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Summary

Global data sets that optimally combine observations from diverse sources with

physical models of atmospheric and land processes are useful for initializing weather and

climate predictions and for monitoring and understanding the earth systems. Such data sets

currently contain significant errors in primary hydrological fields such as precipitation and

evaporation, especially in the tropics. Our study shows that assimilation of rain rates and the

total precipitable water (TPW) derived from the TRMM Microwave Imager (TMI) improves

not only the hydrological cycle but also key climate parameters such as clouds, radiation, and

the circulation in the analysis produced by the Goddard Earth Observing System (GEOS) data

assimilation system.

Diagnostics reveal that rainfall assimilation reduces state-dependent systematic errors

in clouds and radiation in regions of active convection, while TPW assimilation reduces errors

in the moisture field to improve the radiation in clear-sky regions. The improved analysis also

yields better short-range forecasts in the tropics, although these improvements are not as

substantial as the improvements in the monthly-averaged assimilated data products. Overall,

this study demonstrates the immense potential of using high-quality space-borne rainfall and

moisture observations from microwave instruments to improve the quality of assimilated

global data for climate analysis and weather prediction applications.
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Abstract

A global analysis that optimally combine observations from diverse sources with physical

models of atmospheric and land processes can provide a comprehensive description of the climate

systems. Currently, such data products contain significant errors in primary hydrological fields

such as precipitation and evaporation, especially in the tropics. In this study we show that

assimilating precipitation and total precipitable water (TPW) retrievals derived from the TRMM

Microwave Imager (TMI) improves not only the hydrological cycle but also key climate

parameters such as clouds, radiation, and the large-scale circulation produced by the Goddard

Earth Observing System (GEOS) data assimilation system (DAS). In particular, assimilating TMI

rain rates improves clouds and radiation in areas of active convection, as well as the latent

heating distribution and the large-scale motion field in the tropics, while assimilating TMI TPW

retrievals leads to reduced moisture biases and improved radiative fluxes in clear-sky regions.

The improved analysis also improves short-range forecasts in the tropics. Ensemble

forecasts initialized with the GEOS analysis incorporating TMI rain rates and TPW yield smaller

biases in tropical precipitation forecasts beyond 1 day and better 500 hPa geopotential height

forecasts up to 5 days.

Results of this study demonstrate the potential of using high-quality space-borne rainfall

and moisture observations to improve the quality of assimilated global data for climate analysis

and weather forecasting applications.
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1. Introduction

Global reanalyses are useful in a variety of earth science applications but currently have

order-one errors in primary fields of the hydrological cycle such as precipitation and evaporation,

especially in the tropics (WCRP 1998, Adler et al. 1996). These errors limit the utility of these

data for understanding the hydrological cycle and its role in climate variability. One way to

improve estimates of these hydrological parameters is to assimilate new types of observations

such as precipitation and the total precipitable water (TPW) to directly constrain these fields in

the analysis. Assimilated global data that reliably capture tropical rainfall and latent heating

distributions would provide valuable insights into the linkage between tropical convection and

global energetics, and more specifically, the coupling between the hydrological cycle, atmospheric

dynamics, and climate feedback. Given the crucial role of tropical latent heating in global climate

and the sparse conventional observations in tropical regions, an important first step in improving

global analyses is to ensure that the temporal and spatial variabilities of tropical rainfall are

accurately represented.

The U.S.-Japan Tropical Rainfall Measuring Mission (TRMM) satellite launched in

November 1997 provides, for the first time, cross-calibrated rain-rate estimates from a space-

borne precipitation radar (PR) and a passive microwave instrument, the TRMM Microwave

Imager (TMI). In this study we investigate the use of TRMM precipitation and TPW observations

in global data assimilation and the extent to which assimilating these data improves the analysis

produced by the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS).

The Data Assimilation Office at the NASA Goddard Space Flight Center has been

experimenting a "1+1" dimension variational algorithm based on a 6-hr time integration of a

vertical column version of the GEOS DAS to assimilate surface rainfall and TPW observations.

The basic methodology is described in Hou et al. (1999a), which showed that assimilating

tropical precipitation and TPW observations derived from the Special Sensor Microwave Image

(SSM/I) instruments aboard the polar-orbiting Defense Meteorological Satellite Program (DMSP)

satellites improves not only the precipitation and moisture fields but also key climate parameters

linked to convective activities such as the outgoing longwave radiation (OLR), clouds, and

surface radiation in the GEOS analysis. These results demonstrated that these data are useful even



in sub-optimal applications without knowing their error characteristicsand that physical

parameterizationsin the GEOSmodelhavesufficient fidelity to capitalizeon usingthesedata.

In this articlewe report on the impactof assimilatingTMI-derived surfaceprecipitation

andTPW retrievalson analysesproducedby a 2° lat by 2.5"long by 46 model level versionof

the GEOSDAS usinga slightly improved I+ID algorithm.We plan to assimilateTRMM PR

rainfall productsat a laterdateusinga higher resolutionGEOSDAS.

The quality and utility of reanalysesasclimate datasetsdependupon their ability to

captureclimatesignalswith quantitativeaccuracy.Observationsof outgoingradiativefluxesat

thetop of theatmosphere(currentlynot assimilatedin the GEOSDAS) providean independent

measureof theoverallqualityof the GEOSassimilationdataproducts.Radiationmeasurements

from theCloudsand Earth'sRadiationEnergySystem(CERES)instrumentaboardthe TRMM

satellitewill beusedasa keyverificationdataset.We will alsocompareclearandcloud-cleared

brightnesstemperaturesfrom spectralchannelsof the TIROS OperationalVertical Sounder

(TOVS) with syntheticbrightnesstemperaturescomputedusing the GEOS temperatureand

moisture fields to infer how rainfall and TPW assimilationaffects the upper tropospheric

humidity andthe troposphericcirculation andtemperature.

