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Introduction

Previous papers have used two important functions for the solution of fractional order

differential equations, the Mittag-Leffler function Eq [at q j (1903a, 1903b, 1905), and the

F-function Fq [a, t] of Hartley & Lorenzo (1998). These functions provided direct solution and

important understanding for the fundamental linear fractional order differential equation and for
the related initial value problem (Hartley and Lorenzo, 1999).

This paper examines related functions and their Laplace transforms. Presented for

consideration are two generalized functions, the R -function and the G -function, useful in

analysis and as a basis for computation in the fractional calculus. The R -function is unique in
that it contains all of the derivatives and integrals of the F-function. The R -function also returns

itself on qth order differ-inte_ation. An example application of the R -function is provided. A

further generalization of the R -function, called the G -function brings in the effects of repeated

and partially repeated fractional poles.

Functions for the Fractional Calculus
This section summarizes a number of functions that have been found useful in the solution

of problems of the fractional calculus and more particularly in the solution of fractional

differential equations.

Mittag-Leffler Function.
The Mittag-Leffler (1903, 1903, 1905) function is given by the following equation

t t/

Eq[t]: _r(nq+ l)'.=o
q >0. (1)

This function will often appear with the argument -at q, its Laplace transform then, is given as

{_=o(-aft"q_ sqL{Eq[-atq_=L F(nq+l)J=s(s q +a) q>0. (2)
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Agarwal's Function

The Mittag-Leffier function is generalized by Agarwal (1953) as follows

r( m +/3). (3)

This function is particularly interesting to the fractional order system theory due to its Laplace
transform, given by Agarwal as

s'_-# . (4)
L {E_'_ [t_ _= s c' -1

This function is the (a - 13)order fractional derivative of the F-function, (of Robotnov (! 969)

and Hartley (1998)), with argument a = 1, to be presented later.

Erdelyi's Function

Erdelyi (1954) has studied the following related generalization of the Mittag-Leffier function

E,_.#(t)= = r((zm+/3)' a,/3>0, (5)

where the powers of t are integer. The Laplace transform of this function is given by

e,o

L{Ea'(t)}= Z F(m + 1)Vz m+,..... I o: ,/3 >0. (6)' .,:0ka p)s

As thisfunctioncannotbe easilygeneralizeditwillnotbe consideredfurther.

Robotnov and Hartley's Function

To effect the direct solution of the fundamental linear fractional order differential equation
the following function was introduced (Hartley and Lorenzo, 1998)

,_ (- a)"_t"_q
Fq[-a,t]=tq-'_=oF(nq+q ) q >0. (7)

This function had been studied earlier by Robotnov (1969, 1980) with respect to hereditary
integrals for application to solid mechanics. The important feature of this function is the power
and simplicity of its Laplace transform, namely

{Fq[a 1} 1= , q>0. (8)
L ,t s q -a

Miller and Ross' Function

Miller and Ross (1993, pp.80 and 309-351) introduce another function as the basis of the

solution of the fractional order initial value problem. It is defined as the v th integral of the
exponential function, that is

E,(v,a)= d-v e a' =t"ea'7"(v, at)=t"_o (at)"
dt-" .= r(v+k +1)'

(9)
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where)I "(v, at)is the incomplete gamma function. The Laplace transform of equation (9)

follows directly as
-v

L{E,(v,a)}= s Re(u)> I.
s--a

Miller and Ross then show that

L{_aJ_,E,(jv_l,aq) } 1 1 1 1- , q=1,2,3 .... v=--=l, 2,s_-a q 3

which is a special case of the F-function of Robotnov and Hartley.

(1o)

(11)

The above functions are studied in considerable detail by their originators and others. The

interested reader is directed to the supplied references•

A Generalized Function

It is of significant usefulness to develop a generalized function which when fractionally
differintegrated (by any order) returns itself. Such a function would greatly ease the analysis
of fractional order differential equations. To this end the following is proposed, consider
the function

Rqv[a'c't]-£(a)I'(( (tn-c)("+i)q-l-"' ,,=o + l)q- v) (12)

Our interest in this function will normally be for the solution of fractional differential equations

for the range of t > c = 0. For t < c, R will be complex except for the cases when the exponent

((n + 1)q - 1 - v) is integer. The more compact notation

Rq.v[a,t-c]= £ (a) "(t-c)("+lk-i-vo:oF((.+N ---;5'
is also useful, particularly when c = 0.

