
LOW DENSITY PARITY CllECK CODES

BASED ON FINITE GEOMETRIES:

A REDISCOVERY AND MORE

Yu Kou, Shu Lin
and

Marc Fossorier

October 20, 1999

Low Density Parity Check Codes Based
on Finite Geometries: A Rediscovery and More*

Yu Kou, Shu Lin and Marc Fossorier

Department of Electrical Engineering

University of Hawaii at Marion

Honolulu, HI 96822

Email: ykou, slin, marc@spectra.eng.hawaii.edu

Submitted to IEEE Transactions on Information Theory

October 12, 1999

Abstract

Low density parity check (LDPC) codes with iterative decoding based on belief prop-

agation achieve astonishing error performance close to Shannon limit. No algebraic or

geometric method for constructing these codes has been reported and they are largely gen-

erated by computer search. As a result, encoding of long LDPC codes is in general very

complex. This paper presents two classes of high rate LDPC codes whose constructions are

based on finite Euclidean and projective geometries, respectively. These classes of codes

are cyclic and have good constraint parameters and minimum distances. Cyclic struc-

ture allowsthe use of linearfeedback shiftregistersforencoding. These finitegeometry

LDPC codesachieveverygood errorperformancewitheithersoR-decisioniterativedecod-

ing based on beliefpropagationor Gallager'shard-decisionbitflippingalgorithm. These

codes can be punctured or extended to obtainothergood LDPC codes.A generalization

ofthesecodes isalsopresented.

Key Words: Low density parity check codes, Euclidean geometry, projec-

tive geometry, puncturing, column splitting,iterativedecoding, bit flipping

decoding.

"Thisresearchwassupportedby NSF underGrants NCR 94-15374,CCR 97-32959,CCR 98-14054and NASA

under Grant NAG 5-8414.

1. Introduction

LDPC codes were first discovered by Gallager [1,2] in early sixties and have recently been redis-

covered and generalized [3-11]. These codes with iterative decoding based on belief propagation

achieve astonishing error performance close to Shannon limit [4,7,8]. A LDPC code is defined

by a parity check matrix H with the following structural properties: (1) each row consists of

p _ones"; (2) each column consists of "r "ones"; (3) the number of "ones" in common between

any two columns, denoted ,_ , is no greater than 1; and (4) both p and 7 are small compared

to the length of the code. The code is simply the null space of H. Since p and 7 are small,

H has a small density of "ones". For this reason, the code specified by H is called a LDPC

code. Although LDPC codes have been shown to achieve outstanding error performance, no

analytic (algebraic or geometric) method has been found for constructing these codes. Codes

that have been found are largely computer generated, especially long codes. Encoding of these

long computer generated codes is very complex.

In this paper, we present two classes of high rate LDPC codes whose constructions are based

on two-dimensional finite Euclidean and projective geometries, respectively. The parity check

matrix H is a square matrix whose columns correspond to the points of a geometry. Each row

of the matrix is the incidence vector of a line in the geometry. The number of "ones" in each

row is equal to the number of points on a line. The number of "ones" in each column of H

is equal to the number of lines that intersect at the point corresponding to the location of the

column. Any two columns have exact one _1" in common, i.e., _ =1. This ensures that there

is no cycle of length 4 in the graph (called Tanner graph [3]) that represents the code. This

last-structural property is very important for a LDPC to achieve good error performance with

interative decoding based on belief propagation.

These two class of codes are small but infinite. Long LDPC codes can be constructed

algebraically and easily. Codes in these two classes are cyclic and therefore, their encoding

can be achieved with linear shift registers with feedback connections based on their generator

polynomials.

A LDPC code constructed based on finite geometry can be punctured by removing the

columns of the parity-check matrix that correspond to the points of a set of lines. This punctua-

tion results in a shortened LDPC code with at least the same minimum distance as the original

code. A finite geometry LDPC code can also be extended by splitting each column of its parity

check matrix into multiple columns. This column splitting results in a new parity check matrix

with lower density of "ones". Finite geometry LDPC codes, their shortened and extended codes

achieve both good bit and word error performances with either soft-decision iterative decoding

based on belief propagation or Gallager's hard-decision bit flipping algorithm.

Also presented in this paper are a generalization of the code construction based on multi-

dimensional finite geometries and a connection between LDPC codes and balanced incomplete

block designs.

l LDPC Codes Constructed Based on Two-dimensional Euclidean Geometry

EG(2,2')

Consider the Galois field GF(22') which is regarded as an extension field of GF(2'). Let a be

a primitive element of GF(22*). Then the powers of a, a °_ = 0, a ° = 1, a t, a 2, ..., a 2"-_, form all

the elements of GF(2_'). Each element o _ can be expressed in polynomial form,

a i = bi,o + bi,la

and uniquely represented by a two-tuple (b_,0, b_,t) with b_,0 and bi,l in GF(2*). Each two-tuple

(b_,0, hi,t) over GF(2') forms a point in the two-dimensional Euclidean geometry over GF(2°), de-

noted EG(2, 2'), [12-14]. Therefore, Galois field GF(2 _') may be regarded as the two-dimensional

Euclidean geometry EG(2,2 °) over GF(2'). The elements of GF(22.) form all the points of

EG(2, 2'). The zero two-tuple, (0,0), (or the zero element 0=a _ of GF(22°)) is called the origin

of EG(2, 2*).

EG(2, 2') consists of points and lines. Let P0 and P, be two linearly independent points in

EG(2, 2'). Then the collection of following 2' points,

{p0+ } (2.1)

with/_ in GF(2'), constitutes a line in EG(2, 2") that passes through the point Po. Of course,

this line also pass_ through other 2' - 1 points. Let P2 be a point which is linearly independent

of Pl and also linearly independent of Po. Then the lines, {P0 +/_Pt} and {Po +/3p2} have one

and only one point, Po, in common. We say that these two lines intersect at the point Po. Two

lines with two common points are identical. Given a point Po in EG(2, 2'), there are

22` - 1
-- =2'+I (2.2)
2' - I

lines in EG(2, 2') that intersect at Po, including the line {_P0} that passes through the origin.

Two lines are said to be parallel if they have no common points. Each line in EG(2,2') has

2' - I other lines parallel to it. No two lines can have more than one point in common. The

total number of distinct lines in EG(2,2') is

2'(2' + I). (2.3)

Let v = (v0,vl,...,v2,,-_) be a (2 2` - 1)-tuple over the binary field GF(2). Number the

components of v with the nonzero elements of GF(2 2') (or the non origin points in EG(2,2')) as

follows: the component v_ is numbered ai for 0 < i < 22* - 2. Hence, a i is the location number

of vl. Let £ be a line in EG(2, 2') that does not pass through the origin (0,0) (or _¢_). Based

on £, form a binary (2 _' - 1)-tuple as follows:

= (v0,vl, ..., v2,,-2)

whose i-th component v_ is 1 if its location number o i is a point on £; otherwise, vi is 0. That

is, the location numbers for the nonzero components of v,. form the points of £. This vector v_

is called the incidence vector of line £.

