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PREFACE

In 1996, several NASA-sponsored studies were underway to look at various aspects of a Mars

Sample Return (MSR) mission. One of these studies, performed by the Mars Exploration Long

Term Science Working Group (MELTSWG), looked at many issues for MSR including Planetary
Protection (PP), both forward and back contamination aspects. One outcome of the study was the

realization that little detailed information existed in certain PP-related areas that could be used by

mission planners to more accurately design and cost MSR mission concepts. Therefore, the
MELTSWG group recommended that NASA fund an effort to look at these PP issues in more
detail.

A,joiht Ames Research Center-Jet Propulsion Laboratory-Johnson Space Center proposal was

prepared, submitted to NASA Headquarters, and funded. It contained 5 tasks, each of which dealt

with a specific PP element for a MSR mission: 1) definition of the environmental impact review

process; 2) determination of outbound PP requirements; 3) examination of sample containment

technology; 4) development of concepts for ensuring that uncontained Mars material would not

be brought to Earth; and 5) development of guidelines for returned sample containment and

quarantine analysis. The Workshop on Mars Sample Quarantine Protocol was conducted to

address the fifth objective; it was convened at NASA Ames Research Center, June 4-6, 1997.





INTRODUCTION

The Mars Sample Quarantine Protocol (QP) Workshop was convened to deal with three specific
aspects of the initial handling of a retumed Mars sample: 1) biocontainment, to prevent

uncontrolled release of sample material into the terrestrial environment; 2) life detection, to

examine the sample for evidence of live organisms; and 3) biohazard testing, to determine if the

sample poses any threat to terrestrial life forms and the Earth's biosphere (see Workshop Agenda

in Appendix B). Experts in each of these areas from a variety of institutions were invited to

participate (see Participants List, in Appendix C).

In order to constrain the scope of the Workshop, several assumptions were given. These
included: 1")the Mars Sample Return (MSR) mission will be launched in the 2005 opportunity;

2) the mission will return samples from biologically interesting sites based upon data to be

returned from the Mars Surveyor Program missions in 1996, 1998, 2001, and 2003; 3) in a

nominal mission, the sample will not be sterilized prior to return to Earth; 4) the amount of sample

available for quarantine tests will be a small fraction of the total amount returned; and 5)

biocontainment of the unsterilized sample will be maintained until quarantine testing for

biohazards is accomplished.

During the first part of the Workshop, several tutorials were presented on topics related to the

workshop in order to give all participants a common basis in the technical areas necessary to

achieve the objectives of the Workshop. For the second part of the Workshop, the participants

were divided into three Subgroups to address each of the three sample handling issues:

biocontainment, life detection, and biohazard testing. The Subgroups discussed the major issues
in each area, developed recommendations and guidelines as appropriate, and identified research

and technology development needs.

This document is the final report for the QP Workshop. It is organized along the lines of the

Workshop itself, with the first part comprised of summaries of the background tutorials and the

second part comprised of the reports from the three Subgroups. It is hoped that this report will
1) assist NASA's Planetary Protection Officer in identifying high-priority research and technology

efforts that need to be undertaken to prepare for Mars sample return, 2) provide guidance to MSR

mission planners and designers, and 3) serve as input to advisory groups and other entities who

will ultimately establish sample return handling policy, requirements, and implementation.



BACKGROUND TUTORIALS

The background tutorials were designed to address several key issues that would be important to

develop recommendations for returned sample handling. These included understanding the

chemical and physical properties of the returned Mars samples, defining a representative mission

design for Mars sample return, reviewing existing guidelines to prevent back contamination, and

reviewing the lunar sample quarantine testing protocol. In addition, tutorials were presented on

modem techniques for containment of pathogenic organisms, for identification of unknown

biological entities, and for determining pathogenicity of sample constituents. This section

contains summaries of each tutorial prepared by the presenters.

Mars Environment

Benton Clark

(Lockheed/Martin Aerospace)

The current nominal martian environment, relevant to the possible existence of m=croorganisms, is

significantly different from virtually any specific environment or microenvironment on Earth.

However =oases," unique isolated or microenvironments, may exist which could mimic

environments that organisms of known metabolism may be able to exploit.

Mars is smaller than Earth, only one-tenth the mass, but with a surface area approximately the
same as that of the land area on Earth. The bulk density of Mars is only 3.9 g/cm3 compared to

Earth's 5.5 g/cm3. This indicates a smaller, probably less dense core and a general bulk

composition enriched in lighter elements. The abundances of light elements at the surface is

actually lower, at least for H and O (in H20), for N (in N2), and most likely for C.

Surface gravity on Mars is 3/8 of Earth's. Mars' diurnal period of 24 hours 37.4 minutes (defined as

a "sol") is strikingly close to Earth's current diurnal period, although there is no known fundamental

reason for this coincidence. Mars' obliquity (axial tilt relative to the plane of motion around the Sun)

is 25 °C, which is close to Earth's value. Thus, seasonal effects due to geometrical variations in

insolation as a function of latitude, are similar. Mars' obliquity is quasi-chaotic, varying from values

that may approach 0 °C to excursions much above present values, over time scales of 105 to 106

years. These changes can cause large and not easily predicted changes in atmospheric pressure,
circulation, and climate.

Because of a significant orbital eccentricity, the southern latitudes have both hotter summers and

colder winters than do the northern latitudes. Mars ranges from 38% to 67% farther from the Sun

than the Earth, which results in one-third to one-half the solar insolation. As a consequence of the

astrodynamics of this further distance, the length of the martian year is 687 days, with seasons

approximately twice as long as seasons on Earth.

Mars has two satellites, Phobos and Deimos. They are tiny compared to Earth's moon and have no

consequent gravitational effects. Their spectral properties resemble those of D asteroids, which
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arethoughtto be organic rich, and they may in fact have provided material which entered the

martian atmosphere and contributed to the composition of martian soil. There is little or no organic

material in martian soil, a key result found by the Viking lander mission experiments that included

pyrolysis gas chromatograph/mass spectrometer (GC-MS) instruments specifically designed for

high sensitivity (1 ppm or less) analyses capable of detecting a wide variety of organic

compounds. The virtual lack of organics detected by these sophisticated GC-MS instruments has

been interpreted as due to the oxidation of all organics on Mars, whether endogenous or

exogenously delivered. The highly oxidizing compounds present (not only 02, but also O3, O_

radical, and the extremely strongly oxidizing hydroxyl radical) are the result of UV-induced

photochemistry.

Mars has no exposed bodies of liquid water, although it has been hypothesized (based on very
circumstantial evidence) that there may have been lakes and even an =ocean" on Mars in its early

history.

The atmosphere of Mars has a nominal pressure of 6 millibars, much less than Earth's one bar.

Pressure change as a function of altitude has a 30% annual variation due to condensation of its

most predominant compositional component, CO2, onto the polar caps during local wintertimes.

Even larger variations in CO2 pressure must be expected during obliquity excursions, with the

atmosphere being drawn down to very low levels and possibly increased at other times.

The atmospheric composition includes 95% CO2, N2 (2.7%), argon (1.6%), 02 (0.13%), and

much smaller amounts of other constituents (CO at 70 ppm, H2 at 30 ppm, and OH radical at

1 ppt). In addition, relative humidity at the nighttime lows can reach saturation, although the total

H20 partial pressure is typically 1 microbar (160 ppm) or less. This is a much drier, lower dew point,

than the driest of the Antarctic Dry Valleys.

The geomagnetic field of Mars is tiny or nonexistent. As a result,galactic cosmic rays and the

particles from solar flares are not magnetically deflected. Even though relatively thin, the martian

atmosphere's total path density at zenith is nominally 16 g/cm2, with much thicker shielding

against ionizing radiation at the larger angles (which accounts for most of the solid angle of

exposure). As a result, radiation doses at the surface of Mars are not severe, and in fact much

lower than on the surface of the moon. Cosmic ray doses are less than 6 rad/yr even at 4-km
altitude. Solar flare doses are even less since the worst case solar flare recorded since the

beginning of the space program would have produced less than 20 rad at the surface of Mars. The

atmosphere does not, however, shield the solar ultraviolet rays, with UV down to 200 nm

penetrating effectively to the surface.

The surface of Mars, as studied by Viking and Pathfinder, is made up of soil-like dust deposits,

drifts (dune-like accumulations of fine material), duricrust (hardened soils), peds (fragments of

duricrust), and rocks. The particulates in the soil may be extremely fine grained - approaching the

micron to few micron size of the suspended dust, which is much finer than lunar and most

terrestrial soil particulates, except for loess and clays.

The early Mars environment is an enigma. With widespread evidence of extensive water erosion,

the case for an early "wet" environment on Mars is compelling, although far from proven. The
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majorcontroversiesoninterpretationsrevolvearound"howwarm,howcold,andhowwet."For
example,geomorphologicalevidenceofaqueouseventsandepisodesonMarsmaybe
explicablebygroundwaterprocessesnearfreezing, and by catastrophic, episodic floods. Other

interpretations appeal to precipitation, i.e., rain and runoff; formation of rivers, perhaps ice-

encrusted; and other more terrestrially common phenomena. Average high temperature regimes

are also uncertain owing to the faint early Sun and the calculated instability of greenhouse gases

under photochemical destruction by UV for atmospheres with only minor ozone shielding.

Restricted, confined, and unique environments on Mars are a distinct possibility. Current surface

average temperatures are cold (-55 °C for deep equatorial average temperatures), surface solar

heating only exceeds 0 °C for the topmost millimeters of .surface soils. There may be

geographically restricted sources of significantheat (magmatic intrusions are one possibility).
Another is meteoroid impact, which results in buried heat that can persist for 104 to 105 years. If

the soils are clays or other hydrous minerals, there may be significant trapped H20 available for

hyclrothermal environments.

The geothermal gradient for a planet provides a temperature environment that is above the triple

point of water of 0 °C at some depth. For Mars, this depth can only be estimated and is expected

to occur at a depth of a few kilometers. The recent discoveries of the extensive deep

microbiological niches in the Earth lends credence to a similar hypothesis for Mars. Deep

underground biotic activity could be shielded from the highly oxidizing compounds in the martian

atmosphere, but cannot depend on the Sun as an energy source and must be accommodated by

a geochemical energy source which is sufficiently abundant to sustain a biota over geologic time
scales.

Chemical and Biological Studies of Mars Meteorites

Carlton C. Allen

(Lockheed/Martin Engineering and Science Services)

Twelve meteorites, with a total mass of 80 kg, are accepted as having come to Earth from the

planet Mars. The meteorites are tied to a common parent body by the ratios of oxygen isotopes in
their silicate minerals. These ratios are concordant as well as distinct from those of terrestrial and

lunar rocks, and other meteorites. All twelve of the meteorites are igneous rocks, and eleven are

geologically young, which indicates that they originated on a planet-sized body. Several of the

meteorites contain trapped gas that closely match the composition of the martian atmosphere.

Models of hypervelocity impacts on planetary surfaces indicate that a small percentage of the

near-surface target material can be ejected into space. These data combine to provide extremely

strong support for a martian origin of the meteorite suite.

Chemical Studies

The Mars meteorites have been studied with the full range of modern analytical techniques, and a

wide variety of data has resulted. These data comprise the 'ground truth' for remote sensing
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studiesof Mars, and the 'reality check' for chemical and mathematical modeling. The analytical

tests, and the type of information gained from each, are summarized as follows:

• Petrography (optical and electron microanalysis)
Solidification conditions

Alteration conditions

Shock effects

Atmospheric entry effects

• Chemical composition (neutron activation analysis, electron and proton microanalysis,

mass spectrometry)

Whole rock composition

Individual mineral components
Variations within minerals

Alteration mineralogy

Trapped gas and water

Temperatures and pressures of crystallization and alteration

• Isotopic dating

Crystallization age

Shock age

Space exposure age

Terrestrial exposure age

• Stable isotope fractionation

Parent body identification

Temperature and chemistry of alteration

Atmospheric history of Mars

• Paleomagnetism
Constraints on martian core

Temperature constraints on alteration

• Melting experiments

Temperature, pressure, and redox conditions during crystallization

Biological Studies

The 1996 publication of possible evidence for relic biogenic activity on Mars was based on

detailed studies of the meteorite ALH 84001. Since that time, this Mars meteorite and several

others have been subjected to a greater variety of tests relevant.to possible evidence for life in

these samples. A joint NASNNSF program to support intensive biological studies of Mars

meteorites commenced during 1997. These biological studies, and some of their results, can be
summarized as follows:

Laser desorption/ionization mass spectrometry

Detection and location of organic compounds

Microscopy (optical, electron, atomic force)
Possible biominerals

Possible microfossils

Possible biofUms



• Culture media

• Isotope"fractionation

Possible biological signatures (C, O)

No biological signature (S)

• Amino acid analyses

Significance of Mars Meteorites for Sample Retum

These twelve meteorites are representative of a much larger body of martian material which has

already come to Earth. The Mars meteorites contain alteration minerals that would have been

destroyed by high temperatures, indicating that the ejection process did not thoroughly heat

every meteorite. While in space the meteorites were cold-soaked. The radiation environment of

space does not destroy organic compounds in rocks (witness amino acids in carbonaceous
chondrite meteorites). The Mars meteorites were not sterilized by entry into the Earth's

atmosphere; only the outer 5-10 mm was heated significantly. If any of these rocks harbored life
on Mars, that life could have survived transfer of the rocks to Earth. These unsterilized, random

samples of Mars have been on Earth for at least 100,000 years and in contact with people for

nearly 200 years. However, none of this obviates the statutory requirements for containment and

testing of returned martian samples.

Mars Sample Return Mission Design I

Mark Adler

(Jet Propulsion Laboratory)

The impetus for this Workshop comes from NASA and the Administration's request of funds from

Congress for an ambitious, long-term Mars exploration program that includes the return of

samples from Mars. This paper will describe that program, the science strategy behind it, and key

aspects relevant to this Workshop.

Late in 1996, two spacecraft were launched to Mars: Mars Pathfinder, which landed on July 4,

1997 and deployed the first Mars rover, Sojourner, and Mars Global Surveyor, which entered into

orbit about Mars in September 1997 and has begun to characterize Mars with an array of

instrumentation. These are the first in a continuing series of missions, called the Mars Surveyor

Program, that NASA will send to Mars, two missions every Earth-Mars launch opportunity -

approximately every 26 months. Another orbiter and lander were built and launched in the

1998/1999 opportunity. This orbiter will continue the global survey with different instrumentation,

and its lander will explore the near-polar regions with an arm to deliver soil samples to its
instrumentation.

In August 1996, a significant announcement brought the attention of the world to Mars. As

described earlier by Cadton Allen, we already have the first sample returns from Mars provided to

us by nature - the Mars meteorites. A team of researchers at Johnson Space Center and Stanford

1 Betweenthe dates of this Workshopand submissionof this reportforpublication, Mars exploration plans
have been changing. Some of the final mission details may be different from those reported here.



University found in one of those meteorites what they believe to be evidence of ancient life on

Mars. Their announcement precipitated a redesign of the Mars Surveyor Program with increased

funding beginning with the 2001 opportunity.

The funding level of this new program is approximately $250 million per year, including launch

vehicles and operations. In addition to that, significant funding is planned to provide the

necessary technology development to enable the missions described below.

The science strategy behind the planning of the 2001 and beyond missions is guided by a search
for evidence of life. The search is based on the assumption that of the key ingredients for life

(liquid water, organic molecules, and a source of energy) at least two are evidenced on ancient

Mars, liquidwater, and a source of energy. The search for three distinct environments on Mars is
planned based on the extrapolation to Mars of theories for the origin of life on Earth. These are

ancient surface water deposition sites, which have been directly imaged during prior space

missions, projected ancient groundwater environments, and projected modern ground water

environments. The strategy is to look for evidence of life for all three environments in the hope
that at least one will be fruitful.

