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ABSTRACT

The asymptotic solutions, described by Tennekes and Lumley (1972), for surface flows in a channel,

pipe or boundary layer at large Reynolds numbers are revisited. These solutions can be extended

to more complex flows such as the flows with various pressure gradients, zero wall stress and

rough surfaces, etc. In computational fluid dynamics (CFD), these solutions can be used as the

boundary conditions to bridge the near-wall region of turbulent flows so that there is no need to

have the fine grids near the wall unless the near-wall flow structures are required to resolve. These
solutions are referred to as the wall functions. Furthermore, a generalized and unified law of the

wall which is valid for whole surface layer (including viscous sublayer, buffer layer and inertial

sublayer) is analytically constructed. The generalized law of the wall shows that the effect of both
adverse and favorable pressure gradients on the surface flow is very significant. Such an unified

wall function will be useful not only in deriving analytic expressions for surface flow properties but

also bringing a great convenience for CFD methods to place accurate boundary conditions at any

location away from the wall. The extended wall functions introduced in this paper can be used

for complex flows with acceleration, deceleration, separation, recirculation and rough surfaces.

1 INTRODUCTION

An asymptotic solution for the inertiM sublayer in a channel or pipe flow at large Reynolds

numbers can be written as (Millikan, 1938)

U r K

where U is the mean velocity, ur is the skin friction velocity defined by the wall stress rw as

ur = V/_/p, y is the normal distance from the wall, _ and p are the viscosity and density of



the fluid. _ _ 0.41and C _ 5.0. Eq.(1) is also theoretically va_d and only valid for a flat plate

boundary layer, but it has been applied to other wall bounded flows with some successes despite

its formal validity. For a boundary layer with an adverse pressure gradient and zero wall stress,

Tennekes and Lumley (1972) derived another asymptotic solution which reads

-- = a In + t3. (2)
Up

where up is defined by the adverse wall pressure gradient as up = [(v/p)[dP_/d!t]] 1/3, and a _ 5,

_ 8 according to the experimental data of Stratford (1959). Eq.(2) has not been paid much

attention in computational fluid dynamics. Apparently, Eq.(1) will become erroneous for flows

near separation or re-attachment points because there the wall stress, hence the skin friction

velocity, is nearly zero. On the other hand, Eq.(2) will not be valid for boundary layer flows with

a small or zero pressure gradient because up is nearly zero.

In this paper, we will briefly repeat the analyses of Tennekes and Lumley and introduce a more

general asymptotic solution for the surface flow valid for both the zero or nonzero wall stress and

the zero or nonzero wall pressure gradient. Therefore, the solution can be used for flows with

acceleration, deceleration, separation and recirculation.

The basic idea is to assume, at large Reynolds numbers, the existence of a surface layer distinct

from the outer layer in a boundary layer flow. The existence of the law of the wa_ in the surface

layer and the existence of the velocity-defect law in the outer layer will lead to an asymptotic

solution for the surface flow in the region where

Y << 1 Y > 1. (3)

where, _ represents the thickness of the boundary layer, l_ is the length scale related to the

viscosity of the fluid which will be defined later. The region in which Eq.(3) holds is called the

inertial sublayer. In the vicinity of the wall where y/_ is of order one, the turbulent stress is

significantly suppressed and this region is called viscous sublayer. An asymptotic solution can

be obtain for both the inertial sublayer and the viscous sublayer. The region between these

two sublayers is called buffer layer where the turbulent and viscous stresses are of same order.

A simple model of turbulent stress leads to an expression which matches both the viscous and

inertial sublayers and leads to an unified taw of the wall, similar to the one proposed by Spalding

(1961). We will start first with the boundary layer flow over a smooth wall. A general asymptotic

solution for the surface layer will be obtained. The effect of rough surfaces on the solution will

then be considered.

