. UI(y) is the dimensionless amplitude

of the spanwise variation given by

U, (y) --- AU x/_'y exp(-ay 2)
exp(-1/2)/V_ '

(5)

which has a maximum AU at y = (2a) -1/2 and is localized on the lower wall y = 0.

Here, we set a = 18 so that the maximum streak velocity (and so the maximum

wall-normal vorticity 7AU) may be located at y = _, i.e. 30 wall units. Figure 1
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shows the contour plot on (y, z)-plane of the streamwise velocity for the three typical

base flows to be discussed in §§2.4 and 2.5.

We confirmed that the y-dependence (5) of streaky flows approximately represents

that of real streaks in comparison to the streamwise velocity fluctuation in direct

numerical simulations. A similar type of streaks to (5) was also used in Schoppa &

Hussain (1997, 1998).

We should note that the base flow (1) is not an exact solution to the Navier-Stokes

equation and the actually observed streaky flows have weak time- and x-dependence.

However, we believe that the base flow (1) is valid as the first step of the analysis

because real near-wall streaks have much larger time and streamwise length scales

than those of typical turbulence structures, e.g. streamwise vortices. Another

possibility is to obtain fully nonlinear equilibrium solutions, which correspond to

streaky flows, in some moving reference frame. But this lies outside the scope of the

present work. As is well known, the turbulent-channel-type base flow Uo(y) alone

does not possess any unstable eigenmodes of the linearized Navier-Stokes equation.

_.2 Linear stability analysis

When we consider the linear stability problem for the base flow (1), we cannot

use Squire's transformation, and thus we must consider three-dimensional distur-

bances. If wall-normal disturbance velocity v and vorticity r/are taken as dependent

variables, the time-evolution of an infinitesimal disturbance may be described by

the extended Orr-Sommerfeld equation

(O'+UOx- 1-_V2) V_v-[(O_-O:)U]O_vRe_.

-2(OzU) Ox(c3_w-Ozv)-2(OyO_V)O_w =0, (6)

and by the extended Squire equation

(Ot + UOx 1 )- ae--:V_ _ - (ozu)a_v + (o_u)o_,,+ (o_ozu)v+ (a_u) w = 0 (7)

(see Waleffe 1995), where spanwise disturbance velocity w is related to v and r/as

(o_+ a_)w= -a,a_ - o_. (8)

We have used the continuity equation O_u + O_v + O_w = 0 and the definition of

the wall-normal vorticity r/= c3zu - Oxw to have (8), where u is the streamwise dis-

turbance velocity. Equations (6) and (7) are supplemented by boundary conditions

v=Oyv=O, rl=O

at y = 0, 2.

In the following, we shall seek solutions to a system of equations (6), (7), and (8)
in the normal-mode form

v = Re [_3(y,z)ei_('-c')] , (9)



The instability o/8freaks 159

, =Re (lO)

w: Re (11)
where a stands for the streamwise wavenumber and c the complex phase velocity.

The growth rate of the disturbance is given by aim(c).

We anticipate periodic solutions in the spanwise direction (Floquet theory). Two

fundamental modes are considered, i.e. the sinuous mode

oo oo c_

= E fin(y) sin(nTz), 0 = E 0,(y) cos(nTz), _b = E d_,(y) cos(nTz),
n=l n=O n=O

(12)
and the varicose mode

oo oo oo

_3= E _3,(y) cos(nTz), 0 = E in(Y) sin(nTz), tb = E tb,(y) sin(riTz),
n=O n=l n=l

(13)
which are treated separately except for the case where both modes have the same

eigenvalue c, since the anti-symmetric and the symmetric modes can be decoupled

in (6), (7), and (8).
In the numerical solution of the eigenvalue problem, the infinite series in (12)

and (13) are replaced by truncated series up to n = Nz in the spanwise direction

z. We then apply a Galerkin method to Eqs. (6) and (7) by using N, b-splines

of order 6 as expansion functions in the wall-normal direction y. We set Nz = 10

and N, = 40 to have convergence under 0.2% difference for Nz and under 4%

difference for N,. More details about the discretization can be found in JimSnez

et al. (1998). The evaluation of the involved integrals leads to a large, coupled

system of algebraic equations, A_ = cB&, which is of order N_ × (2N= + 1), where

5_ is the solution vector in spline space and contains the coefficients of the wall-

normal velocity and vorticity for each spanwise mode and each discrete wall-normal

location. The algebraic eigenvalue problem was solved by using standard library

routines (e.g. LAPACK or EISPACK). We have removed spurious eigenvalues that

might be caused by the boundary treatment through the tan method before seeking

the most unstable (or least stable) eigenvalue and eigenvector.

_.3 Neutral curves

Figure 2 shows the projection on (% AU)-plane of the lower bound of the neutral

surface in (7, AU, a)-space. Open and closed circles represent the sinuous and the

varicose modes, respectively. The streaky flow should be unstable above the neutral

curve around the critical streamwise wavenumber ac. Note that the corresponding

spanwise wavenumber of 100 wall units is located at 7/Rer = 0.06 in this figure.

The critical streak amplitude AUc seems to have a finite value (_ 1.7) as 3' _ 0

both for the sinuous modes and for the varicose modes.

In the case of the sinuous modes, AUc increases abruptly at 7/Rer < 0.01 and

takes a maximum around 7/Re_ = 0.03. From there AU_ decreases with increasing
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FIGURE 2. Trace of the neutral curve on (% AU)-plane. Open circles represent

the sinuous mode and closed circles represent the varicose mode. The dotted vertical

line indicates 7/Re_ = 0.06, on which the wall-normal shear and the spanwise shear

due to streaks are comparable. The dashed curve denotes the contour of a constant

amplitude 7AU/Rer = 0.12 of the wall-normal vorticity, on which the mean shear

at y = 61-is comparable to the spanwise shear of streaks. Three crosses represent

modes I, II, and III in Fig. 4.

7. In general, the actual value of the growth rate aim(c) (not shown here) is

increased when 3' as well as AU are increased because they are related to the

intensity of the shear layer generated by the streaks. For large 3', however, the effect

of viscosity progressively stabilizes the flow. In the case of a two-dimensional wake,

the critical Reynolds number is given by Rec _ 5, and in our case it is estimated

as Rec : 2rrRe_(AU/3") (_ 5). This estimate tells us that the stabilization due to

the viscosity becomes important only for relatively large 3' (3"/Rer _ 1.3AU).

At 3"/Re_ = 0.06, i.e. 100 wall-unit wavelength, the instability requires that

AU > 3.44 for the streamwise velocity and so 7AU/Re_ = 0.20 for the wall-

normal vorticity. If we take into consideration that the RMS value of the streamwise

fluctuation velocity (and the wail-normal vorticity) attains the maximum of about

2.7ur (and 0.2U2r/U) in the near-wall region, then the above requirements for the

instability are expected to be satisfied in a turbulent channel flow.

In the case of the varicose modes, on the other hand, AUc increases abruptly with

increasing 3' so that a stable region is extended to almost all the parameter plane

in Fig. 2.

This significant difference of the instability between the sinuous (bending) and

the varicose modes could explain, at least for low Re_, the fact that the actually
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FIGURE 3. Plot of the critical streamwise wavenumber ac against 7.

observed streak instability involves the bending motion of streaks in the spanwise

direction (see Hamilton, Kim & Waleffe 1995; Schoppa & Hussain 1997; Jimdnez &

Pinelli 1998).

Figure 3 shows the critical streamwise wavenumber c_c against the spanwise

wavenumber 7 for the sinuous modes. For 7/Re_ < 0.01, a_ is independent of

3', taking a constant value of ac/Rer = 0.013. At "y/Re_ > 0.01, a¢ jumps down

and gradually increases with increasing q'. For 7/Re_ = 0.06, i.e. 100 wall-unit

wavelength, the streamwise wavenumber has a value of ac/Rer = 0.012, which cor-

responds to 500 wall-unit wavelength. This wavelength is consistent with that of the

streak bending often observed in a turbulent channel flow. ac kinks at 7�Re,- ,,_ 0.12,

and then ac increases nearly linearly with % This jump and kink of a¢ implies

that there are different instability mechanisms in three ranges: ",//Re,- < 0.01,

0.01 < _//Re,- < 0.12, and 7�Re,- > 0.12. We can now see the corresponding

dependence of AU_ on 7 in each range of 3' in Fig. 2.

In the present configuration, streaks (the second term in (1)) have the width

27rh/_/and the height 0.6h within which the (dimensionless) streak velocity exceeds

0.01AU. If 7/Re_ = 0.06, then the width is comparable to the height. Two time

scales based on shearing motion of streaks across the spanwise and the wall-normal

directions are also comparable at 7/Rer = 0.06 since they should be estimated as

each length scale divided by AUu_. On the other hand, the mean flow part Uo(y)

in (1) has the velocity gradient of O.12Re_u_/h at y = }, i.e. 30 wall units, where

the streak velocity and vorticity attain a maximum. Thus, at least in the vicinity

of this maximum, the time scale of shearing motion of streaks across the spanwise

direction is comparable to that of the mean shear if "_AU/Re,- = 0.12.

In Fig. 2, we have shown these relations, 7/Rer = 0.06 and 7AU/Rer = 0.12,
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respectively by the dotted line and the dashed curve. It turns out that in the case

of the instability at 3"/Re_ < 0.01, the width of streaks is larger than the height

and also the spanwise shear of streaks is weaker than the wall-normal shear and

the mean shear. Because ac is independent of 3' for 3"/Rer < 0.01 as shown in

Fig. 3, the spanwise shear actually does not affect the instability. In the case of the

instability at 3"/Rer > 0.12, on the other hand, the height of streaks is larger than
the width, and also the spanwise shear of streaks is stronger than the wall-normal

shear and the mean shear. At 0.01 < 3"/Re_ < 0.12, where the typical streak

spacing 3"/Re_ = 0.06, i.e. 100 wall units, is located, the streak width and height
as well as the streak wall-normal and spanwise shear and the mean shear are nearly

comparable.

Reddy et al. (1998) examined numerically streak instability in the simplified

model for a plane Couette flow and showed that mean shear has the stabilizing

effect on the instability (see also Waleffe 1997). Baggett (1996) argued that the

spanwise shear by streaks exceeds mean shear leading to the instability of streaks.

2._ Eigenmode_

In this subsection, we shall discuss the structures of the unstable sinuous eigen-

modes near the neutral surface in order to distinguish the effects of the above-

mentioned different shear components on the instability.

Figure 4 shows the iso-surface of the streamwise disturbance vorticity of three

unstable eigenmodes for (a) AU = 3.0, 7/Re_ = 0.005, a/Re_ = 0.013; (b) AU =
4.0, 3"/Re_ = 0.06, a/Re_ = 0.012; and (c) AU = 4.0, 3"/Re_ = 0.15, a/Re_ =

0.063 (see Fig. 1 for contour plots of the corresponding base flows). The value of the

iso-surfaces is +4w', where w' denotes the RMS value of the disturbance vorticity

vector. The light gray and the dark gray iso-surfaces indicate the positive and

the negative vorticity, respectively. Hereafter, the eigenmodes (a), (b), and (c) in

Fig. 4 are referred to as mode I, mode II, and mode III, respectively. Modes I, II,

and III have growth rates of aim(c) = 0.027, 0.60, and 5.2 and propagate in the

streamwise direction at phase velocities of Re(c) = 17.4, 13.6, and 14.2, respectively.
For all modes I, II, and III, the magnitude of the wall-normal vorticity is quite

small compared to that of the other components. For mode I, the streamwise and

the spanwise vorticity are comparable, while for modes II and III, the streamwise

vorticity is dominant. The trace of critical points (thin curves), at which the base

flow velocity is equal to Re(c), and of inflection points (thick curves) is shown for

modes I, II, and III in Fig. 5. In this figure inflection points are defined as a point

at which O_U = 0, where n is taken to be normal to iso-velocity lines (see Fig. 1)
of the base flow on (y, z)-plane.

In Fig. 4, it can be seen that the three eigenmodes have strikingly different struc-

tures. In the case of mode I, the streamwise vorticity is highly localized above the

high-speed streak (along the edge of the periodic box). It can be found in Fig. 5a
that the critical points nearly coincide with the (upper) inflection points only above
the high-speed streak. In this case the spanwise shear of the base flow is weak and

inactive (see §2.3 and Fig. 2). Therefore, the instability should be characterized by

the three-dimensional instability of a roughly two-dimensional wall jet.
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FIGURE 4. Iso-surface of the streamwise disturbance vorticity for unstable sinuous

eigenmodes. (a) AU = 3.0, 3` = 0.9, a = 2.4 (mode I); (b) AU = 4.0, 3` = 10.8,

= 2.1 (mode II); and (c) AU = 4.0, 3' = 27.0, a = 11.4 (mode III). The value

of iso-surfaces is +4w', where w' denotes the RMS value of the vorticity vector.

The light and dark gray surfaces represent the positive and the negative vorticity.

The flow is from the lower left to the upper right, and the low-speed (high-speed)

streak is located along the center (edge) of the periodic box. See Fig. 1 for the

corresponding base flows.
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FIGURE 5. Trace of critical points and of inflection points on (y, z)-plane. (a)

AU = 3.0, 3' = 0.9 (mode I); (b) AU = 4.0, 7 = 10.8 (mode II); and (c) AU = 4.0,

3' = 27.0 (mode III). The thin curves represent a critical point. The phase velocity

of disturbances is Re(c) = 17.4 for (a), Re(c) = 13.6 for (b), and Re(c) = 14.2 for

(c). The thick curves represent a inflection point of the base flows (a), (b), and (c)

in Fig. 1. Only half the height of the channel is shown in (b) and (c).

In the case of mode II, the streamwise vortieity takes an elongated ribbon-like

form in the streamwise direction (Fig. 4b). The ribbon-like structures are located on

both the high-speed streak and the low-speed streak (along the center of the periodic
box). They are inclined in the streamwise direction from the wall-normal direction.

In the case of mode III, on the other hand, the structures of the streamwise vorticity

are inclined in the streamwise direction from the spanwise direction rather than from

the wall-normal direction (Fig 4c). Structures of the same sign above the low- and

high-speed streaks are linked via the thin 'arms' such that they appear v-shaped.

This difference in the inclination direction between modes II and III could be related

to the difference in the effective shear. In the case of mode III, the spanwise shear

of streaks is strongest (see §2.3 and Fig. 2), so that the shearing motion across

the spanwise direction could tilt eigenstructures towards the streamwise direction
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from the spanwise direction. In the case of mode II, the shearing motion across the

wall-normal direction is considered to be effective.

Since for both modes II and III the critical points nearly coincide with the in-

flection points on the flanks of the low-speed streak (Fig. 5b and c), the origin of

the instability for both modes is considered to be similar to a wake instability as

pointed out by Waleffe (1995, 1997) and Waleffe & Kim (1997).

In the next subsection, we examine the production of the streamwise vorticity in

order to further understand the difference between modes II and III.

2.5 Production of streamwise vorticity

First, we consider the equation for the unstable modal streamwise vorticity as

(U -c)&_ = -_a_U + _a_U, (14)

or equivalently

- Re(c)) ^
+ i(U im(c) = -ii-- (c)OyU + ii-- O,U, (15)

where &_(y, z) is related to the streamwise vorticity w_ by wx = Re [&_eia(_-ct)],

and we have neglected the viscous term. The right-hand side of (14) (or (15)) is

responsible for the production of the streamwise vorticity through the vortex tilting.

The first term in (14) (or (15)) comes from the tilting of the wall-normal disturbance

vorticity by the wall-normal shear of the base flow while the second is related to the

tilting of the spanwise disturbance vorticity by the spanwise shear. Note that the

tilting effects of the base flow vorticity by the disturbance have disappeared from

(14) (and so (15)) due to cancellation. If we estimate the order of the first and

second terms for mode II and mode III, then we find that in the case of mode II

the first term is significant while in the case of mode III the second is significant.

The contour plots of _ and of the significant production term are shown for mode

II and mode III in Figs. 6 and 7, respectively (only the real parts are shown). In

these figures, the flow condition of (a) corresponds to (b) in Fig. 4, and that of (b)

corresponds to (c) in Fig. 4. In Fig. 7a the first term in (15) is shown, while in

Fig. 7b the second term in (15) is shown.

As described in §2.4, in the case of mode II the ribbon-like structures of the

positive and negative streamwise vorticity are inclined in the streamwise direction

so that the positive and the negative structures are stacked alternately on top of

low- and high-speed streaks (see Fig. 6a). This typical distribution of the positive

and negative vorticity coincides well with that of the significant production term

(Fig. 7a). In their direct numerical simulation, Sendstad &: Moin (1992) found

that the same production term, -(O¢w)(Oyu), is dominant for the generation of the

streamwise vorticity in near-wall turbulence.

For mode II, if we estimate the order of each component of the disturbance ve-

locity, it turns out that the spanwise disturbance velocity is much larger than the

wall-normal one, especially on the low- and high-speed streaks (the streamwise com-

ponent is very small). The strong spanwise velocity could be induced by spanwise
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FIGURE 6. Eigenmode &z for the streamwise vorticity. (a) AU = 4.0, 7 = 10.8,

a = 2.1 (mode II); and (b) AU = 4.0, 7 = 27.0, a = 11.4 (mode III). Contour

increment is w'. Negative contours are dotted. Only the real parts of &_ are shown.

In (b) one of the minima, which correspond to the 'arms' in Fig. 4c, is indicated by
the arrow.
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FIGU RE 7. Significant production terms for the streamwise vorticity. (a) -i_b(0y U)/

Im(c) is shown for AU = 4.0, 3' = 10.8, a = 2.1 (mode II). (b) iCJ(O,V)/Im(c) is

shown for AU = 4.0, 7 = 27.0, a = 11.4 (mode III). Contour increment is 3w', and

negative contours are dotted. Only the real parts are shown.
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FIGURE 8. Contour plot of the spanwise disturbance velocity on (x, y)-plane for
mode II. The slice plane is located at z = 0.29, i.e. the centerline of the low-speed

streak. Contour increment is v', where v' denotes the RMS value of the velocity

vector. Negative contours are dotted.
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FIGURE 9. Contour plot of the wall-normal disturbance velocity on (x, z)-plane
1 i.e. 30 wall units, where the streakfor mode III. The slice plane is located at y = g,

velocity and vorticity attain a maximum. Contour increment is v', where v_ denotes
the RMS value of the velocity vector. Negative contours are dotted.

bending instability of the streaks similar to a wake-like instability. The eigenmode
for the spanwise velocity is inclined from the wall-normal direction towards the
streamwise direction under the action of the shearing motion across the wall-normal

direction (Fig. 8). The inclined eigenmode for the spanwise velocity directly induces
streamwise vorticity as well as wall normal vorticity (see Fig. 10a). The induced
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FIGURE 10. Proposed mechanisms of the streamwise vorticity generation for
(a) mode II and (b) mode III. Solid lines conceptually show null contours of the

disturbance velocity normal to the figure planes, and symbols ® and ® indicate the

signs of the velocity component, i.e. coming out of and going in the planes. Thick

double arrows denote the induced streamwise vorticity. Thin double arrows denote

the induced wall-normal (or spanwise) vorticity in (a) (or in (b)). Thick arrows
represent the production of the streamwise vorticity by the vorticity tilting towards

the streamwise direction. The dotted-dashed lines in (b) are the centerlines of the
low- and high-speed streaks.

wall-normal vorticity is tilted towards the streamwise direction, which then leads

to new production of streamwise vorticity. The generated streamwise vorticity, in

turn, enhances the spanwise bending of streaks, i.e. the spanwise velocity.

In the case of mode III, on the other hand, one can identify strong localized

minima (one of which is indicated by the arrow) of streamwise vorticity situated in
between the low- and high-speed streaks in Fig. 6b, which correspond to the 'arms'

visible in Fig. 4c. The high vorticity of these minima is apparently produced by the
second production term in (15) as the location of the strong minima of production

coincides with that of the 'arms' (compare Figs. 7b and 6b).

For mode III, the shearing motion across the spanwise direction is dominant

especially between the low- and high-speed streaks. If we examine the order of the

disturbance velocity, then we find that the wall-normal velocity much exceeds the

spanwise one between the low- and high-speed streaks (the streamwise component is

again very small). The eigenmode for the wall-normal velocity is inclined towards
the streamwise direction from the spanwise direction by the action of the shear

between the low- and high-speed streaks (Fig. 9). The inclined eigenmode for the

wall-normal velocity directly induces streamwise vorticity and secondarily produces
it through vortex tilting in a manner similar to that found in the case of mode II

but with the production taldng place essentially in planes parallel to the wall (see
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Fig. 10b).

3. Summary and future plans

In this report, we have presented three different instability modes in the base

flow composed of a turbulent-channel-type mean flow andsuperimposedstreaks at
Re,. = 180. For 7/Re_ < 0.01, a wall-jet-like instability occurs, and the critical ve-

locity amplitude of streaks is around AU¢ = 1.7. In the range 0.01 < "[/Re,. < 0.12,

into which falls the wavelength of 100 wall-units, the critical amplitude is around

AUc = 3. In this case, unstable eigenmodes take a form that is inclined towards
the streamwise direction from the wall-normal direction, and they directly induce

streamwise vorticity. In addition, the streamwise vorticity is secondarily produced

on low- and high-speed streaks principally through tilting of the wall-normal dis-

turbance vorticity by the base flow shear across the wall-normal direction. For

"_/Re,- > 0.12, on the other hand, the shearing motion between low- and high-speed
streaks is dominant so that eigenmodes are oriented in the spanwise direction (with

an inclination towards the streamwise direction) rather than in the wall-normal di-

rection. In this case, therefore, the streamwise vorticity is produced between low-

and high-speed streaks principally through tilting of the spanwise disturbance vor-
ticity by the base flow shear across the spanwise direction in addition to the direct
induction of the streamwise vorticity by inclined eigenmodes. In these latter two

cases, the instability is considered to be similar to a wake instability. In these cases,

however, the streamwise vortieity is dominant, and it is induced directly through

the instability. No two-dimensional instability mechanism can be applied to these
two unstable modes. The underlying three-dimensional mechanism is expected to

be interpreted directly in terms of the streamwise vorticity.
We are now pursuing an analytical approach to explain the mechanism of the

streak instability and the generation of the streamwise vorticity. We are also plan-

ning to investigate the effects of a change of boundary conditions on the streak
instability in order to get useful information for possible control strategies of near-
wall turbulence.
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An implementation of the v2-f model

with application to transonic flows

By Georgi Kalitzin

1. Motivation and objectives

This report describes the implementation of the v%f model in CFL3D, a code
which solves the time-dependent 3-D compressible Reynolds-averaged Navier-Stokes

equations using multi-block structured grids.

The turbulence transport equations are solved implicitly with an implicit treat-
ment of the boundary conditions. The large amount of computer memory required

for inversion of the matrices resulting from the implicit operator with, for example,

GMRES is still a major constraint for computations of 3-D flow around complex

geometries. A three-factored Approximate Factorization scheme, which factorizes
the 3-D matrix into three 1-D matrices, minimizes the memory required. The stiff-

ness of the _ and f boundary conditions require that the source terms and boundary

conditions are treated implicitly in the factorized matrix for grid lines normal to the

wall. This, however, leads to severe diftlculties in the computation of, for example,

wing-body junctions, where grid lines of two coordinate directions may be normal
to the walls.

A two-factored Approximate Factorization scheme, which factorizes the 3-D ma-
trix into a 2-D and a 1-D matrix, improves the robustness and applicability of the
model. The factorization errors scale with At 2 in this scheme in contrast to At 3 in

the three-factored scheme for 3-D flows. GMRES is used for the inversion of the

2-D matrix, and a direct solver is used for the inversion of the 1-D matrix.

The correctness of the implementation of the v2-f model in CFL3D has been
tested on several cases: flow over a flat plate, channel flow, and by-pass transition.

Results for the channel flow have been included in this report.

The performance of each numerical scheme has been tested on the computation
of transonic flow around the ONERA M6 wing. This 3-D single block test case

presented no major numerical problems with any of these schemes, and it allows

a quick evaluation of the CPU time and memory requirements of the different
numerical methods. The pressure distributions computed on selected wing cuts are

compared with experimental data. Comparisons to computations with the Spalart-
Allmaras model provide an overall view on the relative cost of computation for the

v2- f model.

2. Accomplishments

2.1 Basic numerical method

CFL3D, a code developed at NASA (Krist et al. 1997), solves the time-dependent

thin-layer Reynolds-averaged Navier Stokes equations using multi-block structured
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grids. A semi-discrete finite-volume approach is used for the spatial discretization.

The convective and diffusion terms are discretized with a third-order upwind and a

central difference stencil, respectively. The code uses flux-difference splitting based
on the Roe-scheme with a smooth flux limiter. Time advancement is implicit.

A three-factored Approximate Factorization scheme (Beam and Warming 1978) is
used to invert the matrices, resulting from the implicit operator. The steady-state

computations have been performed by marching in time from an initial guess. To
accelerate convergence, local timestepping is used for all variables both mean flow

and turbulence, while multigrid is used only for the mean flow. This code is a state-

of-the art flow solver which is widely used at NASA for research and in industry for
design purposes.

2.2 Durbin's v2-f turbulence model

A short description of the model's equations is given to facilitate the description

of its implementation in CFL3D. While new versions of the model (Lien et al. 1996,

1998) have been developed to overcome some of the numerical problems mainly con-

nected with the f-boundary condition, we consider in this report only the original

version of the model. For high Reynolds number flows in particular the original
version predicts consistently better skin friction distributions.

In essence the v2-f model introduced by Durbin (1995) extends the standard k-e

model to low-Reynolds number flow regions. This is realized by modifying the eddy-

viscosity formulation and solving two additional partial differential equations: an
equatio__n describing the transport of the turbulent intensity normal to the stream-

lines v 2 and an elliptic relaxation equation for f. The latter models the effect of
the pressure-strain term.

Consistent with the non-dimensionalization used in the code

~

Ic _oo _-_ = v2 fZ_oo /_, t_, V
k=a--_oo, e--_-, --T-,f ,P=7 p=-z-- U=7, x==-- t-aoo aoo a_ poo Poo aoo LR'

the model's equations for compressible flow are:

()O,k= __R___epM_ 1V. (#+ )Vk -U.Vk+ -_e Pk- _ e (1)

Moo 1V. (#+ )Ve -U.Ve+ -_e T _ T (2)Ore= _ P

-- M_ -- --
OtV2 = (--_-e ) IV'p [(/z+ a_)Vv2]-g. Vv2+ (_)kf -- (--_) _-_ (3)

0 = _ L2V2f- f + _ - + _,'-_-e) 2; (4)

The time and length scales are computed as

( /T'=max ,6 , T=min T', _ x/._C u
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where Sij = 0.5(Oui/Oxj + Ouj/Oxi) represents the strain tensor. The upper bound
for the time and length scales is derived from realizability constraints (Durbin 1996).

The eddy-viscosity is given by

pt = Cj, v2T,

and the model constants are:

C_=0.19, ak=l, a,=1.3, Cd =1.4(1+0.045 k_), Ct2=1.9,

C1 = 1.4, C2 = 0.3, CL = 0.3, C, = 70, a = 0.6.

The wall boundary conditions for e and f are derived__from the near wall asymptotic
behavior of the k and v--7equations forcing k _ y2 and v 2 ,_ ya ,respectively, as y --* 0.

(5)

The indices w and 1 denote respectively the wail and first point above the wall.

_.3 Numerical solution of the turbulence equations

CFL3D uses a segregated approach for the solution of the mean flow and turbu-

lence equations. This facilitates the implementation of the v2-f model such that
the turbulence model can be solved in a single subroutine. Only the boundary

conditions axe set up elsewhere.

The k, e and v--7,f equations are solved in a pairwise coupled manor similarly to

the implementation in INS2D (Durbin 1995). An equation-by-equation approach
used, for example, in STREAM (Lien et al. 1996) does not allow an implicit coupled

treatment of the boundary conditions. This has been observed to cause convergence

problems and may require the use of smaller time steps. In this report we consider

only the implementation of the v 2 and f equations. The k and e equations are
discretized and solved in a similar fashion. Equations (3) and (4) written for an

implicit scheme in delta form are:

I(-_+ _ -k)+6nA _+6¢A_+_¢A¢ A-fi-

with

and

n = -(_A, + _A_ + _A¢)_-" + _ k/" -

(I + 6.B. + ,5_B_ + $¢B¢)Af = Q (7)
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with

Q = -L2(,_.B_ + ,_B_ + 6¢B¢)J:"- .f" + --¢- + \ R_ ./ C2T

Here 6_A_ and 6_B_ (in analogy r/and ¢) define the. expressions

_A_ = 6_U_- _ _[(. + )_] , 6_B_= - _ _

The variables k, e, tit, L, T, p, and U are set at their previously computed values and

thus treated as constant in time. The time update is defined as

Av 2 -_n+l -- fn+l fn= -v 2" , Af= -

As mentioned, the wall boundary conditions are treated implicitly. As usual in a

cell centered scheme, two rows of halo, or ghost, cells are added to the computational

domain. The values in the first row of halo cells are denoted by subscript 0. The
values at wall boundaries are linearly extrapolated from the interior. In delta form
the equations are:

mk 0 : -Akl, my 2 : -my 2, A, O = 2Ae_r - Ael, my 0 = 2Afar - AI 1 (8)

It has been found that particularly at the beginning of a calculation very small time

steps are required to prevent k and v2 from becoming negative, which often leads

to divergence of the solution. Particularly the value of e at the wall is initially very
large due to the factor 1/y 2 in the boundary condition. The wall distance of the

first cell center above the wall yl is usually of the order of 10 -6 times the airfoils

cord. Keeping the dissipation of the turbulent kinetic energy e small at the wall

during the first iterations ensures a rapid growth of the turbulent kinetic energy

and thus of the turbulent boundary layer. One way to relax the e and f boundary
conditions can be achieved by multiplying their wall values by a factor which is
dependent on the iteration counter n

min(n, n, )
r--

r/a

Here n= is the iteration number up to which the boundary condition is modified.
For most applications it has been set to 100.

The convective terms in the k, e, and v2 transport equations have been discretized

as first-order upwind differences. This increases robustness, and usually this is

sufficiently accurate for the turbulence equations since the source terms mainly
balance the diffusion terms in wall bounded flows.

The time and length scales require an upper bound only in fully turbulent calcula-

tions with stagnation regions to suppress the spurious production of eddy-viscosity

(Durbin 1996). However, the strain magnitude S is particularly large close to the

wall at the initial iterations. This oversuppresses the value of the eddy-viscosity,

hindering the development of a turbulent boundary layer. Therefore fully turbulent

flow has been computed without an upper limit on the time and length scales for
the first 100 or so iterations.
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_._ Transition modeling

Particularly for high lift computations it can be very important to model transi-

tion. Transition is modeled in a crude way by switching off the production source

terms in the laminar part of the flow upstream of an a priorly fixed transition line.

It has been found that solely switching off the terms which include auk upstream of
transition leads often to numerical difficulties. Large residuals caused by negative

values of the turbulent variables prevent convergence in this region. Limiting the

lower value of the turbulent variables with the free-stream values and additionally

setting f to 0 at the walls upstream of transition seems to eliminate this problem.

The stagnation point anomaly usually does not appear for airfoil computations

with a priorly fixed transition. No upper bounds on the time and length scales are
therefore needed.

_.5 Approzimate Factorization

In the 2-D flow solver INS2D, the matrices on the left-hand side in (6) and (7)

are ILU-preeonditioned and subsequently solved with the Generalized Minimum

Residual (GMRES) (Saad 1986) algorithm. For 3-D computations the non-zero
band width in the sparse matrices increases significantly with the third dimension.
The inversion of these matrices with GMRES is not practical in the computation

of industrial flows due to the large amount of memory required.

A three-factored Approximate Factorization scheme, as used for the mean flow,

factorizes our system of Eqs. (6) and (7) into three 1-D problems:

(I(1+ (_____e)_At)+6.A.At)A-_ (-_)kAtAf'=RAt (9)

along r/grid lines,

along _ grid lines, and

( I + 6.B_a)A f' = Qa

(I + 6_AqAt)Av ---_' = A-_

(I + 6eB¢a)A f" = A f'

(10)

(I + 6¢AcAt)Av ---i"' = A_-V' (11)

(I + 6¢Bqa )A f"' = A f"

along _ grid lines. A modification of the elliptic relaxation equation is required
to factorize the matrices. Here the term Af on the left-hand side in (7) has been

substituted with an unsteady like term Alia.

The error of this scheme can be estimated by substituting Av'2", Av-_, A f" and

Af' with the expressions (10) and (11):

( I( I + (-'_ ) k At ) + (5_An + 6_A_ + 5¢A_ )At) A-_" - ( _-_e ) k AtA f'''
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(12)

(I + (5oB_ + 5¢B_ + _¢B¢)_)/Xf"' + (6_B_5¢B_ + 5_B_5¢B¢ + 6_B¢5¢B¢) a2Af '''

+_B_B_¢B¢_SAf ''' = Q_ (13)

The terms underlined are error terms which modify the original Eqs. (6) and (7).
They are, however, scaled by powers of the time step At and the variable a. Small

values of a and At minimize the influence of these error terms. On the other hand,

a small a modifies the f equation significantly, which is represented exactly in the

non-underlined part of Eq. (13), setting m = 1. A local time step is used for steady
state computations. The time step At for transonic flow around the RAE 2822

airfoil (Cook et al. 1979) is, for example, of the order of 10 -5 near the wall, 0.1 at
the edge of the boundary layer, and 10 in the free-stream. A constant value of a

between 0.1 and 0.01 has been found to work quite well. Note that at convergence
Eq. (13) becomes

Q=O

and the exact f-equation is solved, irrespective of a.

The matrices on the left-hand side of (9), (10), and (11) are tridiagonal 2 × 2
block matrices. A direct solver taken from a 1-D channel code is used to invert

these matrices. Sub-iterations for the turbulence model could be used to correct

the approximation errors (Steinthorsen et al. 1993). However, the test cases run so
far have been computed without the use of sub-iterations.

It should be noted that the source terms are treated implicitly only with the first

factorized matrix (cf. Eq. (9)). The " and "' time updates in the first cell above the

wall do not 'see' the wall and are treated in the same way as in the internal cells.

The boundary condition is thus applied only to the first update t and not to the

final update m. This allows only certain grid lines, here the q-lines, to be normal

to a wall, severely limiting the usability of the three-factored scheme. Nevertheless,

several airfoil computations and the 3-D ONERA M6 wing computation described
later in this report have been successfully carried out with this approach.

Furthermore, it should be noted that only a 1-D array with twice the largest grid

dimension ('twice' since two equations are solved simultaneously) is required for
the factorization procedure described. However, consistent with other turbulence

models implemented in CFL3D, 2-D arrays have been employed, improving the

vectorization of the direct solver and reducing the number of operations. These 2-D

arrays are first filled in the ¢ - q plane with the 1-D operator in q direction, then

with the 1-D operator in _ direction, and finally in the _ - ( plane with the 1-D
operator in ( direction.
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A two-factored Approximate Factorization scheme overcomes some of the diffi-

culties described. Instead of factorizing the original 3-D system of equations into

three 1-D system of equations, the two-factored scheme solves a 2-D and 1-D set of

equations:

I(1+ _ -_At)+_nA,At+6_A_At Av 2 -

(I+ 5.B.a + 5_B_a)Af' = Qa

in the _ - 77plane and

(I + 6iAcAt)Av --_'' = A_-_' (15)

(I + 6¢Bca)Af" = Af'

along ( grid lines. Practically only the diagonals of the operators 8nAn, _A_ and

_,TBn, _¢B_ have to be added, allowing the use of the same 2-D arrays. Solving the
resulting 2-D matrix with GMRES the implicit source terms are included in the 77
direction as well as in the _ direction. These can now be normal to the walls.

