

Space Mechanisms Technology Workshop Proceedings

Robert L. Fusaro, editor Glenn Research Center, Cleveland, Ohio

Proceedings of a conference held at the Westlake Holiday Inn, Westlake, Ohio and cosponsored by NASA Lewis Research Center and the Ohio Aerospace Institute September 22–23, 1992

National Aeronautics and Space Administration

Glenn Research Center

Note that at the time of printing, the NASA Lewis Research Center was undergoing a name change to the NASA John H. Glenn Research Center at Lewis Field. Both names appear in these proceedings.

.

Available from

NASA Center for Aerospace Information 7121 Standard Drive Hanover, MD 21076 Price Code: A12 National Technical Information Service 5285 Port Royal Road Springfield, VA 22100 Price Code: A12

TABLE OF CONTENTS

Workshop Organizer
Ohio Aerospace Institute Background
Workshop Information and Objectives Robert L. Fusaro, NASA Glenn
Future NASA Missions and Technology Needs Results to Date Robert L. Fusaro, NASA Glenn
Space Mechanisms Technology Needs Paul D. Fleischauer, The Aerospace Corporation
Space-Related Tribology Programs K.R. Mecklenburg, Wright Laboratory
Space Exploration Technologies Moon and Mars Comparison Benton Clark, Martin Marietta
(Future) Power Requirements for Space (and Extraterrestrial Surfaces) John Bozek, NASA Glenn
Propulsion Requirements for Space Jim Dill, Mechanical Technology, Inc
Field Robots for the Next Century William L. Whittaker, Carnegie Mellon University
Responses to Objective Questions Satellites/Space Platforms Working Group I Satellites/Space Platforms Working Group II Planetary Surface Operations Working Group 207 Power/Propulsion Working Group 219
Space Mechanisms Technology Workshop Output
Space Mechanisms Technology Workshop Attendees

SPACE MECHANISMS WORKSHOP

PREFACE

Future NASA space missions such as the Space Exploration Initiative (SEI), the Mission to Planet Earth, and advanced weather and communications satellites will require advanced performance standards, increased life, and improved reliability of all mechanically moving equipment (mechanisms). In the past the mechanism needs of spacecraft appeared to be well within the state of the art. The electronic systems were deemed to be the biggest impediment to producing long life and reliable operation. As a result satellites were designed with requirements to last for only 3 to 5 years. The electronics industry has made great strides over the last few years in reducing the size and increasing the life and reliability of satellite electronic systems. The question is, have mechanical moving mechanisms kept up in improving their life, reliability and performance?

To determine what the obstacles will be in meeting NASA's future missions goals, NASA-Lewis Research Center and the Ohio Aerospace Institute (OAI) planned and sponsored a workshop for the fall of 1992. The workshop, entitled the Space Mechanisms Technology Workshop, took place September 22-23, 1992 at the Westlake Holiday Inn in Westlake, Ohio.

The workshop lasted for two days. The first half day was dedicated to a set of plenary papers. The following papers were presented:

- (1) OVERVIEW OF FUTURE NASA MISSIONS AND REVIEW OF MECHANISM'S NEEDS SURVEYS -- ROBERT FUSARO, NASA/LERC
- (2) SPACE MECHANISMS TECHNOLOGY NEEDS -- PAUL FLEISHAUER, THE AEROSPACE CORPORATION
- (3) DOD SPACE MECHANISMS PROGRAMS -- KARL MECKLENBURG, WPAFB
- (4) PLANETARY SURFACE REQUIREMENTS AND ENVIRONMENT BENTON CLARK, MARTIN MARIETTA
- (5) POWER REQUIREMENTS FOR SPACE -- JOHN BOZEK, NASA/LERC
- (6) PROPULSION REQUIREMENTS FOR SPACE -- JAMES DILL, MECHANICAL TECHNOLOGIES INC.

v

Following the opening plenary session, the workshop broke into three concurrent groups to look at the issues and problems of future mechanism's operations. Because the Satellites and Space Platforms group was deemed to be too large it was divided into two working groups. The four groups and group leaders were:

- (1) Satellites and Space Platforms #1, Doug Rohn, NASA LeRC and Paul Fleischauer, Aerospace Corporation
- (2) Satellites and Space Platforms #2, Roamer Predmore, NASA GSFC, and Stuart Loewenthal, Lockheed
- (3) Power and Propulsion, Bob Hendricks, NASA LeRC and Jerry Kannel, Battelle
- (4) Planetary Surface Operations, Bob Fusaro, NASA LeRC and David Thrasher, Boeing Aerospace.

Each group was given seven tasks, they were as follows:

- 1. Identify space mechanism's (mechanical components/lubrication) current and perceived future mission obstacles.
 - (A) Brainstorm current space mechanisms obstacles.
 - (B) Brainstorm future space mechanisms obstacles.
 - (C) Prioritize current and future space mechanisms obstacles.
- 2. For each obstacle, list or describe:
 - (A) Technology deficiencies (known or perceived).
 - (B) The current state-of-the-art.
 - (C) Applicable NASA, DOD, AND industry missions
 - (D) Active research in the area.
 - Where it is being conducted.
 - -- What are the current facilities.
 - Number of personnel involved.
 - (E) Technology needs for current missions.
 - (F) Technology needs for future missions.
 - (G) Concerns.
- 3. What is needed to improve the reliability of mechanisms?
- 4. NASA is planning to develop a space mechanisms guidelines handbook. What sort of information should be included? What sort of information should be considered industry privileged?
- 5. Can anything be done to improve technology development and the dissemination of information?

- 6. Other issues?
- 7. What do we do next?
 - Future meetings
 - -- Formalized working group(s)
 - -- Publications

The workshop closed with a final half-day plenary session in which group chairman presented the results of their sessions and the attendees then engaged in discussion of those results. The working group results follow the preface.

Approximately 70 individuals attended the workshop. Their backgrounds and interests were diverse, ranging from basic research to satellite design and program management. A listing of the members of each group are given with the results of that group.

WORKSHOP ORGANIZERS

Donald Bailey Ohio Aerospace Institute

Kathy Bogart Ohio Aerospace Institute

:

Robert Fusaro NASA Lewis Research Center

Theo Keith Ohio Aerospace Institute

T. Michael Knasel Ohio Aerosapce Institute

Vannel Hassett Ohio Aerospace Institute

Norma Navarro Ohio Aerospace Institute

Jeananne Nicholls Ohio Aerospace Institute

Doug Rohn NASA Lewis Research Center

> Janet White Berkshire Group

Richard Ziegfeld Sverdrup Technology

OHIO AEROSPACE INSTITUTE BACKGROUND

A UNIVERSITY-INDUSTRY-GOVERNMENT CONSORTIUM

COLLABORATIVE RESEARCH GRADUATE AND CONTINUING EDUCATION TECHNOLOGY TRANSFER

9 OHIO UNIVERSITIES PRIVATE SECTOR COMPANIES NASA LEWIS RESEARCH CENTER WRIGHT PATTERSON AIR FORCE BASE

Michael J. Salkind President Ohio Aerospace Institute

OAI BOARD OF TRUSTEES

AGNAR PYTTE, Pres., Case Western Reserve U J. TAYLOR SIMS, Act. Pres., Cleve.State U E. GORDON GEE, Pres., Ohio State U CHARLES PING, Pres., Ohio U PEGGY G. ELLIOTT, Pres., U of Akron JOSEPH A. STEGER, Pres., U of Cincinnati BRO. RAYMOND L. FITZ, Pres., U of Dayton FRANK E. HORTON, Pres., U of Toledo PAIGE E. MULHOLLAN, Pres., Wright State U

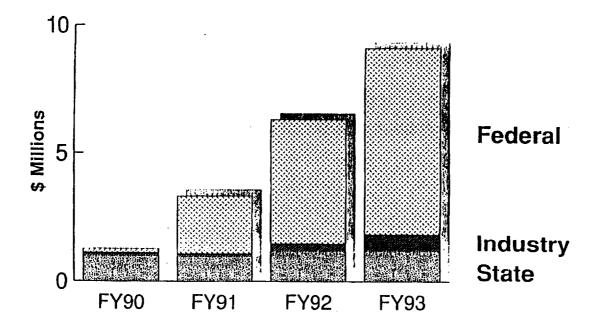
DAVID L. BURNER, Pres., BF Goodrich Aerospace BRIAN ROWE, SrVP, GE Aircraft Engines PATRICK S. PARKER, Chairman, Parker Hannifin Corp. ROBERT PASTER, Pres., Rockwell, Rocketdyne R. GORDON WILLIAMS, VP and Gen. Mgr, TRW, Space & Tech.

STEVEN SZABO, JR. Dir of Eng., NASA Lewis Res. Ctr. ELAINE HAIRSTON, Chancellor, Ohio Bd. of Regents G. KEITH RICHEY, Chief Scientist, Air Force Wright Lab.

PERSPECTIVE

STRATEGIC DRIVERS

GLOBAL ECONOMIC COMPETITIVENESS


- EFFECTIVE TECHNOLOGY TRANSFER
- MORE COLLABORATION
- POOL EXPENSIVE RESEARCH FACILITIES
- MORE INTERDISCIPLINARY RESEARCH
- MORE PHDs FOR INDUSTRY, GOVERNMENT, AND UNIVERSITIES
- MORE AMERICANS IN GRADUATE SCHOOL
- MORE MINORITIES AND WOMEN IN SCIENCE AND ENGINEERING
- GREATER EMPHASIS ON SCIENCE AND MATH LITERACY IN SCHOOLS

PERSPECTIVE

ASSUMPTIONS

- TECHNOLOGY TRANSFER IS A BODY CONTACT SPORT
- FEDERAL LABS FACILITIES AND FUNDING MAGNETS
- COMPLEMENTARY EQUIPMENT AT CAMPUSES AND COMPANIES
- DEVELOP COMPETITIVE CRITICAL MASS
- DISTANCE EDUCATION IS BECOMING MORE ACCEPTABLE
 - TECHNOLOGY, ECONOMICS IMPROVING
 - -- FITS CHANGING LIFESTYLE
- INCREASING NEED FOR TRUE LIFE-LONG LEARNING

OAI Funding Sources

OAI FOCUS GROUPS

ADVANCED INTERDISCIPLINARY SIMULATION

• AEROSPACE POWER

COMMUNICATION, ELECTRONICS, AND INFORMATION SYSTEMS

COMPOSITES

DIAGNOSTICS / IMAGING / VISUALIZATION

DYNAMIC SYSTEMS AND CONTROLS

FLUID DYNAMICS AND PROPULSIVE SYSTEMS

• ICING

POLYMERS / MOLECULAR MODELING

SPACE PROPULSION AND TECHNOLOGY

TRANSDUCERS

TRIBOLOGY

TURBO MACHINERY FLUID MECHANICS

STATEWIDE COLLABORATIVE EDUCATIONAL NETWORK

- The University of Akron
- Case Western Reserve University
- University of Cincinnati
- Cleveland State University
- The University of Dayton

- The Ohio State University
- Ohio University
- The University of Toledo
- Wright State University
- Link universities by TV network
- Deliver graduate education to the workplace

OAI STUDENTS

- INDUSTRY GOVERNMENT COLLABORATION ATTRACTING OUTSTANDING STUDENTS TO OAI UNIVERSITIES
- 52 GRADUATE, 78 UNDERGRADUATE SINCE 1989

"I had my choice of seven fellowship opportunities throughout the country. I chose OAI and Ohio State University because of the NASA involvement."

"Combining universities and industry is great. We get the theoretical side but not always the direct application."

"I saw OAI as a major advantage in making contacts in industry and learning from people who have experience in more than an academic setting."

" OAI is a great step forward in laying the groundwork to make Ohio competitive in the aerospace field. It offers the opportunity to do things I couldn't do elsewhere."

INDUSTRY PARTICIPATION

- ALLISON G.M.
- ANALEX
- ALLIED SIGNAL
- APPLICATION TECHNOLOGY
- ARGO-TECH
- BATTELLE
- BF GOODRICH
- BROOKS ASSOCIATION
- BRUSH WELLMAN
- CAMP
- EATON
- EDJEWISE SENSOR PRODUCTS
- EMTEC
- EPIC
- FERRO

- GATEWAY TECHNOLOGY
- GENERAL ELECTRIC
- IMAGE ANALYSIS RESEARCH
 - **KEITHLY INSTRUMENTS**
- LORD CORPORATION
- LUBRIZOL
- PARKER HANNIFIN
- PRATT & WHITNEY
- ROCKWELL
- SUNDSTRAND
- SVERDRUP
- TELEDYNE
- **TEXTRON LYCOMING**
- TIMKEN
- TRW

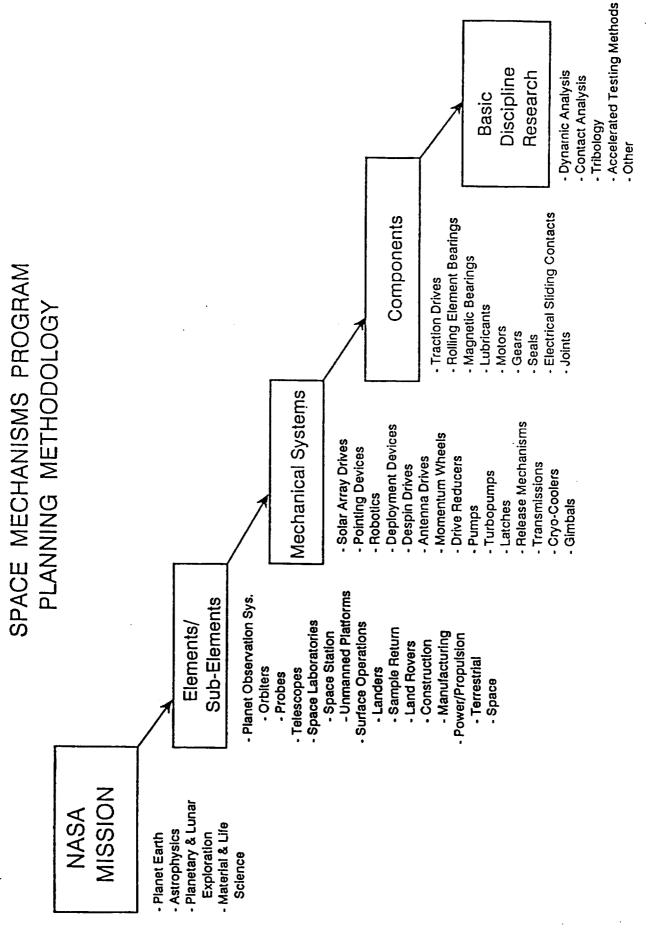
31 participating business organizations

WORKSHOP INFORMATION AND OBJECTIVES

Robert L. Fusaro NASA Glenn Research Center Cleveland, Ohio

Objectives

- To obtain an industry/university/government perspective on what are the known or perceived obstacles to successfully achieving NASA's current and future space missions.
- To determine the industry/university/government community's capabilities of solving these obstacles.
- To obtain input to help guide NASA in the formation of a growing R&T program.


Space Mechanisms Workshop

Definition

WHAT IS A SPACE MECHANISM

Any moving assembly or component used in a space application

- -- Rolling element bearings
 - -- Magnetic bearings
- -- Power transmission drives
 - -- Lubricants
 - -- Seals
- -- Electrical sliding contacts
 - -- Motors
- -- Deployment devices, latches, connectors
 - -- etc. etc.

Space Mechanisms Workshop Issues

- Operating Parameter Effects
- -- Endurance life, and Reliability
- -- Pointing Accuracy -- Stability, Vibrations, etc.
 - Environmental Effects
- -- Space Radiations, Atomic Oxygen, etc.
 - -- Temperature, vacuum, dust, etc.

- -- Contamination of and from Environment
 - Electrical Effects
- -- Power and Signal Transfer
 - Tribological Effects
- -- Friction, Wear, Lubrication
 - Storage Effects
 - Launch Effects
- Ground Based Testing Methods

Space Mechanisms Workshop

Potential NASA Funding

- Proposed Code R Funding
- \$4.9M for Technology Development (FY94)
- Proposed Code Q Funding

- -- Lesson Learned Study (FY93)
- Space Mechanisms Guidelines Manual (FY93)
 - Reliability Improvement Research (FY 94) 1

SPACE MECHANISMS TECHNOLOGY WORKSHOP AGENDA

TUESDAY MORNING

- OVERVIEW OF FUTURE NASA MISSIONS AND REVIEW OF MECHANISM'S NEEDS SURVEYS -- ROBERT FUSARO, NASA/LERC 00:6
- -- PAUL FLEISHAUER, THE AEROSPACE CORPORATION SPACE MECHANISMS TECHNOLOGY NEEDS 9:30
- 10:00 DOD SPACE MECHANISMS PROGRAMS -- KARL MECKLENBURG, WPAFB
- 10:30 BREAK
- PLANETARY SURFACE REQUIREMENTS AND ENVIRONMENT -- BENTON CLARK, MARTIN MARIETTA 11:00
- 11:20 POWER REQUIREMENTS FOR SPACE -- JOHN BOZEK, NASA/LERC
- -- JAMES DILL, MECHANICAL TECHNOLOGIES INC. **PROPULSION REQUIREMENTS FOR SPACE** 11:40
- 12:00 1:00 LUNCH (Corker's Lounge)

SPACE MECHANISMS TECHNOLOGY WORKSHOP AGENDA

TUESDAY AFTERNOON

(Dover) (Canterbury) (Bradley)			er Ballroom) UNIVERSITY
WORKING GROUP SESSIONS SATELLITES/PLATFORMS (2 Groups) PLANETARY SURFACES PROPULSION/POWER	BREAK	SOCIAL HOUR (Corker's Lounge) CASH BAR	BANQUET AND KEYNOTE SPEAKER (Dover Baliroom) RED WHITTAKER, CARNEGIE MELLON UNIVERSITY
1:00 - 5:00	3:00 - 3:30	6:00	7:00

.

SPACE MECHANISMS TECHNOLOGY WORKSHOP AGENDA

WEDNESDAY MORNING

BREAKFAST (Corker's Lounge)	Plenary review of progress on tuesday	WORKING GROUP SESSIONS CONTINUE	BREAK	LUNCH (Corker's Lounge)	
7:30	8:00	8:30	10:00 - 10:20	12:00	

WEDNESDAY AFTERNOON

ADJOURN

3:30

WORKSHOP WORKING GROUP DBJECTIVE QUESTIONS DBJECTIVE QUESTIONS IDENTIFY SPACE MECHANISM'S (MECHANICAL COMPON- ENTS/LUBRICATION) CURRENT AND PERCEIVED FUTURE MISSION OBSTACLES. (A) BRAINSTORM CURRENT SPACE MECHANISMS OBSTACLES (B) BRAINSTORM FUTURE SPACE MECHANISMS OBSTACLES (C) PRIORITIZE SPACE MECHANISMS OBSTACLES FOR EACH OBSTACLE, LIST OR DESCRIBE:	 (A) TECHNOLOGY DEFICIENCIES (KNOWN OR PERCEIVED?) (B) THE CURRENT STATE-OF-THE-ART (C) APPLICABLE NASA, DOD, AND INDUSTRY MISSIONS (D) ACTIVE RESEARCH IN THE AREA WHERE IS IT BEING CONDUCTED AND THE FACILITIES NUMBER OF PERSONNEL INVOLVED NUMBER OF PERSONNEL INVOLVED (E) TECHNOLOGY NEEDS FOR CURRENT MISSIONS (F) TECHNOLOGY NEEDS FOR FUTURE MISSIONS (G) CONCERNS
--	---

•

- WHAT IS NEEDED TO IMPROVE THE RELIABILITY OF MECHANISMS? . .
- GUIDELINES HANDBOOK. WHAT SORT OF INFORMATION SHOULD BE INCLUDED? WHAT SORT OF INFORMATION SHOULD BE NASA IS PLANNING TO DEVELOP A SPACE MECHANISMS CONSIDERED INDUSTRY PRIVILEGED? 4.
- DEVELOPMENT AND THE DISSEMINATION OF INFORMATION? CAN ANYTHING BE DONE TO IMPROVE TECHNOLOGY ນ.

- 6. OTHER ISSUES?
- 7. WHAT DO WE DO NEXT?
 - -- FUTURE MEETINGS
- -- FORMALIZED WORKING GROUP(S)
 - -- PUBLICATIONS

S
ENT
Ξ
Z
G
SSI
N N
L L
ō
GRO
0
<u>U</u>
\leq
¥
Ö
Š

PLA I FURMS (II) PROPULSION SU	SURFACES
BRADLEY C/	CANTERBURY
DOUG ROHN BOB HENDRICKS BOB HENDRICKS BOB HENDRICKS BOB HENDRICKS BOB HENDRICKS BOB HENDRICKS BOB HENDRICKS BOB HENDRICKS BOB HENDRICKS	 BOB FUSARO DAVID THRASHER
 JOHN BOHNER JOHN BOHNER WILLIAM LOGUE WILLIAM LOGUE DENNIS SMITH PETER WARD PETER WARD PETER WARD PETER WARD PRUCE STEINETZ BRUCE STEING WALKER BRUCE STEING WALKER BRUCE STEING WALKER STERLING WALKER BRUCE STEING WALKER MARK SIEBERT 	 JEFF MILLER WILLIAM WHITTAKER DALE FERGUSON BEN CLARK

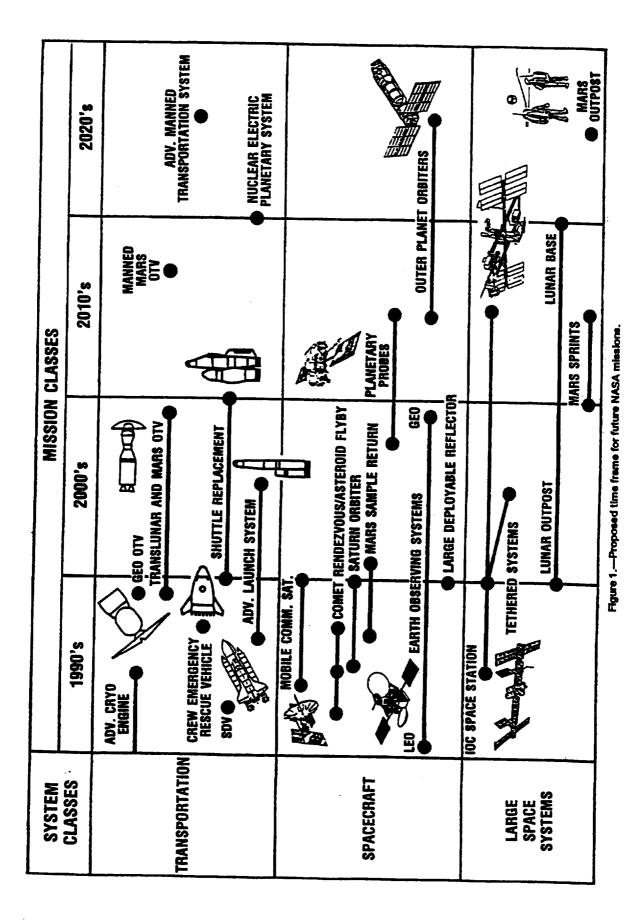
Robert L. Fusaro NASA Glenn Research Center Cleveland, Ohio

PROPOSED FUTURE NASA MISSIONS

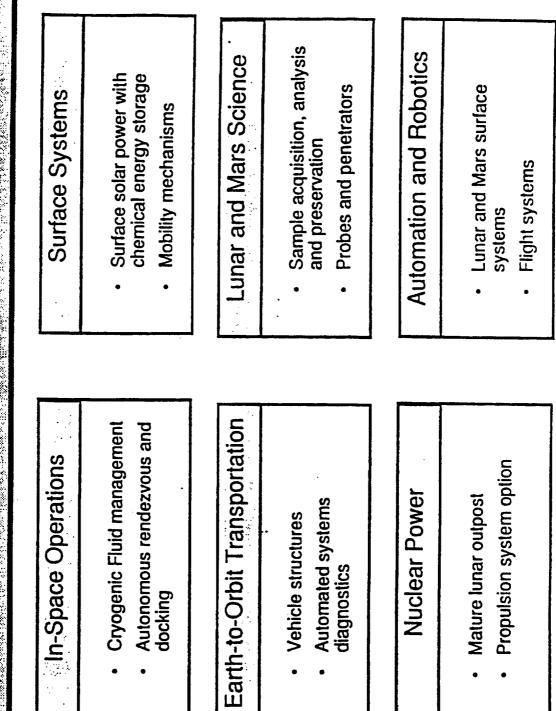
SPACE EXPLORATION INITIATIVE (SEI)

-- Expand human presence to the moon, Mars, and beyond

MISSION TO PLANET EARTH


- -- Understand the interaction between
 - -- Oceans/atmosphere/solid Earth (weather)
 - -- Living organisms and environment
 - -- Environment and pollution
 - -- Composition and evolution of the Earth

ASTROPHYSICS


- -- Understand the universe
 - -- Laws of physics
 - -- Birth of stars and planets
 - -- Advent of life

MATERIAL AND LIFE SCIENCES

- -- Understand and develop new processes
 - -- Fluid dynamics
 - -- Combustion fundamentals
 - -- Material processing
 - -- Physics and Chemistry
 - -- Space Medicines

TECHNOLOGIES FOR MISSION SUCCESS

SPACE MECHANISMS INITIATIVE

ACCOMPLISHMENTS TO DATE

- LITERATURE SURVEY
- GOVERNMENT AND INDUSTRY LABORATORY TOURS
- QUESTIONNAIRES SENT OUT ON TECHNOLOGY NEEDS

- SET-UP A SPACE MECHANISMS WORKING GROUP -- GOVERNMENT ONLY (NASA, DOD, DOE)
- WORKSHOP AT LeRC (November 1990)
- **REGULARLY SCHEDULED VIDEO CONFERENCES**

Government/Industry Survey

300 designers & program managers- 130 respondents

on accigned a program managera- no respondence	00 100	vonaen	LG LG
IS STATE-OF-THE-ART ADEQUATE FOR FUTURE NEEDS?	Yes (%) A	No (%) 84	Not sure (%)
industry (73)	о Ф	76 76	21 1
IS THERE A NEED FOR NEW OR IMPROVED METHODS?			
government	98	0	5
industry	96	4	0
SHOULD NASA ESTABLISH INFRASTRUCTURE TO:			
Coordinate new technology?	91	Ø	
Develop standards for U.S. use?	63	30	7
Provide consultation and advice?	77	6	7
Maintain capabilities/solutions database?	95	ы	5
Maintain testing facilities for U.S.?	86	Ø	0
Facilitate technology transfer?	95	ъ	2
Encourage government industry crosstalk?	9	л Л	4
Insure NASA/DOD research coordination?	91	<u>م</u>	.4
	Space M	echanism.	Space Mechanisms - August 1992

SPACE MECHANISMS TECHNOLOGY ISSUES **QUESTIONNAIRE RESPONSE**

- Currently it is left to each project to fund any requirements, this leads to wheel reinvention mechanisms development to meet mission
- --- The contractors we deal with are hesitant to reveal the best solution to a problem because it was developed for another customer.
- --- Mechanisms are typically mission critical devices that cannot be redundant in many cases and have little tolerance for error.