2 WALL BOUNDED TURBULENT FLOWS

The equations of motion for steady two-dimensional incompressible flow in a Cartesian coordinate

system are

OU OV

0-7 + = 0, (4)
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For simplicity, we are consideringboundarylayer flowsin which the effectof wall curvature
is neglected.The existenceof the wall and the no-slip conditionat the wall will create,at a
sufficientlylargeReynoldsnumber,a verythin surfacelayernear the wall, which is distinct from

the outer layer of a turbulent boundary layer. In the surface layer, the flow is largely affected by

the viscosity, the governing equations (4-6) can be significantly simplified and their solutions are
of certain forms called the law of the wall. On the other hand, in the outer layer of a boundary

layer remote from the surface layer, the flow is less or nearly not affected by the viscosity, the

solution of the above equations is of another forms called the velocity-defect law.

2.1 The law of the wall

In a coordinate system with the wall at y = 0, the boundary layer flow in the half-plane y _> 0

is mainly in the x direction, except near the separation or re-attachment point. In general, the

wall stress vw and the wall pressure gradient (dP/dx)w are non-zero and can be either positive

or negative with respect to x direction. We may define a velocity scale uc using these two wall

parameters as follows,

V_P'r_[ + (vldPw_l/3
(w)= ) •

Thus defined uc will never become zero in any boundary layer flows with either zero wall stress

or zero pressure gradient because ur and up cannot be zero at the same time. With uc we may

define a viscous length scale l_ = _'/uc. This viscous length scale is usually very small comparing

with other length scales of the boundary layer, for example, the boundary layer thickness 5 and

the downstream length scale L. That is, ucS/_' >> 1 and u_L#, >> 1.

Let us start with the simplification of the governing equations (4) -(6) for the flows in the thin

surface layer using an order of magnitude analysis (see Tennekes and Lumley, 1972). We use uc

to scale both the mean velocity U and turbulent velocities u, v. Let L be the downstream length

scale and _ = _'/uc be the length scale in y direction. With cOU/cOx ,._ uc/L and COV/Oy _ V/_,,

the continuity equation (4) gives V ,'. uclJL. The left hand side of Eq.(6) is then of order

u_t,,/L 2. The orders of magnitude of the turbulent terms in Eq.(6) are

' 0--;-= o ; (8)

the viscous terms in Eq.(6) are of order

= o , v-Si-j = o \--£ / .
(9)



Because ucLl_' >> 1 or t_lL << 1, the major turbulence term, cov_ll)y, must be balanced by the

pressure term in the surface layer, that is

10P

p 0-'-y-+ -_y = 0. (10)

Integration of Eq.(10) from the wall to y (within the surface layer, i.e., y/_f << 1) and differentiation

with respect to x lead to an expression for COP�COx:

I cOP 1 dP,,, cO_--_Y
w .

p cOx p dx cOx
(11)

where, P_ is the pressure at the wall. With Eq.(ll), the pressure term in the x-momentum

equation (5) can be expressed in terms of the wall pressure.

Now we may estimate the various terms in Eq.(5) in the surface layer as follows

,

cOx ' cOx ' cOy

= o , - o . (12)

The major terms in Eq.(12) are CO_'_/COyand vco2U/COy2 if l_/L << 1. Therefore, the z-momentum

equation (5) can be approximated in the surface layer as follows

[ _cOU_ 1 dPwA -h'_+ - . (13)
cOy \ cOy] p dz

Integration of this equation from y = 0 to y (within the surface layer) yields

cOU r,_
- _V + u-x- = -- + -w

Y P

y dPw

p dx'
(14)

where rw = #(cOU/cOy)u=o is the wall stress. The no-slip condition at the wall for turbulent

velocities has been imposed. This is a general equation for surface flows under the condition

ucL/v >> 1. Eq.(14) indicates that, in general, the surface flows are affected by both the wall

stress and the wall pressure gradient. The relative importance of these two terms depends on the

flow situation. For example, for a boundary layer flow with a strong adverse pressure gradient,

the wall stress _-_ can become very small and even vanish. In this case, the adverse wall pressure

gradient controls the surface flow and the total shear stress (the left hand side of Eq.(14)) is not

constant across the surface layer. On the other hand, if the pressure gradient is zero or small

compared to the wall stress, then the wall stress dominates the surface flow and the total stress

is constant or nearly constant across the whole surface layer.

The flows we want to consider here include acceleration, deceleration and even recirculation.