Section 2 describesthe 6-hr averaged,gridded TMI rainfall and TPW datasources.

Section3 givesabrief summaryof the 1+1Dassimilationschemeusedin Hou et al. (1999a)and

the further refinementsadopted in the presentstudy. Section 4 describesthe assimilation

experiments.Sections5 and6 examinethe impactof TMI rainfall andTPW assimilationon the

monthly-meanfields and short-rangeforecasts,respectively.Section 7 summarizesthe main

findingsof this study.

2. Precipitation and TPW Observations

a. TMI GPROF precipitation retrieval

The TMI rain rates we use are physical retrievals using the Goddard Profiling (or GPROF)

Algorithm, one of the operational algorithms resident at the TRMM Science Data and

Information System (TSDIS). The algorithm obtains rain rates and precipitation vertical structure



from microwave radiometer and]or radar measurements (Kummerow et al. 1996, Olson et al.

1996) using a Bayesian technique similar to the algorithms developed by Pierdicca et al. (1996)

and Haddad et al. (1997). The GPROF scheme uses a database of simulated precipitation vertical

profiles and the associated microwave radiances generated by cloud-resolving model coupled to

a radiative transfer code. This database serves as a "reference library" to which actual

sensor-observed radiances can be compared. Given a set of multichannel radiance observations

from a particular sensor, the entire library of simulated radiances is scanned; the "retrieved"

profile is a composite using profiles stored in database which correspond to simulated radiances

consistent with the observed radiances. For assimilation into the GEOS DAS, the single-footprint,

instantaneous GPROF TMI surface rain rates are horizontally averaged to 2 ° lat. by 2.5 ° long.

grids, which are then time-averaged over 6 hours centered at analysis times (0, 6, 12, 18 UTC).

The random error of each GPROF-retrieved rain rate may be estimated by evaluating the

local variance of rain rates in the model database about the retrieved rain rate (Olson et al. 1996).

According to this method, the random error of single-footprint, instantaneous rainfall rates is

estimated to be -100% of the retrieved rain rate. Over each 2 ° x 2.5 ° GEOS model gridbox,

approximately 1000 single-footprint estimates from TMI are used to compute the area-average,

instantaneous rain rate. Following the analysis of Bell et al. (1990), the corresponding random

error of the gridbox-averaged TMI rain rate is about 20%. Undersampling of the time-average

rain rate over each 6-hour analysis interval contributes additional error, approximately 20-60%,

depending upon the number of TMI overpasses within the interval. One complication in this

estimate is that the relative (percent) random error varies roughly as the inverse square root of

the rain rate, so that estimates of relative random errors significantly worse in light rain areas,

but better in heavy rain areas (Huffman 1997).

The global bias is not yet established for TMI GPROF rainfall estimates since most

regions lack the necessary validation data and no statistical model has been developed to estimate

bias from other parameters. On the monthly timescale, a recent intercomparison of TMI GPROF

and coincident space-borne Precipitation Radar estimates of rain rate suggests biases on the order

of 15% over land and 25% over ocean (S. Yang, personal communication).

b. TMI Wentz total precipitable water retrieval
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The TPW are retrievedfrom TMI observationsover oceansusing essentiallythe same

Wentzalgorithmsasthoseusedfor SSM/I TPW retrieval (Wentz 1997),exceptfor adjustments

to accountfor smalldifferencesin GHzbetweentheTMI andSSM/Ichannelsandthe TMI water

vaporbeingmeasuredat 21 GHz ratherthan22.235GHz asin SSM/I. The TMI TPW dataare

availableonlinefrom theRemoteSensingSystem(RSS 1999)in the form of mapsof ascending

anddescendingorbit segmentsbetween40°Sand40°N at a pixel resolutionof 25 kin. The rms

accuracyof the TMI TPW estimatesis expectedto be comparableor better than that of the

SSM/ITPW retrieval,which is about 1 ram. Thesehigh-resolutiondatawith goodquality flags

arethenprocessedto produce6-houraverage2° x 2.5° griddedTPW datafor ingestioninto the

GEOSDAS.

3. The I+ID Assimilation Algorithm

The algorithm we use to assimilate precipitation and TPW is an assimilation procedure

in "1+1" dimensions based on a 6-hr time integration of a column version of the GEOS GCM

with full model physics, with the advective terms prescribed from a preliminary 6-hr assimilation

using conventional observations. Details of this I+ID assimilation procedure and the basic

features of the GEOS DAS are described in Hou et al. (1999a). The designation of "1+ 1D" refers

to the involvement of both spatial and temporal dimensions to differentiate it from "2D" for 2

spatial dimensions. The procedure minimizes the least-square differences between the satellite-

retrieved rain rates and the values generated by the column model averaged over the 6-hr analysis

window. The control variables are analysis increments of moisture and temperature within the

Incremental Analysis Update (IAU) framework of the GEOS DAS. The I+ID scheme, in its

generalization to four dimensions, is related to the standard 4D variational assimilation algorithm

but differs in its choice of the control variable: instead of estimating the initial condition at the

beginning of the assimilation cycle, it estimates the constant IAU forcing to be applied over a

6-hr assimilation cycle. In doing so, it also imposes the forecast model as a weak constraint in

a manner similar to the variational continuous assimilation techniques (Derber 1989, Zupanski

1997).