SPACE MECHANISMS TECHNOLOGY ISSUES **QUESTIONNAIRE RESPONSE**

- --- There is a need for long term commitment to an IR&D program that has direction and is technology focused not project oriented.
- Past NASA Missions have been compromised by not developing enabling technology as part of the pre-project activities.
- All efforts on space mechanisms have been program driven, long time goals have been lacking.

SPACE MECHANISMS WORKSHOP FINDINGS

SIGNIFICANT PROGRAMMATIC ISSUES

- NASA FACES IMMINENT FAILURES IF SPACE MECHANISM'S **TECHNOLOGY ISSUES ARE NOT BETTER ADDRESSED**
- FUTURE LONG DURATION MISSIONS WILL BE JEOPARDIZED IF THE TECHNOLOGY BASE IS NOT IMPROVED
- LACK OF ADEQUATE NASA FACILITIES FOR ACCELERATED LIFE, ENVIRONMENTAL AND FUNCTIONAL TESTING
- TRAINED, CREATING A LOSS OF CORPORATE MEMORY NASA EXPERTISE RETIRING, NEW PEOPLE NOT BEING
- TECHNOLOGY, MECHANISMS NEEDS RECOGNITION AS A NO ONE AT NASA HQS TO DEAL WITH MECHANISMS DISCIPLINE

SPACE MECHANISMS WORKSHOP FINDINGS SIGNIFICANT TECHNOLOGY ISSUES

- CAN'T DESIGN FOR DECADES OF USEFUL LIFE
- MECHANISMS/TRIBOLOGY TECHNOLOGY BASE 20 YEARS OLD
- NO GUIDELINES, HANDBOOKS, OR STANDARDS FOR DESIGNERS
- AN INADEQUATE UNDERSTANDING OF FAILURE MODES
- ACCELERATED TESTING FOR "30 YEAR LIFE" IS AN UNKNOWN
- POTENTIAL ENVIRONMENTAL EFFECTS DIFFICULTIES MAY EXIST
- STORAGE PRIOR TO LAUNCH A SIGNIFICANT PROBLEM
- **OPERATION AT LOWER CRYOGENIC TEMPS (2.6°K VS 77°K)**
- SERVICEABILITY OF MECHANISMS NOT BEING CONSIDERED
 - **VIBRATION ISOLATION IMPORTANT ON LARGE PLATFORMS**

SPACE MECHANISMS WORKSHOP FINDINGS

TECHNOLOGY IMPLEMENTATION NEEDS

- **MECHANISM DESIGN RULES AND GUIDELINES** MANUAL
 - VALIDATED ACCELERATED TEST METHODS
 - -- FOR CRITICAL COMPONENTS -- FOR HARSH ENVIRONMENTS
- **MECHANISM/TRIBOLOGICAL PROBLEMS AND** CATALOG OF HISTORICAL
- SOLUTIONS FROM PREVIOUS NASA MISSIONS **AEROSPACE MECHANISMS SYMPOSIUM TO**
- PRESENT MORE PAPERS ON SPACE MECHANISMS *IECHNOLOGY*
 - FOCUSED WORKING GROUPS ON SPECIFIC **PROBLEM AREAS**

SPACE MECHANISMS TECHNOLOGY NEEDS

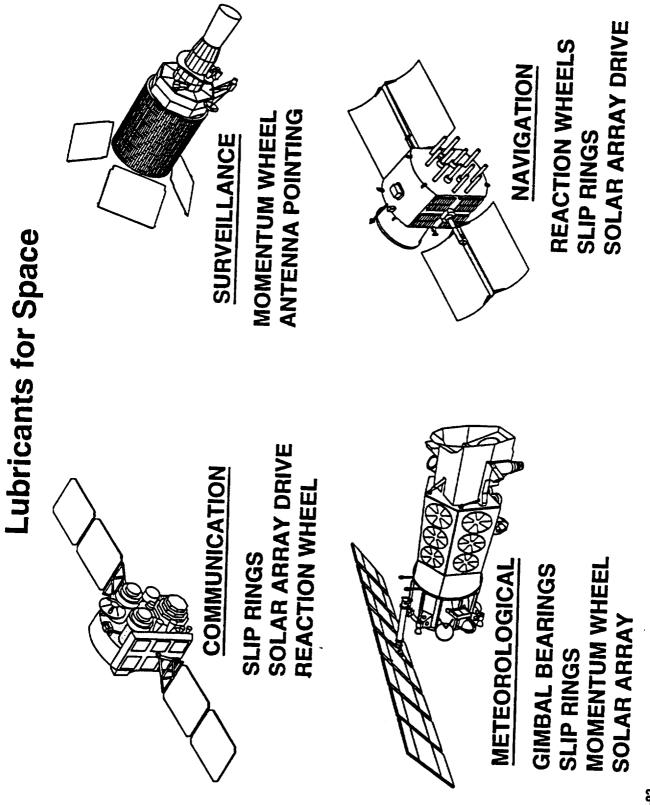
Paul D. Fleischauer The Aerospace Corporation El Segundo, California

Space Mechanisms Technology Needs

Introduction

- The Aerospace Corporation Functions as an "Architect-Engineer" for National Security Programs
- Specializes in Advanced Military Space Systems
- Technology Operations Conducts Scientific Research and Promotes the Insertion of Advanced Technologies
- Support is Provided to Programs in Launch Vehicles, Navigation, Meteorology, Communications, & Surveillance

Space Mechanisms Technology Needs


Outline

- Introduction to S/C Mechanisms, Moving Mechanical Assemblies, Mechanical Subsystems
- MMA Functions Program Requirements & Technology Needs
- Mechanical Subsystem/Component Performance •
- New Technologies Research and Testing
- MMA Case Studies
- Summary and Conclusions

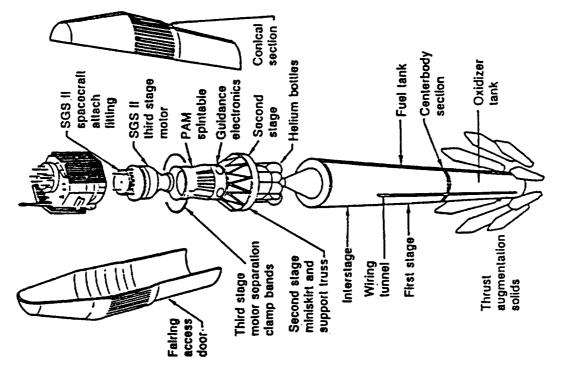
Major Spacecraft Subsystems

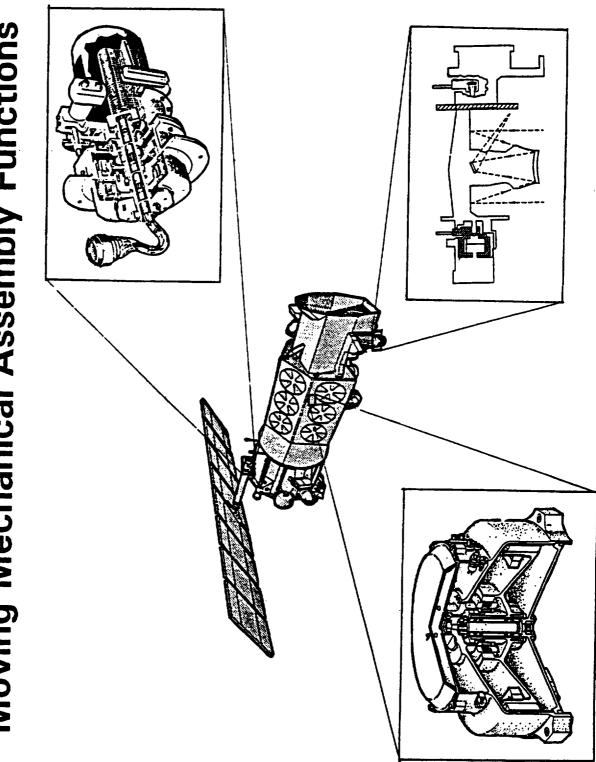
- Guidance, Navigation, & Control
- Communications "Up/Down" & "Cross"
- Command & Data Handling
- Power Solar Cells, Batteries, etc.
- Thermal Passive, Semi-passive, & Active
- Structures & <u>Mechanisms</u>

Other systems have advanced and made mechanisms life-limiting

5558-92

Mechanical Subsystems

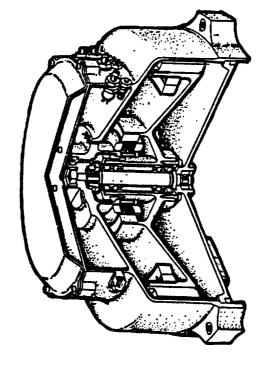

High-Cycle Mechanisms


- Antenna Pointing & Tracking
- Solar Array Pointing & Tracking
- Attitude Control Reaction, Momentum Wheels, CMGs
- Boom Extensions

Low-Cycle Mechanisms

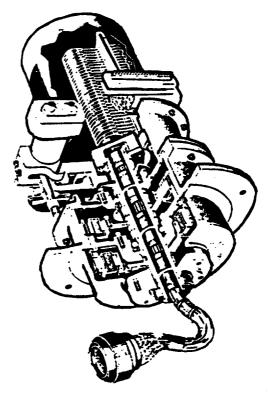
- Antenna Launch Retention/Deployment
- Solar Array Retention/Deployment
- Contamination Cover Removal
- Spacecraft/Launch Vehicle Separation

Typical Deployment Mechanisms



Moving Mechanical Assembly Functions

Reaction Wheel Assembly

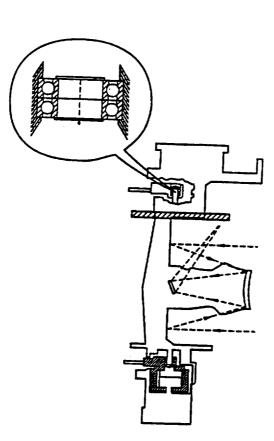


Lifetime Torque Stability Reliability Producibility

Technologies

Ceramic & Ceramic-Like Coatings/Parts Synthetic Lubricants Feedback Control Sensors/Systems (Health Monitoring)

Solar Array Drive Mechanism


lssues

Environmental Stability Low Noise Slip Rings Reliability Producibility

Technologies

Conductive Solid Lubricants Ceramic & Ceramic-Like Coatings/Parts

Sensor Pointing Gimbal

lssues

Low, Constant Torque Low Torque Noise Reliability Wide Temp. Range Long Life

Technologies

Ceramic & Ceramic-Like Coatings/Parts Ultra-Low Friction Solid Lubes Synthetic Lubes, Selected Systems Adaptive Bearing Designs

.

42

E

TRIBOMECHANISM/COMPONENT PERFORMANCE

Momentum/Reaction Wheel, CMG & Gyro Experience

Program	Wheel Type	Problem	Cause	Action
Navstar/GPS	Reaction Wheel 4 per satellite	On orbit and test failures - high torque	Lubricant depletion	New lube qualification
GPS IIR	Reaction Wheel	High speed cage instability	Force, mass resonance	Force, mass biased cages
DMSP	Reaction Wheel	Bearings/lube could not be delivered	Lube degradation	Extensive bearing run in and screening
DSP	Large Momentum Wheel	Torque/temp. anomalies	Lubricant starvation	Passive oil deliverv system
DSCS III	Reaction Wheel	Torque noise, vibration	Unknown	Redundant wheels
MILSTAR	Rate Gyroscopes	Drift rate/torque instability	Lubricant starvation	Improved lube, cage processing
CDP	Large CMGs; >1 per satellite	Excessive torque	Lube loss, cage instab.	Active oiler system, new oil

Problems
to
Solutions
1
Technologies
New

Lubricants

- Synthetic Oils
- Tailored Properties, Low Volatility, Viscosity of Choice, Low Pour Point, Low Reactivity
 - Increased Life, Factor of 10
- Sputter-Deposited Solid Lubricant Thin Films
 - Ultra-Low Friction
 - Low Noise, Debris
 - Long Life
- Conductive Films

Wear Resistant Materials

- Hard Coatings & Ceramic Parts
- Ultra-Smooth Surfaces, Low Torque Noise
 - Little or No Wear
- Need for Designer Lubricants Additive Criteria t

New Technologies - Solutions to Problems (Cont'd.)

Health Monitoring - Feedback Control

- Sensors
- Performance Monitoring
- Lubricant Failure Criteria
 - Structure, Balance Shift
 - Induced Vibration
- Data Processing
 - On Board
- Minimum Interrogation
- Remedies
- Lubricant Replenishment

Adaptive Bearing Designs

- Built-In Jitter Control
- Low Torque Noise

Additives
f Lubricant
Studies of
Surface

Function and Performance of Additives Depend on Type of Surface Interaction

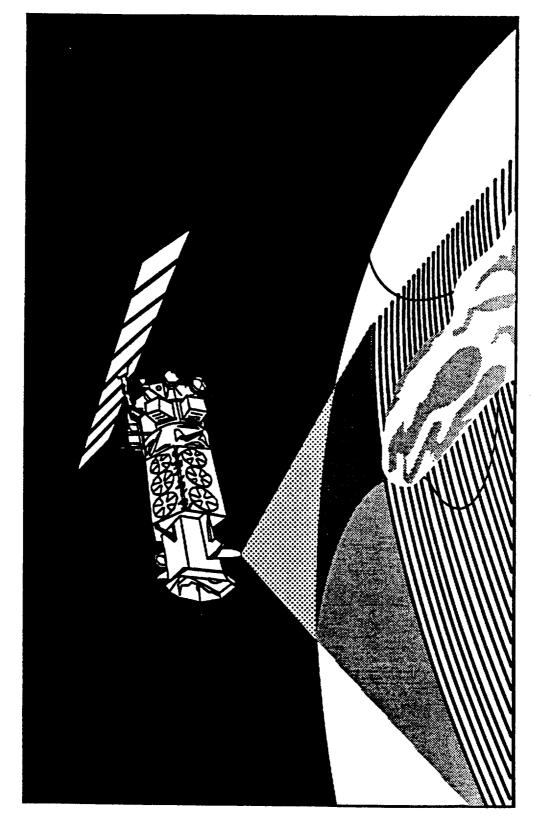

Antiwear, Film-Forming Additives

- Film Thickness Increases with Use
 - Reduces Wear
- Can Increase Friction/Torque

Friction Reducing Additives

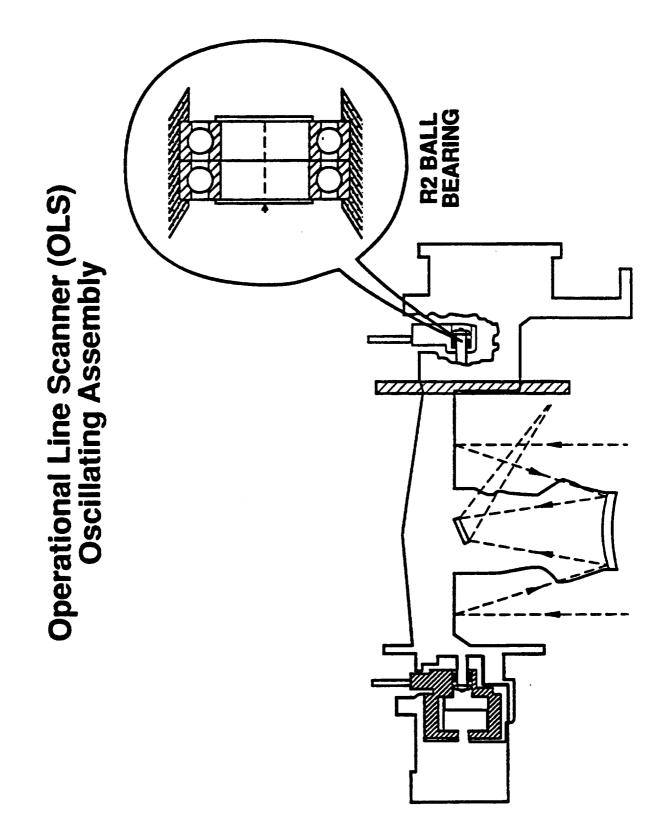
- Form Very Thin Reaction Layer on Contacting Surfaces
 - Friction Modification Influences Fluid Properties
- Synthetic Oils Affected Differently Compared to Mineral Oils

Chemical States of PbNp on Bearing Steel



Lubrication of Spacecraft Mechanisms

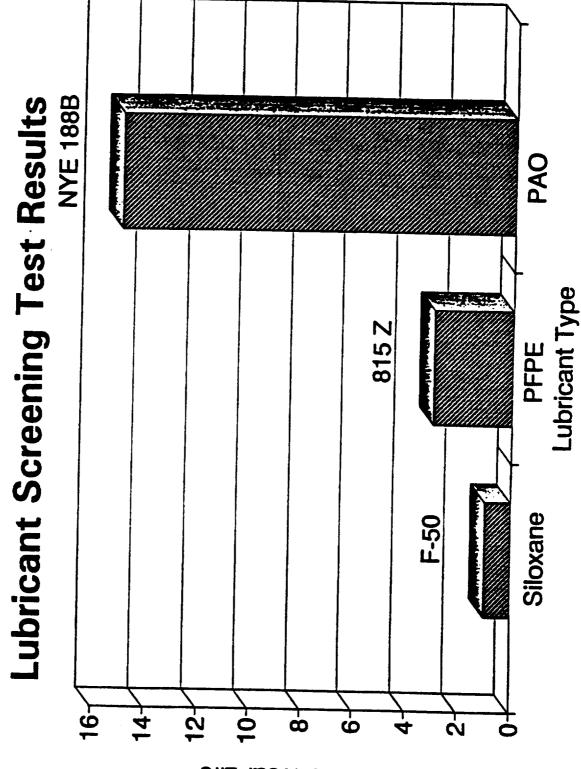
Case Studies


Scanner Gimbal

Reaction Wheel Assembly

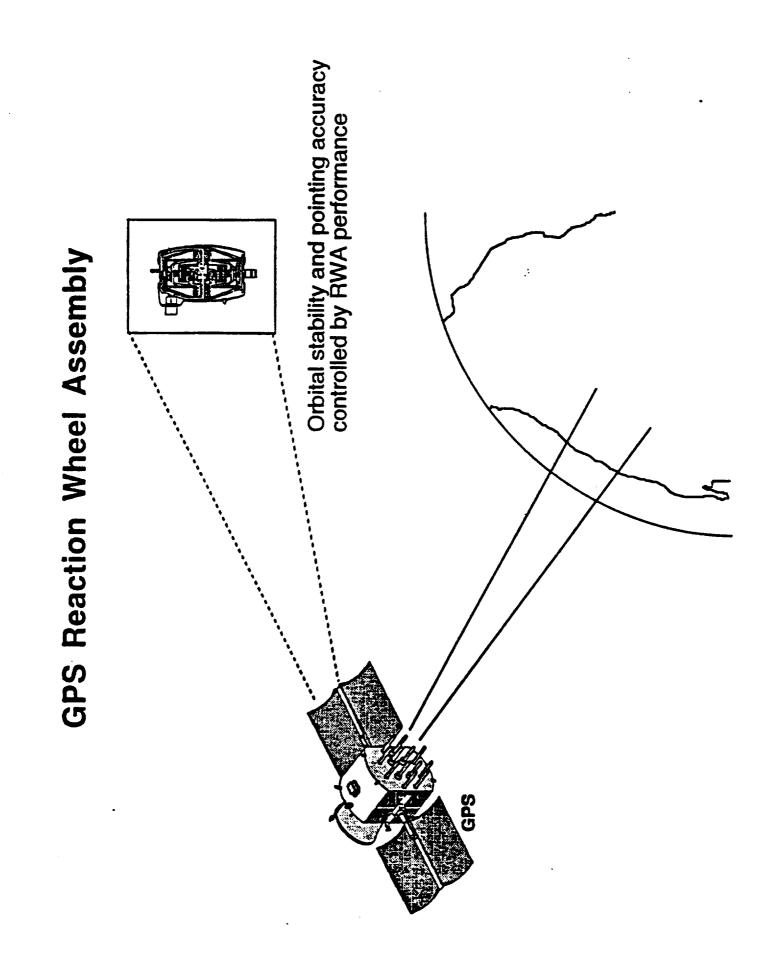
DMSP Operation

DD-962

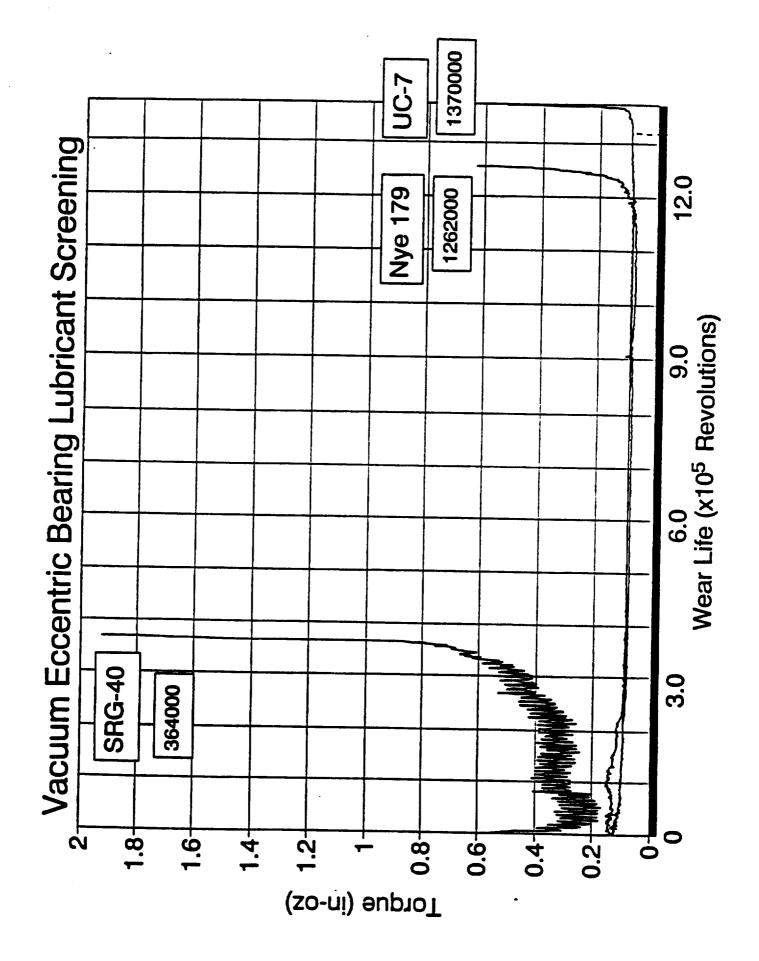

Lubricant Test Approach

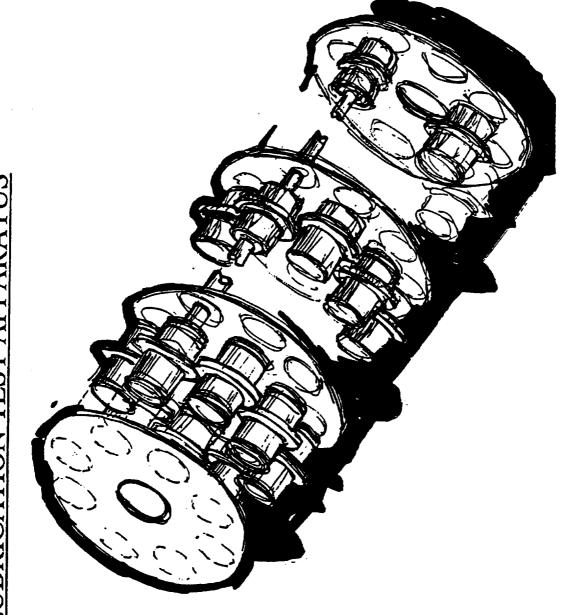
Screening Tests

Sensor Simulation Test


Continuous Torque, Temperature Measurement Detailed Post-Test Chemical, Physical, & Mechanical Analyses

