
-l-

Static properties and Stark effect of the ground state of the HD molecular ion

A. K. Bhatia and Richard J. Drachman
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We have calculated static properties of the ground state of the HD ÷ ion and its lowest-lying

P-state without making use of the Born-Oppenheimer approximation, as was done in the case of H2÷

and D2 ÷ [Phys. Rev. A 58, 2787 (1998)]. The ion is treated as a three-body system whose ground

state is spherically symmetric. The wavefunction is of generalized Hylleraas type, but it is necessary

to include high powers of the internuclear distance to localize the nuclear motion. We obtain good

values of the energies of the ground S-state and lowest P-state and compare them with earlier

calculations. Expectation values are obtained for various operators, the Fermi contact parameters,

and the permanent quadrupole moment. The cusp conditions are also calculated.The polarizability

was then calculated using second-order perturbation theory with intermediate P pseudostates. Since

the nuclei in HD ÷ are not of equal mass there is dipole coupling between the lowest two rotational

states, which are almost degenerate. This situation is carefully analyzed, and the Stark shift is

calculated variationally as a function of the applied electric field.

I. INTRODUCTION

By observing Rydberg states of HD, it should be possible to extract properties of the HD ÷ion,

which is the core of the excited molecule. Such experiments [i] have been performed on Rydberg

states of H 2 and D 2 giving highly accurate polarizabilities of H _ and D _ ions. Our recent calculations
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[2] for thepolarizabilitiesof thesphericallysymmetricgroundstateof thehomonuclearmolecular

ionsagreedverywell with thehighprecisionexperimentalresults[1]. We showedthatit is possible

to avoidtheBorn-Oppenheimerapproximation(BO),whichusesaproductof electronicandnuclear

wavefunctions,byfollowing thesameapproachin diatomicmolecularsystemsashastraditionally

beenusedin two-electronatomicsystems[3]. We simply treat themolecular ion asa three-body

quantumsystem.

We showedin our previouspaper[2] thatit is possibleto modify thegeneralizedHylleraas

basisfunctions,which hadworkedverywell in a numberof two-electronsystems,to apply to two

heavyparticlesandonelight particle,therebytreatingall threeparticleson anequalfooting. Since

noapproximationsaremade(beyondthefinite expansionlength) in the calculationof eigenvalues

byavariationalprinciple,theresultsobtained,which includethekinematiceffectsof "rotation"and

"vibration" andelectronexcitation,shouldbebetterthanin theBO approximation,which assumes

that there is no direct coupling betweenthe electronicand nuclear motions. Theseeffects are

automaticallyincludedwhenwecalculatethree-bodywavefunctions.

It is well known that thepower-exponentialform of a Hylleraasfunction is well suitedto

describethemotionof electrons,whicharenot localized.In orderto describethe relativemotion of

heavyparticleswhicharefairly tightly localized,it is necessaryto modify theformsof thefunctions

by introducingvery high powersof the distancebetweenthe heavyparticles.This significantly

improvestheconvergenceof theenergyvalues.Usingthewavefunctionsobtainedby minimizing

theenergyusingthe Rayleigh-Ritzvariationalprinciple,just asfor H2 ÷ and D2÷ [3], we calculate

expectation values for various operators, the Fermi contact parameters, the permanent quadrupole

moment, and the cusp conditions. The energies obtained are compared with those given by Moss [4].



-3-

lI. FORMULATION

The unperturbed Hamiltonian of the HD ÷ system is

--m
1 x72 - 1 v2 2 1 1 1

• /, -_O • n-Ve +2[ (1)

where/_e, /_O and /_ are the position vectors of the proton, deuteron and electron, respectively,

measured in units of the Bohr radius ao, Me and M o are the masses in units of the electron mass, and

the energy is in rydbergs. The dipole operator d is defined as

d = 2 (/_p +/_o-/_)'_, (2)

where _ is a unit vector in the direction of the applied electric field.