Therefore, the two terms on the right hand side of Eq.(14) could be of the same order of magnitude,
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or oneis largethan the other. Notethat becauseEq.(14)is linear,we may deal with these two

factors separately by decompose U and -_-_ into two parts (Tennekes, 1968, has shown with a

multivariate asymptotic technique that this is a valid procedure). Following Tennekes and Lumley,

we write

u = u: + v:, (15)

__-_= -(_): - (_):. (16)

The first part, represented by U1 and --(_'-V)I, is associated with the wall stress rw/p only and the

second part, represented by U2 and -(_W)2, is solely related to the pressure gradient (y/p)dP_/dx,

i.e,,

yOU1 = T_; (17)-(_):+ _ p'

c9U2 y dP_ (18)-(_)_ + _'--5-_-y= -pdx

The first part of the flow in Eq.(17) has only one characteristic velocity ur and one characteristic

length u/u_.. Similarly, the second part of flow in Eq.(18) has only one characteristic velocity up

and one characteristic length u/up. Therefor, the nondimensional form of Eq.(17) and Eq.(18)

can be written as

o(v_/_._) _-_ (19)-(_):+ =
u_ 0(_ryl_) _-_'

-(_-_)2 + O(U2/up) (_y) vdP_/dx (20)u_ _ p _

There are no additional parameters in the boundary conditions on Eq.(19) and Eq.(20) because

the boundary conditions are homogeneous (both the mean velocity and the turbulent stress are

zero at y = 0). Therefor, the solution of Eq.(19) and Eq.(20) must be of the forms:

-- = :-:t: , (21)
Ur put

u_ pu._

and

up p__

- :_ g2 •
up2 p up

(23)

(24)

Eq.(21)-Eq.(24) are called the law of the wall.



2.2 The velocity-defect law

In the outer layer of a boundary layer, the boundary layer thickness _ is the only appropriate

length scale. If ur is the only characteristic velocity for the first part of the flow, then the first

part of the velocity-defect ((-/1 - Uo)/(r_v/pU_) is a function of y, _, u_ only, where U0 is the velocity

at the edge of the boundary. Therefore, we have a system of four quantities with two dimensions.

From II theory of dimensional analysis, only two independent normalized quantities can be formed

and we may write this system as

{(u_ - Uo)lu_. y}F ;_/_ ' 7 =o,

or

= =-:zF1 .. (25)
Ur pur

For the second part of flow (/2, we may use the above same argument to obtain a relation for U2

up - P u3 2

The relations (25) and (26) are called the velocity-defect law.

3 ASYMPTOTIC SOLUTIONS FOR SURFACE LAYER

3.1 The inertial sublayer

If the Reynolds number, Re = uc_/v, is large enough, an overlapping layer between the surface

layer and the outer layer may be developed. This overlapping layer is called inertial sublayer,

where y/_ << 1 and ucy/v >> 1. The existence of the inertial sublayer can be easily seen from the

following relation

y ucy v (27)
- v uc_"

For example, if uc$/v >_ 104, there will exist a region where ucy/v > 10 s and y/_ <_ i0 -2. In the

inertia] sublayer, the law of the wall in the surface layer should match the velocity-defect law in

the outer layer. Following Tennekes and Lumley to equate the mean velocity gradient aU1/cgy

calculated from Eq.(21) and Eq.(25), we obtain

d(_y/_) d(y/_)"

Eq.(28) indicates that the both sides must be equal to a same constant, 1/_, say. And this leads

to a logarithmic velocity profile in the inertial sublayer:

[/1_ r_ C]. (29)



To matchthe casewith zeropressure gradient boundary layer, _ = 0.4I, C = 5.0. Eq.(29) can be

rearranged using uc as

(30)
uc pu_ k_ u_I t l,/ ) J

where

C1 is shown in Figure 1, it goes to zero as u_ vanishes (upluc _ 1.0).

Using the above same argument for the second part of the flow U2, based on the law of the wall

(23) and the velocity-defect law (26), we may obtain the solution:

[ (v)]u, p u 3 a In + fl . (32)

To match the case with zero wall stress boundary layer, a = 5.0 and/7 = 8.0. Eq.(32) can be

rearranged as

tic P U3 L uc

where

C2 is shown in Figure 1, it goes to zero as up vanishes.