The Laplace transform of the R -function is

: £(a) l"
• -.--_o I"((n + 1)q - v) ,,:o [r((n +l)q-v)J

Consider first the case for c = O, then we have

[ /" '_(n+l)q-i-v ]

Now from (Erdelyi et al, 1954)

L{,'}:r(v+l)s-v-' Re(v) -l,Re(+0.
Then equation 15 becomes

l
• n=0 s(n+l)q-v

(13)

(14)

(15)

(16)

Re((n + I)q-v)> 0, Re(s) > 0. (17)
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=(at Re l 0 08/
•hiscanbewrittenasag_ometricseries,hatconvertswhenla/s_r_, Itcanbeshown, by

long division, that

s 1L{Ru.,.(a,O,t)}=sq_a, Re(q-v)> 0, Re(s) > 0. (19)

Now for c _: 0the shifting theorem for the Laplace transform (Wylie p. 281) is

L{f(t-b)uO-b)}=e-°'L{fO)} b>O, (20)

where the unit step function u(t - b) effectively causes f(t - b) = 0 for t < b. Under the

assumption that Rq.,.[a,c,t]= 0 for t < c, this theorem and the result (equation 19) are applied

to yield
i

e-CSs" ] c >O, Re((n+l)q-v)>O, Res >O. (21)L{Rq,,.(a,c,t)}= s q -a
I

Table 1, in a later section, presents a summary of the defining series and respective Laplace
transforms for the functions discussed in this paper.

Properties of the Rq, v(a,c,t) Function

The general time domain character of the R -function is shown in figures 1, 2, and 3. Figure 1

shows the effect of variations in q with v = 0and a = +1. The exponential character of the

function is readily observed (see, q = 1 ). Figure 2 shows the effect of v on the behavior of the

R -function. The effect of the characteristic time a is shown in figure 3. The characteristic time is

1/ a q . For q = 1, 1/ a is the time constant, when q = 2 we have the natural frequency, when q

takes on other values we have the generalized characteristic time (or generalized time constant).

10

ef
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Figure la. Effect ofq on R_.o(1,0,t ),
v=0.0, a =1.0
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v = 0.0, a = -1.0 "
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Eigen-propertv

The R -function also has the eigenfunction character under qth order differintegration with

v = 0. This is seen as follows. Consider

,d, (t-cj (22)

Now, Oldham and Spanier (1974 p.67) prove the following useful form

.d; [x- a]' = r(p + l)[x-a]'-"
r(p-v+l) p>-l. (23)

Applying this equation we have

dqRq,o(a,c,t)= _ (al"O-c)"q-' (24)
c .=o F(nq) q > 0.

Now let n = m + 1, then,

(a)°2(,-c)
r((m+0q)

q > 0 (25)

or

cdqRq.o(a,c,t)= (a)Rq,o(a,c,t)+ a lim (a)'(t-c)('+l)q-I
.,-_-, F((m + 1)q) q>0.

The right most term in equation (26) is zero for t _ c, thus, for t > c the final result is

cdqRq.o(a,c,t)=aRq,o(a,c,t) t>c, q >0.

Thus, for a = I the function is seen to return itself under qth order differentiation.

Differintegration of the R-Function
It is of interest to determine the differintegal of the R -function, that is

=_2_a) ca, if-c) _
[a,c,t]:::¢d:_ (a)n(t--c_n+l)q-l-v [ ,n .u'. X(rl+l)q -|-v

,.d,_'Rq.,. .=0 F((n+l)q-v) _ F((n+l)q-v) "

Oldham and Spanier (1974 p.67) prove the following useful form (equation (23) repeated)

od;,[x_a]p = F(p+I)[x- a]p-"
F(p-v+l) p>-l,

which is applied to equation (28) to yield

** (a)n(t_C)(,+l)q-I-(,'+u)

_d" Rq'v [a ' c' t ] : _".=oF---_+_-_-_-+_)) q - v > O.