Equally important to the search for life is the understanding of the environmental requirements for

life, especially with respect to water. The history and evolution of water on Mars - where the water

was, where it went, and where it is today, will be the foundation of this understanding. The 1996
and 1998 missions will begin to lay this foundation.

So how does one search for what may be rare evidence of life on a p4anetwhose surface area is
about the same as the land mass area of Earth? And how does one find and confirm this

potentially controversial discovery even if it can be found? The most sensible implementation to

address these questions is to bring to Earth laboratories very carefully selected samples from the

surface of Mars. Not only is it extremely cost effective to do analyses using the fully equipped

Earth laboratories, as opposed to occasionally sending limited instrumentation to Mars, but it may

be essential in order to answer challenges to claimed scientific conclusions by performing new

investigations on the samples. Such challenges would be expected and even necessary for

extraordinary claims such as evidence of extraterrestrial life. This pattern of research is proceeding
on ALH 84001.

The missions to embark on the search for past or current biologic activity Consistsof three

elements, repeated over time to investigate the different environments. Those elements are:

1 ) site selection from global mapping and targeted mapping orbiters, 2) sample selection with

rovers or digging landers, and 3) sample returns to bring selected samples safely to Earth for

investigation.

Site selection for sample returns began effectively with the Viking orbiters of the late 1970's, and

will continue with the Mars Global Surveyor orbiter and the 1998 orbiter. This data will provide

high-resolution imagery of the planet, altimetry, thermal emission spectra, and atmospheric water

information. An orbiter to be launched in early 2001 will complete the first set of Mars global data

with a gamma ray and neutron spectrometer to look for evidence of water molecules in the upper
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surface,andwillcarryamineralogyandmorphologyinvestigationspecificallyto provide the

information needed to find good candidate sites for the hypothesized environments for life.

The first round of sample selection missions will be long-range, long-life rovers launched in 2001
and 2003 to two different sites. The 2001 rover's site will be selected with the benefit of the orbital

data up to and including the 1998 orbiter. The 2003 rover's site selection will have in addition the
benefit of the data from the 2001 orbiter. Each of these rovers will have a lifetime of at least one

Earth year and a range of several kilometers. They will have the instrumentation and mechanisms
to examine sections of rock by appearance and spectra, and to store selected samples in a cache
for later retrieval.

In late 2004 or mid-2005, the first Mars sample retum mission will be launched to one of the two

sample selection sites to meet up with either the 2001 or 2003 rover. Which rover will depend on
which site is deemed to have the most scientifically interesting sample. The sample retum lander

will touch down a short distance away and dispatch its own rover to fetch the sample cache from

the possibly non-operational rover that collected the sample. The sample cache will be put in a

sample container. That container may have some martian regolithadded if that was not already part
of the cached sample, and the container is then welded shut to contain martian atmosphere which

is also an important component of the returned sample. That sample container is then returned to

the sample retum lander where it is placed into a rocket that is launched into orbit around Mars.

Waiting in orbit is the Earth return vehicle, also part of the sample return mission, that will
rendezvous with the sample rocket in orbit and transfer just the sample container to the Earth re-

entry vehicle, which is carried on the Earth return vehicle. The Earth return vehicle exits Mars orbit
for Earth, and on approach targets the Earth entry vehicle to the selected landing site on Earth.

Upon releasing the entry vehicle, the return vehicle changes course to avoid the Earth. The

sample lands in mid-2008.

This sequence of site selection, sample selection, and sample return is envisioned to continue for

two more sample return missions in order to investigate the martian environments which have the

best chance of finding evidence of life. The last of the three samples is returned in 2016, twenty

years after the initiationof the program in 1996.

The mission sequence consisting of a sample selection rover, a sample return mission, and the

subsequent analyses of samples is considered a life detection experiment. As such, the

effectors, instruments, and container on the rover, essentially anything that comes in contact with

the samples, must be void of Earth biology to avoid the detection of Earth life in the returned

samples. The same is true for those elements of the sample return mission that could contaminate

the sample.

Most relevant for this Workshop is the additional requirement to avoid any possibility of

inadvertently releasing martian material upon entering Earth's atmosphere and landing on Earth.

This is required to avoid the vanishingly small, but non-zero risk of viable martian biology that might

threaten the Earth's ecosphere. The sample will remain in containment until it is determined that it

poses no hazard. Some science investigations can be performed on the sample while it is in
containment. However, it is extremely desirable to distribute the sample as soon as possible after

return to the broadest scientific community. Only through this release can the best

instrumentation and widest scientific discourse be applied to answer the truly difficult questions



that these samples are expected to represent. The assurance of containment on Earth and the

criteria for release are as critical to the success of our Mars exploration program as the retum of the

sample itself.

To meet the requirement of no inadvertent release of uncontained martian material on Earth, an

externally clean sample container with Mars material securely sealed inside must be transferred in

Mars orbit from the dirty sample return ascent rocket to the clean orbiter. Then the sample return

ascent rocket is discarded leaving only clean elements and contained martian material to be

returned to Earth. The containment is monitored after the transfer and during the trip back,

perhaps by monitoring the pressure and temperature of the martian gases inside, to verify

containment before committing to the return of the sample to Earth. If the sample is not

adequately contained, it is not returned. The Earth entry vehicle and sample container are

designed to assure that sample containment will not be breached on entry or impact.

The systems for this clean transfer from dirty components have not yet been designed. However,

the concept is for the sample container and its lid to be double-walled, with the outer part

discarded during the transfer in orbit, leaving the inside part clean. The inevitable seam between

the two could have a pyrotechnic charge to mechanically remove the small amount of dust at that
boundary. A large shield would protect the return vehicle from the dirty ascent rocket during the

transfer, and that shield would be discarded along with the rocket after the transfer is completed.

An alternative strategy of heat "sterilizing" the sample before return is not envisioned. The

difficulty of defining and generating sufficient heat for an adequate time to sterilize a biology

whose nature is inherently unknown is a problematic task. The potential exists to destroy critical

information of the sample.

It is often asked whether the sample should be brought to the Space Station, or some orbital

facility, instead of landing it directly on Earth, thereby allowing analysis of the potential exposure

consequences before bringing it to Earth. While that sounds reasonable at the outset, one

quickly discovers that there are several significant difficulties. First, in order to put the sample into

orbit, it would have to be "aerocaptured," which means using something much like the direct entry

vehicle to plow into the atmosphere, whereby the atmosphere slows it down enough to enter into

a low Earth orbit. This is a very sophisticated technological operation, requiring accurate

navigation and hypersonic maneuvering in the atmosphere. Even a small error can result in the

vehicle landing on Earth in an uncontrolled manner and to an unpredictable landing site.

Second, assuming it can reach orbit and be retrieved by the Space Station, the sample and the
Space Station are now in a low Earth orbit. A failure in the Space Station could result in an

evacuation and the possibility of a Skylab-Uke reentry soon after.

Third, the facilities needed on the Space Station to perform the necessary analyses in

containment would be extensive, and still would be inferior to the equipment and containment

available on Earth owing to the limited mass available. Putting aside the expense of such facilities,

if there were a failure of containment, then one would have some rather difficult questions to

answer about how to deal with the exposed personnel.



Finally,as will be discussed at this Workshop, Earth laboratories routinely handle biological entities

known to be dangerous. These processes and procedures properly applied to samples from Mars

would provide a level of safety already deemed adequate for the protection of people and the

ecosystem from biological hazards. In summary, Earth is a much safer place to bring the samples

than any orbiting facility.

A twenty year exploration of Mars has been planned whose strategy and funding level lead to the

first return of fresh samples arriving at Earth in 2008, with at least two subsequent retums. These

samples are part of a life detection investigation, and as such cannot be considered to be risk-free

to Earth. They must be contained and carefully investigated before release to the general

scientific community. Significant precautions will be taken to assure that the samples are not

released in the process of delivery to Earth. To land a contained sample on Earth is considered to
be far safe;"and efficient than the difficult operations needed to put the sample into Earth orbit and

have it contained and analyzed in an orbital facility. Both the containment of the samples on Earth

and the careful and deliberate release of the samples to the scientific community are critical to the

success of our Mars exploration strategy.

SSB Guidelines for Prevention of Back Contamination

from Mars Sample Return

Margaret S. Race

(SETI Institute)

Context

In late 1995, NASA requested that the National Research Council Space Studies Board (SSB)

examine and provide advice on planetary protection issues related to possible sample return from

near-Earth solar system bodies. The 1997 report of the SSB's Task Group on Issues in Sample

Return [Space Studies Board 1997] addressed questions of scientific, technological and policy

concerns and made recommendations on how to ensure that any sample returned to the Earth

from elsewhere in the solar system would have no adverse effects on the Earth's biosphere. The

findings and recommendations of the SSB Task Group provide important background information

for this Workshop as it deals with containment, life detection, and biohazard testing issues for

Mars sample return missions.

Summary_of Findings

The charge to the SSB Task Group on Issues in Sample Return was broad and ambitious,

covering five specific areas of concern:

• The potential for a living entity to be included in a sample to be returned from another

solar system body, in particular Mars;

• The scientific investigations that should be conducted to reduce uncertainty in the

previous concern;

• The potential for large-scale effects on the environment resulting from the release of any

returned entity;
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• The status of technological measures that could be taken on a mission to prevent the
unintended release of a returned sample to Earth's biosphere; and

• Criteria for controlled distributionof sample material taking note of the anticipated
regulatory framework.

In developing its report, the Task Group deliberately focused on providing high level policy

recommendations - deferring details of implementation to NASA and appropriate experts at a later

time. The report is prefaced with the following key findings that were formulated after lengthy

discussions by the Task Group:

• Although current evidence suggests that the surface of Mars is inimical to life as we know

it, there remain plausible scenarios for extant microbial life on Mars, for instance in

possible hydrothermal oases or in subsurface regions;

• While contamination of the Earth by putative martian microorganisms is unlikely to pose a

risk of significant ecological impact or other significant harmful effects, the risk is not zero;

• Uncertainties with regard to the possibility of extant martian life can be reduced through a

program of research and exploration that might include data acquisition from orbital

platforms, robotic exploration of the surface of Mars, the study of martian meteorites, the

study of Mars-like or other extreme environments on Earth, and the study of returned

samples.

Despite the low risks anticipated from returning samples from Mars, the Task Group felt that a

cautious approach should be taken by including appropriate planetary protection measures for a

number of important reasons: 1) to protect the Earth from inadvertent cross contamination; 2) to

preserve the integrity of returned materials for scientific interpretation; 3) to meet legal and

regulatory obligations; and 4) to reassure the public that adequate environmental, health, and

safety measures have been taken.

The conservative approach to planetary protection suggested by the Task Group recommends

that each returned sample should be assumed to contain viable exogenous biological entities

until proven otherwise. Moreover, specific additional recommendations were made in the

following three major areas related to eventual implementation:

, Sample Return and Control

• Samples retumed from Mars by spacecraft should be contained and treated as though

potentially hazardous until proven otherwise. No uncontained martian materials, including

spacecraft surfaces that have been exposed to the martian environment, should be
returned to Earth unless sterilized.

• If sample containment cannot be verified en route to Earth, the sample, and any

spacecraft components that may have been exposed to the sample, should either be

sterilized in space or not returned to Earth.

• Integrity of containment should be maintained through reentry of the spacecraft and

transfer of the sample to an appropriate receiving facility.

• Controlled distribution of unsterilized materials returned from Mars should occur only if

rigorous analyses determine that the materials do not contain a biological hazard. If any
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portion of the sample is removed from containment prior to completion of these analyses,
it should first be sterilized.

The planetary protection measures adopted for the first Mars sample return mission

should not be relaxed for subsequent missions without thorough scientific review and

concurrence by an appropriate independent body.

. Sample Evaluation
• A research facility for receiving, containing, and processing returned samples should be

established as soon as possible once serious planning for a Mars sample return mission

has begun. At a minimum, the facility should be operational at least two years prior to
launch. The facility should be staffed by a multidisciplinary team of scientists responsible

for the development and validation of procedures for detection, preliminary

characterization, and containment of organisms (living, dead, or fossil) in returned

samples and for sample sterilization. An advisory panel of scientists should be constituted

with oversight responsibilities for the facility.

. Program Oversight
• A panel of experts, including representatives of relevant governmental and scientific

bodies, should be established as soon as possible once serious planning for a Mars

sample return mission has begun, to coordinate regulatory responsibilities and to advise
NASA on the implementation of planetary protection measures for sample return

missions. The panel should be in place at least one year prior to the establishment of the

sample receiving facility (at least three years prior to launch).
• An administrative structure should be established within NASA to verify and certify

adherence to planetary protection requirements at each critical stage o! a sample return

mission, including launch, reentry, and sample distribution.

• Throughout any sample return program, the public should be openly informed of plans,

activities, results, and associated issues.

Finally, the Task Group emphasized the value of research to reduce uncertainty and to aid in

eventual implementation. Specifically identified research of potential merit included NASA's

current stepwise Exobiological Strategy for Mars Exploration [NASA 1995], and further study of

terrestrial extremophiles and martian meteorites. Research and development was also urged in

key areas in order to advance the technologies and methodologies for sample containment, cross

contamination avoidance, sample sterilization, in-flight verification of containment, in-flight

sterilization, and sample handling and preservation.

Returning martian samples to Earth will be a momentous scientific and technological advance that

must be done carefully and prudently. Even though the risks are low, the stakes are very high.

Planetary protection measures are justified by both what we know and what we don't know about

Mars and its potential for harboring life. Early integration of planetary protection measures in

mission planning is recommended as a way of increasing effectiveness, limiting costs, and

satisfying legal and regulatory requirements.
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Lessons Learned During Apollo Lunar Sample Quarantine
and Sample Curation

Judith H. Allton

(Lockheed/Martin Engineering and Science Services)

A total of 12 men set foot on the Moon at 6 sites and returned to Earth 382 kg of lunar rocks and

soil, comprised of 2196 individual specimens. The Apollo story of sample containment and

preservation serves to illustrate the viewpoints of the various groups involved, the time required

for integration and implementation, and the balancing of technical requirements for containment

versus sample preservation.

Three groups, charged with different responsibilities, interacted during the lunar material

quarantine and sample curation. NASA mission managers and engineers were focused on

meeting the schedule and executing the missions. The Interagency Committee on Back

Contamination (ICBC), an advisory committee to NASA, was charged with prevention of back

contamination and endeavored to make sure that no destructive organisms were introduced into

the Earth's biosphere by returned lunar material. Another advisory committee, the Lunar Sample

Analysis and Planning Team (LSAPT) was concerned with the care and distribution of lunar rocks
and soils and worked to prevent terrestrial contamination of the samples and to preserve the

samples' scientific value. The very short time constraint on Apollo was a principal cause of

problems encountered in executing strict containment, particularly with astronauts and spacecraft.

The ICBC, comprised of members from the U.S. Public Health Service, Departments of

Agriculture and Interior, the National Academy of Sciences, and NASA, was officially established
only 41 months before the ultimate launch of Apollo 11 ! The ICBC had the final authority over

release of lunar samples and astronauts.