An optimal use of TMI and SSMI rainfall and TPW observations in data assimilation
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requires detailed knowledge of both observation and forecast model errors, which are currently

research issues. It is meanwhile useful to understand the benefits of using these data in data

assimilation in sub-optimal applications without error specifications, as done in Hou et al.

(1999a). In this "perfect observation" limit, the explicit assumptions are: (i) that the observed

rainfall and TPW estimates are much more reliable than the model-generated estimates, (ii) that

uncertainties in the moisture field are much larger than and uncorrelated with errors in the

temperature field, and (iii) that the moisture analysis increment has a known vertical structure.

Under these conditions the general 1+ 1D scheme reduces to a two-parameter estimation problem

to accommodate the 2 pieces of information provided by precipitation and TPW observations.

With the above simplifications, the I+ID scheme shares a number of key assumptions

with the physical initialization scheme (Krishnamurti et al. 1991, 1993).But the scheme as

implemented in the GEOS DAS differs from physical initialization in an important respect - it

is used to directly constrain the time-average rain rate and TPW over a 6-hr analysis window to

match the observations, whereas the physical initialization scheme is used to improve the analysis

through an improved first guess achieved by nudging the precipitation during the previous

analysis cycle (Treadon 1996).

The detailed implementation of the 1 + 1D scheme in the "2-parameter, perfect-observation,

moisture-adjustment" limit is described in Hou et al. (1999a). The vertical structure of the

moisture analysis increment used in Hou et al. is define by a dimensionless parameter, [c_ I _<

2, that modifies the change in relative humidity as a linear slope adjustment to match the

observed rain rate and a second parameter, [3, for matching the observed TPW value. One

drawback with this parameterization is that it leads to excessively large moisture increments aloft

at locations of reduced precipitation. In the present work we obtain significantly better results by

adopting a vertical structure function for the moisture analysis increment (i.e., Eq. (5) of Hou et

al.) That mimics the Jacobian of the 6-hr mean precipitation w.r.t, moisture perturbations (see the

Appendix). Substituting the moisture analysis increment over the 6-hr analysis window, A q(0c),

(Eq. A4 of the Appendix) into definition of the cost function given by Eq. 4b of Hou et al.

(1999a) defines a 1D minimization problem w.r.t, c_ for given observation values of po and _o.

At each gridbox where the difference between the observed 6-hr rain rate, P", and the model-

generated rain rate, U, exceeds 1 mmd -_, we minimize the cost function given in Hou et al.; viz:

7



J(Aq(o_)) = [ln(P o + c) - ln(Pf(Aq(oO) + e) ]2 (1)

where 6 is a small constant used to prevent logarithmic singularity at zero rain rate (taken to be

0.01 mm dl). U is obtained from a 6-hr integration of the GEOS temperature and moisture

equations updating only the moist physics terms with other tendencies prescribed from a

preliminary global assimilation using all data types except precipitation (see Hou et al. for

details). In this study, the minimization is performed within the range of I_[ < 3, which was

chosen empirically. Expanding the search range can filrther reduce the error std dev's in the

monthly-mean OLR and precipitation but could also degrade the 6-hr forecast of moisture against

radiosonde data. The choice of ]cc[ < 3 yields significantly better monthly-mean OLR fields

compared with results obtained using a linear Ar slope adjustment without degrading the 6-hr

moisture forecast.

4. Assimilation Experiments

We performed three parallel assimilation experiments that extend from 1 December 1997

(soon after the TRMM launch) to 31 January 1998. The control is a standard GEOS assimilation

with conventional observations, as described in Hou et al. (1999a). In two other cases, we

assimilated, in addition to conventional observations, either the 6-hr averaged TMI rain rate (PCP

assimilation) or the 6-hr TMI rain rate and TPW data (PCP+TPW assimilation). Since the

CERES]TRMM daily, gridded ES-4 radiative flux measurements similar to the Earth's Radiation

Budget Experiment (ERBE) products are not available prior to 1998 (CERES/TRMM 1998), the

bulk of our analysis focuses on January 1998.

5. Impact on Time-Mean Fields

a. Surface precipitation

Figure 1 shows the impact of TMI rainfall and TPW assimilation on the monthly-mean
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tropical precipitation for January 1998. Figure la is the observed precipitation as seen by the

TMI. Figure lb shows the discrepancy between the TMI rain rate and precipitation from the

GEOS control sampled at TMI observation locations averaged over January. The corresponding

errors for the TMI PCP assimilation and PCP+TPW assimilation are shown in Figs. lc and ld,

respectively.

The monthly-mean spatial anomaly correlation (AC), bias, and error std dev w.r.t, the TMI

data are indicated at the top of each panel, with the percentage changes relative to the GEOS

control given in parentheses. Assimilation of TMI rain rates increases the anomaly correlation

from 0.59 to 0.84, and reduces the error std dev by 27%. Assimilating the TMI TPW data with

rain rates further increases the anomaly correlation to 0.88 and the std dev reduction to 31%.

The apparent increase in the time-mean tropical bias reflects the fact that the rainfall

assimilation algorithm is more effective in reducing the precipitation intensity than enhancing it

in the GEOS DAS. A plausible reason for this asymmetry is that enhancing precipitation requires

moistening of the lower troposphere, but the high relative humidity in the tropical boundary layer

limits, through saturation, the extent to which moisture analysis increments can moisten the low

levels, while it allows a greater degree of drying to reduce precipitation. Such an asymmetry

would account for the prevailing negative tropical bias in Figs. lc and ld, but the difference of

0.6 mmd -_ in the bias between Figs. ld and the control (Fig. lb) is comparable to observation

uncertainties.