Thus we have the useful result

"R [a,c,t]= Rq,b.+.)[a,c,t ] >cdt q,v q v.

That is, u order differinte_ation of the R -function returns another R -function.

(26)

(27)

(28)

(29)

(30)

(31)
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Relationship Between Rq,mq and Rq.o

From the definition of R we can write

= (a).(t_c)f.+l)q -,
Rqmq(a,c,t)=_(a_i(_-c)(n't)q-l-"_ = (t - c)-'q E . (32)• .=0 + 1)q-mq) .=0 F((n- m + 1)q)

Letting n- m = r, yields

-'q (a)r+'6-c)('+'÷Oq-'
..... r((r + I)q) ' (33)

or

Rqmq(a'c't)=(a)'_ (a);((t( ;c)(r÷')q-'",=o + 1)q) +(a)m .....£ (a)'(t-c)(_+')q-'F((r+ 1)q) (34)

Recognizing the first summation on the right hand side as Rq.o(a,c,t)_ gives the final result as;

Rqmq(a'c't)=(a)'Rq°(a'c't)+(a)'"" r_.... (a);((t(; c)(_*')q-'+l)q) (35)

It is noted, that when (r + l)q < 0 and integer the elements of the summation term vanish.

Fractional Impulse Function

Consider the function Rq.o(O,O,t ), then we can write,

Rq,o(O,O,t)= limR 0 (a,0,t)= lim'_" (aft (n+l)q-1

a--._O q' _--,o _ F((n + 1)q)"

In the limit the terms n > O, of the summation vanish, thus

(36)

a)° t q-t _ t q-I

gq'°(a'O't)= _i_mo F(q) I'(q)"

From equation (19) the associated Laplace transform pair is given by;

1 Re(q)> 0, Re(s)> 0.
L{Rq.o(O'O't)}= sq

(37)

(38)

Relationship of the R-function to the Elementary Functions

Many of the elementary functions are special cases of the R -function. Some of these are
illustrated here.

Exponential Function

Consider RLo(a,O,t ), by definition, we have

(a)°r (a,)o
Rt'°(a'O't):_,=oF(n+l)=_=o n!

thus

t Rl'°(a'O't)=e_'" I

(39)

(40)
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Sine Function

Consider aR2. o(-a'_,0, t), by definition, we have

thus

.=o (2n+l)! =a t---+3! -_. - .....

aR2.o(-a_,O,t):sin(at).

(41)

(42)

Cosine Function

The cosine function relates to R2.1(- a'-,0,t) again by definition

R2_(_aZ,O,t)= £ (-aZ_t ("*0_'-1-1
' .=o F((n + 1)2 - 1) n{ 2a4 4)=_,(-a'_t" a2t

,=z_0 (2n)! -1-_-t2! 4! .....

thus

I R2.1(-a2,0,t)=cos(at).

H.yperbolic Sine and Cosine

Consider aR2.o (a 2,0,t l, by definition, we have

aR, o(a2,0,t)=a£(a2_t("*')z-'=a£(aZ_t2"+' f-" .=o I-'((n + 1)2) .=o (-2n7_) -I = at a 3t3 aSt 5 }+--+--+ ....
3! 5!

thus,

In similar manner

aR2.o(a2,0,t)=sinh(at).

R2.1(a2,0,t)=cosh(at).

R-Function Identities

Trigonometric Based Identities

A number of identities involving the R -function may be readily shown based on the
elementary functions. The exponential function, equation (40)

may be expressed as

Then from equation (42)

R,.o(a,O,x)=e _,

eiX= R,o(i,O,x )

sin(ax)=aR2.o(-a",O,x )

and expressing the sine function in complex exponential terms gives

sin(x)=l(eiX-e-iX).