:


Relative Wear Life


aring Verification Test	30,000	Z0,000	00,000
Bearing Verifi TORQUE DATA	INTIAL CAS 1500 h	PEPE PEPE 2350 h 2350 h 2350 h 2350 h	

0 **Typical Reaction Wheel** 0

1.1

	Lubrication of Spacecraft Mechanisms
Sumi	Summary
٠	Mechanical Subsystems Anomalies/Failures due to Lubrication Problems
•	Other Subsystems Technologies Advancing More Rapidly - Lubrication (Tribology) Becoming the Limiting Technology
•	Two Primary Types of Lubrication Problems - Supply or Loss of Lubricant - Chemical Reaction (Oxidation, Polymerization) of Lubricant
•	Subsystems with the Most Problems Include Momentum Stabilization Devices (Wheels), Gimbals & other Boundary Lubricated Devices, Sliding Electrical Contacts, Gyroscopes
•	Technological Solutions Include Synthetic Lubricants and Hard, Anti-wear Coatings for Contacting Parts

•

S

58

Space Mechanisms Technology Needs

Conclusions

- Technologies (New Materials, Processes) Exist to Solve Most Lubrication Problems
- Testing Needed to Demonstrate Technologies for Program Insertion
- Contractors Typically Hesitant to do Testing at Screening and Component Level
- Independent Testing Capabilities Needed to Assist Programs and Contractors

SPACE-RELATED TRIBOLOGY PROGRAMS

K.R. Mecklenburg Wright Laboratory Wright-Patterson Air Force Base, Ohio

PRESENTED: BE COULD THAT TOPICS

SDIO ULTRA LOW FRICTION FILM

SDIO MOMENTUM TRANSFER DEVICE LUBRICATION

SDIO HEALTH MONITORING

DARPA CERAMIC INSERTION

DARPA CERAMIC BEARING TECHNOLOGY

LIQUID LUBRICANTS FOR SPACE

SOLID LUBRICANTS FUNDAMENTALS

STRESSES IN THIN FILMS WEAR AND FRICTION

PULSED LASER DEPOSITION

NASP LIQUID LUBRICANTS

CORROSION UNIVERSITY INITIATIVE

CERAMIC UNIVERSITY INITIATIVE

AFOSR PROGRAMS

DIAMOND COATING OF BALLS

METAL MATRIX COMPOSITES

POWDER LUBRICATION COMPUTER ANIMATION

PROPULSION LABORATORY

62

FOR OFFICIAL USE ONLY	DATE: 22 Sep 92		IN-HOUSE X	FILM DEVELOPMENT AND ORMANCE POTENTIAL. ULFF STRATED IN ROLLING WITH THE	(, INSA, TA & T, NRL, SNL	 PROGRAM ELEMENT SUPPORTS: BRILLIANT PEBBLES BRILLIANT FEBBLES BRILLIANT EYEB GLOBAL PROTECTION TECH SAT 	
	PMA: F1504 TASK#4 - TRIBOMECHANISMS	ECT TITLE: ULTRA LOW FR ING X NEW		BASE SUPPORT FOR THE ULTRA LOW FRICTION FILM DEVELOPMENT AND ALITY CONTROL AND DEMONSTRATION OF PERFORMANCE POTENTIAL. ULFF ONSTRATED IN SLIDING AND PARTIALLY DEMONSTRATED IN ROLLING WITH THE THIS EFFORT IN EARLY '93.	EROSPACE, NATIONAL CENTRE FOR TRIBOLOGY, INSA, TA & T, NRL, SNL	BENEFITS Improved Film Reliability Reproducibly Deposited Films Increased Film Technology Utilization Demonstration Capability For Contractor Capability For Contractor Capability For Contractor Echnology transition Echnology transition Echnology transition Echnology transition Echnology transition Echnology transition Echnology transition Echnology transition Capability For Contractor Capability For Contr	
				S & OBJECTIVES REPORT ITY CONTROL ORMANCE CRIMANCE ERING DESIGN RING PERFORMANCE RING DESIGN RING LIFE TESTING RING LIFE TESTING RING LIFE TESTING RING LIFE TESTING RING LIFE TESTING RING LIFE TESTING RING PERFORMANCE TING PERFORMANCE CONTRACTOR SUPPORT CONTRACTOR SUPPORT			
			PROJECT TITLE EXISTING X DESCRIPTION: TRANSITION, CAPABILITY I		DESCRIPTIOI TRANSITIO CAPABILIT EXPECTED	CONTRACTO	PROJECT GOAL • COMPLETE TECH • COMPLETE OUAL • SPECIFICATIONS • COMPLETE QUAL • COMPLETE OUAL • COMPLETE QUAL • COMPLETE OUAL • COMPLETE QUAL • COMPLETE QUAL • COMPLETE QUAL • COMPLETE PERF • COMPLETE PERF • PUBLISH ENGINE • PUBLISH ENGINE • CONCLUDE BEAF • CONTINUE DEMO

FOR OFFICIAL USE ONLY

FOR OFFICIAL USE ONLY	DATE: 22 Sep 92		IN-HOUSE	EXISTING x IN-HOUSE DESCRIPTION: DESCRIPTION: NEW CONTRACT x IN-HOUSE DESCRIPTION: DEMONSTRATION, TRANSITION, AND INSERTION OF ADVANCED SOLID LUBRICATION CONTRACTOR ACCEPTANCE TECHNOLOGY INTO VARIOUS SDI MOVING MECHANICAL ASSEMBLY SYSTEMS. CONTRACTOR ACCEPTANCE OF THIS GENERIC TECHNOLOGY WOULD UPGRADE THE 20-30 YEAR OLD LUBRICATION TECHNOLOGY PRESENTLY BEING USED IN SATELLITE CONSTRUCTION.	HUGHES AIRCRAFT COMPANY, EL SEGUNDO, CA LOCKHEED MISSILES AND SPACE, SUNNYVALE, CA	PROGRAM ELEMENT	 SUPPORTS: BRILLIANT PEBBLES BRILLIANT EYES GLOBAL PROTECTION AGAINST LIMITED STRIKES GROUND BASED INTERCEPTOR 	
	NS	ROGRAM	×				I ECHNOLOGY NUE (LESS QUE LFE SCEPTIBILITY DESIGN	
	TASK#4 - TRIBOMECHANISMS	PROJECT TITLE: ULTRA LOW FRICTION FILM DEMONSTRATOR PROGRAM	CONTRACT			BENEFITS	TECHNOLOGY INSERTION USER ACCEPTANCE OF TECHNOLOGY UNIFORM BEARING TORQUE (LESS NOISE) LOWER FRICTIONAL TORQUE (LESS NOISE) LOWER FRICTIONAL TORQUE (REDUCED POWER) LESS DEBRIS LOWER CONDENSABLE CONTAMINATION LONGER OPERATIONAL LIFE REDUCED MOISTURE SUSCEPTIBILITY LESS COMPLICATION IN DESIGN	
							••••	
		ULTRA LOW FRICT	NEW	CRIPTION: DEMONSTRATION, TF TECHNOLOGY INTO VARIOUS SDI I OF THIS GENERIC TECHNOLOGY W PRESENTLY BEING USED IN SATEL		PROJECT GOALS & OBJECTIVES	DEVELOPIVALIDATE LUBRICANT SYSTEM TECHNOLOGY INTO PRECISION GIMBAL MECHANISMS TO MEET FUTURE GIMBAL PERFORMANCE REQUIREMENTS: DEMONSTRATE BEARING LUBRICATION DEMONSTRATE BEARING LIFE IMPROVEMENT (10 YEAR) DEMONSTRATE GIMBAL SYSTEM (1 MICRORADIAN) (1 MICRORADIAN)	
	04	ITLE: (×	ON: D LOGY GENER	IOR L	30AL	EVELOP/VALIDATE (STEM TECHNOLOF EET FUTURE GIMBAL EET FUTURE GIMBAL EET FUTURE GIMBAL EET FUTURE GIMBAL EET FUTURE GIMBAL DEMONSTRATE BI IMPROVEMENT (1 MPROVED ACCU (1 MICRONED ACCU (1 MICRONED ACCU	
	PMA: F1504	PROJECT 1	EXISTING	DESCRIPTI TECHNC OF THIS PRESEN	CONTRACTOR LOCATION:	PROJECT (DEVELOP/VALIDATE LU SYSTEM TECHNOLOGY PRECISION GIMBAL ME MEET FUTURE GIMBAL PERFORMANCE REQUI DEMONSTRATE BEA IMPROVEMENT (10) DEMONSTRATE BEA IMPROVEMENT (10) DEMONSTRATE GIM IMPROVED ACCURI (1 MICRORADIAN) 	

FOR OFFICIAL USE ONLY

ie.

	DATE: 22 Sep 92		IN-HOUSE X	BASE SUPPORT FOR THE LUBRICATING ASPECTS OF AN ADVANCED MOMENTUM ATION OF ADVANCED LIQUID LUBRICANT INTO TECH SAT REACTION WHEELS.	CONTRACTOR LOCATION: AEROSPACE, NATIONAL CENTRE FOR TRIBOLOGY, TA & T, NRL, SNL, WL/UD	PROGRAM ELEMENT	 SUPPORTS: BRILLIANT PEBBLES BRILLIANT EVES GLOBAL PROTECTION AGAINST LIMITED STRIKES TECH SAT 	
SE ONLY	WS	DGY BASE	CT ×	ICATING ASPEC JBRICANT INTO	EFOR TRIBOLOG	S	IT WILL MEET LABILITY, AND S ABILITY ONSISTENCY G VIBRATION G VIBRATION G VIBRATION FIC NOISE SURE SURE SURE SURE SURE SURE CAUL V	SE ONLY
FOR OFFICIAL USE ONLY	TASK#4 - TRIBOMECHANISMS	TRANSFER DEVICES TECHNOLOGY BASE	CONTRACT	r for the lubr Nced Liquid Ll	TIONAL CENTRE	BENEFITS	DEVELOP MTD'S THAT WILL MEET PERFORMANCE, RELIABILITY, AND LIFE REQUIREMENTS: TRANSIENT INPUTS OPERATIONAL STABILITY PERFORMANCE CONSISTENCY PERFORMANCE CONSISTENCY PERFORMANCE CONSISTENCY PERFORMANCE CONSISTENCY PERFORMANCE CONSISTENCY PERFORMANCE CONSISTENCY NOISE I COW VAPOR PRESSURE REQUIREMENTS OBTAIN SPACE OPERATIONAL EXPERIENCE WITH ADVANCED LIQUID LUBRICANT	FOR OFFICIAL USE ONLY
Б	4 - TRI	=ER DE/	×	UPPOR	ACE, NA			P P
	TASK	MOMENTUM	NEW	DESCRIPTION: TECHNOLOGY BASE SI TRANSFER DEVICE. APPLICATION O	OCATION: AEROSP/	PROJECT GOALS & OBJECTIVES	DENTIFY LUBRICANTS, PARTS, PROCESSING, AND RETAINERS THAT PROVIDE 10 YEAR LIFE PERFORMANCE WITH MINIMUM TORQUE/NOISE VALIDATE SPIN BEARING SYSTEM WITH REDUCED VIBRATION AND WITH REDUCED VIBRATION AND INCREASED BEARING LIFE FOR MTD'S DIRECT SUBSTITUTION OF ADVANCED LIQUID LUBRICANT INTO TECHSAT REACTION WHEELS FOR SPACE EXPERIENCE	
	F1504	TITLE:		FER DE	TOR L	GOAL	IDENTIFY LUBRICANTS, PROCESSING, AND RET PROVIDE 10 YEAR LIFE PERFORMANCE WITH N TORQUE/NOISE VALIDATE SPIN BEARIN WITH REDUCED VIBRA1 NCREASED BEARING L DIRECT SUBSTITUTION LIQUID LUBRICANT INT REACTION WHEELS FO EXPERIENCE	
	PMA: F1	PROJECT TITLE:	EXISTING	DESCRIPT	CONTRAC	PROJECT		

FOR OFFICIAL USE ONLY PMA: F1504 TASK#4 - TRIBOMECHANISMS DATE: 22 Sep 92	PROJECT TITLE: MOMENTUM TRANSFER DEVICE DEMONSTRATOR PROGRAM	EXISTING NEW X CONTRACT X IN-HOUSE	DESCRIPTION: DEMONSTRATION, TRANSITION, AND INSERTION OF ADVANCED LIQUID LUBRICATION TECHNOLOGY INTO VARIOUS SDI MOMENTUM TRANSFER DEVICES DEMONSTRATION PROGRAMS. CONTRACTOR ACCEPTANCE OF THIS GENERIC TECHNOLOGY WOULD UPGRADE THE 20-30 YEAR OLD LIQUID LUBRICATION TECHNOLOGY PRESENTLY BEING USED IN SATELLITE MOMENTUM WHEEL CONSTRUCTION.	CONTRACTOR LOCATION: BENDIX/ALLIED SIGNAL, TETERBORO, NJ SPECIFIC CONTRACTORS DEPEND ON SPERRY/HONEYWELL, PHOENIX, AZ PROGRAM FINDINGS & DIRECTIONS	PROJECT GOALS & OBJECTIVES BENEFITS PROGRAM ELEMENT	DEVELOP/VALIDATE LUBRICANT SYSTEM TECHNOLOGY INTO SYSTEM TECHNOLOGY INTO SYSTEM TECHNOLOGY NTO SYSTEM TECHNOLOGY NTO SYSTEM TECHNOLOGY NTO MEET FUTURE MOMENTUM WHEEL PERFORMANCE REQUIREMENTS:
---	--	------------------------------------	--	--	---	--

B

FOR OFFICIAL USE ONLY	PMA: F1504 TASK#4 - TRIBOMECHANISMS DATE: 22 Sep 92	PROJECT TITLE: HEALTH MONITORING TECHNOLOGY BASE	EXISTING X NEW X CONTRACT X IN-HOUSE X	DESCRIPTION: DETERMINE, DEVELOP, AND DEMONSTRATE SENSING SYSTEM TECHNOLOGY NECESSARY TO CONTROL/ALTER BEARING PERFORMANCE IN VARIOUS SDI MOVING MECHANICAL ASSEMBLY SYSTEMS. HEALTH MONITORING CAPABILITY WOULD PROVIDE NECESSARY PERFORMANCE CORRECTION TO CONTROL SATELLITE OPERATION.	CONTRACTOR LOCATION: AEROSPACE, NATIONAL CENTRE FOR TRIBOLOGY, TA & T, NRL, SNL, LANL, JPL	PROJECT GOALS & OBJECTIVES BENEFITS PROGRAM ELEMENT	 IDENTIFY BEARING FALURE VIBRATION SIGNATURES IDENTIFYVALIDATE PROCEDURES IDENTIFYVALIDATE IDENTIFYVALIDATE	FOR OFFICIAL LISE ONLY
-----------------------	---	--	--	---	--	---	---	------------------------

.

67

|--|

FOR OFFICIAL USE ONLY

ł.

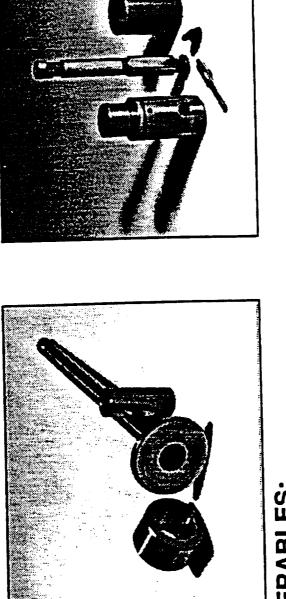
DARPA CERAMIC TECHNOLOGY INSERTION PROGRAM

CONTRACTOR	SYSTEM/ COMPONENT	AGENT POC	PROGRAM MANAGER
DETROIT DIESEL 13400 OUTER WEST DRIVE, WEST DETROIT, MI 48239-4001	M109 ENGINE VALVE TRAIN WEAR COMPONENTS	ERNIE SCHWARTZ TACOM/ AMSTA-VCA 313-574-5656	T. MICHAEL KEELAN 313-592-5973
GENERAL DYNAMICS ELECTRODYNAMIC 150 AVENEL STREET AVENEL, NJ 07001	ROTATING MACHINERY BEARINGS	PAT HUGHES 703-780-7943	JIM SMITH 203-433-6949
RAYTHEON COMPANY MISSILE SYSTEMS DIVISION 50 APPLE HILL DRIVE TEWKSBURY, MA 01876	SPARROW MISSILES IR SEEKER BEARINGS	RODKENLY NAVAL WEAPON CIR 619-939-3331	DUNCAN BOYCE 508-858-1088
UNITED TECHNOLOGIES- PRATT & WHITNEY P.O. BOX 109600 WEST PALM BEACH, FL, 33410-9600	F-100 ENGINE DIVERGENT NOZZLE	ROGER SPENCER ASD/YZJ 513-255-4169	RICH DICKENSON 407-796-4464
GENERAL ELECTRIC AIRCRAFT ENGINES ONE NEUMANN WAY CINCINNATI, OH 45215	EXHAUST NOZZLE FLAP AND SEAL	ROGER SPENCER ASD/YZJ 513-255-4169	REED OLIVER 513-786-4708
ALPHA OPTICAL 1611 GOVERNMENT STREET OCEAN SPRINGS, MI 39564	AV-8B ARBS SPINEL DOME	HUGH BLACKWELL NAVAVN DEPOT 919-466-8034	JOHN FAHNSTOCK 601-875-0211

.

DARPA CERAMIC TECHNOLOGY INSERTION PROGRAM

•


CONTRACTOR	SYSTEM/ COMPONENT	AGENT POC	PROGRAM MANAGER
UNITED TECHNOLOGIES-PRATT & WHITNEY P.O. BOX 109600 WEST PALM BEACH, FL 33410-9600	F-117 ENGINE MAINSHAFT BEARINGS	JOHN DELL WL/POSL 513-255-7230	JOHN MINER 407-796-5951
ALLIED SIGNAL AEROSPACE CO GARRETT AUX. POWER DIVISION 2739 EAST WASHINGTON STREET P.O. BOX 5227 PHOENIX, AZ 85010-5227	POWER CART SiN4 NOZZLE	MONTY SIEVER SA/ALC/LDPG 512-925-8411	ED TASCHNER 602-365-5712
TELEDYNE CAE 1330 LASKEY ROAD P.O. BOX 6971 TOLEDO, OH 43612	J402 ENGINE MAINSHAFT BRGS	JIM O'DONNELL NAWC-TRENTON 609-538-6513	JOHN LAW 419-470-3881
SUNDSTRAND 4747 HARRISON AVE. P.O. BOX 7002 ROCKFORD, IL 61125-7002	S3A/A-10 CONST. SPEED DRIVES	JIM O'DONNELL NAWC-TRENTON 609-538-6513	DR. JONG-YEONG YUNG 815-394-2870
ALLIED SIGNAL AEROSPACE CO. AIRESEARCH 19201 SUSANA ROAD RANCHO DOMINGUEZ, CA 90221-5710	C-130, F-111, F-15 AIR CYCLE MACHINE BEARINGS	MATTHEW POURSABA OC/ALC-LIIRE 405-736-5080	LYMAN BURGMEIER 213-512-4578

į.

ADVANCED CERAMIC TECHNOLOGY **INSERTION PROGRAM**

PROGRAM OBJECTIVE:

ENGINE COMPONENTS WHICH ARE EXPECTED TO ENABLE THE POWER EXTENSION OF THE CURRENT 8V-71T (440 BHP) FOR THE M109 SELF-PROPELLED HOWITZER, TO 500 BHP. DEMONSTRATE PRODUCTION VIABILITY (EQUIVALENT RELIABILITY) FOR CERAMIC

DELIVERABLES:

CERAMIC COMPONENT DRAWINGS AND MATERIAL/PROCESS SPECIFICATIONS

TEST DEMONSTRATOR ENGINE

Research and Engineering

OBJECTIVES

- Exploit ceramic technology to provide improved bearing.
- Combine ceramic ball properties, appropriate race material properties and lubricants to improve bearing useful life. •
- Qualify a domestic source for bearing manufacture.
- Qualify the bearing for a military application.
- Field the new bearing in operational platform.