The crews and samples from Apollo 11, 12, and 14 were subjected to quarantine protocols, which

attempted to expose lunar material to at least one representative species from each phylum of

terrestrial plants and animals. Each class of protocol had a decision tree for quarantine testing or

sample release recommendations, but all were similar: if any differences occurred between

exposed group and control, that were not explicable as terrestrial contamination, then second
order testing was recommended; otherwise release of samples was recommended. No evidence

of replicating agents was found in the test systems used, and all samples were released

unconditionally. Quarantine ended with Apollo 14, after which distribution of Apollo lunar samples
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wasleft solely under the purview of the scientific advisory committee LSAPT whose concern was

scientific preservation of samples.

The state-of-the-art Lunar Receiving Laboratory (LRL) at the Johnson Space Center comprised

8,000 m2 of sample receiving laboratory, biological quarantine testing facilities, crew isolation area,

gas analysis laboratory, and radiation-counting laboratory. Processing of lunar samples in a high
vacuum environment was deemed a requirement by the planetary science community because it

preserved lunar-like conditions, as much as possible, and because no one knew how lunar
materials would react with various gases. Cost of construction, equipping, and operating the LRL

in 1969 and 1970 was about $24 million [PUand 1969] (which translates to -$125 million in

1997-98 dollars). At the height of quarantined missions 200 technicians worked in 3 shifts per day

supporting 100 NASA civil servants and visiting scientists.

At the conclusion of the Apollo 17 sample preliminary examination in 1973, all of the samples were

moved to a facility more suited for sample curation and preservation. Differences in containment

versus sample purity technical requirements made the LRL less suitable. A building especially

designed to keep samples pure was completed in 1979 and operated by less than 20 people, at

substantially lower cost than the LRL.

Use of lunar sample for quarantine testing competed with its use for science investigations and

prudent curation for future studies. One guiding principle was minimization of sample consumed

in quarantine testing. Where possible, lunar material destined for quarantine testing was taken
from the residue of fines in the bottom of sample containers, since this material was of less

scientific interest. Out of a total 98.189 kg from Apollo 11, 12, and 14, 2% was allocated for

quarantine testing proportioned as follows: residue fines 59.0%, fines 31.3%, cores 6.1%, and
rocks 3.6%.

In 1967 the Lunar Receiving Laboratory had 4 stated functions: 1) distribution of samples to the

scientific community, 2) perform time-critical sample measurements, 3) permanent storage under

vacuum of a portion of each sample, and 4) quarantine testing of samples, spacecraft, and

astronauts [McLane et al. 1967]. In contrast, today the purpose of curation of extraterrestrial
materials at Johnson Space Center is to: 1) keep the samples pure, 2) preserve accurate historical

information about the samples, 3) examine and classify samples, 4) publish information about

newly-available samples, and 5) prepare and distribute samples for research and education.

Lessons were learned in setting quarantine policy and samPle handling planning, as well as in the

technical approach to sample handling, depending on the area of concern. Such lessons

included: 1) initiate planetary protection and sample preservation planning early in mission

design; 2) place responsibility for back contamination and sample preservation at high

management levels; 3) allow time for proper implementation of back contamination and sample

preservation requirements; 4) reduce the magnitude, and thus cost, of quarantine and curation by

careful pacing and careful planning of what to do in quarantine mode and what not to do in

quarantine mode; and 5) build a scientific foundation for mutual respect for quarantine and sample

preservation.
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Lessons in technical approach: 1) devise a plan to minimize conflicts in protocols for quarantine

versus sample examination and preservation; 2) strive to minimize the amount of sample required

for biohazard evaluation through improved technology; 3) strive to minimize the cost of quarantine

through improved technology and timing of non-quarantine functions; and 4) reserve a portion of
the sample for future studies.
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Modem Techniques for Containment of Pathogens

Robert J. Hawley

(U.S. Army Medical Research Institute of Infectious Diseases)

The U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) facility at Fort Detrick

in Frederick, Maryland has unique capabilities to support its mission to develop vaccines, antiviral

drugs, and diagnostic reagents for etiologic agents requiring containment. Coupled with our
biological and chemical safety philosophy, USAMRIID is ready to support other missions requiring

maximum containment for the analysis of samples.

USAMRIID's mission is to conduct research to develop strategies, products, information,

procedures, and training for medical defense against biological warfare agents and naturally

occurring infectious disease_ of military importance that require special containment. The unique
talents and capabilities of USAMRIID include a scientific staff of about 100 postgraduate level

professionals with expertise in the biological, chemical, medical, and laboratory animal disciplines.
USAMRIID's facilities include 23 laboratory suites containing over 10,000 ft2 of Biosafety Level 4

(BSL-4) and 50,000 ft2 of BSL-3 space, a sixteen-bed clinical research ward, a four-bed BSL-4

patient care containment suite, a BSL-4 containment clinical laboratory, and specially designed

engineering systems.

Most known infectious agents have been classified by the National Institutes of Health (NIH) and

the Centers for Disease Control and Prevention (CDC) by their hazard levels or Biosafety Levels
(BSLs). Once assessed, appropriate containment levels and techniques can then be selected.

There are four major levels of hazard containment:

. Biosafety Level 1 (BSL-1) practices, requirements, and safety equipment are appropriate for

facilities in which work is done with defined and characterized strains of viable microorganisms

not known to cause disease in healthy adult humans. E. coil is an example of an agent of very
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low hazard. BSL-1 facilities include undergraduate and secondary educational training and

teaching laboratories.

. BSL-2 practices, requirements, and equipment are applicable to clinical, diagnostic, teaching

and other facilities in which work is done with the broad spectrum of indigenous moderate-risk

agents present in the community. These agents are associated with human disease of varying

severity.

,

.

BSL-3 practices, requirements, and equipment are applicable to clinical, diagnostic, teaching,

research, or production facilities in which work is done with indigenous moderate-risk or exotic

agents where the potential for infection with aerosols is real and the disease may have serious

or lethal consequences.
'

BSL-4 practices, requirements, and equipment are applicable to work with dangerous and

exotic agents that pose a high individual risk of life-threatening disease. BSL-4 containment is

required for high hazard agents characterized as highly virulent, of high mortality, and for

which no vaccine or therapy exists. Examples are Lassa, Ebola, and Marburg viruses.

The BSL-1 through BSL-4 laboratories in USAMRIID meet or exceed the laboratory Biosafety

Level criteria recommended in the CDC-NIH guidelines. For instance, the exhaust air from all BSL-

3 laboratories is filtered through a high efficiency particulate air (HEPA) filter prior to discharge, and

there is a requirement to take a wet shower upon exit from these laboratories. Most
biocontainment areas at USAMRIID are at the BSL-3 level (total of about 50,000 ft2).

The purpose of BSL-4 laboratory operations is to provide an environment where live, replicating

agents of human disease can be studied in cell cultures and animal models. Characteristics of

laboratory operations within this high hazard area include enforcement of safety regulations,

staffing with conscientious workers, maintaining inventory control of infectious materials, and
maintaining a specialized occupational health program. All work in BSL-4 laboratories is conducted

in Class III biologicalsafety cabinets or in spacesuits. Work surfaces are appropdately

decontaminated after use. Aspects of BSL-4 laboratory engineering include laboratory location

such as a separate building or sealed room with independent supply and exhaust, and restricted
access. Construction is with reinforced concrete, and only chemically resistant coatings and non-

hardening sealants for service openings are used. The laboratory perimeter is sealed to permit

gaseous decontamination of the entire area and all surfaces are non-permeable. Each BSL-4

laboratory has a ventilated airlock with interlockingpneumatic sealed doors, and an interlocking

double door pass-through autoclave. Microbial sterilization is achieved using heat (autoclave),

chemicals (formaldehyde, bleach, and quatemary ammonium compounds), gases (formaldehyde

and ethylene oxide), and radiation (ultraviolet light and gamma rays). Exhaust air is double HEPA-

filtered and ventilation is monitored by magnehelic gauges. The exhaust system is interlocked

with the air supply system to prevent positive pressurization.

USAMRIID is the only facility in the country capable of totally isolatingand treating persons who

have been exposed to a highly hazardous agent. USAMRIID has a special team, the Aeromedical

Isolation Team, that is equipped to respond to local, continental, or worldwide medical

emergencies. Their training is sustained through periodic practice drills.

16



Thegoals of the USAMRIID biosafety program are to prevent injury, infection, and death of

employees and the public, to prevent environmental contamination, to conform to prudent

biosafety principles, and to comply with Federal, State, and local regulations and guidelines. Our

task in the Safety and Radiation Protection Office is to preserve existing conditions. Everyone is

healthy and it is our job to keep everyone that way.

In summary, some obvious hazards have been described as well as how the risks of these hazards

are minimized. Complete or absolute safety cannot be provided but reasonable safety is provided.

Policy is established and advice, guidance, limited training, and protective equipment is provided.

USAMRIID has an integrated program of immunization, health surveillance, and medical

management of illness. This program, combined with safety engineering features and equipment,

is designed to reduce the risks associated with the unique research conducted at USAMRIID.

Trace Detection/Identification of Biological Entities
in Martian Rocks and Soil

• ,d "

Alvin Fox

(University of South Carolina)

Background

Our focus for detection of fastidious bacteria or their non-viable cell envelope components has

been on techniques other than traditional culturing methods. It should be emphasized that

bacterial culture techniques are a powerful and simple approach for the detection of life which

should certainly be utilized in studies of putative martian life. However, we have no way of knowing

the nutritional requirements of such life. Even many well known causative agents of human

disease that have been studied for many decades cannot be cultured on conventional

microbiological media. Indeed, in many instances they do not grow on any currently available

laboratory media. Thus, even if a sample will not grow it still may contain life. Alternatively, non-

culture based chemical approaches can detect life in the absence of laboratory growth.

Our first assumption for the purposes of this discussion is that life, if present on Mars, will contain a

diverse collection of organic chemicals containing C, H, N, O, P, and S. It is reasonable, as a first

approximation, to assume that martian life would be based on amino acids, sugars, fatty acids, and

nucleotides some of which are polymerized respectively into proteins, polysaccharides, lipids,

and nucleic acids, as they are on Earth. While it is possible that these martian chemicals may be

identical to terrestrial chemicals it is equally possible that these compounds may be entirely

distinct from those present on Earth. Thus it is our contention that methods selected should be of

general applicability and capable of profilingthe whole class of each type compound (e.g. L- and

D- amino acids and/or sugars).

The Viking Mars missions recognized the power of mass spectrometry and utilized an approach

based on pyrolysis. When performing pyrolysis, the sample is heated to several hundred degrees

centigrade in the absence of oxygen. This shatters not only all polymers and oligomers present in
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thesample but also the monomeric constituents (e.g. carbohydrates). Extremely low molecular

weight volatile constituents are generated whose chemical structures bear little relationship to

those of the parent molecules due to destructive scission and dehydration reactions. Catherine
Fenselau noted in the introduction to her 1994 book Mass Spectrometry for the Characterization

of Microorganisms [Fenselau 1994] that the use of pyrolysis to convert intricate endogenous

chemical markers to small gaseous molecules is philosophicallyflawed and has been historically

unproductive." This conclusion was not well understood at the time of the Viking missions but

subsequently more than 20 years of experience have taught us that it is time to consider more

modem mass spectrometry based approaches.

In the late 1970s into the 1990s, a number of state-of-the-art techniques based on "derivatization

and mass spectrometry" have been successfully developed for trace detection of chemical

markers for bacteria in complex clinical and environmental matrices. In derivatization, the

monomers (e.g. sugars and fatty acids) are released from polymers in a chemically intact form by

hydrolysis in acid or alkali. The monomers are volatilized by inhibition of ionic interactions and

hydrogen bonding by conversion into a non-polar state (e.g. by acetylation). Originally such

samples were analyzed by a combination of gas chromatographic separation of these complex
mixtures into their components followed by mass spectrometric detection/identification (GC-MS).

Recently, the power of these techniques has been improved dramatically using tandem (two

dimensional) mass spectrometry for improved detection and trace identification (GC-MS-MS).
From the mass spectra of these derivatized molecules, even in complex environmental samples it

is possible to determine the structure of the original native molecules.

These latter (GC-MS and GC-MS-MS) methods are routinelyavailable in a few specialist
laboratories. It must be stressed that trace detection of microbial components in complex

environmental matrices using mass spectrometry remains a novel, high technology research area.

There are many well qualified microbiologistswho possess knowledge of chemical/molecular

composition of microbes and mass spectrometrists equally-skilled in the use of these highly

sophisticated instruments. Analytical microbiology (a discipline on the interface between analytical

chemistry and microbiology) combines expertise in these two diverse areas into a single

interdisciplinary research program [Fox et al. 1990].

As an example, muramic acid is an amino-sugar that is unique to the bacterial cell wall

peptidoglycan (PG) and serves as a universal marker for the presence of PG in environmental and

clinical samples. In trace analysis of muramic acid in complex biological matrices, contaminating

compounds are commonplace masking detection and causing false positives. Therefore,

observing a chromatographic peak at the correct retention time (using a non-selective detector)
does not constitute definitive identification. One may merely be detecting a co-eluting

contaminant. When present at relatively high levels it is possible to categorically identify muramic

acid in a chromatographic peak by the "mass spectrum." The mass spectrum is a chemical

fingerprintwhich is characteristic for muramic acid. Alternatively, the mass spectrometer can be
used as a selective chromatographic detector; in this "monitoring mode" the detection limit is

much lower but absolute identification (by mass spectrum) is not possible.

Categorical identification at trace levels has awaited the development of more advanced
instrumentation. The mass spectrometer is widely used as a "selective chromatographic detector"
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to ignoreextraneous chromatographic peaks. In tandem mass spectrometry, the instrument

further decreases nonspecific peaks by screening out background peaks twice. In the

"identification mode" one can also obtain absolute chemical confirmation by means of a daughter

mass spectrum (chemical fingerprint). The high resolution separating power of GC coupled with

the exquisite selectivity of MS-MS detection eliminates essentially all extraneous peaks in the

chromatograms. At the retention time for muramic acid, daughter mass spectra of peaks from

environmental dust samples are identical to standard muramic acid.

High molecular weight oligomers and polymers (e.g. nucleic acids, proteins, and phospholipids)
are not amenable to GC-MS and GC-MS-MS analysis. At atmospheric pressures, these molecules

tend to adsorb/decompose in the injection port or GC column of the instrument. Alternatively, the

molecules can be introduced into the near vacuum of the mass spectrometer as charged particles
using the techniques of electrospray ionization or matrix assisted laser desorption. Both

techniques have the potential for trace detection of polar and/or high molecular weight chemical

markers for bacteria incomplex matrices with minimal sample preparation.

The polymerase chain reaction (PCR) is an established alternative to culturing for trace generation

of molecular markers of pathogens in environmental specimens. The rate limiting step in

conventional molecular biology approaches is the detection of these PCR products by gel

electrophoresis (which generally takes several hours). The first technology for the rapid (<10 min)

identification of pathogenic bacteria based upon the combination of PCR and mass spectrometry

has been recently developed as a result of a collaboration between Pacific Northwest National

Laboratory and the University of South Carolina. In comparing a variety of PCR products from

bacterial strains of known sequence with related products from strains of unknown sequence we

have demonstrated that single base substitutions, deletions, or additions in PCR products can be

readily recognized by the change in molecular weight as determined by MS analysis. Analysis of

martian samples for specific genetic markers would not be recommended at this time. However,

this approach demonstrates the ability to detect intact high molecular weight oligomers and

polymers derived from bacteria with minimal sample work-up and no derivatization.