It is worth noting that the limited capacity of the I+ID scheme in the GEOS DAS to

match intense rain rates is especially noticeable in January 1998 due to the unusually intense

rainfall observed in the Central Tropical Pacific at the peak of the E1 Nifio. By comparison, the

TMI-retrieved rain rates are generally weaker in December 1997 (not shown), in which case the

precipitation in the GEOS control has a smaller bias in the tropics and the PCP+TPW

assimilation yields a much closer match with the TM! observations.

b. Total precipitable water

Figure 2a shows Wentz's TM| TPW retrieval for January 1998. Figures 2b-d show the



monthly-meandifferencesbetweenthe TMl-sampledTPW from the threeGEOSassimilations

andTMI observations.AssimilatingTMI rain rateswithout TPW datahasonly a small positive

impacton TPW, mainly in reducingthe tropical-meanbias. Figure2d showsthat assimilating

TMI TPWretrievalsvirtually eliminatesthe monthly-meanspatialbias andreducesthe error std

devby 73%.

c. Validation using CERES/TRMM radiation measurements

Since the GEOS DAS does not assimilate the observed outgoing longwave or shortwave

radiation (OSR) fluxes, these measurements may be used to verify the overall improvement of

the GEOS analysis from assimilating TMI rainfall and TPW observations. In this section we

compare the OLR and OSR fields from GEOS analyses against the CERES/TRMM ERBE-like

ES-4 gridded daily products.

Table 1 shows for January 1998 the time-mean spatial errors in OLR against CERES

observations fi_r all tropical locations where the month-mean rainfall has been modified by more

than 1 mm d4 as a result of assimilating TMI rain rates. Statistics show that TMI PCP+TPW

assimilation increases the spatial anomaly correlation from 0.50 to 0.81, reduces the bias by 85%

and the error std dev by 38%, with the bulk of the improvements coming from the use of TMI

rain rates. In Table 2 similar statistics for the OSR show that assimilating TMI data increases the

anomaly correlation from 0.50 to 0.81, the reduces the bias by 49%, and decreases the error std

dev by 36%. Since errors in the OLR and OSR in the analysis are dominated by errors in clouds,

these results are suggestive of substantial improvements of clouds over the raining regions. This

is confirmed by the comparison of the infrared radiation "cloud forcing" (defined as the

difference between clear-sky OLR and OLR) shown in Table 3.

Figures 3 and 4 show the improvements in the OLR and OSR over the entire tropical

domain, respectively. Assimilating TMI rainfall and TPW data can reduce the error std dev in

OLR by up to 35% and that in OSR by up to 24%. The tropical bias in OSR is dominated by

errors in clouds in the GEOS DAS, and the use of TM| rainfall and TPW data systematically

reduces this bias, as shown in Figs. 4c and 4d. In contrast to this, the tropical-mean OLR bias

appears to increase as a result of assimilating TMI data (Figs. 3c and 3d). This apparent increase
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is an artifact of the virtual elimination of the strong negative OLR bias in precipitating areas (as

seen in Table 1), leaving the tropical-mean bias being dominated by the positive bias in the rain-

free regions. The positive OLR bias in rain-free areas reflects a dry humidity bias in the lower

troposphere, which is much reduced through the use of TPW observations, as shown by the

comparison of the clear-sky OLR results against the CERES measurements in Table 4. The

tropical bias in the clear-sky OSR is small in the GEOS control - about 1.02 Wm -2 (not shown).

Rainfall and TPW assimilation reduces this bias to 0.90 Wm -z (by roughly 12%) but does not

affect the anomaly correlation or the error std dev.

One important benefit of assimilating rainfall and TPW data is that their use is effective

in reducing state-dependent systematic errors in assimilation products. An example is given in

Fig. 5, which compares the tropical-mean std dev errors in OLR from the GEOS control and the

TMI PCP+TPW assimilation for three averaging periods of 1, 5, and 30 days. The offset between

the control and PCP+TMI assimilation is effectively constant in all three cases ranging from 8.2

to 9.5 Wm -z, signifying a reduction of state-dependent systematic errors since the tropical-mean

bias has already been removed.

d. Validation using TOVS radiances

TOVS brightness temperature observations may be used to assess the impact of TMI

rainfall and TPW assimilation on GEOS moisture and temperature analyses. We first compute

"synthetic" TOVS brightness temperatures using temperature and humidity analyses from GEOS

assimilations, and then compare them with brightness temperatures derived from the clear and

cloud-cleared infrared radiances from the TOVS High-resolution Infrared Radiation Sounder 2

(HIRS2) and brightness temperatures from the TOVS Microwave Sounding Unit (MSU). The

HIRS cloud-cleared brightness temperatures are from the Pathfinder Path A data set (Susskind

et al. 1997). Details of the procedure are given in Hou et al. (1999a). In this section we examine

results for 2 particular channels: The HIRS2 12 (6.7 _m), which is sensitive to the upper

tropospheric humidity (UTH) and the MSU 2, which is sensitive to the mid-tropospheric

temperature. As discussed in Hou et al., both the observations and radiative transfer calculation

contain biases. The absolute uncertainty of the synthetic minus observed brightness temperatures
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is estimated to be approximately 2 K. These biases were not removed. Instead, we concentrate

on the spatial structure of the brightness temperature residuals exceeding 2 K and the relative

differences between the GEOS control and PCP+TPW assimilations.