Missile Systems Laboratories ACTI - Bo

Electro-Optics Laboratories

ACTI - Bearings Objective

Objective

Develop Form-Factored Silicon Nitride Spin and Gimbal Bearings for Missile Homing Improvement Program (MHIP) Common IR Seeker I

Electro-Optics Approach

Design Gimbal With Silicon Nitride Spin and Gimbal Bearings

- Fabricate Bearings
- Assemble Gimbals
- Retrofit Gimbal/Gyro Assemblies Into 3 MHIP Prototype Seekers
- Deliver 1 Seeker to Naval Air Warfare Center for Evaluation
- Baseline MHIP Performance Testing on 2 Remaining Seekers
- Repeat Performance Tests

0.710	

Pratt & Whitney

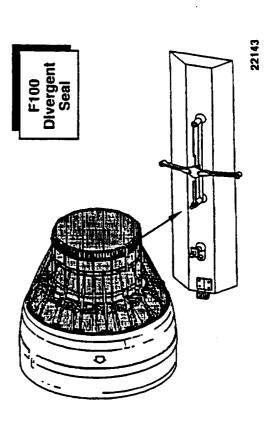
es
Š
t
<u></u>
<u> </u>
D
ō

Approach

- •
- Build On Successful CMC Engine Experience Involve Suppliers By Integrated Product Team (IPT) Finalize Material Selection With Critical .
 - Screening Tests

matrix composites in order to increase the insertion

rate of these materials into production military

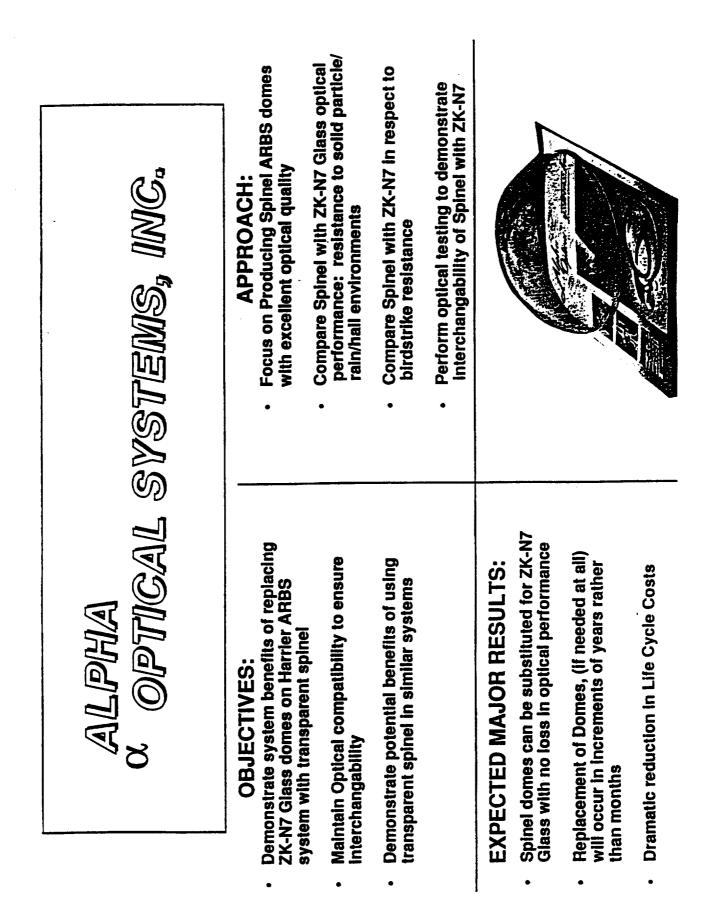

systems

Demonstrate the benefits of state-of-the-art ceramic

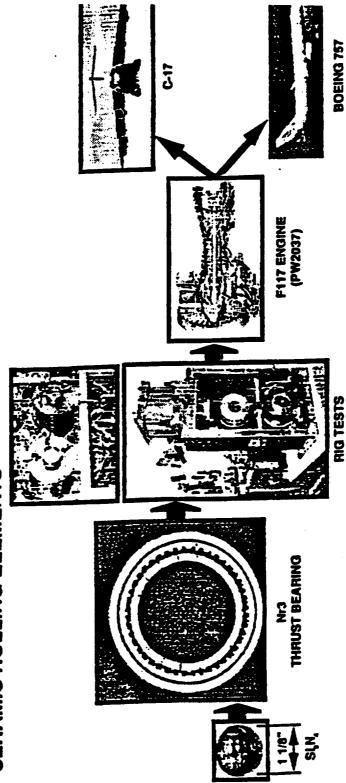
- **Optimize Material Process** ٠
- Verify Design Methods and Specification Data Through Subelements •
 - •
 - Test to Supplement Design Database Fabricate Seals For Test Verification / Engine Demonstration •

Expected Major Results

- Establish an Optimized Repeatable Material Process
- Demonstrate Reliability, Durability, and Producibility of F100 Ceramic Matrix Composite Divergent Seal
- Ready Ceramic Matrix Composite Component for Insertion in F100 Engine Family



GENERAL ELECTRIC AIRCRAFT ENGINES
OBJECTIVE


- INTRODUCE CERAMIC MATRIX COMPOSITE COMPONENTS TO F110 PRODUCT ENGINES, AS FOLLOWS:
- HOT SECTION APPLICATION, CONSISTENT WITH TEMPERATURE **CAPABILITIES OF THE CMC;**
- LOW RISK APPLICATION, CONSISTENT WITH THE MATERIAL **PROPERTIES OF CMC;**
- CURRENT HIGH MAINTENANCE COMPONENT, TO PRODUCE A **BENEFIT FOR THE PRODUCT LINE;**
- ENGINE SUBSTANTIATION AND QUALIFICATION TOLLGATES INTRODUCTION AS EARLY AS POSSIBLE, CONSISTENT WITH AND REQUIREMENTS.

CERAIMIC TECHNOLOGY INSERTION PROGRAM

- P&W CONTRACT INITIATED 3 APR 92
- FUNDED BY DARPA \$1.5M (FY91-94)
- HYBRID CERAMIC (SI N BALLS/STEEL RACES) REPLACES ALL-STEEL BEARING
 - **DURABILITY IMPROVEMENT**
- HIGH TEMP/HIGH DN IHPTET GOALS NECESSITATE CERAMIC ROLLING ELEMENTS

Allied-Signal Aerospace Company Garrett Auxiliary Power Division	 Design and demonstration testing completed under Altied-Signal funding Fabricate metal and ceramic hardware to convert nine GTCP85-180 gas turbine engines (GTEs) to the ceramic turbine nozzle configuration Perform endurance testing at GAPD Two units for one year will operate for 5,000 hours Two units for 2.5 years will operate for 15,000 hours Perform field testing of five units at Luke AFB for 2.5 years 	Ceramic Turbine Nozzle Insertion	
Allied-Signal Aer Garrett Auxiliar Objective	Demonstrate integrity and durability of ceramic turbine nozzles in long-term engine endurance and fielded ground cart tests	Expected Major Result Generate test experience that will facilitate the use of ceramic components in turbine engine production	

-

E.

.

undstrand Aerospace	 OBJECTIVES Apply Engineering Ceramics to Wear Critical Components in the S-JA/A-10 Constant Speed Drive Increasing Relitability and Performance BENEFITS Increased MTBF Through Reduced Wear Increased Cataputi Start Reliability Through Improved Low Lube Tolerance Increased Survivability Through Increased Contamination Relatance Increased Efficiency Through Higher PV-Wear Capability 	APPHOACH • Comparative Wear Resting of Ceramic Materials • Rerative Design Approach Using Finite Element Analysis, NASA-CARES, and Concurrent Engineering for Design to Cost • Design Interchangeability for Easy Insertion • Proof, Rig and CSD Testing for Performance Including Endurance, OR Deprivation, Cold Start, High Temperature, and Efficiency MISENTION PLAN • NATC Flight Testing In Non-Dedicated S-3As • Preferred Spares Substitution In S-3A, A-10 • Preferred Spares Substitution In S-3A, A-10 • Coordinated Through S-3A Class Desk, Wash, DC, NAWC, Under Par River, OC-ALC, Tinker AFB
Sundstrand	Connected in the connec	Bank Constant Speed Drho

I.

Allied-Signal Aerospace Company	AiResearch Los Angeles Division	ERAMIC BEARING PROGRAM	AEBROACH	CBRID BALL • ANALYZE EXISTING BEARING DESIGNS FOR CONVERSION TO CERAMIC HYBRID BEARINGS IMUM • CONDUCT LIFE CYCLE COST STUDY TO VERIFY MYBRID BEARING	•	r FLEET MONITOR BEARING AND OIL MIST TEMPERATURE MONITOR VIBRATION	PERFORM FLIGHT EVALUATION TESTS:	OSE C130, F111 AND F15 COOLING TURBINES EVALUATE UP TO 10 UNITS OF EACH CONFIGURATION	MILESTONES	DESIGN AND ANALYSIS OF BEARINGS AND MOUNTING METHODS (JANUARY 1993)	 COMPLETION OF FIFTY HOUR ACCELERATED TEST PROGRAM ON THREE DIFFERENT COOLING TURBINES (JULY 1993) 	COMPLETION OF FLIGHT TEST OF TEN COOLING TURBINES OF EACH CONFIGURATION (OCTORED 1994)
Allied-Signal	AiResearch	CEF	DALECTINES	 DEMONSTRATE ABILITY TO INCORPORATE CERAMIC HYBRID BALL BEARINGS IN EXISTING COOLING TURBINES, WITH MINIMUM INFPACT ON TURBINE DESIGN 	 DEMONSTRATE SUCCESSFUL OPERATION OF COOLING TURBINES DURING LABORATORY TESTING 	 DEMONSTRATE SUCCESSFUL FLIGHT TESTS; RETROFIT FLEET 			FLIGHT TEST EVALUATION	 ONE YEAR TEST PROGRAM 	 CONDUCTED BY USAF OCIALC; ASSISTED BY AIRESEARCH 	 AIRESEARCH TO PROVIDE DISASSEMBLY AND BEARING ANALYSIS FOLLOWING FLIGHT TEST

Allied-Signal Aerospace Company

.

VOLOGY	6 MATERIALS TO BE STUDIED AND COMPARED	BALL FINISHING — TECHNIQUES -	GENTLE GRINDING FLOAT POLISHING	FATIGUE OF CERAMICS — AS BALLS TO BE STUDIED	COMPUTERIZED BEARING DESIGN USING CERAMIC BALL PROPERTIES	FINISHING TECHNIQUES
ERAMIC BEARING TECHI	OUTER RING (RACE) OUTER RACEWAY	SEPARATOR)	BALLS, CERAMIC INNER RING (RACE)		Mare IN 15	
			C)	1 STATIS		
LUBRICATE	CONDITION MONITORING OF CERAMIC BALL MATERIALS	SIMULATED ENGINE TESTING OF Hybrid Bearings	NEW, LESS EXPENSIVE PROCESSING OF SILICON NITRIDE CERAMICS	LAYERED CERAMICS FOR HIGHER COMPRESSIVE STRESSES AND LOADING	TWO HARDENING TECHNIQUES	CERAMIC COATING TECHNIQUES FOR GREATER DURABILITY
	LUBRICATED CERAMIC BEARING TECHNOLOGY	TED CERAMIC BEARING TECHNO OUTER RING (RACE) OUTER RACEWAY	FED CERAMIC BEARING TECHNO OUTER RING (RACE) OUTER RACEWAY BALL CAGE (SEPARATOR)	FED CERAMIC BEARING TECHNO TEC CERAMIC BEARING TECHNO OUTER RACEWAY BALL CAGE (RACE) OUTER RACEWAY BALL CAGE (SEPARATOR) BALLS, CERAMIC (RACE) (RACE)	FED CERAMIC BEARING TECHNO TED CERAMIC BEARING TECHNO (RACE) OUTER RING (RACE) OUTER RING (RACE) BALL CAGE (SEPARATOR) BALL CAGE (SEPARATOR) (RACE) BALL CAGE (SEPARATOR) (RACE) BALL CAGE (SEPARATOR) (RACE)	FED CERAMIC BEARING TECHNO COTER RING (RACE) OUTER RACEWAY BALL CAGE (RACE) OUTER RING (RACE) OUTER RACEWAY BALL CAGE (SEPARATOR) BALLS, CERAMIC (SEPARATOR) INNER RING (RACE) INNER RING (SEPARATOR) INNER RING (RACE) INNER RING (RACE) (RA

SEPARATOR / BALL INTERACTION

Ŀ.

- FOR HIGH QUALITY CERAMIC ROLLING ELEMENTS ENHANCE PROCESSING TECHNOLOGY BASE AND CERAMIC BEARINGS **OBJECTIVE:** APPROACH:
 - and Inspection Capabilities for All-Ceramic and Ceramic Hybrid Bearings Industry and Bearing User Community Provide Impetus to Ceramic Bearing to Develop Production, Finishing,
- Alternate Methods of Making Si $_3{
 m N}_4$ Inspection Techniques 0 0
 - Finishing Techniques
- Base **Operational Performance Data**
 - Property Data Comparative 000

CONTRACTOR	CONTRACT NUMBER	SYSTEM/COMPONENT	PROGRAM MANAGER
ADVANCED CONTROLS TECHNOLOGY INC 19151 PARTHENIA ST., UNIT G NORTHRIDGE, CA 91324	F33615-92-C-5908	COMPUTERIZED DESIGN AND LIFE PREDICTION BEARINGS	CRAWFORD MEEKS 818-886-0250
CERAMATEC, INC. 2425 SOUTH, 900 WEST SALT LAKE CITY, UT 84119	F33615-92-C-5915	CERAMIC COMPOSITE BEARINGS	RAYMOND CUTLER 801-972-2455
CERBEC 10 AIRPORT PARK ROAD EAST GRANBY, CT 06026	F33615-92-C-5917	CERAMIC BEARING DEVELOPMENT	JOHN LUCEK 203-653-8071
CERCOM 1960 WATSON WAY VISTA, CA 92083	F33615-92-C-5903	CERAMIC BEARING SPECIMEN TECHNOLOGY	ANDRE EZIS 619-727-6200 FAX 619-727-6209
GE AIRCRAFT ENGINES 1 NEUMAN WAY CINCINNATI, OH 45215	F33615-92-C-5926	ENGINE CERAMIC BEARINGS	MICHAEL PRICE 513-243-4227 FAX 513-243-3250
MECHANICAL TECHNOLOGY, INC. 968 ALBANY-SHAKER ROAD LATHAM, NY 12110	F33615-92-C-5909	CERAMIC BEARING TECHNOLOGY	JIM DILL 518-785-2136 FAX 518-785-2420
NORTHWESTERN UNIVERSITY BIRL-INDUSTRIAL RESEARCH LABORATORY 1801 MAPLE AVE. EVANSTON, IL 60201-3135	F33615-92-C-5935	CERAMIC COATED BEARINGS	WILLIAM SPROUL 708-491-4108 FAX 708-491-4486

.

E

OKLHOMA STATE UNIVERSITY 218 ENGINEERING NORTH STILLWATER, OK 74078-0545	F33615-92-C-5933	CERAMIC BEARING TECHNOLOGY PROGRAM	RANGA KOMANDURI 405-744-5900
			FAX 405-744-6187
TORRINGTON CO. 59 FIELD STREET TORRINGTON, CT 06790-4942	F33615-92-C-5922	IMPROVED HYBRID BEARINGS	PHILIP PEARSON 203-482-9511 EAY 202 406 2606
TORRINGTON CO. 59 FIELD STREET TORRINGTON, CT 06790-4942	F33615-92-C-5910	ROTATING BEAM FATIGUE BEARINGS	Y.P. CHIU 203-482-9511
			FAX 203-496-3605
WEDEVEN ASSOCIATES, INC 5068-A WEST CHESTER PIKE EDGMONT, PA 19028-0646	F33615-92-C-5925	run-in finishing and Tribological Performance	LAVERN WEDEVEN 215-356-7161
ARGONNE NATIONAL LAB 9700 S. CASS AVE. ARGONNE, IL 60439		NDI FOR CERAMICS	BILL ELLINGSON 703-252-5068
QUATRO 4300 SAN MATEO BLVD NE ALBUQUERQUE, NM 87110		RESONANT ULTRASOUND INSPECTION FOR CERAMIC BEARINGS	GEORGE RHODES 505-883-1994
NIST 223/A327 GAITHERSBURG, MD 20899		DUCTILE GRINDING OF CERAMICS	SAID JAHANMIR 301-975-3671
AEROSPACE CORP. 2350 E. EL SEGUNDO EL SEGUNDO, CA 90509		LUBRICATION TECHNOLOGY STEVE DIDZIULIS FOR CERAMICS 310-336-0460	STEVE DIDZIULIS 310-336-0460

PROGRAM SUMMARIES

CERAMIC BEARING TECHNOLOGY PROGRAM

CONTRACTOR: CERCOM, Inc

- **Ceramic Bearing Specimen Technology** TITLE:
- Provide Rolling Contact Fatigue Specimens and Ball Blanks from Sintered Reaction Bonded Silicon Nitride Process **OBJECTIVE:**
- Develop and Optimize Process Starting with Silicon Powder and Addition of TiO₂ as Sintering Aid **APPROACH:**
- uo Green State Specimens as Quality Control Use High Resolution Computed Tomography Technique NDE:

PROGRAM: Program Funded as Proposed

CONTRACTOR: Ceramatec, Inc

Layered Ceramic Composite Bearings TITLE: Develop Bearings with Si₃N₄ Layer on SiC Substrate Having Residual Compressive Stresses in Si₃N₄ Layer **OBJECTIVE:**

Approaches to Fabricate Layered Ceramic Composite with Compressive Stresses Use Slipcasting and Co-Sintering Produced by Thermal Mismatch APPROACH:

Program Limited to Two Tasks - Approaches Fabrication of Layered Ceramic Composites for Introducing Compressive Stresses and **PROGRAM:**

M50 Acceptable Techniques Prior to Delivery Deposition of Hard Ceramic Coatings on Deposit TiN, TiAlN₂, and CrN Coatings via Sputter Deposition Process. Thoroughly Characterize Coatings via BIRL, Northwestern University and Si₃N₄ Balls and RCF Rods Ceramic Coated Bearings CONTRACTOR: **OBJECTIVE:** APPROACH: TITLE:

Program Limited to Two Tasks - Deposition of Hard Coatings and Coating Characterization PROGRAM:

88

CONTRACTOR: Wedeven Associates, Inc

Develop Techniques for Providing Final Polishing of Ceramic Components via Evaluate for Tribological Use Si₃N₄ Balls and Discs with Rough Ground³Surfaces to Demonstrate Run-In Self-Polishing Concept. Characterize Run-In Concepts in Assembled Bearings Run-In Finishing and Tribological Surfaces and Performance Performance **OBJECTIVE: APPROACH:** TITLE:

PROGRAM: Program Funded as Proposed

CONTRACTOR: TITLE: OBJECTIVE: APPROACH:	The Torrington Company Rotating Beam Fatigue - Hybrid Bearings Develop Improved Reliability Prediction Techniques and Establish Defects/Fatigue Performance Relationships for Si ₃ N ₄ Use Rotating Beam Fatigue Tests to Establish Relationship Between Material Microstructure and Fatigue Performance. Verify in Endurance Tests with Hybrid
PROGRAM:	Ceramic Bearings Program Funded as Proposed

Gentle Processes to Polishing Concepts via Magnetic Field Assisted Polishing. and Grinding and Polishing Techniques and - Gentle Most Promising NDI Techniques (above) Use Gentle Grinding Process to Reduce Methodologies for Optimal Techniques Technologies for Si₃N₄ Ceramic Bearing Materials. ³Investigate NDI Direct Coupling Photo-Acoustic NDI Extend Absorption, Brillouin Scattering, Correlate Surface Properties with Investigate Raman Scattering, RF Develop Improved Manufacturing Program Limited to Two Tasks for Assessing Surface Damage Damage to Ground Surfaces. Oklahoma State University Tribological Performance Bearing Program Techniques Ceramic CONTRACTOR: **OBJECTIVE:** APPROACH: PROGRAM: TITLE: NDE:

91

.

.

CONTRACTOR:	CERBEC, Inc
TITLE:	Ceramic Bearing Development
OBJECTIVE:	Develop Improved Characterization and Inspection Techniques for Si ₃ N ₄ Ceramic Bearings
APPROACH:	Develop General Methodology for Understanding How Defects Affect Tribological Performance and Role that Production Processes Have on Producing Basic Defects
NDE:	Application of Ultrasound and Scanning Acoustic Inspection Techniques to Finished Balls
PROGRAM:	Program Limited to Four Tasks - Béaring Tests with Artificial Flaws; Thermal Quench Proof Tests; Wear and Fatigue Tests; Tribochemical Finishing Techniques

Combinations of Nitriding and Nitride Coatings from BIRL Program (TiN, TiAlN₂, CrN). Evaluate with Si₃N₄ Rolling Elements Hardness and Surface Properties Approaching Nitrocarburizing Techniques. Consider Si_3N_4 . Use M50 and M50NiL Substrates Develop Nitrided Metallic Races with Investigate Nitriding and Ferritic Program Funded as Proposed Improved Hybrid Bearings The Torrington Company CONTRACTOR: **OBJECTIVE:** APPROACH: PROGRAM: TITLE:

93

CONTRACTOR: GE Aircraft Engines

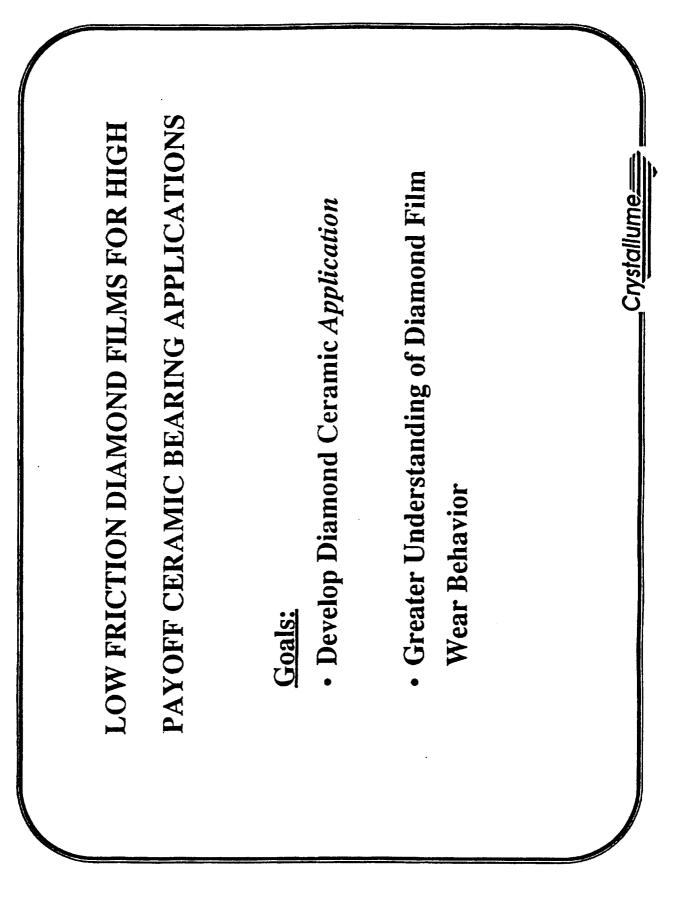
- Develop Improved Performance Data and Condition Monitoring Techniques for Engine Hybrid Ceramic Bearings Si₃N₄ Hybrid Bearings **OBJECTIVE:** TITLE:
- Relationships for Si₃N₄ Bearings. Obtain Comparative Test Data for All-Steel and Hybrid Si₃N₄ Bearings. Develop Condition Monitoring Device for Detecting Establish Induced Defect Performance **Onset of Bearing Failure APPROACH:**
- Condition Monitoring Techniques/Prototype Program Limited to Three Tasks - Induced Defect Tests; High Speed Bearing Tests; Development PROGRAM:

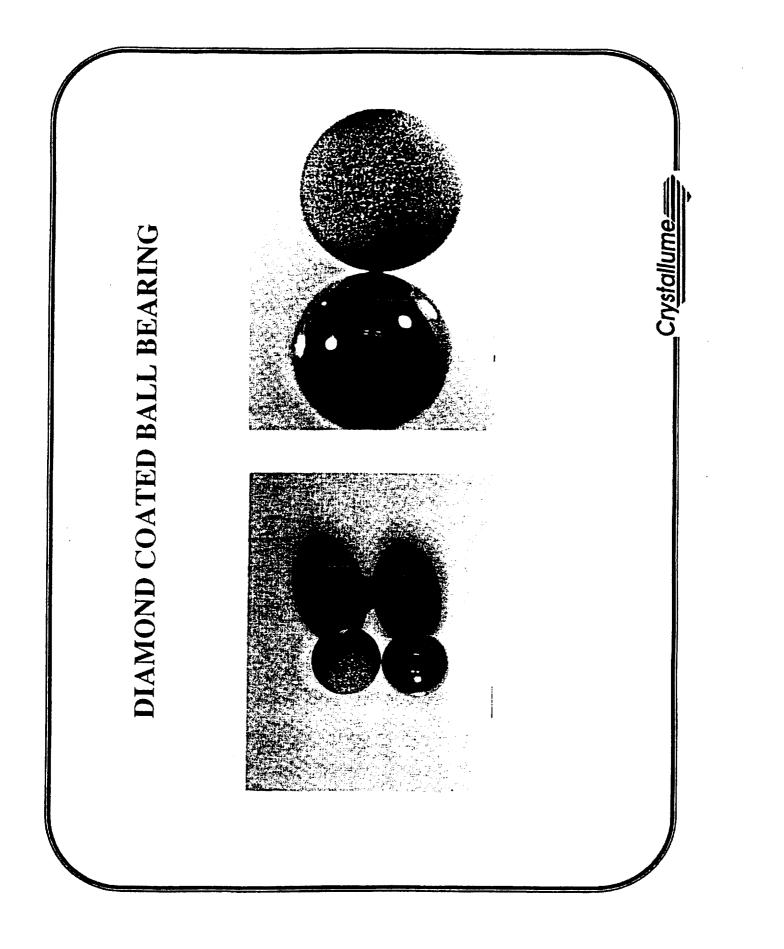
CONTRACTOR: AVCON, Inc

ł Computerized Design and Life Prediction Bearings TITLE:

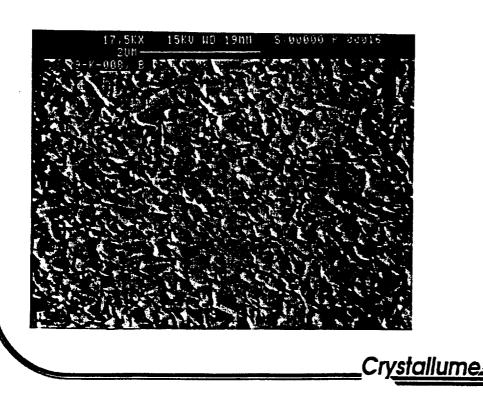
Computer Design Codes with Si₃N₄ Material Develop Improved Si₃N₄ Bearing Design Concepts via Modifying Metal Bearing Properties/Characteristics **OBJECTIVE:**

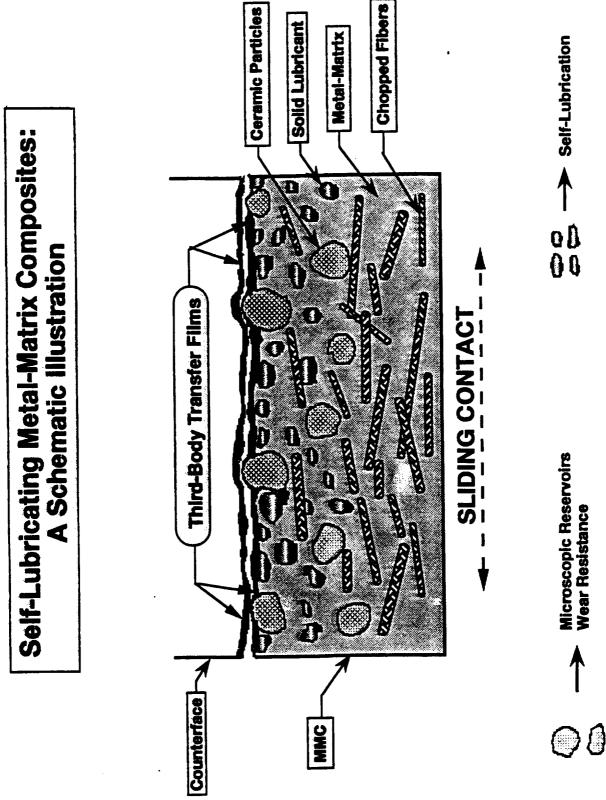
Include Si₃N₁₁ Properites and Develop Integrated, Efficient Program for Design t 0 Seek Input from Tailor Existing Computer Algorithms Bearing Manufacturers for Guidance of Ceramic Bearings. **APPROACH:**


PROGRAM: Program Funded as Proposed


ł.