The approximation errors of this scheme follow by substituting Av-_' and f' with

the expressions of (15)

(I(1+ (_______e)kAt)+(SoA_+6_A_+6fA¢)At)A-_'-(--_)kAtAf" (16)

__ + _oA, + _A_)_ AcAt2 Av--i'' - k_¢BiAtaA f" = RAt

(I + _nBoa + 6_B_a + 6iBia)Af" + (6,Bn + _B_)6iBiAf"a 2 = Qa (17)

Again we have underlined the error terms. The number of these terms is substan-
tially smaller than when using the three-factored scheme. Additionally, these terms

scale with At 2 (or with a 2) as opposed to the three-factored scheme, the error of

which scale with At 3 (or a3). Often larger time steps can be used. For some flows
such as the transonic flow around the RAE 2822 airfoil under the flow conditions

of test case 10 (Lien et al. 1998), the computation with the v2-f model and the

three-factored scheme did not converge. It had to be computed using GMRES.

The memory requirements for the three-factored and two-factored scheme de-
scribed are almost the same in CFL3D. They are far smaller than for a procedure

in which the original 3-D system of equations is inverted with GMRES.

Currently, all memory additionally required for GMRES is provided locally. Some

of the computer operations could be optimized by reordering the coding. The scaling

of the f equation with Re�Moo affects the eigenvalues of the implicit matrices. This
influences the number of GMRES sub-iterations required as well as the convergence

tolerance used. 10 GMRES subiterations with a convergence tolerance of 10-s is

currently used and may still be optimized in future research.
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FIGURE 2. Surface mesh and C-O mesh structure for ONERA M6 wing.

2.6 Channel flow

Channel ftow has been computed to validate the correctness of the v2-f implemen-

tation in CFL3D. DNS data exists for incompressible flow for Re_, = 395 based

on the wall shear velocity u_ and the channel half-width h. A Mach number of

M = 0.2 has been specified for the computation with CFL3D.

Periodic boundary conditions as for incompressible channel flow can not be spec-

ified since the friction at the wall leads to an entropy production which increases

the flow temperature. A very long channel h =lm, I = 50m (32 x 96 cells) has

therefore been computed, avoiding code modifications. The height of the first cell

above the wall is 5 x 10 -3, corresponding to a cell-centered value of y+ = 1.

The pressure is extrapolated and the other flow parameters are specified at the

inflow of the channel. The pressure at the outflow is obtained over the total en-

thalpy, which remains constant in the flow for adiabatic walls. The outflow data is

then copied to the inflow after achieving convergence. This procedure is repeated

until periodicity is obtained with a good approximation, indicating fully developed

channel flow. A Reynolds number of about Re = 7500, based on the mean flow

velocity and the channel half-width h, has been found iteratively to correspond to

the correct wall shear velocity.

The convergence plots are given in Fig. 1, which shows the restarted solutions. In

the same figure profiles of the velocity and turbulent quantities are plotted against

the wall distance y+. The data computed with CFL3D corresponds quite well with

data computed with an incompressible 1-D channel code.

2.70NERA M6 wing.

Flow over the ONERA M6 wing (Schmidt et al. 1970) has been computed for the

flow conditions: Mach number M = 0.8395, Reynolds number Rec = 11.72 x 106
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based on the mean chord of c = 0.64607 and incidence a = 3.06 °. This is a swept

wing with a root chord of about Croot = 0.8m and a span of about b = 1.2ra. The
airfoil profile is symmetric.

The computational grid has been generated with the HYPGEN software package
provided by P. Buning (see Chart et al. 1993). The single block C-O mesh consists

of 665 856 cells (696 969 nodes) with 272 cells in the streamwise direction, 68 normal

to the wall, and 36 in the spanwise direction. The inflow is located about 15 chord

lengths into the far field. The surface mesh on the wing is 100 x 36 cells on both

the upper and lower surfaces. A plan view of the surface mesh is shown together
with the general C-O mesh structure in Fig. 2.

A comparison of pressure distributions computed with the v2-f and Spalart-

Allmaras model with experimental data at selected wing cuts is shown in Fig. 3. The

corresponding pressure distribution on the upper wing surface and the location of

the cuts are shown in Fig. 4. Although a generally good agreement of the computed

and the experimental data can be observed, the pressure distribution at station

y/b = 0.80 shows both branches of the shock merging prematurely. The pressure

distribution on the wing depends more on the particular numerical scheme (i.e. the
flux limiter chosen) than the turbulence model used.

The plots in Fig. 5 show a similar convergence history for both models. All three

numerical schemes work well for the v2-f model for this test case. The computations

have been carried out with local time steps corresponding to a CFL number of 5.

The computational cost for 800 iterations on a CRAY C90 with the vg-f model

is about 3.1 CPU hours using 42.3 Mword memory with the three-factored scheme

and 4.9 hours using 43.6 Mword with the two-factored scheme, in which GMRES
has been used in a plane containing the wall normal and strearnwise direction. For

the solution of the original 3-D problem with GMRES, the CPU time is 12.0 hours

using 126.0 Mword memory. For the Spalart-Allmaras model 2.3 CPU hours are

required with 38.2 Mword memory.

3. Summary and future plans

The present report describes the current implementation of the v2-f model in the

compressible 3-D flow solver CFL3D. Both an Approximate Factorization scheme
and the Generalized Minimum Residual algorithm are implemented for the solution

of the turbulence equations. The stiff boundary condition for _ and f require that

both the source terms and the boundary conditions are treated implicitly in the wall

normal direction. This restricts the very fast and memory efficient three-factored

Approximate Factorization scheme to computations in which grid lines of the same

coordinate, for example r/, are normal to the wall. The two-factored scheme allows

grid lines of two coordinate directions to be normal to the wall using the same
memory requirements. This increases the applicability of the v2-f model in large

flow computations around complex geometries. While less efficient regarding the

CPU time needed per iteration, it often permits the use of larger time steps.

The report provides a comparison of a three-factored, a two-factored, and a GM-

RES solution of the original 3-D turbulence equations. The efficiency of each scheme

is demonstrated on the computation of transonic flow around the ONERA M6 wing.
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Although all three schemes perform similarly for this test case in terms of conver-

gence per iteration, they require different CPU time and computer memory. The
two-factored scheme requires 1.6 times the CPU time of the three factored scheme,

using about the same computer memory. The full GMRES solution requires about
2.9 times the amount of memory of both other schemes and 3.9 times the CPU time

of the three-factored scheme. However, as mentioned, the implementation of the

GMRES routines may not be optimal and can be improved further through future

work.

The Spalart-Allmaras model, which consists of one transport equation as opposed

to the v2-f's four partial differential equations, requires 0.74 times the CPU time

and 0.90 times the computer memory of the v2-f computation with the three-
factored scheme.

An unsteady term has been added to the f-equation in order to use the Approxi-
mate Factorization scheme. Subiterations may be needed to minimize the influence

of this term in unsteady computations.

Computation of high-lift test cases are underway which depend significantly on
the turbulence model used. Here we concentrate on the computation of flow around

the three element trapezoidal wing-body currently investigated experimentally in

the wind tunnel at NASA Langley. A patched mesh consisting of about 8 million

grid points has been provided by the Subsonic Aerodynamics Branch at Langley

(Jones et al. 1998).
Computations of the two element NLR7301 airfoil (Van den Berg 1979) and the

McDonnell-Douglas slat-wing-flap airfoil (Valarezo et al. 1991), previously com-

puted with the INS2D code (Kalitzin 1997), with use of patched and chimera grids

is planned. In addition boundary conditions for the e and f equations in flow regions

such as the blunt trailing edge of an airfoil may require modifications.

As reported in the CTR Summer Program (Lien, et al. 1998), some of the
airfoil computations required the use of constant time steps__for the integration of

the turbulence equations. Small unsteady oscillations in v 2 and f prevented the

solutions from converging using local time steps. This is another aspect for future
research.

It is also planned to have a closer look at the shock-boundary layer interaction

region, for example for the RAE 2822 test cases. The sonic line parallel to the wall

lies deep inside the boundary layer. As pointed out by Bradshaw (1998), the true

domain of dependence of a point just upstream of the shock wave is the upstream
Mach cone, which blends into the sonic line, plus the subsonic region near the wall.

The integration of the f-equation over the whole domain, including shock and the

region behind it, introduces errors in comparison to an integration of the f-equation
over the upstream-and-subsonic domain only. This research should estimate the

significance of this error.
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Heat transfer predictions in cavities

By A. Ooi, G. Iaccarino AND M. Behnia 1

1. Motivations & objectives

Artificial roughness elements (ribs) introduced in flow passages is a popular
method of enhancing heat transfer in the cooling passage of turbine blades, heat

exchangers etc. It is essential to accurately predict the enhancement of heat transfer

generated by the roughness elements to ensure good design decisions. Experimen-

tal studies have been carried out by various investigators e.g. Han et al. (1978),

Han (1984), Hart et al. (1985), Han (1988), Chyu & Wu (1989), Korotky & Taslim

(1998), and Rau ei al. (1998). It has been found that the conventional k - e tur-

bulence models with wall functions do not accurately predict the data (Simoneau

1992) for this geometrical configuration. This is mainly because the flow field has
both separation and reattachment points, and it is well known that the k - e model

with wall functions leads to erroneous predictions for this situation. In order to

obtain better predictions, Liou et al. (1993) performed two-dimensional numerical

simulations using a k - e - A algebraic stress and heat flux model. Good agreement

with experimental data were obtained, but extension of the method to three dimen-

sions is computationally expensive and could lead to equations that are numerically

stiff (Gatski & Speziale 1993 and Speziale 1997).

Stephens _ Shih (1995) used the k- w model to compute three-dimensional

ribbed channel with heat transfer and compared their results with experimental

data of Chyu & Wu (1989). They achieved good qualitative but not quantitative

agreement. More recently, Iacovides (1998) showed that two layer k - e with the

Wolfshtein (1969) one-equation near-wall model for k transport gives unsatisfactory
heat transfer predictions in rotating ribbed passages. Better results were obtained

by employing a low-Re version of a differential stress model. However, this model is

computationally expensive and only achieved marginal improvement in heat transfer

predictions.

The v 2 - f turbulence model was introduced by Durbin (1991) and has been

successfully used to predict heat transfer in attached boundary layers and channel

flows (Durbin 1993). This model was later used by Behnia et al. (1997) to pre-

dict heat transfer in an axisymmetric impinging jet. The impinging jet is a very

challenging test case because the applications of traditional turbulence models to

this flow configuration have been shown to result in poor agreement with available
experimental data. Computations using the v 2 - f model give better heat transfer

predictions in this axisymmetric two-dimensional environment. Here, the v2 - f

1 Current address: Dept. of Mechanical and Manufacturing Engr., University of New South

Wales, NSW 3052, Australia
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turbulence model will be used in a three-dimensional domain to test its ability to
predict heat transfer in ribbed passages. We will compare results of the current

simulation with the experimental data of Rau et al. (1998).

Also of interest is the prediction of heat transfer in a geometry resembling the

clearance gap between the tip of an axial turbine blade tip and the adjacent sta-

tionary shroud. This problem is of great interest in the engineering community

because heat transfer at the blade tip can give rise to large temperature gradients,

which in turn causes durability problems. Booth et al. (1982) and Wadia & Booth
(1982) have investigated the aerodynamic characteristics of this narrow flow pas-

sage between the pressure and suction sides of the blade. Metzger et al. (1989)
have provided experimental heat transfer data for this configuration, and we will
compare the v 2 - f heat transfer predictions with this data.

2. Accomplishments

_.I Turbulence models

Most of the results presented below are obtained using the v2 - f turbulence

model. It is computationally more expensive than the conventional k - e model but

is relatively inexpensive compared to algebraic stress and full second moment closure

models. The equations for this model can be found in various publications (Behnia

1997, Lieu & Durbin 1996) and will not be repeated here. The temperature field

is obtained by assuming a constant turbulent Prandtl number, Prt = 0.9, relating

the eddy diffusivities of heat and momentum; i.e. the turbulent heat flux is simply
approximated as

(uiO> = u, O0
Prt Oxi '

where ut is the eddy viscosity and O is the mean temperature. As will be dis-

cussed later, this approximation is only valid for forced convection problems. More

complicated models for (uiO) are needed where buoyancy effects are significant.

To highlight the advantages of v2 - f over the more commonly used k - e model,

similar numerical computations were also performed with a k - e model. For these

simulations, the conventional k-e model matched to the low-Re k-I model proposed
by Wolfshtein (1969) is used. This wall-treatment is chosen because it is the default

2 layer model used in many commercial CFD packages.

_._ Computational domain, parameters, and boundary conditions

Two different sets of computations will be considered in this paper. The first set

is the ribbed channel; the corresponding computational domain is shown in Fig. 1.

To minimize the number of grid points, symmetry of the mean flow is assumed

at the mid-channel. Numerical simulations were carried out with the ribs placed

on one wall (ls) or on two opposite walls (2s). For the 2s simulations, symmetric
boundary conditions were used on the top of the computational domain, and for

the ls simulations, the no-slip condition is used. The flow is assumed to be fully
developed, hence the velocity field is periodic in the streamwise direction. For these
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FIGURE 1.
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FIGURE 2. Two-dimensional computational domain for blade tip simulations.

simulations the rib height-to-channel hydraulic diameter ratio is fixed at e/Dh = O. 1,

where the hydraulic diameter, Dh, is defined to be

2WH
Dh-

W+H"

Channel width-to-height ratio (W/H) is unity. Simulations were carried out with

different pitch to rib-height ratios of

p/e = 6, 9, 12.

All Nusselt number distributions for the ribbed channel calculations presented here

are normalized with respect to the level obtained in a smooth circular tube (i.e.

Dittus-Boelter correlation)

The Reynolds number is

Nuo = O.023Re °'S Pr °'4.

Re - UbutkDhp _ 30,000
tx
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FIGURE 3. Flow pattern on the symmetry plane of the computational domain.

where the bulk velocity, Ubulk, is defined as

rh
Ubulk --

pAc '

Ac is the cross-sectional area of the passage. The molecular Prandtl number, Pr =

0.71, is kept constant for all simulations. For heat transfer calculations, a constant

heat flux is applied at the walls.

All results presented here are from simulations with 81(x) × 65(y) × 31(z) grid

points. To ensure that the results are independent of the grid, all simulations

were repeated with twice the number of grid points in each spatial direction. No

noticeable difference in the solutions were observed, hence the solutions presented

here are assumed to be grid independent.

The other problem considered is a model for the grooved turbine blade tip cross

section. This configuration is shown in Fig. 2. The mean flow field in the experi-

ments by Metzger et al. (1989) is essentially two-dimensional at Reynolds number

Re- pUb,,tkC - 1.5 x I0 t.

The ratio of clearance height to cavity width, c/w, was fixed at 0.1 and two different

d/w = 0.1,0.2

ratios were considered. Constant temperature boundary conditions are used for

all walls and the Prandtl number, Pr, is kept constant at 0.71. Nusselt number

distribution on the cavity floor will be compared with the experimental data of

Metzger et al. (1989).

2.3 Results and discussion (ribs)

Figure 3 shows the flow pattern on the symmetry plane of the computational

domain. The flow separates after going over the upstream rib creating a low pressure

region behind the rib. Further downstream, the flow reattaches and forms a short

recovery region downstream of the reattachment point. This flow then impinges

on the next rib, forming a small recirculating region in front of the downstream

rib. The flow pattern just described is difficult to model mainly because it contains



Heat tranJfer prediction_ in cavities

0.3

189

0.2

o.1
,-'4

0.0

-0.I

- 0.2

" 0.3
0 9 10

0

\°
I , [A "J
_\ ._,_o o

\ /

illl;; ,i
x/e

FIGURE 4. Comparison of the streamwise velocity component, U, at y/e = 0.1

on the symmetry plane of the computational domain. This figure shows data from

a ls simulation with p/e = 9. -- v 2 - f turbulence model, ----- k - e 2 layer

model, o experimental data of Rau et al. (1998).

both separation and reattachment points. Parneix & Durbin (1996) have used the

v 2 - f model to accurately predict the reattachment point and the downstream

recovery region of a backstep flow. Analysis of the data here will determine if v 2 - f

can predict the short recovery region and the subsequent separation point before

the downstream rib. Figure 4 shows the streamwise velocity distribution close to

the floor (10% of the rib height) between the two ribs on the symmetry plane. As

can be seen, both the k - e and v 2 - f models accurately predict the separation

and reattachment points. The velocity maximum and minimum in the recovery

and reverse flow region are more accurately preflic_ed by _he v 2 - f. The k - e

model predicts a more accurate minimum streamwise component of velocity in the

recirculating bubble just before the downstream rib.

Heat transfer predictions from the v 2 - f and k - e models are shown in Fig. 5.

The comparisons are for the 2s simulations with p/e = 9. As can be seen, heat

transfer predicted by the k - e model is roughly half the heat transfer measured in

the experiment. Calculations by Iacovides (1998) utilizing the same k - e low Re

number model and using a different p/e and e/Dh ratio also shows that the k - e

model predicts a Nusselt number distribution of about half the actual experimental

data. Since his calculations were computed for a rotating channel with different

geometrical ratios, using a different numerical method and different types of grids,

there can be no numerical issues in the discrepancies between the k - e predictions

and experimental data.

In addition, Iacovides (1998) also calculated the flow using a Reynolds stress

model which is computationally more expensive than v 2 - f. The Nusselt number

predicted by the Reynolds stress model was better than the k - e calculations. Fig-

ure 5 indicates that the v 2 - f model yields very good agreement with experimental

values.

In Fig. 6, heat transfer predictions using v 2 - f for different geometrical ratios
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FIGURE 5. Comparison of the Nusselt number distribution for the 2-sided

ribbed channel with p/e = 9 on the symmetry plane of the computational do-

main. _ v 2 - f turbulence model, ----- k - e 2 layer model, o experimental

data of Rau et al. (1998).
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FIGURE 6. Nusselt number distribution on the floor of the symmetry plane.

v 2 - f with ls p/e = 9, o corresponding experimental data from Rau et al.

(1998), m___ v 2 _ f with p/e = 6, o corresponding experimental data from Rau et

al. (1998).

are compared with the corresponding data from Rau et al. (1998). Experimental

data show that the heat transfer rate decreases with p/e ratio. The v 2 - f model

accurately reproduces this observation, both qualitatively and quantitatively. The

k - e calculations are not shown in this figure, but the predictions are about half the

values obtained from the experiments. This is illustrated in Fig. 7, which shows the

average Nusselt number on the floor between the two ribs for different p/e ratios

computed here. The results show that the k - e model consistently underpredicts

the heat transfer on the floor between the two ribs. The v 2 - f results are better

but still lower than the experimental data.
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v 2 - f, .... v 2 - f for "reduced" domain, ----- k - _, o experimental data

from Ran et al. (1998).

It must be pointed out that the v2 - f results shown by the solid line in Fig. 7 are

the Nusselt numbers averaged over the whole area between the two ribs. Careful

observation of the experimental data shown in Figs. 5 and 6 indicates the first and

last experimental data points are approximately 0.5e away from the upstream and

downstream ribs respectively. The Nusselt number is quite low in the region close

to the ribs, and this brings down the average. Thus, a more accurate comparison

with experimental data would be to average Nu only in areas where experimental

data exist. We are currently in the process of obtaining these experimental data

from the group at Von Karman Institute where the experiment was carried out.

However, if the Nu was calculated using only an area which is 0.Se away from the
ribs and 1.0e away from the side walls, there is very good agreement between the

v 2 - f results and the experimental data. This is shown by the dashed line in Fig. 7.

Figure 8 shows the local Nusselt number distribution for both models on the side
wail. The maximum Nusselt number on the side wall is located at the first corner of

the downstream rib. The highest contour level for Nu/Nuo using the k - _ model

is 2.2 and for the v 2 - f model is 2.0. Experimental data shows that the maximum

contour level is 2.24. This initial observation might lead one to believe that the

k - e model gives better prediction on the side wall. A better way of determining

the performance of the models will be to compare the average Nusselt numbers on

the side wall. These data are shown in Fig. 9, and the v 2 - f prediction is closer to

the experimental data. However, it is clear that the side wall predictions are not as
good as the predictions for the wall between the ribs. Future studies will attempt to

find the source of this discrepancy. Similar to the data on the wall between the ribs,

there can be better agreement with experimental data if one averages only within

the area away from the corners of the computational domain. This is not done for

the side wall because it is unclear from the paper by Ran et aI. (1998) how close to

the corners the experimental data on the side wall were taken. We are currently in

the process of obtaining this information.
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FIGURE 8. Nusselt number contours on the smooth side wall of the computational

domain computed using v 2 - f turbulence model (contour level is 0.3-2.0) (left)

and k - e turbulence model (contour level is 0.3-2.2) (right).

FIGURE 9.
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Average Nusselt number on the smooth side wall of the computational

v 2 - f, ----- k - e, o experimental data from Rau et al. (1998).

2.4 Results and discussion (blade tip)

The second set of simulations were performed to investigate the ability of the

v 2 - f model to predict heat transfer at the tip of a turbine blade. The resulting

flow fields for d/w = 0.1 and d]w = 0.2 are shown in Fig. 10. For d/w = 0.1, the

flow pattern is very similar to the one shown in Fig. 3. The flow separates at wall

A and reattaches on the floor. In the case of d/w = 0.2, the flow pattern changes

and the flow separates as it leaves wall A and reattaehes, not on the floor, but on

the side of wall B. There is a slow mean recirculating region between walls A and

B similar to the driven cavity flow.

The heat transfer predictions on the floor between the two walls are shown in

Fig. 11. Similar to the ease of the ribbed channel, the Nusselt number distribution

predicted by the k - e model is too low. On the other hand, v 2 - f gives good

agreement with experimental data. The agreement with experimental data is better
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FIGURE 10. Flow pattern for blade tip flow simulation using the v 2 -f turbulence

model. The figure on the top is for d/w = 0.1 and the figure on the bottom is for

d/w = 0.2.
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FIGURE 11. Nusselt number distribution on the floor for d/w = 0.1 (left) and

d/w = 0.2 (right). -- v 2 - f, ----- k - _, o experimental data of Metzger et al.

(1989). The experiment was repeated with three different inlet temperatures and

all measured data sets axe shown in this figure.

for the flow with d/w = 0.2 than d/w = 0.1. It is interesting to note that the

experimental data with d/w = 0.1 shows a peak in the Nusselt number close to wall

B. The v 2 - f model reproduces this peak whereas data using the k - e model shows

a dip in the heat transfer.

Calculations were also carried out to assess the accuracy of using wall functions

with the k - e model. The computations were done using a similar mesh to the

previous calculations. As wall functions are really only valid for approximately

y+ > 30, the grid needs to be coarsened so that wall functions can be used. Grid
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FIGURE 12. Nusselt number distribution on the floor for d/w = 0.2. Calculations

performed with k - e model with standard wall functions.-- y+ __ 3, ........ y+

5,_ y+ .... 30, ----- y+ _ 50, o experimental data of Metzger et al. (1989).

lines closest to the floor were removed to ensure the distance from the first grid

line to the wall is increased. Four meshes were generated corresponding to average

y+ along the cavity floor ranging from approximately 3 to about 50. Results from

these calculations are shown in Fig. 12 and compared with the experimental data.

As expected, the results are grid dependent for y+ < 30, but surprisingly, the

calculations agree quite well with experimental data when y+ ,_ 3 or 5. When

y+ _ 30 or 50, the Nusselt number is underpredicted. In this case, the wall function

is a bit worse than the two layer model. This is despite the fact that there is a slow

recirculation region, and it is questionable whether a log law exists close to the wall

of the cavity.

3. Future plans

The results above and computations by Durbin (1993) and Behnia et al. (1997)

show that the heat transfer predictions by the v 2 - f turbulence model agree very

well with experimental data. To this end, the model has only been tested in a forced

convection environment, and it has been shown that the simple gradient diffusion

hypothesis with a constant turbulent Prandtl number is sufficient to obtain good

agreement with experimental data. However, buoyancy effects are not included in

the current model, hence v _ - f cannot be expected to give good predictions in

situations where buoyancy plays an important role. Assuming that the Boussinesq

approximation holds, the source term due to gravity in the Reynolds stress transport

equation becomes

Thus, to accurately model buoyancy effects, a good model for the turbulence heat

flux, (ui/9), is needed. Future work will explore the feasibility of incorporating

buoyancy effects into v 2 - f by extending the algebraic heat flux analysis of Shabany

& Durbin (1997).
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A structure-based model with stropholysis effects

By S. C. Kassinos AND W. C. Reynolds

1. Motivation and objectives

The performance of Reynolds Stress Transport (RST) models is limited by the
lack of information about two dynamically important effects: the role of energy-

containing turbulence structure (dimensionality) and the breaking of reflectional

symmetry (stropholysis) due to strong mean or frame rotation. Both effects are

fundamentally nonlocal in nature and this explains why it has been difficult to
include them in one-point closures such as RST models. Information about the

energy-containing structure is necessary if turbulence models are to reflect differ-

ences in dynamic behavior associated with structures of different dimensionality

(nearly isotropic turbulence vs. turbulence with strongly organized two-dimensional

structures). Information about the breaking of reflectional symmetry is important
whenever mean rotation is dynamically important (flow through axisymmetric dif-

fuser or nozzle with swirl, flow through turbomachinery, etc.).

Engineering flows that must now be computed to advance technology require that
dimensionality and stropholysis effects be properly captured in one-point closures.
The information needed in order to address these issues is carried by new one-point

tensors whose definitions and transport equations were obtained in earlier work

(Kassinos and Reynolds 1994). Two of these tensors, the dimensionality Dij and

circulicity Fij, characterize the energy-containing structure. Another tensor, the

third-rank fully symmetric stropholysis Qi_k, parameterizes the breaking of reflec-
tional symmetry in the spectrum of turbulence. Reflectional symmetry breaking is

not properly captured in second-rank tensors such as the Reynolds stresses Rij or

even Dij mad Fii.
In our ongoing effort to construct one-point structure-based models for engineer-

ing use, we have in the past formulated a simplified nonlocal theory for the defor-

mation of homogeneous turbulence, the Interacting Particle Representation Model

or IPRM (see Kassinos and Reynolds 1996). The IPRM gives excellent results for

general deformations of homogeneous turbulence and has been helping us formulate
one-point models. A one-point model (the R-D model described in Kassinos and

Reynolds 1997) was formulated using the IPRM ideas and produces excellent results

for both rapid and slow irrotational deformation of homogeneous turbulence. The

R-D model cannot be applied to flows with strong mean or frame rotation because

it lacks important physics related to stropholysis Q*.

In the past year, we have formulated a new one-point model, the Q-model, which
is based on our understanding of the stropholysis effects and which uses the effective

gradients model from the IPRM (see Kassinos & Reynolds 1996) for the modeling
of nonlinear effects. For irrotational deformations the Q-model is equivalent to the

previously formulated R-D model (see Kassinos & Reynolds 1997) and produces
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good results for both rapid and slow mean deformations. The Q-model overcomes

the restriction to irrotational deformation that applied to the previous model and

produces good results even for flows with combinations of strong mean rotation and
strain.

The development of the Q-model is an ongoing effort, and we expect that some

aspects of the model will eventually be modified, but this preliminary note sketches
the basic ideas.

2. Accomplishments

_.1 Why stropholysis-based modelsf

One-point models based directly on stropholysis transport have certain impor-

tant advantages. The stropholysis tensor contains information stemming from the

breaking of reflectional symmetry in the spectrum of turbulence that has undergone
mean rotation. This information is not contained in second-rank tensors such as

the Reynolds stress tensor or even the dimensionality Dij and circulicity Fij. This

means that models based on these second-rank tensors, including standard Reynolds

Stress Transport (RST) models, must be supplemented with ad-hoc phenomenologi-
cal models in order to emulate even the leading order effects of stropholysis. The use

of ad-hoc models for stropholysis in these lower-rank models eliminates any hope
of achieving good realizability properties under non-equilibrium conditions. The

added computational cost for carrying a third-rank equation might be a reason-
able price to pay if stropholysis-based models can capture subtle rotational effects

while maintaining good realizability properties. The model described here is a first
attempt at exploring these ideas.

2._ Definitions and constitutive equations

We introduce the turbulent stream function _, defined by

l I I ! I
u, = eitsk_., t %,i = 0 _i,.. = -wi, (1)

where u_ and w_ are the fluctuating velocity and vorticity components. The Reynolds

stress tensor and the associated nondimensional and anisotropy tensors are defined
by

Rij t t , .== uiu j = e e ,r,, ,T,, - _6ij. (2),pq jts_q,p_s,t rij = Rij/q 2, ?ij rij

Here q2 = 2k = Rkk. Introducing the isotropic tensor identity (Mahoney 1985)

eipq_jts = 6ij6pt_qs q- _it_ps6qj _- _is_pj6qt -- 6ij6ps6qt -- _it6pj_qs -- _i$_pt6qj (3)

one finds

' ' ' ' - ',I" $' ..Rij + ff_k,i ffl k,j -4- q2 i,k q2 j,k q2_,k q_tk,j "1- j,k k,i = 6iJq 2

Dij Fij Cij +Cj i

(4)
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The constitutive Eq. (4) shows that one-point correlations of stream function gradi-

ents, such as the Reynolds stresses, are dominated by the energy-containing scales.
These correlations contain independent information that is important for the proper

characterization of non-equilibrium turbulence.

For homogeneous turbulence Cij = Cji = 0, and the remaining tensors in (4)

have equivalent representations in terms of the velocity spectrum tensor Eij(k) and

vorticity spectrum tensor W,j(k). These are as follows:
• Structure dimensionality tensor

Dij = / _E,,(k) d3k

• Structure circulicity tensor

r,j = f d3k

_ 1dis = Dis/q 2 dis = dis _Sij (5)

fij = Fij/q 2 ]ij = fiS - _6ij. (6)

Here .Tij(k) is the circulicity spectrum tensor, which is related to the vorticity

spectrum tensor Wis(k) = w,wj^.'*through the relation

Wij(k)
7 s(k) - k2

The familiar rapid pressure-strain-rate term is given by

Tis = 2Gto(Mi,tS + Mj,ti) (7)

where the fourth-rank tensor M is

Mijpq = f
kpkq
--_--- EiS (k) d3k. (8)

We define the third rank tensor

Q/jk ' '= -us¢ti, k . (9)

For homogeneous turbulence, Qijk has the equivalent definition

Qisk = eipqMsqpk (10)

where Mispq is as in (8). The general definition of the third-rank fully symmetric
stropholysis tensor is given by

1
Qi*jk = -_( Qisk -4- Qski A- Qkij --I- Qikj -I- Qsik -4- Qksi) . (11)
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In the case of homogeneous turbulence both Qiik and Qi_k are bi-trace free

Qii, = Qiki = Q_ii = 0 Qi_k = 0. (12)

A decomposition based on group theory shows that Qijt and Qi*jk are related to
each other and lower-rank tensors,

Qiit = a 2 1 a 1e F,_i + Qijk (13)-_q eijk "q'- "_eikrnRmj "Jr- "_ejirnDrnk "3I- "_ kjm * ,

and

Rij = eimpQmjp Dij = eimpQpmj Fij = eimpQjpm. (14)

2.1 IPRM formulation

Kassinos & Reynolds (1994, 1996) formulated a simplified nonlocal theory (Par-
ticle Representation Model or PRM) for the RDT of homogeneous turbulence. The

original idea was to represent the turbulence by an ensemble of fictitious particles.

A number of key properties and their evolution equations are assigned to each parti-
cle. Ensemble averaging produces a representation of the one-point statistics of the

turbulent field, which is exactly correct for the case of RDT of homogeneous tur-

bulence. In essence, this approach represents the simplest theory beyond one-point

methods that provides closure for the RDT equations without modeling.
The Interacting Particle Representation Model (IPRM) is the more recent exten-

sion of the PRM formulation that includes the effects of the nonlinear eddy-eddy
interactions, important when the mean deformations are slow• Unlike standard

models, which use return-to-isotropy terms, the IPRM incorporates nonlinear ef-

fects through the use of effective gradients. The effective gradients idea postulates

that the background nonlinear particle-particle interactions provide a gradient act-

ing on each particle in addition to the actual mean velocity gradient• An advantage

of this formulation is the preservation of the RDT structure of the governing equa-
tions even for slow deformations of homogeneous turbulence. A detailed account of

these ideas is given in Kassinos & Reynolds (1996, 1997) and will not be repeated
here. To a large extent, the one-point Q-model is based on the IPRM formulation.

The governing equations for the conditional (cluster averaged) IPRM formulation
are (see Kassinos & Reynolds 1996)

• In

Rij

hi = -a'_ink + a'_,.nkn,.ni (15)

f2v D In f2'_v D In n v In In
= --".Jik"_kj -- "-.'jk.'_ki "-_ [Gkm "q- Gtm](Rimnkn j "t- Rjmnkni )

(16)
- [2c1n'i - - -in,)1

In

Here ni(t) is the unit gradient vector and Rij is the conditional Reynolds stress
tensor corresponding to a cluster of particles with a common hi(t). The effective
gradients are

C n C v

G_ = Gij + --rikdkj G_j = Gij + --rikdkj. (17)
T T
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where Gij is the mean velocity gradient. The constants C _ and C n are taken to
be C n = 2.2C _ = 2.2. The different values for these two constants account for the

different rates of return to isotropy of Dij and Rij.

The turbulent time scale r is chosen so as to produce the proper dissipation rate.
I q2 that is produced byThe rate of dissipation of the turbulent kinetic energy k =

the IPRM Eq. (16) is given by

U

epRM = q2__rikdkmrmi. (18)

To complete the IPRM we use the standard model equation for the dissipation rate

(e) with a rotational modification to account for the suppression of e due to mean

rotation,

= -Co( 21q - c, spqrpq - (19)

Here f_i is the mean vorticity vector, and the constants are taken to be

Co = 3.6 Cs = 3.0 and Ca = 0.01.

We choose the time scale r so that eram = e. This requires that

q2

r = (T)C%ikd_.,r.. • (20)

The last term in (16) accounts for rotational randomization due to eddy-eddy inter-

actions. We require that the rotational randomization model leaves the conditional

energy unmodified. This requires that C1 = C2, and hence using dimensional con-
siderations we take

Cr = C1 = C 2 = w8"5 _, fpqnpnq
T

_* .._ V/_k_*k _ -_ eipqrqkdkp. (20)

_.3 The stropholysis equation

The most convenient method for deriving the slow Q equation is to use the

conditional (cluster averaged) IPRM formulation to obtain the evolution equation

for M and then contract the M equation with the alternating tensor eijk to extract

the Q equationt. The PRM representation for Q and M is

Qijk = -(y2vjsink) Mijpq = (V2vivjnpnq) (21)

where s_ is the unit stream function vector. Hence using (15) and (16) and the

definitions (10) and (21), one obtains

To be precise, stropholysis is the fully symmetric subtensor Q*. Here we refer to the q equation

as the stropholysis information since Q contains the (stropholysis) information found in Q*.
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dQ#k V

dt - -Gj,,,Q_,,,_ - G,,,_Qij,,," - G_m_,t,mjmtk - G_t_,,mjo,,,_

8.5 (22)
+ [G_q + G_q]Qiqwjk + 2Gq"_Qijkqr - _ _* fr,[Qqkr, + Qjikr,].

T

2.3 Closure of the stropholysis equation

Closure of (22) requires a model for the tensor Qijkpq in terms of Qij_. Once

such a model has been specified, it effectively provides a model for Mijpq in terms

of Qijk since M can be obtained from Qqkpq by a contraction with %k. For small

anisotropies, one can write an exact representation of Q#_pq in terms of Qij_ that
is linear in Q,jk. Other tensors such as Rij, Dij, and Fij can be expressed in terms
of Q_jk [see (14)] and need not be included explicitly in the model. Definitions

(contractions and continuity) determine all the numerical coefllcients in the linear

model. Thus the linear model contains no adjustable parameters.

In the presence of mean rotation, rotational randomization is an important dynam-
ical effect that must be accounted for in the model. Rotational randomization is a

strictly nonlocal effect that is lost in the averaging procedure that generates one-
point statistics. Rotational randomization is caused by the differential action of

mean rotation on particle velocity vectors (Fourier modes) according to the align-
ment of the corresponding gradient (wavenumber) vectors with the axis of mean

rotation. The main impact of Fourier randomization on one-point statistics is the

damping of rotation-induced adjustments; here this effect is added explicitly through
a simple model,

DQ_jk
Dt .... - _(Q_J_ - Q_k) - "_2_j_(Rm, - D_k ) - "r3_ka(F_i - nmi) .