Form a (2 2` - 1) x (2 :" - 1) matrix H whose rows are the incidence vectors of the 2"(2' + 1) -

(2' + 1) = 22` - 1 lines in EG(2,2') that do not pass the origin. It follows from the structural

properties of lines in EG(2,2') that matrix H has the following structures: (1) Each row has

p = 2' "ones"; (2) Each column corresponds to a non origin point in EG(2,2') and has 7 = 2'

"ones"; and (3) Any two columns have one and only one "1" in common, i.e.,)_ = 1. The ratio

of the total number of "ones" to the total number of entries in H matrix, called the density

of H, is r = 2'/(2 2' - 1). For large s, this density is very small. Therefore, H has a very low

density of "ones". Actually, the H matrix can be constructed easily by taking the incidence

vector v_ for a line £ in EG(2, 2') which does not pass through the origin and then cyclically

4

shifting this incidence vector v_ 2_+ - 2 times. This results in 22+ - 1 incidence vectors for

22+ - 1 distinct lines in EG(2, 2') that do not pass the origin. The incidence vector v_: and its

2_+ - 2 cyclic shifts form the rows of H matrix.

As an example, consider the Galois field GF(22xa) generated by the primitive polynomial

p(X) = 1 +X +X + which is given in Table 1. Regard this field as the two-dimensional Euclidean

geometry EG(2, 22) over GF(22). Let a be a primitive element of GF(22x2) and B = a s. Then

{0, 1, B,/32} form the subfield GF(22). Every line in EG(2, 22) consists of 4 points. The set of

4 points {a 14 + r/a} with ,7 EGF(22) is (a T, a 8, a '°, a 14} which forms a line in EG(2, 22). The

incidence vector for this line is (0 0 0 0 0 0 0 1 1 0 1 0 0 0 1). This vector and its 14 cyclic shifts

form the matrix H as shown in Figure 1.

Let C be the null space of H. Then (3 isa LDPC code of length n = 22+- 1. It turns

out that 12 is the (0, s)-th order EG (Euclidean Geometry) code and is cyclic [14]. It is also

a type-1 DTI (doubly transitive invariant) code discovered by Lin and Markowshy [16]. The

generator polynomial of this code is completely characterized by its roots in GF(22'). Let h be

a nonnegative integer less than 22'. Then h can be expressed in radix-2 + form as follows:

h = 60 + 612'

where 0 _< 6i < 2' for i=O and 1. The 2'-weight of h, denoted W2,(h), is defined as the following

sum)

W2, (h) -" ¢5o+ ¢5t.

Let h (t) be the remainder resulting from dividing 2ah by 2 2` - 1, i.e.,

(2.4)

2th = q(2 _' - 1) + h (0 (2.5)

with 0 < h (0 < 2 2° - 1. Let g(X) be the generator polynomial of C. Then a h is a root of g(X)

if and only if [14]

o < maxW2.(hm) < (2' - 1).
O<t<s (2.6)

The number of roots can be enumerated and is equal to 3' - 1. C has the following parameters:

Length

Numberof parity bits

Dimension

Minimum distance

n = 22+ - 1,

n-k=3'- 1,

k = 22' - 3',

drain = 2s + 1.

Example 1: Let s = 7. The LDPC code constructed based on EG(2,27) is a (16383, 14197)

code with d,_, = 129. The rate of this code is R = 0.867. Its parity-check matrix H has the

following parameters: p = 7 = 128 and _ = 1. The density of H is r = 2'/(22` - 1) = 0.007813.

The error performance of this code with various decoding algorithms is shown in Figure 5. AA

The third property of a low density parity check matrix H, ,_ = 1, ensures that there is no

rectangle in H with four "ones" at its four corners. This implies that the Tanner graph [3] for

the code generated by H has no cycle of length 4, i.e., no two code bits are checked by the same

two parity constraints (or parity check sums as Massey called them [15]).

It follows from the structural properties of matrix H that for any bit position o _ with

0 _< i < 22+ - 1, there are exact "r = 2' rows in H which have the following properties: (1) Each

row has a "one" at position a_; and (2) For j # i, there is at most one row with a "one" at

position az. In Messay's terminology, these 2+ rows are said to be orthogonal on the bit position

a +. Parity-check sums formed by these orthogonal vectors can be used to estimate the code

bit vi based on majority-logic rule in one step [14,15}. Therefore, the LDPC code generated by

matrix H is one-step majority-logic decodable and is capable of correcting 2 '-t errors.

A list of EG-LDPC codes with their important parameters is given in Table 2.

3. LDPC Codes Constructed Based on Projective Geometry PG(2, 2s)

Construction of LDPC codes based on a projective geometry is very similar to that based on

an Euclidean geometry. In this section, we consider construction of LDPC codes based on the

two-dimensional projective geometry PG(2, 2') over GF(2S).

Consider the Galois field GF(2 s°) which is regarded as an extension field of GF(2'). Let a

be a primitive element of GF(23s). Let

2s+-I .22 s+2s+l. (3.1)n = 2,--:T

6

Then the order ofl_ -- a n is 2+ - 1. The elements 0, 1,l_,_2,...,j_ _'-) form all the elements of

the subfield GF(2+). Consider the set

r = {a°,al,a 2,...,an-l}. (3.2)

with 0 _< i < n. For any a ++in GF(23'), if _ = fllai with 0 < i < n, then aJ is represented by

(ai). The n elements

(+o),(+l), ..., (3.5)

form the points of the two-dimensional projective geometry PG(2, 2 +) over GF(2+) [12,14]. Note

that all the 2e - 1 elements in (a i) are regarded as the same point in PG(2, 2+).

Let (a i) and (M) be any two distinct points in PG(2, 2'). Then the line £ passing through

(a +) and (or/) consists of points of the following form:

(zt a+ + z2 cry) (3.6)

where zl and z2 are elements from GF(2 +) and are not both equal to zero. Since (zla _ + z2ofi)

and (_tzla+ + _lz2c_) are the same point, the line £ consists of

(2+) 2 - I
- 2" + 1 (3.7)2 + - 1

points. Let (a k) be a point not on the line {zla' + z2oeJ}. Then the line {zla' + z2a J} and the

line {zlc_ + z;_} have (a _+) as a common point (the only common point). We say that these

?

(3.4)

Partition the nonzero elements of GF(23+) into n disjoint subsets as follows:

{at, l_a t, l_201,...,/_2'-2at },

{ 32,]3c_, i3_32, . . . ,]_2"-_ 32}, (3.3)

}.

We readily see that no element in one set can be a product of an element of GF(2 s) and an

element from a different set. Represent each set by its first element as follows:

two lines intersect at the point (M). The number of lines in PG(2, 2 °) that intersect at a given

point (_) is

__22+ - I _ 2 + + I. (3.8)
2+ - 1

There are 2 2' + 2' + 1 distinct lines in PG(2,2') [12-14].