MATERIALS TECHNOLOGY AREA PLAN NONSTRUCTURAL MATERIALS


1/2 WeiGHT LOSS UNDER VACUUM TEMP (°C) 170° 305° 345° 387° (°C) 170° 305°	VACKOTE / PENNIZANE / BIHC #1 / SIHC #2 / 104 dBt 111 dBt B6 dBt 151 dBt MATERIAL / VISCOSITY (@ 40°C)	MILESTONES: FY93 • OPTIMIZE BASE FLUIDS FY94 • OPTIMIZE FORMULATIONS FY95 • VALIDATE OPTIMIZED CANDIDATES IN SPACE BEARING SIMULATION CHAMBER
 PROBLEMS IN SEVERAL SYSTEMS WITH CURRENT MINERAL OIL - (VACKOTE) OIL TOO VOLATILE LOW TEMPERATURE TORQUE TOO HIGH 	EXCESSIVE BEARING WEAR	 SOLUTION: REPLACE VACKOTE WITH LOW VOLATILITY, RE- PRODUCIBLE SYNTHETIC BASE STOCK SILAHYDROCARBON #1 SILAHYDROCARBON #1 SILAHYDROCARBON #2 CANDIDATE ADDITIVES AVAILABLE FROM OTHER PROGRAMS



Diamond-Coated Ball Bearing

Silicon Nitride Ball 3mm Diameter Grade 5 Spheric, Inc.

SPACE EXPLORATION TECHNOLOGIES Moon and Mars Comparison

Benton Clark Martin Marietta Astronautics Group Denver, Colorado

National Goals

Moon --->

"Return" Astropysics observatories Earth monitoring LLOX manufacture 'Stepping stone to Mars'

Mars --->

Leap into Deep Space Exciting comparative planetology Settlements, living off the land Astrophysics Radioastronomy Vis, UV, IR, gamma, x-ray Astronomy Solar wind Cosmic ray and solar flare radiation

Exotic components in the soil (e.g., KREEP, volatile-enriched material) Impact history Polar volatiles? Highland and mare formation Geology

LB.V-G-19

Geology

Volcanism, many styles; ăctive volcanism? Seismic activity? Eolian activity Water: channels, permafrost, water-laid sediments?

Atmosphere

Weather systematics Photochemistry Climatology; analogous ice ages? Life on Mars? Endolithic organisms Sulfur-based metabolism Beneath the superoxidized zone Oases (warm, wet spots from volcanic, impact processes) Fossils (microfossils, unique structures and signs) Survival of terrestrial organisms on Mars

Moons (Phobos, Delmos) Composition, resource potential Age and Origin Effects on Martian surface?

nts
Ð
Ě
C
0
<u>_</u>
Σ
Ш

	Moon	Mars
Gravitational accel at surface	0.168 Earth-g	0.383 Earth-g
Atmosphere pressure winds shielding composition	hard vacuum N/A none	6 mb up to 100 m/s 16 g/cm ² minimum (zenith) CO ₂ , N ₂ , Ar, O ₂ , CO
Soil composition	silicates, iron oxides	silicates, salts (S, Cl), H ₂ O carbonates?, nitrates?
Polar deposits	none detected	CO ₂ , H ₂ O ices
Surface temp at equator	-170° to +120° C	-100° to +15° C
Diurnal cycle	665 hrs	24.6 hrs
Solar energy flux, equatorial	1000 W/m ² (daytime)	100-200 W/m ² ave.
Dust	ballistic when disturbed	suspends in atmosphere; dust storms (always some dust in atmos)

LB.V-G-2

Radiation Hazard

- Mars and moon both have Cosmic Ray and Solar Flare Particle Events (SPE)
- Mars missions entail longer periods outside geomagnetic shield 1 to 3 years GCR dose for Mars 0.03 to 0.5 yr GCR does for moon

Solar Monitoring: Lunar: from Earthbased observatories (ala Apollo) Mars: must be provided on-board

Martian atmosphere provides significant shielding (16 g/cm² at zenith -- much more at oblique angles)

Descent Technologies

0	
Ô	
Š	

De-orbit and landing technique All-propulsive. Major deorbit burn

- Very wide-range throttling required, especially if use turbopumped propulsion

Navigation

- Landmark updates for orbital state vector
- Earth-link to aid descent landing accuracy Terminal navigation by astronauts to achieve pinpoint landing (deployed radio beacons not required)

Mars

De-orbit, entry and landing technique

- Combination of
- minor burn for deorbit retro-propulsion (15 m/s)
 - aerobraking
- zoom, glide maneuver options numerous L/D options
- parachute-assisted deceleration may be possible
 - terminal descent propulsion and maneuvering

Navigation

- Deimos or Mars ComSat reference navigation
 - Earth nav not adequate •
- Deployed radio beacon(s) on surface may be required for pinpoint landings

Ascent Vehicle Design

Moon

- No requirement for aerodynamic shaping to minimize drag
 Direct-to-Earth option; low lunar circular orbit option
 For resources exploitation, requires major surface payload launch capabilities

Mars

- Aerodynamic drag, dynamic pressure, thermal protection are design considerations
 Rendezvous in high elliptical orbit (intermediate staging in LMO, then time-synchronized apoapsis raise)

1111

Storage
and
Generation
Power (
Surface

c - Photovoltaic or Solar Dynamic Conversion	Disturbed dust protection (ballistic shadowing) Lunar night outages, cold thermal stresses (-170 ° C) Disturbed dust, man-induced	Disturbed dust, natural (windstorms) Settling from atmosphere (multiple monolayers per season) Direct flux attenuation; skylight omnidirectionality (scattered flux)	1	I - Direct Concentration High grade heat for chemical moressing	Not feasible because of atmospheric scattering	(also faster slews required, outages every 12 hrs) Similar to Lunar, but much faster slew	RTG, SP-100, Advanced Reactor, Fusion	SP-100: vacuum environment; nighttime temp concern(?) Fusion: ³ He based system, ultimately?		Dust effects on heat radiators Windblown dispersal renders release accident more catastrophic
Solar Electric	Lunar: Mars:		Ē	Solar Thermal	Mars:	Phobos:		Lunar:	Mars:	
Solar	7 V			Solar		ł	Nuclear	7	V	

Note: Lunar Base resource production implies power-rich facility. Lower power anticipated for Mars, especially if nuclear reactors forbidden on martian surface.

LB.V-G-6

Mission Operations

Communication Time Delays Lunar. 3 seconds roundtrip Mars: 8 to 40 minutes roundtrip

Mars: Every 3 weeks, day/night become opposite that of Earth reference time zone Daytime synchronization Lunar. astronauts adopt Mission Control time standard

Astronaut corps size (assumes 8 person crews) Lunar. up to 32 per year (90 day duty tours) Mars: less than 4 per year

Medical contingencies rescue times Lunar: 3 days minimum delay to return to Earth Mars: up to 3 year delay to return to Earth

Earth Orbit

Mars mission: 5 to 15 HLLV launches per mission	Lunar mission: 1 to 3 HLLV launches per mission
Assembly/docking required to configure for flight	System launched in all-up configuration
Propellant loading on-orbit	Propellant loading on-orbit for reuse
Expendable vehicles more likely	Refurbishment/inspection of returned vehicles
<u>Mars mission</u> :	Lunar mission:

Mars Orbit

Optimally, interplanetary transfer vehicle remains in high elliptical orbit at Mars (e.g., 250 km x 1 sol)

Lunar Orbit

Use direct return to Earth), or return ship could be staged in low lunar orbit (LLO), but not high elliptical orbit

LB.V-G-10

Interplanetary Mission Modules (IMM)

IMM design

artificial gravity (spinner) or microgravity countermeasures facilities minimal volume and capabilities (ala Apollo Cmd Module or LEM) human factors driven; larger volumes Moon: Mars:

Science

- extensive interplanetary science program (astrophysics, solar observatory, physiological effects, ICE psychosocial) Mars:
- no interplanetary science (much of the above is accomplished on lunar surface) Moon:

Roundtrip travel times

(Sprint) (Opposition) (Conjunction)
400 days 700 days 1000 days
Mars:

6-14 days

Moon:

ECLSS and Resupply

No indigenous water. Indigenous O2 mfg power intensive, hazardous Recycling of water and air considered obligatory Water loop less closed because hydrated/frozen food resupply? Moon: Mars:

ns
0
ţ
ra
be
Ō
Φ
S
Ţ
) U
U .

Onorotione Major Abjectives	Moon	Mars
Constanting major objectives Near-term Long-term	Observatories Manufacture LLOX	Exploration Settlement
Mass (upper limit) Micrometeoroid protection req'd UV resistance needed	180 lbs yes yes	80 lbs no near UV only
Oxidizing atmos resistance req'd Dust seals Locomotion method	no coarse grains hop/skip	yes submicron dust? conventional walking
Habitat, Rover	all directions	overhead only (16 g/cm² atmosphere)
Trafficability of surface	excellent	drift deposit hazards
Power source	PVPA feasible	aa lava nazards: chemical
Sterile collection technique? Forward contamination precautions	no not necessary	yes yes
Major node(s)	Earth, TDRSS or GeoSat	Mars orbiting vehicle; Mars com satellites and DSN
Design class	Space Station	Advanced, low power
Insulation Heat rejection	MLI Radiators	Closed-cell foam; air barrier Radiation and/or convective heat exchange

LB.V-G-12

Risk/Safety

	Safety Factors	Risks
Lunar missions Transport Vehicle	Capabilities are proven (Apollo success)	New hardware developments HLLV (in lieu of Saturn V) LTV (in lieu of Anollo Cmd Module)
Fall-back modes	Early return	LDV, LAV (in lieu of LEM) Disabled propulsion Requires availability of rescue vehicle
Mars mission Transport Vehicle	Multiple compartments	Much new hardware
Fall-back modes	Abort returns	Not all modes amenable
	Rescue	DSM, MUC, AKD execution errors Disabled propulsion Infeasible, unless large food cache and follow-up mission in progress
	SSF-Proven LSS	Disabled LSS Mass shedding, plus H/O propellant use

E

Cosmic dust collection

Lunar. excellent; superior to Earth orbit because of lack of man-made orbital debris Mars: unusable because of atmospheric shielding and airborne dust

Radioastronomy

Lunar. requires backside location to avoid interference from terrestrial emissions Mars. relatively low data rate link with Earth, but longer baseline for VLBI

- Optical and IR astronomy Lunar: excellent, especially during lunar night Mars: relatively poor because of atmosphere/dust interferences
- UV and X-ray astrophysical observations Lunar. excellent Mars. poor to non-existent for all but near-UV
- Lunar. excellent, including study of surface materials for long-term record Mars: not possible from surface Solar wind observations
- Mars: far superior to observations from Earth and LEO, but inferior to Lunar Cosmic ray and solar flare radiation studies Lunar. excellent
- Gamma ray astronomy Lunar. excellent Mars: acceptable

* Carear: the Martian moons - Phobos and Deimos - could provide observational bases with Lunar-like capabilities, but the problems of operations in milk-g environment and at great distance limit their use, except for long baseline comparison studies.

In situ Resources Production (ISRP) on the Moon

- Oxygen (Lunar oxygen -- LLOX) high temperature or highly chemically reactive processes, from silicates or iron minerals (e.g., ilmenite)
- Metals

aluminum, magnesium, titanium, iron (high temperature processes, from silicates)

• Glass

fusion of separated silicates

From trace constituents:

- Sulfur rocket fuel, many other uses
- Hydrogen rocket fuel, many other needs for base items
- 3He

release of solar-wind implanted isotope production of solar wind hydrogen as by-product

Water

from permafrost ice, surface ice, vapor in atmosphere

• Oxygen

separated from Martian atmosphere (0.13 % constituent), OR chemically derived from atmospheric CO2 (zirconia cell, Bosch, or Sabatier), OR electrolysis of H2Ofrom soil or atmosphere

Make-up Gas

separated nitrogen (2.7 %) and/or argon (1.6 %) from atmosphere

• Food

plant growth using Martian H₂O and CO₂

Propellant Candidates Chemical: CH₄, CO, LOX, N₂H₄, NTO, CO₂ Nuclear thermal rocket: CO₂, H₂O

Metals

Magnesium -- from Epsomite (salt molten electrolysis) Iron -- from amorphous Fe-oxides, magnetic minerals Titanium -- from titanomagnetite, ilmenite

Miscellaneous

Sulfur; Duricrete; Glass; Salt; MgO; Carbon black

· Mars Gold

Hydrogen Peroxide (H₂O₂) -- from water

Commonality/Differences

Potential Common Hardware

ECLSS: Mars spaceborne + Lunar landed + Space Station Ascent vehicles: MAV and LAV, except ΔV disparities EELS (except as noted below) PVPA: MSS, LLMM, SS

Potential Hardware Differences

Orbital capture: all-propulsive for moon (or, direct landing); aeroassist for Mars Propellants: long-term cryo storage (Mars) vs cryo upper stage (moon) Interplanetary transfer vehicle (including artificial gravity) Landing systems: aeroassisted profiles; differing nav implementations Rover drive-power anded power (PVPA/batteries for Mars; nuclear/RFC for moon) EELS: retropropulsion for high Earth-encounter C₃ (from Mars) Communication systems Descent vehicle anded ECLSS

-EO assembly fixfures and robotic aids

additional items

() Radiation

() MTV will have consumables which can provide solar storm shelter. LTV will require dedicated shielding or else careful design for equipment locations

() May be able to forecast SPE-safe period for LTV launches, or at least for the Lunar landers. But Mars launch must go on time

() GCR is potentially a major problem for MMM, but not for lunar because tours are short, and then can spend most of the time underground

() Pressurized rovers are different

 energy/km because of gravity
 rad protection -- moon doesn't have the atmos shielding. Need omni-shielding on the lunar pressunized rover (of course, can accommodate more mass because of lower gravity)

() Crew members may go several times to moon; Mars crewmembers probably go to Mars only once.

() SPE dose situation much different. 1/R² to 1/R⁴ for Mars (conj missions go out, opp missions go inward. hence, much different possibilities.

() SHOULD HAVE a lower gravity test facility in LEO before committing to a Lunar Base, to find the physiological tolerance to 1/6 gee. If think 1/6 gee really isn't a problem, then why would you need to go to the moon to simulate a Mars mission?

() Lunar vehicles have through-the-brake designs. Mars vehicles do not.

() No reactors on the martian surface. Wind transport hazard!

LB.V-G-22

Benton C. Clark, Planetary Sciences Laboratory (B0560), Martin Marietta Astronautics, Denver, CO 8020) HUMAN MISSIONS TO THE MOON AND MARS: A COMPARISON

accumulating experience that would be applicable to both. It is the purpose of this paper to examine these perceived similitudes. The areas that will be addressed can be categorized into science objectives, environment, engineering systems, operations, and The Moon and Mars are the solar system bodies most often cited in considerating man-tended outposts or permanently occupied bases. Commonality of purpose, hardware, and mission operations seem to provide a basis for cost-savings and national goals.

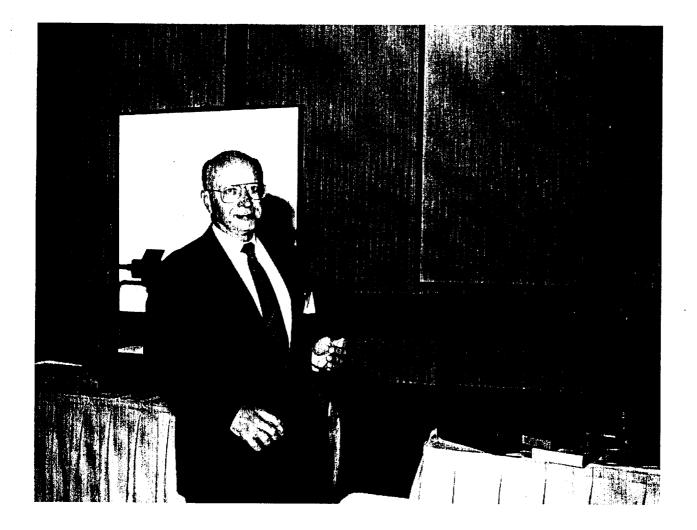
constant illumination by the sun, then darkness; the other a cold, low pressure gaseous environment with winds and an Earth-like quite differently at the two locations. The gravitational force is two and one-half times higher on Mars. Both surfaces are dusty, unprotected from all of these. The martian soil and atmosphere contain an abundance of light elements (especially, H, C, N, O, S) and includes both CO₂ and H₂O, the ingredients necessary to grow plants. The moon is impoverished in the light elements, Production of metals would probably be quite different on the two bodies because of the apparent availability of salts on Mars, diurnal cycle. Thermal balance, one radiatively dominated and the other with a major convective component, must be handled Environment. Surface environments are quite different on the moon and Mars -- the one a vacuum with long periods of compared with the necessity to use igneous rocks on the moon. A whole host of valuable H-containing commodities can be but martian dust, once disturbed, remains suspended for long periods. The present martian atmosphere provides 16 g/cm² shielding overhead against cosmic rays, solar flare particles, and hypervelocity micrometeoroids. The lunar surface is except for O bonded in silicate minerals (which could, in principle, be used to manufacture lunar liquid oxygen, LLOX). manufactured on Mars, including hydrogen perioxide, but only with extreme difficulty on the moon.

required just to depot propellant for the Mars mission, but LLOX availability would reduce this load, except for the very marginal require storage for relatively short times (~ weeks), except on the lunar surface. Ascent vehicles might be similar. However, the martian atmosphere. For the moon, there is no obvious reason why cryopropellants, with their more mass efficient performance, ise of aerobraking and possibly also parachutes at Mars. Likewise, orbital insertion will very likely employ aerocapture at Mars, should not be used for lander and ascent applications. Descent vehicles are expected to be quite unlike because of the anticipated may require nuclear at Mars and for the lunar night. Fission reactors can be vacuum rated (ala SP-100) for the moon, but would of delta-V disparities, although tankage stretch options might span the gap. Multiple heavy-lift launch vehicles (HLLVs) will be Encine systems. Propulsion systems for primary access to the moon and Mars may be significantly different because but can only be accomplished by retro-propulsion at the moon. Different communication hardware systems are expected for the payback on export of LLOX to LEO and the demonstrable couterproductive approach of sending the Mars spaceship first to the additional complication of widespread redistribution by the winds of any spilled radionuclides. Thermal control designs will be two missions as well as the receiver and relay links at Earth. Power supply at the surface can be direct-solar on the moon, but moon to on-load propellant. Mars missions require long-term cryo-storage (up to 1.5 yr.) in Mars orbit, but Lunar missions propellant of choice for Mars is storable bipropellant to avoid problems of storage of cryopropellants in the relatively warm be of different design for the martian surface. The use of nuclear power on Mars may actually be forbidden because of the

intensive infrastructure most likely available on the moon. Habitats on the moon will require much greater wall thicknesses (more micrometeoroid bombardment. Astronauts going to the moon will receive very minor doses from galactic cosmic rays because of the short in-transit exposure time and the massive shielding possible on the lunar surface. Spacesuits and EVA operations will be (e.g., one week) because of the radiation and meteoroid hazards just mentioned, and the darkness and excessive cold during the different in the two locations -- the former because of the weight differential, and the latter because of the danger in long sorties quite different. Life support systems for Mars would have to be much more power conservative than the high-mass, powerlikely, burial under lunar soil) to compensate for the lack of atmospheric shielding against solar flare particle events and lunar night. Indeed, exploration sorties for more than one week may generally be out of the question.

crew is different in scope and intensity (especially, length-of-time); rescue for stranded Marsnauts is mostly out of the question. The number of Mars astronauts needed per decade will be about an order of magnitude below that needed for Space Station and Lunar Base. Preparations for a single Mars mission includes many more HLLV launches (for propellant) and assembly/checkout Operations. The round-trip propagation time for communications to the moon is 3 seconds; for Mars, it ranges from 8 to 40 minutes. Mission operation control at the moon can be Earth-based, as in the past; for Mars, the style of mission operations will be entirely different and require greater autonomy for the crew. On the martian surface, the 24.6 hour day/night cycle would dictate most operations and be desynchronized from the day/night at mission control on Earth; on the moon, any cycle can be chosen, but the astronauts will have to cope with the long lunar night. The isolated and confined environment of a Mars-bound in low Earth orbit. Solar flares can be monitored from the Earth's surface and orbit for lunar missions, but require sophisticated on-board instrumentation and expert systems to provide similar monitoring during much of the Mars mission.

for ancient pristine materials and new geologic provinces. In addition to much greater variety in styles of volcanism and the more deposition) and ice (polar caps, permafrost, thermokarst, glaciation). Mars has an atmosphere, invoking investigations related to weather systems and climatology. A warm, wet paleoclimate leads to the possibility of extant life in oases or relics of extinct life Science objectives. Geologic exploration will be of high priority on both the moon and Mars, with emphasis on the search apparently some or all of the effects of liquid water (catastrophic floods, channels, sapping, chemical weathering, sediment likely possibility of contemporaneous volcanic or seismic activity, the martian surface has experienced colian forces and forms (fossils). Mars also has two satellites that deserve thorough study.


