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1. Introduction

The FIRE program has the goal of improving our capabilities to understand,
model and detect the properties of climatically-important clouds. This is being
undertaken through a three-pronged effort of modeling, long-term observations and short-
term intensive field studies. Through examination of satellite and other data it is apparent
that stratus and cirrus cloud types have the greatest impact on climate due to their
radiative effects and ubiquitous nature. As a result, the FIRE program has developed two
paths of investigation, each having its own subset of research objectives and
measurement programs. The work conducted under this grant was directed toward
furthering our understanding of cirrus cloud systems.

While it 1s known that cirrus are climatically important, the magnitude and even
sign of the impact is unclear. Cirrus clouds affect the transfer of radiation according to
their physical depth and location in the atmosphere and their microphysical composition
(Liou, 1986). However, significant uncertainties still exist in how cirrus clouds form and
how they are maintained, what their physical properties are and how they can be
parameterized in numerical models. Better remote sensing techniques for monitoring
cirrus cloud systems and improved modeling of radiative transfer through ice particles are
also needed. A critical element in resolving these issues is a better understanding of
cirrus cloud microphysical properties and how they vary.

Important microphysical parameters include ice water content and integrated ice
water path, particle size distribution and crystal habit; the significance of these
parameters has been shown in a number of applications. For example, Starr and Cox
(1985) found notable interactions between cloud processes and microphysical properties
in their modeling studies. They concluded that the bulk physical properties of cirrus are
affected by crystal habit and size distribution, and that cirrus cannot be represented by
analogy to warmer stratiform clouds. Stackhouse and Stephens (1994) illustrated how
biases in particle size parameterizations can lead to biases in model results and
interpretations. Model results of Mitchell and Amott (1994) showed a strong dependence
of cirrus cloud radiative properties on particle habit. Significant differences resulted
from the use of non-spherical particles versus equivalent spheres. Another critical area is
the retrieval of cloud properties from remote measurements which requires some
assumptions concerning the composition of the clouds. For example, Intrieri, et al,
(1993), have developed a method for determining cirrus cloud particle sizes using lidar
and radar measurements based on a modified gamma distribution of particle sizes. Other
retrievals such as those using satellite data are also dependent on similar assumptions
(e.g., Ackerman, et al, 1993).

Our understanding of cirrus cloud microphysical characteristics has lagged to a
large extent because of the relative inaccessibility of these upper-tropospheric cloud
systems and a lack of adequate instrumentation for their measurement. Prior to 1991,
only a limited number of in situ measurement programs had been conducted, and these
included a variety of cirrus types and geographical locations. Perhaps not surprisingly,
analyses of these data sets have found a high degree of variability in particle sizes and



concentrations (for reviews, see Liou, 1986, and Dowling and Radke, 1990). While there
have been some parameterizations derived for modeling use (Heymsfield and Platt, 1984,
Stephens, et al, 1990), there remains a significant amount of uncertainty as to the source
and nature of this variability. This is particularly true at the small end of the size
spectrum because most of the particle probes used in the past could not detect particles
smaller than approximately 50 pm. There is evidence which suggests that there are
enough ice particles in cirrus at sizes smaller than this to have a significant radiative
impact (e.g., Platt, et al, 1989). The shape of the particle spectrum in this range is also
needed for accurate retrievals of cirrus properties from remote sensors. Fortunately, the
microphysical data collected in situ during the FIRE Cirrus IFO II included
measurements of small ice particles. Analysis of these data was conducted to help reduce
the uncertainties in cirrus microphysical properties.

The focus of the research to be conducted under this grant was the data collected in
situ by the University of North Dakota Citation aircraft. The goals of this research were
to:

¢ add to the body of knowledge of cirrus cloud microphysics, particularly at the small
end of the size spectrum; and
e«analyze the spatial variation of cirrus clouds.

2. Microphysical Data

The FIRE Cirrus [FO II was conducted over southeastern Kansas in late fall of
1991, to sample clouds of a more sub-tropical origin and to expand upon the knowledge
gained from the first [FO. Sampling was conducted simultaneously by active and passive
remote sensors and by in situ aircraft and sonde-born instruments. The mission of the
UND Citation aircraft was to collect cloud microphysical and supporting data. A
compliment of cloud particle sizing probes included a continuous formvar replicator and
four standard Particle Measuring Systems (PMS) instruments:

FSSP Cloud water droplets 3 - 47 um
ID-C Cloud particles 20 - 600 um
2D-C Cloud particles 33-1056 um
1D-P Large particles 0.3 -4.5 mm.