Let v = (vo,vl, ...,v,-t) be an n-tuple over GF(2). Number the components of v with the

elements in r (or the points in PG(2,2')) as follows: v+ is numbered a i for 0 < i < n. Let £ be

a line in PG(2, 2'). Define the incidence vector for £ as follows:

- (v0, v,_,)

where

f 1, if (_+) is a point on £
1)i t 0, otherwise.

Form a (2 2+ + 2' + 1) x (2 2+ + 2' + 1) matrix H whose rows are the incidence vectors of

the 2_° + 2' + 1 lines in PG(2,2+). This matrix H has the following structural properties: (1)

Each row has p = 2 + + 1 "ones"; (2) Each column corresponds to a point in PG(2,2') and has

7 = 2' + 1 "ones"; and (3) Any two columns have exact one "1" in common, i.e., A = 1. The

density of this matrix is r = (2' + 1)/(2 2` + 2' + 1). Again H can be obtained by cyclically

shifting an incident vector 2 2+ + 2' times. Let C be the'null space of H. Then C is a LDPC

code of length n = 2_+ + 2 + + 1. This code turns out to be the (1, s)-th order PG (projective

geometry) code [14] and also is a difference-set code [14, 17]. It is cyclic. Let h be a nonnegative

integer less than 2 s+ - 1. The generator polynomial g(X) of C has a ,h as a root if and only if h

is divisible by 2" - 1 and

0 < max W2o(h (')) = j(2 +- I)
-- O<t<e

(3.9)

with 0 _< j < 1 [14]. The number of roots in g(X) is 3' + 1. C has the following parameters:

Length

Number of parity bits

Dimension

Minimum distance

n = 2_' + 2 m+ I,

n-k=3++1,

k = 2 _ + 2 + - 3',

d,.+. = 2' + 2.

Example 2: Let s = 6. The LDPC code constructed based on the lines of PG(2,2*) is a

(4161,3431) code with minimum distance dm_n = 66 and rate R = 0.82456. The parity check

matrix H has the following parameters: p = 65, 7 = 65,,_ = 1 and density r = 0.0156. The

error performance of this code with iterative decoding based on belief propagation is depicted

in Figure 4. AA

Again Tanner graphs for LDPC codes constructed based on the lines of PG(2, 2') do not

have cycles of length 4 and the codes are also one-step majority-logic decodable.

A list of PG-LDPC codes with their important parameters is given in Table 3.

4, Puncturing and Extension

Finite geometry codes can be punctured in various ways to obtain good shortened LDPC codes.

Consider an EG-LDPC code C generated by a low density parity check matrix H whose columns

correspond to the 2 u - 1 non origin points in EG(2,2+). Let £ be a line in EG(2,2') that does

not pass through the origin of EG(2,2e). Then the incidence vector v_: of E is a row in H.

Remove the columns of H that correspond to the 2 + points on £. This results in a matrix H'

with 22+ - 2' - 1 columns. The row in H that is the incidence vector v_: of £ becomes a zero row

in H'. Removing this zero row from H', we obtain a (22+ - 2) × (22+ - 2' - 1) matrix H+. Each

column of H+ still has 3' = 2 + "ones" as the original matrix H. Removing a column of H that

corresponds to a point a+ on E will delete a "one" from 2 + - 1 rows in H which are the incidence

vectors of the lines that intersect with line Z: at the point a i. Therefore, there are 2+(2 + - 1)

rows in H+ with weight Pl = 2 + - 1. There are 2' - 2 lines not passing through the origin of

EG(2,2 +) that are parallel to/:. Deleting the columns of H that correspond to the points on

/: does not change the weights of the rows which are the incidence vectors of the 2' - 2 lines

parallel to £. Therefore, there are 2' - 2 rows in H, with weight ,o2 = 2 °. Any two columns

in H+ still have exactly one "1" in common, i.e.,)_ = 1. The density of H, is r = 2'/(2 _+ - 2).

Therefore H+ is still a low density matrix.

Let C+ be the null space of H+. Then C, is a LDPC code of length n = 2 _+ - 2' - 1.

Clearly, C° is obtained from C by deleting the components of each codeword at the positions

that correspond to the points on the line £. Since the rows of H+ do not have the same weight,

9

C, is an irregular LDPC code. However, all the columns of H, have the same weight which

is still 7 = 2'. Therefore, we still can form 2' parity-check sums orthogonal on any code

bit. Consequently the majority-logic correcting capability is still 2 '-t and hence its minimum

distance is at least 2' + 1 [14,15].

Example 3: Let s = 4. The EG-LDPC code with s = 4 is a (255, 175) code (the third code in

Table 2) with rate R = 0.6863, d_i_ = 17, p = 7 = 16 and density r = 0.0627. A line in EG(2,24)

has 16 points. Puncturing this EG-LDPC code based on a line in EG(2,24) not passing through

the origin results in a (239,160) LDPC code with rate R = 0.667, minimum distance at least 17

and density r = 0.0630. Note that the punctuation removes 15 information bits and one parity

check bit from the (255,175) EG-LDPC code. Figure 6 shows that the error performance of this

punctured code is slightly better than that of the original code. AA

An EG-LDPC code can be punctured based on the points of a set of q parallel lines with

1 < q < 2' - 1. This results in a shortened LDPC code C+ of length n = 22° - q. 2 ° - 1. Its

parity check matrix H+ has 22° - q - 1 rows and 22+ - q • 2' - 1 columns. Each column of Ho

still has weight 2 + but its rows have different weights.

Example 4: If we puncture the (255,175) EG-LDPC code (given in Example 3) based on the

points of two parallel lines in EG(2,24), we obtained a (223,145) LDPC code with rate R = 0.650

and dm_, > 17. The parity-check matrix H+ of this code is a 253 x 223 matrix. Thirteen rows

of H, have weight 16 and all the other rows have weight 14. All the columns of I-I+ have weight

16. The density of H+ is r=0.0632. The puncturing removes 30 information bits and 2 parity

check bitsfrom the originalcode. AA

Puncturing can alsobe achieved with combination of removing columns and rows of the low

density parity check matrix H. For example, letQ be a set of I linesin EG(2,2 +) not passing

through the origin that intersectat a common point ai, where I < I < 2'. Let P be the set

of linesin EG(2,2 °) that are parallelto the linesin Q. Suppose we puncture H as follows:(I)

remove allthe rows in H thatare the incidencevectors ofthe linesinQ and P; and (2)remove

the columns that correspond to the pointson the linesinQ. The totalnumber of distinctpoints

on the lines in Q is I. (2' - 1) + 1. The total number of lines in Q and P is l. (2 ° - 1). Therefore,

puncturing results in a (2 _+ - I. 2 + + 1 - 1) x (22+ - l. 2" +.l - 2) matrix H+. Both columns

and rows of He do not have constant weights any more. The null space of He gives an irregular

10

LDPC code.