(43)

(44)

(45)

(46)

(47)

(4s)

(49)

(50)

(51)

NASA/TP-- 1999-209424 9



Combiningequations(49),(50)and(51)thenyieldstheidentity

R:.0 (- 1,0,x) = _(R,.o(i,O,x)-R,.o(-i,O,x))

In similar manner using the cosine function, equation (44)

I f ix +e-iX_cos(x)= R2,1(-1,O,x)= -_l,e (53)

from which

The hyperbolic functions may also be used as a basis, using sinh function, yields

[ R,.o(1,O,x)= _(R_.o(1,O,x)- R,.o(- l,O,x)_ (55)

The cosh function gives

l (R,.o(1,O,x)+ R,.o(-1,O,x)) ] (561I R2., (1,0,x)= "_

Many other identities may be found based on the known trigonometric identities, a few examples
follow, from

sin'- (x)+ cos2 (x) = 1, (57)

we have

R,'-o - 1,0, x)+R__, (-1,0, x)= 1. (58)

From the identity

sin(2x) = 2sin(x)cos(x), (59)

derives [ R2.o(-1,O,2x)=2R2.o(-1,O,x)R,,(-1,O,x). ] (60)

From the trigonometric identity

sin(3x) = 3 sin(x)- 4 sin _(x), (61)

we determine the identity

[ R2,o(-1,O,3x)=3R2,o(-1,O,x)-4R_.o(-1,O,x). (62)

Further Identities

Other identities may be derived as follows. Let v = q- p, then the Laplace transform of the

R -function may be written as

" " s q-p 1 (63)
L_Rq,q-p(-a,O,t)_=_-sp_q(sq+a ).

(52)
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Thismayberearrangedtogive

)_ +-- .SP-q(s q +a S q +a

Inverse transforming gives the identity

(64)

Rq.q_p (- a,O,t )=Re.o (0,0, t)- aR_p(- a,O,t ). (65)

Another set of identities follows by factoring the denominator of Laplace transform, thus

s" [(s lv a '/' )J. (66)Ro.v(a,O,t)¢=_ -- -s" _all2](sql2S q -a q/2 +

Now a partial fraction expansion of the denominator gives

= _v 2a '/z 2a '/: 2--_s 2a"---T (67)
s |sq¢, 01/_ sq/2 +01/2 =: sq/2 _O1/2 sql2 +01/2 •

Taking the inverse transform, yields

Rqv(a,O,t) = 1 f,, [ 1120 t _ R [ a_/",0,t)}., 2--j_=._ka , , )- _,.._- (68)

Very many more such identities are possible, indeed because of the generality of the R -function,
powerful meta-identities may be possible.

Relationship of the R-Function to Other Functions

The generality of the R -function allows it to be related to many other functions. In this
section it will be related to the important functions discussed in the introductory section of the

paper. The Laplace transform facilitates determination of the desired relationships. The double
arrow will be used to indicate the transform pairs, thus for the R -function;

sV Re(q-v)> 0 (69)
Rq.,,(a,c,t)CZ_sq_a

Mitta,_-Leffler' s Function
The Mittag-Leffier function and its transform relate to the L-function as;

S q-I

--¢=_ Rq.q_,(-a,O,t)

The time domain relationship is

,ra,O,t_-EoLat_l=@_,-J- I.- I Z_, (-a)" t "q
Rqq - °=oF(nq + 1)"

Also, because cd,_ Rq,_,[- a, c,t ] = Rq.(,..,_)[- a, c,t ] it folio w s that

q-I R,.o(-a.c.,)= ]

(7o)

(71)

(72)
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Ar_arwal' s Function

The Argarwal function and its transform relate to the R -function as follows;

Eqp[tq]¢=_ sq-P _ Rqq ,(1,0,t).
• --s q -1 " -

The time domain relationship is

tnq-l+P

Rq'q-p(l'O't):Eq'p[tq]= ,=0£r(nq + p)"

(73)

(74)

Erdelvi's Function

The relationship between the Erdelyi function and the R -function is given by

tnq

Rq'q-_(l'O't)=ti-_Eq't_[tq]=ti-_£r(nq.=o +/3)"
(75)

Robotnov and Hartleg Function
The F-function and its transform relate to the R -function as follows;

1
¢=_ Rq.o(-a,O,t ).Fq [-a,,] ¢::¢,sq +a

The time series common to these functions is given as;

Rq.o(_a,O,t)=Fq[_a,t]=£(-a) "t("+l)q-1
._-or((n+l)q)"

(76)

(77)

Miller and Ross's Function

The Miller and Ross function and its transform relate to the R -function as follows

-v
SE,(,,,a)<=>-- R,....(a,O,,).