(23)
The first term accounts for the rotational randomization effects in rotation dom-

inated flows while the remaining two terms account for the modification of these

effects due to the combined action of mean strain and rotation. Here 71, 72 and
73 are scalar functions of the invariants of the mean strain and rotation and are

determined from simple test cases. A detailed discussion of these models will appear
separately.

_._ Representative results for homogeneous turbulence

Examples of the performance of the new, one-point Q-model for irrotational mean

deformation are shown in Figs. 1 and 2. A particularly interesting test case is that of

homogeneous turbulence deformed by slow axisymmetric expansion (axisymmetric
impingement). The mean velocity gradient tensor in this case is

00)0o ½ , s = v%S,,/2.
S_ ¢5 0 0 7

(24)
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FIGURE 1. Comparison of the one-point Q-model predictions ( .... ) with the

IPRM results (--) and the 1985 DNS of Lee & Reynolds (symbols) for the ax-

isymmetric expansion case EXO (Sq2o/% = 0.82). (a)-(c) evolution of the Reynolds

stress, dimensionality, and circulicity anisotropies; 11 component (e), 22 and 33

components (v). (d) evolution of the normalized turbulent kinetic energy (.) and
dissipation rate (v).

As was discussed in Kassinos &: Reynolds (1996, 1997), the axisymmetric expansion
flows exhibit a paradoxical behavior where a slower mean deformation rate produces

a stress anisotropy that exceeds the one produced under RDT for the same total

mean strain. This effect is triggered by the different rates of return to isotropy in

the _ and a equations, but it is dyna:-nically controlled by the rapid terms. The net
effect is a growth of _ in expense of d, which is strongly suppressed. The one-point

model (see Fig. 1) is able to capture these effects well and also predicts the correct

decay rates for the normalized turbulent kinetic energy k/k o and dissipation rate

e/e 0. The predictions of the one-point Q-model are comparable to those of the
nonlocal IPRM.

The case of homogeneous turbulence deformed by slow plane strain (Sq_o/eo = 1.0)
is shown in Fig. 2. In this case the mean strain tensor is
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FIGURE 2. Comparison of the one-point Q-model predictions ( .... ) with the

IPRM results (--) and the 1985 DNS of Lee & Reynolds (symbols) for the

plane strain case PXA (Sq2o/eo = 1.0). (a)-(c) evolution of the Reynolds stress,
dimensionality, and circulicity anisotropies; 11 component (o), 22 component (It),

aa component (a). (d) evolution of the normalized turbulent kinetic energy (.) and
dissipation rate (v).

0 0 0 )
o -1 o . (25)
0 0 +1

Again the performance of the one-point model is comparable to that of the IPRM,

and its predictions compare favorably with the DNS results of Lee & Reynolds

(1985). The details in the evolution histories of fij, dO and fi_j are captured, and

the correct rates are predicted for the decay of the (normalized) turbulent kinetic
energy k/k o and dissipation rate e/%.

The predictions of the one-point Q-model for the case of homogeneous shear are

shown in Fig. 3. Comparison is made to the DNS results of Rogers 8z Moin (1987).



Structure-based modelin9 205

0.8

0.6

0.4

0.2

0.0

-0.2

0.6

0.4

0.2

(a)..... j

o ° c ° °11

1
",,. 12
_:-_-_--.6--_,--_,.--,,-.,,--.---1

0 5 10 15 20

(c)

##

0 0 0 0

,.'::.:_.._....,_.__._:._..._..
/

it

: *

0.6

0.4

,4," o.2

3.0

2.0

1.0

0.0 .... 0.0
0 5 10 15 0

St

_, 0 0 ,

0 0 0 "-'

(d)

5 10
St

FIGURE 3. Comparison of the one-point @model predictions (lines) and the

1986 DNS of Rogers & Moin (symbols). (a)-(c) evolution of the Reynolds stress,

dimensionality, and circulicity components in homogeneous shear with Sq2/eo =
2.36:11 component, (--, o ); 22 component, (.... , v); 33 component,

(----- o); 12 component, ( .... ,, 0). (d) evolution of production over dissipation

rate (P/e): model, ( .... ); IPRM, (--); DNS (B).

Note that the model produces satisfactory predictions for the components of rij =

Riy/q 2, dij = Dij/q 2, fij = Fij/q 2. A fully-developed stage was reached in the
simulations for 10 < St < 15, and in this range both the Q-model and the IPRM

predict the correct level for the dimensionless ratio of production over dissipation,

P/e.

A difficult challenge for one-point models is provided by the elliptic streamlines

flows (see Fig. 4),

0 0 -7- e)
Gu = 0 0 0 0 < I,_l< I_1 (26)

7--e 0 0
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FIGURE 4. Comparison of model predictions (lines) for the evolution of the

Reynolds anisotropy in elliptic streamline flow (E=2.0) with the 1996 DNS of Blais-

dell (symbols). (a) one-point Q-model vs DNS, (b) IPRM vs DNS: 11 component,

(--, o );, 22 component, (. , v); 33 component, ( , o); 13 compo-nent, ( .... @). Growth of the normalized turbulent kinetic energy: (c) one-point

Q-model (line) vs DNS (symbols), (d) IPRM (line) vs DNS (symbols).

which combine the effects of mean rotation and plane strain and emulate conditions

encountered in turbomachinery. (Note that the case e = 0 corresponds to pure

rotation while the case [e I = 13'1corresponds to homogeneous shear).

Direct numerical simulations (Blaisdell & Shariff 1996) show exponential growth
of the turbulent kinetic energy in elliptic streamline flows, which analysis shows

is associated with instabilities in narrow wavenumber bands in wavenumber space.

Standard k-e models as well as most RST models instead predict decay of the
turbulence.

As shown in Fig. 4, both the one-point Q-model and the IPRM predict exponen-

tial growth of k. The rate of growth of k predicted by the one-point model is lower
than those predicted by the IPRM and DNS but probably satisfactory for most

purposes. In addition, the one-point model predicts the details of the evolution of
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FIGURE 5. Comparison of model predictions with DNS (Mansour, 1998) for

fully developed channel flow at Rer = 395. (a) components of the Reynolds stress

tensor, (b) components of the Reynolds stress tensor normalized by its trace: model,

(_); DNS (.... ). (c) mean velocity profile, (d) dissipation rate profile: model,

(_); DNS, (o).

the Reynolds stress anisotropy components with a level of accuracy comparable to

the IPRM, which again seems adequate for many engineering purposes, especially
since none of the currently available k-e and RST models can predict the elliptic

streamlines flows at this level of accuracy and detail.

_.5 Extensions to inhomogeneou8 flows

The Q-model has been implemented in a 1D code and is currently being tested for

fully developed channel flow. Inhomogeneous effects are accounted for through the
addition of standard gradient diffusion models in the Qijk and e equations. In other

words in the evolution equations for the turbulent statistics, we allow for turbulent

transport in a diffusion-like manner
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DQijk _ C_ Rr, r] OQijk )Dt ' + + (25)

D---t".... + ug,-s + R,-_r . (26)

The turbulent kinetic energy is obtained from k = eikjQijk/2.

Wall proximity effects and boundary conditions are treated through an elliptic relax-

ation scheme based on the ideas of Durbin (1993). Terms in the transport equation

for Qijk which are assumed to represent nonlocal effects are lumped together into

a term Pijk, which is then replaced by a new tensor, q2fijk/2, obtained through an
elliptic relaxation scheme

L2V2 fijk - fijk : --2pijk/q 2 • (27)

The elliptic relaxation scheme allows the imposition of boundary conditions that

produce the correct near-wall behavior for various components of Qijt. Away from

the wall (27) allows one to recover the homogeneous model. This is in analogy to
the elliptic relaxation scheme applied to RST models by Durbin.

Representative results for fully developed channel flow

Preliminary results obtained with the Q-model for fully developed channel flow

are encouraging. The model was implemented in a 1D-code using elliptic relaxation

as outlined above and with no wall-function treatment. A comparison of the Q-

model predictions with DNS data (Mansour 1998) for fully developed channel flow
at Re_ = 395 is shown in Fig. 5.

The Reynolds stress components (nondimensionalized with the wall shear velocity

u,) are shown in Fig. 5a. The agreement between the model predictions (dashed

lines) and the DNS (solid lines) is satisfactory. The model slightly overpredicts
the peak in the streamwise component R+I that occurs at about y+ _ 15. The

components of the normalized Reynolds stress tensor rij = Rij/q 2 are shown in
Fig. 5b. The agreement between the model predictions and the DNS results is

again reasonable. The agreement in the case of the shear stress r12 is noteworthy.

The mean velocity profile is shown Fig. 5c. The model prediction is in good agree-
ment with the DNS profile, the most notable difference being in the value of the

mean velocity in the log region.

Finally, the model profile of the dissipation rate e is shown in Fig. 5d. The model
is again in good agreement with the DNS but has a larger wiggle near the wall

than the data show. This difference depends on the model transport equation for

e, and we are currently exploring alternative formulations that aim at taking full
advantage of the structure information carried in the new model.
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Future plans

The performance of standard RST models in flows with strong rotation is often

compromised by their incomplete treatment of key physics in rotated turbulence.

The new Q-model is based on a more rigorous treatment of rotational effects and

offers the possibility to improve our predictive capabilities in strongly rotated tur-

bulence. Hence, our immediate plans include the implementation and testing of the

model in rotating wall-bounded flows, including rotating channel flow (with rota-

tion either about the spanwise or streamwise direction) and axially rotating pipe

flow. These cases will provide the first real test of the new model in flows where it

is expected to perform better than standard closures.
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Modeling a confined swirling coaxial jet

By C. A. Lin

1. Motivation and objectives

Swirling motion is often employed as a mechanism to further promote or control
mixing between the fuel spray jet and the adjacent air and, in some occasions,

to stabilize the combustion zone due to the presence of the swirl-induced central

recirculation region. Since the central recirculation zone induced by the decay of

swirl has profound effects on flame stabilization and mixing in combustion systems,

a prior knowledge of the flow characteristics is beneficial during the design process.

To investigate the interaction of the air and fuel jet within a combustor, John-

son and Bennett (1981) conducted experiments of a non-reacting confined co-axial

jet. Detailed measurements of the velocity and Scalar fields were available to de-

termine the turbulent transport processes within the flow. To examine the effects

of swirling motion on the mixing characteristic, Roback and Johnson (1983) ex-

tended the previous non-swirling experiments to swirling co-axial jets. The results
indicated that the peak momentum turbulent transport rates were approximately

the same as those for the non-swirling flow condition. One distinct feature of the

swirling case was the presence of the central recirculation zone, and the results

indicated that the mixing for swirling flow was completed in one-third the length

required for non-swirling flow.

In contrast to the traditional Reynolds averaged simulations, Akselvoll and Moin

(1996) adopted a large eddy simulation technique to compute Johnson and Bennett's

(1981) non-swirling co-axial jet case. Pierce and Moin (1998a,b) further extended
the large eddy simulation to the swirling flow and validated their results with the

experiments of Roback and Johnson (1983). Both the predicted velocity and scalar

fields agreed well with the measurements. The Roback and Johnson case was also

investigated by Brankovic ef al. (1998), but within the Reynolds averaged equation

framework. The results indicated that, although the velocity results compared
favorably with the measurements, the scalar field was not reproduced correctly. The

predicted results by Brankovic et al. showed an excessive level of mixing of the scalar

field at the region bordering the central recirculation zone. It was indicated that

unsteady effects, notably large-scale, low-frequency structures, may be responsible

for the discrepancy in the predictions and measurements at this location.

The discrepancy of the predicted results between Pierce and Moin (1998a,b) and

Brankovic et al. (1998) has motivated the present study to revisit the experimental

study of Roback and Johnson computationally. The present computational frame-

work is based on the Reynolds averaged equation approach, and the eddy-viscosity
type turbulence models are adopted. Therefore, the objectives of the present study

are to identify the causes of the discrepancies and to investigate the influences of

grid density and turbulence modeling on the predicted results.



212 C. A. Lin

2. The computational model

_.1 The governing equation8

The behavior of the flow is in general governed by the fundamental principles

of classical mechanics expressing the conservation of mass, momentum, and pas-

sive scalar. The time-averaged equations for high-Reynolds-number flow may be
described by the equations (in Cartesian tensor):

o(pvi) _ o
Ozi

o(,v.v.) oP a ov. ova)
Oz_

OpUs@ O [m 0,_
Ozj - Oxj -_ Oxj Pui¢]

where ltiu j and uj¢ are the turbulent fluxes arising from the time-averaging process.

/_t and a are the viscosity and Prandtl number, respectively. The tensorial form of
the momentum equation represents the U, V, and rW momentum solved.

Within the framework of eddy-viscosity and adopting the Boussinesq approxima-
tion, the Reynolds stress and scalar flux are approximated as:

,Ou_ Out)_2
-pu_i = u,t _-_i + _ 56_ipk

_pui---_ _ I_t O,b
at Oxj

where #t and at are turbulent viscosity and Prandtl number, respectively. The
turbulent Prandtl number is assumed to be 0.9.

2._ Turbulence models

In the present application, turbulence is described by the high-Reynolds-number

k- e eddy-viscosity model (Jones & Launder, 1972) and k-e-v 2- f model (Durbin,
1995).

The k - e model can be summarized as,

k 2

#t = O.09p--

OpU s k 0 Ok OU_

OpUj¢ 0 #t 06 _. OUi

- Oxj ( 1.30zj ) + -k(-l"44puiu-----f-_zj 1.92pe)Ozj

The k - e - v2 - f model incorporates two additional equations f and _ and is

expressed as,
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OpUie

Oxj

Pt = O.19pv zT

OpUjk 0 Ok OUi

p u i u j -_'_XTOxj Ozj __

c9 , #t Oe 1 OUi

OpU_-_ O, 0-_, v_
= J+pkl-p T,

2 _-
(1 - 1.4)T(_ - -_-)f = L2c32f _ 0.3UkUJ OUi

cgzj

0.25
Cd = 1.3 +

(1 + (y/2t)2) 4

where y is the distance to the closest wall and,-

-- - 1.9pc)

e e j

_.3 Numerical algorithm

This scheme solves discretized versions of all equations on a staggered finite-

volume arrangement. The principle of mass-flux continuity is imposed indirectly

via the solution of pressure-correction equations according to the SIMPLE algo-

rithm (Patankar, 1980). The flow-property values at the volume faces contained
in the convective fluxes which arise from the finite-volume integration process are

approximated by the quadratic upstream-weighted interpolation scheme QUICK

(Leonard, 1979).
The solution process consists of a sequential algorithm in which each of the sets

of equations, in linearized form, is solved separately by application of an alternate-
direction tri- or penta-diagonal line-implicit solver. Convergence was judged by

monitoring the magnitude of the absolute residual sources of mass and momen-

tum, normalized by the respective inlet fluxes. The solution was taken as having

converged when all above residuals fell below 0.01%.

3. Geometry and boundary conditions

The geometry of the model combustor (Roback & Johnson, 1983) consists of an
annular duct and a smaller center tube. Passive scalar is supplied through the

center tube and the swirling flow is imposed on the annular duct. The two streams

meet after a sudden expansion. The inlet Reynolds number based on the overall

mass flow rate and the jet diameter is 80,300 and the swirl number is 0.41.
The inlet section of the computational domain is located before the expansion.

Because no measured data were available, a fully developed profile was adopted.

However, the prescription of inlet swirl profile for the annular duct was needed.
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The inlet swirl profile was obtained by applying a constant forcing function in

the tangential momentum equation to generate the desired swirl level, a technique

developed by Pierce and Moin (1998b).

The treatment at the axis of symmetry simply involved the prescription of zero-

gradient conditions for all quantities except radial velocity, which was set to zero.

Zero-streamwise-gradient conditions were prescribed along the computational outlet
plane.

At the wall, the tangential velocity component U was assumed to vary logarithmi-

cally between the semi-viscous sub-layer, at y+ = 11.2, and the first computational

node lying in the region 30 < y+ < 100. The linear variation of the turbulent length

scale, L = ny/C_/4, in the log-law region, together with e = ka/2/L, and the in-

variant value e = 2#lkv/(py_) in the viscous sub-layer, allowed the volume-averaged

dissipation rate to be determined. This same L-variation was also used to prescribe

explicitly the dissipation rate at the near-wall computational node, serving as the

boundary condition for inner-field cells.

4. Results and discussions

The case computed was investigated experimentally by Roback and Johnson
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(1983), where the swirl number and Reynolds number based on the inlet jet ve-

locity are 0.41 and 80,300, respectively. This case was also investigated numerically

using large eddy simulation (Pierce _z Moin, 1998a); therefore, the predicted results

will be contrasted with both measurements and LES results. Under highly swirling

conditions it was generally recognized that the eddy-viscosity is not able to capture

the strong swirl and turbulence interaction, and the Reynolds stress model is better

in this situation (Linet al., 1996, Chen & Lin, 1998). However, for engineering
computations the Reynolds stress transport models are expensive. In the present

case, the swirl level is modest; therefore, it would be desirable to investigate the

performance of the eddy viscosity models in this complex environment. The in-
clusion of the k - e - v2f (v2f) is motivated by the fact that it performed well

in highly separated flow; however, few applications of the model were directed to

swirling flows.

_.1 Effects of grid density

Before proceeding to the discussion of the predicted results, it will be beneficial

to focus first on the effects of the grid density on the solutions. In the present

computations, two meshes of sizes 70x40 and 126x65, which are nonuniform both

in the x and y directions, were adopted to compute the flow. Initial tests on the
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, LES; .... ,

influences of the convection schemes on the 126x65 grid revealed that the differences
between the second order QUICK and the first order hybrid scheme were small.

The dominant features of the flow are the annular recirculation zone after the ex-

pansion and the extensive central recirculation zone due to the effect of the swirling

co-axial jet. The presence of the center and corner recirculation zones is crucial to

the stabilization of the combustion zone within the combustor. It is expected that

the mixing within the recirculation is intense, resulting in an expectedly uniform
scalar field•

The predicted axial velocity and scalar field at four selected locations are shown

in Figs. 1 and 2. The fine grid produces a better resolution of the shear layer, as can

be seen from Fig. 1. The coarse grid result, on the other hand, is shown to produce
a higher level of diffusive transport, which causes the central jet to decay faster

than the fine grid result. This is evidenced by reference to the axial velocity profile

at X/R = 1.72, a location near the edge of the central recirculation zone. Although

the differences of the predicted profiles at X/R = 1.72 is small, this small variation

has profound influences on the predicted scalar field. This is because the coarse grid

result shows the presence of the recirculation zone at this location, X/R = 1.72,

where a more uniform scalar field is expected due to the elevated level of mixing•
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By reference to Fig. 2, the difference of the two results can be seen to be marginal
except at location X/R = 1.72. At this location, the coarse grid produces a uniform

scalar field near the center line region while the fine grid shows a slightly steep

variation of the passive scalar. As indicated earlier, this is related to the predicted

strength of the central jet. For the fine grid result which shows a positive axial

velocity at this location, a higher level of scalar field is transported downstream.

For the coarse grid result which shows a negative axial velocity at this location,

a lower level and uniform field of passive scalar is expected. It should be pointed
out that the forward edge of the central recirculation zone is near the location

X/R = 1.72. Therefore, the strength of the central jet has profound influences on

the transport of the scalar field in this region. The non-physical diffusion tends to
accelerate the decay of the central jet, and hence an earlier occurrence of the central

recirculation zone. This results in a more uniform scalar field in this region. This

argument is partly supported by the scalar field at X/R = 3.4. By reference to
Fig. 1 at X/R = 3.4, it can be observed that the recirculation zone extends accross

much of the width of the combustor. Therefore, a uniform scalar field is expected,
and this is shown in Fig. 2 at X/R = 3.4.

Based on the above observation, the excessive level of mixing of the scalar field
at the region bordering the central

may be due to the insufficient grid

4._ Effects

recirculation zone predicted by Brankovic et al.

density adopted in the solution domain.

of turbulence modeling

Next, attention is focused on the effects of turbulence modeling on the predicted

velocity and scalar fields. Figure 3 shows the predicted axial and tangential velocity

profiles at four different axial locations. It can be seen that both the k - e and v2f

models predict well the development of the mixing layer near r/R=0.5 before the

central recirculation bubble, i.e. X/R < 1.72. It is interesting to see that the LES
results show a slightly higher level of diffusive transport in the near field of the

mixing layer.

The location of the central recirculation zone depends on the penetration strength
of the central jet, and this can be clearly seen from the predicted axial velocity

profiles at X/R = 1.72, shown in Fig. 3. The strength of the central jet predicted by

the k-e model is the strongest, and this is followed by the LES simulations. The v2f
prediction, on the other hand, is slightly diffusive, and hence a reverse flow is present

along the centerline at this location, X/R = 1.72. The measurements indicate

that part of the region near the centerline at X/R = 1.72 is within the central

recirculation zone, and this seems to suggest that the v2f model is correct. However,

by reference to the scalar field at the same location, shown in Fig. 4, the v2f model
prediction is wrong. In contrast, the LES agrees well with measurements. The

uniform scalar field predicted by the v2f model is expected because the velocity field

predicted indicates that this region is within the central recirculation zone where the

mixing is good. This result is similar to the previous coarse grid k - e predictions,

and the predicted velocity field at this location is also similar as shown in Figs. 1 and

3 at X/R = 1.72. Therefore, the difference of the predicted scalar field at X/R =

1.72 is due to the predicted level of central jet penetration along the centerline.



Modeling a confined swirling coazial jet 219

Overall, the scalar field predicted by LES is better than the k - e predictions even

though the velocity field predicted by the latter model compares favorably with

measurements. In strong contrast, the k - e predictions show a reduced level of

scalar mixing compared to the measured data. The cause of this is not clear, but it

might be related to the defect of the constant Prandtl number approach adopted in

the models. For example, by observing the predicted results at X/R = 0.43 and 0.86
in Fig. 4, it can be clearly seen that the adopted value of turbulent Prandtl number,

0.9, is too high. Other unsteady large scale motions, which are not accounted for

by the present steady simulations, might have contributed to the enhanced mixing

of the scalar field. The reduced level of mixing predicted by the k - e model also

causes the steep variation of the scalar profile around r/R = 1.2 at X/R = 1.72, as

shown in Fig. 4.
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Subgrid-scale models based on incremental
unknowns for large eddy simulations

By T. Dubois AND F. Bouchon 1

1. Introduction

Turbulence modeling in the context of large eddy simulation (LES) is based on a

decomposition of all flow variables into large (energy-containing) eddies and small

scales carrying a small percentage of the total kinetic energy. The scale separation is

achieved by applying a filter operation in physical space, based on a filter function,
to flow fields. The net effect of the filter is to remove or at least to reduce the

energy contained in scales of length smaller than the filter width A I. The equation

of motion of the large scales ui are derived by applying the filter operation to the
Navier-Stokes equations. The effect of the subgrid scales (SGS) on the dynamics of

the large ones appears through a nonlinear interaction term, the SGS stress tensor

rij = uiuj - uiuj. This stress corresponds to two mechanical effects, i.e. an energy
transfer from large to smaller scales, inducing a dissipative effect on the large scales,

and an energy flux from the SGS to the resolved scales, called backscatter.

Among the most commonly used SGS models in LES are the eddy-viscosity mod-

els and their dynamic versions. The Smagorinsky model (Smagorinsky, 1963) is
based on the assumption that the the SGS stress tensor is proportional to the

strain-rate tensor Sij. The traceless part of rij is represented as

1

rij -- _rkk6ij = --2UTSij,

where 1]T _- (CAf)2(2SijSij) 1/2, C is a non-dimensional constant. Lilly (1967)
provided an estimate of C (-_ 0.18) for homogeneous turbulent flows. However,

an adjustment is necessary for wall-bounded flows, viz., C _- 0.1 is more suited

in this case. Major advances in eddy-viscosity models were accomplished by the

introduction of dynamic modeling ideas (Germano et al. 1991, Lilly 1992, and

Ghosal et al. 1995). Dynamic models provide an expression of the constant C in
terms of resolved scales and is then computed as function of time (and space). They

have been applied successfully to different kinds of flows, improving results obtained
with other models in most cases.

Eddy viscosity models are able to properly predict the amount of SGS dissipation.
As they are purely dissipative models, they are unable to account for backscatter

effects which axe of importance in some flows as transitional or non-equilibrium

ones. Moreover, a priori analyses of DNS or experimental data (Clark et al. 1979,

1 Laboratoire de Mathfimatiques Appliqu_es, Universit_ Blaise Pascal, 63177 Aubi_re, France,

and CNRS (UMR 6620).
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Kerr et al. 1996, and O'Neil and Meneveau 1997) have shown that the exact stress

tensor correlates very poorly with the strain-rate tensor. Therefore, eddy viscosity
models very poorly represent the local effects of the SGS scales on the resolved ones.

Scale similarity models (Bardina, Ferziger & Reynolds, 1983) provide a better

physical representation of the SGS stresses. They assume that most of the SGS
stress can be estimated from the smallest resolved scales. The stress tensor is

expressed as vii - uiui - uiuj. Similarity models underprediet the net SGS dis-

sipation (Bardina, Ferziger & Reynolds 1983, Liu, Meneveau & Katz 1994, and
Scotti & Meneveau 1998) and cannot be used to predict first order statistics of

turbulent flows in actual LES. Mixed models (Bardina, Ferziger & Reynolds 1983,

Zang, Street & Koseff 1993, and Sarghini & Piomelli 1998) combine the dissipative
property of eddy viscosity models and the good representation of the SGS stress by
a scale similarity expression.

In both eddy viscosity and similarity approaches, the SGS stress is parameter-

ized in terms of the resolved scales. Recently, Domaradzki and collaborators (Do-

maradzki & Saiki 1997, and Domaradzki & Loh 1998) proposed a subgrid-scale
estimation procedure. The aim of this model is to estimate from the resolved scales

a range of smaller (SGS) scales of length AI/2. Schematically, the procedure consists
of recovering the large scales by applying a deconvolution operation to the resolved

(filtered) scales. Then, smaller scales are generated by nonlinear interactions among

large scales. The estimated field, containing scales of length up to AI/2 , is then

used to evaluate the SGS stress tensor. Hence, the estimation model provides an

approximation of the full velocity field as ui -_ fii + ui, so that the spectral support
of ui + fii is about two times larger than the support of the resolved scales. The

increment fii is expressed in terms of the resolved scales,

ai = ¢(a,).

Note that a similar point of view has been developed by Foias, Manley & Temam

(1988) in the context of dynamical system approach of the Navier-Stokes equations.

The estimation models have been motivated by a priori analyses of energy transfer

among different band of scales of DNS or experimental data (Kerr, Domaradzld &

Barbier 1996, and Liu, Meneveau & Katz 1994). They have shown that energy
transfers among resolved and SGS scales are dominated by local interactions, i.e.
with modes within one octave of the cut-off wave number.

In the estimation procedure, the incremental components fii are generated by

one nonlinear interaction. However, as pointed out in Domaradzki & Loh (1998), in

turbulence the generation of small scales is much more complicated, involving non-
linear, viscous, and incompressibility effects among at least one eddy-turnover time.

In this report, based on previous works (Dubois, Jauberteau & Temam (1998) and
the references therein), we attempt to derive a more detailed procedure. The incre-

mental unknowns (IU) fii are obtained by solving an approximated version of the

SGS governing equations. Computing fii at each time iteration of the LES in such

a way will require too much computational effort and will give results qualitatively

similar to a coarse DNS on the grid AI/2. The increment components are evaluated
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every q (q > 1) iterations of the LES and are, therefore, frozen over time intervals

of length qAt. Then, the SGS stress dependent upon ui should be corrected during

this period of time in order to preserve its dissipative properties. Two different

corrections procedure are proposed leading to purely dissipative models. The IU

models are implemented and evaluated for LES of incompressible forced and decay-
ing homogeneous turbulent flows. The results are compared with filtered DNS data

and with results obtained with dynamic eddy viscosity models.

2. Mathematical formulation

2.1 The large eddy simulation equationa

In large eddy simulation (LES) of turbulent flows, the large and small scales are

separated by applying a filter operation to the Navier-Stokes equations. For any

flow variable _b, we define its resolved part as

,_(x) = f. ¢(ffi')G(_,_') d_', (1)

where f_ is the entire domain filled by the fluid and G is the filter (kernel) function.

The net effect of the filtering operation (1) is to damp (or remove) the fluctuations

with a characteristic length shorter than the filter width Af.

By applying the filtering operation (Eq. 1) to the Navier-Stokes equations, we
obtain the LES equations for incompressible flows

OfLi 02 fi i 0 07"ii
v-- + (_,_ + _,_) = ,

cot C3xiax I _x 1 cgx1

i:3fi i

Oxl

(2)

where v is the kinematic viscosity and p is the pressure. The subgrid-scale (SGS)
stress

rij = uiu---_- _i_j, (3)

represents the effect of the small scales on the resolved ones. This term must be

modeled in terms of the resolved quantities in order to close the equations of motion

(2).

The filtering operation (Eq. 1) induces a decomposition of the velocity field into

large and small-scale components

_(_) = _(z) + .'(_), (4)

where u'(z) is the SGS velocity. By considering a filtering operation at scales Ay/2,
denoted by an overhat, the SGS velocity u' can be decomposed into

_'(_) = _(ffi) + _"(_),
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where fi(z) = fi(z) - _(z). Obviously, the filtered velocity field fi(z) satisfies an

equation similar to Eq. (2). Therefore, the equation of motion for the velocity
component fi(z) can be easily shown to be

-- _ 0,

am,

(5)

where Tij = uiu i - fiifij.

In Domaradzki et al. (1993), analysis of DNS data at low Reynolds number has

shown that most of the energy transfers from large to small scales are dominated
by local interactions, i.e. interactions of the resolved scales with wave numbers k E

[kf, 2kf], with kf being the cut-off wave number. A similar behavior has been noted

by Liu, Meneveau & Katz (1994) by analyzing interactions among several separated

bands of the fluctuating velocity. Based on these observations, Domaradzki and
Saiki (1994) proposed to approximate the SGS stress tensor as follows:

(6)

With such an expression for the SGS tensor, the closure problem for Eq. (2) now con-
sists in deriving an approximation of the incremental unknowns fii. In Domara_lzki

and Saiki (1994), an SGS estimation procedure is proposed. Schematically, the fil-

tered velocity ui is determined solely in terms of the resolved velocity at larger scales

fii. This is achieved in two steps. The first (kinematic) step consists in a deconvo-
lution of fii. The second (dynamic) step generates scales of size two times smaller

by nonlinear effects. Only this second step uses information from the Navier-Stokes

equations. The unfiltered velocity obtained with this approach satisfies neither the

incompressibility constraint nor the equation of motions (2 and 5). The procedure
described in this report proposes a different approach. Our aim is to estimate the

velocity increments fii as solutions of an approximation of the equation of motion
(Eq. 5).

2.2 A multilevel scheme as a subgrid-scale estimation procedure

The aim of the proposed model is not to accurately evaluate the increment fii,
but to estimate a range of scales smaller than the resolved ones in order to obtain an

approximation of the SGS stress tensor. Hence, as a first approximation, in Eq. (5)

we neglect the nonlinear interactions with smaller scales, setting Tij = 0. We then
rewrite Eq. (5) as follows:

0_ 02fi_ 0 -- 0"2_i
+ = ,

Ot OzjOx i _ Ozj

_ O,

Oxi

(7)
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where Tij = '_ifij + fiifij + (tifij represents the interactions among resolved and in-

cremental scales. As previously mentioned, the computation at each time iteration

of fii solving a time discretized version of Eq. (7) will require too much computa-
tional effort. Moreover, such results will be qualitatively similar to a coarse DNS

on grid of mesh size A f/2. In Dubois et aL (1998a, 1998b), multilevel schemes have
been developed and used to estimate the small scales of homogeneous turbulent

flows. They have been applied in the context of DNS to scales with wave number

k > k,/4, with k, the Kolmogorov wave number. The statistical properties, such as

high-order moments of the velocity derivatives, are well reproduced by these proce-

dures. They are based on a quasi-static (QS) approximation of the small scales, i.e.

they are frozen over a few time iterations while the large scales are time advanced.

Similarly, we apply a QS approximation to the velocity increments, i.e. fii are kept

constant during q iterations. Therefore, we obtain a two-level scheme that can be

summarized in the following two steps:
Step nq + k, k E [1, q]: the resolved scale equation (2) is advanced according to

the following time semi-discretized equations

_,a+k _ ,_,q+k-_ 02,_ q+_ 0 V,q+ k
At - u Oz_Ozj +

0

- Oz i (_i%) "q+k-x

0 _,q+_ = O,
Ozi

_ _T".q +k-_ (s)
Oxj ,3

where we have set

r_q+t = fi_,q+lfi_n + fi_nfiyq+t + ,2refiT, rn = nq, l E [0, q -- 1].

Step m + 1 = (n + 1)q: the incremental unknowns fi_+l are computed according
to

- 02fi,,_+1 ,,,_7'+i- uT' v" _ 0 .,.+, 0 _m+, OT0
At OzjOzj + _xi p = --a---fzNj ,

ozj Ozj (9)

0--_fi_'+' = 0,

where

Note that the SGS stress T/j, representing the interactions between the velocity

component fii and u_' in Eq. (5), has been neglected in Eq. (9). The stress tensor

Tij corresponds to interactions between the resolved scales and the incremental

unknowns fii. Due to Eq. (9) the nonlinear term fiifij as well as the dissipative
one act on the IU components over one time step only during the time interval

[mAt, (rn + 1)At]. The nonlinear term is essentially an energy transfer term, and

the balance between dissipation and injection of energy present in the Navier-Stokes
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equations cannot be reproduced by Eq. (9). In fact, the net effect of this numerical

treatment can be either to reduce or amplify artificially the kinetic energy of the

IU scales ui. Therefore, a discontinuity will appear near the cut-off wave number

k I on the distribution of kinetic energy in spectral space. In order to avoid such

numerical artifact, the IU scales _n are modified so that the kinetic energy of their

largest scales in a band of wave numbers close to k! is equal to the kinetic energy

contained in the smallest scales of tim. In the spectral space, the Fourier coefficients

of fi_n are modified so that:

Ea,_(kl + j) =_ Eu_(kl + j) Eu_(kl)
Ef,_(k I + 1)'

(10)

for j = 1,... ,k/; E¢(k) denotes the energy spectrum function of the flow field

¢(_v). A relation similar to Eq. (10) could be imposed in physical space by using

filter functions with local support near kf in the spectral space.

The above procedure of estimation of the IU components, consisting of Eqs. (9)

and (10), does not insure a priori that the stress tensor r 0 predicts the right amount

of dissipation. In fact, the implementation of this scheme in LES of forced homoge-

neous turbulence has shown that the stress tensor underpredicts the SGS dissipation

in the neighborhood of the cut-off wave number k I. A more detailed analysis of the

behavior of rij revealed that the computation of the IU scales via Eqs. (9) and (10)

at iteration m provides a stress tensor behaving similarly to the exact one (computed

from DNS data) and predicting reasonably well the SGS dissipation. However, a

decorrelation between the stress tensor ri_ +z-] and the resolved scales fi_+z appears

for l > 1. The SGS dissipation near k I reduces from iteration to iteration, resulting

in an increase of the kinetic energy of the smallest scales of t,. As a remedy we

define hereafter two procedures to insure that the stress tensor has a dissipative

effect on the resolved scales equations. In both cases, the spectral representation of

the velocity field is used. Let us denote by ¢(k) the Fourier coefficients of the flow

variable _b(x). The SGS force in the spectral form of Eq. (8) reads

A

NLz(k) - ikj+O(k),

so that in the energy equation we have N'Li(k)._i(k) as a source term. Once the IU

components have been computed according to Eq. (9), we define a complex number

of modulus equal to unity by

aT'(-k)eiO_(k) =

I I

The phase 0"(k) • [- 7r, 7r] clearly represents the phase difference between N"_ (k)
^Tlri

and t i (k). The time decorrelation between the SGS force and the resolved scales

can be avoided by keeping constant the phase Ore(k) on the time interval [mAt, (m+

1)At]. However, such a procedure does not bring enough dissipation into the re-

solved scale equation.
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The first procedure consists in modifying Ore(k) as follows:

7r

0re(k)-- _ if _(k)._'_(-k) < 0. (11)

The net effect of Eq. (11) is to "turn off" the stress for wave numbers contributing

to backscatter of energy. The phases of the SGS force in Eq. (8) axe kept constant

and set equal to the phase Ore(k). Then, the SGS force is modified according to:

(12).-.--.._n+l

"_+_(k)- IUL _ (k) l ifi_+l(k) l

for I = 1,... , q. The model consisting of Eqs. (8-11) is, therefore, a dissipative SGS

model and is denoted by IU1 in the following section. Note that Liu, Meneveau

& Katz (1994) proposed to modify in a similar way the stress tensor derived from

scale similarity models.
Another version, denoted hereafter by IU2, consists in modifying the phases of

the SGS force in Eq. (8) at the temporal iteration n + 1, according to:

_+t(k) eiC,o,_(k), (13)t--"+'
NL i (k) - I I ]_+l(k) l

where a is a constant in the range [0, 1]. Hence, a dissipative LES model is obtained

for values of a < 1/2. For a = 0, the dissipation induced by Eq. (13) is maximum.
The use of this value in LES runs has shown that the smallest scales of the resolved

field axe excessively damped by an overprediction of the SGS dissipation. We have

retained the value a = 1/2 in the LES runs described in the following section.