Both may be good locations for observational investigations, although the moon would be better for many astronomical observations, cosmic dust collection, and Earth observation. Radio astronomy would benefit from backside location on the moon, to avoid interferences from Earth; Mars would create a longer baseline for VLBI. National goals. International cooperation could be arranged in either case, but is more often invoked for the more ambitious Earth-monitoring base. Mars missions specifically require Space Station Freedom involvement, including zero-g physiological and more politically neutral Mars missions, although the practical difficulties might be more severe. The moon can serve as an countermeasures development and/or artificial gravity research and free-flyer testbed support. Lunar missions could involve SSF, but need not. Use as a transportation node for storage, refurbishment, and refueling of lunar vehicles may entail major comprimises of scientific objectives and increases in operating costs for Station Freedom.

Colonization is reasonable on Mars because of the abundance of light-elemelnt natural resources and the distinct possibility of ore deposits. A settlement on the moon seems difficult because of resource limitations and unecessary in view of its close

proximity to Earth and the possibility of short-notice access for man-tended base management. Going to Mars would be the first leap by man into deep space -- beyond the gravitational influence of the Earth. No other act is so likely to galvanize world enthusiasm and inspire the youth of our country.

(FUTURE) POWER REQUIREMENTS FOR SPACE (AND EXTRATERRESTRIAL SURFACES)

John Bozek NASA Glenn Research Center Cleveland, Ohio

CONCLUDING REMARKS

- FUTURE
- DYNAMIC
- PASSIVE
- **TECHNOLOGY**

CONTENTS

- SPACE POWER •
- **EXTRATERRESTRIAL POWER**
 - - STATIONARY
 - MOBILE

· LEO

SSF - ~ 100 kW (CONVENTIONAL TECHNOLOGY) - JOINTS

• GEO

COMMUNICATION - 10'S OF kW

- DIRECTIONAL ANTENNA/PV ARRAY

INTERPLANETARY

PROPULSION - 10's TO 100's OF kW

- NUCLEAR/DYNAMIC (NEP)

SPACE POWER

Ï

1

I

90 DAY STUDY (1990)

MARS

90 DAY STUDY (1990)

FIRST LUNAR OUTPOST (FLO) (1992)

LUNAR

EXTRATERRESTRIAL

POWER STATIONARY

1

I

l

J

l

1

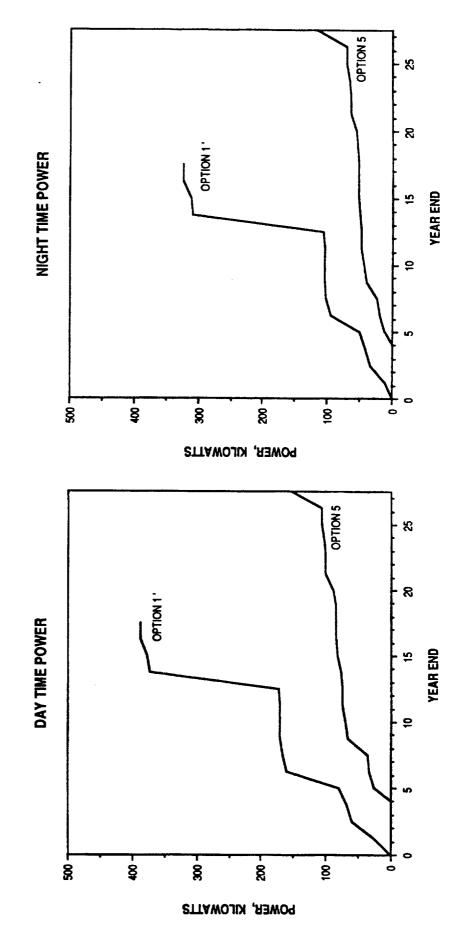
I

I

I

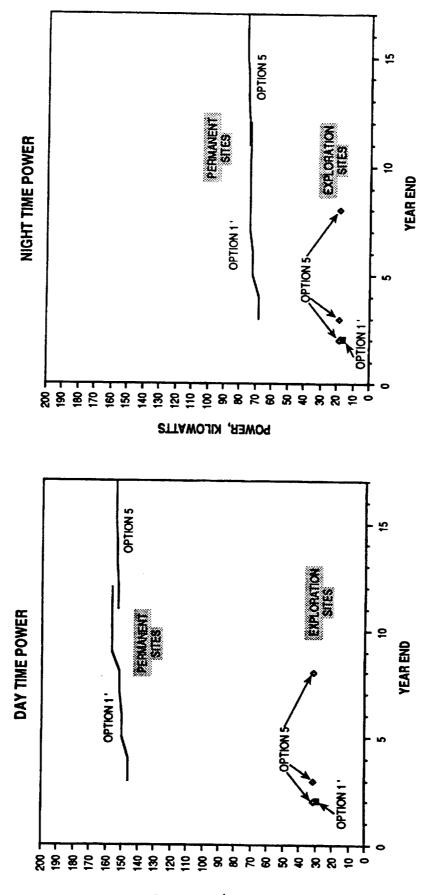
1

l

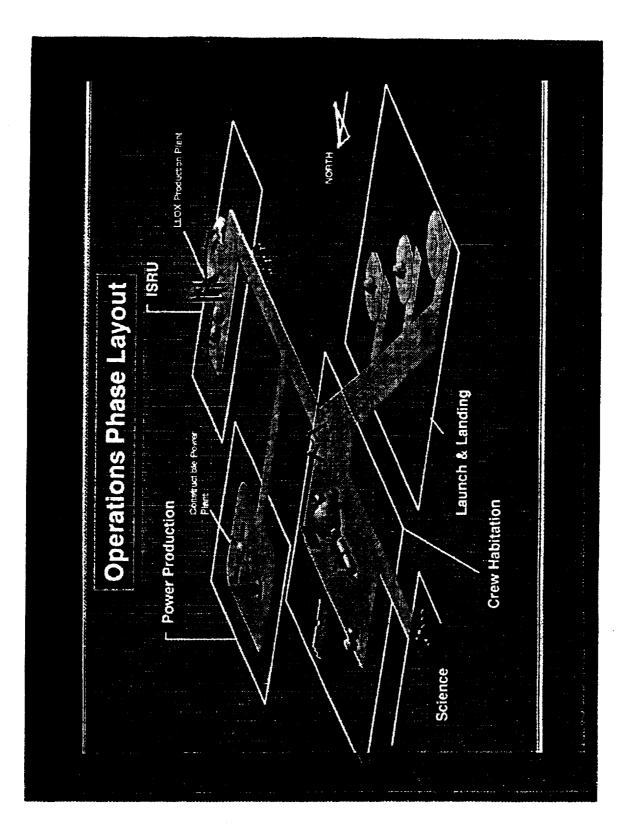

I

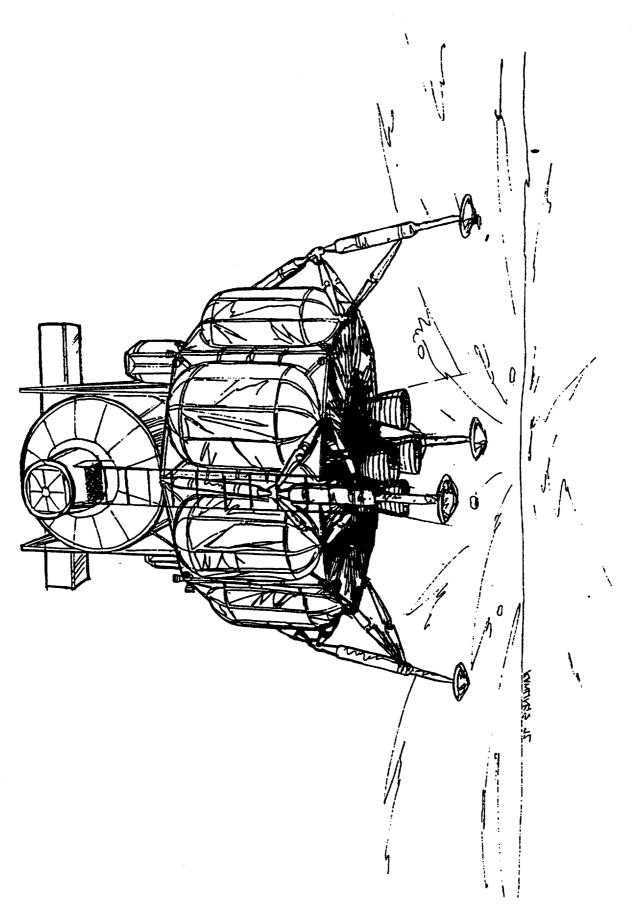
I I

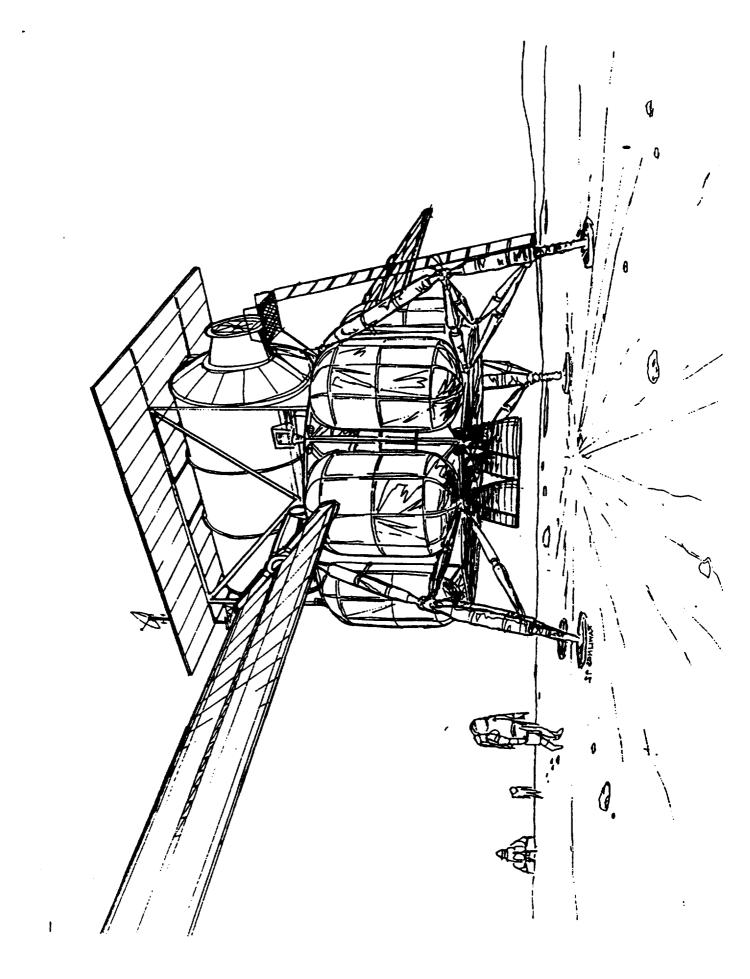
1

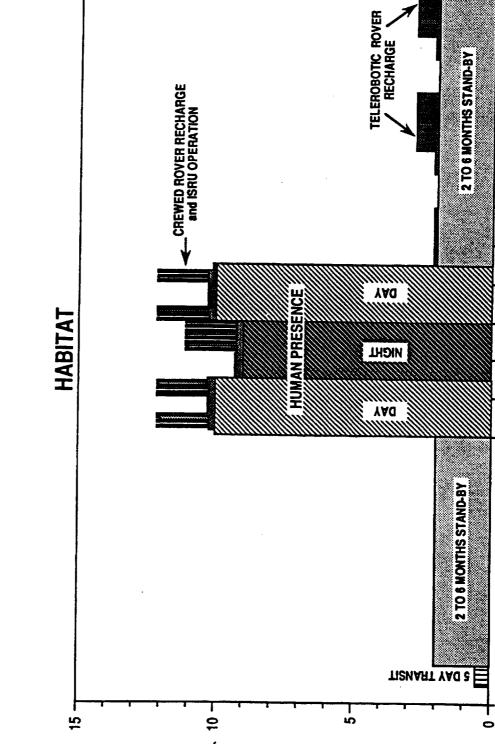

131

NOTE: '0' IS 1999




LUNAR STATIONARY POWER REQUIREMENTS


MARTIAN STATIONARY POWER REQUIREMENTS



POWER, KILOWATTS

ß

₽

TIME FROM CREW HABITATION, Days

POWER TO LOADS, KWe

POWER REQUIREMENTS

MOBILE POWER

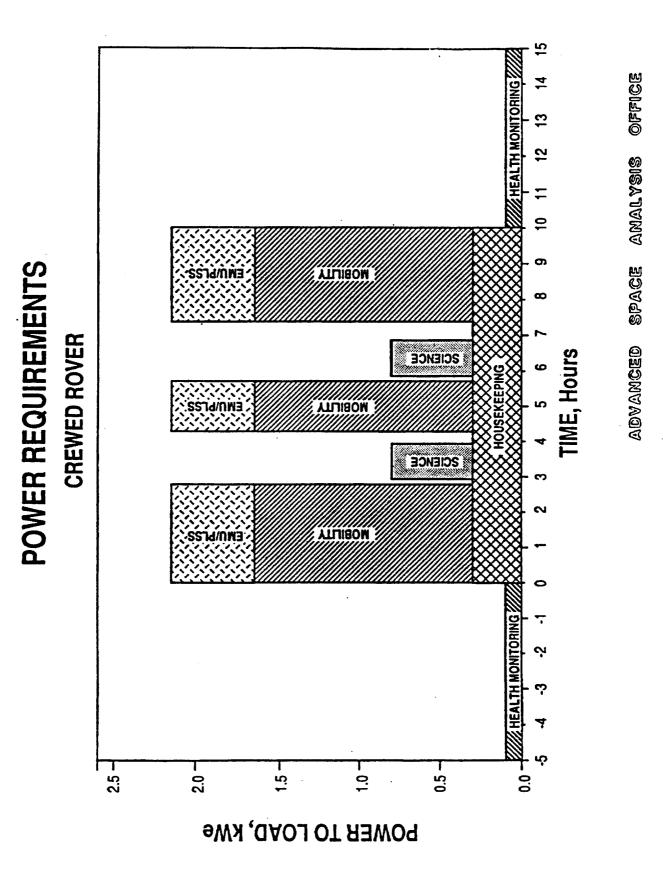
ľ

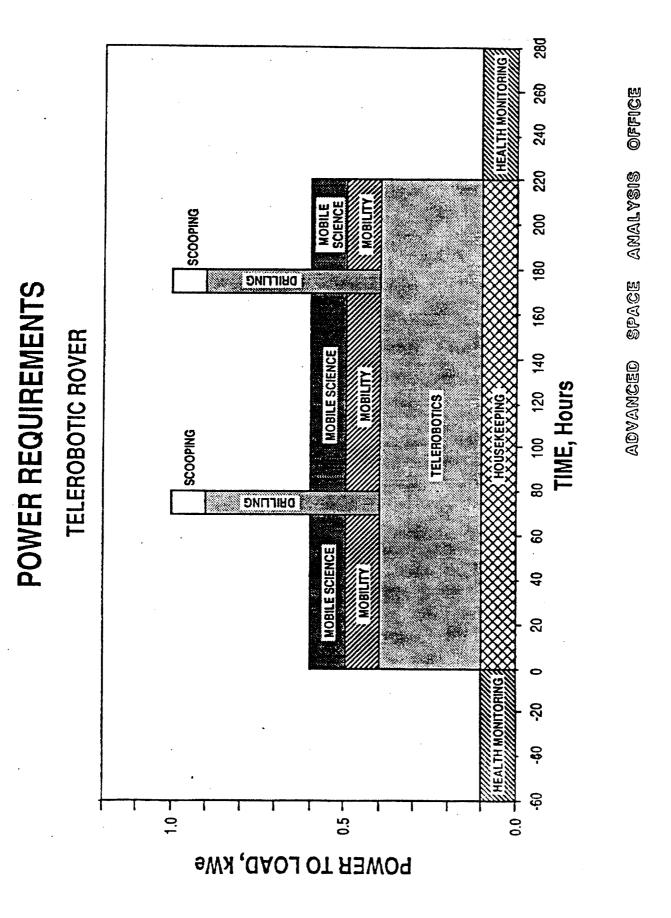
l

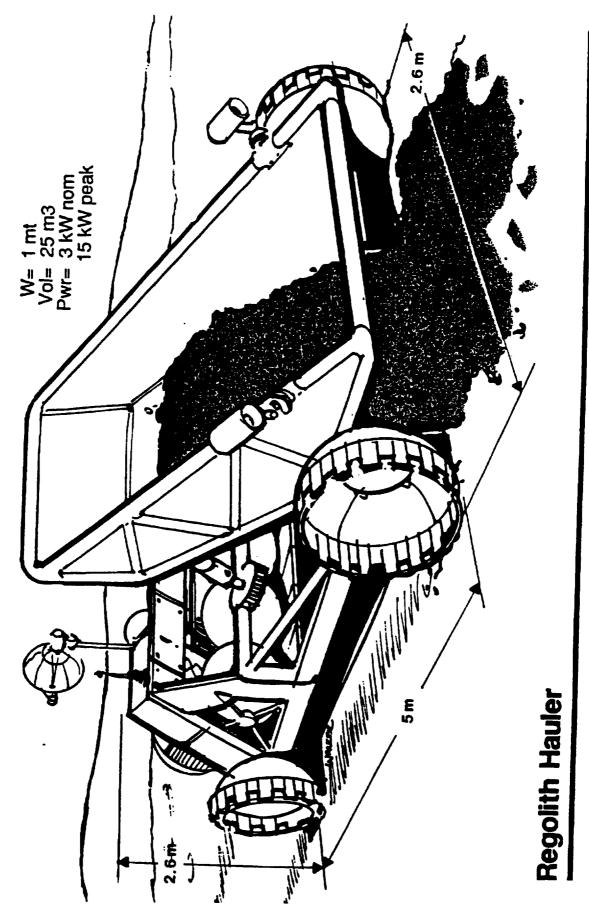
I

1

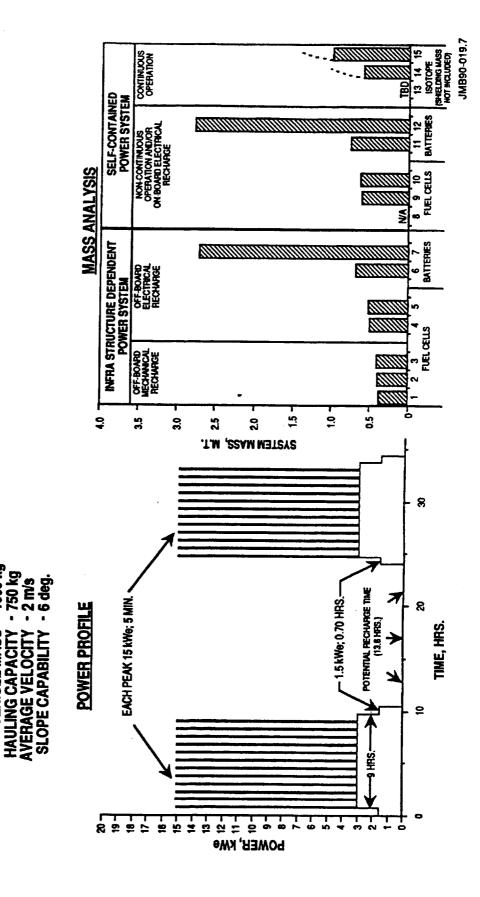
Ï

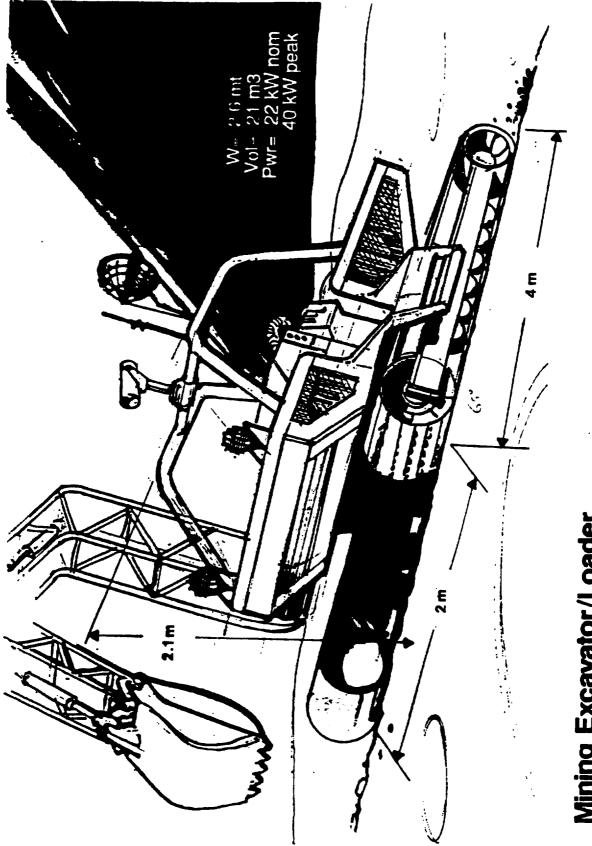

1


I


l

L.


90 Day Lunar/Mars Study


POWER TECHNOLOGY DIVISION

REGOLITH HAULER (TRUCK) NO LUNAR NIGHT OPERATIONS

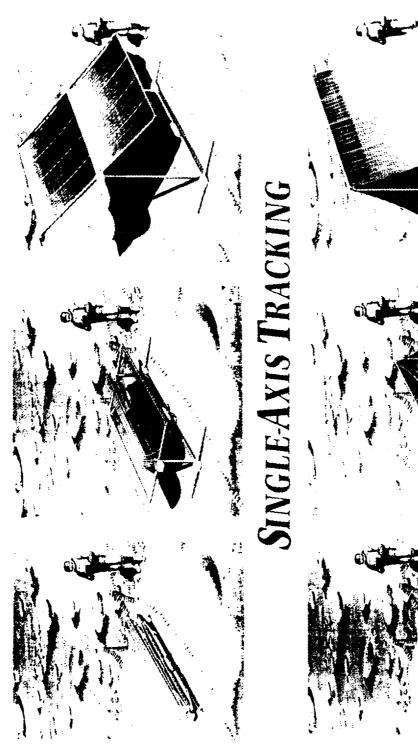
- 1000 kg

VEHICLE MASS

90 Day Lunar/Mars Study

Mining Excavator/Loader

I


1

I

I

NASA C-90-08222

SELF-DEPLOYING PHOTOVOLTAIC ARRAY

FIXED TENT

シウト

DYNAMIC TECHNOLOGY

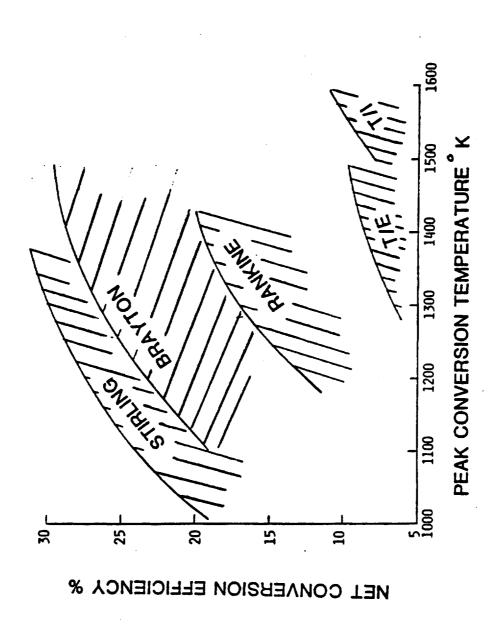
1

I

1

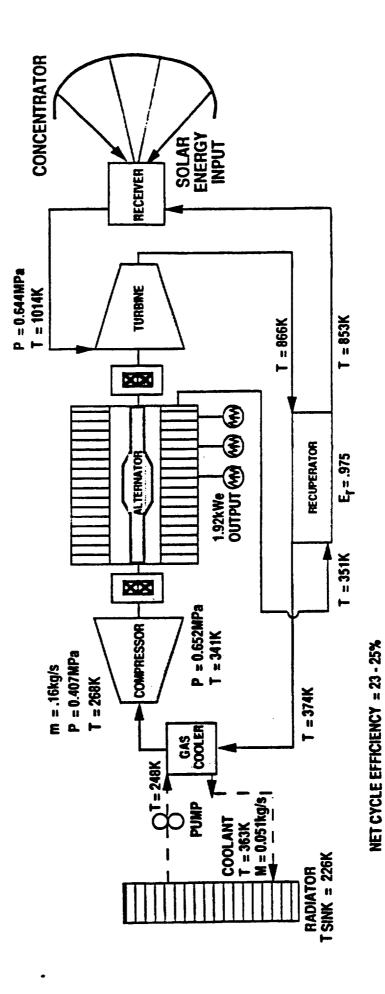
1

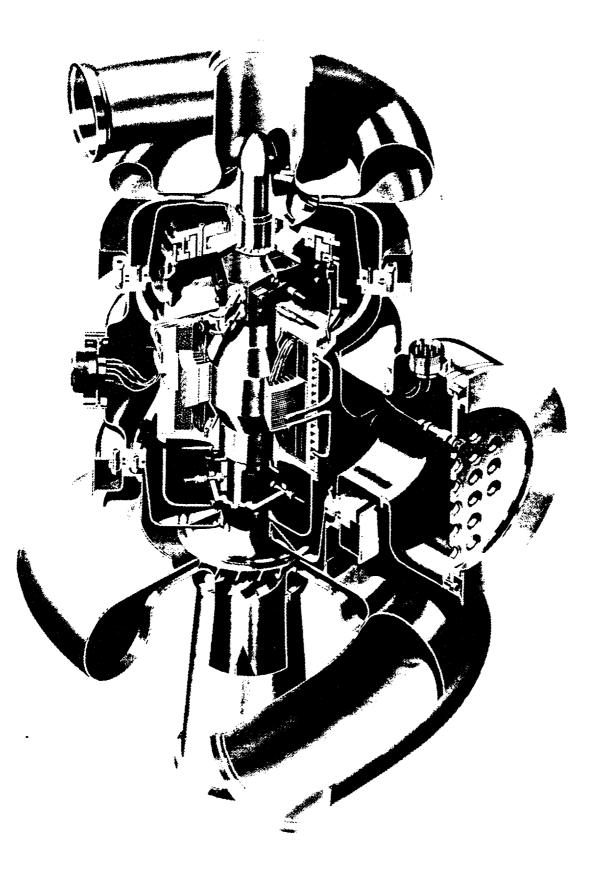
1


I

ľ

I


Ľ.