Example 5: Consider puncturing the (255,175) EG-LDPC code. Let £1 and £2 be two lines

in EG(2,2') not passing through the origin that intersect at the point a i. There are 28 lines not

passing through the origin parallel to either £1 or £2. Puncturing the parity check matrix H

of the (255,175) EG-LDPC code based on £I, £2 and their parallel lines results in a 225 x 224

matrix H,. Fourteen rows in H, have weight 15 and all the other rows have weight 14. Twenty-

nine columns of Ha have weight 15 and all the other columns have weight 14. The density of H,

is r = 0.06278. The LDPC code generated by H, is a (224,146) code with minimum distance

at least 15. A A

All the above example shortened EG-LDPC codes have about the same error performance

as shown in Figure 6.

PG-LDPC codes can be shortened in a similar way. Consider the two dimensional projective

geometry PG(2,2') over GF(2'). Let £ be a line in PG(2,2'). If all the points on £ are removed

from PG(2,2'), we obtain the two dimensional Euclidean geometry EG(2,2') [12,13}. This fact

gives a unique relationship between PG-LDPC codes and EG-LDPC codes. Let C be a PG-

LDPC code of length 22` + 2' + 1 with low density parity check matrix H. Recall that H is a

(22` + 2' + 1) x (22` + 2 _ + 1) square matrix whose columns correspond to the points in PG(2,2')

and whose rows are the incidence vectors of the lines in PG(2,2'). Suppose we delete the columns

from H that correspond to the points on a line/: in PG(2,2'). The column removal results in

a zero row. Remove this zero row. We obtain a (22' + 2') x 22` matrix H0. The columns of

Ho correspond to the 22` points in EG(2,2') (including the origin) and the rows H0 are the

incidence vectors of all the 2'(2' + 1) lines in EG(2,2") (including the lines passing through the

origin). This matrix Ho is also a low density parity check matrix with p = 2 °, ? = 2' + 1, A = 1

and r = 1/2'. The null space of H0 gives a LDPC code Co with minimum distance 2' + 2. Co

is called a zero-type EG-LDPC code and is not cyclic.

The first column of Ho corresponds to the origin a ¢¢ of EG(2,2'). Suppose we remove from

H0 the first column and the rows which are the incidence vectors of the 2' + 1 lines in EG(2,2 °)

that pass through the origin. We obtain a (2 _ - 1) x (22' - 1) square matrix which is the low

density parity check matrix of the EG-LDPC code of length 2 _ - 1. Therefore we may regard

that the EG-LDPC codes are descendants of the PG-LDPC codes. For example, the (255,175)

11

EG-LDPC code is a descendant of the (273,191) PG-LDPC code. Note that puncturing 18

components from the (273,191) PG-LDPC code removes 16 information bits and 2 parity check

bits from each codeword.

Clearly, puncturing a PG-LDPC code can be achieved based on a set of lines in PG(2,2').

A finite geometry LDPC code C of length n can be extended by splitting each column h

of its parity check matrix H into q columns with 2 <_ q <_ 2' (for an EG-LDPC code) and

2 _< q < 2' + 1 (for a PG-LDPC code) which are of the same length as h. Consider the parity

check matrix HEo of an EG-LDPC code Cec. Dividing 2' by q, we have

2' = %:t x q + b

where 0 < b < q. Split each column hi of HEo into q columns h_.,,h_,2,...,h_.q such that b

columns, h_,l, h,,2, ..., h_,b, have weight 7,,, + 1 and q - b columns, h_,_+l, ..., hi.q, have weight

%zt. The distribution of 2' "ones" of hi into hi,l, hi,z, ..., h_,q is carried out in a rotating manner,

i.e., the first "1" of h_ is put in h_,,, the second "1" of hi is put in h_,2, and so on. This column

splitting results in a (22_ - 1) x q(2 _° - 1) low density parity check matrix He,t,Ec which has

the following structural properties: (1) each row has weight 2°; (2) the minimum column weight

is L2'/qJ (if 2' is divisible by q, each column has weight 2°/q, otherwise there are two different

column weights, [2'/qJ and [2°/qJ + 1); (3) any two columns have at most one "1" in common;

and (4) the density of the matrix is r_t,Ea = 2'/q(22' - 1). The null space of H_,,Ec gives an

extended EG-LDPC code C_t,Ec of length n = q(2 :' - 1).

Example 6: Let s = 5. There exists a (1023,781) EG-LDPC code (the fourth code given in

Table 2). Suppose we choose q=8. Then column splitting results in a (8184,7162) extended

EG-LDPC code of rate R = 0.875 whose parity check matrix has the following parameters:

p = 32,%=t = 4, A = 1 and r = 0.0039125. The error performance of this extended code is

shown in Figure 7. We see that the extension results in an increase of code rate. AA

PG-LDPC codes can be extended in the same manner.

Puncturing and extension give more choices of LDPC codes. In fact, puncturing and column

splitting can be combined to obtain LDPC code. Proper extension also increase the code rate.

12

5. Generalization

The construction of LDPC codes based on two-dimensional finite geometries over GF(2'),

EG(2,2 °) and PG(2,2')), can be generalized to construction based on m-dimensional finite ge-

ometries over GF(2'), EG(m, 2' 7 and PG(m, 2')7 with m > 2.

Consider the m-dimensional Euclidean geometry over GF(2'), EG(m, 2'). This geometry

consists of 2 m' points and

2(m-I)'(2_' - 17

2,-i (5.1)

lines. Each point in EG(m, 2') is represented by an m-tuple over GF(2') and the zero m-tuple

(0, 0, ..., 0) is the origin of the geometry. The Galois field GF(2m'7 as an extension field of

GF(2') may be regarded as a representation of EG(m, 2' 7 [14]. Let a be a primitive element

of GF(2m'). Then the 2 _' elements, a °° = 0,a0,a, a s, ..., 02"-2 , represent the 2"_ points of

EG(m, 2' 7 and the element 0 = a _ represents the origin of the geometry. Each line in EG(m, 2 °)

is a collection of 2' points as defined by (2.1) for the two-dimensional case. For any point p in

EG(m, 2'7, there are

(2m'-1)/(2'-1) (5.2)

lines in EG(m,2") that intersect at p. Let £ be a line in EG(m, 2') which does not pass

through the origin. The incidence vector of £ is defined as a (2 '_ - 17-tupl e over GF(2),

v,. = (Vo, Vl,...,v2m,__), such that for 0 < i < 2 m" - 2, v_ = 1 if and only if ori is a point in £.

Therefore the weight of v_ is 2'.