We make the usual transformation to the center of mass system:

Rcm- , FI,z=Rp,n-Re. (3)
Me+Mo+I

In terms of these new coordinates, excluding the center-of mass contribution, the Hamiltonian takes

the form

/_),= 1V_ 1 2 _2_1._ 2 2 2 2

#t" /'to ]F,-F2I r, r 2
(4)

and the dipole operator becomes
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I- Mo+I Me÷I_]
d--2lRcM÷__l -- .g

L Mr + Mr r2] ,
(5)

where

M e M D

M r =Alp +M o +1, /zp- Mp + 1 and /.to -' M D + 1
(6)

(Notice that in this case the mass polarization cross-term in H is of the same order as the other

kinetic-energy operators, rather than being small as it is in a two-electron atom like helium.)

Numerically, M_I 836.152 701 and Mo=3 670.483 014. It is worth emphasizing again that we are

treating all three particles on an equal footing and will generally not refer to any special "molecular"

quantum numbers except perhaps to clarify the physical situation..

llI. CHOOSING THE FUNCTIONS

We are interested in calculating the static properties of the L=0 ground state of HD ÷ including

the binding energy of the ground state, and in order to compute the dipole polarizability it is also

necessary to construct a set of pseudostates of orbital angular momentum L=I. In the past [5] we

have used the following types of Hylleraas functions successfully for these purposes:

_o
l m n

l_o=e-arl-br2e-aJrl2 E Clmnrl r2 r12
lmn =0

(7)
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_p = -cos(0 t2/2)(f+g)D iI_-sin(0 t2/2)(f-g)D tt- (8)

where the radial functions f and g are given by

fl, r t,r2,rt2 ) =e -Y(rt +r2) _ . iF, j k
e -%rl'r I aijkrl 2 rI2

Uk--o

and g(r2,rt,r12)=e-r(q+_2)e-%q2r2_ - i j kdijk r2 rl r12.
Uk--o

(9)

(10)

The rotational harmonics DI ÷t and D11 used in Eq. (8) are those defined by Bhatia and Temkin [6],

and fl2=ft -f 2. In this case there is no exchange between the nuclei and therefore two independent

functions are required in Eq. (8) because the electron can be in an L=I state with respect to the

proton or with respect to the deuteron. For convenience in optimization, the nonlinear parameters

have been kept the same in the two functions f and g but they could have been chosen different in

the two functions.

Although the exponentials and powers appearing in Eqs. (7), (9), and (10) are efficient for

describing the correlations between the nuclei and the electron, we know from the BO model (which

is ce_ainly a good first approximation) that the internuclear motion will not be well described that

way. It is much better described by Gaussian-like functions centered around the equilibrium

positions of the nuclei. The problem is to adapt our trial functions so that they describe the motion

of the nuclei satisfactorily. The method we use is to increase powers of r_ appearing in Eqs. (7), (9),
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and(10). This hasbeenillustrated for H2÷in Fig. 1 of Ref. [2] which shows that the ground state

wave function obained from the Morse potential [7] can be well approximated by the form r_e -_1,,.,

provided N is large and txs=N/2. This leads us to make a simple modification of the trial functions

N,
No and Eqs. (9) and (I0) by rl2of Eqs. (7), (9), and (10): multiply Eq. (7)by rl2

IV. PROPERTIES OF HD ÷

The energy eigenvalues are calculated by the usual Rayleigh-Ritz variational principle which

requires minimizing E with respect to variation of the nonlinear parameters in the expression

E = (tF_j_v) (11)

(vlv)

Here W can be g0 or Wp giving E 0 or E_, For k"]0 = 13 (560 terms in the expansion), N o =12 we obtain

E 0 = -1.195 795 889 Ry which compares well with -1.195 795 931 Ry obtained by Moss [4],

differing by only 4.2x10 g Ry. Similarly, for L=I, for _ =11 (728 terms in Eq. (9)), Np =7 we

obtain the lowest eigenvalue Ep = - 1.195 371 602 Ry which is fairly close to -1.195 396 256 Ry

obtained by Moss [4], but differing this time by 2.5x10 5 Ry.