3. Numerical implementation

3.1 Large eddy simulation of forced isotropic turbulence

The flow is forced in such a way that the energy injection rate (f. u) is constant in

time and equal to a given parameter 6. The Reynolds number is taken to be infinite
so that u = 0. In the absence of a model for the SGS stress term, the energy spectrum

function tends to reach an k 2 equipartition equilibrium and the total kinetic energy

will grow constantly. In an idealistic situation, the model should provide the correct
amount of net SGS dissipation at each scale so that the flow reaches a statistically

steady state, with an energy spectrum of the form: E(k) = Ct¢ 62/3 k -_/3, CK

being the Kolmogorov constant. The initial condition has an energy spectrum
function of this form with CK set to 1.6; the phases of the Fourier coefficients

axe randomly generated. The spectral coefficients f(k) are nonzero only for wave

numbers [kl _< ko. Hence, by defining Y = Caxd{k E Za;I k I_< ko} and O(k) to be

the phase of fi(k), f(k) is given by

6 e iO(k)

f(k) - N I _(k) l"
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FIGURE 1. Time evolution of the kinetic energy K = ½ (fiiui).
....... : IU2; ..... : DM1; ........ : DM2.

-- : IU1;

In the simulations described hereafter, we have chosen _ = 0.1 and k0 = 2. The

same problem has been studied in Ghosal et al. (1995).

In order to compare results obtained with the IU models described in the previous

section, runs with the same parameters and initial conditions have been performed

with the dynamic model. Two versions are considered: DM1 corresponding to the

original form derived in Germano et al. (1991) and DM2 the modified version of

Lilly (1992). The LES runs are performed here on a 32 s grid; the computation

of the nonlinear terms are dealiased with the 3/2-rule. The parameter q defining

the frequency for the estimation of the IU scales was chosen equal to 5 for the

simulations presented in this report. It was found that the results were weakly

dependent of the value of q for q E [5,20]; larger values of q have not been tested.

The net SGS dissipation, well predicted by eddy-viscosity models, is known to he

a quantity difficult to estimate accurately for other models, as scale similarity ones,

in actual LES. For the considered problem, the prediction of

where (-) denotes volume average, determines the stability of the system. Indeed,

if eSGS is underpredicted, the system will have a tendency to accumulate kinetic

energy injected by the external force as no other dissipation than the SGS one is

present in the equations of motion of the resolved scales. The resolved scales kinetic

energy K = 1/2 (uiui), represented as functions of time in Fig. 1, oscillates near

a value in the range [0.45, 0.5] for the IU and DM solutions. Therefore, the IU
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FIGURE 3. Time averaged energy spectrum functions E(k). " ..... : CK _2/3 k-5/3;
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models axe stable and predict the right amount of global SGS dissipation. This is

confirmed by Fig. 2 showing that eSGS obtained by the IU runs oscillate near the

energy injection rate, i.e. ¢ = 0.1; IU1 and IU2 models, after the transient period,

predict the same amount of global dissipation.

A requirement for LES models is the prediction of the SGS dissipation. More-

over, the spectral distribution of this quantity is of importance for an accurate

representation of the distribution of kinetic energy in the spectral space, i.e. the

energy spectrum function. For the considered problem, the models should ideally

predict a -5/3 inertial range. Fig. 3 shows that IU1 model recovers a spectrum close

to the Kolmogorov's 5/3 law; the IU2 seems to give a steeper decaying spectrum

E(k) __ k -2, very close to the DM1 spectrum. Compensated spectra kS/ae-2/aE(k),

represented in Fig. 5, show a plateau for the IU1 and DM2 models with Kolmogorov
constant CK _ 1.4 for IU1 and CK _-- 1.9 for DM2. Values of this constant obtained

by measurement of experiments are in the range [1.3, 2.1] (Chasnov (1991)).

The kinetic energy contained in the IU component KSGS = 1/2 <fii_i> is of the

order of 0.125 for both IU models. A similar value has been found by Carati,

Ghosal & Moin (1995) with a dynamic model carrying an equation for the SGS

kinetic energy. Assuming a Kolmogorov law beyond the cut-off wave number kl,
we deduce that

KsGs = _C_-

For CK in the range [1.4, 1.9], we obtain KSGS in the range [0.07,0.1]. This tends

to show that the QS approximation is an efficient way to estimate the incremental
scales.

3.2 Large eddy simulation of decaying turbulence

The flow is an incompressible time-decaying flow and is an analog of the grid-

turbulence experiments of Comte-Bellot and Corrsin (1971). The reference test is

the 512 a DNS performed by Wray (1998). The initial condition for the LES runs is

the 512 a DNS velocity field at time t ___0.97 filtered on a 323 grid. The Reynolds

number based on the Taylor microscale is of the order of 100. As indicated by Fig. 6

representing energy spectra of DNS at various resolutions, a coarse DNS is unable

to follow the decay of the energy spectrum function and, therefore, the decay of the

total kinetic energy. Actual LES runs on a 32 a grid corresponding to the resolved

scales have been conducted with the IU1, IU2, DMi and DM2 models.

The difficulty of this test is to accurately recover the decay of the kinetic energy

K = 1/2 (5,_,). This again depends on the capacity of the model to predict the

net SGS dissipation. Moreover, the model should adjust this prediction as time

evolves, as the SGS dissipation decays drastically in the first period of the run,

t E [1,2.5] (see Fig. 7). In this first period, DM1 and IU2 axe very close to each

other while the two other runs seem to overestimate K. In the second period of the

decay, t > 2.5, the IU solutions axe almost identical and accurately follow the curve

corresponding to the filtered DNS. The DM models overpredict the kinetic energy
by approximately 20% for t > 2.5.
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The best fit of the DNS energy spectrum is obtained with the IU2 model on the

overall time of decay of the simulation as shown on Fig. 8. The IU1 model has a

tendency to slightly overestimate the last modes near the cut-off wave number at

the intermediate time t = 2.45. The energy spectrum obtained with the DM models

(Fig. 9) have a shape similar to the DNS spectrum but with slightly larger values.

This test demonstrates the good dynamic property of the IU models proposed in
Section 2.

4. Conclusion

Subgrid-scale modeling based on the concept of incremental unknowns (IU) has

been introduced. The incremental velocity components correspond to scales beyond

the cut-off wave number defining the resolved scales in LES. Schematically, the IU

component have length scales two times smaller than the resolved ones. There-

fore, IU modeling is similar to the estimation procedure recently introduced by

Domaradzki and coworkers (1997, 1998). However, these approaches differ in the

computation of the subgrid scales. The equations of motion are used to advance in

time the IU components. The computation of IU components at each time iteration

would very poorly resolve the SGS scales as in a coarse DNS. Rather, a quasi-static

(QS) approximation is applied to the IU scales, i.e. they are not evaluated at each

time iteration of the LES. With the QS approximation we attempt to mimic the

dynamic of the subgrid scales. The aim is to develop a more detailed procedure

than the estimation one, which generates small scales by only one nonlinear inter-

action. The QS approximation has been shown to generate small scales, providing

SGS stresses with dissipative properties as expected. However, on the time period
during which the IU scales are frozen, a decorrelation between IU and resolved

scales occurs. This time decorrelation induces an underprediction of the net SGS

dissipation. Therefore, the QS approximation cannot be used itself for SGS mod-

eling, but it must be coupled with correction procedures of either the SGS stress

tensor or the IU components. We have focused here on the development of phase

correction procedures for the SGS tensor. Two procedures have been proposed and

implemented in actual LES of forced and decaying homogeneous turbulence. The

IU models obtained are fully dissipative ones. The LES runs have shown that both

IU models provide the right amount of SGS dissipation. In the case of decaying

turbulence, the dynamic property of the flow is well reproduced by the IU solutions,

i.e. the decay of the kinetic energy of the resolved scales follows accurately the decay

of the filtered DNS. In this test case, IU models perform better than the dynamic

model. In the case of forced turbulence at infinite Reynolds number, IU models

are able to predict an energy spectrum close to a k -5/3 Kolmogorov inertial range.

Therefore, we have proved that the IU approach can be used to derive efficient SGS

model for LES of turbulent flows. However, the aim of these approaches, based

on the evaluation of a range of subgrid scales, is to develop fully nonlinear models

accurately representing the SGS stress tensor and its properties, i.e. dissipation

and backscatter of energy. At this point, correction procedures have been used to

insure such behavior of the SGS stresses. In the future, we should, therefore, con-

centrate our efforts on the development of models which are able to adjust the IU
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components instead of the SGS force. Moreover, IU modeling has been tested here
on homogeneous turbulence. It should be applied to wall-bounded flows and even

more complicated ones requiring the extension of the approach presented here to

implementation in finite difference codes.
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Subgrid scale modeling taking the
numerical error into consideration

By Youhei Morinishi 1 AND Oleg V. Vasilyev 2

1. Motivation and objectives

Large eddy simulation (LES) is regarded as one of the most promising numerical

methods to predict unsteady turbulent flows at high Reynolds number. In LES

the flow field is decomposed into grid and subgrid scales. The grid scale (GS) flow
field is computed numerically using discrete filtered Navier-Stokes equation with a

model for the subgrid scale (SGS) stress. Therefore, the reliability of the computed
flow field is strongly affected by both the reliability of the SGS model and the

accuracy of the numerical method (Ghosal 1996), particularly in the approximation
of the convective term. This means that even if we use the exact SGS stress, the

computed flow field will be contaminated by the numerical error. This connection

between SGS modeling and numerical error was mostly overlooked. As a result all

of the existing SGS models have been developed independently from the numerical
methods.

One of the objectives of this study is to develop a dynamic subgrid scale model,

for which computational results will not depend on the accuracy of the numerical
method. The most commonly used SGS model is based on the Smagorinsky eddy

viscosity model (Smagorinsky, 1963) with the model coefficient computed dynami-

cally through the tensor level identity by Germano et al. (1991), hereafter denoted

by DSM. However, the tensor level identity does not explicitly include the effect

of the numerical error, and thus the computational results strongly depend on the

numerical method, especially in simulations with poor resolution. In this report we

will present a new dynamic procedure with the vector level identity, which takes
the numerical error into consideration. We will test the dynamic Smagorinsky SGS

model with the vector level identity, hereafter referred as VDSM model.

The second objective of this study is to present a modification to the dynamic
two-parameter mixed model. It is well known that the correlation between the

Smagorinsky model and the SGS stress is low (for example see Horiuti 1989) while

the model based on the scale similarity assumption by Bardina et al. (1983) has

considerably higher correlation. However, the scale similarity model has a defect:

it is not dissipative enough. Therefore, the model is usually used together with the

Smagorinsky model. Model coefficients are commonly computed using the dynamic
procedure (Zang et al. 1993; Vreman et al. 1994; Salvetti &_Banerjee 1995; Horiuti

1 Nagoya Institute of Technology, Japan

2 Present address: Department of Mechanical and Aerospace Engineering, University of Missouri,

Columbia, MO 65211
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1997). Nevertheless, the two-parameter mixed model is still not dissipative enough,

and the defect of the scale similarity model is not cured by the dynamic proce-

dure. Recently Morinishi (1997) recommended a modification to the two-parameter

dynamic procedure which removes that defect. In this study, we will apply the

modification to the dynamic two-parameter mixed model (DTM) of Salvetti and

Banerjee (1995) since the model seems to be the standard dynamic two-parameter
mixed model. The revised model will be named DTMR.

In this study, all computational tests will be done in the turbulent channel flow,

and the Reynolds number based on the channel half width and wall friction velocity
is 395. To remove the ambiguity regarding the accuracy of the finite difference

scheme, we use the higher (up to 12th) order accurate fully conservative finite

difference schemes in a staggered grid system proposed by Morinishi et al. (1998).
The present report is organized as follows. In section 2.1 numerical method for the

channel flow is outlined and the computational results for channel flow without SGS

model is presented as a reference. In section 2.2 the dynamic procedure with the

vector level identity is proposed and the computational result of VDSM is compared
with those of DSM. In section 2.3 a recommended modification to the dynamic two-

parameter mixed model is presented and the the computational result of DTMR is
compared with those of DTM.

2. Accomplishments

1_.1 Numerical method and no SGS model simulation

The basic LES equations for incompressible flows are the filtered Navier-Stokes
and continuity equations given by

Ouiuj- 0p O ai+ - +  ox, (1)
Ofii

Ozi O. (2)

Here ui is the velocity component in zi direction (i = 1,2,3), p is the pressure
divided by the density, v is the kinematic viscosity, and t is time. The overbar

-7- means filtering operator. The commutability between the differentiation and
filtering operations is usually assumed, and the filtered convective term is treated
as

Ouiuj OfLifii Orij

Ozj -- Ozj + Ox"---'f' (3)

where rij = uluj - fL,_j is the SGS stress which should be modeled.

In this study the numerical tests of several SGS models, described in the subse-

quent sections, are performed using fully developed plane channel flow. The flow

field is assumed to be periodic in the streamwise (xl) and spanwise (xs) direc-
tions. The Reynolds number (Re_ = u_h/v) based on the channel half width h

and the wall friction velocity u_ is 395. The treatment of the convective term (the
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first term in the right-hand side of Eq. (3)) is important for unsteady turbulent

numerical simulations at high Reynolds number. Fully conservative higher (2nd,

4th, 8th and 12th) order accurate finite difference schemes proposed by Morinishi

et al. (1998) are used for the convective term in the periodic directions. The second

order accurate scheme in the wall normal direction (x2) is combined properly and

used in order to remove the ambiguity regarding both the conservation properties
of the non-uniform meshes and the wall boundary treatment. A semi-implicit time

marching method is used. The diffusion term in the wall normal direction is treated

implicitly with the Crank-Nicolson method, and a third order Runge-Kutta (RK3)

method of Spalart et al. (1991) is used for all other terms. The splitting method

by Dukowicz and Dvinsky (1992) is used to enforce the solenoidal condition. The
resulting discrete Poisson equation for the pressure is solved using a discrete Fourier

transform in the periodic directions and a tri-diagonal direct matrix solver in the

wall normal direction. The computational box is 21rh × 2h × 21rh/3 and 32 × 64 × 32

mesh points are used. The grid spacings in the periodic directions are uniform. In

this case, the grid spacings in wall units are At+t = 77.6 and Az+s = 25.9. The wall
normal grid is stretched using a hyperbolic-tangent function

x2(j______))= tanh[7(2j/N2 - 1)] j = 0,..., N2,
h tanh[7] '

where z2(j) is the wall normal grid point for u2 in the staggered grid system and

x2(0) and x2(64) = x2(N2) correspond to the lower and upper walls respectively.
The stretching parameter, 7, is taken to be 2.75. Time increment is At = 2.5 x 10 -3,

and it satisfies the stability condition for RK3. The filtering operations in the

dynamic SGS models are done in the periodic directions. The test filtering with the
filter width _1 = 2A_ and the grid filtering with the filter width fi'l = A_t in xl

direction are done respectively as follows:

](xl) = 6[f(x, - Azt) +4f(xl) + f(xl + Azt) ],

](xl) = _-_[f(xl --Azt)+ 22f(xl)+ f(xl + Azt) ] •

Figures 1 and 2 show the profiles of mean streamwise velocity and velocity fluc-

tuations respectively by the higher order schemes without SGS model at Re,-=395.

In these figures the DNS data by Mansour et al. (1996) (see also (Rodi & Mansour

1993)), are also plotted. Note that with the increase of the order of accuracy, the re-
sults of finite difference calculations converge. The error of the second order scheme

acts as an effective SGS stress, and the mean velocity profile by the second order

scheme looks the best on Fig. 1. However, the profile of the velocity fluctuations of
the second order scheme is the worst. The differences between the no SGS model

simulations and DNS results should be piked up by the SGS model. The amount

of required SGS stress depends on the accuracy of the numerical method and the

grid resolution.
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FIGURE 1. Mean streamwise velocity of the channel flow at Re,. = 395 using no
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schemes. DNS (o) data are also plotted.
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FIGURE 2. Velocity fluctuations of the channel flow at Re. = 395 using no SGS
model. For symbols see Fig. 1.
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2.2 Tensor and vector level identities for the dynamic SGS model

In the dynamic SGS model, the tensor level identity of Germano et al. (1991)

between the grid and test fields is used to determine the parameter in the SGS
model

£ij = Tij - ?i j, (4)

h ___

where the subtest stress Tij is defined as Tij = uiuj - uiuj, and the resolved stress

fij is defined as

fij = _i_/-S- '_,_i. (5)

The Smagorinsky eddy viscosity model is assumed for both the subgrid and subtest

stresses in the standard dynamic SGS model.

i = -2(cs2x) =Isls_, _¢_J= { kozj + -- 'Oz_] I,_,el= ,z_j _j) (6)

1 (O_i O(-tj'_ 1/2

T_3 = -2(Cs2x)21}_l_s, k_j = _ kb-_xj+ O_,]' I_l = (2_ij#i/) (7)

1
The superscript "*" denotes the trace free operator (r/_ - rij - "_ijrkk). The model
parameter Cs is computed by minimizing the the square of the error Q = EijEij

(Lilly, 1992), where the error Eij is given by

Eu = C_ + 2(Csh)2Mu, (S)

Mij = o_2I,_l,_i./- ]-'_,./,

and o_2 = (/_/A) 2 is the square value of the test to grid filter widths ratio. In this

study we take o_2 = 42/3 -_ 2.52. Assuming Cs is a function of x2, and taking

the average in x_ - x3 plane (denoted by (-)), we obtain the following equation for

(Cs£)2:
1 (FijMij)

(CsZx)2 = 2 (MijMij)" (9)

In this report the dynamic Smagorinsky model given by Eqs. (6) and (9) is called

DSM.

Figures 3, 4, and 5 show the profiles of mean streamwise velocity, velocity fluc-

tuations, and the SGS eddy viscosity respectively using the higher order schemes

with DSM at Re_=395. The SGS eddy viscosity is defined as t/t = (Cs/_)21SI.

Note that the mean streamwise velocity profiles of the simulations with DSM are

shifted up when compared to the results of the simulations without SGS model.

The mean velocity and turbulent intensity profiles of DSM do not depend strongly

on the order of the accuracy except for the second order scheme. This means that

the effect of the numerical error of the second order scheme is considerably larger

than those of the higher order schemes. The implicit effect of the order of the finite

difference schemes on the eddy viscosity is shown in Fig. 5. The eddy viscosity
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FIGURE 3. Mean streamwise velocity of the channel flow at Re,. =395 using DSM
with the 2nd (........ ), 4th ( .... ), 8th (-----) and 12th (--) order schemes.
DNS (e) data are also plotted.

increases gradually with the increase of the order of the scheme. Even for the 12th

order scheme, the dynamic procedure with the Smagorinsky model gives excessive

SGS eddy viscosity for the chosen resolution, and the mean velocity profile is much
higher than the DNS data.

Note that in practical LES applications the finite difference method is usually

used, and the first term in the right-hand side of Eq. (3) is approximated by

Ofiifij

Oxj

6ftifij

-- gxj +O(h"), (10)

where 8uiuj/6xj is the n-th order accurate finite difference approximation
to Ouiuj/Oxj and O(h n) denotes the truncation error. This means that the filtered

convective term Eq. (3) suffers from the effect of the numerical error even if we know

the exact SGS stress. That is why the development of the higher order accurate

finite difference methods has been considered as one of the important areas of LES
research.

In this study, we propose an alternate approach to improve the reliability of com-

putational results of LES. The filtered convective term in the grid field is modeled
as

Ouiuj 6_ifij Orij (11)
Ozj - 6xj + Oxj'

where the numerical error is treated as a part of the SGS stress (exactly, SGS vector)
and the rest is modeled with rij. The filtered convective term in the test field is
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FIGURE 4. Velocity fluctuations of the channel flow at Re_ =395 using DSM. For

symbols see Fig. 3.

0.004

._ 0.003
r._

r.,.a
"" 0.002

0.001
r_

i

0 400
I I n ! I I I I I i i _ i , I , ,

200

X2 +

FI_UaE 5. SGS eddy viscosity of the channel flow at Re_ =395 using DSM with

the 2nd ( ........ ), 4th (.... ), 8th (-----) and 12th (--) order schemes.
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assumed as follows.
A

Ouiu--_ 8_ifi¢ OTis (12)
Oxj - _xj + Oxj

The model parameter in the dynamic SGS model is determined through the follow-
ing vector level identity:

Ci- OqTij OriJ

Ox i Ox i , (13)

where the resolved convective term Ci is defined as

6xk _xk (14)

If the parameter in the dynamic SGS model is estimated through the vector level

identity given by Eq. (13), then the numerical error explicitly affect the model

parameter. Substituting Eqs. (6) and (7) into Eq. (13), we obtain the following
error Ei:

1 j
Ei = (Ci - _iiCkk) + 2Mi(CsZx) 2 + 2Mii O(Cs£)2 (15)

Oxj '

where

The least square minimization of Lilly (1992) is not applicable in this case due to

the presence of third term on the right-hand side of Eq. (15). In this study, (Cs_x) 2
is estimated by minimizing the following weighted integral:

/ f /w(z2)Q(zl,Z2,z3)dzldx2dx3, (16)

where w(x2) is a weight function and Q = EiEi. Assuming that Cs is a function

of x2 and taking the average in the periodic directions, the (Cs_x) 2 value, which

minimizes the integral (16), is obtained through the variational principal, which
leads to the following differential equation:

d(Cs£) ]
w(x2)[ (CiMi) + 2 (MiMi) (cs_x)2 + (Mi2Mi) _ ]

d(Cs£) 
d [w(x2)((CiMi2)+2(MiMi2)(CsA)Z+(Mi2Mi2) _ 'Jdx2

=0.

(17)

Equation (17) is discretized using the second order finite difference method and

is solved using the direct tri-diagonal solver. In this study the weight is selected
as w(x2) = 1/A,2(z2), where A,_(x2) is the grid spacing in x2. The dynamic

Smagorinsky model given by Eq. (6) _vith (Cs_x) 2 determined by Eq. (17) is called
VDSM.
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FIGURE 6. Mean streamwise velocity of the channel flow at Re'- =395 using

VDSM with the 2nd ( ........ ), 4th (.... ), 8th (-----) and 12th (--) order

schemes. DNS (.) data are also plotted.

0 200 400

X2 +

FIGURE 7. Velocity fluctuations of the channel flow at Re,. =395 using VDSM.

For symbols see Fig. 6.
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FIGURE 8. SGS eddy viscosity of the channel flow at Re_ =395 using VDSM with

the 2nd (........ ), 4th ( .... ), 8th (-----) and 12th (--) order schemes.

Figures 6, 7, and 8 show the profiles of mean streamwise velocity, velocity fluc-

tuations, and SGS eddy viscosity respectively using the higher order schemes with
VDSM at Re_ =395. Although the mean velocity profile for the second order scheme

is still higher than the DNS data, the great improvement is accomplished by using
the vector level identity. It is noteworthy that the mean velocity profile in the core

region is qualitatively represented by VDSM with the higher order schemes while
it is not done by DSM.

Figure 9 shows the profiles of the model parameter Cs using the fourth order
scheme with DSM and VDSM at Re_ = 395. The traditional Cs value with the

Van Driest (1956) type wall dumping function, Cs = 0.1 × [1 - exp(-x+/25)], is
also plotted. Near the wall the Cs profile for VDSM qualitatively coincides with the

one for DSM although there exists a slight negative region very near the wall in the

profile of VDSM. The peak value of the negative region of Cs is about -0.005, and

it has practically no effect on the results of computations. The Cs profile by VDSM
differs qualitatively from that by DSM in the region away from the wall, and this is

the important difference between the tensor and vector level identities. It appears

that the profile of Cs away from the wall is affected strongly by the numerical error.

It is interesting that the Cs profile by VDSM is closer to the traditional profile than
that by DSM in the buffer region.

_.3 Recommended modification to the dynamic two-parameter mixed model

The dynamic two-parameter mixed model of Salvetti & Banerjee (1995) is based

on the scale similarity model of Bardina et al. (1983) and the Smagorinsky eddy
viscosity model.

r_ = CL (_j - _i_j)* - 2(Cab) _ ISlS_ (18)
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FIGURE 9. The profiles of Cs of the channel flow at Re_ =395 using DSM (........ )

and VDSM (_) with the fourth order scheme. The traditional profile (-----),

Cs = 0.1 × [1 - exp(--_-_ )], is also plotted.

l

The scale similarity model by itself is not dissipative enough, and the Smagorinsky

eddy viscosity model is usually added to recover the defect. Following the standard

procedure for the plane channel flow, the two parameters, Cs and CL, are computed

simultaneously using the tensor level identity of Germano et aL (1991) with the

least square minimization. The resulting equations for Cs and CL are given by

1 (f,jM, j)(_i_ti*j) - (£--,j7t,_)(Ui*jM, j)

(Cs_,) 2 = --_ (M, jMo ) (nijnij) - (_oM, j)
(19)

where

cL = (l,_n,5) (i, ji,_) - (_,ji,,) (n_3i, j)
-(n,,i,i)<i, jU,j) (n_Sn,5) * _ '

(20)

_- _
In this study, the dynamic mixed model given by Eq. (18) with Eqs. (19) and (20)
is called DTM.

Figures 10, 11, and 12 show the profiles of mean streamwise velocity, velocity

fluctuations, and SGS eddy viscosity respectively using the higher order schemes

with DTM at Rer=395. The profile of streamwise velocity fluctuation for DTM is

better than the one for DSM (compare Fig. 11 with Fig. 4). However DTM has

a defect in that the mean velocity profile is lower than that of DNS when it is

used with the higher order schemes. Although the mean velocity profile of DTM
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FIGURE 10. Mean strearnwise velocity of the channel flow at Re_ =395 using

DTM with the 2nd ( ........ ), 4th ( .... ), 8th (-----) and 12th (_) order

schemes. DNS (o) data are also plotted.

em

"_ 1

0 200 400

X2 +

FIGURE 11. Velocity fluctuations of the channel flow at Re_ =395 using DTM.

For symbols see Fig. 10.
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FIGURE 12. SGS eddy viscosity of the channel flow at Re,. =395 using DTM with

the 2nd ( ........ ), 4th ( .... ), 8th (-----) and 12th (._) order schemes.
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FIGURE 13. Mean streamwise velocity of the channel flow at Re,. =395 using

DTMR with the 2nd ( ........ ), 4th (.... ), 8th (-----) and 12th (_) order

schemes. DNS (o) data are also plotted.
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FXGURE 14. Velocity fluctuations of the channel flow at Re,. =395 using DTMR.
For symbols see Fig. 13.
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FIGURE 15. SGS eddy viscosity of the channel flow at Re,. =395 using DTMR

with the 2nd ( ........ ), 4th (.... ), 8th (-----) and 12th (_) order schemes.
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FIGURE 16. The profiles of Cs of the channel flow at Re_ =395 using DSM

( ........ ), DTM ( .... ) and DTMR (_) with the fourth order scheme. The
x +

traditional profile (-----), Cs = 0.1 x [1 - exp(-_-_-5 )], is also plotted.
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FIGURE 17. The profiles of CL of the channel flow at Rer =395 using DTM

( .... ) and DTMR (_) with the fourth order scheme.
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with the second order finite difference method accidentally agrees well with the

DNS data, it is caused by the numerical error explained in Fig. 1. In this stage,

the model parameters in DTM are estimated through the tensor level identity,
and the numerical error is not taken into consideration. Remember that the scale

similarity model itself has less dissipation, and therefore the model is used together
with the Smagorinsky model as the mixed model to remove the defect. However

the profiles of the SGS eddy viscosity in Fig. 12 are much smaller than those in

Fig. 5. This indicates that the defect of the scale similarity model is not cured if

the model parameters are estimated through the dynamic procedure with the tensor
level identity. The reason why the defect is not cured is that the correlation of the

Smagorinsky model to the SGS stress is much lower than that of the scale similarity
model (for example see Horiuti 1989). This imbalance makes Cs smaller if the two

parameters are solved simultaneously.

To remove the problem, Morinishi (1997) proposed a modification to a dynamic

two-parameter mixed model. First, the Smagorinsky parameter Cs is computed
exactly the same way as in DSM (using Eq. (9)). This ensures that the mixed model

has enough dissipation. Secondly, the other parameter is computed dynamically as

Cs is known. In this study, we adopt the following modification to the mixed model
(18):

Cn = <[f'i + 2(Csh)2Mii]H_i>
<u,'jn,',> (21)

This revised dynamic two-parameter mixed model is called DTMR.

Figures 13, 14, and 15 show the profiles of mean streamwise velocity, velocity

fluctuations, and SGS eddy viscosity respectively using the higher order schemes

with DTMR at Re,=395. The profiles of the mean velocity and velocity fluctua-
tion using the higher order schemes with DTMR coincide well with the DNS data.

Comparing Fig. 15 with Fig. 12, it is apparent that the defect of DTM is recovered

by the revised model. Figures 16 and 17 show the profiles of the parameters Cs and

CL respectively by the fourth order scheme with DTM and DTMR (and DSM in
Fig. 16). The traditional Cs value with the wall dumping function is also plotted

in Fig. 16. The Cs profile of DTMR is almost the same as that of DSM, and the
merit of DSM is kept in DTMR. The Cs value of DTM is much lower than those of

DSM, DTMR, and the traditional value, and this makes DTM less dissipative. The
CL profile of DTMR is almost the same as that of DTM, and the merit of DTM is
kept in DTMR.

3. Future plans

The proposed SGS models will be tested in high Reynolds number channel flow

to see if they work well in LES for practical problems. In addition, the vector level
identity will be extended to the revised two-parameter mixed model.
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Towards a near-wall model for

LES of a separated diffuser flow

By Hans-J. Kaltenbach 1

1. Motivation and objectives

Recently it was shown that LES is capable of predicting incipient separation in

an asymmetric diffuser (Fatica et al., 1997; Kaltenbach et al., 1998). Despite the

low Reynolds number of the flow (Re_ = u_6/u = 500 in the inlet duet of height

26, Reb = Ubulk6/U = 9000) the computational effort required to obtain good
quantitative agreement with measurements is considerable due to the wide range

of spatial and temporal scales encountered which necessitate the use of fine meshes

as well as lengthy integration times. Proper prediction of the mean velocity profile

and turbulence statistics of the incoming developed turbulent channel flow turned

out to be challenging using LES in which the near-wall region was resolved. It is
desirable to reduce the cost of the simulation both for the diffuser and for the time

series of inlet planes by circumventing the need to resolve the fine scale turbulence

in the near wall region.

The goal of the present study is to investigate the diffuser flow to see if the wail-
model based LES method (Cabot 1995, 1996, 1997 and related contributions in this

volume) can be applied. The statistics from a well resolved LES of the diffuser flow

are used to study the near-wall zone in order to see (i) what are the relevant terms

in the mean momentum balance and (ii) whether the turbulent shear stress in the

near-wall layer can be predicted by an algebraic eddy-viscosity model. Based on the

outcome of these a priori tests, we discuss a model formulation which treats the near

wall region primarily in the RANS spirit with emphasis on aecurate specification of
the mean turbulent stresses.

2. Accomplishments

2.1 Near-wall momentum balance

Following Cabot (1996, 1997) we use data from a well resolved diffuser LES to
identify important terms in the tangential-to-the-wall momentum balance. Here we

focus on the mean flow statistics as defined through RANS and not on statistics for

a control volume of typical size used in wall model LES as in Cabot (1995). The

streamwise momentum balance in coordinates locally tangential and normal to the

walls is integrated from y = 0 to y0, yielding

_fo O_2 . cyo0-__ cyoOp Ov I-y;-_v+ Jo --oV_ + _uVl,o+ _._u'_'l"°+ Jo _u -_l,o - -ou,o + _ = o.
_ Adv_ adv_ _ • _ s

Advz advz PG Visc

1 Hermann-F6ttinger-Institut, Technisehe Universit_t Berlin, 10623 Berlin, Germany
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FIGU RE 1. Profiles of mean strea.mwise velocity component (l_op) and shear stress

(bottom) at stations x/5 = -4, 3, 6.4, 12, 18.4, 26.4, 34.4, 42.4, 50.4, 61. The dashed

lines mark the border of the near wall zone defined to be 7% of the local duct height,
whereas the dash-dotted line corresponds to a distance of 70 wall units.

The choice of a meaningful wall distance y0, which defines the zone in which the

horizontal grid resolution is too coarse for LES to yield correct turbulent stresses,
is not obvious in the present case. For the inlet duct a definition of y0 in terms of

a characteristic distance based on wall units is appropriate. As the flow separates

along the inclined wall, this definition is no longer valid, and we have to find an

alternate characteristic length scale.

Inside the inlet duct we define the near-wall zone as the wall-parallel layer in a

distance of 70 wall units. For a developed turbulent channel flow, the peak values

of the turbulence intensities and turbulent production lie inside this zone.

Figure 1 reveals that the flow inside the expansion is asymmetric with separation
occurring on the inclined wall. Since the flow remains attached along the flat wall,

the distance of the near wall zone could in principle be chosen based on the local

value of Ur and a thickness of 70 wall units. However, it would be wrong to conclude

that this zone is of equal importance all along the flat wall. This can be seen from

the position of maximum shear stress Ih--fil,aax, which moves out of the near wall

zone into the core flow as the flow decelerates inside of the expansion (see Fig. 1).

Since a ur-based definition of a near-wall zone is ill-posed along the inclined wall,
we use an alternate definition which simply states that y0 corresponds to 7% of

the local duct height. This definition is equivalent to a distance of 70 wall units

along a considerable part of the flat wall (see Fig. 1). A significant part of the

duct area lies inside of the near-wall zones, which now account for 14% of the total

cross-section. This is a rather atypical property of the present flow, being entirely

due to the low Reynolds number. However, for the purpose of meaningful testing of



Near-wall model for diffuser LES 257

the wall-model LES approach, it is essential that the zone where the flow is being

modeled is thick enough to allow significant reduction of horizontal spacings. As

a guideline one can use the following rule: since the horizontal spacing defines the

size of the smallest turbulent scales to be resolved, the thickness of the near-wall

zone should correspond roughly to the average horizontal spacing.

Because of its atypical thickness, the near-wall zone carries considerable parts

of the total mass and momentum fluxes. For this reason we consider it useful to

separate the issue of defining the near-wall zone thickness Y0 from the question of

adequate numerical approximation of the flow inside this zone. The momentum bal-

ance reveals that, unlike turbulent channel flow where wall models have principally

been investigated, particularly strong contributions are provided by the mean flow

advection terms Adv_ and Advy (see Fig. 2). This means that the wall-normal spac-

ing of the mesh has to be reasonably fine to allow meaningful representation of mean

flow profiles U(y) and V(y) for y < y0. In case the near-wall solution is computed

on a separate grid, representation of the mean flow inside this zone is essentially a

2D-problem. Note that this is different from the approach of Cabot (1997) where

each grid cell in the x, z-plane has a locally refined mesh in the wall-normal direction

for computing instantaneous values of u(y) and v(y) in the near-wall layer.

For the flow under investigation, no drastic computational savings are achieved by

coarsening the mesh in the y-direction. Designing a mesh with the first off-wall line

at y+ = 10 is a fair compromise between mesh coarsening and proper representation

of the mean flow solution near the wall. This mesh design has consequences for the

model approach as outlined in section 2.2.