HIRS2 12 has a peak sensitivity to UTH between about 300 and 500 hPa depending on

local conditions. Figure 6 compares the monthly-mean from the synthetic HIRS2 12 brightness

temperature GEOS analyses with observation. Figure 6a shows that the synthetic brightness

temperature of the GEOS control has a cold bias, indicative of a moist bias in UTH throughout

the tropics. The difference in synthetic brightness temperature in Fig. 6b shows that TMI rainfall

and TPW assimilation leads to "warming" over much of the tropics and small reductions in the

spatial bias and the error std dev that are statistically significant. That these error reductions are

further enhanced in experiments in which the TMI rainfall and TPW data are augmented by

SSM/I observations (Hou et al. 1999b) suggest that they are meaningful. These results also

confirm that the modified rainfall assimilation algorithm used in this study does correct the

problem of excessive moistening aloft at locations of reduced precipitation found in Hou et al.

(1999a). The spatial correlation between the warm brightness temperature anomaly in Fig. 6b and

the area of negative specific humidity anomaly at 400 hPa in Fig. 6c is -0.65, while the

correlation between the negative humidity anomaly and the positive (descending) omega velocity

anomaly in Fig. 6d is -0.78. Thus the drying of the upper troposphere is directly linked to

enhanced subsidence due to an improved tropical precipitation (aee section 5e).

The MSU 2 has a relatively broad sensitivity to tropospheric temperature that peaks near

600 hPa and has a small sensitivity to surface emission. Figure 7a shows that the monthly-mean

synthetic MSU 2 brightness temperatures in the GEOS control are higher than the observed MSU

2 values, consistent with a warm bias in the temperature analysis. But these differences may not

be significant since they are less than the overall uncertainty of about 2 K in brightness

temperatures. We can remove this ambiguity by examining changes in the synthetic brightness

temperatures between the two assimilation runs. Figure 7b shows that the impact of rainfall and

TPW assimilation is to reduce the warm biases by 0.05 to 0.2 K over large portions of the

tropics. Changes of this size may be significant given the broad weighting function and are

consistent with the slightly reduced bias and std dev shown in Fig. 7b. In any case, there is no

evidence of rainfall and TPW assimilation adversely affecting the tropospheric temperature.
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e. bnpact on the large-scale circulation and atmospheric energetics

Much of the improvements in the top-of-the-atmosphere radiation, upper tropospheric

humidity shown in the previous sections are directly linked to improved clouds and large-scale

motions due to improved precipitation and latent heating distribution through assimilation of TMI

rain rates. Figure 8 shows the January-mean difference maps of precipitation, 200 hPa divergence

wind vectors, 500 hPa omega velocity, OLR, and OSR between the TMI PCP+TPW assimilation

and the control. Also shown are the spatial anomaly correlations between the change in

precipitation and changes in these other fields; they range from -0.88 to 0.70. Clearly, an

improved precipitation pattern has a direct impact on the horizontal distribution of clouds, which,

in turn, improves the OLR and OSR. A better latent heating field affects not only the vertical

motion in precipitating areas but also the large-scale horizontal divergence and the subsidence

in surrounding regions leading to the improved UTH (see Figs. 6c and 6d). However, the impact

of the large-scale circulation on the UTH in clear-sky regions, though positive, is small compared

with the improvement due to TPW assimilation, as shown by the comparison of the clear-sky

OLR results in Table 4.

6. Impact on Forecast

a. Precipitation forecast

Table 5 shows 6-hr average "observation minus forecast" (O-F) residuals for precipitation

for lead times from 3 to 45 hours averaged over all tropical locations with available TMI

observations. Forecasts were generated using initial conditions that were modified by TMI rainfall

data in the previous assimilation window. Each ensemble consisted of forecasts from initial

conditions 3 day apart over a 2-month period, which were treated as independent samples since

convective precipitation has lifetimes on the order of hours. Bias and error std dev differences

significant at the 99% level are italicized.

Results show that ensemble precipitation forecasts initialized by the PCP+TPW analysis

have significantly smaller biases in 6-hr O-F residuals for forecast times greater than 9 hours. But
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the improved initial condition using TMI rain rates and TPW data affects the error std dev of the

6-hr O-F residuals by only a few percent. In contrast to this, reductions in error std dev of the

6-hr "observation minus assimilation" (O-A) residuals are typically 15-30%. This shows that

assimilating these data types using the I+ID variational scheme can improve the analysis as a

climate data set without necessarily requiring comparable improvements in the first guess (i.e.,

the 6-hr forecast). Nonetheless, it is of practical importance that assimilating these data types

does not degrade the forecast since global analyses are routinely used to initialize forecast.

Internal consistency between model physics and observations dictates that the improved analysis

should also improve forecast, or at least, does not adversely affect forecast.

b. 6-hr observation minus fi_recca_t residuals

We computed the monthly-mean biases and error std dev's of the 6-hr O-F residuals for

winds, geopotential height, and specific humidity averaged over tropical rawinsonde locations for

the GEOS control and PCP+TPW runs. Statistical tests show that rainfall and TPW assimilation

affects mainly the O-F residuals for moisture but not the winds. Table 6 gives the moisture O-F

biases and std dev's along with the "null hypothesis" probabilities that they are the same between

the two experiments. Results show that TMI rainfall and TPW assimilation leads to smaller std

dev's of the moisture O-F residual between 300 and 500 hPa at the 1% probability level. The

only significant changes in the biases occur between 700 and 850 hPa, corresponding to a

downward displacement of the zero-bias level in the PCP+TPW case. The reduced moisture bias

at 850 hPa is consistent with the use of TPW data but the robustness of the t-test result is

questionable since the std dev's are not the same in the two cases according to the F-test. Apart

from the impact on the moisture field, the only other notable change is a 61% reduction in the

std dev of the O-F residual for the geopotential height at 400 hPa in the PCP+TPW case.