Let H be a matrix whose rows are the incidence vectors of the lines in EG(m, 2') that do

not pass through the origin. H consists of 2 _' - 1 columns and

2 rr_ -- 1

(2 ("-])' - 1) 2'- 1 (5.3)

rows. The columns correspond to the 2 _' - 1 non-origin points of EG(m, 2'). Each row of H

consists of 2" "ones" and each column of H consists (2 "u - 1)/(2' - 1) "ones". The number of

"ones" in each column of H is simply equal to the number of lines in EG(m, 2") that intersect

at a point in EG(m, 2'). Any two columns of tI have exactly one "1" in common. The density

13

of the matrix is

If m is large, r is very small. Therefore H is a low density matrix. The m-dimensional EG-LDPC

code of length 2"' - 1 is simply the null space of H. It is a cyclic and one-step majority-logic

decodable. Let h be a nonnegative integer less than 2" - 1. The generator polynomial g(X)

of this code has a h as a root if and only if [14]

0 < max W2.(h {')) < (m- 1)(2' - 1).
0</<,

Since (2 m' - 1)/(2' - 1) orthogonal check-sums can be formed for majority-logic decoding of

each code bit, its minimum distance is at least

2 "_ - 1
+1. (5.4)

2' - 1

Example 7: Let s = m = 3. The three-dimensional EG-LDPC code constructed based on

the lines of EG(3,23) is a (511,139) code with d,_i, = 73 and rate R = 0.272. Its parity check

matrix H is a 4599 x 511 matrix with p = 8,7 = 72, A = 1 and density r = 0.01565. The error

performance of this code is shown in Figure 8. AA

The above generalization results in a large class of EG-LDPC codes. For m > s, EG-LDPC

codes in general have rates less than 1/2.

An m-dimensional EG-LDPC code can also be punctured to obtain a shortened EG-LDPC

code. Let EG(rn - 1, 2') be an (m - 1)-flat (or (m - 1)-dimensional subspace) of EG(m, 2 ')

that does not contain the origin. We delete the columns of tI that corresponds to the points in

EG(m - 1,2'). This results in a matrix H' with 2"_ - 2 ('n-l}_ - 1 columns. The rows in H that

correspond to the incidence vectors of lines contained in EG(m - 1, 2') becomes zero rows in

H'. Removing these zero rows in H', we obtain a low density matrix H, with 2 '_ - 2 ('_-l)a - 1

columns and

2(_-1)_ - 1

(2 _'- 2 (_-_' 1) 2'- 1 (5.5)

rows. Each column of H, stillhave 7 = (2'_ - I)/(2'- I) "ones". But the rows of H, do not

have uniform weight any more, in fact,there are two differentweights,2' - 1 and 2'. The null

14

space of H, gives a shortened m-dimensional EG-LDPC code. This shortened code is not cyclic

any more.

Similarly, we can construct an m-dimensional PG-LDPC code based on the lines of the

m-dimensional projective geometry over GF(2'), PG(m,2'). An m-dimensional LDPC code

is simply the null space of a matrix H whose rows are the incidence vectors of the lines in

PG(m, 2'). The columns of H correspond to the (2 ("+l)'- 1)/(2' - 1) points of PG(m, 2'). H has

the following parameters: (1) each row has 2' + 1 "ones"; (2) each column has (2"' - 1)/(2 ° - 1)

"ones"; (3) any two columns have exactly one "1" in common; and (4) the density of the matrix

is (2 2' - 1)/(2("+_) ' - 1). The m-dimensional PG-LDPC code is cyclic. Let h be a nonnegative

integer less than 2("+_), _ 1. The generator polynomial of the code has a h as a root if and only

if h is divisible by 2' - 1 and

0 < max W2.(h (0) < j(2' - 1)
-- 0<I<.

with 0 _< j _< m - 1 [14]. The minimum distance of the code is at least

(5.6)

(2 "_ - I)/(2' - I) + 1. (5.7)

Example 8: Let m = s = 3. The 3-dimensional PG-LDPC code is a (585,184) code with

d,m. = 74. AA

Again for m >_ s, m-dimensional PG-LDPC codes in general have rates less than 1/2.

Multidimensional finite geometry LDPC codes can be extended by splitting the columns of

their parity check matrices.

Example 9: Consider the three-dimensional (511,139) EG-LDPC code given in Example 7.

Suppose we extend this code by splitting each column of its parity check matrix H into 24

columns. Then the extended code C_t,EC is a (12264,7665) LDPC code with rate P_zt.EC --

0.625. The extension results in a high rate code. The density of the parity check matrix H,zt_c

of this extended code is r,zt.Ea = 0.000652 and 7,zt_c = 3. The bit error performance of this

extended EG-LDPC code with iterative decoding based on belief propagation is shown in Figure

9, which is only 1.0 dB away from Shannon limit. AA

Examples 6 and 9 and Figures 7 and 9 show that column splitting is a powerful method for

contructing long and high-rate LDPC codes with good error performance.

15

6. Relation to Balanced Incomplete Block Designs

Analysis and design of experiments is an important subject in combinatorial mathematics. The

objective of this subject is to design experiments systematically and with a view to their statis-

tical analysis. One such design is called the balanced incomplete block design[12,13]. This type

of design was used for block code construction in late sixties by some coding theorists [18-22].

Let X = {xl, x2,..., x,} be a set of n objects. A balanced incomplete block design (BIBD)

of X is a collection of b p-subsets of X, denoted by Bl, B_, ..., Bb and called the blocks, such

that the following conditions are satisfied:

(1) Each object appears in exactly 3' of the b blocks;

(2) Every two objects appear simultaneously in exactly ,_ of the b blocks; and

(3) p < n.

So, a BIBD is characterized by the five parameters b, n, % p and)_, it is also called a (b, n, % p,)Q-

configuration. Instead of a list of the p-subsets, a BIBD can also be described by its incidence

matrix Q, which is a b x n matrix with ffs and l's as entries. The columns of the matrix

correspond to the objects and the rows of the matrix correspond to the blocks. The entry in

the i-th row and j-th column of Q is a 1 if the object xj is in the block B_ and is 0 otherwise.

The matrix given by Figure 1 is actually the incidence matrix ofa BIBD with b = n = 15, p =

3' = 4 and A = 1. Therefore, the low density parity check matrices constructed in sections 2 and

3 based on EG(2, 2') and PG(2, 2') give two special classes of BIBD's with A =1. From opposite

point of view, if a BIBD with small p and 7 and)_ =1, then its incidence matrix can be used as

the parity check matrix to generate a LDPC code. Over the years, there are many such BIBD's

that have been constructed [12,13]. This construction may yield good LDPC codes. This should

be a direction for further investigation. For example, for any positive integer t such that 4t + 1 is

the power of a prime, there exists a BIBD with n = 20t +5,b = (St+l)(4t+l),7 = 4t +l,p = 5

and)_ = 1. The incidence matrix of this BIBD has density r = 5/(20t + 5) [12,13]. Is the code

generated with this matrix as the parity check matrix good? This question should be answered.

16

7. Decoding of Finite Geometry LDPC Codes and Simulation Results

Finite geometry LDPC codes and their shortened and extended codes can be decoded with the

following algorithms: (1) soft-decision iterative decoding based on belief propagation (IDBP)

[8]; (2) Gallager's hard-decision bit flipping (BE) iterative algorithm [1,2]; and (3) majority-

logic decoding [13,14]. The soft-decision IDBP algorithm gives the best error performance but

it requires very large computational complexity and decoding delay. Majority-logic decoding

requires the least decoding complexity but its error performance is relative poor compared to

the IDBP algorithm. The BF decoding algorithm provides a very good trade-off between the

error performance of the soft-decision IDBP algorithm and the decoding complexity of the

majority-logic decoding. It performs better than the majority-logic decoding and not far from

the soft-decision IDBP algorithm, which will be shown later by simulation results.