Transport of rock samples from Mars to Earth will happen in the not too distant future. The

procedures for containment of such samples are under development. Methods for hazard

determination (involving culture and toxicity testing) in cells and animals are well established for

terrestrial microbes. Life detection by non-culture based techniques are only available in a hand-

full of laboratories. Few of these laboratories currently focus on the study of extraterrestrial life and

most will not readily respond to traditional requests for proposals from outside their disciplines

(e.g. exobiology). Decisions need to be implemented in the near future on how to incorporate

these technologies into the Mars mission planning. An extremely important logistical first step is

whether there will be incorporation of appropriate mass spectrometry based instrumentation and

expertise into the planned facilitates for containment and hazard evaluation. Alternatively,

planning must be initiated now to determine how to release sterilized extracts to the wider

scientific community. Such extracts must of course be clearly non-hazardous but also must retain

the native structures found in chemical markers for life. Appropriate sterilization methods would

most sensibly be developed by collaboration between exobiologists and those skilled in the area

of analytical microbiology. Further, most environmental terrestrial samples which have been

currently analyzed by modern mass spectrometry-based methods are teeming with life. Due to the
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harshconditions,martiansamplesmaycontainonlysmallnumbersofmicrobes.Itneedstobe

proven that any methods selected are capable of quantitatively discriminating between terrestrial

samples that cleady contain low- or high-levels of Earth organisms as negative and positive

controls, respectively.
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Modern Techniques for Testing Pathogenicity and Hazards,
with Special Reference to Humans

Joseph McDade

(CDC/National Center for Infectious Diseases)

Humans can become infected by various routes, including inhalation or ingestion of

microorganisms, fecal-oral or venereal transmission, or contact with infected vectors or animals.

The outcome of the interaction between humans and microorganisms depends primarily on the

innate virulence of the microorganism and resistance of the host. Obviously, not every encounter

results in disease. The successful pathogen is able to attach and enter into the body; can spread,

locally or to all tissues and organs; can replicate inside the host; is able to evade host defenses;

may damage the host; and is shed (exits) from the body, to ensure an encounter with another

susceptible host. Recent research indicates that each of these steps is very complex and involves

numerous microbial genes and gene products and physiologic processes of host cells.

Many pathogenic microorganisms possess specific adhesin molecules on their surface, that serve

as ligands for attaching to host cell receptors. The nature and composition of the adhesins vary

among different types of microorganisms, but adhesins of similar microorganisms have common

features. For example, bacteria possess hair-like appendages (fimbriae or pill) on their outer

surface, and the tips of the pill bind selectively to certain receptors on mammalian cells. In contrast,

the hemagglutinin molecules of influenza and measles viruses, which comprise a major portion of

the outer surface of these viruses, attach preferentially to the respiratory epithelium of host

mammals. Regardless of the mechanism of attachment, normal host cell functions are

subsequently re-directed to purposes that serve the invading microorganism. For example,

attached bacteda produce and secrete a variety of effector molecules that direct the host cells to
internalize the bacteria. Then, other bacterial molecules cause the host cells to produce strands of
fibers that direct the movement of bacteria within and between host cells. To ensure their survival

within the host, some pathogenic bacteria also produce molecules that cause the host to produce

ineffective antibodies or to completely inhibit the immune response. Other microorganisms resist

the immune response by producing different proteins on their outer surface while they multiply

within a host (antigenic variation), such that antibodies are never able to neutralize the microbe.

Microorganisms damage cells and tissues in several ways: either directly by producing toxic

byproducts; by inducing programmed cell death; or by the action of various toxins. The
mechanisms of action of some bacterial toxins have been described at the molecular level. For

example, adenylate cyclase toxin of the bacterium Bordatella pertussis has a molecular mass of

200,000. It is inactive until B. pertussis invades a host cell. However, once inside the host cell it

becomes activated by a host cell enzyme and produces enormous levels of the physiologic
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modulator cyclic AMP. The elevated levels of cyclic AMP in turn disrupt several components of the

host's immune response. Cholera toxin also increases cyclic AMP within gut tissue; however, in

cholera infection, the cyclic AMP causes the cells lining the gut to discharge enormous quantities
of water into the bowel, which is manifest clinically as profuse, watery diarrhea. Other

microorganisms have different mechanisms of pathogenesis.

Most successful pathogens have evolved in concert with humans or other mammals and have

leamed to exploit host cell metabolic pathways. Not only do pathogenic microorganisms require

organic compounds for their survival, many pathogens have very specific nutritional and metabolic

requirements that can only be provided by host cells. In fact, certain microorganisms, such as

rickettsiae and viruses, are obligate intracellular parasites that can only survive inside living cells.

Thus, it seems unlikely that a microorganism that has evolved independently from prospective

mammalian hosts would possess an innate pathogenic potential for humans.

In recent years molecular techniques have been developed to detect, identify, and differentiate

various pathogenic microorganisms. Use of DNA probes, genomic sequencing, restriction

fragment length polymorphisms (RFLP), Southern blotting, ribotyping, and multi-locus enzyme

electrophoresis are examples. These techniques vary somewhat in sensitivity, specificity, and

utility for identifying microorganisms. However, with certain exceptions, most existing DNA probes

are used to detect "housekeeping" or cryptic genes and cannot detect specific virulence factors

in microorganisms. The complexity of the pathogenic process precludes ready identification of a

single gene or group of genes that can be considered generic markers of virulence.

Enteric bacteria are notable exceptions to this rule. The genomes of enteric bacteria possess

large clusters of genes that contribute to a particular virulence phenotype. These "pathogenicity

islands"were originally thought to be associated only with plasmids because they are

transmissible between certain species of enteric bacteria; however, they have now been found

on the bacterial chromosome as well. For example, the SPI-1 pathogenicity island of Salmonella

contains at least 25 genes, which encode a secretion system and effector proteins that enable

Salmonella to invade epithelial cells. A second island (SPI-2) contains at least 15 genes that

ensure survival of Salmonella within host immune cells (macrophages). Pathogenicity islands are

transferred among enteric bacteria by bacteriophage.

In summary, although pathogenesis is the subject of intense research, the molecular mechanisms
remain incompletely understood for most microorganisms. Additionally, those pathogenic

processes that have been determined are quite complex. Thus, functional assays remain the

most reliable indicator of the pathogenic potential of a novel microorganism.
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SUBGROUP REPORTS

Containment Subgroup 2

The Containment Subgroup discussed the development of recommendations that might be

adopted by NASA for the safely controlled management of a Mars sample while a quarantine
protocol is executed. "Containment" was defined as:

A system for protection of: a) the Earth's biosphere from release of "biological

entities" of martian origin, and b) the integrity of the sample.

Sam01e Return Canister Con,_i_._ration_,

It is essential that the entire system of containment prevent the escape of potentially hazardous

material. Thus, consideration must be given to certain elements of the design of the sample return

canister and the Earth return procedures. Decontamination of the exterior of the canister that

contacts the martian surface must be a part of mission design. In addition, contingencies for non-

nominal events should be pursued and incorporated into the design of the canister and return

procedure. For example, the Earth Return Vehicle will be initiallytargeted away from Earth with a

maneuver to place it on an Earth-entry trajectory. This maneuver will be executed following

confirmation that the sample containment is intact. Following execution of that maneuver and

Earth entry, should a breach occur, a mission design contingency should be provided for a

suitable sample sterilization process.

A breach of canister integrity could also occur as a result of an unexpectedly hard impact at the

landing site. Some provision should be made to determine if a breach occurs, and, again, a

contingency planned for suitable sterilization in that event.

Upon recovery of the canister and re-confirmation that the sample has been properly contained, it
will be necessary to transport the sample to a quarantine facility. This transit must meet regulatory

requirements for safe transport of potentially hazardous biological material. These requirements

include those of the U.S. Department of Transportation and the U.S. Department of Agriculture

Animal and Plant Health Inspection Service (APHIS). The U.S. Public Health Service and some

state agencies may also impose requirements for safe transport of the sample.

Precautions for handling the sample return canister until it has been sealed in a transport
container should include the provision of protective garments for the recovery crews. These

garments should meet or exceed EPA requirements for the clean-up of hazardous spills.

Contingency plans should also be developed for the impact site if an indicator shows that a breach
of containment has occurred. Plans should be coordinated with APHIS and the U.S.

Environmental Protection Agency to meet the regulatory requirements of those Agencies.

The ContainmentSubgroup participants included: MarkAdler, Judy AIIton,John Bagby(Chair), Jack
Barengoltz, Ben Clark, Robert Hawley, Tullis Onstott, John Payne, Jonathan Richmond, and Perry
Stabekis.
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The Mars Receiving Laboratory_

Genera/Considerations: Decisions regarding the nature of containment to be accorded Mars

samples were reached after considerable discussion. It was agreed that the unknown nature of

any possible hazardous material in the sample demands provision of the most stringent

containment presently afforded to the most hazardous biological entities known on Earth; that is,

a Biosafety Level 4 (BSL-4) operation. Appropriate containment is attained through the
application of primary and secondary containment principles.

Primary containment will be provided by utilizingClass III biosafety cabinets: glove boxes
connected in sequence with sealable doors between cabinets and maintained under negative

pressure.

Secondary containment is provided by the building: a "high-end" BSL-3 structure which is sealed

and maintained under negative pressure, with high efficiency particulate air (HEPA)-filtered

exhaust air, sterilized waste water, and with provisions for personnel showers and appropriate use
of disinfectants•

Several laboratories do exist that provide BSL-4 protection required for the Mars samples• These

labs have the added advantages of highly competent professional and support staff who are
trained and experienced in the laboratory procedures with which they will work, and who have

access to the necessary instrumentation.

A/temative Approaches: Biological safety and physical security must be the prime consideration

in the design of a Mars Receiving Laboratory (MRL). The Subgroup considered alternate

approaches to the provision of containment and security that included consideration of cost and

efficiency•

The MRL must be constructed to meet a wide range of specifications. The recommended

containment approach (Class III biological safety cabinets sealed sequentially) is flexible and

portable and may be engineered to any size required for quarantine testing. If quarantine testing

is limited to a few procedures in the initial phase, one cost effective option would be to provide a

small MRL facility adjacent to an existing BSL-4 laboratory, e.g., USAMRIID at Fort Detrick,

Maryland or the CDC laboratory in Atlanta, Georgia. If it becomes necessary to examine the

samples beyond initial testing, the samples could be transferred to the BSL-4 laboratory without

unnecessary transport. The more important advantage is the proximate availability of highly skilled,

trained professionals to support staff who are experienced with total containment procedures•

The Fort Detrick military facility also has the advantage of the Foreign Disease Weed Research

Laboratory, a BSL-3 plus facility which is recognized by the Dept. of Agriculture for the

containment and examination of non-indigenous plant pathogens.

Construction of a smaJJfacJJJty as an adjunct to an existing approved facility shouJdsimpJifyapproval

of an Environmental Impact Statement (EIS) because the new elements in the EIS could be tiered

to an existing analysis previously approved for the existing facility•
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Apotentialdisadvantage with an existing facility as back-up is the possible reduction of control of

the samples by NASA while in the hands of another agency. However, existing policy for the

transport and receipt by a facility of potentially hazardous agents requires CDC to review the facility

(e.g., the USAMRIID laboratory), thus providing an additional check on safety. Other interagency

agreements could be negotiated.

Existing containment facilities usually have no restrictions on organic contamination of the

samples. Because of the requirement for an environment free of organic molecules for the Mars

samples, a process change in the operation of primary containment devices in existing facilities will

be necessary in order to comply. Facilitymanagement issues are very critical to the entire
operation regardless of facility location, and require early study, negotiation, and resolution.

If a decision is made to provide a dedicated new facility to receive, contain, and examine Mars
samples, that decision needs to be made soon. One of the most serious problems faced by the

Apollo Program's Lunar Receiving Laboratory was the time constraint imposed on that laboratory

by the extreme timetable for the Apollo Moon missions and the delay in planning for planetary

protection. At least five years must be allowed for the construction and certification of such a

highly technical facility and for the training of professional and support staff. Training periods are

required for qualified personnel to become familiar with a new facility so that their operations are
safe, efficient, and accurate.

The Glove Box System: Flexibility of the glove box system will allow design and construction to

meet a broad range of requirements established by the quarantine protocol. Glove boxes can be

designed to include any laboratory equipment required by the protocols as well. Operational parts

of the equipment can be housed within the primary containment glove boxes, with the

electronics, control panels, etc., located outside the primary containment barrier.

Both the inside and outside surfaces of the box used to transport the sample canister from the

landing site to the receiving facility will be contaminated with Earth organisms during the process

of depositing the sample canister inside. When the transport box is inserted into the first Class III

biological safety cabinet, that cabinet will also become contaminated. The canister itself should be

removed from the box and moved through an airlock into a second Class III biological safety

cabinet, then the first cabinet is sealed off. If the canister has been breached, then the transport

box remains in quarantine, or is sterilized, after opening it in the first cabinet.

In the second cabinet, a gas sample could be removed from the canister head space if the canister

is not breached. The canister would then be attached to a specially fitted gate that separates the

second cabinet from the third. This gate will permit the canister to be opened from the third
cabinet, its contents removed to the third cabinet and the canister itself left in the second cabinet.

Thus, the third cabinet contains the Mars samples that are completely separated from

contamination picked up during recovery and transit. In the third cabinet samples may be

examined and decisions made concerning portions to be used for quarantine testing and portions

to be archived for future analysis. The archive sample should be placed in a sterile container under

positive pressure relative to the third cabinet. Storage temperature and atmosphere should be

approximately Mars-equivalent.
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The next cabinet and additional ones linked in series for quarantine testing will be maintained

under negative pressure to satisfy primary containment requirements for environmental

protection and worker safety. The building itself is constructed and operated to provide a

secondary barrier.

The Class III biologicalsafety cabinets will be sterilized for terrestrial organisms untilquarantine

testing reaches those cabinets where plant and animal hazard testing may be required. Only

inorganic sterilants without carbon residue should be used.

The deployment of canister and samples through the boxes will depend on what tests are to be

run and at what stage of the operation. For example, analytic equipment for sample manipulation

might fill one cabinet and leave no room for other operations. The flexible cabinet system will allow

for any series of operations to be designed and conducted.

Summary_

The Containment Subgroup considered requirements for containment of the anticipated Mars

material that may reach Earth in 2008. Integrity of the sample container upon entry into the Earth's

biosphere and verification of containment were recognized as important and recommendations

are made in this report for certain aspects of container design and recovery techniques.

Once the sealed, un-breached canister has been recovered and safely transported to an MRL it

should be placed in BSL-4 containment attained by a double biological barrier. Primary

containment is to be provided with Class III cabinets maintained under negative pressure to the

room in which they are installed. Additional containment is provided by a "high end" BSL-3

building. There the transport box and the canister will be opened and a sample will be removed for

quarantine testing. The remaining sample is then sealed and maintained under positive pressure.

The quarantine portion of the sample is moved into a connecting cabinet/glove box under
negative pressure. It will be examined under quarantine protocol requirements. The Class III

biological safety cabinet system has flexibility that will allow any number of cabinets to be
connected in series, joined with sealable doors and include any equipment required for analysis.

Cost and efficiency considerations indicate that a small initial MRL might be built in close proximity

to one of the existing BSL°4 biocontainment laboratories in the United States. The MRL will

perform tests to insure the samples are safe to release for scientific investigations. If any indication

of biological activity is detected during quarantine testing, the samples could be moved quickly

and safely into the adjacent BSL-4 facility for further analysis (e.g., toxicity/pathogenicity).