Figure 2 reveals the important role of mean flow advection for the near wall

momentum balance. Turbulent shear stress and viscous stress roughly balance

each other in the inlet duct. Near the rounded corner of the diffuser entrance,

the magnitude of mean flow advection terms and of the pressure gradient term is

substantially larger than in the rest of the domain, emphasizing the need for proper

wall-normal resolution in order to represent U and V. Along both walls, the term

related to the streamwise turbulence intensity, adv,, is of little significance except

for a small region near the inlet. In the diffuser rear section, along the flat wall both

mean momentum flux Advy and turbulent shear stress advu are equally important

whereas along the inclined wall Advy has little significance. Our conclusion from

this evaluation is the following: in certain regions of the diffuser flow, the near

wall momentum balance depends not only on proper prediction (modeling) of the

turbulent shear stress _-_, but also on accurate representation of the mean flow and

the associated vertical flux of horizontal momentum, U V[u 0.

2.2 Model prediction for shear stress in the near-wall region

A widely used model for the near-wall zone consists of prescribing values for

instantaneous wall stresses rw,xy and _'w,z_ based on information from the interior

and assuming that the logarithmic law of the wall is valid for the mean flow across

the mesh cell adjacent to the wall. This approach works under the assumption that

the last grid cell extends well into the logarithmic region, the first off-wall grid line

yN then being near y+ _ 70. In the control volume adjacent to the wall, the wall
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FIGURE 2. Terms of the near wall momentum balance evaluated along flat wall

(a) and inclined wall (b) of the diffuser. Line code: Adv= .... , adv= .... , Adv_
----- , adv_ _ , PG ...... , Visc ........ .
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normal derivative of the shear stress reduces to

o_-,_ _-,_1,, - r,,l, -uvlN + vdU/dyl,, + rsasl,, -
Oy Ay Ay

where the subscript N refers to the location of the first off-wall grid line. The
prediction of the resulting force in the streamwise momentum balance depends on

the ability of the simulation to capture the correct stresses rxyl_.
In cases where the wall-normal grid-spacing is much finer than the distance y0 --

for reasons outlined in the previous section -- specification of r_ only is likely to fail

because the grid-scale turbulence (together with SGS stresses) cannot provide the

correct stress rzy at the first off-wall grid line. (An example for this type of failure is

given in section 2.3.) Adapting a near-wall model to this specific situation requires

that additional "supporting shear stresses" are supplied inside the cells belonging to

the near-wall zone. Inside this region the wall-parallel spacings Ax mad Az will be

too coarse to support the correct near-wall turbulence structure, and as a result the
resolved stresses _ will be too low, or the near:wall turbulence structures will be

artificially amplified and distorted to provide the correct resolved stresses (Baggett,

this volume). There is evidence (Baggett et aL 1997, Jim_nez _z Moser, 1998) that
simple SGS models are not able to cope with this problem by supplying the missing

part to the total shear stress. This has to do with the fact that inside the near-wall

region the SGS model would have to carry the major part of the shear stress -- a

situation for which commonly used models are not designed.

Spalart et al. (1998) have proposed to modify the subgrid-scale eddy-viscosity in

such a way that the missing shear stress (in the mean sense) is supplied by adding

a RANS-type contribution to the SGS eddy viscosity inside the near-wall zone; see

also Baggett (this volume). Another way of achieving this goal is to add a body

force (possibly restricted to the wall-normal direction) to stimulate resolved-scale
motion inside the near-wall zone in order to achieve the desired distribution of mean

shear stress. This type of scheme has recently been applied successfully in numerical

experiments related to delaying boundary layer separation (Driller, 1998).

We see two advantages for the proposed treatment of the near-wall zone for the

flow under investigation: (i) a fine wall-normal resolution is desirable for accurate

representation of the mean flow and the associated momentum flux U V as outlined

in the previous section; (ii) the formulation avoids a sharp interface between near-
wall zone and "core" flow, thereby possibly improving the prediction for the core

flow since the "supporting stresses" can gradually fade out with increasing distance
from the wall.

A central question in this context is whether a good prediction of the near-wall

mean shear stress Y=_ is possible using a RANS formulation inside the near wall-
layer which uses the running time-average of the core flow from the LES solution (cf.

Lund et al., 1998) as a boundary condition away from the wall. For this purpose we

have started to compare the near-wall stress distribution from the fine-grid diffuser
LES with model predictions. As a preliminary step in this direction, we compared

the Johnson-King eddy viscosity model (abbreviated as JK model) since it is known
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FIGURE 3. Comparison of turbulent shear stress [_-6 + rsas[ from fine-grid LES

with prediction from the Johnson-King model utdU/dy .... and a linear

extrapolation _ma=Y/Yma= ........ at stations x/6 = --4.1, -1.0, 1.0, 6.3, 14.2, 26.4,
38.1, 45.6, 65.8 along flat (a) and inclined wall (b). The distance from the wall has

been normalized with the thickness Y0 of the near-wall zone.

to perform well in "mildly" separated flows. We use the formulation of Johnson &

Coakley (1990) as outlined in Cabot (1995). The essential idea of this model is to

use a blend of u_ and u,, = _ as the velocity scale for the eddy viscosity.
For the comparison we use the model constants A = 19 and t_ = 0.4. Figure 1 shows
that downstream of the inlet duct the peak of _'6-profiles lies outside of the near-wall

region, thus um could in principle be determined from the running time-average of
the core flow.

Figure 3 reveals that the JK model gives a satisfactory prediction of shear stresses

in a considerable fraction of the diffuser domain. The model performs well along the
entire flat wall where the flow remains attached. However, along the inclined wall

we find serious deficiencies of the model as soon as the flow enters the expansion. A
striking feature of the flow along the inclined wall is the drastic increase in turbulent

shear stress close to x/6 = 1. There, the JK model gives the right trend but
overpredicts maximum stresses by a factor of two. Ahead of the location of mean
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separation and early into the separated flow region, the JK model underpredicts
the stresses. It fails completely in the region where backflow occurs because of the

inability of an eddy-viscosity approach to cope with "countergradient" momentum

transfer, which occurs close to the wall inside of the separated flow region. There,

a simple linear extrapolation of the _--_-profile from the location ym of maximum

turbulent stress down to the wall is superior but can only be regarded as a rough

estimate for the shear stress in the near-wall region. Note that the near-wall stresses

are of less importance in the separated region since their magnitude is small when
compared to the maximum shear stress in the core flow.

This evaluation shows that the JK model has some potential for use in predict-

ing the near-wall shear stresses. Still, certain regions of the diffuser exhibit stress

distributions near the wall which require a more advanced RANS model. However,

before other models should be tested, it is desirable to find out whether specification

of the proper mean shear stress distribution near the wall is sufficient for the core

flow to behave as in the fine grid LES.

2.3 Inflow boundary conditions

One of the main findings of the original LES of the diffuser flow with resolved

near-wall regions is that proper prediction of the flow inside the expansion depends

crucially on the quality of the flow in the inlet duct. There exist two methods for

creating unsteady Dirichlet boundary conditions to be specified at the inlet plane of

a wall-model based LES of the diffuser: (i) extracting planes from an independent
channel simulation, which by itself uses a near-wall model and therefore matches the

diffuser grid at the inlet; (ii) interpolate available inflow from a fine-grid channel
flow database onto a coarser mesh.

Here we focus on the second approach primarily because we want to be as close

as possible to the conditions of the fine-grid LES which are in good agreement with

experiments. The underlying idea of this method is that, by using data from a finer

resolved case, the structure of the incoming "turbulence" is preserved over a consid-

erable distance downstream of the inlet plane since the flow does not immediately

feel the adverse effect of having a coarsened mesh.
To test how well this strategy would work in the diffuser, we interpolated the

available time series of instantaneous u, v, w-slices onto a mesh which was consider-

ably coarser in the y- and z-directions. The mean flow profile is well preserved, but

we find that omitting half the number of modes in the spanwise direction causes

a significant drop in the peak values of the turbulence intensity and shear stress

profiles. Ideally, the SGS-model should make up for the missing stresses, but a

posteriori tests show that it cannot do so.
We have used the filtered inflow database to simulate a short stretch of the inlet

duct using 64 × 40 × 64 cells. The streamwise spacing was either Ax = 0.06_ (Ax + =

30) as in the original fine grid LES or Ax = 0.2_ (Ax + = 100). We present results

from four cases, two for each grid consisting of a run without a wall-model and a
simulation with an instantaneous wall-stress boundary condition which guarantees

that the mean flow experiences the correct wall-stress corresponding to the pressure

drop of the fine-grid channel flow LES. In the latter cases, the instantaneous wall
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stress was constructed using the instantaneous horizontal velocity at the first off-

wall position (cf. Wu & Squires, 1998). The four cases are denoted CNM, CWM,
FNM, FWM with C, F denoting coarse and fine grids, respectively, and with NM,

WM denoting no model or wall model, respectively.

Figure 4 compares cp curves and the development of the mean flow profile shape.

All the simulations experienced an unnatural pressure drop close to the inflow plane,

which we contribute to changes in the mean profile shape and the associated mo-

mentum fluxes. Surprisingly, cases with the correct average wall stress experience

the largest drop for which we do not yet have an explanation. Case CWM is the only

one which -- after considerable readjustments -- reaches the correct pressure drop

corresponding to the prescribed wall stress. As a result of underprediction of the
wall-stress in case CNM, the pressure gradient is lower than the target value. Be-

cause the mean flow decelerates near the wall (which is caused by a deficit of shear

stress inside the near-wall layer), the core flow speeds up, leading to an increase

of the centerline to bulk velocity ratio. Figure 5 shows the corresponding profile

changes for case FWM. Coarse grid cases CWM and CNM show larger profile shape

deficits than cases FWM and FNM. The coarse (C) cases experience an additional

problem which has to do with the staggered variable configuration at the inlet plane:
since the inflow database was created with u extracted half of a fine-grid mesh cell

downstream of v and w, it is incorrect to feed these data into a domain which

has considerably coarser streamwise spacing. It should be investigated whether

this problem can be alleviated by invoking Taylor's hypothesis to shift u-slices to a
position which is consistent with the coarse mesh staggered variable configuration.

Our conclusion from this test is that for the present configuration supplying the

correct wall-stress is not sufficient in order to predict the mean flow profile with

the required accuracy. Additional modifications are required to guarantee that the

flow experiences the correct total turbulent shear stress inside the near-wall zone in

order to reproduce the correct flow inside the inlet duct. It is useless to attempt a

full diffuser simulation with a wall-model before this problem is solved.

3. Future plans

At this stage it is desirable to know whether the proposed model concept, i.e.

guaranteeing that the flow in the near-wall zone experiences the correct turbulent

shear stress in the time-averaged sense, is sufficient for the core flow to render the

correct results. For this purpose we plan a simulation where the exact average

stresses from the fine-grid diffuser LES are used as target values for the near-wall
zone of a coarse LES. Some details about the best way to prescribe or excite the

"supporting stresses" have to be sorted out first. If the outcome of this test is

satisfactory, we will proceed by coupling the LES with a RANS-based prediction
method for the near-wall shear stress distribution.
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On the feasibility of merging LES with RANS for
the near-wall region of attached turbulent flows

By Jeffrey S. Baggett

1. Motivation and objectives

The large number of grid points required in the near-wall region of attached tur-

bulent boundary layers is the chief obstacle to applying large eddy simulation (LES)

to many flows of engineering interest. Current subgrid scale models do not accu-

rately model the subgrid scale (SGS) Reynolds stresses (Jim6nez & Moser 1998).

Thus, if the LES is to include the near-wall region, the filter width has to be such

that most of the Reynolds stresses are carried by resolved motions. This requires the

filter width to scale as a fixed fraction of the local turbulent integral scales which
are proportional to the distance from the wall. Baggett, et al. (1997) calculated

that the number of grid points required for accurate LES of a turbulent boundary

layer scales as N _ Re2r.

Several approaches have been proposed to alleviate these near-wall resolution

requirements, and nearly all of them fall into one of two categories. The first,

and most common, approach is to replace the no-slip boundary condition with an

approximate boundary condition. Usually, the wall stresses are modeled and the

transpiration velocity is set to zero. This approach was introduced by Schumann,

who assumed the streamwise wall stress was in phase with the streamwise velocity

at the first off-wall grid point (1975). Improvements to the basic idea of Schumann,

that the wall stress is a simple deterministic function of the velocity at the first wall

point, have been made (GrStzbach 1987, Piomelli e_ al. 1989, Hoffmann & Benocci

1995). More recently, a two-layer approach has been employed in which the three-
dimensional unsteady boundary layer equations are integrated on an embedded

near-wall grid to estimate the wall stresses (Balaras et al. 1996, Cabot 1995, 1996,

1997). There have also been recent attempts to provide boundary conditions which

specify the velocities on some plane parallel to the wall, but these have met with

limited success (Baggett 1997, Jim_nez & Vasco 1998, Nicoud et al. 1998).

In the second approach to wall modeling, which we explore in this report, the

no-slip boundary condition is applied at the wall, requiring the wall-normal filter
width to be refined near the wall. However, the filter width in the directions parallel

to the wall is not refined so that the near-wall structures which carry the Reynolds

stresses must be accounted for by the SGS model. A simple approach is to sup-

plement the SGS model with a RANS eddy viscosity model in the vicinity of the

wall. This idea was originally proposed by Schumann (1975) who used a mixing

length eddy viscosity to supplement the Smagorinsky eddy viscosity in the near-

wall region. Moin & Kim (1982) and Sullivan et al. (1994) have explored similar

approaches. More recently, Spalart et al. (1998) have advocated the use of the one-
equation Spalart-Allmaras eddy viscosity model as an SGS model. The length scale
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in the destruction term is modified so that the eddy viscosity crosses over from the

usual Spalart-Allmaras RANS eddy viscosity near the wall to a proposed LES eddy

viscosity, similar to that of Smagorinsky, away from the wall. Spalart, et al. call

this approach "Detached-Eddy Simulation" (DES) since it is intended to be used

in regions, such as separated regions, in which only eddies that are detached from

the surface must be resolved for accurate LES of the flow away from the wall.
In this report, we explore the feasibility of using RANS eddy viscosity models to

supplement the SGS model in the near-wall region. This exploration is motivated

by Durbin's development of the v2/eddy viscosity RANS model which has been

shown to give good near-wall predictions in a variety of flows (Durbin 1991, 1995).
Unfortunately, as we shall see below, a direct crossover to RANS in the near-wall

region is unlikely to be successful in attached turbulent boundary layers. In the next

section our numerical experiments in turbulent channel flow are described. In §2.1
two different techniques for adding a RANS eddy viscosity model to a conventional

LES eddy viscosity model in the near-wall region are described. In §2.2 we argue
that the failure of such models is due to the formation of an artificial near-wall

turbulent cycle with strearnwise streaks and vortices occurring at scales dictated

by the grid resolution and not by near-wall physics. The artificial cycle is worth

investigating because it appears to explain the overly large streamwise velocity

fluctuations in the near-wall region as well as the overly large additive logarithmic
law constants frequently observed in large eddy simulations of turbulent boundary

layers and channel flows. Finally, in §2.3 we mention some other wall modeling

approaches being explored at CTR and end with some concluding remarks in §3.

2. Accomplishments

Turbulent channel flow simulations are a good test bed for studying crossovers

between LES and RANS since the near-wall dynamics are similar to those in many

flows of engineering interest. The Navier-Stokes equations are discretized with

second order finite differences in the spatial dimensions and third order Runge-
Kutta/Crank Nicolson in time. The subgrid scale model is the Smagorinsky model

with the coefficient determined by the plane-averaged dynamic procedure (Ger-
mano et al. 1991). Unless otherwise stated, all quantities are nondimensionalized

by the friction velocity, u_., and channel half-height, h, with the usual skin-friction

Reynolds number being defined as Re_ = u_h/v.

The computational domain used for all simulations is [0, 2_r] x [-1,1] x [0, 27r/3]

with the coordinates representing the streamwise, wall-normal, and spanwise di-

rections, respectively (denoted by x, y, and z below). The spanwise width of the

domain is probably inadequate to correctly capture the large eddies which shape
the wake region near the channel center, but this is of little consequence for the

present study since we are primarily interested in the near-wall region. The grid

used has 32 uniformly spaced points in each of the periodic horizontal directions

and anywhere from 69 to 101 points in a hyperbolic tangent stretched mesh for the

wall-normal direction. The stretching is determined so that the first wall-normal

grid point is located within 2 wall units (v/u,) of the wall. In all cases, the mean

streamwise pressure gradient is equal to the wall stress, that is, -OP/Oz = r_o = 1.
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_.1 Blending SGS and RANS eddy viscosity models

Two different approaches for incorporating a RANS eddy viscosity in the near-

wall region are tested here, the first is designated Model 1:

1
ni- = --",[S,i- (I

and, Model 2:

rij - -_rkk6ij = --[(1 -- f(y))vt + f(y)vR]Sij,

(1)

where rij is the usual SGS stress tensor, vt is the dynamic Smagorinsky eddy vis-

cosity, and vR is the eddy viscosity furnished by an external RANS simulation,

which in this case was Durbin's v2f model. The (-) denotes a plane average. The

"blending" function f(y) facilitates merging the RANS and LES descriptions of the
flow. In the case of the second model, f = 0 corresponds to the original LES model

and f = 1 corresponds to a fully RANS model. Generally speaking, f should be a

function of the resolution which might be parameterized by the ratio A/L_, where

A is a measure of the filter width and L_ is an estimate of the turbulent integral

dissipation length. However, in the numerical experiments conducted here, f was

estimated a priori from a mean-flow momentum balance as will be discussed further
below.

Model 1 is essentially the model of Schumann (1975) in which the near-wall

mixing length eddy viscosity has been replaced with a more general eddy viscosity

calculated by the v2f model. The RANS eddy viscosity, vR, appears only with the

plane averaged resolved strain rate and affects only the mean flow directly. Model

2 is similar to the DES approach (Spalart et al. 1998) in which the eddy viscosity

parameterizes SGS turbulence away from the wall and all turbulence near the wall.

Although, in the DES approach the blending between the RANS and LES regions

is accomplished by modifying the dissipation length scale in the transport equation
for the eddy viscosity instead of using an explicit blending function f.

Both models were tested in LES of turbulent channel flow at Rer = 1000 on a

32 x 69 x 32 mesh. The blending function was estimated through a mean momentum

balance using Eqs. (1) and (2) for the subgrid scale models, the resolved stress

distribution from an LES simulation with no RANS correction, and the target

mean velocity profile from a separate v2f RANS calculation. The profiles of f are

shown in Fig. 1. Both models produced somewhat improved mean flow results in the
sense that the additive constant in the log-law was approximately correct (instead

of being over-estimated by nearly a factor of two without any RANS correction).

However, other details of the flow were completely wrong. Model 1 yielded near-wall

streamwise velocity fluctuations that were much too high. Model 2 did a better job

of estimating the magnitude of the near-wall fluctuating velocities, but the peaks

were too far from the wall, and in general the viscous and buffer regions were much

too thick. For Model 2 the blending function f peaked at a value of approximately
0.25 in the buffer region. Higher values of f (closer to f = 1 corresponding to all

(2)
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FIGURE l. Profiles of the blending functions f used for Model 1 (solid line) and

Model 2 (dashed line) at Rer = 1000. The v2f eddy viscosity is shown as the dotted
line.

RANS eddy viscosity) lowered the additive constant in the logarithmic region and
further thickened the buffer region.

Closer inspection of the results showed that in both cases the near-wall region
contained streamwise vortices and streaks whose horizontal dimensions were much

too large. For instance, the streamwise streaks were observed to have a mean

spanwise spacing of nearly 260 wall units instead of the physical spacing of 100 wall

units. The persistence of this artificial near-wall turbulent cycle makes it unlikely

that simple crossovers from LES to RANS models in the near-wall region can be

used for LES of turbulent boundary layers as will be discussed in the next section.

_._ Artificial near-waU turbulence

The near-wall turbulence cannot be completely parameterized by a RANS model

because the near-wall region would be effectively laminar and there would be no
fluctuating velocities to provide boundary conditions to the turbulent logarithmic

region of the outer LES. If the strength of the near-wall PANS contribution is re-

duced, then only resolved Reynolds stress or viscous stress can balance the difference

between the pressure gradient and the contribution from the RANS eddy viscosity.

Of course, instabilities ensure the existence of turbulent motions unless the effective

Reynolds number, due to the addition of RANS eddy viscosity, is very low. How-

ever, as we shall see below, the turbulent motions supported by the simulation are
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FIGURE 2. Spanwise correlation of streamwise velocity at y+ = 10. There a 4 solid

curves corresponding to Re_. = 1000, 2000, 4000 and Re_ = 1000 with Model 1 in

§2.1. The dotted line corresponds to Re_ = 1000 with Model 2 in §2.2. Note the

slightly larger streak spacing. The dashed line is Re_. = 200 and the streak spacing
is A+ ,,_ 105.

artificial.

The no-slip boundary condition produces a near-wall viscous region in which the

mean pressure gradient is balanced only by mean viscous stress so that O(U)/Oy =

Re_ at the wall. The core flow is fully turbulent outside the buffer region so that

mean shear scales approximately like 1/y. In the intermediate buffer region the mean

shear has to be reduced by wall-normal streamwise momentum transport, i.e. mean

Reynolds stress, to couple the core flow to the wall. In the absence of an SGS model

that carries a significant amount of the Reynolds stresses, only resolved motions can
contribute the necessary Reynolds stresses. In simulations with a no-slip boundary

condition and coarse horizontal resolution, with or without a RANS model contri-

bution, the near-wall region develops an artificial self-sustaining turbulent process

consisting of streamwise vortices and streaks with horizontal dimensions dictated

by the discretization (the effective horizontal filter width) to carry the necessary

Reynolds stresses.

The existence of the overly large streamwise streaks and vortices was confirmed

by flow visualizations. Further evidence is offered in Fig. 1 where the spanwise

correlation of the streamwise velocity is plotted for several different simulations at
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y+ = 10. The location of the first minimum in the spanwise correlation is a measure

of the mean distance between the centers of adjacent high and low speed streaks.
For Reynolds numbers greater than at least Re_ = 1000, without the addition of

a near-wall RANS model, the streak spacing is independent of the Reynolds num-
ber. Visualizations of the near-wall streamwise vorticity showed that the near-wall

streamwise vortices had the smallest possible spanwise extent that could be sup-
ported on the grid; that is, they were essentially always two grid points wide. When

Model 1 was used to blend in a near-wall RANS model, the near-wall turbulent cy-
cle was essentially the same as with no RANS model, only slightly weaker since

the wall-normal shear is slightly reduced by the additional mean forcing term. The

dotted line in Fig. 1 shows the effect of Model 2 on the spanwise streak spacing.
The net effect of Model 2 is to increase the overall viscosity in the neighborhood of
the wall, thus decreasing the effective Reynolds number of the artificial near-wall

turbulence, leading to larger streaks and a mean-flow profile corresponding to a
lower Reynolds number simulation.

As the Reynolds number increases, the viscous stress contribution decreases and

the combined SGS and resolved Reynolds stresses must peak closer to the wall.

However, since the near-wall streamwise vortices and streaks are constrained to

have horizontal dimensions dictated by the grid, their wall-normal to horizontal

aspect ratio must increase as the whole process moves closer to the wall. The

resulting artificial near-wall turbulence is less effective at providing wall-normal

momentum transport as is demonstrated in Fig. 2 where the correlation coefficient of

the streamwise and wall-normal velocity fluctuations is plotted for several Reynolds

numbers. Since the correlation between u' and v' is decreasing as the Reynolds
number increases, the mean shear increases to increase the viscous stress. Some of

this mean shear is rotated towards the wall by the streamwise vortices, resulting

in the overly large peak in u' and an increased value of the mean Reynolds stress
-<u'v'). The correlation curves in Fig. 2 also show that the correlation increases
adjacent to the wall for all but the Re_ = 200 simulation, which serves as another

indication of the incorrect physics. Moreover, the correlation curve (the dotted line

in Fig. 2) for the simulation at Re_ = 1000 with Model 2 shows higher correlation
indicating a lower effective Reynolds number.

Adding in a RANS eddy viscosity through an SGS model like Model 1 can only
help the situation slightly. Since the RANS eddy viscosity only affects the mean

flow, the near-wall region will still have the artificial near-wall turbulence, which

remains effectively unaltered. While it may be possible to find a blending func-

tion f which produces a reasonable mean-flow profile with Model 1 in spite of the

artificial near-wall turbulence, it seems unlikely that f could be found a priori to

produce a predictive representation of the near-wall region. In the other approach to
blending in a RANS eddy viscosity, as in Model 2 the effect is to lower the effective

Reynolds number of the artificial near-wall turbulence resulting in larger streamwise
vortices and streaks and mean flow profiles corresponding to lower Reynolds num-

bers. Again, it might be possible to choose a blending function f which produces a

mean flow profile with the right gross characteristics, but it seems unlikely that this
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FIGURE 3. Correlation coefficient of the wall-normal and streamwise velocity

fluctuations. The three solid lines, in order of decreasing correlation, correspond

to LES with no near-wall RANS model at Re_ = 1000,2000,4000, respectively.

The dashed line is Re_ = 200. The dash-dotted line and the dotted line are at

Re_ = 1000 with Models 1 and 2,respectively.

can be done in an a priori manner. The overall trend of increasing near-wall eddy

viscosity is to increase the dimensions of the near-wall turbulent cycle which should

be accounted for entirely by the subgrid scale motions at high Reynolds numbers.

The only other alternative is to increase the near-wall RANS eddy viscosity until

the flow is effectively "laminar" there, but this will result in an artificial transition

region between the laminar-like near-wall flow and the turbulent core flow.

The persistence of this artificial near-wall turbulence explains some common prob-

lems encountered in LES of attached turbulent boundary layers. The overly large

peak in u * and the overly high value of the additive constant in the logarithmic

region are both determined by the inefficient wall-normal transport of streamwise

momentum by the distorted near-wall turbulence. Interestingly, without any RANS

correction near the wall, the value of additive constant in the logarithmic region

increases linearly with the Reynolds number; see Fig. 4. Increasing the near-wall

eddy viscosity only compounds the problem.

2.3 Other wall modeling work at CTR

Unless vastly improved, fully anisotropic SGS models are found for the near-

wall region, attempts to enforce the no-slip boundary condition are likely to fail
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FIGURE 4. Value of the log-region intercept (determined from the mean velocity

at 150 wall units) A in U = log(y+)/_ + A as a function of Reynolds number

for LES simulations without any near-wall RANS corrections. The squares indicate

simulations with 101 wall-normal points and the circles correspond to 69 wall-normal

points. The dashed line is the least squares fit of the data. For Re_ = 200, we have
A _ 5.4.

unless the LES has resolution similar to that of a direct numerical simulation in

the near-wall region. This is because the outer flow is coupled to the wall through

the buffer region which develops an artificial near-wall turbulent cycle to exchange

streamwise momentum with the wall. The source of the problem is the no-slip
boundary condition which can only be "seen" by a properly resolved inner flow.

Usually this is addressed by providing approximate wall stress boundary conditions
(with zero transpiration velocity).

Most of the current wall stress models assume that the first off-wall grid point

of the LES is in the logarithmic region. Thus the first grid point has to be located

at some minimum distance from the wall which depends on the Reynolds number.
This problem can be removed, thus allowing near-wall grid refinement without a

no-slip boundary condition, by neglecting the viscosity in the outer LES equations
and integrating them down to and even on the wall. The horizontal velocities

are allowed to slip on the wall and the zero transpiration condition is maintained

so that the turbulent length scales are set by the blocking effect of the wall. The

inviscid LES equations at the wall require the surface values of the SGS stress tensor,
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which are provided by an auxiliary model that must incorporate the effects of the

unresolved near-wall turbulence (and hence, the effects of viscosity). The inviscid
approximation is only expected to be valid at high Reynolds numbers where the

wall-normal extent of the viscous and buffer regions is very small compared to the

LES region of interest. In separated regions, where the local Reynolds numbers

are relatively low, it may be necessary to include viscous terms so that the no-slip
boundary condition can be applied. The issue of changing the boundary conditions
in this zonal manner still must be addressed.

We are currently developing this framework in LES of turbulent channel flow

and in the separated boundary layer computations reported by Cabot elsewhere

in this volume. The surface values of the SGS stress tensor are given by integrat-

ing the three-dimensional unsteady boundary layer equations, with a mixing length

eddy viscosity, which are driven by the wall slip velocities as in the two-layer wall-

modeling approach mentioned in the introduction. Efforts are also underway to

replace the wall-damped mixing length eddy viscosity in the boundary layer equa-

tions with a model similar to Durbin's v2f model.

3. Future plans

The results presented in this report indicate that a direct blending of RANS and
LES eddy viscosities as a way of merging RANS and LES regions is unlikely to

work in near-wall regions where it is important to have good boundary conditions

for not only the mean flow, but also the fluctuating velocities. This is because

the outer flow is coupled to the wall through a physically incorrect buffer region.

However, merging LES and RANS may certainly be possible in flows where the

details of the near-wall fluctuations are not important for the LES of the outer flow
as is envisioned by Spalart e$ al. (1998) in their DES approach. However, there is

still the issue of generating high Reynolds number turbulent inflow conditions at
the entrance to the separated region for which no satisfactory solution is presently
available.

It seems that the no-slip boundary condition must be abandoned for high Reynolds

number LES. Instead, as mentioned in §2.3, we are currently testing the inviscid LES
core flow approximation with estimates of the surface SGS stresses coming from the

integration of separate three-dimensional unsteady boundary layer equations that

represent the near-wall region.

Two other directions with regards to the near-wall sublayer equations are also

being explored. The first direction is to replace the wall-damped mixing length eddy
viscosity in the three-dimensional near-wall boundary layer equations with the more

general eddy viscosity generated by a coupled v2f RANS simulation (Durbin 1991).
In the second direction under investigation, the three-dimensional boundary layer

equations are reduced to a simplified set of one-dimensional ordinary differential

equations in the wall-normal direction at each location where a wall-stress estimate

is required (W. C. Reynolds, private communication, 1998).
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Large-eddy simulation of a
separated boundary layer

By W. Cabot

1. Motivation and objectives

In tests of wall models on a very coarse grid in the flow behind a backward-facing

step (Cabot 1996), simple models in which wall stresses were modeled by assuming

a local log law gave good results in attached regions but underpredicted the mag-

nitude of the negative skin friction in the primary separated region, compared with

well resolved large-eddy simulation (LES) results. More complicated thin boundary

layer equations were able to give better overall results, but the negative skin fric-

tion predicted by this model was observed to be somewhat too large in magnitude.
Because of the very coarse resolution, no model was able (or really expected) to cap-

ture secondary recirculation features in the corner. Subsequent tests (Cabot 1996,

1997) were ambiguous as to cause of this behavior, noting that the near-wall eddy

viscosity model (a mixing length prescription with a wall damping function) was

ill suited for separated flow and that the standard subgrid-scale (SGS) model used

was inaccurate for coarsely gridded near-wall meshes. The severe corner geometry

was also thought to be complicating the interpretation of the results. To provide

a clearer test case for wall modeling in complex, separated flow without such geo-

metrical complications, a new test case was chosen featuring mild separation on a
flat plate due to an induced adverse pressure gradient, for which Na & Moin (1998)

had performed a direct numerical simulation (DNS) at a low Reynolds number.

The goal of recent work has been to perform a less expensive LES of this flow with

a well resolved wall for use as a test case for evaluating the performance of wall

models with coarsely resolved walls (Cabot 1997). Initially, the same low Reynolds
number case as the DNS was to be simulated to validate the LES with well resolved

walls and then used to perform tests of LES with coarsely resolved walls using wall

models. Further, with the general shift to parallel supercomputing architectures

and the diminishing availability of serial time, the separated boundary layer codes

needed to be converted to a portable parallel framework (MPI) and validated with
results from the extant serial vector code.

The status of the separated boundary layer simulations is given in §2 and the
directions for future simulations and wall model tests therein are given in §3.

2. Accomplishments

The flow configuration for the separated boundary layer simulation is described

in detail by Na 8, Moin (1998): A flow field from Spalart's (1988) DNS boundary

layer simulation is perturbed and interpolated onto the inflow plane of flow over

a flat plate. Strong sucking is introduced along the top zero-vorticity boundary

followed by strong blowing, which induces a strong adverse pressure gradient in the
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middle of the computational domain. The flow undergoes mild separation along
the bottom wall, then partially recovers before it exits the domain using convective

outflow boundary conditions. The Reynolds number at the inflow plane is about
300 based on momentum thickness and 500 based on displacement thickness 6*.

The computational domain is 357 x 64 × 50 in units of _* in the streamwise, wall-
normal, and spanwise directions, respectively. The grid is uniform in the streamwise

and spanwise directions and stretched with hyperbolic tangent profiles in the wall-
normal direction.

_.1 Codes

Serial Code. The second-order staggered central finite difference serial code used

by Na & Moin (1998) was modified to include the dynamic SGS model, both in

its standard form (Germano et al. 1991, Lilly 1992) and in a "mixed" form (Zang
e_ al. 1993, Vreman et al. 1994). In the former, the trace-free (*) part of residual
stress is modeled as a purely dissipative term:

(U'-U -- _')* _ -2vtS, (1)

where (-) denotes the filter, vt is the eddy viscosity, and S is the strain tensor; in

the latter, the model also includes a self-similar part:

(uu - u u)* ",_ (u u - u u)* - 2vt-S . (2)

Further, the option to use two forms of the eddy viscosity was implemented: either
a "Smagorinsky" (1963)form,

vt = C_2(2S : S) I/2 , (3)
u

where A is the effective filter width, or a "Kolmogorov" form (Carati et al. 1995),

vt=C_/S_ 1/3 , (4)

where the dissipation rate e is assumed to be constant with filter width. In most

runs the Kolmogorov form was used since it is less expensive to use with the dynamic

procedure and gives very similar results compared with the Smagorinsky form; the
Kolmogorov form was used for all of the results reported later in this section.

The serial LES code originally used second-order test filters and, in the case of
the mixed model, second-order grid filters as well; these are of the form

= u + (h2/6)62u, (5)

where h is the filter half-width and $2 is the discrete second derivative. Second-order

filters used with the standard dynamic procedure were found to generate large, spu-

rious eddy viscosities in the regions below the vigorous top-wall transpiration, which
often led to unstable growth of a spurious velocity signal there. This occurs because
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the second-order filter produces residuals for low-order, large-scale variations in the

mean flow that have nothing to do with turbulence. For example, if u in Eq. (5)

has a linear variation in x, then u_'fi- _'_ = (h_/6)(du/dx) _. The mixed model does

not suffer as much from this defect, because residuals up to fourth order are treated

by the self-similar term in the model, removing them from the dissipative term in

the dynamic procedure. For tests with the standard dynamic procedure, it was
necessary to implement fourth-order test filters (Vasilyev et al. 1998) of the form

= u - (h4/16)_4u, (6)

which also greatly reduces spurious eddy viscosity generation although it is not

necessarily consistent for use in second-order codes.

Parallel Code 1. The previous serial LES code was ported to a MPI version

(with M. Fatica), which allows it to run on a variety of parallel machines with little
modification. Along the way, the solver was updated to enforce continuity at each

substep in the time advancement scheme rather than at the end of the full time

step only, which increases the accuracy of the solver. Further, a bug was found

(and corrected) in the original serial code's inflow interpolation scheme that was

adding spurious noise to the inflow signal. The computational domain is chunked

only in the wall-normal direction into planar slabs, which allows plane filtering to

be performed in the standard dynamic procedure without any additional processor
communication. The dynamic mixed SGS model has not been implemented in this

version of the code. This parallel LES code has been run on a SGI Origin 2000 and

Cray T3Es, and it has been validated by a detailed comparison with results from
the serial code.

Parallel Code 2. A newer, faster LES boundary layer code has been supplied

to us by C. Pierce (personal communication), which was written from the ground

up in Fortran 90 and MPI, also using second-order finite differencing and a stan-
dard implementation of the dynamic procedure for the SGS model. One significant

structural difference from the previous code is that the domain is chunked both in

the wall-normal and streamwise directions for greater efficiency in communication.