The IDBP algorithm is well explained in [8] and will not be repeated in this paper. The

BF algorithm is described in [1,2,24,25], but it is not very well known and not being used for

decoding LDPC codes. For this reason, we give a brief review of this algorithm. Majority-logic

decoding can be found in [13,14].

Let v = (v0, vl, ..., v,_l) be a codeword in a low-density parity-check code C. Let hi, h_, ..., hj

denote the rows of H matrix. Since C is the null space of H, the inner product v • hj must be

zero for 1 _< j _< J, i.e.,

v. h_ = 0 (7.1)

for 1 < j _< J. Let

hi= (hj,o, hj,l,...,hi,,_l).

Then from (7.1) and (7.2), we have the following J parity-check equations (or sums):

n-I

(7.2)

__, v, hj,, = 0 (7.3)
i--0

for l_<j< J.

From the second structural property of H, we readily see that every code bit of a codeword

in C is checked exactly by 7 parity-check equations. Consider the set of 7 parity-check equations

that check a particular code bit v_. Since A = 1, none of the other n - 1 code bits ate checked

17

by more than one of these 7 parity-checkequations. From thisfact,we see that ifthere is a

singleerror in the received vector r at positioni,then the 7 parity-checkequations that check

the bit at positioni willfail,i.e.,

r. hj - 1 (7.4)

with h)# = 1 and j E {1,2,..., J}. If there are two errors in the received vector r, because of

A << 7, the number of parity check failures will increase, and the number of failed parity-check

equations that contain either of the two erroneous bits will be greater than []J, provided that

the error correcting capability of the code t = [(dmi,(G) - 1)/2J > 2. The number of parity-

check failures increase as the number of errors in r increases until it reaches the error correcting

capability t of the code. When the number of errors exceeds t, there will be error patterns

which result in a decrease in the number of parity-check failures. In this case, an erroneous

bit position may be checked by less than [7/2J failed parity-check equations or by none of the

failed parity-check equations. From the above analysis, we find that if the number of errors in

the received vector is t or less, changing an erroneous bit results in a decrease in the number

of parity-check equation failures. However, if the number of errors exceeds the error correcting

capability t, changing an erroneous bit may result in an increase in the number of parity-check

failures.

Based on the above analysis of the parity-check equation failures, Gallager devised the fol-

lowing decoding scheme for LDPC codes. The decoder computes all the parity-check sums

based on (7.3) and then changes any bit in the received vector r that is contained in more than

some fixed number 6 of unsatisfied parity-check equations. Using these new values, the parity

check sums are recomputed, and the process is repeated until the parity-check equations are all

satisfied.

The above decoding is an iterative decoding algorithm. The parameter 6, called threshold, is

a design parameter which should be chosen to optimize the error performance while minimizes

the number of computations of parity-check sums. It is clear that the value of 6 depends on the

code parameters p,7, A,drain(C) and the signal-to-noiseratio(SNR).

Ifdecoding failsfor a given value of6,then the value of 6 should be reduced to allow further

decoding iterations.For error patterns with number of errorslessthan or equal to the error

IS

correcting capability of the code, the decoding will be completed in one or a few iterations.

Otherwise, more decoding iterations are needed. Therefore, the number of decoding iterations

is a random variable and is a function of the channel SNR. A limit maybe set on the number

of iterations. When this limit is reached, the decoding process is terminated to avoid excessive

computations.

Due to the nature of low-density parity checks, the above decoding algorithm corrects many

error patterns with number of errors exceeding the error correcting capability of the code.

A very simple BF decoding algorithm is given below:

Step 1 Compute the parity-check equations. If allthe parity-check equations are satisfied, stop.

Step 2 Find the number of unsatisfied parity-check equations for each bit, denoted fi, i = O, 1,..., n- 1.

Step 3 Identify the set S of bits for which]i is the largest.

Step 4 Flip the bits in set S.

Step 5 Repeat steps 1 to 4 until all the parity-check equations are satisfied (for this case, we stop the

iteration in step 1) or a predefined maximum iteration number is reached.

The above simple BF decoding algorithm can be improved by using adaptive thresholds 6's.

Of course, this improvement is achieved at the expense of more computations.

Bit and word error probabilities of many finite geometry LDPC codes, their punctured and

extended codes have been computed based on IDBP, BFand majority-logic decoding algorithms

as shown in Figures 2-10. From these figures, we first notice that the soft-decision IDBP algo-

rithm gives the best error performance among the three decoding algorithms at the expense of

extensive computational complexity. However, Gallager's hard-decision BF algorithm achieves

relatively good error performance with much less computational complexity. It outperforms

the simple majority-logic decoding. Therefore, it provides a good trade-off between the error

performance of the IDBP algorithm and the complexity of majority-logic decoding algorithm.

Next we notice from Figures 2, 3 and 4 that PG-LDPC codes and their descendant EG-LDPC

codes have (almost) identical error performance. Figure 6 shows that the (255,175) EG-LDPC

code and its punctured codes have almost the same error performance. Figure 7 shows that

the (8184,7162) LDPC code obtained by extending the (1023,781) EG-LDPC code with column

19

splitting achievesan error performancewithin 0.9 dB from Shannon limit. Figures 9 gives the

error performance of the (12264,7665) LDPC code obtained from the 3-dimensional (511,139)

by column splitting. We see that its error performance is about 1 dB away from Shannon limit.

Figures 7 and 9 suggest that proper column splitting of finite geometry codes may result in very

good LDPC codes.

Figures 2 and 3 also give a comparison of the error performance of the finite geometry LDPC

codes of lengths 255 (or 273) and 1023 (or 1057) to that of some best computer generated

Oallager LDPC codes of the same lengths and same rates. We see that these finite geometry

codes outperform their corresponding computer generated Gallager LDPC codes. However, for

large code lengths, the best computer generated LDPC codes should perform better than the

finite geometry codes because they are chosen from larger code ensembles. Finally Figure 10

shows how fast the (4161,3431) PG-LDPC code converges to its ultimate error performance

using IDBP algorithm. We see that 20 iterations are enough to terminate the decoding iteration

process for this code. For all the finite geometry codes that we have simulated, the IDBP

algorithm converges very fast.

8. Conclusion

In this paper, we have reported two classes of LDPC codes that are constructed based on

the lines of two-dimensional Euclidean and projective geometries. These finite geometry codes

can be decoded with soft-decision IDBP algorithm, Gallager's BF algorithm and majority-logic

decoding. Simulation results show that they perform very well and close to their Shannon

limits with the IDBP algorithm. These codes also perform well with Gallager's BF algorithm.

The BF algorithm provides a good trade-off, between the good error performance of the IDBP

algorithm and the simple complexity of majority-logic decoding. Furthermore, they are cyclic

and hence can be easily encoded with feedback shift registers in contrast to the complex encoding

of computer generated LDPC codes. We have also shown that these finite geometry codes can

be punctured and extended to obtain good LDPC codes. Proper extension by column splitting

results in good high rate codes.