Whether decisions lead to the design and construction of a small, initial MRL or a full-scale facility

dedicated to initial and follow-up testing, action should begin soon to allow adequate time for

design, construction, and certification of the laboratory, as well as recruitment and training of the

professional and support staff.
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Research and Technology Need_

Recommendations for research that will be required for successful containment of Mars samples

both while in transit and in the laboratory on Earth are provided here:

HEPA filters will be required for the MRL and can be designed for the Sample Return Canister

(SRC). These filters can be arranged in sedes to increase their efficiency. Such filtration is

recognized as the proven standard for high maximum containment of the most hazardous

biological agents known. The Subgroup recommends that challenge testing of the filtration

systems be undertaken using carbon-beadng particles from 10 nm to 100 nm in size.

. For in-flightverification of the canister seals it would be inappropriate to use carbon

compounds. To avoid sample contamination it may be desirable to use radioactive-tagged

particles. Research should be conducted to choose appropriate isotopes and particle sizes

for such verification/testing.

3. Research is required to select an appropriate indicator for canister seal integrity upon

recovery.

4. It will be necessary to design effective processes to clean the containment area of terrestrial

biological entities and organics to avoid confusion during observations of the Mars samples.

5. Systems must be developed and tested to maintain sample integrity when obtaining aliquots

of material for quarantine testing.

6. Canister design research could provide a system for needle puncture of the "head space"

through a vacuum-sealed line; HEPA filters could be incorporated.

7. Research should be undertaken to determine suitable sterilization methods for the Mars

sample.

Life Detection Subgroup 3

Background

The capability to detect life defines a root issue in planetary protection. If there is no life, there is

no biological hazard. The presence of live organisms in a returned sample suggests terrestrial

contamination or the presence of a possibly hazardous (although certainly quite interesting)

example of extraterrestrial biology. The Space Studies Board has made recommendations which

stress improvements in life detection techniques in both their report on the Biological

Contamination of Mars [Space Studies Board 1992], and in their recent report on Mars Sample

Return [Space Studies Board 1997]. In the former, life detection techniques employed to gauge

the level of contamination on outbound spacecraft were emphasized, while in the latter report the

3 The Life Detection Subgroup participants included: Carlton Allen, Don DeVincenzi, Jack Farmer, Alvin
Fox, Harold P. Klein, Harold Morowitz, Norman Pace,Tommy J. Phelps,John D. Rummel (Chair), and
Norman Wainwright.
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emphasis was on the detection of live organisms and to differentiate between organisms from

Earth and those that may be found on Mars. From the planetary protection standpoint, the

emphasis for sample return missions is to ascertain the potential for extraterrestrially-introduced

hazards that may be carried in the martian sample.

We do not have a universal definition of life, and thus it must be said that any life detection

protocolthat is offered for the testing of extraterrestrial samples will have certain Earth-oriented

prejudices built in. This is unavoidable, but serves to limit the scope of the detection protocol to

activities that would 6e consistent with the detection of Earth life, in its many forms. Developing a

protocolthat would routinely be successful in the detection of life, and in particular any live

organisms, would, in and of itself, be a prodigious achievement.

Introducti()n

The Life Detection Subgroup was assigned the task to develop a series of tests (a protocol) to

detect the presence of live organisms, or of materials that have been derived from live organisms,

in a sample of material retumed from Mars. rn order to define these tests, the Subgroup

considered the likely aspects of viable organisms that might be detected (irrespective of the origin

of the living entities). The philosophy that should guide the life detection protocol, which in turn

would dictate the sequence, techniques, and handling requirements for the protocol was also

defined. In addition, the Subgroup made recommendations on research that might be required to
further refine the details of the tests to be made.

The philosophy that the Subgroup espoused during the Workshop was aimed not only at

detecting life, but distinguishing between potential martian life forms and terrestrial contamination.

The essence of the philosophy is twofold: 1) that there must be multiple lines of evidence to

support an hypothesis that detected life is of martian origin; and 2) it is essential to understand the

geological and potential ecological context of a sample in order to understand the nature of life
that might be detected in that sample. In support of this philosophy, it was deemed essential to

have a strong quality assurance (QA)/quality control (QC) program, involving the use of chemical

tracers, as part of a sample return mission in order to correlate the "detected" material/organism(s)

with the phase of the spaceflight mission in which that material was obtained.

In order to establish the appropriate context for life detection in a sample, the Subgroup

recommended that a preliminary analysis of the sample be conducted. The analysis should:

1) characterize the bulk mineralogy of the sample, 2) establish its elemental composition,

3) inventory the volatile and organic materials it may contain, 4) measure the redox couples

present inthe sample material, and 5) obtain a microscopiccharacterization of the sample's

surface and interior. It was felt that most of these analyses would not require that a sample be held

in biological containment, as long as an adequate sterilization method could be defined which

would not affect the results of the analysis.

The Subgroup prioritized three basic methods by which life detection could be accomplished:

1. Organic chemical analysis and detection: These would offer the most compelling probability

of detecting the presence of living organisms in a sample. This analysis would include a
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searchforfunctionalgroupscontainingreducedcarbon,sulfurornitrogen;ananalysisof
possiblekerogenmaterialsfor stable isotope abundances; the detection of amino acids or

possible proteins; an analysis for amphiphiles in the form of fatty acids, hopanes, etc.; a

search for carbohydrates, nucleic acid bases, and related compounds such as DNA, RNA,

PNA, etc.; and the potential detection of integrated cell walls or cell wall components such as

lipopolysaccharides. With current improvements in the technologies available for these

analyses, cellular life could be detected routinelyat the level of 10-100 cells in a sample, and

potentially these techniques could be successful in detecting as little as one cell in a 100 g

sample.

. Light and/or electron microscopy: This technique would be used to detect the morphological

indications of life, along with the trace mineralogy of the sample. Coupled with staining

methods that can reveal chemical evidence of life in conjunction with the morphological

methods, light microscopy has a number of advantages over electron microscopy in terms of

sample preparation and handling, and in real-time testing of a sample. Nonetheless, electron

microscopy, and particularly ion-probe techniques, can provide critical information about a
given sample in terms of composition. Microscopic techniques provide the potential to detect

as little as one cell in a given sample; however, what constitutes a "representative" sample
would need to be defined.

. The culturing of martian materials and/or living organisms: This is much more difficult to

generalize for putative martian organisms, though it provides a natural link to other planetary
protection activities such as hazard detection. Nonetheless, cultivation as a life detection

approach was recommended for adoption because of the potential to amplify the presence of

life in a sample (through growth and reproduction). It may be the most effective means by
which to discriminate between a viable organism and materials that were once associated with

biology, but are not now alive. Cultivation techniques to be attempted should include not only

conditions commensurate with the environment from which the samples were obtained, but
also the use of multiple media and carbon sources under both aerobic and anaerobic

conditions, using both intact samples and processed sample materials.

A Life Detection Protocol

The processing of martian samples for life detection purposes should be an integrated facet of a
comprehensive analysis of the samples for atmospheric, geophysical, and exobiological

purposes. The specific steps to be taken in the early phases of sample handling and preparation

would be driven by the nature of the specific samples collected on Mars. It is clear that gases,
dust/soil, and rocks will each present specialized sample canister, containment, and analysis

challenges. Despite these variations, a comprehensive process for sample analysis and life
detection follows:

Sample Containec The nature of the sample container and the process for collection of samples

on Mars remains to be determined, and clearly will affect the subsequent analysis on Earth. For

example, it would be useful to have a good unmixed sample of the martian atmosphere from the

sample location to compare with headspace gases in the sample chamber(s) once the sample
container is returned to Earth. It would be desirable to be able to sequester rock samples,
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particularly,andothersamplestaken from below the surface of a rock from the martian dust/soil

material that will also be sampled. This segregation will be useful for later analysis and sample

handling on Earth.

Equally important will be to characterize the physical (and chemical) conditions of the sample(s)

during their transit from the surface of Mars to the receiving laboratory on Earth. Proper
instrumentation in the sample container should be provided to record the temperatures and

pressures experienced by the sample(s) during the transit and recovery process.

Sample Receiving: The sample receiving process has several goals. Care must be taken to avoid

sample alteration dudng the transfer of the sample from the container. Alteration could destroy
critical evidence about the state of the sample when it was on Mars. Another prime goal during

sample handling, for the purposes of a life detection protocol, is to avoid the introduction of Earth

organisms or other contaminants into the sample that might provide a false positive indication

during life detection testing. Other concerns (i.e., the inadvertent release of material in an

uncontrolled fashion), are inherent in handling potentially biohazardous materials. But it is

important to note that there may be a conflict between the desire to keep the sample pristine and
some measures required to prevent the escape of putative organisms from the sample.

Sample Separation: Prior to removal of a sample from the container, headspace gas should be

analyzed for evolved gases. This provides an indication of gas absorption or desorption by the

sample and will enable other comparisons to the ambient martian atmospheric sample. Such

analysis can provide important insights into the nature of the sample chemistry during the trip from
Mars.

At each step in the process of sample separation and analysis, it is important that multiple samples

be allocated for each test and be photographed and weighed. In addition, some samples must be

preserved for archival purposes. It should be emphasized that later test results may require

procedures used in the initial work to be repeated, to some degree, or may dictate alternative

testing techniques that were not initiallyenvisioned.

After sampling the headspace gases and separating any atmospheric sample that may have been

returned with the sample canister, the next step in sample processing would be to remove the

solid sample from its container, and separate dust and soil samples from rock samples collected on

Mars. The Subgroup strongly favored that the sample return mission accomplish the bulk

separation of these materials as they are collected. A failure to do so will greatly complicate the

sample separation process, and could result in the loss of critical data about each sample's
provenance, or serve to make such data impossible to interpret. The Subgroup noted that an

understanding of the sample's context on Mars is essential to the ability to correctly interpret

chemical analyses on Earth. Also, the return of a sample in bulk is inimical to an effective QNQC

program whose purpose is to aid in identifying the source of any contamination that may be

introduced into a sample and/or sample chamber during collection and retrieval missions.

Microscopic/MineralogicaVGeochemical Survey: Reflected light microscopy at low power is

considered the most logical initial screening technique to group samples for more detailed

analysis. Along with the use of a micro-photometer, samples can be analyzed to determine their
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petrography,mineralogy, and state of alteration. It may also be possible to compare the analysis of

martian samples on Earth with in situanalysis of the sample on Mars. This will indicate any changes

in composition during transit to Earth.

Rock samples can be broken to expose their interiors, and representative sub-samples can be

selected from each rock for further life detection analyses, as well as for subsequent curation and

distribution. The rock and dust sub-samples could be subjected to a certified sterilization process

and distributed outside of the containment facility for special-purpose geological and geochemical

analysis by extemal laboratories. Many appropriate geoscience analyses, however, may be

compromised by heat and steam, and may have to be conducted within the containment facility, or

await the release of the sample. Among the analyses that could be conducted at this point are the

establishment of the general elemental, isotopic, and chemical composition of the sample, an

assay for paleomagnetism, and isotope dating of the sample.

Life Detection Microscopy: Microscopy will be essential for the initial screening of martian

samples, and for certain geological analyses. There are a number of techniques in microscopy that

will be particularly advantageous to employ in specific areas of life detection. Some of these

techniques will be a continuation and intensification of those used in the screening process. A

petrofabrics analysis of the rock sections by light microscopy (transmitted light, polarized light, UV

fluorescence, IR reflected cathodoluminescence) would be to determine mineralogy, and to

search for biologically-induced structures or fossils preserved by mineral replacement which

would not be apparent through organic chemical analysis.

Biological applications of microscopy might involve staining of samples using, for example, DNA

probes or other biostains and fluorescence techniques that would allow for the visualization of

biomaterials, if present. For transparent minerals, a fluorescent stain method with confocal

microscopy could document the distribution of any organic materials present, down to the size

range of light microscopy (in the range of a few micrometers).

Wavelength-specific x-ray imaging using a synchrotron facility, with similar resolution to light

microscopy, can provide detailed information about the redox states of elements like iron,

manganese, and other important metals of potential biological importance. While it would likely

have to be applied outsii:le of containment, this method also permits the detection of specific

types of organic molecules and minerals and their spatial distribution from the x-ray images and

tomography.

For high-resolution imaging, electron microscopy offers a wide range of potential techniques for

elemental, mineralogical, and biologicalanalysis. To characterize the mineralogical/geochemical

and petrofabrics framework of samples, scanning electron microscopy (SEM) is an important tool.

SEM provides an initialvisualization of microfabrics of mineralized frameworks linking light

microscopy with transmission electron microscopy (TEM). The utilityof SEM is that it involves little

destruction of material, and perhaps only a thin coating of conductive material to prevent a charge

on the sample. Chrome or iridium should be used for coating or, where possible, uncoated

samples should be examined to avoid introducing artifacts caused by the coating process that

could lead to misinterpretation of results.
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SEMcanalsobeusedinback-scattermode,tovisualizespatialvariationsinatomicnumber,with
anEnergyDispersiveX-RayDetector(EDX)to producemapsofmajorelementaldistributions.To
linktheseanalysesto moresensitivemicroprobemethods,SEMfor petrofabrics can also be

carried out on lightly etched thin sections. Detecting biological microstructures (e.g., cellular

remains) by SEM may involve the application of biological fixatives and critical point drying

methods to samples to ensure the preservation of organic materials. This can be done without

interfering with mineralogical analyses, providing biomaterials are scarce in the sample.

TEM can provide important information on ultrastructure and mineralogy that is needed to fully

describe the sample. If biologically interesting structures are imaged, a logical next step would be

to prepare those samples for TEM to obtain cross-sectional views and to further characterize their
microstructure and mineralogy at higher resolution. TEM methods require sub-sectioning of

targeted domains into thin sections either by ultramicrotomy, which typically destroys spatial
frameworks in mineralized frameworks, or by ion milling of sections. Precision sectioning could

also be accomplished within an SEM - a method newly developed by Hitachi.

Selected staining of biological materials for TEM provides a means for attaining a detailed
characterization of the ultrastructure and general composition of biological materials present. The

challenge of ion-milling techniques center around the preferential thinning and loss of organic

components during sample preparation.

Thin-section based approaches can be coupled to laser-based mass spectrometry methods to

determine the isotopic composition of minerals and organics present in rocks, or to related high

resolution techniques (e.g., ion probe) for carrying out organic analysis on rock samples. These

techniques can determine spatial distribution of key minerals, elements, and organic compounds.

Chemical Analyses for Signs of Life: The Subgroup agreed that the highest priority life detection

investigations should be comprised of organic chemical analysis and detection - a search for

functional groups. These analyses can be used to detect life, or life-related molecules, at a level of

detection approaching, and in some cases exceeding, that required to detect a single cell.

Assuming a terrestrial bacteria with -1 pm3 volume, a cell mass of -0.6 picograms, a cellular
biomass based on chromate oxidation, and a mole molecular weight of 104 g, each hydrolyzed

cell would have greater than 109 organic molecules with a molecular weight of -100, after

accounting for the water in the volumetric approach. With infrared micro-calorimetric detection for

amine groups and again for carboxyl groups there are dual independent measures capable of

detecting as few as 10,000 such molecules. This detection level provides five orders of

magnitude of surplus margin that may be important in detection of cells that may be smaller than

those found on Earth. This also allows for mismatches in detection systems, and/or upscaling

problems. This level of detectability for critical components of terrestrial living systems is available.

There are, of course, caveats associated with the use of chemical detection alone. The Subgroup

has recommended that confirmation of chemical tests be accompanied by other evidence for life,

such as the demonstration of metabolic function by living systems. The dependence on organic

chemical detection alone means it is nearly impossible to differentiate between traces of living and
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deadorganisms.In fact, it may be easier to identifythe kind, or form, of an organism than it is to
show its function.