Using the wave functions obtained variationally, expectation values of various quantities are

calculated for the ground state as well as the lowest L=I state. They are given in Table I. In the table,

?'represents the distance of the electron from the center of mass of the nuclei and z is the projection

of _"onto 712 and they are given by the expressions
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r2_(l+c3)r2t +(1-c3)r2_.(1-c2)r?2

2 4
(12)

-- 2 2 2

F'FI2 _ FI -r 2 +c3r12
Z - , (13)

r_2 2rl=

½( M'-M°and Q= r:2+r2_3z 2> is the permanent quadrupole moment. In Eqs. (12) and (13) %-
M_÷Mo

In the Table energies are in units of Ry, and distances are in units of a o. The cusp values with respect

to r_ and rz are close to/.t v and #D, respectively. The Dirac 6 functions 6(_'1) and 6(F=) required in

the calculation of the Fermi contact term are also given in the Table. There does not seem to be

another comparable calculation of these properties.

V. POLARIZABILITY

Having established that accurate wave functions can be obtained for the ground as well as

the excited states, we can now calculate the dipole polarizability tz t by ordinary second-order

perturbation theory:

it, =E (0[dlp) (pld[O>a3,
p Ep -E 0 (14)

where d is the dipole operator defined in Eq. (5), and we can drop the center-of-mass coordinate

which has no direct effect on the polarizability. For this purpose we use the ground state wave
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function obtainedwith 560termsandfor intermediatestateswe keepNp = 7 as we vary f_t," Not

surprisingly, we find that almost all of the calculated polarizability comes from the lowest-lying p-

state in the intermediate sum in Eq. (14). This is due to the very small difference

A01 = 4.24287 x 10-4Ry between the ground and first excited states. Because the polarizability is so

sensitively dependent on this difference we have chosen to replace our calculated value by the more

accurate value given by Moss, A01 = 3.996750 × 10 -4 Ry. The polarizability due to this single term is

then 392.0814 ao3, and the sum over all the remaining intermediate states contributes 3.2076 aft. The

convergence of this second component (_) and the energy of the lowest p-state are displayed in

Table IT. If the ground state is excluded, there is a corresponding modified spherical polarizability

of the lowest p-state (Up) due to coupling only with s-states, not d-states. The convergence of this

quantity and the energy of the ground state is shown in Table 111. The total polarizability,

0:=395.289a03, is very much larger than might be expected from the results [1,2,][8]in

H 2 and DE.This can be traced to the fact that HD ÷ is heteronuclear, and so there is coupling

between the ground state and the very low-lying first p-state, which would not happen in the

homonuclear cases. We will discuss this situation in detail in the Appendix.

It is essential to remember that the perturbation formula is valid only if the perturbing

potential is small compared to the spacing of the unperturbed energy levels. In the homonuclear case

this condition is easy to satisfy, since the lowest p-state is not coupled to the ground state, but for

HD ÷ where there is coupling to the low-lying p-state the calculated polarizability is meaningful only

for extremely weak electric fields, much weaker than those found in Rydberg states of the t-ID

molecule. In the next section we will quantify this statement and suggest a way to compute the Stark

effect nonperturbatively.
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VI. NONPERTURBATIVE CALCULATION OF THE STARK EFFECT

To quantify the applied electric field in terms that are scaled conveniently for the present

problem, let the perturbing potential be that of a fixed point (electronic) charge at a large distance

R from the molecular ion, so that only the dipole term needs to be retained:

d

V(R) - R 2' (15)

where d is the dipole operator defined in Eq. (5), and the unit vector _ is in the direction of/_. The

matrix element connecting the ground s-state and the lowest, almost degenerate, p-state is calculated

to be M01 -(olall) = -0.395860, and we saw that the energy difference Aot between these two states

is 3.996750 x 10-4Ry, so R-2 is sufficiently small for the perturbation calculation to be valid only

when R2>)1000 or R>>32.This means that for small values of R there are effectively degenerate

states of opposite parity, coupled by the dipole operator, and hence giving rise to an energy shift that

is linear in the perturbation, rather than quadratic. (This situation occurs most famously in the 2S tr2

and 2P_r2 states of hydrogen, whose degeneracy is broken slightly by quantum electrodynamic

effects.)