¢q

O

o_
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C 1

C2 I /

......... Zero line / ,-

/./"

// f

i I 11 J/

if/

0.25 0.5 0.75 1

Up/Uc

Figure 1: Coefficients C1 and C2 in the law of the wall
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Finally, the total velocity U = Uz + U2 can be written as

uc - pu_ L_ Uc p u_ L uc

With Eq.(35) and Eq.(14), it can be shown that, in the inertial sublayer (Ucy/V >> 1), the total

turbulent stress is
r_ y dP_

- u--_= -- Jr -_ (36)
p p dx "

or

u_ -pu_ \_/ ÷ ]de,,/dxl \u_/ v

Equations (35) and (36) are the asymptotic solutions for the surface flow in the inertial sublayer,

where u¢y/_, >> 1 and y/_ << 1. These equations are called wall functions in CFD, because these
relations can be used as the near-wall boundary conditions for CFD calculations. The effect of

pressure gradients on the mean velocity profile described by Eq. (35) is shown in Figure 2. The

left of Figure 2 shows the strong effect of adverse pressure gradients on the mean velocity profile

as the ratio of Up/Uc varies from zero to one (which corresponds respectively to the zero pressure

gradient boundary layer and the boundary layer about to separate). In the boundary layers with

favorable pressure gradients, the skin friction velocity ur increases with the pressure gradient so

that up/uc = up/(u_. + up) is always less than one and it is usually a small value. For example, in
_z/3_ where the Reynoldsa fully developed channel flow, it can be shown that up/u_ = 1/(1 + "_eh /,

number is defined as Reh = Uma=h/z/, h and Urea= are the half width of the channel and the center

line mean velocity, respectively. Therefore, if Reh >_ 104, then up/u¢ g 0.044, hence, the effect of

pressure gradients on channel or pipe flows will not be very significant if the Reynolds number

Reh is sufficiently large. However, for accelerating boundary layer flows, the value of up/u¢ could

be much larger than 0.05 before the turbulence has been suppressed by the acceleration. The

right figure of Figure 2 shows the effect of favorable pressure gradients on the mean flow up to

up/uc = 0.3, which corresponds to the flows with extremely large favorable pressure gradients.

The effect is significant. The effect of pressure gradients on the turbulent stress, described by Eq.

SO

45

4O

35

30

zs

20

15

10

5

ol

5O

Adverse pressure gradient j" ..i
s.1"

I" / t

t" i" 40

.ff" 1.// ._._*_

I'" //"tt _'_'_ _ _ _

._'_ _ - .... U Uo = 0.2

UJU_, = 0.8

............. Up/Ua = 1.0

Io' lo_ ,0" ,0' ol

ucy/v

Favorable pressure gradient

Up/U= = 0.0
..... Up/U= = 0.05

......... up/u= = 0.1

u_u= = 0.2

............. up/u= = 0.3 - -

, L = )l_Ll i ....... I , , ...... !
10_ 10_ 10"

ucy/v

Figure 2: Effect of pressure gradients on the mean velocity



(36)or Eq. (37), is shownin Figure3. Again,both the adverseand favorablepressuregradients
havethe strongeffecton theturbulentshearstressandthereis no constantshearstresslayerfor
boundarylayerflowswith largepressuregradients.Theconstantshearstresslayeronly existsfor
flowswith zeropressuregradients,or up/uc << 1. In addition, we see -_:_ changes its sign for

some large favorable pressure gradients in the right of Figure 3, which may indicate the limitation

of Eq. (36) or Eq. (37).

250

200

_100

A

100

¥

00

iFU/Uo=0.2 / / Favorable pressure gradient
" ^2 i /

...... LIp/U c = U. / / 04 _ 1.

........... u/uo=05 / /
P " / l

...... u./uo= 0.8 / /

................ up/u°=1.0 .,'/ / _ F.:.".:.:.:.--.I.--.:.".-.-.-.--.".-.-- ........
/ // ,.

/ / / _ o., _ ....... -- ................ .