The appropriate boundary conditions for the separated boundary layer case have

been implemented, as well as fourth-order test filtering for the dynamic procedure.

The inflow conditions in this code are interpolated in a different way than in Na

& Moin's (1998) code, which leads to some differences in the results; the issue of

setting up consistent inflow conditions will be discussed later in more detail. This
code is currently being tested on an Origin 2000 and will be ported to a T3E as

well. Because Pierce's code is cleaner and appears to be appreciably faster than the

parallel version based on Na & Moin's code, it will probably be used as the primary
simulation code in future work.

_._ Preliminary result8

The LES test cases use the same domain size and boundary conditions as Na

& Moin's (1998) DNS case except that inflow conditions are interpolated onto a

coarser grid. Two LES grids were chosen: Grid I resolves the viscous region along
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the lower wall, using the same stretching as Na & Moin in the wall-normal direction

with half as many grid points; Grid _ does not resolve the wall, using an even
coarser, nearly uniform grid. (The grid cannot be coarsened very much near the

top boundary without developing numerical instabilities in the laminar blowing

region.) Grid 1 uses 7 times fewer computational cells than the DNS: 256 x 108 x

64 computational cells in the streamwise, wall-normal, and spanwise directions,

respectively, as compared to 512 x 192 x 128 used in the DNS. The time step based

on the CFL criterion is about 4 times greater for this LES case compared to the

DNS. Grid 2 uses 160 x 80 × 48 computational cells, or about 20 times fewer grid
points than the DNS with time steps about 25 times greater. Near the inlet Grid 1

has about 10 points in the viscous sublayer (y+ < 10) and 45 points in the whole

boundary layer, while Grid 2 has about 10 points in the boundary layer with the

viscous sublayer completely unresolved. Simulations were performed on these grids
with and without the SGS model active to assess its effect. No wall model was used

in these initial tests with Grid 2, such that the wall stress was generally much too
lOW.

Grid 1. When no SGS model is active, the turbulence in the inlet section is more
intense than in the DNS. Separation occurs later than in the DNS, and the near-wall

pressure is too high in the separated region, as seen in Fig. 1 for the wall stress and
pressure coefficient. When the SGS model is active, the major effect is a dramatic

drop in the wall-normal and spanwise turbulence intensities in the inlet section, as

illustrated in Fig. 2 for the wall-normal rms velocity at a height of about half of

the inlet boundary thickness. The boundary layer thickens too rapidly upstream

of separation, and separation tends to occur early, especially in the case using the

dynamic mixed SGS model. The skin friction is seen to drop much too rapidly
in the whole inlet section in Fig. 1. Visualizations confirm that the flow in fact

undergoes partial relaminarization, then undergoes a transition of sorts back to a

turbulent state just in front of the separated region. Reverse flow along the wall
appears to travel quite far up the laminar patches ahead of the main separation

bubble. This occurs for all SGS models, even though in the mean separation point
for the standard dynamic SGS model case appears to be in good agreement with

the DNS position.

Grid _. The relaminarization of the inflow turbulence is less severe in the case

with the unresolved wall although it still occurs to some extent. In Fig. 3 the

near-wall streamwise velocity is shown in lieu of the wall stress, which cannot be

determined reliably on the coarse wail-normal grid. Results for the standard dy-

namic SGS model are shown using Parallel Codes 1 and 2. Differences in results

are seen in the inlet region due to different interpolation schemes of the inflow data

(the former using spatial interpolation, the latter using spatial and temporal inter-

polation). The near-wall velocity stays in fair agreement with the DNS in the inlet

region with Code 1 slightly slower and Code 2 showing some excess acceleration.
At the outlet, the flow is much faster than in the DNS, which is expected, since the

coarse grid cannot predict enough drag on the wall. The fair agreement of the near-

wall flow speed in the inlet region is somewhat fortuitous, arising from a balance of
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LES with a well resolved wall (Grid 1): -- Na _ Moin's (1998) DNS (serial

code); -- Grid 1 with no SGS model (serial code); .... LES with standard

dynamic SGS model (parallel code 1); ----- LES with dynamic mixed SGS model

(parallel code 2). The pressure coefficient is set relative to the pressure at x/8* = 50.
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FIGURE 3. (a) The wall stress and (b) the pressure coefficient from the DNS

and LES with an unresolved wall (Grid 2): -- Na & Moin's (1998) DNS (serial

code); _ Grid 2 with no SGS model (parallel code 1); LES with standard

dynamic SGS model using .... parallel code 1 and .... parallel code 2. The

pressure coefficient is set relative to the pressure at x/_* = 50.

too low drag with the opposing effect seen on Grid 1 due to the relaminarization of
the inflow turbulence.

The reattachment point appears to be rather insensitive to the SGS model and

grid, being set for the most part by the strong blowing peak from the top boundary.

When no model is active, the reattachment occurs slightly early, while it occurs

at the same location as in DNS when the SGS model is active. While mean flow

quantities are not very sensitive to the SGS model downstream of reattachment,

the turbulence intensities are much more sensitive, probably reflecting the very

different upstream conditions that develop in the inlet region. With no SGS model,

the turbulence intensities, that were comparable or higher than DNS values in the

inlet region, are lower in the exit region. The reverse is true when an SGS model

is active (cf. Fig. 2). Obviously more consistent inflow conditions need to be set up

in the different cases to facilitate meaningful comparisons of overall flow statistics.



LES of separated boundary layer 285

Calculated flow fields exhibit numerical oscillations for all grids, especially in the

wall-normal velocity component near the reattachment point. These oscillations are
especially pronounced in Grid 2, which may require some refinement in this region
in future simulations to reduce this effect. It is not known if these oscillations

are responsible for the pronounced peak near the reattachment point in near-wall

velocity and pressure seen in Fig. 3 or if this is due to other factors such as the

underprediction of wall stress or shear layer stress. Simulations with wall models

will help answer this question.

3. Future plans

3.1 LES

The inflow generation technique described by Lund et al. (1998) will be used to

provide consistent conditions at the inlet for the different separated boundary layer

cases. In this scheme, the same numerical scheme, grid, time step, SGS model, and
wall model to be used in the separated boundary layer simulation are used in a

zero pressure gradient flat plate simulation in which the inflow data is generated by

rescaling a plane in the flow near the outlet (but far enough away from the outlet

not to be seriously contaminated by the convective outflow condition). After the

inflow simulation has reached a statistical steady state, a history of the flow field at a

plane in the middle of the numerical domain with the desired momentum thickness

will be recorded and be used as the inlet boundary condition in the separated

boundary layer simulation. Initial tests with this scheme successfully remove the

strong transients in the inlet section evident with the old scheme. Because these

new inflow conditions will necessarily differ to some extent from the original DNS

by Na & Moin (1998), it may still be difficult to get a very quantitative comparison
between LES and DNS.

In the first series of simulations with the new inflow conditions, the same Reynolds

number as in the DNS will be used, mostly to validate the performance of the LES.

The dynamic mixed SGS model will also be implemented in the parallel codes for

comparison. Later it may prove useful to perform LES of the separated boundary

layer with and without wall models at much higher Reynolds numbers, where both
the SGS and the wall modeling are expected to perform better.

Wall models will be used to supply wall stresses to the LES with unresolved

walls. The first set of tests will involve an approach like that used in simulations

of flow over a backward-facing step (Cabot 1996). Solutions of simple ODEs or

more expensive PDEs based on thin boundary layer equations are computed on a

separate, refined near-wall grid and used to predict the wall stress when matched

to outer LES flow conditions; the latter approach has been found to give reasonable
mean values of wall stress even in separated regions where the equations are known

to be invalid. We then intend to implement the more sophisticated v2f RANS

model (Durbin 1991) in the refined near-wall region. Ultimately we will blend it
smoothly into the LES's SGS model throughout the near-wall region using a single

grid refined in the wall-normal direction (Shut et al. 1998; also see discussion by

Baggett in this volume). Also note that because the inflow generation calculations
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must use the same wall models as the main calculation, this will also provide an

additional test of wall modeling in a zero pressure gradient boundary layer.

3.2 Wall modeling issues

A number of outstanding issues concerning the proper way(s) of simulating near-

wall regions remain to be resolved, and we will attempt to address many of these
issues in future work.

As demonstrated by Baggett et al. (1997), a proper LES must resolve all the large
energy-containing scales in the flow, which, however, become very small relative

to outer scales near walls both in the wall-normal and tangential directions. An
example of a proper (but more expensive) LES is that by Kravchenko & Moin

(1998), which used a zonal mesh refined in all directions near the wall. It is more

usual in LES of wall-bounded flow to use fine resolution only in the wall-normal

direction near walls in conjunction with SGS model based on isotropy and self-
similarity in the inertial range (usually modified with a wall damping function or the

dynamic procedure to get the right asymptotic behavior); such models are not well

suited for the near-wall region because the flow is highly anisotropic and the energy-
containing scales in the horizontal directions are not resolved. The flow may be

better described by a RANS solution near the walls, which is motivating the search

for ways to meld RANS and LES descriptions in the near-wall region (cf. Baggett
in this volume). Most RANS models still require special near-wall treatment in

the form of wall damping functions. The wall's blocking effect is handled more

physically in Durbin's (1991) v2f model without the aid of damping functions, but

the model is more complex, and it will be a challenge to incorporate it in LES.

Another problem with most RANS models and thin boundary layer equations is

that they rely on an eddy viscosity parameterization of the Reynolds stress, which

is not valid in separated regions where turbulence and Reynolds stress is, to a large

extent, convected rather than produced (Leef aL 1997). While this suggests that

transport equations for Reynolds stresses are required, these are currently felt to

be prohibitively expensive. Other options may prove to be more economical, e.g.,
resolving separated regions (since structures there are largely laminar, albeit small

in scale), or applying special scaling or modeling relations in separated regions based
on local flow criteria.

Although one can attempt to avoid simulating the near-wall region altogether by
placing the numerical boundaries at off-wall locations, it is has proven very difficult

to specify accurate enough boundary conditions to avoid generating spurious off-

wall boundary layers and large pressure fluctuations (cf. Baggett 1997; Jim6nez &

Vasco 1998; Nicoud et aL 1998), and this approach will probably not be pursued
in this flow.

On meshes (or more correctly, for fil_ers) that are very coarse in the wall-normal

direction near the wall, the issue of defining meaningful filters normal to the wall
and consistent wall boundary conditions remains unsettled. This issue is skirted

in LES with well resolved walls in which the filter is assumed to be comparable to
the grid spacing, since filtering in the wall-normal direction near the wall has little

effect. It would be worthwhile to consider performing LES and a priori DNS tests on
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refined grids but with very broad near-wall filters in order to better understand the

effects of near-wall filtering, in particular whether supplemental stresses need to be

supplied only at the wall or, as we expect, throughout the boundary layer. Another

closely related problem is defining consistent boundary conditions for the outer flow.

Because there is no specific spatial information within a given filter width near the

wall, one has virtually no wall information for filters much coarser than the viscous

sublayer or the buffer region in a boundary layer, and hence both slip conditions

and locally permeable conditions are admissible -- and perhaps necessary for an
accurate description.
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Numerical study of a channel
flow with variable properties

By F. C. Nicoud

1. Motivation and objectives

In many industrial devices such as heat exchangers, piston engines, or propul-

sion systems strong temperature gradients arise in the near wall region even if the

characteristic Mach number is close to zero. A strong coupling exists between mo-

mentum and energy equations caused by variations in the fluid properties, and the

classical wall models for incompressible flows are not appropriate.

In the 1950's through the mid 1960's, many experimental studies focused on the

assessment of global quantities at the wall (friction coefficient, Nusselt number)

for laminar/turbulent flows with variable properties. Some empirical correlations

of engineering interest were derived. More recent studies also deal with velocity

and temperature profiles, and it has now reached the point that the supersonic

compressible turbulent boundary layer with or without heat transfer is now well

documented (see Bradshaw (1977), Fernholz & Finley (1980) and Spina et al. (1994)

for reviews). The Strong Reynolds Analogy was introduced by Morkovin (1961) in

the context of adiabatic boundary layers and has often been used in turbulence

modeling. An extension was proposed by Gaviglio (1987) and subsequently Huang

et al. (1995) for use in the presence of heat transfer. Some experimental data

support these analogies in the case of a supersonic boundary layer over a cooled

or heated wall and low speed flow on a slightly heated wall. Dimensional analysis

of the inner layer shows that the law of the wall can be described in terms of

two non-dimensional wall parameters, the friction Mach number Mr = _or_and the
Cto

heat flux parameter Bq = _w where ur is the friction velocity _ cw thepwCpu,Tw '

speed of sound, qw the heat flux, Cp the constant-pressure specific heat, and Tw the

temperature at the wall. Two cases, (Mr,Bg)--(0.08,-0.05) and (0.12,-0.14), were

considered in the DNS study of a supersonic channel flow performed by Coleman

et al. (1995). These data were found in Huang & Coleman (1994) to support the

validity of the Van Driest (1951) transformation

U+vo= du+ = 1-tnu++ c
K

and suggest that the additive constant C is a function of both M,- and Bq.

The case with large heat transfer and small Mach number has received very mi-

nor attention (W. Kays, private communication). The usefulness of the Van Driest

transformation to retrieve the classical logarithmic law of the wall is not fully ac-

cepted in this case (Cheng & Ng (1982), Wardana et al. (1994), Wang & Pletcher

(1996)) although some of the results in the latter reference appear to be erroneous
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(P. Bradshaw, private communication). An LES of subsonic turbulent channel flow

with constant heat flux performed by Dailey & Pletcher (1998) suggests that when
the Mach number is close to 0 the constant C depends slightly on heat transfer. In

the latter study, a Smagorinsky subgrid-scale model with Van-Driest damping at
the wall was used to account for the subgrid scale effects. Since the value of C is

expected to depend on conditions in the viscous and buffer layers (i.e. where the
empirical Van Driest damping function is active), these LES data are questionable.

In their experiments, Wardana et al. (1992, 1994) study the effect of strong wall

heating on turbulence statistics of a channel flow. They provide high-order corre-

lations for the velocity components and conclude that near the wall the ejection

of low-speed fluid is intensified. They suppose that the local thermal expansion

close to the heated wall is the driving force of the intensification. Since they do

not use the Van Driest transformation to represent their mean velocity profiles, it
is difficult to use their data to study the dependence of the additive constant on the

heat transfer parameter Bq. Their experiments correspond to Bq ..m O, 0.073, 0.11,
0.13, and 0.17.

The objective of the present work is to study the case where the thermo-physical

properties vary significantly in the absence of compressibility effects (M = Mr = 0).

We perform a DNS of a low speed flow with a large temperature gradient in order

to generate high-fidelity data which is not presently available. The configuration

is a plane channel flow between two isothermal walls with temperatures T1 and

7"2 (see Fig. 1). Regarding the turbulence modeling, the objective is to provide

more reliable information about the variation of the constant of integration C as

a function of Bq. Other questions of interest relate to how good the Gaviglio's
analogy is in the zero Mach number limit and the exact role of the fluid-property

variations. A recent analytical study performed by Eames & Hunt (1997) shows how

a lump of fluid experiences a lift force when it moves perpendicularly to a density

gradient. A fundamental question that can be addressed using DNS is how this
inviscid effect can modify the near wall streaks. Is it related to the intensification

of the ejection events observed by Wardana et al. (1992, 1994)? The low Mach
number approximation and the numerical method are discussed in Sections 2 and

3. The first DNS results are given in Section 4.

2. Low Mach number approximation

To avoid contamination of the solution by the non-physical acoustic modes re-

ported in Coleman et al. (1995), a low Mach number approximation is first applied
to the 3D compressible Navier-Stokes equations. In doing so, the density is decou-

pled from the pressure so that no acoustics are present in the computation. This

also eliminates the acoustic CFL restriction on time step size.

To derive the low Mach number equations, one expands the dependent variables

as a power series in e = 7M 2, which is a small parameter (see Paolucci (1982)
for a complete discussion). Substituting these expansions into the Navier-Stokes

equations and collecting the lowest order terms in e yields:
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FIGURE 1. Computational domain.

Opuj0_ +__ = o
Ot Oxj

Oui Oui

P---_- + PU'i Oz j -

PCp_--_ + pCpuj ff_Txj=

OP 10rij

Oxi Re Oxj

10qj + 2/- l dP°
Re Pr Ox i 7 dt

(1)

(2)

In these equations, all the variables are normalized using the reference state pre_,

urea, Tref = p_ef/pr_f, c_ef = C_(Tref), pr_f = #,(Tr_), and k ref = k*(T r_) where

the superscript * represent dimensional quantities. Also Re = pr_fur_tLret/pret and

Pr = #refc_ef/kref are the Reynolds and the Prandtl number while 7 is the ra-
tio of specific heats at the reference state, ui, p, T, and Cp stand for the non-

dimensionMized velocity vector, density, temperature, and specific heat. rij =

( o__ o_v. 2_ o..__ k °T
It \0_j + 0_ - _vij 0,h ] and qj = 0xi are the viscous stress tensor and the heat

flux vector respectively. Moreover, P may be interpreted as the hydrodynamic pres-
sure. In the low-Mach number approximation, the thermodynamic pressure Po only

depends on time and must be computed if it is not constant. The equation of state

is simply:

Po = pT (4)

Since density is uniquely determined by the temperature (and the thermodynamic

pressure which is constant in space), the energy equation acts as a constraint which

is enforced by the hydrodynamic pressure. This constraint is:

Ox---_i= Po(t)C, R-_P_ Ox I \ _xj ) + _ Cp dt J

Integrating over the flow domain V leads to the following ODE for the thermody-

namic pressure in a closed system:

(5)
0_i J

(3)
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Since fv o [k OT _ dV = fs k ff_7,,dSj, this relation expresses how the rate of_r_Tk _z4j
change of the mean pressure is affected by the heat flux through the surface S

of the domain V and the gradients of heat capacity of the gas. In many practical

applications the fluid may be considered as a calorifically perfect gas so that Cp = 1
and the time derivative of Po is simply:

dV = v R, Pr k dSj (6)

Thus the constraint on the velocity field becomes:

__- _ / k °_r'
Oxi Po(t)R, Pr Jv

(7)

If the system considered is open, then the thermodynamic pressure is set by
atmospheric conditions. If it is closed, then the amount of mass in it, M0, is constant

over time so that by integrating the equation of state over the whole domain one
obtains the following expression for the thermodynamic pressure:

M0
Po(t) = f. -_dV (8)

Note that, in the limit of an inviscid flow of a calorifically perfect gas, the ther-

modynamic pressure remains constant over time (from Eq. (6)) and the velocity

field is divergence-free (from Eq. (7)). The solution (p, ui, T, P, Po) is completely
described by Eqs. (1)-(5). The constraint (7) should also be satisfied since it is a

linear combination of Eqs. (1), (3), and (4).

3. Numerical method

The numerical method chosen for solving the variable density momentum and

temperature equations is a generaiJzation of a fully conservative fourth order spatial
scheme developed for incompressible flows on staggered grids by Morinishi et al.

(1998). A scheme to solve the momentum equations in non-conservative form is

described in the following subsection. After that, a scheme with 'good' conservative
properties is discussed.

3.I Scheme in non-conservative form

For a uniform mesh, the advective term in the momentum equation (2) is dis-
cretized as:

puj Oz i _

lz/.--:---_----._ l z l

, (_e(,,)ui _--.--_-_-=,--8 - gP(4J)uJ ) _61zi
3_j (91

, .---;--_-:-----.,l x l

__ _ )
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where the finite-difference operator with stencil n acting on ¢ with respect to xi is
defined as

= + nh#2) - - nh#2)
_nXi nhi

and the interpolation operator with stencil n acting on ¢ in the xi direction is

-_x, = ¢(xi + nhi/2) + ¢(xi - nhi/2)

p(4j) 9__lxj l_3xi is a fourth order interpolation of p in the xj direction. When-_" 8r -- 8r

the density is constant, Eq. (9) reduces to the advective form (Adv.-S4) in Morinishi

et al. (1998). The pressure term in Eq. (2) in discretized by:

OP 9 51P 1 53P

Oxi =- (Pres.)i = (VdP)i -- 8 51xi 8 83xi (10)

and the discrete divergence operator is defined consistently: _ = Vd • (ui) =
0z_ --

9 _ I _ The viscous terms in Eq. (2) are written using the generic form:
861z_ -- 863x_"

61zj _8 61z i -- 8 63zj ]J

1 63 [ (9661,__ " 1 68ui_]s _*i /_(*0,(*J) k s 6_.j - _.j./j

(11)

The advective term for the temperature is discretized as:

0'1" 9 .... 51T "lx'i 1 "4 "" 53T 3xj

PUJ _xj -_ --PUt')IUJ_8 51 xj ---Pt8 JJuj_53 xj (12)

A semi-implicit time marching algorithm is used in which the diffusion terms in
the wall normal direction are treated implicitly with a Crank-Nicolson scheme while

a third order Runge-Kutta scheme is used for all other terms. The temperature

equation is advanced first so that pn+l is known via the state equation p = Po/T,

where Po is first assessed using Eq. (8) written at time n + 1. Then a fractional

step method is used to solve the momentum equation.

fl{4i),n+l un+l -- un = fl(4i),n+l U_ "4-1 -- fii p{4i),n-J-l fii -- un
At At + At

= fl___kk(i.+1 + I") + 7rE" + _tE n-1 - 2fltVdP n -- 2/_kVdSP "+1
2

(13)

where I and E represent all the spatial implicit and explicit terms except for the

pressure at n and the pressure update 5p.+1 __ p,,+l _ p.. The parameters ilk,

Vk, and _k (k = 1, 3) are chosen so that the mixed Runge-Kutta/Crank-Nicolson

time stepping is recovered after the third substep (Spalart, 1987). Equation (13)
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is then split into a decoupled set which is a second-order approximation in time to
the original equation:

p(40,-+1 _i - u_
At (14)

(15)

_k

= -2- (i,+1 + I n) + 7kE n + ekE,-1 _ 2_kV,tP"

_ --2_kVd6P "+Ip(40,-+1 u_'+1 - u_
At

Equation (14) is solved for fii by using the diseretizations (9), (10), and (11). Then
(15) is divided by p(40,-+1 before its discrete divergence is taken to obtain:

p(4, ,+, VdSP = 1 (Vd.fi_ _ Vd. UT+1) = S (16)

A similar Poisson equation with variable coefficients was solved in Bell & Marcus

(1992) to impose the divergence-free constraint for variable-density flows.

Since the transport equation for T has been advanced prior to the momentum

equation, the last term in the equation for the pressure variation is known from

Eq. (7), written at time n + 1. The non-linear Poisson equation (16) for the pressure
is solved using the iterative procedure:

Vd" (p(4i),n+l) Vd_pk+l :

2_,At S + V_. (p(4i_,,+l) p(4i),n+, Vdt_Pk (17)

where < > denote a plane averaging in the two homogeneous directions x and z.

Each sub-iteration is solved exactly using a Fast Poisson Solver. The advantage

of solving Eq. (16) to update the pressure is that the divergence-free constraint is

recovered in the inviseid limit, as it has to be from Eq. (7). This is not the case

when a backward approximation of _ is used to compute the source term of a linear

Poisson equation for 6P as proposed by McMurthry et al. (1986), Cook & Riley

(1996). The other advantage is that the pressure terms remain energy conserving in
the inviscid limit as discussed in the following subsection. Several basic test cases

have been computed to validate the above procedure (see Subsection 3.3).

3._ Toward a fully conservative scheme

Although the previous scheme was found to be accurate, it only conserves mo-

mentum and kinetic energy to its own order of accuracy. Experience has shown

that the latter quantity must be conserved exactly if a robust and dissipation-free

numerical method is sought. Morinishi et al. (1998) developed a set of fully conser-
vative (mass, momentum, and kinetic energy) high order schemes for incompressible

flow. In the general case of the Navier-Stokes equations without body force, the

transport equation for the kinetic energy per unit volume pk reads:

cgpk cgpujk _ PSjj OPuj Orijui rijSij (18)
+ Ozj Oz i + Oxj
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Let us consider a periodic (or infinite) domain so that, after Eq. (18) is integrated

over the domain, the flux terms _ and _ make no contribution. Due to the
Ozj Ozj

dissipation term TijSij , the question of conservation of the kinetic energy is only

relevant in the inviscid limit where rq = O. We know from Eq. (7) that in this limit

the velocity field is divergence-free, that is Sjj = O. Thus global conservation of

kinetic energy is a common feature of incompressible and low Math number flows.

The purpose of this section is to investigate how this property can be extended in

discrete space. Let us define the following discrete approximations of the possible

forms for the non-linear term in the momentum equation:

lz_

P(43)UJ -- _P(43)UJ 61xj

3zj (19)
• lxl

r/9 4 ' Ixl _3zl

(20)

1 ((Adv.)i + (Div.)i) (21)(Skew.)i =

The forms (Adv.), (Div.), and (Skew.) are the discrete equivalent to the advective

_ + 0pu_u_ _ form of theconservative _ and skew-symmetric ½ PUs o,jPUJ oz i ' Ozj ' Ozj ]

convective term. The following relations hold between these three discrete forms:

1 (__,*, 1--3,,)(Skew.)i = (Adv.)i + -_ui - _(Cont.) (23)

9 _lzl 1 _3x,

(Skew.)i=(Div.)i - -_u,l'(-_(Cont.) - -_(Cont.) ) (24)

where (Cont.) - 9 t_p(4_), z I 6sp¢4_),_L is the discrete form of the divergence of pu s.
8 6,zj 8 6az,_

A key assumption in the semi-discreteanalysisproposed in Morinishi etal. (1998)

for incompressible flow is that the operator (Cont.) is identically zero so that the

three forms (Div.)i, (Adv.)i, and (Skew.)i are equivalent. Since (Div.)i is conser-

vative a pro'ore" for the momentum equation and (Skew.)i is conservative a priori

in the kinetic energy equation, a fully conservative scheme is obtained as soon as

the velocity constraint _ = 0 is imposed properly through the pressure correction
step. In the present case where the density is not constant, the velocity constraint

00_.__= 0 (in the inviscid limit) does not imply that _ is zero. Thus the discrete
zj Ozj

operators (Div.)i, (Adv.)i, and (Skew.), are not equivalent in the low Mach number

case, meaning that a fully discrete analysis (including the time discretization) must

be conducted to achieve conservation of kinetic energy.
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A conservative scheme for the momentum can be derived by solving the divergence
form of Eq. (2). The first guess for the velocity is obtained by:

/_(4i)i_ i -- p(4i),nu_

At = --Tk(Div.)7 - _k(Div.)7 -1 - 2_(Pres.)p (25)

where/_ can be either any intermediate value. Then the projection step is:

It n'4"l ---- _(4i) 1
p(4i),n+l _ti -- 2t_k p(4i),n+l V d_PAt (26)

where the Poisson equation for 6P must be:

2fltAt • _tO(4i),n+ 1 _i) -- Vd" (27)

Obviously, Eqs. (25), (26), and (27) constitute a scheme which is momentum

conserving. To investigate whether it also conserves kinetic energy, let us multiply
Eq. (25) by fii + up and integrate over the whole domain. The overall contribution

of the first pressure term in the kinetic energy equation reads as:

fvup(vr,+.)pav = fv [9_ '_' 1 . _S-f_'_
8 t_3X i ) dE

where

9 . 6-/-P-ix' 1 . 63P

_u_ -_u_i

(28)

_3z, 9 _lupP lzl 1 8supP sx'

8 61zi 8 63xi

_p(_ 61un l'3un_6_, § _-_/ (29)

The first two terms do not contribute because they are in divergence form; the

last two are identically zero because the non-linear Poisson equation (27) is solved
w" .+1 9s__ 1_ • •_th Vd. u = .... 0 imposed m the term. The contributioni s 6 _i s 63xi ^ source
of the term fii(Pres.l+ is of order At because ui = up + O(At). Using Eq. (24), the

overall contribution of the RHS of Eq. (25) may be written as

f_ (fi, + up)(-'_kCSkew.)p - ¢_(Skew.)7-' ) dV

+,+.+fv ,,':(-+(Co.+.)'+'+` 3x.+'_

- - _(Co_t)- ) dV
(30)

-¢_y_ _ u_ -
+ o(At)

The first integral in (30) contributes to the order At because (Skew.)_ is kinetic
energy conserving in nature and because fii, up, and u_ -1 are equal to the order

At. On the other hand, the contribution of the LHS of (25) may be written:

IV fi(4i) (t_i) 2 __ p(4i),n (U_)2 _(4i) _ p(4i),n
dV + f_ uT_,, dV (31)2x7 Atdv
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Comparing Eqs. (30) and (31) it appears that the discrete rate of change of the

kinetic energy (the first integral in Eq. (31)) is at most of order At if one defines
the intermediate density as:

__ pn

At = -7k(Cont.)" - (k(Cont.)"-' (32)

In the context of second order scheme, the same definition of t_ was adopted (C.
Pierce, private communication) to achieve approximate conservation of kinetic en-

ergy. Multiplying the projection step Eq. (26) by fi_ + u_ +1 and integrating over

the whole domain, the following expression can be derived:

_. 2

Iti un+l /_(4i) _ p(4i),n+l
At dV+O(At) (33)

This shows that the global rate of change of thekinetic energy is of order At only

if t_(4i) - p(40,n+l = O(Atn), n > 2. Unfortunately, n is only 1 in the most general

case. A conservative scheme is obtained if one accepts that the state equation (4)

is verified to the order At only, viz:

Po
p,+l : t_- T,+I + O(At) (34)

In this case, the error in the kinetic energy conservation is at most of order At.

3.3 Basic test ca_es

The following test cases were designed to check the accuracy of the numerical

method. In what follows, AdvSC and DivSC stand for the schemes discussed in

Sections 3.1 and 3.2 respectively. Except as otherwise stated (Section 3.3.2), the

state equation (4) is enforced exactly.

3.3.1 ID Euler convection

If the Peclet number is infinite, the velocity field must be divergence-free; that is,

u must be constant in 1D. Also, the pressure should remain constant. To test the

ability of the two formulations to reproduce this feature of Eqs. (1)-(3), consider
the domain 0 < x < 1, periodic in x. The initial condition is u = u0 = 1, P = 0,

and T =1 + Aexp 1-(*-t_) 21 with A = 1, x0 = 0.5, and a= 0.05. When the
f

grid
k J

contains Nx = 24 points, only 6 points are used to describe a Gaussian perturbation.

Figure 2 shows Prms/pou2o as a function of the grid spacing, where three grid levels

were considered: 24, 48, and 96 points in x. The rms of pressure is assessed for

the time t = 20a/uo. The CFL number is of order 0.5 in all cases. Both schemes

are fourth-order accurate in space, but AdvSC is exact for this particular test case.

The divergence is zero in both cases because it is explicitly enforced through the

Poisson equations (27) for DivSC and (16) for AdvSC.
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3.3._ Small ID perturbations

In the case where the Reynolds number is finite but where the perturbation in

temperature is small (A << 1), the analytical resolution of Eqs. (1)-(3) can be

conducted and the structure of the perturbation which propagates is given by:

p,_ POT, (35)
To
1 aT'

u'= R, Pr c9_ (36)

3R_P_ Ox 2 Pr- (37)

An interesting feature is that the pressure fluctuation should vanish in the limit

pr _- i'3 Figure 3 shows the error in Eq. (37) in the case N_ = 24, a = 0.05,
A = 0.01, and Re = 50. The initial condition is uniform for u and P and the

physical time simulated is large enough (t _ 160a/uo) so that the values reported

in the figure are asymptotic values. For this poor resolution, the remaining error
for DivSC is much greater than for AdvSC.

3.3.3 _D Random perturbations

To validate the results of Section 3.2 with numerical tests, inviscid flow simula-

tions were performed on a 2D periodic domain. The analytical solution dictates that

the total momentum in each direction (pui) and total kinetic energy/K) = ½ (pup)
should be conserved in time. The domain is 0 < x < L, 0 < y < L, and a 24x24

mesh is used. Solenoidal velocity fields are used as the initial condition together

with random temperature fluctuations. The initial mean kinetic energy is of order
1.5 while Trms _ 0.15 < T > at t = 0. Figure 4 shows the relative error for the total

kinetic energy _ after an integration time of t = 0.125L/(V/_0). As expected

from Section 3.2, the error for the scheme DivSC is not a function of the time step

only, but also of space the space discretization. On the other hand, it appears that
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FIGURE 3. Root-mean-square of pressure as a function of the Prandtl number.
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exact solution Eq. (37); o : DivSC; Q : AdvSC.
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Kinetic energy conservation error as a function of the time step.

: At behavior; o : DivSC; • : DivSC with approximate

the same scheme with the approximate equation of state, Eq. (34), produces no vio-

lation in the conservation of kinetic energy due to the spatial scheme. The measured

error behaves like At 3 instead of At as predicted in 3.2. Indeed, a single substep of

the time integration was considered in the analysis so that the cancellation of error

in the full third-order Runge-Kutta procedure was not accounted for.

3.3.,_ Linear s_ability in a channel

To cheek the accuracy of the code in the case where the physical properties vary in

space and time through the temperature, the evolution of low amplitude eigenmodes

in laminar channel flow is simulated. The linear stability problem in a channel flow

between two isothermal walls with temperature T1 = 1 - _T and T2 = 1 +

was studied by Suslov & Paolucci (1995) under the low Mach number assumption.

They found that the critical Reynolds number increases with the parameter _T_. It



300 F. C. Nicoud

104

104

104

10 -'o

10 -_2
0 10 20 30 40

tu_/h

FIGURE 5. Time evolution of the global energy of the fluctuations in the compu-

tational domain. ---- : linear stability theory (Suslov & Paolucci (1995)); ---e-- :
< u '2 >;_ : <v _2>;_: <T '2 >.

is of order 40000 for _T = 0.4, compared to 5772 in the isothermal case (liT = 0).

In their analysis the dimensionless thermal conductivity and dynamic viscosity are
given by Sutherland's law:

k(T) = T 3/2 1 + Sk
T + Sk #(T) = T 3/2 1 + S,, (38)

T+ S_

where Sk = 0.648 and S_, = 0.368 for air at Tref = 300K and normal pressure. The

molecular Prandtl number is 0.76. In the computation, the length of the periodic

domain in x is L = 2_r/a, where a is the wave number of the mode of interest.

The initial condition consists of a small amplitude (0.01%) random noise on u, v

superimposed to the laminar solution of the problem (Suslov & Paolucci (1995)).
A stretched grid is used in the normal direction in order to capture the eigenvector

accurately near the walls. The wall normal velocity points are distributed according

to a hyperbolic tangent function (j = 0, 1, 2, ..., N):

tanh(3' - 1))
Y"(J) = Yi+½ = tanh(3') (39)

A typical result is shown in Fig. 5. In this case the resolution is 24x100 with 3' = 2 for

the stretching parameter. The CFL number is fixed at 1. The length of the domain
isL=2.4rh(a= s l_) and the Reynolds number is 45000, based on the maximum

velocity and the channel half-height h. The temperature ratio is _ = 2.33, i.e.

6T2 = 0.4. For these conditions, the flow is linearly unstable (see Suslov & Paolucci

(1995)). The code predicts a reasonable growth rate for this eigenmode. Note that

a fairly long time (lOh/u_.) is needed for the mode to settle in. Once the transition

phase is finished, the temperature and the two velocity components develop with

exactly the same rate, as dictated by the linear stability theory. DivSC and AdvSC
give similar results (AdvSC shown).
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4. Results

Two DNS's of a channel flow are performed to study the effect of the temperature

gradient on the flow. Details of the test cases adopted are given in Table I.

Case T2/T1 Rrl Rr2 Rec Ax + Ay + Az +
A 1.01 180 180 3300 18.8 0.25 - 10 6.28

B 2 200 82 2700 8.4 - 21.5 0.25 - 9 2.8 - 7.2

Table I: Numerical parameters of the two computations performed.