Taken together, these O-F results show that TMI rainfall and TPW assimilation tends to

reduce the moisture O-F residuals with no adverse effect on other fields. This is consistent with

the results from comparisons with TOVS brightness temperatures discussed in section 5d.

c. 5-day fi_recast
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To analyzetheimpactof TMI rainfall andTPW assimilationon short-rangeforecast,we

performedparallelensembleforecastsinitializedwith GEOSanalyseswith andwithout TMI data.

Eachensembleconsistsof 12 independentsamplesof 5-dayforecastswith initial conditions5

days apart taken from two months of assimilation. For forecast verification, we used two

analyses: (i) the operational analysis from the European Center for Medium-Range Weather

Forecasts (ECMWF) and (ii) the average of the GEOS control and PCP+TPW analyses. Although

the PCP+TPW analysis compares better with satellite observations than the control, as shown in

section 5, using the average of two analyses for verification removes biases associated with the

initial conditions.

Figure 9 shows the averaged rms errors of 5-day ensemble forecast for the 500 hPa

geopotential height. Assimilation with TMI rainfall and TPW data yields smaller rms errors

regardless which analysis is used for verification. In either case, Student's t test confirms that the

forecast error reductions in the tropics are significant at the 99% level beyond 1 day. Although

the differences in the extratropics shown in Fig. 9b and 9c are not statistically significant, they

show that the use of rainfall and TPW data does not degrade the forecast in the extratropics.

Similarly, rainfall and TPW assimilation also reduces the rms errors in the divergent

component of zonal and meridional winds in the tropics, but the improvements are significant

at the 95% level only within the first 24 hours.

7. Summary and Concluding Remarks

This study shows that TMl-derived rain rates and TPW estimates are useful for improving

the representation of hydrological variables and atmospheric energetics in GEOS analysis. It

shows that the 6-hr averaged TMI rainfall retrieval, at the current level of uncertainty in intensity,

is capable of providing valuable pattern and intensity information to improve the quality of global

analyses. In particular, assimilating these data is especially effective in reducing spatial errors in

the monthly-mean precipitation, moisture, OLR and OSR fields, which increases the utility of

these data for studying long-term climate variability.

Assimilating TMI rainfall and TPW reduces much of the state-dependent systematic errors

in assimilated data products in the tropics. The overall impact of tropical rainfall assimilation is
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to improvedistributionsof cloudsandatmosphericradiation in areasof activemoist convection,

aswell asthe latentheatingdistribution andthe associatedlarge-scalecirculation.The primary

benefitof TPW assimilationis to reducemoisturebiasesto improvethe longwaveradiationin

clear-skyregions.Resultsshowthatassimilatingbothtypesof observationsleadto improvements

in the vertical motion field andreducedhumidity biasesin the uppertroposphere.The latter is

establishedby comparingsyntheticTOVS brightnesstemperaturescomputedusingthe GEOS

analyseswith andwithout TMI observationsagainstTOVS observations.

Ensembleprecipitationforecastsinitializedwith theGEOSanalysiswith TMI rainfall and

TPWdatahavesignificantlysmallerbiasesin thetropics for forecasttimeslonger than9 hours.

The GEOSPCP+TPWanalysisalso producesbetterensemble5-day forecastsof the 500 hPa

geopotentialheightand2-dayforecastsof the 200hPadivergentwinds in the tropics.Although

theGEOSanalysiswith TMI rainfall andTPW dataproducesbettershort-rangeforecasts,it is

worth noting that improvementsin the time-averagedfields areeven more significant. This

suggeststhat, in thepresenceof biasesandothererrorsof the forecastmodel,it is possibleto

improvethetime-averaged"climatecontent"in theassimilateddatawithout necessarilyrequiring

comparableimprovementsin forecastskills.

This studydemonstratesthat assimilatingTMI rainfall andTPW datacansubstantially

improveassimilateddatasetsevenin sub-optimalapplicationswithout error specifications.It is

possibleto makemoreeffectiveuseof theseobservationsthrougherror covariancemodeling.

Resultsof this studyprovide a baselinefor testingthe performanceof error covariancemodels

in a generalizedrainfall andTPW assimilationscheme.

Given the limited spatialcoverageof TRMM in a 6-hr window, TRMM observations

alonecannotimprovethe precipitationanalysisover theentire tropics.What we presenthereis

aproof-of-conceptdemonstrationof the potentialof using rainfall andTPW observationsfrom

space-bornemicrowaveinstrumentsto improveglobalanalyses.In Hou et al. (1999b)we show

that augmentingthe TMI rainfall and TPW data with observationsderived from SSM/!

instrumentsfurther enhancesthe improvementsdescribedin this paper.The proposedGlobal

PrecipitationMissionto deploya constellationof satellitesto provideglobal rainfall observations

with improvedtemporalsamplingcould leadto major advancesin upgradingthe quality and

utility of global analysesfor climateresearchandnumericalweatherpredictionapplications.
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APPENDIX

The vertical structureof the moistureanalysisincrement

We introducea verticalstructurefunction, G(p), in the moisture analysis increment (i.e.,

eqn. (5) of Hou et al.) to mimic the Jacobian of the 6-hr mean precipitation w.r.t, moisture

perturbations; i.e.,

Aq = q (T) Ar (A1)
$

where q,(T) is the saturation specific humidity and Ar, the change in relative humidity, is given

by:

G(p) [ a In(p) + [3] for p > p*Ar (A2)( 0 otherwise

where G(p) is a prescribed Guassian function with a maximum at 1000 hPa and an e-folding

width of 300 hPa. At locations with valid TPW observations, the vertically integrated column

moisture increment may be determined from retrieval of TPW, _o, and the model first guess, qf:

P_

f ap -o IAq = aq = q -q
g

0

(A3)

Combining (1)-(3) yields a Aq as a function of a single parameter, a :

q Gin(p) Aq ,
Aq(a) = q (T)G(p) { [ In(p) - " l a + }, for p > p (A4)

qG qG
$ $

If TPW data are not used, Aq is set to zero, so that the moisture increment due to precipitation

data introduces no net moisture source in a vertical column. This does not mean that q is
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conservedduringtheassimilationcycle sincemoisturecanbemodified by convectiveprocesses

(seeHou et al. 1999a).
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Table 1

Spatialstatisticsof GEOSOLR againstCERES/TRMMERBE-IikeES-40LR averagedover
tropical locationswherethe monthly-meanrainfall hasbeenmodifiedby more than 1mm d_

(January1998)

anomalycorr bias(Wm-2) error std dev (Win-2)

GEOSControl 0.5 -17.7 27.9

PCPAssimilation 0.76 -8.05 -55% 18.9 -32%

PCP+TPWAssimilation 0.81 -2.65 -85% 17.3 -38%

Table 2

Spatialstatisticsof GEOSOSR againstCERES/TRMMERBE-like ES-40SR averagedover
tropical locationswherethe monthly-meanrainfall hasbeenmodifiedby more than 1 mmd-_

(January1998)

anomalycorr bias (Wm -2) error std dev (Wrn -z)

GEOS Control 0.5 32.6

PCP Assimilation 0.78 22.3 -32%

PCP+TPW Assimilation 0.81 16.5 -49%

33.9

22.4 -34%

21.7 -36%
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Table3

Spatialstatisticsof GEOSIR cloud forcing againstCERES/TRMMES-4 dataaveragedover
tropical locationswherethemonthly-meanrainfall hasbeenmodified by more than 1mm d_

(January1998)

anomalycorr bias (Wm-2) error std dev (Wm-2)

GEOSControl 0.38 26.4 26.2 -

PCPAssimilation 0.78 18.5 -30% 15.1 -42%

PCP+TPWAssimilation 0.80 10.4 -61% 14.6 -44%

Table4

Spatialstatisticsof GEOSclear-skyOLR againstCERES/TRMMERBE-likeES-4measurements
(30°Sto 30°N,January1998)

GEOSControl

PCPAssimilation

anomalycorr

0.81

0.82

PCP+TPWAssimilation 0.88

bias (Wm2)

10.3

9.44 -8%

8.36 -19%

error std dev (Win-2)

5.58

5.46 -2%

4.77 -15%
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Table 5

ObservationMinus ForecastStatisticsfor Precipitationin the Tropics

ForecastTime 3 hr 9 hr 15hr 21 hr 27 hr

33223 34000

33hr 39 hr 45 hr

SampleSize 34062 34093 33564 34099 34030 33995

bias

Control 0.684 0.717 0.813 0.777 1.308 1.217 1.085 0.969

PCP+TPW 0.572 0.363 0.041 0.055 O. 729 O. 741 0.614 0.665

% change -16% -49% -95% -93% -44% -39% -43% -31%

t prob O. 311 O.001 O.0 O.0 O.O1 O. 006 O. 001 O.005

error std dev

14.41

14.14

Control

PCP+TPW

15.11

15.09

14.59

14.17

14.84 14.49

14.89 14.30

+0.3% -1.3%

0.568 0.017

13.35

13.21

14.77

14.68

% change

F prob

14.12

13.94

Table 6

Specific humidity O-F residuals against rawinsonde data

(30°S to 30°N, January 1998)

Pressure Bias Error Std Dev

(hPa) Control PCP+TPW t-test prob Control PCP+TPW F-test prob

300 -0.084 -0.08091 0.59293 0.08169 0.06434 1.652 x 10 .4

400 -0.1566 -0.13091 0.14265 0.22429 0.18029 3.611 x 10 .4

500 -0.147 -0.13544 0.66783 0.34639 0.2921 4.330 x 10 .3

700 0.0332 -0.17823 1.710 x 10 .4 0.68698 0.63535 0.1921

850 0.55907 0.2718 6.851 X 10 -3 1.27771 1. 14982 0.0877

1000 -0.9933 -0.87725 0.50283 1.36974 1.39154 0.8595
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Figure captions

Figure 1. (a) Time-mean TMI GPROF precipitation for January, 1998. (b) Difference between

TMI observation and precipitation from the GEOS control sampled at TMI observation locations.

Positive and negative values are inidcated by solid and dash contours, respectively. Also shown

are tropically-averaged spatial anomaly correlation (AC), bias, and error std dev. (c) Same as (b)

but for the TMI PCP assimilation. The percentage change in error std dev relative to the control

is shown in parentheses. (d) Same as (c) but for the TMI PCP+TPW assimilation.

Figure 2. (a) Time-mean TMI Wentz TPW retrieval for January, 1998. (b) Difference between

TMI observation and TPW from the GEOS control sampled at TMI observation locations,

together with tropical-mean spatial statistics. Positive and negative values are inidcated by solid

and dash contours, respectively. (c) Same as (b) but for the TMI PCP assimilation. The

percentage changes in bias and std dev relative to the control are shown in parentheses. (d) Same

as (c) but for the TMI PCP+TPW assimilation.