POWER TECHNOLOGY DIVISION

CYCLE STATE-POINTS

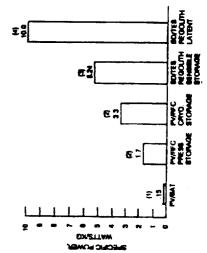
(SUN TO ALTERNATOR OUTPUT, DEPENDING ON ORBIT)

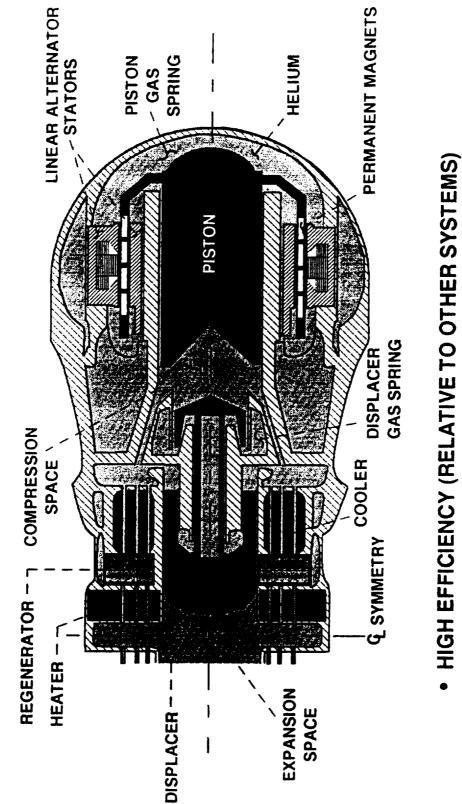
SPACE ENERGY CONVERSION R&T

THERMAL ENERGY CONVERSION

MISSION & BENEFITS - SURFACE POWER -

OUALITATIVE BENEFITS


LUNAR BASE SD POWER SYSTEM & POWE OXYGEN PROCESS PLANT • USES



- PROVIDES PROCESS HEAT PLUS ELECTRICAL POWER
 USES IN-SITU MATERIALS FOR TES
- IONG LIFE COMPONENTS

QUANTITATIVE BENEFITS

COMPARISON OF ALTERNATE SOLAR POWER SYSTEMS FOR LUNAR BASE



WHY FREE-PISTON STIRLING ?

POTENTIAL FOR LONG LIFE AND HIGH RELIABILITY •

BRAYTON

ADVANTAGES

HIGHEST DEMONSTRATED SYSTEM PERFORMANCE (29%)

- EASILY SCALABLE TO VERY HIGH POWERS/UNIT
- LOW MASS, COMPACT CONVERSION SYSTEM
- MODULAR
- SINGLE PHASE, INERT WORKING FLUID (He/Xe)
- LOW RISK, HIGH RELIABILITY BASED ON EXTENSIVE SYSTEM AND COMPONENT TECHNOLOGY (1960's) PLUS A MATURE AIRCRAFT GAS TURBINE INDUSTRY
- UNAFFECTED BY ZERO GRAVITY

LONG-LIFE SPACE OPERATION NOT PROVEN

DISADVANTAGES

- DURABILITY OF HIGH SPEED REFRACTORY WHEELS NOT PROVEN
- HEAT EXCHANGER LOW CYCLE FATIGUE LIFE NOT PROVEN
- CLOSE TOLERANCES REQUIRED FOR HIGH EFFICIENCY
- LARGE RADIATOR TEMPERATURE DIFFERENCE REQUIRES ZONED HEAT PIPE RADIATORS WITH DIFFERENT FLUIDS AND MATERIALS
- LOW TEMPERATURE HEAT REJECTION REQUIRES LARGE RADIATOR

	DISADVANTAGES	L (35%) • LACK OF LONG DURATION EXPERIENCE AT LARGE SCALE	SSEMBLIES • LOW FREQUENCY (60 - 100 Hz) OUTPUT	CLOSE TOLERANCES REQUIRED	MOVING PARTS • BERYLLIUM MOVING PARTS	HIGH PRESSURE (2000 PSI)	•	SCALEUP COS MECHANISMS IS LIMITED		HEAT PIPE HEAT INPUT REQUIRES START/ RESTART VERIFICATION IN ZERO G	REFRACTORY/SUPERALLOY ENGINES OPTIMIZE AT 500-600 T _{COLD} - REQUIRE Hg RADIATOR IF HEAT PIPE USED
I	<u>ADVANTAGES</u>	FFICIENCY POTENTIAL (35%) ATURE RATIO = 2.0	HEAT TRANSFER AS		NON-CONTACTING I	D GAS BEARINGS	JR HYDRAULIC OUTPUT AVAILABLE	CAL BARRIERS TO SC RATED 3kW TO 25 kW)	NSTANT TEMPERATURE RADIATOR	ASE, NON-TOXIC WORKING FLUID	ECIFIC MASS POTENTIAL (5kg/kW)

HIGHEST EFF
 @ TEMPERAT

FREE-PISTON STIRLING

- · COMPACT HI
 - MODULAR

- · ONLY TWO N
- · LONG-LIVED
- ELECTRIC OF
- NO TECHNICA
 (DEMONSTRA)
- NEARLY CON
- SINGLE PHASI (HE, H₂)
- LOWEST SPE

FUTURE TECHNOLOGY

I

I

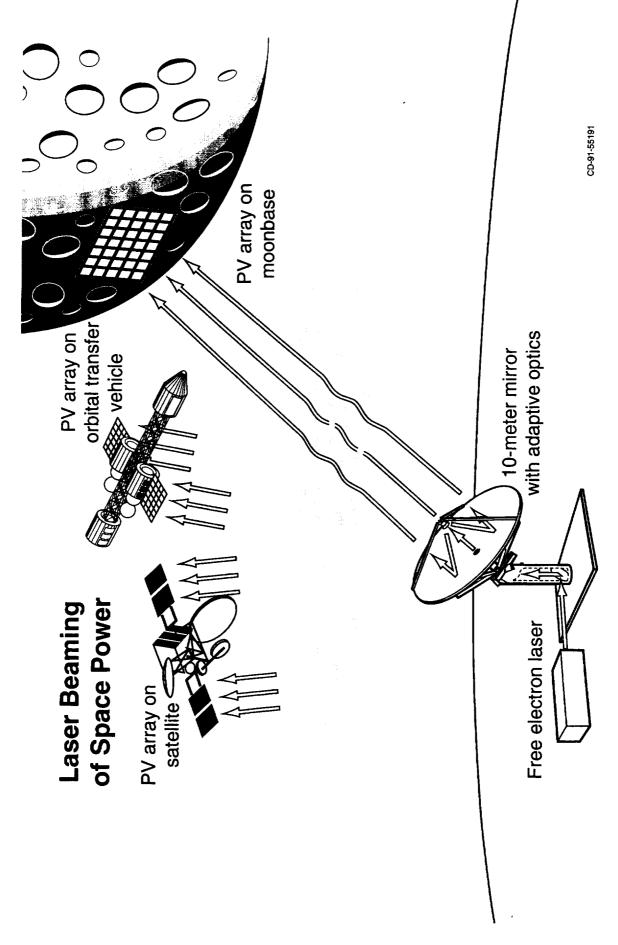
E E

1

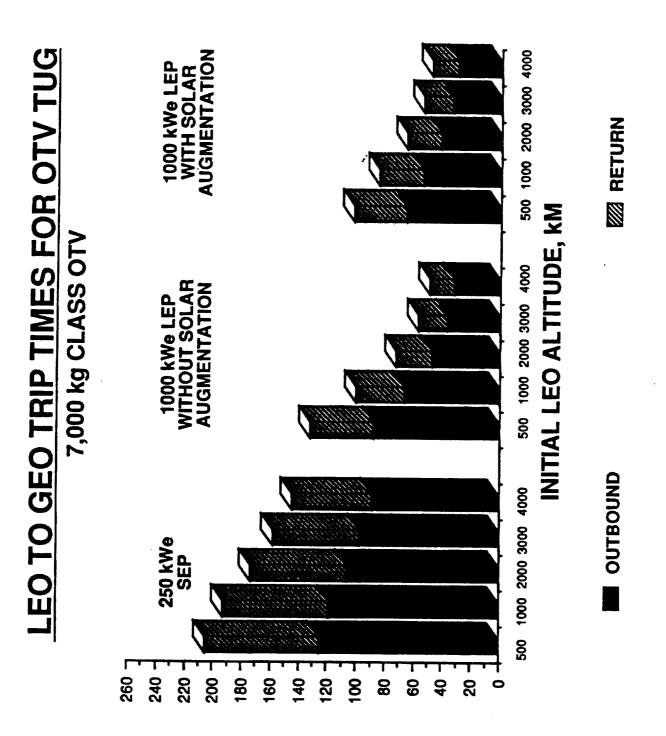
I

I

Ĩ


I

I


I

6

U

ZRIP TIME, DAYS

SUMMARY

- POWER AND ENERGY REQUIREMENTS CONSTANTLY MOVING UP
- MASS LIMITATIONS CONSTANTLY PUSH TECHNOLOGIES **REQUIRING INNOVATION**
- LIFE CONSIDERATIONS PUSH RELIABILITY
- UNFORTUNATELY COSTS DRIVE US TO LOW TECH, HEAVY, REPLACEABLE SYSTEMS

PROPULSION REQUIREMENTS FOR SPACE

Jim Dill Mechanical Technology, Inc. Latham, New York

Y WORKSHOP SPACE ITS	[= —	TURBINE END BEARING	120 K	5,000 lb.	83 K	1,600 lb.	80 K	800 Ib	< 80 K		80 K	50 lb.
S TECHNOLOG REMENTS FOR	TEMPERATURE/ RADIAL LOAD	PUMP END BEARING	90 K	2600 lb.	33 K	1,000 lb.	33 K	470 lb.	< 30 K	Ċ	33 K	7 Ib.
NASA SPACE MECHANISMS TECHNOLOGY WORKSHOP PROPULSION REQUIREMENTS FOR SPACE TURBOPUMP BEARING REQUIREMENTS	BEARING SIZE/ SHAFT SPEED/	(DN X 10 ⁶)	57 mm	29,300 rpm	45 mm	37,000 rpm	(1.67) 75 mm	28,000 rpm	(2.1) 65 mm	30,500 rpm (1.98)	30 mm	100-200 Krpm (3.0-6.0)
NASA SPAC PROP	TURBOPUMP		SSME OXYGEN		SSME HYDROGEN		ALS HYDROGEN		NTP HYDROGEN		CTV HYDROGEN	

ſ

NASA SPACE I PROPUI	CE MECHANISMS TECHNOLOGY WORKSHOP PULSION REQUIREMENTS FOR SPACE BEARING OPTIONS	VORKSHOP ACE
BEARING TYPE	ADVANTAGES	DISADVANTAGES
Rolling Element	o Known Technology o Good Overload Capabliity o Rubbing Contact Minimized	o Inadequate Life o Low Damping o Wear Changes Properties
Fluid Film	o Not Fatigue or Wear Limited o Good High Speed Capabilities o Good Dynamic Characteristics	o Lift Off Supply o Fluid Dynamics o Start/Stop Wear
Magnetic	o Not Fatigue or Wear Limited o Active Brg Controls Dynamics o Superconductors Improve Performance	o Heavy with Conv. Magnets o Power and Sensors in Cryo o Low Load Capacity

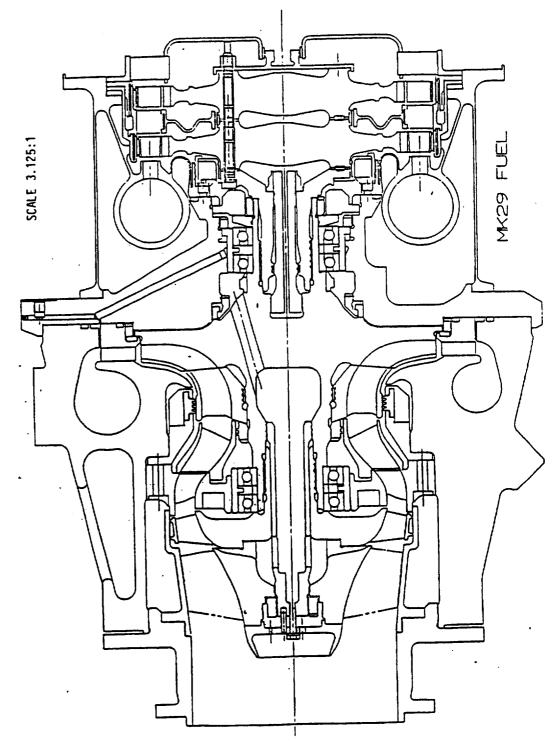
.

li.

NASA SPACE MECHANISMS TECHNOLOGY WORKSHOP PROPULSION REQUIREMENTS FOR SPACE BEARING OPTIONS - ROLLING ELEMENT • HIGH STIFFNESS SUPPORT - GOOD ROTOR CLEARANCE CONTROL • DN LIMITS CAN RESTRICT SHAFT DIAMETERS AND LEAD TO ROTORDYNAMICS PROBLEMS	 LOW DAMPING OF REB ALONE CAN MAKE DYNAMICS MORE SENSITIVE EXCELLENT OVERLOAD TOLERANCE 	O DN VALUES IN CTV AND NASP TYPE PUMPS ELIMINATE REB	O WEAR WILL ALWAYS BE PRESENT PARTICULARLY IN LOX LEADING TO PERFORMANCE DEGRADATION AS CLEARANCE INCREASES	O CERAMIC BALLS AND IMPROVED CAGE MATERIALS CAN SIGNIFICANTLY REDUCE WEAR AND INCREASE TOTAL BEARING LIFE	
--	---	--	--	--	--

NASA SPACE MECHANISMS TECHNOLOGY WORKSHOP PROPULSION REQUIREMENTS FOR SPACE BEARING OPTIONS - FLUID FILM • HIGHER DN LIMITS THAN ROLLING ELEMENT BEARINGS • HIGH DAMPING CAN RESULT IN IMPROVED ROTOR STABILITY	
 LOWER STIFFNESS CAN MAKE ROTOR CLEARANCE CONTROL DIFFICULT LESS TOLERANT TO OVERLOADS THAN ROLLING ELEMENT BRGS. 	
O HIGH SURFACE SPEED RUBS COULD RESULT IN WEAR PROBLEMS IN LONG LIFE APPLICATIONS	
• FEED ORIFICE EROSION CAN BE A PROBLEM IN HYDROSTATIC DESIGNS	
• WEAR RESISTANT MATERIALS ARE NEEDED TO INCREASE RUB AND START/STOP WEAR TOLERANCE	

.


ĥ.

NASA SPACE MECHANISMS TECHNOLOGY WORKSHOP PROPULSION REQUIREMENTS FOR SPACE
BEARING OPTIONS - FLUID FILM BEARINGS ISSUES
· O IMPROVED TURBULENCE MODELS
O BETTER UNDERSTANDING OF POWER LOSS, HEAT GENERATION, TORQUE
O BEHAVIOR OF COMBINED REYNOLDS NUMBER FLOM
• TWO PHASE PERFORMANCE OF VARIOUS DESIGNS
 O RELATIVE PERFORMANCE OF DIFFERENT DESIGNS HYDROSTATIC HYDRODYNAMIC HYDRODYNAMIC COMPLIANT (FOIL) COMPLIANT (FOIL) RIGID SURFACE HYBRID HYDROSTATIC/HYDRODYNAMIC

NASA SPACE MECHANISMS TECHNOLOGY WORKSHOP PROPULSION REQUIREMENTS FOR SPACE BEARING OPTIONS -MAGNETIC
ACTIVE:
HIGH STIFFNESS AND CONTROLLABLE DAMPING PROVIDE UNIQUE ROTOR CONTROL OPTIONS
O MAY NEED SUPERCONDUCTING OR HYPERCONDUCTING DESIGNS TO ACHIEVE LOAD CAPACITY REQUIRED FOR TURBOPUMPS
O NEED FOR BACKUP BEARING COULD BE A DISADVANTAGE IN TERMS OF ENVELOP REQUIREMENTS
 LONG TERM HYDROGEN EXPOSURE OF MATERIALS MAY BE AN ISSUE NEED WEAR RESISTANT SURFACES FOR RUB TOLERANCE
PASSIVE SUPERCONDUCTING: • LOW STIFFNESS PRECLUDES USE ALONE IN MOST TURBOPUMP APPLICATIONS
O CURRENT CRITICAL TEMPERATURES FAVOR USE IN HYDROGEN RATHER THAN OXYGEN
O LONG TERM EXPOSURE EFFECTS ON MATERIALS

l:

H

NASA SPACE MECHANISMS TECHNOLOGY WORKSHOP PROPULSION REQUIREMENTS FOR SPACE MK29F TURBOPUMP DETAILS

REQUIREMENT	>5000 24 24 30,500 BALL 65 65 110 0 1500
UNITS	SEC. SEC. NUMBER DEMONSTRATED RPM MM LBF LBF LBF LBF
PARAMETER	TOTAL TIME START/STOP CYCLES SHAFT SPEED BEARING TYPE PUMP BRG. DIAM. TURB. BRG. DIAM. ROTOR WEIGHT STATIC RADIAL LD. STATIC THRUST LD.

ł;

NASA SPACE MECHANIS PROPULSION REQ	CE MECHANISMS TECHNOLOGY WORKSHOP PULSION REQUIREMENTS FOR SPACE
TRIBOLOGIC	TRIBOLOGICAL ISSUES IN NTP
ROLLING ELEMENT BEARINGS	O HIGH DN VALUES (1.98 MILLION DN) WEAR/ HEAT GENERATION O LONG RUNNING TIMES
FLUID FILM BEARINGS	 START / STOP CYCLES HIGH SPEED RUBS (SURFACE SPEED >20,000 FPM) CAVITATION EROSION OF ORIFICES IN HYDROSTATIC DESIGNS RUBBING OR LOW SPEED LIFT OFF DURING LONG START UP AND COOL DOWN IDLE RUNNING
MAGNETIC	O HIGH SPEED RUBS

• . .

ł.

FIELD ROBOTS FOR THE NEXT CENTURY

William L. Whittaker Carnegie Mellon University Pittsburgh, Pennsylvania

Introduction

Robotics to date has produced underlying capabilities that enable robots to respond to a variety of task challenges. Robotics is maturing as a discipline, and the investment in prior research has yielded a wealth of technologies for a new generation of competent robots. It is no longer necessary to restrict research to work on testbed robots, since systems that meet performance specifications of end-users can now be developed. Given the existing technology base, robots that were unachievable five years ago now are within reach, provided that performance goals are established and development efforts in the near term are directed to meet them.

With seminal groundwork laid, robotics technology is now evolutionary, not revolutionary. Evolutionary technologies are born of knowledge-based research: efforts aimed at developing a new and better understanding of the application of scientific principles. From failures in early development come the insights that lead to successful future implementations, which show increasing utility and relevance as the technology evolves. Robots that meet new task challenges and exhibit proficiency are feasible, since the knowledge we have gained is allowing us to cross the threshold from pure knowledge-based research to performance-based research.

The Nature of Field Robots

Structured environments, like those found in factory settings, do not challenge robots with the dynamism and uncertainty of unstructured environments. Active and forceful manipulation of objects in unstructured environments requires much more than current industrial robotics can deliver. To work in a field site — say, digging up a gas pipe — a field robot must be able to recognize unknowns and respond to unplanned difficulties. It is paramount that the robot sense events and take responsive actions. Needs of the open work site, like robot intelligence and robustness, drive the agenda for field robotics research.

Robots, in general, fall into three classes, each distinguished by the control procedures available to the robot and its relationship to human supervisors. The first of these classes, programmed robots, perform predictable, invariant tasks according to pre-programmed instructions. Teleoperated robots, the second of these classes, includes machines where all planning, perception, and manipulation is controlled by humans. Cognitive robots, the third class, sense, model, plan, and act to achieve goals without intervention by human supervisors.

Programmed machines are the backbone of manufacturing; preprogramming is extensible to an important class of field work tasks (mostly on the periphery of the field work mainstream, and mostly unenvisioned and untried at this time). Programming commands actions through scripts that are played back by rote with branching of the script occurring at specified times or in response to anticipated events. Such scripts are only useful for predictable and invariant tasks, limiting the general use of preprogrammed robots for field work.

Teleoperated machines, servoed in real-time by human operators who close the strategic control loop, amplify and project the human. Because all perception, planning, high-level control, and liability rest with the human, teleoperation circumvents the most difficult issues that face other robot control modes, including the liability of passing control between machine and human and coping with unanticipated scenarios.

Teleoperation is proven where man does not tread, where demands are superhuman, where tasks are unstructured (by current measure), where liability is high, and where action is inevitable. A downside of teleoperation is that much is lost in translation across this man-machine interface. Robot bodies and senses are not optimal for coupling to man. Similarly, human minds are not optimal for the control of robots because of limitations in input/output bandwidth, memory structures, and numerical processing. The prospect exists for field robots to outperform their human counterparts in many ways.

Cognitive robots sense, model, plan, and act to achieve working goals. Cognitive robots servo themselves to real-time goals and conditions in the manner of teleoperators but without human controllers; they are their own supervisors. Cognitive robots pursue goals rather than play out scripts; they move toward goals and notions rather than to prescriptions and recipes. Although software driven, they are not programmed in the classical sense. Cognitive robots are perceptive and their actions are deliberate; they operate in the face of the vagaries and contingencies of the world. Task performance by a cognitive robot is responsive to the state of the environment and the robot itself.