The replicator, supplied by the University of Nevada Desert Research Institute (DRI), is
capable of capturing particles as small as approximately 7 um. The FSSP is a light
scattering instrument and its response to ice particles is uncertain (but it still may be
possible to use its data to derive small particle information under some conditions). The
other three are optical array probes. Liquid and supercooled water contents were
measured with a Johnson-Williams probe and Rosemount ice detector, respectively.
Other measured parameters included the state parameters (temperature, pressure and dew
point), three-dimensional wind flow and turbulence, condensation nuclei (CN), ozone and
NOy concentrations, and aircraft dynamics.
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A variety of mid and upper-tropospheric cirriform clouds were sampled during
the IFO. A thorough overview of the conditions encountered is given in a technical
report by Poellot and Henderson (1994); the highlights may be summarized as follows.
Ten missions were flown for a total of 35 flight hours at cloud altitudes ranging from
approximately 6.6 to 12.2 km with in-cloud temperatures of - 23 °C to -64 °C. The
typical flight profile consisted of step climbs and descents on an along-wind track;
several spiral descents were also performed. Cirrus conditions sampled included layers
which were optically thin, optically thick, "patchy”, multi-layered, deepening or
dissipating. Supercooled water was encountered on two flights. Many of the clouds
appeared to contain an abundance of small (<100 um diameter) ice particles.

A recent analysis of a portions of these data compared the performance of the 2D-
C optical array probe, which is the type most often used in previous measurement
programs, and the formvar replicator (Arnott, et al, 1994). The comparison of 2D-C and
replicator data revealed that for this sample cloud there were some tens to hundreds of
small particles which went undetected by the 2D-C. Calculations showed that these
particles could significantly contribute to and even dominate the solar extinction and
infrared emission of cirrus. Therefore, the replicator data were used in the analyses to
extend our knowledge of cirrus microphysics to the smaller sizes.

3. Approach
3.1 Microphysical Characterization of Cirrus

Ice water content, particle size distribution and habit are microphysical
parameters important to the proper modeling and monitoring of cirrus clouds and their
radiative effects. The method of analysis followed that of Heymsfield and Platt (1984;
hereafter referred to as HP), where pass average values of particle concentrations by size
were calculated. Data from the DRI replicator were used to count and size particles with
diameters up to 150 pm and the 2D-C for larger ones. Crystal habits were determined
from the replicator data for particles smaller than 300 pm and from the 2D-C data for
larger ones through the use of an automatic classification scheme (Heymsfield and
Parrish 1979). (Particles larger than about 300 pm tend to fragment when impacting the
replicator film surface.) Ice water contents (IWC) were calculated using the pass-
averaged concentrations and crystal habits using relationships cited in Heymsfield (1977)
and Mitchell (1994).

Following HP, the size distributions were parameterized for each 5 °C
temperature range analyzed, and the pass average IWC used to normalize the spectra.
Values obtained for the clouds sampled in this study were compared with those derived
by HP. Some differences were expected due to the cloud types sampled and the
instrumentation used to collect the data. The data set used by HP was taken from
primarily deep, uniform cirrus generally associated with synoptic depressions, while the
FIRE samples were mostly thin, banded features associated with jet stream circulations or



baroclinic ascent. Also in contrast with the present study, the small particle size spectra
(down to 20 um) were derived by HP from 1D probe data.

In addition to the stratification by temperature, an effort was made to determine
relationships between the microphysical and macrophysical cloud properties such as
cloud depth, distance from cloud boundary, and large-scale forcing. A review of
complimentary aircraft, lidar and radar data was performed to determine the study
clouds’ top and base heights and the relative position of each Citation sample leg within
cloud. Supporting synoptic descriptions and satellite data were also reviewed to
determine the large scale forcing of the sampled cirrus cloud systems.

Analysis of the replicator data for this study was accomplished under subcontract
with DRI. The tedious job of counting and sizing particle replica has been somewhat
streamlined by the acquisition of equipment and development of software to make the
process semi-automatic (Amott and Hallett, 1994). Even so, it is still a time-consuming
procedure and on the order of a half million frames of replicator film were exposed
during the FIRE IFO alone. Therefore, it was not within the scope of this proposal to
analyze all of the replicator data; rather, portions of the film from a representative portion
of each data leg were processed.

3.2 Analysis of the Spatial Variation of Cirrus Clouds.

The variation of the microphysical characteristics of the cirrus clouds over
distances of a few meters to tens of kilometers is important when trying to interpret data
with relatively coarse resolution, such as radiometric measurements of cloud
characteristics. The manner in which the cirrus microphysical characteristics vary would
be expected to be closely related to the dynamics of the generating mechanism. Sassen et
al. (1989) have shown by a spectral analysis of aircraft-derived vertical velocities that
there is an apparent convective structure present in cirrus with a horizontal scale of
approximately 1-2 km. Therefore, an analysis of the vertical velocities derived from the
UND Citation data for the legs flown in the FIRE cirrus was accomplished. The purpose
of this analysis was to see if the type of convective structures reported by Sassen et al. are
apparent in this larger data base. In addition, similar analyses were performed on several
of the cirrus microphysical parameters. The parameters included ice crystal
concentration, crystal size, and ice water content. The output of this work was a
description of the variation of these parameters as a function of scale, to see if the
apparent fluctuations in vertical velocity at the 1 km scale are indicative of fluctuations in
cloud microphysical characteristics of the same scale.