s--a

The time series common to these functions is given as;

R, ,(a,O,t)=E,(v,a)=V (a)"t"*"
.- ,_ZCgoF(n + v + i)"

(78)

(79)

Example - The Dynamic Thermocouple
This problem was introduced originally in Lorenzo and Hartley 1998, and frequency domain

solutions are presented there. Here, it is desired to determine the time domain dynamic response
of the thermocouple, figure 4, which is designed

to achieve rapid response. The thermocouple
consists of two dissimilar metals with a common

junction point. To achieve a high level of
dynamic response, the mass of the junction and
the diameter of the wire are minimized. Because

the wires are long and insulated they will be

treated as semi-infinite (heat) conductors. This

analysis will determine the time response of the

junction temperature T_(s) in response to the

• OO)

Figure 4. I_'na__c Themozouple
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freestreamgastemperatureTs (s). For the semi-infinite conductors the conducted heat rate

Q(t) is given by

k j 11, _o,(,)= _cD, -:r,, (80)
#,

where k is the thermal conductivity and O_ is the thermal diffusivity. For the transfer function

the effects of initialization are not required, therefore, all _t(t)'s are zero. Thus the following

equations describe the time domain behavior:

Q,(tl= hA(Tg (tl-To O)) (81)

7-o(_)= l ovt'(o_(,)-o,O)-o:O)l (82)
WC v

"" kl I/, kt : I:"
05 (t)= _ oD, "Vo (t)= _10 d, "Vo(t)+ gq (Vo ,Z, a,0, t))and (83)

4< 4<

02 (t)= _-2 oD::2T ° (t)=__2 (od ,k,l:,.To (t)+lv2(To,Z,a,O,t)) (84)

where h A is the product of the convection heat transfer coefficient and the surface area and

wc v is the product of the junction mass and the specific heat of the material. Taking the Laplace

transform of these equations yields

Qi(s)= hA(Tg (s)- Tb (s)) (85)

To(s)= w-_[l[Qi(s)-Q,(s)-Qz(s)]+v/3(s)] (86)

kl (s'/2To(sl+llt,(s)) (87)

k, : t/, . .o:(s)=---_ts -rots)+w(s)) (88)
,/_2

Eliminating the Q's, and solving for To(s) yields

T°(s)= s+bs"'-__'+c hAr_,(s)- g,(s)--_/2(s)+sg3(s), (89)

1 J k, k_2 } hA
- -- -- + _ , and c = --. Factoring the leading denominator and

where b - wq. [ _ wc,.
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expandinginpartialfractionsgives

Tb(s)=--_c s,,2+fl +s,,2+fl2 --_gq(s)--_2gtz(s)+sgt3(s ) , (90)

½,/p b 247where fl_ = b + - 4c and f12 = _- - 4c. Then with appropriate choices for the

functions of s in the right most bracket this equation may be inverse transformed to yield the time
domain response. To demonstrate the value of the R -function, we select (determine)

gt3 (s)= Tb (O)/ s, Further assume _ (t)= 2Tb (O)+ t _ T_ (s)- 2 Tb(O) +4,and
S S"

gq (s)= gt2(s ) are arbitrary functions of time. The solution may be written directly as:

rb(,)= ha [Zr_(0)R,,2_,(-t_,,0,t)+R,,,,(-_,,0,0
wc,CS:-_,) -'--
- 2Tb(0)Rm,.t(- flz,O,t)-R,e..2(-fl2,0,t) ]-

wc,(_-_,) + ,12,o(-_,,o,,-_)-R,,:,o(-_:,o,t-_)}_(_)d_+

1

wcv(_:-_)rb (0){R_,,o(- _,,0,0- R,,_,o(-_2,0,0} (91)

Further Generalized Functions

Functions yet more general than the R -function may be developed. One such function will

be derived here. It is simpler here to work backward from the s-domain to the time domain. Thus,
we consider the following function

C(,)= s_
(s q _a)_ (92)

where v, q, and r are not constrained to be integers. Then this may be written as

Now the parenthetical expression may be expanded using the binomial theorem to give