A simple-way of constructing a variationally correct approximation to the energy shift of the

ground state (the Stark effect) involves only the two lowest opposite parity states. (We have already

seen that these produce almost all the asymptotic polarizability.) We write the trial function as

ColO)+c,lx), (16)

where 0 and 1 refer to the lowest s and p states, respectively. Then the variational expression for the
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total energy has the form

E(R)= (1ti2 Ho+ V(R)I_2) = Co Eo+ C2 El+ 2C0 C, Mol/R 2

G +c?
(17)

By varying on the two expansion coefficients in the usual way we obtain the eigenvalue condition

Mol
e(g)

R 2

= 0, (18)

which gives rise to a quadratic equation whose solution is

= --- -1 = 1.998375x10 -4 1+

2 [_ R2A01

]
3.924002x 106 _ 1/,

R 4

(19)

where we have defined the Stark energy shift of the ground state as e(R) =E 0 -E(R) and have

inserted the values previously used for M m and Am. In the large-R limit binomial expansion of the

square root gives the usual polarizability expression, e(R)= Mo21/(Aot R 4), while for small R we

obtain e(R)=Mm/R 2. To display quantitatively the properties of this adiabatic potential, we plot

offR) =-R4e(R) in Fig. 1. This "field-dependent polarizability" goes over to the usual weak-field

value of t_ for large R, including only the lowest p-state as discussed above.

To improve this two-state result in a variationally correct way, we now show two successive

corrections which introduce the effects of the perturbation of the two lowest-lying states. First, we
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addto thetrial functionof Eq. (16)anadditionaltermthat takesaccountof theexcitedp-states:

p"' Eo_E _ , (20)

where the new term is the perturbation of the ground state, but omitting the lowest p-state. Then we

can extend this process one more step by adding the perturbation of the lowest p-state:

[w4>=lw3)+_p,_ V(R)Is><slV(R)II>
s,O E 1 - E_

(21)

To clarify this method, we define in advance all the quantities that will be needed, some of which

have already been used and give their numerical values.

M0a =(lid[0) : -0.395860, A01 = 3.996750x10 -4, a = Z 0[dlp)(_t_d[0 ) = 3.207642,

p*l f_-f 0

_o=E (lldls>_dl 1> <01dlp>_dl0)
E_-E, , = 2.030078, _s=_ =7.913258,_.o _,_ (_-E_ 2

N,=E <lldl_)_dll> =9.136986, Q3= E (olal_)(_laff)<_lall)=_6.120350.
_,o (_-E,)_ ,,o.p,_(e;-E,)(_-eo)

(22)

In the evaluation of these sums, 560 intermediate s-states and 728 p-states were retained, with the

exception of the double sum in Q3, where only 120 s-states and 240 p-states were included.

If we insert the 3- or 4-term trial functions in place of 1_2) in Eq. (17) and vary on all the

coefficients, we will obtain a determinantal secular equation for the expectation value of the Stark

energy shift e(R). For the four-term approximation we find the following form:
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e(R)

m

O_s

R 4

0

m01 °_s

R 2 R 4

0

_O_p

e(R) + Aol 0 R----_

-_ sE(R) + --d 03
0

R 4 R 6

__._._P_P

R 4 R* R 4

= 0 (23)

(This determinant evidently includes the 2x2 and 3x3 subdeterminants appropriate for the other two

expansion lengths.) In Fig. 2 we have plotted the differences Ix3,4(R)- az(R)between the field-

dependent polarizability in each of these two expanded approximations and that of the simple 2-term

value plotted in Fig. 1. As expected from the construction of the 3- and 4-term trial functions, this

difference goes asymptotically to _s, the contribution to the polarizability of the ground state coming

from all intermediate p-states except the lowest one. For other values of R the 4-term result is greater

than the 3-term result, since they are both variationally correct.

These curves are the main results of the present work, and they give an effective, R-

dependent polarizability (or Stark shift) that is a lower bound to the true value. Strictly speaking,

since this is only a static energy shift it is not directly applicable to the experimental problem of the

Rydberg states of the HD molecule itself, and it is likely that non-adiabatic corrections and higher-

multipole contributions will be very large. (We intend to investigate such effects in the future.) But

it is still interesting to see the effect of the best potential calculated here on a set of Rydberg levels.