."/ // .,-" t """. _'_. .... u,/u. = O.OS
/ / _," L _"_ \ ....... %/u. = 0.1

....."" ....-'/ ._-/ I- \.. "-. ------- udu .o.=
..... 1" -'" -o.5_ -. "\ .......... .#.:. o.s

"\ \
i i i i i i i , I i 1 I l I I I I I I "_ I I I I I I I I ' 'Ill .... I"l'l

102 10= -1 100 200 300 400 500

u y/v uoy/v

Figure 3: Effect of pressure gradients on the turbulent stress

3.2 The viscous sublayer

In the vicinity of the wall, for example, ucy/v <_ 5, the viscous effect dominates the flow. The

turbulent stress -u--_ is vanishingly small compared to the viscous stress uOU/Oy even though the

flow is still quite disturbed and is not laminar. In fact, the ratio of the turbulent rms velocity

u r to the mean velocity U at the wall is finite, i.e., (ul/U)u--.o = const.. In this so-called viscous

sublayer, the turbulent stress can be neglected and the velocity profile can be obtained from

Eq.(14) as follows

= pu-- + p , (3s)
or,

U- (39)
pz_ 2p dx

The effect of pressure gradients on the flow in the viscous sublayer is shown in Figure 4. Again,

the effect of pressure gradients is significant.
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Figure 4: Effect of adverse pressure gradients on the flow in the viscous sublayer.

EFFECT OF ROUGH SURFACES

Now let us consider the effect of rough surfaces on the surface flow. Let h denote an rms roughness

height. If the ratio h/_f is small, then the roughness will not affect the velocity-defect law. However,

the law of the wall in the surface layer may need modification. Let us define y = 0 as the average

vertical position over the rough surface. Apparently, we are interested in the flow only at y _ h,

because at y = 0 the flow field is not even defined. Now, the surface layer over a rough surface

has another length scale h, in addition to v/uc. The ratio of the two is the roughness Reynolds

number Rh = uch/v. If Rh is of order one, Rh < 5 say, one may expect that the roughness will

have no effect on the surface flow because the roughness elements are submerged in the viscous

sublayer where no turbulent stress can be generated, even though much the flow is disturbed. It

can be shown that Eq.(14) is still valid for the surface flow with rough surfaces as long as h/_ << 1

and ucL/v >> 1, h/L << 1. Following Tennekes and Lumley's argument [z], the law of the wall can

be written as

uz { ) (40)

-- _U2v dP_,/dxT,3f2 \-(upyz_' Rh) , (41)
u_ p up

or,

U_ pu_.

U2 -- v dPw/dx-(y,_,3f2 -_ Rh .) (43)
up p up

The velocity-defect law in the outer layer of a boundary, Eq.(25) and Eq.(26), will be independent

of the surface roughness as long as h/5 << 1. The matching of the velocity derivative in the inertial

10



sublayerwill leadto the logarithmicvelocityprofilewith an additivefunctiondependingonRh:

v _ _-_ u_in + CI(Rh) +
uc - pu_ uc ; u_ L uc

or

v r_ [!u_ in + CI(Rh) + ' R
uc --pu_ LtC Uc p u 3 L uc

For Rh < 5, as mentioned earlier, the surface roughness is too small to affect the surface flow.

Hence, in Eq.(44), CI(Rh) _ C1, C2(Rh) _ C_ when Rh _< 5. For Rh >_ 5, CI(Rh) and C2(Rh)

may depend on the roughness Reynolds number Rh. The detailed relations must be determined

by experiments.

However, for large values of Rh (> 30, say), Tennekes and Lumley [1] have shown that the co-

efficients C_(Rh) and C_(Rh) in Eq.(45) should be independent of Rh. If these coefficients are

absorbed in the definition of h, then Eq.(45) may be written as

v _ [l_ ln +
-,OU_L_Uc p u3 L u_

With Eq.(44) or Eq.(46) and Eq.(14), it can be shown that the turbulent stress in the inertial

sublayer (ucy/v >> 1) is
r_, y dP_,

- u--_= -- + -_ (47)
p p dx

Now let us consider whether there exists a viscous sublayer on a rough surface. Apparently, for the

case of large Rh, the roughness elements are well above the viscous sublayer defined by ucy/r, < 5.

These elements generate turbulent wakes and are responsible for essentially inviscid drag on the

surface. Therefore, no viscous sublayer exists and Eq.(46) may be used down to the "wall", where

y=h,U=O.