G(s)=s___,# F(l-r) -a'
i__oF(1 + j)F(I_j_F)I--_- ) , s_--I < 1, (94)

or

F(I- r)G(s)= -F(l+j)F(17-j_r)(-ays_-q'-q'. (95)
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Thisexpressionmaybetermbyterminversetransformedyielding

aI<F(l_r)(_a)/ g(r+j)q-v-I Re(qr-v)>O, Re(s)>O,-fi- 1. (96)g"
Gq,v,r[a,t] =

_F(1-_ _F-O--j-L--r)F(--_ y)q- v )'

Thus we have the following transform pair

sV , Re(qr-v)>0, Re(s)>0, _ 0. (97)
t{Gq,v,r[a't]}= (sq a_

The form of equation (96) presents evaluation difficulties, since when r is an integer

F(1 - r) and F(1 - j - r) can become infinite. Equation (96) maybe rewritten as follows: from

Spanier and Oldham (p.414, eq.43:5:5)

F(x) (- 1)"F(x) = 0,1,2,.-. (98)
F(x-n)=(x_lXx_Z)...(x_n )- O_x)" n

where (1- x), is the Pochhammer polynomial. From this result with x = 1- r, we can write

F(1- r) (- 1)iF(l- r)

F(l-j-r)=(-rX-l-r)...(l-r-j)=_ (r)j j=l,2,..- (99)

Substituting this result in equation (96), yields the following more computable results

[ aqv" r [a't]= _i=0 {(-rX-1-r)"'(1-F(l+J)F((r+j)q-v)J--r)](-a)] t('+J)q-v-_ I (100)

or in terms of the Pochhammer polynomial

(a)J ]a<
Gqv,[a,t]= f_FO+j)F((r+j)q_v),Re(qr-v)>O, Re(s)>O, 1. (101)

• " j=0 sq

In similar manner relationships of increasing generality may be determined. Podlubny (1999)

presents a form that is a special case of the G -function where r is constrained to be an integer. It
is also clear that taking r = 1 specializes the G -function into the R -function. It is the authors'

judgment that the F- and R -functions will prove to be the most useful in practical applications.
Table 1 summarizes the advanced functions studied in this paper along with their defining series

and Laplace Transforms.
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Table 1 Summary of Definin_

Function Time Expression

Mittag-Leffler

Agarwal

Erdelyi

Robotnov / Hartley

Miller-Ross

Current Paper

Current Paper

q " antnq]=E..7=,
,,=0l[,n q + 1)

rn

an t(n*l)q-I

Fq[a' t]: _ _(_+ 1_)

-- aklk+v

Et(v,a)=Z_,a---'_ r. .,
k-oH,v + k + 1)

• . £ a"t ('_t)r'l-vr(6+1)q_0

. . _ (r)i(-a)it ((_i)e-'-O

G¢""('a' ')=/_ (- l)-'_ + j)l"((r-_ ])q-----v)

Series and Laplace

Laplace Transfom

S q

4q-a)

1

S q --a

S -v

$-a

s v

s q -- a

v
$

S q -- a) r

Remarks

(q - I) differintegral of

a,/_ >0

eigenfunction

eigenfunction & differinte_al

eigenfunction & differintegrals

repeated & partially rep.

Summary

This paper has presented a new function for use in the fractional calculus, it is called the

R -function. The R -function is unique in that it contains all of the derivatives and integrals of

the F-function. The R -function has the eigen-property, that is it returns itself on qth order differ-

inte_ation. Special cases of the R -function also include the exponential function, the sine,

cosine, hyperbolic sine and hyperbolic cosine functions. Further, the R -function contains, as

special cases; the Mittag-Leffler function, Agarwal's function, Erdelyi's function, Hartley's

F-function, and Miller and Ross's function. Numerous identities are possible with the
R -function some of these have been shown in the text.

The value of the R -function is clearly demonstrated in the dynamic thermocouple problem

where it enables the analyst to directly inverse transform the Laplace domain solution,

(operational (s) form) to obtain the time domain solution.

A further generalization of the R -function, called the G -function brings in the effects of

repeated and partially repeated fractional poles. This generalization carries increased time

domain complexity.

A R -function based trigonometry is also possible. It is a generalization of the conventional

trigonometry, and will be the subject of a future paper.
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