Figure 3. (a) Time-averaged CERES/TRMM ERBE-like OLR for January, 1998. (b) Difference

between CERES observation and OLR from the GEOS control with the same sampling, together

with tropical-mean spatial statistics. Positive and negative values are inidcated by solid and dash

contours, respectively. (c) Same as (b) but for the TMI PCP assimilation. Percentage changes in

statistics relative to the control are shown in parentheses. See text for an explanation of the

asterisk. (d) Same as (c) but for the TMI PCP+TPW assimilation.

Figure 4. (a) Time-averaged CERES/TRMM ERBE-like OSR for January, 1998. (b) Difference

between CERES observation and OSR from the GEOS control with the same sampling, together

with tropical-mean spatial statistics. Positive and negative values are inidcated by solid and dash

contours, respectively. (c) Same as (b) but for the TMI PCP assimilation. Percentage changes in

statistics relative to the control are shown in parentheses. (d) Same as (c) but for the TMI

PCP+TPW assimilation.
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Figure5. Error std dev in tropically averagedOLR asa function of averagingperiodsof 1, 5,

10, 15,and 30 daysfor the first 30 daysin January,1998.

Figure 6. SyntheticHIRS2 channel 12brightnesstemperaturefor January,1998.(a) Control

minus TOVS observation,with dashesindicating negativevalues.(b) Changein brightness

temperature:PCP+TPWassimilationminuscontrol. Percentchangesin tropical-meanbias and

error stddevareshownin brackets.Positiveandnegativevaluesareinidcatedby solid anddash

contours, respectively.(c) Changein specific humidity at 400 hPa. The spatial correlation

betweennegativehumidity anomaliesandpositivebrightnesstemperatureanomaliesin (b) is -

0.65. (d) Correspondingchangein the omegavelocity at 400 hPa.The correlation between

positive anomaliesin omegavelocity andnegativehumidity anomaliesin (c) is -0.78.

Figure7. SyntheticMSUchannel2 brightnesstemperaturefor January,1998.(a) Controlminus

TOVS observation.(b) Changein brightnesstemperature:PCP+TPWassimilationminuscontrol.

Percentchangesin tropical-meanbias and error std dev are shownin brackets.Positive and

negativevaluesareinidcatedby solid anddashcontours,respectively.

Figure8. (a)Changein precipitationbetweenPCP+TPWassimilationandthecontrol for January,

1998.Superimposedare the changesin the horizontal divergentwind vector at 200 hPa. (b)

Changein the omegavelocity at 500 hPa. The correlation betweenthis and the changein

precipitationin (a) is -0.88.(c) Correspondingchangein OLR. The correlationbetweenthis and

the changein precipitationis -0.72. (d) Changein OSR.The correlationbetweenthis and the

changein precipitationis 0.70.

Figure9. Ensemble-meanrms error for 12casesof 5-day forecastsof the 500 hPageopotential

height: Solid lines are results using the ECMWF analysisas verification. Dashesare same

forecastswith the GEOSassimilationasverification.
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d)

Impact of Rainfall and TPW Assimilation on Precipitation
at TMI Observation Locations: January 1998
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Impact of Rainfall and TPW Assimilation on TPW: January 1998

a) TMI Wentz TPW retrieval
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Impact of Rainfall and TPW Assimilation on OLR" January 1998
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Impact of Rainfall and TPW Assimilation on OSR" January 1998

a) CERES/TRMM Outgoing Shortwave Radiation
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ERROR STD DEV IN OLR AS A FUNCTION OF AVERAGING TIME

TROPICS (30S to 30N) JANUARY 1998 CERES/TRMM VERIFICATION
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Synthetic Brightness Temperature T, for HIRS2 Channel 12
and 400hPa Moisture and Vertical Motion: January 1998

a) GEOS(CNTRL) Minus HIRS2 Channel 12: BIAS= -3.65 STDV= 2.21
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b) Chenge in Tb: GEOS(TMI PCP+TPW) Minus GEOS(CNTRL) <BIAS(-I_) STDV(-7_)>
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c) Change in 400hPo Specific Humidity: GEOS(TMI PCP+TPW) Minus GEOS(CNTRL)
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Chenge in 400hPa Omega Velocity:GEOS(TMI PCP+TPW Minus GEOS(CNTRL)
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Synthetic Brightness Temperature Tb for MSU Channel 2
Jonuory 1998

a) GEOS(CNTRL) Minus MSU Channel 2: BIAS= 1.30 STDV= 0.23
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b) Change in T,: GEOS(TMI PCP+TPW) Minus GEOS(CNTRL) <BIAS(-3_) STDV(-4_)>
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Changes in Precipitation, Circulation and TOA Radiation Energy
GEOS(TMI PCP+TPW) Minus GEOS(CNTRL): January 1998

a) Precipitation and 200 hPa Horizonal Divergent Wind Anomalies
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b) Ome! a Velocity Anomaly at 500 hPa: AC(PCP) = -0.88
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c) OLR Anomaly: AC(PCP) = -0.72
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d) OSR Anomaly:' AC(PCP) = 0.70
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500 hPa HEIGHT: 12 CASE ENSEMBLE, 9712-9801
a) TROPICS (28S-28N)

20
¢r

10 //

,,o 0

o
I4°30

c10 c
100 c

LU 90 c

_ 8o70
_ 60

_ 5o

o< 40 !30

O _01 E
120

_-A11o " G_ c
100 -'1- C

90 _. C
LU 80 X-- c

7O
_ 6o
rr 50

40 _ _ _::',

2 3 4

b) NORTHERN HEMISPHERIC EXTRATROPICS (28N-86N)
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c) SOUTHERN HEMISPHERIC EXTRATROPICS (28S-86S)
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