On the other hand, however, for small Rh < 5, the viscous sublayer may exist. It can be shown

that Eq.(39) is valid with the following modification:

1 dPw/dxu = (y- h) + 2 p. (Y- h)_ (48)

where U = 0 at y = h. Eq.(46) and Eq.(48) indicate that the "effective wall" for rough surfaces

is at y = h.

5 Unified wall function

We have discussed the asymptotic solutions for surface flows in the inertia sublayer and the viscous

sublayer. The region between these two sublayers, i.e., 5 _< u_y/t, < 30, is called buffer layer.

In this region, the viscous and turbulent stresses are of same order. No theoretical asymptotic

11



solutioncanbeobtainedfor this layer.However,byusinga simplemodelfor theturbulent stress
in the buffer layer and a proper matchingprocedure,we are able to obtain a singleanalytic
function,unifiedwall function,for thewholesurfacelayerwhichincludesviscoussublayer,buffer
layerandinertia sublayer.Suchanunifiedwall function(without consideringtheeffectofpressure
gradients)wasfirst constructedby Spalding(1961). Here,we will constructan unified wall
function with the effectof pressuregradientssothat it canbe usedfor flowswith acceleration,
deceleration,separationandrecirculation.

5.1 Unified law of the wall

Let us start with Eqs. (17) and (18). In the buffer layer, -(h'_)l and u-_y are assumed of same

order. The same is true for -(u--v)2 and u-_zy. The buffer layer is considered very close to the
wall. Therefore, we may assume that the following near-wall behaviors are valid throughout the

buffer layer,

-(_-_)1 ~ y3 .__O(y4), Vl ~ y Jr-O(y2) , hence - (_"_)1 _ Vl3 _- O (Vl4) (49)

_(_)_ ~ y3+ O(y') , V_~ y_+ O(y3), hence - (_)_ ~ U2/_+ 0 (V2/2) (50)

If we further model -(_--_)1 and -(_-_)2 with an eddy viscosity concept that they are proportional

to the mean velocity gradient, and note that OU1/Oy is order of one and OU2/Oy is of order y or

U_ 12, then we may write

- (_)_ _ _ [_
+0

\_/j W' -(_); _" L_+° \ _ yj Oy (51)

With theses models, Eqs. (17) and (18), in the region from the wall to the buffer layer, can be

written as

-['+c + 0 dU1 = _dy (52)\,4/J

Integrate the above equations, we obtain

r: = ++c'rt" +o (rts),
- + +o

(54)

(55)

where

= .... = 2 Idp.,,.,/dxlU_. (56)y_ _y_,, y/_ _y_,, ui+ p_,._u,_, u_ @_/d_ u_

Equations (54) and (55) describe the behavior of U_ and U2 in the buffer layer which matches
their behaviors in the viscous sublayer. The coefficients in the higher order terms, C _, C",..-, are

12



unknown.However,theywill automaticallybedeterminedby matchingEquations(54)and (55)
with the asymptoticsolutionsin the inertial sublayer. In the inertia sublayer,the asymptotic
solutions(29)and (32)canbewritten as

y_+= e_p(-_c) e=p(,_u_+) (57)

(58)

Their series expansions in terms of U+ and U+ are

r_+ = e_p(-_c) 1+ _v? +

+ +...]
1 +3 ]+ +...

Now, in order to have an expression for U + which behaves like Eq. (57) when u_-ylv is large (say,

> 30), otherwise, Eq. (54) when u_.y/v < 30, the following form is the simplest:

1 + 2 1 3] (59)

This analytical expression has been supported by many experimental data and is referred to as

the Spalding's law of the wall. Similarly, by matching Eqs. (58) and (55) we obtain another

analytical expression, the law of the wall for flows with zero wall-stress:

(y;7 = u: + e=v(-2nl_) [_p(V:l_) - 1- V:l_] (60)

The unified laws of the wall for zero pressure gradient and zero wall stress, (59) and (60), are

shown in Figure 5.
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i i i i I i `,| .... i i ill i i i i

u,y/v

0.S (y*): / .f

_/ ........... Tennekes & Lumley

,,?' ...... viscous sublayer

j _ Present law of the wall

.......
Io' ,o" 1o _

Upy/V

Figure 5: Unified laws of the wall

From the application point of view, we need the inverse form of Eqs. (59) and (60). Unfortunately,

it is impossible to obtain a single analytical inverse form for both (59) and (60). Therefore, we