To do this, we simply computed the expectation value
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AENL = - f tr_NL (R) E4(R ) tr_NL (R) d 3R, (24)

using hydrogen wave functions. The results (in MHz) are shown in Table IV; they are, as expected,

quite large.
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APPENDIX

In this work we found it necessary to take account of the near-degeneracy of the two lowest

states of opposite parity, which contribute the majority of the dipole polarizability in the weak-field

regime, and are significantly involved in the Stark effect as the electric field increases. One may

reasonably ask whether higher rotational levels, also of alternating parity, may be important as well.

The first answer is that since only L=I states contribute to the perturbation of the L--O ground

state, there is no effect on the asymptotic polarizability. But as the field increases and higher-order

couplings begin to appear these higher-L states should be important. In fact, we intend to extend the

present research to these higher angular momentum states, but for the moment we describe an

approximate calculation that shows semiquantitatively that such states are not insignificant.
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Let us introducea rigid rotor model from which wecancalculateenergydifferencesand

dipolematrixelementsbetweenthelow-lying rotationalstates.A good approximation is to assume

that the electron spends about half the time in a hydrogenic state centered on each of the two nuclei.

Then the rotational energy of each state can be approximated as

AOL_ L(L+I).( 1+__I_I_#D--/'tt'/ 1996 4 x104,<,
m

where #D,_' -
MD,e(Me, o + 1)

Mt, + MD + I
-- [1224.3435,1224.0104],

(25)

and where we have used the data from Table I to evaluate the expectation value and averaged over

the two configurations. For the energy difference used previously this formula

gives A01 --3.993491 x 10-4Ry, in almost exact agreement with the accurate result of Moss that we

have used in our numerical calculations. We will continue to use this expression for the higher L

states, although we are aware that there are small centrifugal stretching corrections that should be

included.

To calculate the dipole operator in this model, we assume again that there are two terms, and

that in each one there is a neutral atom (either D or H) and an ion, separated by a distance (rl2). The

contribution from each of these configurations is given by the vector from the center of mass to the

charged particle. In this way we find the following expression for the dipole operator:

M D -lt,I
d = (rl2)cos0 = 0.684758 cos0, (26)

M o + M e + 1
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where we have used the value of (rl2)from Table I, averaged over the lowest s and p states, and 0

is the angle between the applied electric field and the internuclear axis. (Incidentally, this formula

shows explicitly why there is no dipole coupling between the low-lying rotational states for

homonuclear ions.) Then the dipole matrix element between two neighboring rotational states in this

model is

MLt.. , = ML.,L =0.684 758 f dr2 Y°(t)) cos0 Y°+,(f2) =0.342379 1 14

1
(27)

4L 2+8L+3

For the matrix element connecting the two lowest rotational states this formula gives the value

M01 = 0.395 345, in excellent agreement with our numerical result. The good agreement both of the

energy spacing and the dipole matrix element, at least for the first two levels, supports the use of this

simple model to calculate the Stark effect.

To evaluate the field-dependent polarizability of HD ÷ with this model, we extend the

variational trial function of Eq. (16) to include more rotational states. For concreteness we will

include a total of five. The secular determinant corresponding to Eq. (18) has elements of the

following general form:

M/-Ij-I

[8,,.,+8u__], l_ij_5. (28)

By setting the secular determinant to zero we obtain improved values of the energy shift and thus the

field-dependent polarizability that are almost rigorously variational. In Fig. 3 the effect of including

first the L=2 state and then the L=3 state is shown. As expected, the polarizability is noticeably
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increasedfor intermediatevaluesof R, while the asymptotic polarizability is not affected at all.

Adding one more term does not make a significant change.

We expect to find very similar, but more rigorous, results when we carry out a full variational

calculation including angular momentum terms with L>I in the trial function.
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! lowest P-state energies and expectation values of various operators for HD ÷.

Quantity

E

cusp(r,)

cusp(r2)

<8(r2)>

<r:2>

<r?)