Several techniques and targets for organic chemical analysis and detection were discussed by the

Subgroup:

° Mass Spectrometry Methods: It may be a reasonable first approximation to assume that life, if

present on Mars, is based on the biogenic elements and common terrestrial organic

compounds such as amino acids, sugars, fatty acids, and nucleotides polymerized

respectively into proteins, polysaccharides, lipids and nucleic acids. While it is possible these

martian compounds may be identical to terrestrial compounds it is also possible that these

compounds may be entirely distinct from those present in terrestrial organisms. Thus, the

analytical methods selected should be of general applicability and capable of profiling the

whole class of each type of compound (e.g., L- and D-amino acids) potentially associated with
martian life.

As discussed earlier (see pg. 17) the Viking missions to Mars in the 1970s utilized pyrolysis

mass spectrometry as an analytical technique. Problems inherent in this technique were later

discovered and from the late 1970s into the 1990s, techniques based on "derivatization and

mass spectrometry" were successfully developed for detection of trace amounts of chemical

markers for bacteria in complex clinical and environmental matrices. Most recently, "tandem"

techniques such as GC-MS and GC-MS-MS have resulted in further improvements for

detection and identification of trace native molecules in complex environmental samples,

however, trace detection of microbial components in complex environmental matrices remains

a novel, high-technology research area (see page 18 for examples and further discussion).

Techniques such as electrospray ionization or matrix-assisted laser desorption are currently

under development and have the potential for detection of trace amounts of polar and/or high

molecular weight chemical markers for bacteria (e.g., nucleic acids, proteins and

phospholipids) in complex matrices with minimal sample preparation.

. Combined PCR/Mass Spectrometry: This combination, developed in a collaboration between

PNL (Pacific Northwest National Laboratory) and the University of South Carolina, provides an

example of the use of electrospray ionization for chemical analysis of bacterial nucleic acids.

The combined technique provides a rapid (<10 min) method to identify pathogenic bacteria

(see pg. 19 for further detail).

This technique might be particularly important for the detection of terrestrial contamination in a

returned sample from Mars. Because the use of PCR assumes that the organisms involved will

have nucleic acids like those found in Earth organisms, the detection of specific genetic

regions from organisms potentially in martian rock is premature, at best, and would not be

recommended at this time. Nonetheless, this approach is important because it demonstrates

the ability to detect intact high molecular weight oligomers and polymers derived from bacteria

with minimal sample work-up and no derivatization.

3. Detection of Amphiphiles: Amphiphiles are molecules with both polar and non-polar portions,

and include fatty acids, sterols, and hopanoids. In aqueous media they are the basis of
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coacervateformation, includingbiomolecular leaflets, membranes, and vesicles. They are a

sine qua non of cellularity. Amphiphiles can be detected by extraction of ground rock with

chloroform and methanol (2:1), followed by drying of the supernatant. Amphiphiles can then

be detected by suspending the dried material in an aqueous phase and sonicating (structural
disruption with sound waves). The sonicate can then be studied by lightand electron
microscopy.

Amphiphiles have been reported in some carbonaceous chondrites [cf., Deamer 1997].

There is a preponderance of cyclic aliphatic hydrocarbons in extraterrestrial materials currently

available. The presence of long-chain aliphatic hydrocarbons in a martian sample would be of
great interest to chemists studying prebiotic chemical evolution and to scientists concerned

with life detection techniques.

, Cell Wall Components: Another family of target compounds indicative of living systems

includes materials that make up the cell walls of free-living microorganisms on Earth, i.e.,

lipopolysaccharides (LPS), beta glycans, and peptidoglycans. Current methods for the
detection of these compounds use an amplification system based on the primitive anti-

microbial defense system found in the blood of the horeseshoe crab, Limulus polyphemus,
and other marine and terrestrial invertebrates. The current level of detection is 100

femtograms and it is likely that this level of detection could be improved by at least an order of

magnitude over the next several years with the appropriate research and development. Cell

wall materials are generally robust chemical compounds that could survive some sterilization

procedures (autoclaving) but would be unlikely to survive some other methods (e.g., dry heat
at 200 °C for several hours).

Summary of the Chemical Analytical Approach: The following considerations form the basic

concept of chemical analysis techniques in life detection:

1. Seek functional groups important for energy transfer rather than live biomass (look at many

millions of molecules rather than a single cell).

. Do not simply identify or profile cells, but seek to identify accumulated biomass-type

molecules - lipids and RNA/DNA sequencing look at only a very small percentage of the

components of biomass to identify a cell type, and consequently require hundreds of cells for

detection. By looking at hydrolysis products, there is a gain of orders-of-magnitude in

sensitivity, though at a complete loss of selectivity. Looking at cellular components can

enable the detection of materials at the level of 1% of those required for a single living entity.

. Use more sensitive and less selective detectors for the first sample screening procedure.

Rather than employing the selectivity of GC-MS or LC-MS (liquid chromatography-mass

spectrometry) as the first step, highly sensitive infrared micro-calorimetric or lab-on-a-chip

technology can be employed to provide high sensitivity detection of functional groups.

. Integrate remnant parts. On Earth, the amount of functional groups remaining from remnant

parts often exceeds the live biomass. These materials, if present, will not of themselves

provide an indication of the extant life. However, a more selective analysis might be
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undertakento detect extant life that may be related to the organisms that produced the non-
living materials. Paradoxically, the oxidized conditions on Mars make it likely that unprotected

functional groups in materials on the surface would have a relatively short duration (less than

centuries). This would suggest that accumulation of carboxyl and amine functional groups

could represent organized and somewhat recent production; which may indicate the

presence of life.

. Because extraterrestrial life may be markedly different in detail from life on Earth, it may not be

possible to rely on DNA, RNA, proteins, or even carbon-based molecular backbones as

indicators of life. By focusing initial screening efforts on amine and carboxyl functional groups
it may be possible to detect signs of life based on any backbone, C, N, P, S, or Si. It is possible

that samples may contain non-life related organics such as PAHs or benzenes that are ill-

equipped for high energy electron transfers required for the electron

accepting/donating/transfer processes essential for life. Comparison of stable isotopic

signatures of non-life-like compounds (e.g., PAHs) and life-like compounds can be made

using GC-Isotope Ratio -MS, and may provide additional information on the potential
existence of life on Mars.

Biological Activity�Biohazard Testing: The technique of bacterial culturing is a powerful and simple

approach for the detection of life that may be employed in studies of putative martian life, provided

the nutritional requirements of such life are known. Well-known causative agents of human

disease, that have been studied for many decades, cannot be cultured on conventional

microbiological media. Indeed, in many instances they do not grow on any currently available

laboratory media. Thus, even if a sample will not grow in culture, it still may contain life. This

limitation makes culturing of microbes of less importance to life detection than to the area of

biohazard testing, where the lack of positive organismal growth in some instances may be

considered sufficient to declare a sample non-hazardous.

Given that the culturability of environmental microbes from Earth is very low (<1%), there is an

extremely low probability of achieving the appropriate media conditions for the propagation of

martian microbes. Culturability is thus of secondary or tertiary priority for life detection.

Nonetheless, the methods are simple enough to consider rudimentary experiments to attempt

growth in culture. These attempts will be complementary to biohazard testing that may be

required. The possibility does exist that extraterrestrial microbes could subsist as spores or in a

dormant state. Theoretically, positive growth detection would be more sensitive than many of the

physical methods for the detection of biogenic compounds. A single viable cell would be the only

initial requirement. By definition, test samples would not survive sterilization.

The geological aspects of the sample site(s) could affect likely culturing conditions. For example,

attempts to culture samples taken in an area of possible volcanic activity may suggest including in

the medium possible energy sources such as hydrogen sulfide. For samples from deep cores, or

from sedimentary rock or impact ejecta, it may be possible to simulate specific conditions that

would mimic the micro-environments from which the samples were collected.

Perhaps the greatest obstacle to the existence of life on Mars is the absence of liquid water, with

perhaps two orders of magnitude less than the driest environments on Earth. Therefore,
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specializedmechanismsofsubterraneanwatercaptureordesiccation-tolerantorganismsmay
requirecultureconditionsthatprovidefor transient or miniscule water applications.

If more conventional media formulations are used, a matrix of nutrients in a microtiter plate format

can be used to minimize sample requirements, and maximize the range of nutrient concentrations

tested. Cultures with sample material should be tested within the temperature and pressure

conditions that include those of the present and near-past martian environmental range.

Quality_Assurance/Quality Control

Throughout the mission and during the analysis of samples for the purposes of life detection, an

emphasis on quality assurance and quality control (QNQC) will have to be maintained. Extensive
QNQC activities are, in fact, required to determine that the evidence of life is not from Earthly

contamination. The use of marker agents and tracer compounds to correlate sample contents with

mission phases should be envisioned as an integral part of the sample return process. Similar
activities have been essential to our understanding of the microbial world on Earth, and in

particular to the Department of Energy's Subsurface Science Program.

Research and Technoloav Needs

The missions to retum rock samples from Mars to Earth will begin eady in the next century and

procedures for containment and determination of biohazard of returned samples are under

development. However, most techniques to determine biohazard of samples are based on

traditional microbiological culturing techniques and have not been developed for the study of

possible extraterrestrial life. NASA must begin to incorporate life detection technologies into the

planning and anticipated sample receiving activities for the return of martian samples. For

example, a plan must be developed for the acquisition and operation of the appropriate

instrumentation within the sample handling facility. Additionally, a protocol for appropriate

sterilization methods must be initiated to prepare samples for distribution to the wider scientific

community. Such a protocol must be developed in a collaboration between exobiologists and

those skilled in the area of analytical microbiology.
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Biohazard and Testing Subgroup 4

Background

With the prospect of a Mars sample return mission as eady as 2005, it is appropriate to consider

how to ensure that materials deliberately returned from another planet or solar system body will

have no adverse effect on the Earth's biosphere. Although current evidence suggests that the

surface of Mars is inimical to life as we know it, there remain plausible scenarios for extant microbial

life on Mars, for instance in possible hydrothermal oases, within rocks or in subsurface regions.

Based on evidence from studies of life on Earth, we now recognize that living organisms can

possess unusual resiliency in the face of extreme environments, a tenacious ability to survive over

long times, and wide versatility with respect to sources of energy utilized [Nealson 1997]. Thus,

although it is highly improbable that life could be found in collected martian surface material, it

does remain possible.

In their recent report on Mars Sample Return, the Space Studies Board noted that while

contamination of Earth by putative martian microorganisms is unlikely to pose a risk of significant

ecological impact or other significant harmful effects, the risk is not zero [Space Studies Board

1997]. Accordingly, the report recommends a cautious approach combining strict sample

containment, systematic analytical investigations, and an operational assumption that returned

materials be considered hazardous to biology until tested and proven otherwise. To translate

these recommendations into protocols that can then be implemented is clearly a complicated task.

Once martian samples are returned to an appropriate quarantine facility, the initial biological

screening will fall into two, non-exclusive categories: 1) investigation for the presence and

properties of biological entities in the samples, and 2) investigations of whether the samples pose

any threat to terrestrial biology or ecology. Our scientific understanding and technical capabilities

for both these tasks have improved enormously in the decades since the Apollo program when
the first extraterrestrial materials were returned to Earthfrom the moon. Thus, as we undertake the

task of developing preliminary Mars sample testing protocols, we have a broader perspective and

considerably more information to build upon. However, since the knowledge and capabilities are

based upon research with organisms from Earth, we recognize that some amount of judgment

and extrapolation will also be required in areas of scientific uncertainty as protocols are developed.

Introduction

The Biohazard Testing Subgroup was assigned the task to develop an up-to-date methodology

to determine if returned martian sample materials are hazardous, regardless of whether life or

biological entities are detected. The Subgroup assumed that all biohazard screening would be

conducted in conjunction with a systematic battery of life detection studies and chemical

characterizations of sample materials. The group considered that biohazard protocols must

anticipate the prospect that any biological entity inthe samples is likely to be at very low levels of

detection and may not be culturable.

4 Members of the Biohazard Subgroup included: Gerda Horneck, Daniel A. Kluepfel, Joseph McDade,
Harold Morowitz, Ronald Oremland, James Pearson, Margaret Race (Chair), and Zigfridas Vaituzis.
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Work began with a brief review of relevant biohazard protocols that were used in the Apollo

Program [AIIton 1997] and those proposed for martian samples in the Antaeus Report

[DeVincenzi and Bagby 1981 ]. In addition, the comparative approaches to biohazard testing that

are currently used by USDA, CDC, and EPA for various pathogens, etiologic agents, and

environmental toxins were discussed. The Subgroup determined that it would be advisable to

base a protocol upon the successful record and extensive data base of biohazard protocols

currently used by researchers and agencies for a wide range of biological agents. Building on this

information, a tiered or stepwise approach to testing was proposed. These tests would: 1) focus

on a broad range of biohazards, 2) screen for indications of biological activity or disruption thereof,
and 3) incorporate systematic feedback as data are gathered from the life detection studies,

chemical analyses, and biohazard tests themselves. Operationally, the task was translated into the

following two questions: What set of tests, at a minimum, would provide sufficient information to
determine if controlled distribution of martian sample materials could be allowed outside strict

biological containment? Additionally, what research and technology needs must be pursued in

order to specify detailed procedures and contribute to successful implementation?

Develo0ment of a Biohazard Testing Protocol

A concentration on biologically relevant views of hazard would be useful to determine whether

samples are safe to distribute in a controlled manner, initiallywithin the receiving facility, and

eventually outside of it. The use of the terms 'hazardous' or 'biohazard' deliberately avoided any
reference to definitions that are linked to particular laws, regulations, or agencies based on the

uniqueness of returning a sample of unknown biological potential.

Samples returned from Mars could be considered a biological hazard or environmental concern for

several reasons: a) they could contain toxic materials and thereby pose a threat to investigators
that work with the samples; b) they could contain entities that might be pathogenic for Earth

organisms; or c) they could harbor organisms capable of thriving on the Earth and displacing

native life forms. For reasons elaborated below, we placed our emphasis on hazards posed by

organisms that replicate because of their potential for large scale negative impacts on the Ea.rth's

diverse ecosystem. Conceptually, the concerns are similar to those impacts routinely
encountered on Earth in the areas of environment, health, and safety that are caused either by

disease transmission agents, or by the transportation, importation, or invasion of non-native

biological agents or organisms, whether natural or genetically engineered. The concerns are:

, Chemical Toxicity: Because of the small amount of material to be returned, the concern about

chemical toxicity was not considered a significant hazard or global threat since toxic materials

will not replicate and spread. Presumably, any threat to investigators from martian soils or rocks

would be revealed during the initial chemical analyses carried out under strict containment

with current test protocols. Screening technology will be advanced by the time samples are

returned in 2008, as will our understanding about the martian surface. In the event that

chemical test results from future robotic one-way missions indicate an unusual concern about

toxicity, the appropriate handling guidelines or investigations of the samples could be

instituted, analogous to terrestrial geological samples of interest.
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. Pathogenicity: As discussed in the SSB report [Space Studies Board 1997], pathogenesis

can be divided into two fundamental types: toxic and infectious. Generally, biologically

induced toxic effects of microorganisms are attributable to cell components or metabolic

products that incidentally damage other organisms. Infectious agents, which may be actively

or opportunistically invasive, must multiply in or on a host in order to cause damage. Both

toxicity and infectivityare of concem for martian samples because they represent hazards

posed by the presumed presence of potentially replicating organisms, however rare or hard to

detect they may be in the sample. Regardless of the outcome of preliminary life detection

tests or chemical analyses, it will be prudent to also screen samples for both types of

pathogenicity with tests specifically designed to detect biological activity or disruptions.