13



suggestthefollowingpiecemealfunctions:

vl __fl(y+)
U-r

u2_ dp,,,ldxf2(y+)
up ldpw/dxt

where fl and f2 are the piecemeal fitting functions defined as follows

(61)

(62)

al Y+ + a2 (Y+)2 + a3 (Y+)3

bo.__blYT "-I- -[- b2 (yz-I-) 2 -[- b3 (Y_+) 3 --_ b4 (Yr+) 4

fl (Y+) = co+c,Y++c2(y+)2+c3(y+)3+c4(Y+) 4

! log(y¢) + c
K

2 + 3

(.z) (.p)

O::)'+c, (,::)"
alog (Y+) +/3

The coefficients in fl

if Y+ _<5;

if 5 < Y_ _<30;

if 30<Y_ <140

if 140 < Y+

ifY + <4;

if4_<Y + _<15;

if 15 _< I:+ _< 30;

if 30 < Y+

(63)

(64)

al

1.0

bo

-0.872

CO
m

8.6

a2

1.0E- 02

bl

1.465

Cl

0.1864

a3

-2.9E - 03

52

-7.02E- 02

¢2

-2.006E- 03

b3

1.66E- 03

C3

1.144E - 05

54

-1.495E- 05

C4

-2.551E- 08

The coefficients in f2

a2

0.5

bo

-15.138

CO

11.925

a3

-7.31E - 03

51

8.4688

Cl

0.93400

b2

-0.81976

C2

-2.7805E - 02

b3
3.7292E- 02

C3

4.6262E - 04

54

-6.3866E - 04

C4

-3.1442E - 06

The inverse forms of Eq. (63) and Eq. (64), are also shown in Figure 5.

14



5.2 Unified wall function

Now, we may construct the unified wall function for a general surface flow using the results

described in the previous section. Since

we may write

U UI+U2 u -Ul+upU 
We U¢ Uc 'll,7- li c "lip

where

y+ = .ucy
v

The left arid right figures in Figure 6 show respectively the effect of adverse and favorable pressure

gradients on the surface flow. As the adverse pressure gradient increases, the ratio of up/uc

increase from zero to one and urluc decreases from one to zero since Uc = u_ + up. As the result,

the mean velocity profile Uluc is significantly affected by the adverse pressure gradient (see the

left of Figure 6). For flows with favorable pressure gradients, as we have discussed before that

the ratio uplu¢ for boundary layer flows could be larger than the value for channel or pipe flows,

0.044, hence, the effect of favorable pressure gradients could be also significant. This is shown in

the right of Figure 6.

5O

45

4O

35

3O

25

2O

15

u/u. = o.0 2o
..... .du=--o._ Separation region
......... 0/..= o.5 / ......
..... u,/u.= o.e I ...... is
......... u./u.= I.o ,/ ....i 1/.

f._.'_ d/_ ._._'_ _ _ _ _

/" / i

/" J f_"
i / /" _

_pressure gra6ient B.L.i -

_, ,,I i i i .... I i p T i iirll

10' 10a 10 _

ucylv

u]u== 0.o
..... u,/u== O.OS
......... uJu== o.1
..... uju. = 0.2 Zero-pressure gradient

............. u]u°=_

_f...y....- ,j ...........
.......

10'

g.

10 _

ucy/v
10 _

Figure 6: Effect of pressure gradients on the surface flow

6 Conclusion

A generalized wall function has been derived, which accounts for the effect of various adverse and

favorable pressure gradients and is valid from the solid wall up all the way to the inertial sublayer.

We have demonstrated that the effect of pressure gradients on surface flows are very significant,

15



especiallyfor the flowswith adversepressuregradients.The traditional wall function must be
replacedby the newgeneralizedwall functionfor flowswith considerablepressuregradients.We
expectthat this generalizedwall functionwill beusefulfor analyticalstudiesof turbulent surface
flow propertiesaswellasfor CFD applicationsin providingappropriateboundaryconditionsfor
highReynoldsnumberturbulent complexflows.
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