<r:>

<r:>

It:)

<'/q>
<rt r2>

Ground State

-1.195 795 889

-0.9987104

0.207 300 621

Lowest P State

-1.195 371 602

-0.999832

0.207 350 189

19.017 155 19.132 500

8.962 068

4.268 373

2.054 808

0.492 058

0.244 844

23.678 744

8.619 449

9.004 201

4.279340

2.057 208

0.491 595

0.244437

23.761 923

8.641 534

3.536 574 3.542 320

1.688 444 1.689 706

0.843 715 0.843 272

23.646 990

8.610 227

3.533 853

23.730 014

8.632 275

3.539 591

1.687 735 1.689 027

0.844 139 0.843 697

2.794 177

0.253 063

2.586 076

2.797 744

0.252 710

2.589 379
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3.143 535 3.157 374

5.486 286 5.490 379

5.480 773 5.484 856

1.280 997 1.283 381

Qb 1.505 729 1.509 289

-5.980 024

-5.982 278

5.385 369

e--e_+e_ M_-Mo r-",-_
r-12 and z =-

2 2(Mp+Mo) r12

1 (rE +r2_3Z2) is the permanentquadrupolemoment.Q=_
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Table II. The convergence of the lowest p-state energy and cx as a function Of_p, using the

best-converged form of the ground-state wave function ( f2s =13).

5

6

7

8

9

10

11

2N a

112

168

240

330

440

572

728

E b

-1.194 238 824 84

-1.194 801 771 34

-1.195 030 443 09

-1.195 230 047 56

-1.195 322 697 52

-1.195 364 513 31

-1.195 371 601 84

_s

3.089 392 245 14

3.133 695 375 18

3.162 882 250 62

3.184 864 200 87

3.196 669 457 93

3.203 457 222 84

3.207 641 745 15

2N represents the number of terms retained in the expansion.

b E is the energy of the lowest L=I state.
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Table IIl. The convergence of c_eand the ground-state energy as functions of _ s, using the

best-converged form of the lowest p-state wave function (fJe = 11).

fls N a E b _p

7 120 -1.195 786 258 30 2.023 780 342 07

8 165 -1.195 791 941 57 2.027 828 656 13

9 220 -1.195 794 053 97 2.028 761 648 12

10 286 -1.195 794 976 73 2.029 306 062 83

11 364 -1.195 795 415 58 2.029 653 261 48

12 455 -1.195 795 633 82 2.029 917 067 13

13 560 -1.195 795 888 91 2.030 078 303 37

a N represents the number of terms retained in the expansion

bE is the energy of the lowest S state.
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Table IV. Effective potential Vut" obtained by averaging e(R) over hydrogen wave functions, and

the effective polarizability defined by "auL (IlR 4)= VuL"

N L

5 4

6 4

5

7 4

5

6

8 4

5

6

7

9 4

5

6

7

8

10 4

5

6

7

8

9

O_vL (ao3)

109.52

9.7218 90.68

6.6838 195.93

5.8369

3.9335

2.5334

3.8063

2.5484

1.6517

0.98714

2.6302

81.53

166.15

278.22

76.54

151.57

247.56

336.26

73.51

1.7572 143.24

1.1462 231.04

0.70289 313.79

0.40172

1.8974

1.2668

0.83071

0.51793

0.30517

0.17338

368.53

71.53

137.96

220.91

300.1

355.59

383.84
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FIGURE CAPTIONS

FIG. I. Field-dependentpolarizabilitya2(R)of HI)* from Eq. (19). The result includes only the two

lowest states of opposite parity. The dotted line represents the total asymptotic polarizability,

t_ = 395.289a03 .

FIG. 2. Polarizability differences Ct3(R ) - t_2(R ) (lower curve) and ct4(R) - ct2(R ) (upper curve). These

are solutions of the secular Eq. (23) and its subdeterminants. The dotted line represents the

asymptotic contribution to the polarizability, _s = 3.2076 a03 .

FIG. 3. Polarizability differences from _x2(R)due to the inclusion of higher rotational states in the

model described in the Appendix. The lower curve includes L=2, and the upper curve also includes

L=3, and they result from solving the secular determinant with elements given in Eq. (28). Inclusion

of L=4 has an insignificant effect.
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