In a similar vein, if there are sustained convective structures responsible for the
peaks in the spectral density described earlier (rather than random fluctuations on that
scale) there would be a reasonable likelihood of finding a significant positive eddy flux of
ice crystals (or of ice water content) that is independent of the larger scale (i.e., >100 km)
vertical motions. This would be expected since a sustained downdraft would contain



crystals that are sublimating while the updraft would contain crystals that are growing.
Non-sustained vertical motions, lasting for relatively short time periods would result in
very little vertical displacement and any effects would not be likely to be seen in the
microphysics data. Therefore, the eddy flux computations should be near zero. The
presence or absence of sustained convective elements within the cirrus would be of major
importance in understanding the microphysical characteristics of these clouds

4. Results
4.1 Cloud Microphysics

The detailed results of the cirrus cloud microphysics are given in Poellot, et al.,
1998. The following is a summary of these results.

This analysis of the cloud microphysical data collected during FIRE II by the
UND Citation found that there are a number of factors which influence cirrus cloud
microphysics and which must be taken into account for parameterization of these cloud
systems. These include but are not necessarily limited to temperature, synoptic forcing,
position in cloud and cloud ice water content. The key results are summarized as
follows: 1) A dependence of particle size spectra shape on temperature was found which
differed from that previously reported for deeper, frontal overrunning cirrus. 2) There
was no marked dependence of crystal habit on temperature other than columns were most
prevalent in clouds colder than — 50°C. 3) When synoptic forcing was considered,
clouds generated by closed low systems and the sub-tropical jet (southwesterly flow
cases) contained many more particles at all sizes than those produced by short wave and
baroclinic lift (northwesterly flow cases). 4) A position-in-cloud stratification supported
earlier studies with evidence that ice particles are nucleated in the upper portion of the
cirrus cloud, grow by diffusion and aggregation as they fall, and finally evaporate as they
reach cloud base. 5) A look at the variation of spectral form with ice water content
(IWC, a common model-predicted variable) found that as IWC increased, an increase in
particle number concentration was accompanied by a broadening of the distribution to
larger sizes. 6) Analysis of the replicator data suggests that the small particle end of the
size spectrum may be best represented by a modified Gamma distribution.

4.2 Spectral Analysis

The spectral analysis performed on each of the components of the wind velocity
showed that, with few exceptions, the shape of the spectra was similar and the turbulence
intensities were comparable. The slopes of the power spectra for each of the wind

: 5 .
velocity components were close to 3 for the high wavenumber end of the spectrum. The

vertical velocity spectra were run on most of the days. Some examples of the vertical
component spectra are shown in figures 1-3. These spectra are unfiltered, so there are no
known biases for any particular portion of the spectrum. On many of the time blocs



investigated, the spectra showed a significant change in the slope for wavenumbers
corresponding to wavelengths of between 1 and 2 km (wavenumbers of between .003 and
.006 m™). Generally, the slope became closer to zero at the very low wavenumbers. This
would indicate that there was an input of energy at the 1-2 km scale.

The spectral analyses on the microphysics data showed little consistent difference
from one parameter to another in terms of the shapes of the curves. That is, the power
spectra for the 2D-C concentrations were not markedly different from the spectra of the
1D-C concentrations. Some typical spectral density curves for the 1D-C probe are shown
in figures 4-6. These are for data taken in the same time periods as was done for the
vertical velocity spectra in figures 1-3. In general, the spectra of the hydrometeor
concentrations tended to be fairly flat (i.e., near zero slope) at the high wavenumber end
of the spectrum. This “whiteness” of the spectrum implies that there are no preferences
for vanations in the microphysical data for one size scale to another. There was
substantial variability at the low wavenumber end of the spectrum and some variability in
the point where the slope of the spectra began to deviate from zero. There was also
significant day to day differences in the magnitude of the variations as indicated by the
spectral magnitudes.
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Appendix: Particle Size Spectra

This appendix contains a series of graphs showing detailed particle size spectra
and distribution parameters derived from the Citation microphysical data. The data
consisted of aircraft pass-averaged spectra, which were divided into temperature
categories and location in cloud categories. The temperature categories were intervals of
5 C, the location categories were either bottom, bottom-middle, middle, top-middle, or
top. These data are summarized in the attached figures.

In the case of the 1DC and 2DC data set, exponential distributions were fit to the
data in a manner similar to that used by Heymsfield and Platt (1984). The parameters
they discussed are compared with the data collected here and summarized in the attached
figures and table.

The empirical corrections made to the 1 DC data were then removed and a gamma
distribution was fit to this uncorrected 1DC and 2DC data. These can be found in the
attached figures for both temperature and location in cloud categories. The figures titled
“1DC Gamma Distribution Parameters vs. Temperature” and “1DC Gamma Distribution
Parameters vs. Location in Cloud” give a graphical representation of the parameters
obtained from the best-fit gamma distribution. The parameter labeled Gamma is
representative of the ‘average’ concentration in the distribution and the parameter labeled
Peak is representative of the size at which the maximum concentration in the distribution
occurred. Similar figures are given for gamma distributions fit to the replicator and 2DC
data.

Replicator ice particle habits: the ice particle habit data from the replicator was
also obtained and partially analyzed. Two figures are included from this limited analysis.
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Particle Size Distributions

by Temperature and Location in Cloud
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Gamma Distribution Fit to Size Spectra - 1DC and 2DC

by Temperature
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