We have also extended the two-dimensional finite geometry LDPC codes to multidimensional

20

finite geometry codes. This extension gives a large class of LDPC codes with various rates. A

close relationship between a low density parity check matrix and a balanced incomplete block

design has also been presented. This relationship may allow us to construct LDPC codes based

on many existing balanced incomplete designs.

The results presented in this paper show that algebraic or geometric construction of LDPC

codes are possible and the constructed codes are good. Therefore, further investigation is needed

and we should give algebraic construction a chance as Tanner suggested[23].

Acknowledgement

The authors wish to thank David J.C. MacKay for providing the parity check matrices of

the Gallager LDPC codes used in this paper.

21

References

tll

[2]

[3]

[41

[5]

{6]

[7]

[8]

R. G. Gallager,"Low Density Parity Check Codes," IRE Transactions on Information Theory,

1"I"-8, pp. 21-28, January 1962.

R. G. Gallager, Low Density Parity Check Codes, MIT Press, Cambridge, Mass., 1963.

R. M. Tanner,"A Recursive Approach to Low Complexity Codes,'IEEE Transactions on Infor-

mation Theory, IT-27, pp. 533-547, September 1981.

D. J. C. MacKay and R. M. Neal,"Near Shannon Limit Performance of Low Density Parity Check

Codes," Electronics Letters 32 (18): 1645-1646, 1996.

M. C. Davey and D. J. C. MacKay,"Low Density Parity Check Codes over GF(q)," IEEE Com-

munications Letters, June 1998.

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, "Improved Low-Density

Parity-Check Codes Using Irregular Graphs and Belief Propagation," Proceedings of 1998 IEEE

International Symposium on Information Theory, pp. 171, Cambridge, Mass., August 16-21, 1998.

D. J. C. MacKay,"Oood Error.Correcting Codes Based on Very Sparse Matrices," IEEE Trans.

actions on Information Theory, IT-45, pp.399-432, March 1999.

R. J. McEliece, D. J. C. MacKay, and J. -F. Cheng,"Turbo Decoding as an Instance of Pearl's

Belief Propagation Algorithm," 1EEE Journal on Selected Areas, Vol. 16, pp. 140-152, February
1998.

[9]

[1o]

M. Fossorier, M. Mihaljevic, and H. Imai, =Reduced Complexity Iterative Decoding of Low Density

Parity Check Codes," IEEE TransactionJ on Communication, Vol. 47, pp. 673-680, May 1999.

R. Lucas, M. Fossorier, Y. Kou, and S. Lin,"Iterative Decoding of One-Step Majority Logic Decod-
able Codes Based on Belief Propagation," submitted to IEEE Transactions on Communications,
1999.

[11] D. J. C. MacKay,"Sparce Graph Codes,"" Proceedings of the 5.th International Symposium on

Communication Theory and Applications, pp. 2-4, Ambleside, UK, July 11-16, 1999.

[12] H. B. Mann, Analysi_ and Design of Ezperiments, Dover Publications, New York, 1949.

[13] A. P. Street and D. J. Street, Combinatorics of Ezperimental Design, Oxford Science Publications,

Clarendon Press, Oxford, 1987.

[14] S. Lin and D. J. Costello, Jr., Error Control Coding: l_ndamentals and Applications, Prentice

Hall, Englewood Cliffs, New Jersey, 1983.

[15] J. L. Massey, Threshold Decoding, MIT Press, Cambridge, Mass. 1963.

[16] S. Lin and G. Markowsky,"On a Class of One-Step Majority-Logic Decodable Cyclic Codes," 1BM
Journal of Research and Developments, January 1980.

[17] E. J. Weldon, Jr.,"Difference-Set Cyclic Codes," Bell System Technical Journal, 45, pp. 1045-1055,

September 1966.

22

[18]

[191

[2oJ

[21]

S. Lin,"Some Codes Which are Invariant under a Transitive Permutation Group and Their Connec-

tion with Balanced Incomplete Block Designs," Combinatorial Mathematics and Its Applications,

edited by R. C. Bose and T. A. Dowling, Chapter 24, University of North Carolina Press, Chapel
Hill, North Carolina 1969.

V. Pless,"On a New family of Symmetry Codes and Related New Five Designs," Bulletin of
American Mathematics Society, 75, 1339-1342.

N. V. Semakov and V. A. Zinov'ev,"Balanced Codes and Tactical Configurations," Problems of
Information 7ka_mission, 5, pp 22-28, 1969.

N. Hamada, "On the p-rank of the Incidence Matrix of a Balanced or Partially Balanced Incomplete

Block Design and Its Applications to Error-Correcting Codes," Hiroshima Mathematic Journal,
3, pp. 153-226, 1973

[22] I. Blake and R. C. Mullin, The Mathematical Theory of Coding, Academic Press, New York, 1975.

[23] M. Tanner, "On Quasi-Cyclic Repeat Accumulate Codes", 17th Annual Allterton Conference on

Communication, Control, and Computing, Allerton House, Monticello, IL. September 22-24, 1999.

[24] M. Sipser and D. A. Spielman, "Expander codes," IEEE Trans. Inform. Theory, vol. 42, pp.
1710-1722, Nov. 1996.

[2s] Albert M. Chan and _ank R. Kschischang, "A Simple Taboo-Based Soft-Decision Decoding Al-

gorithm for Expander Codes", IEEE Communication Letters, Vol. 2, pp.183-185, No. 7, July
1998.

23

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 8.

Figure 7.

Figure 10.

List of figure captions

A low density parity check matrix.

Bit-error probabilities of the (255, 175) EG-LDPC code (maximum 50 iterations), (273,191)

PG-LDPC code(maximum 50 iterations) and two (273,191) Gallager codes generated by

computer (maximum 200 iterations) based on IDBP algorithm.

Bit- and word-error probabilities of the (1023,781) EG-LDPC code, the(1057,813) PG-

LDPC code and two (1057,813) Gallager codes generated by computer.

Bit- and word-error probabilities of the (4095,3367) EG-LDPC code and the(4161,3431)
PG-LDPC code.

Bit- and word-error probabilities of the (16383,14179) EG-LDPC code.

Bit-error probabilities of the (255,175) EG-LDPC code and its (239,160), (223,145) and
(224,146) punctured codes.

Bit- and word-error probabilities of the (8184,7162) LDPC code obtained by extending

the (1023,781) EG-LDPC code using column splitting with q=8.

Bit- and word-error probabilities of the (511,139) EG-LDPC code.

Bit- and word-error probabilities of the (12264,7665) LDPC code obatined by extending

the (511,139) EG-LDPC code by usuing column splitting with q=8.

Convergence of the IDBP algorith m for the (4161,3431) PG-LDPC code.