In each case the domain size is (47rh,2h,47r/3h) and the grid contains 120x100x120

cells. The statistics shown for Case B were obtained over a time period of order

5.7h/_'_, where _ = _ is the mean friction velocity. The wall normal velocity2
points are distributed according to Eq. (39) with 7 = 2.5 for Case A. For Case B,

the Reynolds number near the hot wall is expected to be smaller than near the cold

wall and the following non-symmetric distribution is used:

y,(j) = 2 Y_(J) + 1
f/_(N) + 1 1

with

(40)

tanh( 1)) (41)
Yv(j) = tanh(7)

and 7 = 2.5 and a = 0.9. Buoyancy effects are neglected and the dimensionless

thermal conductivity and dynamic viscosity are given by Sutherland's law (see Sec-
tion 3.3.4). The molecular Prandtl number is 0.76. In Case A the temperature is

almost uniform and the results may be compared to previous incompressible DNS

performed by Kim & Moin (1987) and Kasagi (1992) as well as semi-empirical cor-

relations derived by Kader (1981) for the passive scalar case. In Case B one expects

the temperature (density) variations to be large enough to modify the momentum

balance through both viscous and inviscid effects. The analytical work of Eames &:

Hunt (1997) shows that when a body moves perpendicularly to a density gradient,

a lift force, CL(U × Vp) x U, pushes it towards the denser fluid. Thus the order
of magnitude of the inviscid lift acting on a turbulent structure in the channel flow

is CLu2rAp/h. Requiring that this inviscid force is of the same order of magnitude

as the viscous force, vw/h = pu2r/h, one obtains the estimate Ap/p __ 1/CL, where

CL is the lift coefficient. With CL in the range 1/4- 1/2, the inviscid lift related

to the density gradient may balance the viscous forces for Ap/p in the range 2 - 4.

Note that one overestimates the required Ap/p by assuming that the density gra-
dient in the near wall region is equal to the mean density gradient Ap/h. Case B

corresponds to T2/T1 = 2, viz. AT/T = Ap/p = 2/3 and the density gradient may

be strong enough to generate important inviscid effects.

_.I Mean quantities

Figure 6 shows that Case A is in good agreement with previous incompress-

ible DNS (Kim ei al., 1987) for the mean velocity profile. The expected (for
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FIGURE 7. Mean profile of velocity (a) and temperature (b) in global coordi-

nates. ---- : Case A; _ : Case B. Non-dimensionalization is u/uma= and
(T - T_)/(T2 - T1).

the Reynolds number Rr considered) law-of-the-wall u+ = 2.51n(y +) + 5.5 is ob-

tained, and there is good agreement with Kader's formula for the mean tempera-

ture. The non-dimensionalization is such that T + = Pry+ in the limit y+ ---, 0, viz.

T + = (T,,,- T)/(BqTw) or T + = (Tw- T)p,_Cpu,./qw. Note that the linear behavior
for T near y+ = 180 is related to the inflexion point near the centerline, as shown

in Fig. 7. This figure also shows the profiles for Case B. The temperature difference

is strong enough to induce a significant asymmetry in the mean quantities. The

temperature gradient is smaller near the hot wall so that, with the Sutherland's law

Eq. (38), the heat flux is the same in absolute value at both sides. In semi-log plot,

the mean velocity profile does not match the classical law-of-the-wall if scaled by the

friction velocity. However, once transformed as proposed by Van Driest (1951), a
logarithmic behavior is clearly obtained for the two sides of the channel. The slope

remains close to its incompressible value whereas the additive constant is (slightly)
greater for both the heated and the cooled wall. This puzzling result (there is no

physical reason to believe that C(Bq) is even) may be due to a low Reynolds num-
ber effect near the hot wall where density is lower and dynamic viscosity is higher.

The temperature profiles (see Fig. 9) for Case A and Case B collapse only through
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FIGURE 9. Mean profile of temperature in wall units. (a): classic scaling; (b):

semi-local scaling. -....... : Case A; _ : Case B - Cold wall; .... : Case B -
Hot wall.

the beginning of the buffer layer (y+ _ 15). The Peeler number is so low near

the hot wall (Pc _ 62) that the linear behavior due to the inflexion point begins

before the logarithmic region (y+ _ 50). A better collapse between Case A and the

cold side of Case B is obtained when a semi-local scaling is used as suggested in

Huang et al. (1995) (replacing Pw with p(y), #w with/_(y) and u, = X/_Pw with

u*(y) = _ and then defining T* and y* in a similar manner as T + and y+).

From Eq. (7), the mean normal velocity:

i_ not zero although the continuity equation requires that the Favre-averaged normal

velocity _" = _fi/_ is zero. However, the negative mean velocity generated by the

turbulent heat transfer is only a small fraction (_ 1%) of the mean friction velocity

_ k aT is constant through theu_. From Eq. (42), the total heat flux q = --_v'T" +
channel. Table II gives the principal mean physical characteristics for Case B.
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FIGURE 11. Velocity fluctuations in streamwise and normal direction. (a): classic

scaling; (b): semi-local scaling. See previous figure for symbols. _ : Case B -
Cold wall; .... : Case B - Hot wall.

T2 IT1 Url/_rr Ur2/_rr CSl el2 Sql Bq2

2 0.87 1.13 2.82 x 10-3 2.48 x 10 -3 -0.018 0.014

Table II: Physical parameters for Case B.

The friction coefficient is based on the mean density in the channel and the

maximum velocity. Due to density and dynamic viscosity variation, the friction

velocity is higher at the hot wall but the shear stress is higher at the cold wall. The

values obtained for the heat flux parameter B_ are small in absolute value compared

to those in the DNS's of Coleman et al., 1995 (Bq = -0.05 and -0.14) although the
mean channel centerline-to-wall temperature ratios are equivalent (1.5 for Case B,

compared to 1.4 and 2.5 for the compressible case). This is because the dissipation

term in the internal energy equation is neglected in the low Mach approximation.

4._ Turbulent fluc_uation_

For Case A, Fig. 10 shows a good agreement with previous incompressible DNS

(Kim e_ al., 1987) for the three velocity fluctuations and the Reynolds shear stress.
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FIGURE 13. Temperature fluctuations. (a): classic scaling; (b): semi-local scaling.

........ : Case A; -- : Case B - Cold wall; .... : Case B - Hot wall.

In Case B, these profiles are no longer symmetric and the inner layer appears to be

thicker near the hot wall. Large departure from the incompressible case exists if the

classic wall scaling is used (see Figs. lla and 12a). The semi-local scaling allows the

profiles to collapse very well. Still, the maximum of Vr*ms and w_*ms is smaller in the

hot side of Case B. The same trend was observed by Dailey & Pletcher (1998) in

their strong heating case (in the supersonic channel flow studied by Coleman et al.

(I995), both sides correspond to a strong cooling). It suggests that all the differences

between the isothermal and heated flow cannot be reduced to a simple mean density

effect. It is worth studying this point in more detail. The temperature fluctuations

collapse neither for the classic nor for the semi-local sealing (see Fig. 13), except

close to the wall and if only Case A and the cooled side of Case B are considered.

Gaviglio (1987) invokes a distinction between large and small scales in turbulence

and argues that temperature and velocity fluctuations are highly correlated within

large coherent structures. Defining the characteristic length as lu = _ and
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lT -- _ and assuming lu o¢ IT, he derives:
IOT/Oul

T,m, IO /OuI_= Ro (43)
u,m, IOT/Oul

Gaviglio's formulation imposes R0 = 1 whereas Huang et al. (1995) propose R0 =

1/Prt (Prt ,_ 0.9) and Rubesin (1990) chooses R0 = 1.34. These analogies are

tested in Fig. 14a and appear to give a reasonable representation of the present

results. Figure 14a suggests that R0 = 1/Prt is a good choice. The turbulent

Prandtl number is given in Fig. 14b. The cold side of the channel looks like the

incompressible Case A with a peak around 1.1 at the wall, a plateau around y*

40, and a constant decrease through the center of the channel where Prt _ 0.7.

However, at the hot side of the channel, the turbulent Prandtl number is closer to

a constant value and Prt _ 1 would be a good approximation everywhere. It is

not clear yet whether this different behavior is due to differing thermal conditions

between the two walls, or whether it simply reflects a low-Reynolds number effect

(R_2 is half R_a ). The same question arises in looking at the correlation coefficients

for the shear stress and the heat fluxes (Fig. 15). The main differences appear in the

hot side of the channel where the Reynolds number is small. The maximum of Ruv

and RvT is located further from the wall in Case B, but the difference disappears

when wall units are adopted. However, the profile of RuT is fuller in the heated

case with a larger negative correlation between u and T (RuT ,_ -0.80 compared to

RuT ,_ --0.60 at y/h = 0.5). A scaling argument can hardly explain the difference.

Kim & Moin (1987) did not observe that ]RuTI increases for lower Peclet numbers.

_.8 Higher-order statistic8

The computed skewness and flatness factors for u and v are shown in Figs. 16 and

17. The adequacy of the sample size used to compute the higher-order statistics

is only marginal for Case B. However, these quantities are strongly related to the
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FIGURE 17. Flatness factors of u (a) and v (b). _ : Case B; .... : Incom-

pressible DNS, R_ = 110; o : Incompressible, R_ = 180, from Kim et aL

turbulence structure, and it is worth considering how they are modified by a strong
heating/cooling. In Figs. 16 and 17, the results for Case B axe compared to the

incompressible data of Kim et al. (1987). To distinguish between the heat transfer
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and the Reynolds number effect, a DNS of an incompressible channel flow at very low

Reynolds number (Rr = 110) was performed with the fourth-order accurate code of

Morinishi et al. (1998). The domain size for this simulation is (47rh,2h,47r/3h)

and the grid contains 72xS0x60 cells. Although R_-2 is only about 80 in Case

B, the incompressible simulation with R_ = 110 is adequately representative of

the hot (upper) half of the channel in Case B. Indeed, because of the rapid near-

wall variations of mean properties, the Reynolds number R* 2 based on properties

evaluated locally is equal to 110 in Case B at the distance 0.4h from the hot wall.

The skewness factor of the streamwise velocity u (see Fig. 16a) is roughly -0.5

to -0.6 for y+ _ 50 for the incompressible DNS's at R_ = 180 and R_ = 110. At

the same time, the normal velocity (see Fig. 16b) is skewed positively in the lower

half-channel and negatively in the upper one. It is known that these features of

the skewness factors correspond to large excursions of fluid from the walls to the

core region. Figure 16a shows that the skewness factor of u in the heated (upper)

half-channel of Case B is approximately twice as large as in the incompressible

cases. This strongly suggests that the density gradient enhances the ejection events

in this region. The same trend is visible in Fig. 16b, which also suggests that the

ejection events are weakened in the cooled (lower) half-plane. These findings would

be consistent with the existence of a force that pushes the lumps of fluid from the

hot to the cold wall. Wardana e_ al. (1992) supposed that the thermal expansion

was responsible for the modifications observed in the turbulence structure. From

Eq. (42), the mean dilatation in Case B produces negative mean momentum whose

modulus is roughly p]q_, [/Po. It acts on turbulent structures with time scale o_h/u,.,

where c_ < 1 expresses that the vortices are smaller than the channel half-height

(or _ 0.1 at the distance y = 0.2h from the wall). Requiring that the resulting

impulsion, plqwlur/(Poah), is of the same order of magnitude as the viscous force,

r_,/h = pu_/h, one obtains the estimate Bq _ 0.1 for the heat flux parameter. In

Case B, as the modulus of Bq is of order 10 -2, it is unclear whether or not thermal

expansion is significant. The inviscid force studied by Eames& Hunt (1997) offers

an alternative to the mean thermal expansion to explain the modifications in the

turbulence structure. It has the right sign (it is oriented from the hot wall to the

cold wall) and the relative density variation Ap/p is of order 1 in Case B, so that

this force is not negligible (see the beginning of Section 4). Figures 17a and 17b

show that the intermittency is higher in the heated side, smaller in the cooled side

of the channel. This is consistent with the enhancement/damping of the strong

bursting events illustrated above.

5. Discussion and future plans

The analogies developed in the context of supersonic boundary layers work well in

the case of a low-speed flow with strong heat transfer. It is not very surprising since

these analogies were derived assuming that compressibility effects are negligible

except for the mean density gradient. An advantage of the present configuration

is that each DNS provides information about both one positive and one negative

heat flux parameter Bq. In this respect, the classical Van Driest transformation was

tested for both a cooled and a heated wall, and the logarithmic behavior was well
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retrieved for the mean velocity. The results suggest that the additive constant C is

in both cases greater than its incompressible value. This unexpected result may be

due to a low Reynolds number effect. Indeed, the Reynolds number Rr at the hot
wall is half its value at the hot wall and it is known that the additive constant in the

law-of-the-wall increases for low Reynolds numbers. Assuming that the Reynolds

number ratio R_°t/RC,. °ld behaves roughly like the temperature ratio T1/T2, it is
clear that a DNS with strong heat transfer and sufficiently high Reynolds number

everywhere in the domain would be very expensive. To this end, a 'non-physical'

simulation where both the thermal conductivity and dynamic viscosity are inversely

proportional to the temperature may serve as a less expensive way to minimize

Reynolds number effects. Some differences appeared between the incompressible

case and the cooled/heated channel that a re-scaling based on the mean density

gradient was unable to eliminate altogether (amplitude of the peak in Vrms and

Wrms, shape of the profile of Prt, value of RUT). The higher-order statistics reveal

large modifications in the turbulence structure when the density gradient is not

negligible. It is suggested that these modifications are related to a purely inviscid
effect which pushes the turbulent structures towards the denser fluid. A case with a

larger temperature ratio would be worth considering to investigate these differences
in further detail.

P. Bradshaw and C. Pierce are acknowledged for their helpful comments on an

earlier version of this manuscript.
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On the construction of high order finite
difference schemes on non-uniform

meshes with good conservation properties
By Oleg V. Vasilyev 1

1. Motivation and objectives

Numerical simulation of turbulent flows (DNS or LES) requires numerical meth-
ods that can accurately represent a wide range of spatial scales. One way to achieve

a desired accuracy is to use high order finite difference schemes. However, addi-

tional constraints such as discrete conservation of mass, momentum, and kinetic

energy should be enforced if one wants to ensure that unsteady flow simulations

are both stable and free of numerical dissipation. In addition, both pressure and

velocity fields must be physical. These requirements are usually achieved by using

a staggered grid and enforcing continuity.

Until recently the standard second order accurate staggered grid finite difference

scheme of Harlow and Welch (1965) was the only scheme that simultaneously con-

served mass, momentum, and kinetic energy. It was observed by Ghosal (1996)

that the accuracy of second order finite difference scheme is low and fine meshes

are required to achieve acceptable results. For that reason Morinishi et al. (1998)

derive the general family of fully conservative higher order accurate finite difference

schemes for uniform staggered grids. Both the scheme of Harlow and Welch (1965)
and that of Morinishi et al. (1998) conserve mass, momentum, and kinetic energy

on a uniform mesh. However, generalizing these schemes to non-uniform meshes

and preserving the conservation properties is not straightforward. For example,

the generalization of the fourth order accurate finite difference scheme, suggested in

(Morinishi el al., 1998), does not even conserve momentum. Furthermore, Morinishi

et al. (1998) mistakenly concluded that in order to construct conservative schemes,
one should choose between the accuracy and conservation. One of the reasons why

the authors came to this conclusion may be the fact that they tried to generalize

the scheme by changing the weights in the difference operators as a function of local

grid spacings and preserving the order of local truncation error. As a consequence

of this generalization, the resulting scheme does not preserve symmetries of the

uniform mesh case. Veldman and Versappen (1998), in their analysis of convective-

diffusion equation on non-uniform meshes, showed that in order for the scheme to
be conservative, it should preserve symmetries of the underlying operator, i.e. the

convective derivative should be approximated by skew-symmetric operator.

1 Present address: Department of Mechanical and Aerospace Engineering, University of Missouri,

Columbia, MO 65211
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This report is an attempt to generalize the high order schemes of Morinishi et al.

(1998) to non-uniform meshes by preserving the symmetries of the uniform mesh
ca.se.

2. Accomplishments

_.1 Analytical requirements

In this section, we briefly outline the analytical requirements for conservation of

mass, momentum, and energy for incompressible flow. For further details we refer

the reader to (Morinishi et al., 1998).
An equation of the form:

0¢
+ 1Q(¢) + 2Q(¢) + 3Q(¢) + .... 0, (1)

is said to be written in conservative form if all the terms _Q(¢) can be written in

divergence form:

_Q(¢) = W. (kF(¢)) = O(tFJ(¢))
oz, (2)

In this report we use bold letters to denote a vector function, e.g. F = (F1, F2, F3) T.

The requirement (2) follows from Gauss' divergence theorem. In particular, if we
integrate Eq. (1) over a volume, we obtain:

-_ ¢ dV = - (1F(¢) +2 F(¢) +3 F(¢) + ... ). dS. (3)

From this equation it is easy to see that the integral never changes in the periodic
case if kQ(¢) has a conservative form for all k. Following this definition of con-

servation, it is easy to show that mass, pressure, and viscous terms are conserved

a priori since these terms appear in divergence form. The convective term is also

conservative a priori if it is written in divergence form, which is not always the
case. There are four commonly used forms of the convective term. These forms are

referred to as divergence, advective, skew-symmetric, and rotational forms and are
defined as follows:

Oujui (4a)
(Div.)i = Oxj '

Oui

(Adv. - uj , (4b)
10ujui 1 Oui

(Skew.), = 2 0xj + 2"_b-_-_' (4c)

(Ou, Out) l o%juj (4d)(Rot.)i - u s \Oxi Ozi + -2 Ox----'-_
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The four forms are connected with each other through the following analytical
relations:

(Adv.)i = (Div.)i - ui" (Cont.), (5a)

(Skew.)i += _(Div.)i _(Adv.)i, (5b)

(Rot.)i = (Adv.)i, (5c)

where (Cont.) =_ _ Note that the advective, skew-symmetric, and rotational
Oxl "

forms are conservative as long as the continuity equation is satisfied.
The transport equation of the square of a velocity component, for instance, u, 2/2,

can be written as

0u12/2
0------_-+ u,. (Cony.)1 + u,. (Pres.), + u,. (Visc.),= 0, (6)

where (Conv.)i is a generic form of the convective term, and (Pres.)i and (Visc.)i

are the pressure and viscous terms respectively. The convective term in Eq. (6) can
be written for each of the forms as

u, • (Div.)l Ouju'2/2 i 2. (Cont.), (Ta)
- Ozj + _ul

u, (Adv.), = Ouju'2/2 1• ul_ •(Cont.), (Tb)
Oxj 2

U 1 " (Skew.)1 -_ Oujua2/2 (Ze)
Oxj

Note that the skew-symmetric form is conservative a priori in the velocity square

equation. Since the rotational form is equivalent to the advective form, the four

convective forms are energy conservative if the continuity equation is satisfied.

The transport equation of the kinetic energy, K =_ UiUi/2 can be written as

OK
--_ + u,. (Conv.)_+ u_. (Pres.)_ + ui-(Vise.), = 0. (8)

The conservation property of the convective term can be determined in the same
manner as for ua2/2. The terms involving pressure and viscous stress in Eq. (8) can
be written as

ui " (Pres.)i = Opuiox--7- p (Cont.), (ga)

ui " (Visc.)i Orijui Oui (9b)
- Oxj rii Ox---_"

The pressure term is conservative if the continuity equation is satisfied. The viscous
term is not conservative because the second term on the right-hand side of Eq. (9b)

is the kinetic energy dissipation.

Morinishi et al. (1998) derived a class of high order schemes for a uniform stag-

gered grid which satisfy the conservation properties in a discrete sense. The ob-

jective of this work is to generalize the higher order schemes of Morinishi e_ al.

(1998) to the non-uniform meshes while preserving discrete conservation as much

as possible.
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_.2 Discrete operators

In order to simplify the analysis, we limit our consideration to the rectangular

algebraic non-uniform meshes with non-uniform grid spacing in each xl, x2, and

x3 direction. By algebraic grid we imply that the computational grid in physi-

cal domain is obtained by mapping a uniform computational grid in the compu-

tational domain to physical domain. Let D = [al,bl] x [a2,b2] x [as,b3] and
= [al,/31] x [as, &] x [a3, 83] be respectively the physical and computational do-

mains, x = (xl, x2, x3) w and _ = (_1, _, _a) w be coordinates in physical and compu-

tational domains, _ = f(x) be a nonlinear map of physical domain D into computa-
tional domain, and A1, A2, Aa be uniform grid spacings in the respective directions
in computational domain _. In this report we limit our consideration to the case

when mapping _ = f(x) can be written in the form

_i = fi(xi), i = 1,...,3. (10)

In other words, we consider only uni-directional mappings, and the computational
grid in physical space can be constructed as a tensor product of one-dimensional

computational grids.

Let us briefly describe the staggered grid arrangement. An example of a uni-

form staggered grid is shown in Fig. 1. In the case of uniform grid spacings, the

choice for location of velocity and pressure points is natural: the velocity compo-

nents U, (i = 1,2, 3) are distributed around the pressure points. The continuity
equation is centered at the pressure points while the momentum equations corre-

sponding to each velocity component are centered at the respective velocity points.

In the case of a non-uniform staggered grid, the location of pressure and velocity

points are ambiguous: these points can be determined as geometrical volume and

edge centers either in physical or computational spaces. Morinishi et al. (1998)
followed the first approach. However, the generalization to non-uniform meshes

suggested in (Morinishi et al., 1998) preserves the conservation properties only in
the case of the second order scheme. The reason is that for the higher order schemes
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(4th order and higher) the resulting discrete operators do not preserve symmetries

of the uniform mesh case. Veldman and Rinzema (1992) and Veldman and Ver-

sappen (1998) showed that in order for the scheme to be conservative, it should

preserve symmetries of the underlying operator. The basic idea behind Veldman

and Versappen's generalization is that the differentiation operation is performed in

computational space. The derivative in physical space is calculated using the local

Jacobian, which can be found numerically using the same stencil and the same order

accuracy as finite differencing operator in the computational space. To illustrate

this idea let us consider one dimensional case. First, we approximate derivative in

computational space
6¢
_ 2A '

where A is uniform grid spacing. The derivative in physical space is found as

_¢ 1 $¢
- (11)

_z J _4'

where J is the Jacobian of the transformation x --* _, which can be found numeri-

cally by substituting x for ¢

¢_X Xi+ 1 -- Xi-- 1

Substitution of this equation into Eq. (11) gives us the following approximation of

the derivative in physical space:

¢i+1-¢i-1
_x xi+l -- xi-i

This seemingly simple idea is the key which enables us to generalize the higher order

schemes of Morinishi et al. (1998) to non-uniform meshes.

Let the finite difference operator in computational domain with stencil n acting

on ¢ with respect to _1 be defined as

$"¢1 ¢(_1 + nail2, _2, _3)-¢(_1- hA1�2, _2, _s)
= (12a)

The interpolation operator with stencil n acting on ¢ in the _1 direction is given by

(12b)

In addition, we define a special interpolation operator with stencil n of the product

of ¢ and ¢ in the _1 direction,

_-- + (2, - (3)
_,, _,, ¢3 1 (12c)

+ _b(_l + nA_/2, _2, _3) ¢(_1 -- nA1/2, _2, _3).
Z
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Discrete operators in the _2 and _3 directions are defined in the same way as for the
_1 direction.

The following identities will be needed to derive some relations later in the paper:

6.¢-¢ "¢_ ,65.¢ ,65.¢

- + '

(¢¢). ¢

6,._"_ 6_.¢

6.¢ "_ 6.¢._"+_ ,6.¢

¢6.¢._"+' 16.¢._"+_ I,,6.¢

(13a)

(13b)

(13c)

(13d)

(13e)

(13f)

(13{)

Note that _i appearing as a superscript does not follow the summation convention.

For notational convenience let us introduce the discrete finite difference operator
in the physical domain:

6,¢ 1 6n¢ it, +2,- , (14a)

where J(_i) is local Jacobian of the transformation xi _ _i. Note that the subscript
i appearing in J(_) in Eq. (14a) and all subsequent equations does not follow

the summation convention. We emphasize that it is the form of Eq. (14a) which

allows the construction of higher order schemes on non-uniform meshes with good
conservation properties.

The averaging operators (125) and (12c) use only functional values at grid points

and do not use any information about grid spacing. Consequently, these operations
can be performed in both physical and computational spaces. For clarity of the

notation, we define the following operators in physical space:

--- , (14_)
,Zl, z2, x3 , +2, ,_a

• z_, .--r-_,n+i I¢--¢"_' = • (14C).,:2,.,:_ <)'¢' I+,+,+_, ,'a+
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We define two types of conservative forms in the discrete systems, kQ(¢) in

Eq. (1) is (locally) conservative if the term can be written as

$,(kF](¢)) $2(kF](¢)) 6s(kF](¢))
kQ(¢) = _lzj + 62z_ + ,ssz i + .... (15)

This definition corresponds to the analytical conservative form of Eq. (2).
We call _Q(¢) to be globally conservative if the following relation holds in a

periodic field:

Z Z aV(x)= o, (16)
gl Z2 Z3

where the sums that appear in Eq. (16) are taken in the respective directions,

AV(x) = J(_)AV(_), g(_) 3= rlk=l J(¢k) is the Jacobian of the transformation

x _ _, and AV(_) s= rlk=l A_ is a constant volume in the computational domain.

Note that in the periodic case local conservation (15) also implies global conserva-
tion. Also note that the definition (16) is a discrete analogue of Eq. (3).

_.3 Finite difference schemes on a non-uniform staggered grid

2.3.1 Continuity and pressure terms

We define the discrete continuity and pressure terms as

8_Ui
(cont. - NS2) = _ = O, (17)

_P (18)
(Pres.- NS2)i - $lxi'

where the NS2 denotes the second order accurate finite difference scheme on a

non-uniform staggered grid. Analogously, fourth order approximations are

9 bl Ui 1 $3Ui

(Cont. - NS4) - 8 _lXi 8 _isxi - O, (19)

9 61p 1 6sp

(Pres. - NS4)I = 8 61xi 8 8sxi" (20)

Local kinetic energy is an ambiguous quantity in a staggered grid arrangement since

the individual velocity components are defined at different locations in space. Some
sort of interpolation must be used in order to obtain the kinetic energy at the same

point. The required interpolations for the pressure terms in the K equations are

1 _-1¢' _1U_ _'

J(_i) Ui 61_i - $1xi p. (Cont - gs2), (21)

, ¢ -3_i
9 1 _le_ 1 1 U osp 9 glUip lzl 1 8sUip a_'

J(_i) $s¢i 8 _ 8 gsx, (22)

- p. (Cont - NS4).

Therefore, Eqs. (18) and (20) are globally conservative if the corresponding discrete
continuity equations are satisfied.
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_.3.2 8econd order accurate convective schemes

As we have already mentioned, local kinetic energy K - UiUi/2 can not be defined

uniquely on a staggered grid. Let us assume that a term is (locally) conservative

in the transport equation of K if the term is (locally) conservative in the transport

equations of [712/2, U22/2 and Uf/2. Since the conservation properties of U_2/2
and Us_/2 are estimated in the same manner as for U12/2, only the conservation

properties of the convective schemes in the momentum and U12/2 equations need
to be considered.

Let us define second order accurate convective schemes for non-uniform staggered

grids as follows:

_1 _-jlxi ---_- lxj
U, (23)

(Div. - NS2)i - 6lxj '

1 p-7.x¢_61Ui a_
(Adv.- NS2), =_ S_j) c_j 6,_j ' (24)

1
_(Adv. NS2)i. (25)(Skew. - NS2)i - -_(Div. - NS2), + z -

Using Eqs. (13e), (130, (14a), and (14b) the advective (Adv.-NS2)i and divergence

(Div. - NS2)i forms of the convective term are connected via

(Adv. - NS2)i = (Div - NS2)i - Ui O1Uj
61xj "

(26)

Using (13e), Eq. (26) can be further simplified as follows:

(Adv. - NS2)i = (Div - NS2)i - Ui . (Cont. - NS2) lz'

I'--lxi

bl Ui

+ Ui " ["61xi

(27)

where there is no summation over i. Note that the term in square brackets is the

commutation error between finite differencing (14a) and averaging (14b) operators

and in general is not zero, unless the grid is uniform in xi direction.

Equations (23) and (27) are the discrete analogs of the Eqs. (da) and (5a) re-

spectively. Clearly, Eqs. (da) and (23) have the same structure while Eq. (27) has

an additional term in it when compared to Eq. (5a). For that reason the discrete
conservation properties for both advective and skew-symmetric forms of the con-

vective term are different from analytical ones. In other words, the divergence

(Div. - NS2)i form of the convective term is conservative a priori in the momen-
tum equation while enforcing the discrete continuity is not enough to make both

advective (Adv. - N S2)i and skew-symmetric (Skew. - N S2)i forms conserve the

momentum. This is due to the presence of commutation error term which, in gen-

eral, is non-zero for non-uniform meshes.
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Using Eqs. (13f), (13i), and (14) the product between U1 and (Skew.- NS2)1
can be rewritten as

_lz'--lxl 3

l _i us uiui /2 (28)
U1 • (Skew. - NS2)1 = 2 t_lX j

Therefore, (Skew. - NS2)1 is conservative a priori in the transport equation of

U12/2. Note that in the case of the non-uniform staggered grid, the commuta-

tion error term is non-zero and neither divergence (Div.- NS2)i nor advective

(Adv. - NS2)i forms of the convective term conserve kinetic energy. We also note

that in the case of a uniform mesh, the commutation error is zero, and we fully

recover the conservation properties described in (Morinishi et al., 1998).

2.3.3 Higher order accurate convective schemes

In this section we will generalize the higher order accurate convective schemes

of Morinishi et al. (1998) for non-uniform meshes. The fourth order accurate

convective schemes on a non-uniform staggered grid are defined as

(Div. - NS4)i =- 8 61xj _-_Uj - -_Uj Ui
(29)

8,%xi gut -gut ) u_ ,

9 1 1"9--I_ l..-v-_'__lUi l_j

(adv.- US4)i =- 8 j(_j) _Uj - _uj ) 61_j (30)

1 1 (9--1_, l__--_,)_aUi8J(_j) §us -_uj _3_j '

1
NS4), + _(Adv. NS4)i. (31)(Skew.- NS4)i _- 7(D',v. -

Using Eqs. (13e), (13f), (14a), and (14b), the adveetive (Adv. - NS4)i and diver-

gence (Div. - NS4)i forms of the convective term are connected via

(Adv. - NS4)i =(Div. - NS4)i

-Ui. (9 (Cont.- NS4)lx' - _(Cont.- NS4) 3_')

x i b3 Ui

-
1 l_3ui _-=-_ 3_,

- s '

(32)

where there is no summation over i. Fourth order convective schemes exhibit the

same pattern as second order schemes: only the divergence form (Div. - NS4)i of
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the convective term is conservative a priori in the momentum equation. The pres-
ence of commutation error in both advective (Adv. - NS4)i and skew-symmetric
(Skew.- NS4)i forms of the convective term results in non-conservation of mo-
mentum on a non-uniform mesh.

The conservation properties for U_/2 can be estimated exactly the same way as

in previous section. Using Eqs. (13f), (13i), and (14), the following relation can be
obtained:

UI.(Skew.-NS4)I 86-_xj _-_Uj -8 J ) _-_lx_

1 _s /9--1_, l_---_a_\ UIU_"_

863xj ) 2 "

Thus, (Skew. - NS4)i is conservative a priori in the transport equation of U1z/2
while both the divergence (Div. - NS4)i and advective (Adv. - NS4)i forms of

the convective term do not conserve kinetic energy when the staggered grid is non-
uniform.

Higher order finite difference schemes on non-uniform meshes can be constructed

in the same way as for the fourth order schemes. The nth order accurate convective

schemes on a non-uniform staggered grid are defined as

(Div. - NSn)i - ak 6(2k-1) /Y"_ "_-+-_-(2/-1)x'/-- / '
k=l 8(2k-1)XJ \1=1 /

(34)

(Adv. NSn)i - _ ak 2t-x)¢,-- O_l-_'(j _(2k-1)Ui , (35)

where the ak are the interpolation weights. The continuity and pressure terms

involve straightforward applications of the higher order interpolation operators and
can be written as

./2

(Cont. -- NSn) -_ Z OLk 6(2k-1)Ui -_ O, (36)
k----1 _(2k--1)Xi

./2

(Pres.- NSn), _= Z o_k _5(2k-1)_P (37)
k=1 _(2k-1)x,"

As an example, the sixthorderaccuratefinitedifferenceschemes on a staggered

non-uniform gridare givenby

150 61U i 25 83Ui 3 65Ui
(Cont. - NS6) = 128 8_x, 128 63x_ + 128 disx, - 0, (38)
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150 61p
(Pres. - NS6)i -_ 128 6,xi

150 61 f (150_':,(Div. - NS6)i {
- 12861zi t\l-_ j ---

25 6s {/150_-_x:,12863zj \7_ j -

3 _5 {{150--1_,+ 128 _sx i _ t_-8 Uj -

150 1 /'150_--/,_,
(Adv.- _¢S6)_- 128J(_) \1-_ _ -

25 1 [ 150wr-1_

128 j(_j) _,_--_uj -

3 1 [ 150?T9_
+ 12ss_ji t 1-__ - --

25 63p 3 65p
+ (40)

128 6sxi 128 65xi'

_s U_ + 12s ' ]

1-_ i + 128 3 ] Ui , (41)

-- . 3 ----_*i\ --szj}

25 _, 3 _se,'_ 6_u_
1-_ _ +1-_ _ )6,,,j

03Ui (42)
_Ts _ +F2-_ _ ) 6_6

05Ui

its ' +i_ _ )6_,_
1 1

2(Adv. NS6),. (43)(Skew.- NS6)i - _(Div. - NS6), +

_.4 Periodic inviscid flow simulations

To confirm the results of the previous sections numerically, three-dimensional

inviscid channel flow simulations are performed. The flow field is assumed to be

periodic in the streamwise (Xl) and spanwise (xs) directions. The fourth order
accurate finite difference scheme is used for the convective term. The zero-normal

velocity boundary conditions are assumed along the walls. Solenoidal initial velocity

fields are generated using homogeneous random numbers. A third order Runge-

Kutta (RK3) method of Spalart et al. (1991) is used for time integration. The
splitting method by Dukowicz and Dvinsky (1992) is used to enforce the solenoidal

condition. The resulting discrete Poisson's equation for the pressure is solved using

a discrete Fourier transform in the periodic directions and a penta-diagonal direct

matrix solver in the wall normal direction. The computational box is 2rr x 2 x 2r

and 16 × 16 × 16 mesh points are used. The grid spacings in the periodic directions

are uniform. The wall normal grid is stretched using a hyperbolic-tangent function

tanh(7(2j/N2 - 1)) j = 0,... ,N2. (44)
x2(j) = tanh(3,) '

Numerical tests are performed for 7 = 3.

The analytical conservation requirements dictate that the total momentum, (ui),

and total kinetic energy, (K) = ½ (u_ 2 + u22 + us2), should be conserved in time.
We normalize the initial velocity field in such a way that (u_[t=0) = (u3[t=0) = 0

and (K[,=0) = 1. Due to the fact that grid spacing is uniform in streamwise
and spanwise directions, the convective schemes have much better conservation
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FIGURE 2. Evolution of the kinetic energy conservation error for (Div. - NS4)
( ........ ), (Adv. - NS4) ( --.-- ), and (Skew.- NS4) ( .... ) convective schemes.

properties. Since commutation error in Eq. (32) is zero for i = 1, 3, both advective

and skew-symmetric forms of the convective term conserve momentum in x] and

x3 directions. However, the commutation error between averaging and differencing
operators in wall normal direction is not zero. Consequently, the kinetic energy is
still conserved only for the skew-symmetric form of the convective term.

The conservation of momentum is confirmed numerically up to machine accuracy.
Surprisingly, the momentum is conserved for all three forms of the convective term

in all three directions even though the grid in wall normal direction is not uniform.

We attribute this to the specific properties of the inviscid flow between parallel
plates.

As we have already mentioned, the total kinetic energy is also an ambiguous

quantity since it can not be defined uniquely on a staggered grid. In this report we

used the following norm for the total kinetic energy:

3

A-=E E E E (45)
i=l xl x2 xa

where the sums that appear in Eq. (45) axe taken in the respective directions,

AY(x) _= J(_2)AV_, J(_2) is the Jacobian of the transformation x2 _ _2, and

AV_ 3= l'Ik=l Ak is a constant volume in the computational domain. The energy
norm (45) is not conserved for both divergence and advective forms of the convection
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FIGURE 3. Kinetic energy conservation error at t = 10 as a function of time step
At for (Skew. - NS4) convective scheme.

term. However, an alternative energy norm may be conserved. For that reason

further investigation is needed to confirm or deny the existence of such a norm.