During the Apollo program, evidence of the presence of pathogenic effects and infectious
agents in samples relied on a combination of microbiological cultivation tests and experiments

that challenged select whole animals and plants via exposure to sample material. The

challenge test protocols initially included 69 species from ten animal phyla and 34 species in

nine plant divisions [AIIton 1997]. This required elaborate animal and plant support and
contamination controls in association with the quarantine facility. The significant advances in

the use of model systems and tissue culture, as well as improvements in technological

capabilities over the past several decades, suggest that it would not be necessary to conduct
whole organism challenge tests as part of the first line to screen for returned martian samples.

In vitro methods are considered superior to whole organisms tests for preliminary biohazard

screening because of their sensitivity, simplicity, and speed, as well as their widespread use,

acceptance and interpretation. By selecting a suitably diverse range of in vitro tests and

conditions, it will be possible to screen for biologically important outcomes that might be

indicative of biohazards in a wide range of representative species and taxonomic groups. It

would be advisable to include a range of in vitro tests that are routinely used by agencies and

researchers when scanning for pathogenesis. In addition, the inclusion of two additional

types of tests - a series of laboratory mice injection studies (because of their extensive use

for pathogenicity and biohazard testing) and a series of tests using Tetrahymena (as a model

for metazoan biochemistry) were discussed. With these considerations in mind, a

recommended battery of tests for detecting indications of potential pathogenicity in the

sample might include:

• Diverse microbial media that use varied laboratory initialconditions

• Selected tissue cultures and cell lines from mammalian organ systems,
fish, and insects

• Embryonating chicken eggs

• Mouse injection studies

• Tetrahymena (protozoans)

• Plant tissue cultures (wheat, rice, potato)

Detailed information is provided in Appendix A.1 on the various pathogenicity tests that were

tentatively proposed and discussed.
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. Ecological Disruption: Based on our knowledge of martian surface conditions and terrestrial

life, putative martian organisms may be functionally similar to microbes found in soil and rock
habitats on Earth. As such, in the event of their inadvertent introduction to the Earth's

biosphere, it is generally accepted that there would be little threat of widespread ecological

disruption because of limitingnutritional or physical constraints or the inability to compete for

resources in habitable sites where Earth microorganisms are presumably well adapted.

Furthermore, in the event of an accidental release, it is highly improbable that any martian

organisms would find an acceptable host or habitat in the vicinity of release. There are large
uncertainties associated with these assessments and the risk of potentially harmful effects is

not zero, thus it will be prudent to screen for the ability of the returned sample to disrupt

microbial ecosystems. Although such tests are not routinely done, it would be advisable to

design and conduct suitable microcosm tests to screen for potential ecosystem effects or
disruption in biogeochemical cycles.

Two types of microcosm tests are recommended, the first designed to assay for disruptions of

important representative microbial systems upon addition of martian materials, and the second

to determine if any detected or undetected martian biological entities can grow or propagate
in selected sterilized microcosms of representative terrestrial ecosystems.

Detailed information and discussions of the various proposed microcosm tests are provided in

Appendix A.2.

Criteria for Distribution of Martian Samples

The interpretation of biohazard and life detection test results was addressed and when and under
what conditions unsterilized martian materials could be allowed outside strict BSL-4 containment

[as described in CDC and NIH, 1993] was discussed. Although details remain to be worked out,

agreement was reached on an overall approach to sample handling consistent with SSB
recommendations for returned Mars samples [Space Studies Board 1997].

There should be no distribution of any unsterilized materials outside of containment unless and

until rigorous analyses has determined that the materials do not contain any biological hazards.
Decisions about distribution of sample material should be based on interpretation of the results of
both life detection and biohazard tests and focus on the possible presence of a replicating life

form, either extant or dormant, as well as indications of biologicalactivity. It is assumed that sample

material will never actually be fully released from containment, but rather distributed in an

appropriately controlled manner beyond the initial containment facility. Such controlled
distributionwill only take place after a thorough review of all life detection and biohazard findings

by an appropriate scientific advisory panel. If any portion of the sample is to be removed from
containment prior to completion of these analyses, it should first be sterilized, as recommended

by the SSB report [Space Studies Board 1997]. When the scientific advisory panel can
demonstrate that the martian samples do not represent a biohazard, subsequent conditions for

the safe transfer and handling of materials will be dictated by scientific objectives rather than

biosafety concerns. In the event that obvious fossil life forms (non-replicating) are found in the

sample, consideration should be given to the release of sample materials in a manner similar to

those for meteorites or other geological samples.
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It is instructive to consider the many possible outcomes of life detection and biohazard testing.

Table 1 provides an overview of the various combinations that were considered.

If any life forms are detected, even if preliminary tests suggest they do not pose a biohazard,
continued strict containment, rather than controlled distribution, is advised initially. There was

consensus that strict containment should be maintained in light of positive test results until the

findings are verified by subsequent testing and/or a scientific panel is convened to make

decisions about subsequent sample handling. In the event of positive findings, verification

testing should be undertaken to confirm initial findings. Such testing should use only in vitro tests

under BSL-4 containment. Any decisions to allow either in vivo tests or modifications of

containment requirements should be made by an appropriate scientific advisory panel after the

required second round of verification tests.

No consensus was reached on what containment/release recommendations should be made if all

life detection and biohazard test results are negative. Discussions centered mainly around the

issue of what level of scientific uncertainty would be acceptable before containment restrictions

could be eased. Basically, debate focused on whether samples should subsequently be handled

like geological samples if all findings are negative, or whether a more conservative approach of

downgrading to BSL-3 containment should be recommended for some finite period of time to

allow additional scientific scrutiny. It became obvious that additional discussion would be needed

in order to translate the various test outcomes into specific recommendations for release of
unsterilized materials from containment.

Research and Technology Needs

Specific recommendations for research and development related to biohazard testing were

identified in the following areas:

. Validation of Methodological Approach: Research is needed to validate the proposed

approach to biohazard testing that emphasizes cells and tissues rather than whole organism

studies which were utilized during the Apollo biohazard testing. Prior to the return of the

martian samples, methods should be pre-tested thoroughly (e.g., test with known samples

containing live organisms to demonstrate their effectiveness; replicate multiple times under

conditions identical to those that will be used with the martian samples, etc.) Appropriate

changes to procedures should be implemented and practiced to insure that there will be a

minimum of procedural difficultieswhen the martian samples are examined. Techniques that

will be used to characterize any isolated or suspected life forms must be developed and
tested well in advance.

. Microcosm Research: Research in the disruption of biogeochemical cycles should be

undertaken to determine the effectiveness of proposed microcosms. This validation needs to

include an establishment of the predictive value of the microcosm, i.e., how well does the

selected microcosm predict what occurs in nature. It will also be necessary to design

microcosms that will permit non-destructive sampling of the microcosm. This will allow long
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Table 1: Preliminary thoughts on containment/release questions.

If Life Detection
Tests are:

Incomplete

Negative

Negative

Positive

Positive

AND If Biohazard
Tests are:

Incomplete

Negative

Positive

Negative

Positive

Containment/Release
Suggestions

Safely controlled
distribution OK, but
only if sterilized first
(as per SSB).

No consensus
reached.
Suggestions ranged
from: a) controlled
distribution like
geological samples,
or b) require at least
BSL-3 containment
as part of controlled
distribution.

Retain in strict
containment.
Controlled
distribution not
recommended.*

Two scenarios to
consider:

a) Extant or dormant
life detected. Retain
in strict containment;
controlled distribution
not recommended;*
b) Obvious fossil life
forms detected;
controlled distribution
may be allowed.

Retain in strict
• *containment.

Action

Research
needed on
appropriate
sterilization
methods.

Needs
considerable
further
discussion.

Further in vitro
tests in strict
containment and
review by
Scientific
Advisory Panel
(SAP).

a) Further in vitro
test in strict
containment and
review by SAP;
b) review by SAP,
verify as
fossilization, treat
same as negative
findings

Further in vitro
test in strict
containment.
Controlled
distribution
and/or in vivo
tests not
recommended.

* Still need to address questionof controlleddistributionof sterilizedsub-samples.
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term(30-90 days) observation of microcosms inoculated with sample material. It might be

useful to examine the microbial community present in selected microcosms under the
influence of available martian meteorites.

, Representative Samples, Controls, and Replicates: Identifying what comprises a

representative sample of returned martian materials will become especially important with the

inclusion of both rock and soil (see Appendix A.3). Recent meteorite results and the

discovery of microbes in deep subsurface rocks on Earth indicate the importance to carefully

screen rock interiors. As planned, only a small proportion of returned materials will be used for

biohazard testing. Thus, decisions about release from containment will require extrapolation

to the untested materials. In addition to the question about a representative sample, attention

should also be directed to what constitutes suitable controls and replicates in light of the small

amount of sample that will be available for preliminary screening. Research based on

combined petrological, chemical, and microbial analyses of appropriate terrestrial analogs may

provide guidance as sampling protocols are developed.

o Other Operational Issues Assessment: To avoid operational and management problems

previously experienced during the Apollo sample handling, special attention will be given well

in advance to plans for training programs, monitoring of lab personnel, management of lab

operations and facilities, and other operational aspects of the sample test facility. To minimize

the effects of the limited quantities of material, preliminary sample allocation and access needs

to be addressed in advance of the recovery of the samples (e.g., amount of sample to be

allocated for quarantine tests and scientific studies; access to samples for research; criteria to

be applied to evaluate proposals; etc.)
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APPENDICES

A. Proposed Biohazard Test Protocols

The following sections provide some preliminary thoughts and suggestions for design of

pathogenicity test protocols (Appendix A.1), for microcosm studies to detect ecosystem effects

(Appendix A.2), and for the selection of representative samples from returned soils and rocks

(Appendix A.3). Because the specific details of biohazard tests will undoubtedly evolve over time,

and because new methods will undoubtedly be developed, all suggestions and quantitative

details below should be recognized as preliminary and subject to modification, especially those

related to numbers and types of controls and replicates. With only a limited quantity of material that

will be available for biohazard testing, much more discussion is needed to determine what

constitutes a reasonable test quantity for appropriate levels of sensitivity and meaningful results.

Appendix A.I: Proposed Pathogenicity Te_ting

1. Microbiological Culture Media:

a. Objective: To determine if martian sample materials contain agents capable of replication

in microbiological culture media.

b. Procedure: Inoculate a series of microbiological liquidculture media with organic and

inorganic energy sources. Incubate under aerobic, microaerophilic (i.e. reduced oxygen

content) and anaerobic conditions, including a CO2 atmosphere, at temperatures that range

from 4 °C to 55 °C. Test to determine that the microbiological liquid culture media can support

the growth of molds, photosynthetic bacteria and algae.

The organic media should cover a range from rich (such as Brain Heart infusion Agar (BHI)) to

mineral salts media (witha minimal organic carbon source). The media used to detect

chemolithotrophic microbes should include the following inorganic energy substrates:

ammonia, nitrates, nitrites, hydrogen, sulfur, sulfide, ferrous ion, thiocyanate, and carbon

monoxide. The media should also include the following terminal electron acceptors: carbon
dioxide, nitric oxide, nitrous oxide, nitrate, nitrite, sulfate, sulfite, tellurite, selenite, and

tetrathionate, and oxygen. Headspace gas analyses should also be conducted on cultures.

2. Cell Culture Inoculation:

a. Objective: To determine if martian soil contains agent(s) capable of replicating in cell
culture.

b. Procedure: The following types of cell cultures will be used: one fish, one insect, and

one monkey cell line and two cell lines from domestic animals and humans. All preparation of

inoculum, cell culture inoculation and passage, and agent characterization will be performed in

a BSL-4 laboratory. All cell cultures will be tested for the presence of contaminants. Growth

and maintenance media will not contain antibiotics. Suspensions of martian soil will be
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preparedincellculturemediaandthecellculturesinoculated.Anequalnumberof
uninoculatedcontrolcultureswillbepreparedandhandledunderthesameconditions.All
cultureswillbeobserveddailyfor cytopathic effect (CPE). At the end of 10 days, cells will be

removed and a second passage performed. If no cytopathic effect is observed at the end of

10 days, the study will be terminated. If cytopathic effect is observed in the cell culture, the

agent will be characterized using appropriate described techniques (to be developed) and

additional passages in cell cultures will also be made. Concurrently, cell culture media will be

examined microscopically for extracellular presence and multiplication of

prokaryotic/eukaryotic microbial entities.

3. Embryonating Chicken Egg Inoculation:

a. Objective: To determine if martian soil contains agents capable of infecting embryonic

chicken eggs, which are susceptible to most bacteria, viruses and fungi.

b. Procedure: Work will be done under BSL-4 conditions. A suspension of martian soil will

be prepared in Tris buffered tryptose broth or other suitable media without antibiotics.

Eighteen specific-pathogen-free 6-day embryos will be inoculated with 0.2 mL of the

suspension by the yolk sac route. An equal number of control embryonating chicken eggs will

be inoculated with media only. All embryos will be observed daily. All embryos that die and all

the live embryos at 10 days post inoculationwill be harvested, a suspension prepared and a

second passage performed. All dead embryos on the second passage will be passed again. If

embryo death pattern appears to be due to infection with an agent, appropriate identification

procedures will be utilized.

4. Mouse Inoculation:

a. Objective: To determine if martian soil contains an agent capable of producing disease or
death in specific-pathogen-free mice. (Note: This procedure will only be done if and when all

life detection and biohazard tests have been completed and found to be negative. In such

case, this inoculation may be carried out under BSL-3 conditions.)

b. Procedure: A suspension of martian soil will be prepared in appropriate media without

antibiotics. Twelve specific-pathogen-free mice and twelve control mice will be inoculated with

media. All mice will be observed for evidence of infection. If any mice die, a post mortem will be

performed and a suspension with brain, liver, lung and spleen will be made and transferred
into 6 additional mice. If additional mice die, suitable agent identification procedures will be

performed. All agent identification procedures will be performed under BSL-4 conditions. If

no mice die due to agents in the martian soil, the test is completed.

5. Test Protists:

Tetrahymena and other representative protists should be screened for the possible

pathogenicity of martian materials. The rationale for selecting these test organisms is based
on their biochemical similarity with metazoans and humans. Various screening techniques

46



shouldbe used following exposure/inoculation of organisms to sample materials (e.g.,

microscopy, cell abundance, effects on growth, etc.) Details for these tests to be developed.

6. Plant Tissue Culture:

a. Objective: To test for the presence of potential plant pathogens in martian sample
materials.

b. Procedures: It is recommended that an initial screen be done with both suspension and

callus cultures of tobacco, potato and rice. Aqueous suspensions of martian soil will be

introduced into the callus cultures which are maintained under light and temperature

conditions conducive to growth of the plant.

Regular observations can then be made on the general health of the plant tissues. Additional
measurements should include changes in respiration, cell growth (i.e., quantitative and

qualitative) and metabolism of a given radiolabeled carbon source.

Appendix A.2: Proposed Use of Microcosms to Detect Potential Ecosystem Effects and

Disruptions of Bioaeochemical Cycles

To examine the potential ecological implications of martian life to Earth habitats, properly designed
and calibrated microcosms can be used effectively to examine the potential effect of exogenous

microorganisms on indigenous Earth biota.