24

Table 1: The elements of GF(24) generated by p(X) =
I+X+X 4

Power Polynomial 4-Tuple

representation representation representation

o o (oo o o)
1 1 (i o o o)
a a (0 1 0 O)

a2 a_ (00 l O)

a 3 a s (0 0 0 1)

a4 I + o (I I 0 O)

o 5 a + a s (0 1 1 0)

o s as + a3 (0011)

a T 1 + a + o 3 (1 1 0 1)

as 1 + as (1 0 1 O)

a9 a + o3 (01 0 I)

c_I0 1 + a + as (I I 1 O)

a 11 a + o2 + a 3 (01 11)

a 12 1 + a + o 2 + o 3 (I I 1 I)

o 13 I + 02 + 03 (I0 1 I)

o 14 1 + a 3 (1 0 0 1)

Table 2: List of EG-LDPC codes

n k d._n p 3' r

15 7 5 4 4

63 37 9 8 8

255 175 17 16 16

1023 781 33 32 32

4095 3367 65 64 64

16383 14197 129 128 128

0.267

0.127

0.0627

0.0313

0.01563

0.007813

25

Table 3: Listof PG-LDPC codes

n k d_i. P 7 r
21 II 6 5 5

73 45 I0 9 9

273 191 18 17 17

1057 813 34 33 33

4161 3431 66 65 65

16513 14326 130 129 129

0.2381

0.1233

0.0623

0.0312

0.0156

0.0078

H

O00000011010001

I00000001101000

0100000001 I0100

001000000011010

O00100000001101

lO0010000000110

010001000000011

101000100000001

110100010000000

011010001000000

001 101000100000

000110100010000

000011010001000

000001101000100

000000110100010

Figure h A low density parity check matrix.

26

_0"

Iv4^ .

-1 0 ! 2

_o (_8)

Figure 2: Bit-error probabilities of the (255, 175) EG-LDPC code (max-

imum 50 iterations), (273,191) PG-LDPC code(maximum 50 iterations)

and two (273,191) Gallager codes generated by computer (maximum

200 iterations) based on IDBP algorithm.

,0' !: : _i:i!:ii;i ii!!i!i::_;_!:_ !: i!i:ii!iii!i - i i i: :: :_1
10"

; _! : :i iii!i!} i i _!!iii!ill _
;;_;.; :::::::;:::::ii. _ :::.;::::_i: !::

10 4

I,o i

---'*--- ____ i, "
-_.- _c__'_ _ : . _ ._

.-_.- _DPCIDO_WocdRSO :!:. !:!!!!!::::;:_;_

------**---- EG_D_0 :: :!. !!:;!!!!!!!!! !!!!:!!!:!!!!!;!:!!

_o.-= _ C,=n=_-_-4ODee_OOOt i:::i:i:i:!
' I] ! I I 1 I

-' 0 t _ 3 4 $ 8
_, (de)

Figure 3: Bit- and word-error probabilities of the (1023,781) EG-LDPG

code, the(1057,813) PG-LDPC code and two (1057,813) Gallager codes

geaerated by computer.

27

io'

10"*

IO..a

10

10.4

10.4

-I

Figure 4: Bit- and word-error probabilitiesof the (4095,3367)EG-

LDPC code and the(4161,3431) PG-LDPC code.

!!! ! ! !i!i!!!!!J!!_i__:!!!i!!!!i!!!

..:::!i!i!!ii!!!_!!!:i!!!!! !!i!i !!!i!!i!!_!i!!i!ii! [i!_i!!!!!i!!!i!_
:::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::

:::....

!!!!!:!!!!!!:!!!!!.!!!i!!!!!!!!:!!!!!!!!!!!!!i!!!! :!_.!!!!!!!:!i!!!! ;....................
::: ::::: ::_:: :::::::::::::

'°_ :i!!!!i_!i::i i::_!iii!::ii!!!i!!_ili!!i:.ii!_!!i!::::!!!il_::i!!!!!!i!:!!!! !!!!i i!:_!! '!!i!!!-!!!:!"

I::l---..- _,._.o.,,.,.,.,,,_ :::::::::::::::::::::::.::::::::I:::i::::::::::::l
fl _ E-o-.u_c_o_pm,so I" I'. !I t" I
rl _ u.co_sesx tt: _.......... ,_'--,_, t

._411 --I.-- ca-concern I [: : : : I

t"" _-:'_ _'_= ' T_==V- i ::::::::::::::::::::::::::::::::::::::
-2 -1 0 1 _ 3 4 $ II 7

I
_ 10":

Figure 5: Bit-and word-error probabilitiesof the (16383,14179)EG-
LDPC code.

28

tO*

10"l

10'_

104

-1

I I 1 I I I !

i ,)

!:! ! i-!

I _ (22_._,_) i[:x_ i_

| ---*-- ¢z,3._)o_,=_ [i] ...]] [
J J I | Il J

0 1 2 3 4 S $
_/No(de)

Figure 6: Bit-error probabilities of the (255,175) EG-LDPC code and

its (239,160), (223,145) and (224,146) punctured codes.

I ! 1 I I i I

2 2

: 2

--lg-I : . : :: :

Figure 7: Bit- and word-error probabilities of the (8184,7162) LDPC

code obtained by extending the (1023,781) EG-LDPC code using col-

umn splitting with q=8.

29

'' ! I " 1 I ! I ! !

+01 .:. ; : : ::-:: :.'_.: , : +. : ::...::: ' ..-::.. .:.::.. .+ :. " .:• I- • :;

+ i i ! i !
!0.._

-I 0 I 2 3 4 $ 4

Figure 8: Bit- and word-error probabilities of the (511,139) EG-LDPC
code.

,o_ :.: i........ : . . i

!'°+i!!!!E!!!!!!i!!!!!!!!!!!!!!!i!!_i!!!!!!!!!!!ii!!!!!!!!!!!!i!!i!!!!!!!!i!!il_!!i!!!!!__!

• <-Oumnon Icnl for A_.,N Cha_,.j •
il 0"II :::

-! O 1 2 $ 4 $ 4
_, (<!3)

Figure 9: Bit- and word-error probabilities of the (12264,7665) LDPC

code obatined by extending the (511,139) EG-LDPC code by usuing
column splitting with q=8.

3O

i0 e

10 "1

10 -a

10 --_

10"4

10 .4

104

:. ',
, i t 11- 4i,_ _w-- "el '

ig

"¢,:

r

unc:ode<l BPSK

---e--- ilerat;,on 1 Bit

- e- • iletal_:x_ 1 Word

---e--- Berate,on 1 Bd

- o- - tleratk>n 2 Wo_

--e--- /teraSon 2 B/t

- O- - /tera_ 5 Won::l

iteration 5 Bit

- *- - Iterat_c_n10 Word

+ JleratJc_'_20 _!

- '_- - _era_ 2O Wo,U

eratk 99 Bit
- 0-- - itera_o_ 99 Won:l

,r
_) ": • . .Z

": r

1 2 2.S 3 3.5 4 4 5

Figure 10: Convergence of the IDBP algorithm for the (4161,3431)
PG-LDPC code.

31