The time evolution of the total kinetic energy defined by Eq. (45) is shown in

Fig. 2. It can be easily seen that for both divergence and advective forms of the

convective term the energy is not conserved. Also it should be noticed that the sign
of the conservation energy is not defined since the conservation error is given by the

nonlinear term, which can be either positive or negative.

The conservation of the kinetic energy for the skew-symmetric form is confirmed

in Fig. 3. Kinetic energy is not conserved exactly since the third order Runge-Kutta

time stepping method introduces a slight dissipative error. To demonstrate that the

skew-symmetric scheme is conservative, the time step is decreased and the error is

compared against the time step. As expected, the time stepping error decreases
with the cube of At (see Fig. 3), and we observe no violation of kinetic energy

conservation due to the spatial scheme.

2.4 Conclusion8

The class of high order staggered grid finite difference schemes proposed by Morin-
ishi et al. (1998) is generalized to non-uniform meshes. The proposed schemes do

not simultaneously conserve mass, momentum, and kinetic energy. However, de-

pending on the form of the convective term, conservation of either momentum or

energy in addition to mass can be achieved. Furthermore, the non-conservation is

weak; it is a function of the commutation error, which is very small for smoothly

varying meshes. Certainly, experience has shown that schemes that are fully conser-
vative on uniform meshes perform considerably better on non-uniform meshes when
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compared to the schemes which are not fully conservative even on uniform meshes.

The results presented in this report are not discouraging at all: the same kind of
analysis for the standard generalization to a non-uniform grid of the second order

scheme of Harlow and Welch (1965) would lead to similar conclusions. Thus, the

generalized schemes developed in this report will enable us to perform numerical

simulations with greater accuracy while preserving the conservation properties of
the second order scheme of Harlow and Welch.

3. Future plans

The new higher order schemes for non-uniform staggered grids will be tested in

high Reynolds number channel flow to demonstrate that they have an advantage
over the non-conservative formulation of Morinishi et al. (1998). In addition, the is-
sue of conservation of kinetic energy will be investigated further to see whether there

exists an alternative kinetic energy norm which would be conserved in divergence
form of the convective term.
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Development of immersed boundary

methods for complex geometries

By J. Mohd-Yusof

1. Motivation and objectives

For fluid dynamics simulations, the primary issues are accuracy, computational

efficiency, and the ability to handle complex geometries. Spectral methods offer
the highest accuracy but are limited to relatively simple geometries. In order to

accommodate more complex geometries, finite-difference or finite-element methods

are generally used. However, these methods suffer from relatively low accuracy,

requiring fine meshes to obtain good results. Finite element schemes, while able

to handle complex geometries, often require significant computational time for grid

generation. Spectral element methods can be used for complex geometries, but

the grid stretching inherent in these methods leads to time-step limitations and

clustering of grid-points in an inefficient manner.

In general, any computational scheme which requires regridding to accommo-

date changes in geometry will incur significant penalties in simulating time-varying

geometries. For relatively simple motions, it is possible to use grid-stretching tech-

niques (Carlson et al., 1995), but these are still slow. Vortex element methods for
moving bodies (Koumoutsakos, 1995) are presently under development but are also

rather slow, especially with respect to calculation of spectra.

In Mohd-Yusof (1997) we demonstrated a discrete-time immersed boundary
method which allows implementation of complex geometries in existing pseudo-

spectral codes. The method does not incur significant additional cost as compared

to the base computational scheme and changes in surface geometry simply require
modification of the input files without any further modification of the code itself.

Although the method appears to work well in this implementation, the actual con-

vergence properties are not well documented. Also, the earlier code did not properly

accommodate moving boundaries. Finally there was a term omitted from the deriva-

tion of the forcing presented in that report. While that omission does not affect

the results from the earlier work, it would invalidate computations in more complex

surface geometries.

2. Accomplishments

The accomplishments are presented in three sections. First, the correct form of

the forcing function is derived and implemented in the B-spline/Fourier code. This

accounts for the divergence of the force which was omitted in the previous derivation.

Second, the method is extended to accommodate moving boundaries and coupled

to a genetic algorithm. In order to minimize the effect of interpolation required by
the moving surface geometry, high order interpolation methods are implemented in

the B-spline direction only. No interpolation is performed in the Fourier direction:



326 J. Mohd- Yu_of

i.e. the forcing points are constrained to lie on collocation lines. Preliminary results

are presented to demonstrate the degree of drag modification which is possible with
moving-bump type actuators. Finally, a study is presented which demonstrates the

effect of smoothing the forcing profile on the convergence of the results.

_.1 Immersed boundary concept

We begin with an examination of the continuous (in time and space) Navier-Stokes

equations to demonstrate the principle of the immersed boundary technique. We

consider incompressible flows governed by the Navier-Stokes equations, including
the body force term:

0u_- = -H - VP + V2u + F (1)

and the continuity equation:

V. u = 0 (2)

where Re is the Reynolds number, u = (u, v, w) is the velocity vector, H -- u×ta

= (Hu, Hv, Hw) is the convective term, and F = (Fu, Fv, Fw) is the forcing vector.
The full Navier-Stokes equations allow the inclusion of an external body force. In

incompressible flows, this force is generally assumed to derive from some potential

field (e.g. gravity) which is constant and therefore may be neglected. However, the

NS equations themselves allow the force to be a function of both time and space.

In that event, the divergence of the force may be non-zero and, therefore, must be

included in the Poisson equation for pressure if that equation is used to solve the

system.

The immersed boundary method involves specifying the body force term in such a
way as to simulate the presence of a flow boundary within the computational domain

without altering the computational grid. The advantage of this is that bodies

of almost arbitrary shape can be added without grid restructuring, a procedure

which is often time-consuming. Furthermore, multiple bodies may be simulated, and

relative motion of those bodies may be accomplished at reasonable computational
cost.

The concept of the immersed boundary technique has been used for pseudo-

spectral simulations of flows in complex geometries (Goldstein et al. 1995). How-
ever, the timestep restriction imposed by their derivation severely limits the ap-

plicability of the method to turbulent and other strongly time-dependent flows.

This restriction can be removed by the use of a discrete-time derivation of the forc-

ing value (Mohd-Yusof 1996). When combined with appropriate choice of internal

boundary conditions, this scheme leads to a forcing scheme which does not require

any filtering of the forcing field.
A second issue of importance to the immersed boundary method is the ability

of the underlying numerical scheme to place a sufFicient number of grid-points near

the immersed boundary to adequately resolve the flow scales in that region. While

the grid geometry may be considerably simplified as compared to a body-fitted

grid, there is still a fundamental need to tailor the grid-point distribution to the

underlying flow scales. To this end, we employ a B-spline formulation, which al-

lows flexibility of grid-point distribution, zonal embedded grids, and high accuracy
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(Kravchenko et al. 1996). Coupled with Fourier-pseudo-spectral methods, this

yields a numerical scheme which allows simulation of flows in complex geometries
on Cartesian grids with high accuracy.

_.1 Numerical method

We npw consider the discrete-time Navier-Stokes equations in general form:

U n+l -- tl n 1At = -H - VP + _t_ V2u + F (3)

We wish to drive the velocity, u, on some surface, f_, to some desired value, v(f_).
Rearrangement of the discrete NS equation gives us the velocity update equation
which is of the form:

= u" + At(-H - VP + _---_V2u + F) (4)nn+l

If we know H, VP, and V2u, then the forcing term is simply:

{F = H "_- VP -- V21L! -_ _--_(%[ -- Un), on _'_; (5)

0 elsewhere.

IL1. I Velocity-vorticity formulation

Following the same approach as in Kim et al. (1991), one can reduce Eqs. (1)
arid (2) to a fourth-order equation for v and a second-order equation for the normal

component of vorticity 9:

0
_--_v4v+ A (6)_V2v = h_ +

Ng = h9+ v_ + A (7)
Ov

p+N=0 (s)
where

Ou Ow Ou Ow OF,, OF,,,
P = -_x + _z' g = Oz Ox f_ = Oz Ox (9)

Of OH. OH,,_ ( as o' )h_=-_yyk,--_-x + Oz ] + _x _ + _z 2 H ,, (10)

L=-_\--_x + Oz / + g_-x2+_ F_ (11)

OH,, OH,,,
hg = Oz Ox (12)

Note especially that the force in both the equations is transformed in exactly

the same manner as the nonlinear terms. In this formulation the velocity field

is assumed divergence-free; however, the force is not in general solenoidal, so the

projection of the force onto a solenoidal field must be accomplished in the same

manner as with the term h, in Eq. (10). All further numerical details of the code

are unchanged from those presented in Mohd-Yusof (1997) and are omitted for the

sake of brevity.
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_.I_ Turbulent channel simulation

The immersed boundary method allows a wide range of different surface geome-

tries to be simulated with a single code. This flexibility makes it uniquely suited
to coupling with optimization schemes for drag reduction in turbulent flows. Once

the parameter space is chosen (which is not necessarily obvious) the code can be
used to simulate the flow in question. The results of the simulation can then be fed

back into a genetic algorithm (e.g, Koumoutsakos, 1997) to determine the optimal
geometry for achieving the desired goal. We envision such a combined simula-

tion/optimization tool as not only a diagnostic tool to explore the performance

potential of current surface actuators, but also as a way to design surface actuators
which may not yet have been built. To this end, the test case we have chosen for

the moving boundary simulation is that of a turbulent channel with moving-bump
actuators on one wall.

In this case, the optimization parameters could be the bump height, spacing,

streamwise and spanwise extent, and the period of bump motion. For our prelimi-

nary tests we fix all but the last parameter and measure the surface drag for varying
bump periods.

2.2.1 Computational mesh

In order to simulate a turbulent channel using the immersed boundary, it is nec-
essary to use computational mesh which is refined near the location of the immersed

boundary. In this instance we use a double-cosine stretched grid as shown in Fig. 1.
This grid provides the same near-wall resolution as a traditional cosine stretched

grid in a conventional calculation. The computational domain extends from -1
to 1. The mean location of the immersed boundary wall is fixed at -0.8 for all
simulations.

For simplicity, the forcing function for the moving bumps is computed on an
embedded auxiliary mesh which is refined in the wall normal direction near the

location of the bumpy wall, y = -0.8. The resulting force is interpolated, using
b-splines, to the solution mesh. The spacing of the mesh is identical to the base

mesh in the two Fourier directions. In the wall-normal direction, the mesh spacing

is approximately equal to the finest spacing on the cosine stretched grid.

_.2._ Results

Figure 2 shows the drag on the bumpy wall, as a function of time, from the sim-

ulation compared with the fiat wall case. In all cases the bumpy wall was of the

type shown in Fig. 1; four bumps operating in two sets with opposite phase. The

bump shape is given by h(r) = 1 + cos(27rr/rma_) for r < r,,a_. The height of the

bumps varies sinusoidally in time with period tbu,,,p (all times are nondimensional-

ized by the friction velocity and the channel half height). For the cases shown the
simulations are started using identical fully developed turbulent channel flow data

obtained by running the code with a flat wall immersed boundary. For all the bump
frequencies tested, the mean wall drag is slightly reduced by the introduction of the

bumps. However, the duration of the simulations performed to date is too short to
provide a meaningful result.
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FIGURE 1. Representative sketch of the computational domain. The stretched

solution grid is shown, and a representative isosurface showing the location of the

immersed boundary.

Flow visualizations of the bumpy-wall results indicates the presence of large low-

speed structures which span the entire streamwise extent of the computational do-

main. These structures seem to be present in all the cases tested, and the structures

are centered over the bumps themselves. Note that since the bump pairs are out

of phase, the structures extend over one bump and the accompanying dip. The

persistence of the structures over long times may also be an artifact of the periodic

computational domain.

2.3 Convergence properties and smoothing

There have been, to the author's knowledge, no rigorous proofs of the convergence

properties of immersed boundary methods. Evidence suggests that the method of

Goldstein et al. converges very slowly, if at all. The likely cause of this is the fact

that the forcing is applied as a series of point forces at the collocation points. Thus,

the force is effectively implemented as a series of 5-functions with commensurately

poor convergence properties. Goldstein et al. attempt to smooth the forcing by
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FIGUrtE 2. Drag traces for varying bump oscillation periods and the fiat wall case.

fiat wall case; ........ tb_,,,p = 1; --- tb_,,r = 9.; .... thump = 0.5. All

times are nondimensionalized by friction velocity and channel half height.

spreading the force as a Gaussian: this still converges slowly and furthermore allows

the force to be non-zero in the solution region of interest.

In contrast, the current method attempts to smooth the force by utilizing an

internal boundary layer, confined to the region of the solution which is not part of the

flow itself. In this section we will examine the effect of modifying the specification in

the force within this internal layer in order to improve the convergence properties of

the global solution. Intuitively, the rate at which the solution converges will depend
on our ability to enforce the boundary condition with a forcing function which has as

narrow a spectrum as possible, confined to the lowest practical wavenumbers. This

will be the opposite of the delta function, which has equal energy at all resolved
wavenumbers.

It is instructive to first examine the behavior of the body force in a simple test

case, in the absence of any smoothing or interpolation error. The test case used

here will be a simple Couette flow, simulated on a periodic domain. That is, we

wish to enforce no-slip conditions on two walls, at x = rr/2 and x = 3rr/2, moving
with velocity 1 and -1, respectively. The 'correct' solution in this case will be a

linear velocity profile in the region _r/2 < x < 3_r/2, and the flow in the remainder
of the domain is extraneous.
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only the 12 data is shown for each case.

Since our forcing scheme requires an internal boundary layer to be formed in the

body, we require at a minimum 3 points in this extraneous region to accommo-

date these two boundary layers (which will have opposite velocities as sketched in

Fig. 3). The force distribution required to achieve the desired solution in this case

is essentially a pair of _-functions located at the single collocation point at the edge

of the internal BL; the body force applied at the surface is near zero. The vanishing

force at the surface is an expected result upon examination of the force specification

equation; once the velocity at the surface is small, all the terms vanish except the

viscous term, which is driven to zero by the presence of the boundary layer.

If we fix the geometric thickness of this internal boundary layer and perform the

simulation on progressively refined grids, then in the absence of any smoothing,

the force distribution essentially remains a pair of 6-functions, with increasingly

compact support, located at the edge of the internal BL (Fig. 4). As will be shown

later, the force is uniformly distributed in spectral space, and thus the convergence

of the scheme is poor.

The goal of the smoothing function, it would then appear, is to distribute the

force within this internal boundary layer in such a way as to minimize the spectral

bandwidth of the final forcing distribution while at the same time not compromising
the local character and simplicity of the scheme.

We choose therefore to apply the force in the internal boundary layer in the

following way: the force applied to any collocation point within the internal BL,

located a distance 7/ from the desired wall location, will be the force required to
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reverse the velocity at the corresponding mirror-image point in the solution flow,

-77, scaled by some smoothing function S(r/). In this case we scale r/such that r/= 0

at the surface and 77 = 1 is the thickness of the internal boundary layer. For each

ease, we track the 11,12, and li,/norms of the error in the 'true' solution region.

We examine some simple test cases for the force smoothing function S(r/). Fig-

ure 5 shows the convergence rate of the global error (within the domain of interest)

for the smoothing functions S(,/) = 1 - 7/, and S(r/) = (1 + cosO?))/2. We choose

to show only the curves for the 12 error since the choice of norm does not change

the slope. The convergence rates for the two smoothing functions are 3rd and 5th
order, respectively.

Figures 6 and 7 show the force distributions for the choices of smoothing function

S(r/) = 1 - 77 and S(r/) = (1 + cos(_l))/2, respectively. Note that in both cases the

magnitude of the force has been reduced by an order of magnitude compared to the
unsmoothed case.

Our supposition that the reduced spectral bandwidth of the resultant force dis-

tribution is responsible for the improved convergence is demonstrated in Fig. 8.

The marked reduction in spectral bandwidth of the various smoothed forcing dis-

tributions can clearly be seen. Note that the magnitude of the even-numbered

wavenumbers is reduced due to the odd symmetry of the problem chosen.

There are several important points to note in these simplified tests. First, the

Couette flow case does not require the forcing function to impose no-penetration at

the solid surface, only no-slip. The imposition of no-penetration may considerably
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alter the convergence properties of the method. Secondly, the convergence proper-
ties of the steady state solution may not translate into similar properties for the

time-dependent solution. Thirdly, the 'optimal' smoothing function, if one exists,

is that which results in the narrowest spectral bandwidth of the forcing field, which

is itself a function of the boundary layer profile in the 'external' flow. Thus, the

optimal solution for a Couette flow may be different than that for a channel flow,

for example. Since we would prefer the forcing scheme to be independent of the flow

geometry, further refinement of the smoothing function may be of dubious benefit.

3. Future plans

The primary obstacle to obtaining useful results from the combined optimiza-

tion/simulation scheme is the slow turnaround time for the simulations themselves.

The code is being rewritten to improve the computational efficiency, primarily via

the implementation of collocation methods for the quadratic terms. An interim

solution has been to implement the immersed boundary method in the finite differ-

ence code (Lund et al., 1995), which is considerably faster although formally less

accurate. The fact that this implementation required less than one day of work
underscores the flexibility of the immersed boundary method itself and the ease

with which it can be incorporated into existing flow solvers. This method has also

been implemented in finite difference LES codes and has proved to be very efficient

(Verzicco et al., 1998).

The question of the convergence of the forcing scheme will also be investigated

further. There has been, to the author's knowledge, no formal proof of the conver-

gence properties of such schemes in general. For our purposes, it should suffice to
continue numerical experiments to attempt to improve on the 5th order convergence

of the smoothing demonstrated in this report.
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By P. Koumoutsakos

1. Introduction

Particle methods are powerful computational techniques to simulate phenomena

ranging from protein formation to stellar cluster formation. In fluid dynamics,

particle methods have been implemented for simulations of flows inside micro and

nanotubes (via molecular dynamics simulations) as well as for flows around aero-

dynamic shapes (via vortez methods). The underlying principle of particle methods

is the use of computational elements that automatically adapt to resolve the flow
field.

In molecular dynamics simulations, the computational elements carry informa-

tion about the material properties of the fluid while elements in vortex methods

represent macroscale quantities such as the vorticity of the flow field. The method

of molecular dynamics has been extensively developed in the last decade, and the

reader is referred to the review article by Koplik and Banavar (1998) and references

therein for an extensive survey of computational issues in flow simulations using

this technique.

Vortex methods are based on the discretization of the vorticity field and the

Lagrangian description of the governing equations, which when solved determine

the evolution of the computational elements. In addition to automatically adapt-

ing to the solution, classical vortex methods enjoy advantages such as the use of

computational elements only where the vorticity field is nonzero and the rigorous

treatment of boundary conditions at infinity. Until recently, disadvantages such

as the computational cost and the inability to treat accurately viscous effects had

limited their application to modeling the evolution of the vorticity field of unsteady

high Reynolds number flows using a few tens to a few thousands computational
elements. These difficulties have been overcome with the advent of fast summation

algorithms (multipole and particle-grid techniques) that have optimized the com-

putational cost. Moreover, recent developments in numerical analysis allow for the

accurate treatment of viscous effects. Vortex methods have today reached a level of

maturity, offering an interesting alternative to finite difference and spectral methods

for high resolution numerical solutions of the Navier-Stokes equations. In the last

three decades research in numerical analysis aspects of vortex methods has provided

a solid mathematical background for understanding the accuracy and stability of

the method (see Cottet and Koumoutsakos 1999 - referred to as CK99 from here

on). At the same time vortex methods retain their appealing physical character

that, we believe, was the motivation for their introduction.

In this article, we report some recent developments on the formulation of bound-

ary conditions and the implementation of spatially varying smoothing functions for
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vortex methods (CK99). These developments have been implemented in Cloud In

Cell and Fast Multipole algorithms for simulations of vortex ring-wall interactions

and cylinders in rotational oscillations, revealing a drastic modification of the wake

structure and significant drag reduction.

In the present line of work we exploit the common features of various particle

methods in order to construct computational tools for flow simulations over a large

range of scales. Hence the tree data structure that has been developed for the effi-

cient velocity evaluation in vortex methods is being used to identify near neighbors

for Lennard-Jones type interaction in Molecular Dynamics Simulations. Using this

algorithm we conduct simulations of droplet evaporation and coalescence.

Our goal is a hybrid particle algorithm suitable for simulations of macroscale

flows involving micro and nano devices. In such an algorithm molecular dynamics

could be implemented for the microscale component simulations, thus providing us

with boundary condition for the simulations of the macroscale flows, using vortex
methods.

2. Vortex methods

The computationally intensive part of vortex methods is the evaluation of the

velocity field on the computational elements (particles) from the vorticity field. As

particles carry vorticity the straightforward implementation amounts to pairwise

interactions of the computational elements. For N particles this is the classical N-

body problem whose computational cost scales as O(N 2). Fast velocity evaluations

can be realized either by employing Particle-Mesh (Cloud in Cell - CIC) techniques

or by using multipole methods and efficient tree data structures. While the latter

algorithms are the methods of preference as they do not require explicit far field

conditions or any regularity of the domain, CIC algorithms are the method of choice

for flows in regular and/or periodic domains due to the efficiency and speed of

existing Fast Poisson solvers.

2.1 Cloud In Cell (CIC)

An excellent account of particle mesh techniques such as CIC can be found

in the classic book by Hockney and Eastwood (1988). At each time step the

mesh vorticity is constructed from the particle strength using higher order assign-

ment/interpolation functions. A vector Poisson equation, V2_ = -w is solved

for the stream function k_ subject to Dirichlet or Neumann boundary conditions.

The particle velocity is subsequently interpolated from the mesh velocity u =

V x _ using the same interpolation procedures. We implement 4th order inter-

polation/assignment schemes that conserve up to the third moment of the vorticity
flowfield invariants of the flow.

Simulations of vortex ring reconnection using a CIC code are currently being con-

ducted in parallel computer architectures. Typical simulations use 60000 particles

for the initial configuration and approximately 500000 particles during the recon-

nection phase. The calculations were performed on a Sun Ultra 2 workstation and

on a NEC SX4. The CPU time per time step for 500000 particles and a 1403 mesh
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FIGURE 1. Tree data structure for two normally distributed group of particles.

is approximate 140 seconds for the Sun and 4.7 seconds for the SX4. The sustained

performance on the SX4 is 1.0 GFlop, approximately 50% of peak performance.

$._ Fas_ multipole method8

The CIC method is ideally suited to vortical flows in simple geometries, for which

fast Poisson solvers are efficient. For complex geometries, the velocity field can be

derived from the vorticity field using the Biot-Savart integral, enforcing at the same

time the far field boundary conditions. However, when this integral is discretized

using as quadrature points the locations of the vortex particles, the nominal cost
of the method is proportional to the square of the computational elements, making

it prohibitively expensive. A remedy to this situation, which unlike the CIC avoids

the implementation of a grid, while maintaining the accurate treatment of the far
field boundary condition is the Fast Multipole Method (FMM) first proposed by

Greengard and Rohklin (1987) (see also a more recent review article by Greengard,

1997). It is based on the observation that the influence of a cluster of particles
at a certain distance may be approximated by a finite series expansion. In order

to exploit this observation, clusters of particles are spatially decomposed into a

hierarchy of clusters formally represented by a tree data structure.

The tree is constructed by initially defining its root as the cubic box enclosing
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FIGURE 2. The particles sorted in Morton order to allow efficient parallel/vector

processing.

all the computational elements. The root and its descendants are recursively sub-

divided into eight identical boxes until each of the boxes contains only a certain

maximum number of particles or the maximum allowable levels of subdivisions has

been reached. A genealogical list of parent child relations and four interaction lists

of each box in the tree effectively determine the validity of the expansions.

Figure 1 shows an example of an imploded adaptive oct-tree for two normal

distributed groups of particles. The tree consists of 430 boxes in 6 levels.

The contribution of a cluster of particles to the potential of a given particle can

be computed to desired accuracy if the particle is sufficiently far from the cluster in

proportion to the size of the cluster and a sufficiently large number of terms in the

multipole expansions is taken. Since _he creation of the p-term expansions requires

O(Np 2) operations for each of the log s N levels of the tree, the total amount of
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work scales as O(A/" log Af).

Further improvements are possible if well separated boxes are allowed to interact.

These interactions are in the form of shifting the expansions of a certain cluster with

the desired accuracy to the center of another duster. Then these expansions are
used to determine the velocities of the particles in the second cluster. The cost

associated with the translation of a p-term multipole expansion is O(p 4) or O(p 2)

if the multipole expansions are converted into exponential expansions (Greengard,

1997). The box-box interaction minimizes the tree traversal for the individual

particles, making the algorithm formally O(N). A parallel version of the FMM is

currently being developed using the exponential expansions. Other techniques for

promoting vectorization and parallelization (data locality) is to sort the particles

according to their position in the tree using Morton ordering. Particles in the same

childless box are mapped consecutively in memory, securing an efficient stride im

memory (Fig. 2). The spatial relations described by the tree are further utilized
during load balancing of the particles and the boxes.

The tree data structure is used to identify clusters of particles and to identify for a

certain particle its near-neighbor list and the clusters for which far-field expansions

will be implemented. Naturally this property is exploited for other types of particle

simulations such as the molecular dynamics presented in the following section.

_.3 Boundary conditions for 3d viscous vortez methods

The formulation of vortieity boundary conditions in terms of integral equations

linking boundary terms and vorticity in the flow is presented in CK99. Following
this work, we report here the implementation of boundary conditions in a three-

dimensional viscous splitting algorithm.

Vorticity boundary conditions for three-dimensional viscous flows have, compared

to the two-dimensional case, two additional difficulties. First, since vorticity is a

vector, one needs 3 instead of 1 boundary condition. Secondly, vorticity created at

the boundary must be divergence-free, and this constraint must enter the boundary

conditions. To simplify the exposition, we will assume that the boundary is a flat

plate located at z3 = 0. The general case follows by using local coordinate axis

parallel and orthogonal to the wall. We will also assume a velocity vanishing at the
wall.

One vorticity boundary condition immediately follows from the no-slip condition:

the wall-normal component of the vorticity vanishes at the wall:

w3 =0

It is worthwhile to notice that a consequence of this condition is that, at the wall,

(u. V)w3 = (to. V)u3 = 0. Hence the normal component of the vorticity equation
written at the wall yields

02603
-0

Let us now turn to the tangential components of the vorticity. A natural extension

of the two-dimensional vorticity flux boundary conditions is to enforce no-slip for
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the components ul and u2 of the velocity by creation of vorticity for the components
032 and 031 respectively

This leads to the following three-dimensional version of the algorithm:

I. solve the convection diffusion for the three components of the vorticity, with
homogeneous Dirichlet boundary condition for the normal component and homo-

geneous Neumann boundary conditions for the tangential components:

a031 aw2

_3 - Oz3 - Oz3
-0

II. compute the slip (ul, u2) at the boundary

III. repeat sub-step 1 for the tangential components, with the new Neumann bound-
ary conditions

C%O1 U 2 00J 2 Ul

Ox3 At ' Ox3 At

It is easy to check (see cKgg) that this procedure guarantees that the vorticity
remains divergence-free for all times. Figure 3 shows the viscous interaction of a

vortex ring impinging at an angle on a solid wall using the high order CIC method.

The Reynolds number based on the circulation of the ring is 800. The ring is
resolved using 500000 particles and a 1403 mesh (CK99). These simulations were

performed on a cluster of DEC-Alpha workstations with a performance of about

5000 particles per CPU second per processor.

_._ Variable size vortex methods

In order to account for diffusion in vortex methods simulations, we employ the

scheme of Particle Strength Exchange (PSE). As it is discussed in CKg9, the PSE

has enough flexibility in dealing with viscous effects to allow the treatment of vari-
able viscous scales in the vorticity redistribution scheme. As we wish to use fewer

particles and thus reduce the computational cost, in flow regions with relatively

small vorticity gradients (such as a cylinder far wake), we are interested in develop-

ing diffusion and convection formulas for vortex methods with spatially varying blob

sizes (e). This can be done through merging of nearby vortices, or, more generally,
by periodically remeshing the particle distribution on a variable size mesh.

A consistent treatment of the diffusion requires the overlapping of the particles

on a scale given by the kernel used in the PSE formula. As a result, a locally

coarser particle resolution must go with an increasing diffusion range e. In the case

of the Biot-Savart integral the incorporation of variable blobs consists of replacing

e by e(y) in the otherwise unchanged quadrature formulas. However, this technique

would not be consistent in the case of the integrals that are used to replace the

Laplacian operator in the PSE formulation (see CK99 for details). The correct way

to implement a variable blob size in a PSE scheme is through a change of variables
which maps the variable particle grid to a uniform one.

For simplicity let us focus on the one-dimensional case. We will denote locations

in the physical space with variable grid size by x, y and locations in the mapped
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FIGURE 3. Isosurfaces and vorticity contours for a vortex ring impinging at an

angle on a fiat wall (CK99).

coordinates where the grid-size is uniform by 37,_). We will assume that the mapping

is given by the formulas

x = f(_),_ = g(x),w(x) = &(2).

Writing derivatives in the mapped coordinates yields:

d2_-h(3:) d [ ^ d&]dx 2 -_x h(x)-_x

where h(_?) = g'(x). Next, we use the following integral approximation (see CK99

for a proof):

^ d& e- a h(_) + h(_))[&(_) _ b(_))]r/(____y) d_).d h(x) ~

In the above formula, the kernel rI satisfies the necessary moment properties and e is

a constant blob size. This leads to the following PSE scheme for the heat equation

in one dimension with _, = 1

dOJPd_...t_-- e-3 h(xp) E _)qh(Xp) _-2 h(xq) [wq - wplr_( XP -e _q)

q
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FIGURE 4. Vorticity contours and drag coefficient curves for two-dimensional flow

past a circular cylinder performing rotary oscillations at Re = 2000.

where _)q denotes the volumes of the mapped particles. Notice that the volumes of

the physical and mapped particles are related through the Jacobian of the mapping:

_q = vqh(_q)

which establishes that the scheme is indeed conservative. To extend this approach

to two or three-dimensional flows, one must handle integral approximations of dif-

ferential terms involving diffusion tensors.
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In convection-diffusion problems, the use of variable blob sizes must be combined

with regridding techniques to ensure that the particle discretization is everywhere
consistent with the local blob sizes and that particles maintain an adequate overlap.

The vortex method is ideally suited to simulations of external flows because it

allows an exact treatment of the far field conditions, and their computational effort

is restricted to vortical zones of the flow. They can be made even more efficient

if one can take advantage of the decay of vorticity gradients in the wake to save

computational elements. In the case of a wake behind a cylinder, the blob size is

proportional to the distance to the center of the obstacle. Particles are mapped to

a uniform mesh through a logarithmic mapping. In the mapped coordinates the
diffusion operators allow the use of simple PSE formulas. The particle distributions

in the wake of an impulsively started cylinder at Re = 200, using the uniform

particle distribution and the the variable blob sizes according to the logarithmic

mapping, were compared. The evolution of the drag coefficient obtained for the

two simulations is identical while the variable blob simulation requires an order of

magnitude less particles (about 5000), which translates to respective savings in the
computational times.

Using these new vortex methods, we conducted two-dimensional simulations at

Re = 1000, for a cylinder undergoing rotary oscillations. The motivation for these

simulations was to investigate the experimental findings of Tokumaru and Dimotakis
(1992), which have shown that at Re = 15000 rotary cylinder oscillations may result

in up to 80% drag reduction. In the present simulations a similar drag reduction was

observed (Fig. 4), and it is attributed to the destruction of the Karman wake and

the formation and ejection of vortex dipoles from the surface of the body. Clearly

one does not expect the flow to be purely two-dimensional at these Re numbers,
and the results of the simulations should not be considered as direct numerical

simulations (DNS). However the similar drag reduction between computations and

experiments and the mechanism of dipole ejection from the cylinder surface merit
further investigation as effective control mechanisms via three-dimensional DNS.

3. Molecular dynamics

Molecular Dynamics (MD) is the method of choice for the study of flow phenom-

ena in micro and nanoscale flows. In the context of particle methods, MD algorithms

may be easily constructed from tools already developed for vortex methods. The
tree data structures developed for the identification of near-neighbors in vortex

methods is implemented in MD simulations using the Lennard-Jones potential.

We present here results from the implementation of a molecular dynamics algo-

rithm to the simulation of microdroplet evaporation and coalescence (see Walther

and Koumoutsakos (1999) for further details).

3.1 Droplet evaporation

To study the evaporation of nano-droplets, the tree code was adapted for molecu-

lar dynamics (MD) simulation. The short range potential of the 12-6 Lennard-Jones

system (U(r) = 4e[(a/r) 12 - (a/r)6]) allows a simple truncation of the po',ential at

r/a = 2.5 - 10. Hence, the tree effectively serves to identify neighboring particles. '
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FIGURE 5. Evaporation curve for a 22360 molecule droplet. +++: MD simulation;
: D 2 evaporation law.

Standard leapfrog integration is used to advance the molecules in time subject to

periodic boundary condition using a ghost-layer technique.

Simulation of the evaporation of an Argon droplet into Argon vapor has been

conducted for systems involving 20000 - 150000 molecules. The far-field temperature

boundary condition is enforced by heating the molecules in the far-field at regular
intervals.

Initially the molecules are places on a face-centered-cubic (f.c.c.) lattice with the

desired temperature. The system is then relaxed during 5000 to 10000 time steps,

heating the complete system to the equilibrium temperature of T* = TkB/e =

0.83. After the relaxation the temperature of the vapor is increased to T* = 2.50,

and as the droplet reaches the saturation temperature (T* _ 1.0), evaporation

commences/begins/starts. The simulations were performed on Sun Ultra 2, allowing
approximately 20000 particles per CPU seconds per time step.

Figure 5 compares the predicted evaporation coefficient, #v, with the D 2 evap-

oration laws (Kuo, 1986) in terms of the enumeration of molecules in the droplet
(Nd). The predicted value is within 10-20% of the D2-1aw, which is considered to

be a good agreement considering the approximations of the simulation.

#._ Droplet coalescence

Another study currently being conducted involves the coalescence and breakup
of nano droplets. The governing physical parameters are the Weber number, We =

p2RU2 /% Reynolds number Re = p2RU/t_, and the impact parameter B = x/2R,
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FIGURE 6. Snapshots of droplet molecules during coalescence.

where U is the relative velocity, 7 the surface tension, and )C is the projection of

the separation distance between the droplet centers in the direction normal to that

of U.

The system consists of 2 x 5576 and 16556 molecules for the droplet and gas

phase, respectively. Assuming a Lennard-Jones potential and a cutoff of 6.5a, the
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simulations require 5 CPU seconds per time step on a Sun Ultra 2.

Figure 6 shows snapshots of the droplet molecules during coalescence and breakup
for the parameters (We, Re, B) = (210,570, 0.5).

5. Summary and conclusions

We have presented some results from our ongoing investigations on particle meth-
ods (vortex methods and molecular dynamics). Having resolved in the last decade

several issues concerning the accuracy and numerical capabilities of vortex meth-

ods, the key issue is the use of efficient computational techniques for the solution of

the associated N-body problem. Particle-Mesh techniques and multipole summa-

tion algorithms coupled with efficient tree-data structures have being implemented,
allowing for large scale simulations using millions of computational elements in two
and three dimensions.

Looking ahead, particle methods are envisioned as a computational technique
that could help bridge the gap in simulations of incompressible flows in micro and

macroscales. The coupling may be achieved by using molecular dynamics algo-

rithms to simulate the microscale phenomena and provide boundary conditions for

macroscale simulations using vortex methods. This hybrid procedure may be further
extended to other schemes, coupling particle and grid based methods in a formula-

tion that takes advantage of the complementary advantages of each method. Such

numerical algorithms may offer an accurate and viable alternative to existing multi-
block schemes while offering the capability of extending simulations to the level of

nano and microscale flow phenomena. Portability and efficiency of the numerical

codes and the exploitation of emerging large scale parallel computer architectures

will be crucial in these developments.
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