Several types of microcosms are possible. The most general approach to biohazard assessment is

to 'seed' small-scale closed biospheres ("microcosms") with the samples to be tested, followed by

comparisons with un-seeded controls. Types of biospheres include aquaria and terraria and may

be confined to microbes or may contain larger multicellular animals and plants. The gas phase of

the biosphere (the atmosphere) is the most sensitive to test by GC-MS analysis. If the mass of

unknown seed material is small compared to the biosphere mass, continuous differences

between tests and control biospheres must be attributed to biota in the test material which have

found a niche in the biosphere. Such exotic biota must then be characterized and subjected to

biohazard tests. Anything that can alter an ecosystem must be regarded as a potential biohazard.
These tests are described as follows:

. Soil Cores with Wheat Seeds: It is suggested that some preliminary testing should be done
with microcosms that consist of intact soil cores. After the cores have equilibrated, surface

sterilized wheat seeds will be planted and "inoculated" with a small sample of martian soil.
Controls will consist of both intact soil cores with non-inoculated wheat seeds and cores with

seeds inoculated with sterilized martian soil.

Some of the parameters to be examined include what potential effect the introduced soil will

have on the indigenous microbial community. Approaches may include direct extraction and

analysis of fatty acids or nucleic acids to obtain a signature of the microbial community in the
treated and control microcosms. It also would be informative to enumerate populations of

several groups of microorganisms includinggram negative and gram positive bacteria,
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actinomycetes,and fungal populations. This portion of the examination also may include the

use of both selective and semi-selective media to enumerate specific genera or even

species. These measurements need to be made on both bulk soil and rhizosphere

populations.

2. Microbial microcosms hazard testing:

a. Martian material will be added to selected microbialecosystems in small terraria or aquaria

containing selected terrestrial soil, mud, sludge, etc. which can test for:

• Disruption of anaerobic electron acceptors (e.g. nitrate, Fe III, sulfate,

methanogenesis),

• Disruption of chemoautotrophic microbial microcosms (Fe [11]oxide, sulfide oxidation,
Mn2+ oxide, methane oxide, nitrification),

• Disruption of photosynthetic microcosms that include microbial mats, photosynthetic

bacteria, cyanobacteria, etc., and

• Disruption of diazotrophic (nitrogen fixation) systems.

These systems can be assayed with a battery of simple tests (gas chromatography, radiotracer

techniques, pigment/biomass measurements). Controls will include unamended samples and

samples amended with sterilized martian material.

b. Hazard tests for growth of martian material should also be conducted in sterilized terrestrial

ecosystems, e.g., sterilize the microbial microcosms and inoculate with martian material. This

will determine whether martian microbes can grow in terrestrial microbial ecosystems and

therefore may represent a propagation hazard.

ADDendix A.3: Re0resentative Sam Dies for Planetary_Protection Protocol

The initial set of experiment.s designed to evaluate the potential biological hazard of the returned

Mars sample would likely be performed on roughly 10% of the sample, for the following reasons:

1. Only a limited mass of rock cores will be retumed by the mission (approx. 500 gm) and pristine

material will be required for other scientific investigations and for archival purposes.

, The biomass present in the rock will be low, based upon organic carbon analyses of martian

meteorites. It will also be heterogeneously distributed, based upon observations of microbial

distributions in oligotrophic terrestrial environments. At least 10% of the material will be

required for testing.

To be certain that the results of the biohazard experiments are applicable to the remaining 90% of

the Mars sample, the samples selected for biohazard evaluation should be "representative" of the

different types of rock environments. Characterization of the rock environments preserved in the

core samples will proceed as follows:

1. Removal of cores from rover core catcher or return canister.
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2. Photographic documentation (digital camera), sample mass, magnetic susceptibility,

radioactivity?

3. Petrologic documentation by binocular microscope/CCD camera.

4. Preservation at liquid N2 temperatures until the sample is processed.

Based upon this visual classification, segments of the core will be selected as "representative" of

the variety of rock environments present. Some of the factors germane to this categorization are:

1. Location along core length, where core bottom will provide the greatest shielding from UV

while core near-surface may harbor sites for endolithic communities (depending upon rock

transmissivity-particularlyin the visibleand near-IR).

2. Core top surface, which presumably provides the maximum UV exposure and is possibly a
sterile environment.

3. Core top color or mineral staining, which might indicate biological or abiotic processes.

4. Alteration of the rock matrix, which may indicate the presence of liquid water during the

sample's geological history.

5. Mineralized fractures, which could provide porosity and enhanced nutrient transport.

6. Cavities or open pores, which could indicated trapped gas (e.g. vesicles) or secondary

porosity developed by dissolution in a liquid water regime.

7. Presence of reduced phases (i.e. sulfide, magnetite or dark particulate material), which could

indicate potential respiration products or electron donors.

8. Presence of oxidized phases.

9. Presence of layering and potential chemical and/or redox gradients.

10. Grain size and porosity distributionestimates.

11. Mineral matrix composition and volume.

Once a selection of representative samples is made, priority should be given to those rock or soil

environments most likely to harbor life.

The samples for testing will be removed by mechanical splitting(if they are intact cores) and the

tracer concentrations (if tracers are utilized) evaluated. The tracer concentrations will be used to

evaluate the potential for sample contamination by terrestrial microbes and to classify the samples

for subsequent biohazard evaluation.
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B. Workshop Agenda

Day 1:

9:00 am

9:20

10:00
10:40

11:00

11:40

12:20 pm
1:40

2:20

3:00

3:20

4:00

4:40

5:00

Wednesday June 4

Introduction and Welcome - Donald DeVincenzi

Physical and Chemical Properties of Mars - Ben Clark

Chemical and Biological Studies of Mars Meteorites - Carl Allen
Break

Mars Sample Return Mission Design - Mark Adler
SSB Guidelines for Prevention of Back Contamination - Margaret Race

Lunch

Apollo Experiences: Quarantine, Bioassays, Hazard Testing - Judy AIIton

Modem Techniques for Containment of Pathogens - Peter Jahrling
Break

Identification of Biological Entities in Unknown Samples - Alvin Fox

Modern Techniques for Testing Pathogenicity and Hazards - Joseph McDade

Subgroup Instructions/Assignments for Day 2 - Donald DeVincenzi

Group Adjourns

Day 2: Thursday. June 5

8:30 am

8:40

12:30 pm
1:45

3:15

3:30

5:00

Reconvene - Instructions for Subgroups etc.

Divide into 3 Subgroups
Lunch

Subgroups Reconvene
Break

Subgroups Reconvene

Subgroups Adjourn

Day 3: Friday June 6

8:30 am Reconvene as one large group

Summary Presentations, Discussion, Recommendations etc.
10:15 Break

12:00 noon Workshop Adjourns

50



C. Participants List

Mark Adler

MS 264-255

Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena CA 91109

tel# 818-354-7569

fax# 818-393-6800

mark.adler@jpl.nasa.gov

Carl Allen

Lockheed/Martin Engineering
and Science Services, C23

Mail Code SN/LOC

2400 NASA Road 1

Houston TX 77058-3799

tel# 281-483-2630

fax# 281-483-5347

carlton.c.allen 1@jsc.nasa.gov

Judith AIIton

Lockheed/Martin Engineering
and Science Services, C23

Mail Code SN/LOC

2400 NASA Road 1

Houston TX 77058-3799

tel# 713-483-5766

fax# 713-483-5347

jallton @ems.jsc.nasa.gov

John Bagby
5315 Foxfire Lane

Lohman MO 65053

tel# 573-893-5544

fax# 573-751-6041

bagby@computerland.net

Jack Barengoltz
MS 67-201

Jet Propulsion Laboratory
4800 Oak Grove Ddve

Pasadena CA 91109

tel# 818-354-2516

fax# 818-393-6869

Benton Clark

Planetary Sciences Lab (S-8001)

Lockheed-Martin Aerospace
PO Box 179

Denver CO 80201

tel# 303-971-9007

fax# 303-977-3600

benton.c.clark@ Imco.com

Sandy Dawson
MS 301-472

Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena CA 91109

tel# 818-354-1240

fax# 818-393-6735

sandra.m.dawson @jpl.nasa.gov

Donald DeVincenzi

MS 245-1

NASA Ames Research Center

Moffett Field CA 94035-1000

tel# 650-604-5251

fax# 650-604-6779

ddevincenzi @mail.arc, nasa. gov

51



JackFarmer

MS 239--4

NASA Ames Research Center

Moffett Field CA 94035-1000

tel# 650-604-5748

fax# 650-604-1088

jfarmer@ mail.arc.nasa.gov

Harold Klein

SETI Institute

2035 Landings Drive
Mountain View CA 94043

tel# 650-856-2349

fax# 650-961-7099

hpklein @seti.org

Alvin Fox

Dept of Microbiology and Immunology

University of South Carolina
School of Medicine

Columbia SC 29208

tel# 803-733-3288

fax# 803-733-3192

afox @med.scarolina.edu

Daniel Kluepfel

Dept Plant Pathology and Physiology

120 Long Hall

Clemson University
Clemson SC 29634

tel# 864-656-5728

fax# 864-656-0274

dklpfl @clemson.edu

Robert Hawley
USAMRIID

Safety & Radiation Protection Office
1425 Porter Street

Ft. Detrick MD 21702-5011

tel# 301-619-2934

fax# 301-619-4619

dr._robert_hawley @ftdetrck-ccmaU.army.mil

Daniel McCleese

MS 183-335

Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena CA 91109

tel# 818-354-2317

fax# 818-393-6546

djmcc@scnl .jpl.nasa.gov

• Gerda Homeck

DLR Institute for Aerospace Medicine

Radiation Biology Section
Porz-Wahnheide

Linder H6he

D-51140 K61n

GERMANY

tel# 49-2203-601-3594

fax# 49-2203-61-970

gerda.horneck@dlr.de

Joseph McDade

Deputy Director
CDC/National Center for

Infectious Diseases/C12

1600 Clifton Road

Atlanta GA 30333

tel# 404-639-3967

fax# 404-639-3075

jem3@cdc.gov

52



Michael Meyer

Astrobiology Discipline Scientist

Code SR

Research Program Mgmt. Division

NASA Headquarters

Washington DC 20546

tel# 202-358-0307

fax# 202-358-3097

mmeyer @mail.hq.nasa.gov

Harold Morowitz

207 East Building

George Mason University

Fairfax VA 22030

tel# 703-993-2173

fax# 703-993-2175

morowitz@ mason1 .gmu.edu

Norman Pace

Dept of Plant and Microbial Biology

111 Koshland Hall #3102

University of California

Berkeley CA 94707

tel# 510-643-2571

fax# 510-642-4995

nrpace@ nature.berkeley.edu

John Payne

Director, Biotechnology & Scientific Services

USDA-APHIS-PPQ

4700 River Road, Unit 145

Riverdale MD 20737-1236

tel# 301-734-7602

fax# 301-734-3643

jpayne@aphis.usda.gov

Tullis Onstott

Department of Geoscience

Princeton University

Princeton NJ 08544

tel# 609-258-6898

fax# 609-258-1274

tullis @ princeton.edu

Ronald Oremland

MS 465

US Geological Survey

345 Middlefield Road

Menlo Park CA 94025

tel# 415-329-4482

fax# 415-329-4463

roremlan @usgs.gov

James Pearson

Director APHIS

National Veterinary Services Lab

PO Box 844

Ames IA 50010

tel# 515-239-8405

fax# 515-239-8397

jpearson @aphis.usda.gov

Thomas Phelps

Environmental Sciences Division

Oak Ridge National Laboratory

PO Box 2008-6036

Oak Ridge TN 37831-6036

tel# 423-574-7290

fax# 423-576-8543

tkp@ornl.gov

53



Margaret Race
SETI Institute

2035 Landings Drive
Mt. View CA 94043

tel# 925-947-1272

fax# 925-947-3992

mracemom@aol.com

Jonathan Richmond

Director, Office of Health and Safety
Center for I_isease Control and Prevention

(CDC)
1600 Clifton Road NE

Atlanta GA 30333

tel# 404-639-2453 or 3235

fax# 404-639-2294

jyrl @cdc.gov

Zigfridas Vaituzis
EPA/OPPTS/OPP

BPPP (7501W)
401 M Street SW

Washington DC 20460-0001

tel# 703-308-8676

fax# 703-308-7026

vaituzis.zigfridas@epamail.epa.gov

Norman Wainwright
7 Water Street

Marine Biological Laboratory
Woods Hole MA 02543

tel# 508-289-7343

fax# 508-540-6902

nwainwri @mbl.edu

John Rummel

Marine Biological Laboratory
7 MBL Street

Woods Hole MA 02543

tel# 508-289-7218

fax# 508-289-7900

jrummel @mbl.edu

Perry Stabekis
Lockheed/Martin

525 School Street SW

Suite 201

Washington DC 20024

tel# 202-484-8247

fax# 202-484-8251

pstabeki @hq.nasa.gov

54



Form Approved

REPORT DOCUMENTION PAGE oMe_oozo..olo8

Pubic reporting burden for this collechon of information is estimated to average 1 hour per response, including the time for rev=ewing instructions, searching existing data Sources, gathering
and maintaining the data needed, and completing and reviewing the collection of intormation. Send comments regarding this burden estimate or any giber aspect ot this collection of
informat_n, including suggestions for reducing this burden, to Washington Headquarters Serwces, Directorate Ior Informat_n OPerations and Reports, 1215 Jefferson Davis Highway, Sure

12041 Arlington IVA 22202-43021 and to the Ofl<e of Management and Bud(_et] Paperwork Reduction Proiect 10704-018811 Washington I DC 20503

1. AGENCY USE ONLY (Leave b/enk) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 1999 Conference Publication

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

MARS Sample Quarantine Protocol Workshop

6. AUTHOR(S)

D. L. DeVincenzi, J. Bagby, M. Race, and .I.R. Rummel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Ames Research Center

Moffett Field, CA 94035-1000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

11. SUPPLEMENTARY NOTES

Point of contact:

334-38-02-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

A-9901303

10. SPONSORING/MON_ORING
AGENCY REPORTNUMBER

NASA/CP- 1999-208772

Donald L. DeVincenzi, Ames Research Center, M/S 245-1, Moffett Field,

CA94035-1000 Phone: (650) 600-5251

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified--Unlimited

Subject Category 88
Availability: NASA CASI (301) 621-0390

Distribution: Standard

12b. DISTRIBUTION CODE

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

61
16. PRtCE CODE

A04
20. LIMITATION OF ABSTRACT

i

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

14. SUBJECTTERMS

Planetary protection, Sample quarantine, Mars

13. ABSTRACT (Maximum200 words)

In 1996, several NASA-sponsored studies were underway to look at various aspects of a Mars Sample
Return (MSR) mission. One of these studies, performed by the Mars Exploration Long Term Science
Working Group (MELTSWG), looked at many issues for MSR including Planetary Protection (PP), both
forward and back contamination aspects. One outcome of the study was the realization that little detailed
information existed in certain PP-related areas that could be used by mission planners to more accurately

design and cost MSR mission concepts. Therefore, the MELTSWG group recommended that NASA fund
an effort to look at these PP issues in more detail. A joint Ames Research Center-Jet Propulsion

Laboratory-Johnson Space Center proposal was prepared, submitted to NASA Headquarters, and funded.
It contained 5 tasks, each of which dealt with a specific PP element for a MSR mission: 1) definition of

the environmental impact review process; 2) determination of outbound PP requirements; 3) examination
of sample containment technology; 4) development of concepts for ensuring that uncontained Mars
material would not be brought to Earth; and 5) development of guidelines for returned sample
containment and quarantine analysis. The Workshop on Mars Sample Quarantine Protocol was conducted
to address the fifth objective; it was convened at NASA Ames Research Center, June 4-6, 1997.