Hybrid forms of teleoperated and programmed machines are becoming increasingly attractive as robots. For example, because factory processes are becoming more sophisticated as they integrate preprogramming and sensing, supervisory controllers and sensory feedback with teach/playback are becoming new research goals. Hybrid, supervisory, and programmable robots are also evolving from the roots of teleoperation in the nuclear service and decommissioning industries.

However they are classified, the most striking observation of present-day robots is that, with few exceptions, robots lack the ability to perform with any generality, which is the goal of truly capable systems. Even when task directives and methods of procedure are explicit, unforeseen difficulties arise that impede or halt the robot's progress. Autonomous navigation systems, for example, lack the capacity to negotiate traffic or move quickly across unexplored rough terrain. These robots are often debilitated by uncontrollable circumstances, such as bad lighting and inclement weather. Nor can they always cope with conflicting data to resolve ambiguities. Only now are driving robots

beginning to distinguish shadows from roads and separate real obstacles from the phantoms caused by spurious sensor readings.

The Use of Field Robots

Factory robots bring the repeatability, productivity, and quality control of automated mechanisms to manufacturing industries. The other historical motivation for using robots is to relieve humans of duty in hazardous environments. The nuclear industry was quick to adopt telerobotics so that human presence can be projected into places where the need for radiation protection hinders manual work or precludes it altogether. Teleoperated manipulators are presently saving thousands of man-rems of exposure in the routine servicing of reactors and associated steam generation equipment; recovery from the Three Mile Island and Chernobyl accidents would not have been possible without robotic worksystems specially commissioned to operate in those scenarios. For their specialized agenda, these nuclear-qualified robots exhibit high competence, owing to the fact that they were built to meet explicit performance goals and design criteria.

The world is now positioned to apply robotic technologies in other commonplace scenarios. Non-factory work sites are ripe, virtually untouched, and inevitable arenas for robotic applications. Labor efficiency on field sites is alarmingly low and the need for improved productivity is evident. Worker time spent idle or doing ineffective work may exceed half the work week, and productivity has generally been in decline for two decades. Thus, industry size, economics, existing inefficiencies, and competition motivate the introduction of robotics to field work. Other motivations include quality assurance and the prospect for better control over the field work site of the future. Further, because field work is often hazardous, concerns for health and safety provide additional impetus for robotic implementations.

In addition to all these motives, certain applications are inevitable because man is not perfectly suited for field work; machines are often better equipped for many applications. Man, for example, is vulnerable to hostilities such as weather, dust, vacuum, submersion, and cave-ins, and limited by a lack of scale or power for activities such as mining, material handling and construction. Man lacks certain sensing modalities, memory structures, and computational abilities that will allow the robots of the future to precisely sense and execute tasks in scaled or measured environments, and optimize automatic material distribution throughout a site. The needs of the field industries drive the development of unstructured robotics just as manufacturing and assembly drove structured robotics and hazardous environments drove teleoperation.

Early applications of robotic arms in manufacturing leveraged on their accuracy, consistency, and repeatability to achieve productivity, performance quantified on the basis of speed and the efficiency of resource investment, particularly the human resource.

Similar increases in productivity are realizable in applications outside the factory. For example, proper characterization of a hazardous waste site requires an enormous amount of data to be taken over a large land area. There are current efforts to automate this process by replacing manual data collection with mobile robots that can acquire and spatially correlate site information. Orders of magnitude increases in the amount of site data, as well as higher precision position estimation, will enable more complete assessments and ultimately reduce the cost of the investigation process.

Excavation is another excellent application to further the evolution of robotics because of its significance in scale and economic importance. It operates on a universal and generic material (soil), and excavation's goal and state can be described adequately by models of geometry and kinetics. Further, excavation is tolerant of imprecision, well-understood as a human driven process, and prototypical of a host of spin-off applications. One motivation for robotic excavation is the hazard in such tasks as blind digging of gas lines, retrieval of unexploded ordnance or removal of hazardous waste from a landfill. Another motivation is the productivity and process control that could be realized in mass earth moving operations. Unmanned excavation will reduce the human injuries and property losses attributed to explosions, decrease operation costs, and increase productivity by lengthening the work day.

Automation of surface mining has the potential to increase safety, decrease cost, and revolutionize control of surface mining operations. Elimination of human operators could circumvent current variables of operator quality and availability and monotony of the task. Further, automation of surface mining is seen as a building block toward general work site automation. Surface mining lends itself well to automation. Driving and haulage are simple actions in comparison with the richness of other robotic tasks like manipulation. Off-road navigation can also be extended to the applications of agriculture and timber harvesting. The environment can be known in advance and rigged to an appropriate level. Because the task is repetitive (the same paths are traversed for years), explicit plans alleviate the need for the robot to explore or learn about its environment. Although it must be able to handle a range of contingencies such as obstacles, an autonomous haulage system is primarily a performer of preplanned actions relegating perceptive sensing to a mechanism of self-survival.

A new generation of robots, grounded in existing robotic technologies, is on the horizon and will find widespread utility.

Robotic navigators are one class of systems that have several applications, including haulage, material delivery, and waste site characterization. Through automation of off-road driving, these tasks can be performed with less direct human involvement, thereby

increasing a worker's productivity through simultaneous control of several vehicles and removing his exposure to potential hazards.

Ground vehicles realizable in the near term will navigate under general lighting and weather conditions at productive rates of travel. Some will drive on streets and highways; others will negotiate rough terrain with variable geometry and natural surface characteristics. They will employ multiple sensory modes for guidance; use maps from several sources and of various resolution; detect, recognize and avoid obstacles; and be cognizant of their own dynamics. Future generations of robotic off-road navigators will focus on the design of robust navigational schemes. Obstacle detection and recognition will be extended to accommodate dynamic obstacles like other vehicles so that these robots will ultimately be capable of driving in traffic.

By coupling manipulation to locomotion, a robotic vehicle that can navigate off-road can be complemented with the ability to perform useful work. A terrestrial robot worksystem can be used in construction applications, such girder emplacement, excavation, and brick laying, and hazardous applications like handling of radiological material, waste packaging, and decontamination and decommissioning of nuclear facilities. These tasks share the common denominators that the robot physically engages and manipulates its environment and that the setting for these operations is often very hazardous.

These steps to enhance teleoperation of the worksystem provide the foundation for enhanced performance through increased task autonomy. The worksystem will evolve incrementally, as operations performed under human control in one generation are automated in the next. Interaction between man and machine will become simpler as the robot becomes able to accept higher level commands, and the human's role will transition to supervisor.

Next generation worksystems will perform certain subtasks on their own, while the operator exercises direct control for the more difficult operations, monitors subtask execution, and intervenes as needed. In the case of excavation, subtasks might be the scooping and unloading phases of the digging cycle; for building construction, subtasks might include grasping an I-beam and carrying it to location where a building foundation is being established. These capabilities will develop from the basics of manipulator control and geometric model building of the enhanced teleoperator by adding the capacity to recognize objects and the ability to reason on perceived geometry and force. Future generation worksystems will combine subtasks, automate more difficult aspects of the tasks, and add execution monitoring to achieve a higher degree of autonomy. Alternatively, it might be desirable to pursue execution of a variety of tasks using one worksystem with multiple tools and operating modes to achieve higher utility.

The Evolution of Robotic Technology

Robotics research has reached a threshold where technologies are beginning to find performance niches in which their implementations show comparative advantages over older technology or allow the performance of tasks previously unperformable. We are also witnessing a shift in implementation process from ad hoc integrations to disciplined development of complete systems.

Robotic technology has gained competence in the key areas of sensing, cognition, and control, to the point where new applications are feasible. Early robots had only mechatronic sensing with which they measured directly observable external variables, such as displacement and force, and could perform only simple operations, such as inspection, loading, and other positioning tasks. Increased understanding of vision and other sensory processes has made it possible for robots to make interpretations of their environment. Advanced robots extract and recognize certain features in data, often from multiple sensors, on the basis of pre-stored symbolic representations. This makes them capable of more challenging tasks, for example, manipulating irregularly shaped objects and assessing navigability of roads and paths. A very demanding task, like construction of a building, which requires not only the recognition of features and objects, but understanding of their semantic interplay, is presently beyond robotic technology.

Similarly, robots are able to undertake more challenging tasks as a result of advances in machine cognition. For early robots, planning was algorithmic and often no more than continuous state error correction, as in charting and following a trajectory. It is now feasible for robots to perform tasks like shaping soil and walking over rough terrain, which require automatic planning of significantly greater scope and depth: plans must be decomposed from goal specification into executable actions, and plan formulation has to be done in the face of uncertainty, requiring execution monitoring and use of contingencies. Coordination of multiple, potentially conflicting subgoals to fulfill a single, high-level directive, such as "clear obstacles from the road," remain too ambitious for existing robots.

The evolution of robotic technology is also evident in the increasing physical challenges met by robots. The first robots had kinematic control only, and their task domain spanned only operations that could be expressed by prescriptions of robot position. Better understanding of robot mechanisms and the application of more advanced control theory has enabled tasks that involve dynamic interaction of the robot with its environment, like stable walking and excavation. We are now implementing control at the task level, which goes beyond control theory and includes cognitive functions, such as error detection and fault recovery, so that occurrences, such as an unexpected obstacle, a sudden loss of traction, or a dropped payload, do not prevent completion of a task.

Future Directions

Despite evident need and apparent promise, the evolution of field robotics has not been straightforward. Ancient crafts have been historically slow to embrace new technology. Research investment levels have been insignificant. No precedents in field work industries for development programs of the requisite magnitude exist. Because field problems are difficult, quick fixes or one-time solutions are few, running counter to historical insistence on short-term payoff for investment. Obstacles to the growth of field robotics are compounded by the lack of common ground between the field industries and the robotics research community. The industry cannot yet visualize a programmatic course of action for integrating the growing robotic technology with its own.

At this time, construction, subsea, space, nuclear, mining, and military applications are driving and pacing many field robotics developments. Subsea and space applications, in particular, present unique technical challenges to robots, specialized motivations for field work, and constraints and regulations that discourage the use of human workers. However, the formative integration and drive for field robotics must ultimately come from the field work industry itself. The inevitability of field robotics will drive its evolution despite the immediate immaturity and impotence of the field.

It is likely that all three classes of robots and their hybrids will find sustaining relevance. Experiences are too few and it is too soon to resolve the relative importance of these forms or to discount the potential of any form. The Japanese have embraced teleoperators and programmed machines for field work. Perhaps the early American views of field robotics overestimated the need for sensing, artificial intelligence, and autonomy. Though it now appears that attributes of intelligence, particularly the ability to deliberate performance of tasks, will eventually dominate field robotics, nonetheless, teleoperators and programmed machines have both short- and long-term relevance.

If robots eventually prove themselves infeasible for unstructured environments, our views on what constitutes structure must change. Robots other than teleoperators may be irrevocably synonymous with structure. Our judgment in this matter should not be too clouded by current measures of structure and machine perception. It is common to mistake or overestimate chaos in a task environment simply because form and understanding are not apparent. There is a great prospect for structuring the apparently unstructured either by discovering structure or by imposing it.

The evolution of field robots will distill unique attributes for robots with working goals in unstructured environments. New robotic forms will emerge with the capability and the strategic competence to construct, maintain, and demolish. The evolution of field robotics will no more culminate in a single, ultimate form than did its biological counterpart. Rather, classes of robots will emerge for classes of work within classes of constraints. Even the robot genus/species formed and proven in other application domains remains untested by field work. No doubt most of the forms evolved for other purposes will find relevance somewhere in field work, if only because field works umbrella is so broad. The discipline of field robotics is embryonic. Its maturation is inevitable, but its mature form is not apparent. Given the uncertainty of what robotic forms may be relevant to field work, we argue that the field should remain open to all possible

The discipline must persevere to distill the unique identity and intellectual content of field robotics. The uniqueness of field robotics appears to lie in the cognitive skills and goals specific to the synthesis of an end product. Much research and many goals in field robotics, however, are generic to unstructured robotics, so field work can benefit from parallel developments in related fields. Little applicability would be lost by changing the domain specificity from field work to nuclear, mining, timbering, or military. It seems that field work will be dragged reluctantly to the opportunities of robotics. Nuclear, military, space, and offshore interests are embracing and driving the ideas now. It is essential that field robotics identify and drive the developments that will distinguish it as a discipline of its own.

References

Bares, J., E. Krotkov, M. Hebert, T. Kanade, T. Mitchell, R. Simmons, and W. Whittaker, "An Autonomous Rover for Exploring Mars," Special Issue on Autonomous Intelligent Machines, Computer Magazine, June 1989.

Everett, H.R., "Robotics Technology Areas of Needed Research and Development," White Paper 90G/119, Office of Navy Research, September 1985.

Kanade, T., Thorpe, C., and Whittaker, W., "Autonomous Land Vehicle Project at CMU," ACM Computer Conference, February 1986.

Martin, H. and Kuban, D., Teleoperated Robotics in Hostile Environments, Dearborn: Robotics International of the Society of Mechanical Engineers, 1985.

Moavenzadeh, F., "Construction's High-Technology Revolution," Technology Review, October 1985.

Motazed, B., "Interpretation of Magnetic Sensing for Construction Inspection," Proceedings of the Second International Conference on Robotics in Construction, Pittsburgh, June 1985. Motazed, B. and W. Whittaker, "Interpretation of Pipe Networks by Magnetic Sensing," Proceedings of the First International Conference on Applications of Artificial Intelligence in Engineering Problems, Southampton, U.K., April 1986.

Osborn, J., D. Pahnos, T. Stentz, C. Thorpe, and W. Whittaker, "Field Robots: The Next Generation," white paper, The Robotics Institute, Carnegie Mellon University, January, 1990.

Paulson, B., "Automation of Robots for Construction," ASCE Journal of Construction Engineering and Management, Vol. 111, No. 3, September 1985, pp. 190-205.

Sagawa, Y. and Nakahara, Y., "Robots for the Japanese Construction Industry," IABSE Proceedings, No. P-86/85, May 1985.

Suzuki, S., "Construction Robotics in Japan," Third International Conference on Tall Buildings, Chicago, 1986.

Warszawski, A., "Application of Robotics to Building Construction," First International Conference on Robotics in Construction, Carnegie Mellon University, 1984.

Warszawski, A. and Sangrey, D., "Robotics in Building Construction," ASCE Journal of Construction Engineering and Management, Vol. 111, No. 3, September 1985.

Whittaker, W., "A Remote Work Vehicle for the Nuclear Environment," Proceeding of the First Regional Meeting of the American Nuclear Society, Pittsburgh, September 1986.

Whittaker, W., "Construction Robotics: A Perspective," International Joint Conference on CAD & Robotics in Architecture and Construction, Marseilles, June 1986.

Whittaker, W., "Design Rationale for a Remote Work Vehicle," Proceedings of the 34th Conference on Remote Systems Technology, American Nuclear Society, Washington, D.C., November 1986.

Whittaker, W., "Teleoperated Transporters for RERR," Proceedings of the Workshop on Requirements of Mobile Teleoperators for Radiological Emergency Response and Recovery, Dallas, June 1985.

Whittaker, W. and Bandari, E., "A Framework for Integrating Multiple Construction Robots," International Joint Conference on CAD and Robotics in Architecture and Construction, Marseilles, France, June 1986.

Whittaker, W. and Motazed, B., "Evolution of a Robotic Excavator," International Joint Conference on CAD and Robotics in Architecture and Construction, Marseilles, France, June 1986.

Whittaker, W. and L. Champeny, "Capabilities of a Remote Work Vehicle," Topical Meeting on Robotics and Remote Handling in Hostile Environments, American Nuclear Society, Seattle, March 1987.

Whittaker, W., G. Turkiyyah, and M. Hebert, "An Architecture and Two Cases in Range-Based Modeling and Planning," Proceedings of the IEEE International Conference on Robotics and Automation, Raleigh, April 1987.

Whittaker, W., J. Bares, and L. Champeny, "Three Remote Systems for TMI-2 Basement Recovery," Proceedings of the 33rd Conference on Remote Systems Technology, San Francisco, November 1985.

Whittaker, W. et al., "First Results in Automated Pipe Excavation," Proceedings of the Second International Conference on Robotics in Construction, Pittsburgh, May 1985.

Whittaker, W. et al., "Mine Mapping by a Robot with Acoustic Sensors," Proceedings of the Second International Conference on Robotics in Construction, Pittsburgh, May 1985.

Whittaker, W., "Cognitive Robots for Construction," Annual Research Review, The Robotics Institute, Carnegie Mellon University, 1986.

Whittaker, W.L., K. Dowling, J. Osborn, and S. Singh, "Robots for Unstructured Environments," Unmanned Systems, 8, Winter 1990.

Yamada, B., "Development of Robots for General Construction and Related Problems," Research Conference, Material and Construction Committee, Architectural Institute of Japan, October 1984.

Yoshida, T. and Ueno, T., "Development of a Spray Robot for Fireproof Treatment," Shimizu Technical Research Bulletin, No. 4, March 1985. SATELLITES/SPACE PLATFORMS WORKING GROUP I

* ROAMER PREDMORE * STU LOEWENTHAL

TED NYE HERB SINGER KENT ROLLER RODGER SLUTZ RALPH JANSEN WILLIAM JONES **ED KINGSBURY BERT HAUGEN ROY MARANGONI STEVE PEPPER DAVE FLEMING PILAR HERRERA-FIERRO BEN EBIHARA YNGVE NAERHEIM MIROSALW OSTASZEWSKI** JIM GLEESON WILLIAM ANDERSON LARRY PINSON

* Group leader

NCLES	
STAC	
F OB	
IST OF OBSTA	
ED L	
RITIZ	
PRIO	

- LACK OF KNOWLEDGE OF LONG-LIFE CHARACTERISTICS OF LUBRICANTS Ξ
- (2) FAILURE CRITERIA UNKNOWN
- ENVIRONMENTAL FACTORS EFFECTS UNKNOWN $\overline{\mathbb{C}}$
 - (4) DEFICIENT TESTING STRATEGIES
- (5) INADEQUATE ANALYTICAL MODELS
- PRECISE CHARACTERISTICS/CONTROL OF FRICTION VERSUS **TIME UNKNOWN** 9
 - (7) STORAGE EFFECTS DELETERIOUS
- **EXCHANGE OF DATA NEARLY NON-EXISTENT** 8
- LARGE, THIN-SECTION BEARINGS PRESENT PROBLEMS 6
 - LUBRICANT REPLENISHMENT A PROBLEM (10)
- MECHANISM SUBSTRATE COMPOSITION/QUALITY (IMPURITIES) (11)
 - PRODUCES VARIABILITY IN LIFE AND PERFORMANCE

OBSTACLE: LONG-LIFE CHARACTERISTICS OF LUBRICANTS

TECHNOLOGY DEFICIENCIES (KNOWN OR PERCEIVED)

- Limited acceleration techniques/models
- nadequate knowledge of surface-lube interactions
 - Thin film versus Bulk Properties
- Lack of understanding of failure mechanisms
 - Application process deficiencies
- lack of correlation between surface conditions and life

CURRENT STATE OF ART

- "Seat-of-the-pants"!
- Good surface analysis/ characterization
- Limited knowledge of lubricant transfer mechanisms (Creep!, et.al.)

APPLICABLE NASA MISSIONS AND NON-NASA MISSIONS Ē

ACTIVE RESEARCH IN THE AREA

- Light effort Light effort CSCL:
 - NASA LeRC: Honeywell:
- Small-Med effort Medium effort MPB:

High-temp vacuum Lube Surface Interactions Lube strategy

Correlation of lube surface status to lifetime

TECHNOLOGY NEEDS FOR CURRENT OR FUTURE MISSIONS

- Better understanding of Barrier coatings
 - Need a lubrication strategy

SPACE MEC	HANISMS CUR	SPACE MECHANISMS CURRENT OR PERCEIVED OBSTACLES. SATELLITES AND SPACE PLATFORMS GROUP #1
OBSTACLE: FAILURE CRITERIA	VILURE CRITERIA	
 TECHNOLOGY DEFICIL Monitoring/sensing (to Definition of failure Accuracy/sensitivity of Correlation of testing Inadequate data base 	 TECHNOLOGY DEFICIENCIES (KNOWN OR PERCEIVED) Monitoring/sensing (telemetry) Definition of failure Accuracy/sensitivity of test equipment Correlation of testing with application Inadequate data base 	WN OR PERCEIVED)
CURRENT STATE OF ART Performance oriented vers Limited data channels/rate Remedies limited Fragmented data bases	RENT STATE OF ART Performance oriented versus diagnostic Limited data channels/rates Remedies limited Fragmented data bases	Ŀ
APPLICABLE NASA MISSI • AII	ASA MISSIONS ANI	ONS AND NON-NASA MISSIONS
ACTIVE RESEA MPB: NRL,Draper: MMC Honeywell	ACTIVE RESEARCH IN THE AREA ● MPB: Small→Med effort ● NRL,Draper: Small effort ● MMC Small effort ● Honeywell "Medium" effort	Lubricant Breakdown Lubricant breakdown detection Surface integrity Fluid Lubricant failure criteria
TECHNOLOGY Assessment/ Coordination 	HNOLOGY NEEDS FOR CURRENT C Assessment/survey of existing effort/data Coordination of existing activities	TECHNOLOGY NEEDS FOR CURRENT OR FUTURE MISSIONS Assessment/survey of existing effort/data Coordination of existing activities

h.

SPACE MECHANISMS CURRENT OR PERCEIVED OBSTACLES. SATELLITES AND SPACE PLATFORMS GROUP #1
OBSTACLE: ENVIRONMENTAL FACTORS
TECHNOLOGY DEFICIENCIES (KNOWN OR PERCEIVED) Accurate Characterization Fressure - vibration - Pressure - vibration - Radiation - Orbital debris - Temperature - AO Obsolete Data - Zero-G Lack of information exchange
CURRENT STATE OF ART Partial simulation - Lack of combined environments "Crude" Estimates Limited Test Capability
APPLICABLE NASA MISSIONS AND NON-NASA MISSIONS Mission Specific - Earth orbit versus interplanetary, etc.
ACTIVE RESEARCH IN THE AREA LDEF Numerous scientific studies - LANL, NASA, SDIO, etc.
TECHNOLOGY NEEDS FOR CURRENT OR FUTURE MISSIONS Develop methods and facilities for combined testing Better modeling of environment and effects

.

SPACE MECHANISMS CURRENT OR PERCEIVED OBSTACLES. SATELLITES AND SPACE PLATFORMS GROUP #1
OBSTACLE: TESTING STRATEGIES
 TECHNOLOGY DEFICIENCIES (KNOWN OR PERCEIVED) Inadequate Accelerated testing methods Inadequate simulation - Environment, load, motion, geometry Inadequate failure criteria
CURRENT STATE OF ART Real-time life testing Screening versus component-subsystem Good analytical capability
APPLICABLE NASA MISSIONS AND NON-NASA MISSIONS
ACTIVE RESEARCH IN THE AREA
TECHNOLOGY NEEDS FOR CURRENT AND FUTURE MISSIONS Fund/develop qualitative discrimination technique Survey of existing capabilities

.

SATELLITES AND SPACE PLATFORMS GROUP #1	GROUP #
OBSTACLE: ANALYTICAL MODELS	
TECHNOLOGY DEFICIENCIES (KNOWN OR PERCEIVED) Little/no connection from component to system! Limited verification - Experiment and Test!! Lack of life prediction techniques. 	
 CURRENT STATE OF ART Static models not bad at the component level. Limited dynamic component level models available. 	
APPLICABLE NASA MISSIONS AND NON-NASA MISSIONS	
ACTIVE RESEARCH IN THE AREA Not known	
 TECHNOLOGY NEEDS FOR CURRENT MISSIONS Complete tribological models (Mechano-materials) Valid testing procedures Model connectivity (Interaction) 	
CONCERNS	

PRIORITIZED LIST OF TECHNOLOGY NEEDS

- (1) ACCELERATED TECHNIQUES AND MODELS
- (2) UNDERSTANDING OF FAILURE MODES
- LUBRICANT/SUBSTRATE/ENVIRONMENT INTERACTIONS $\widehat{\mathbf{C}}$
- **COMBINED ENVIRONMENT SIMULATION** (
- (5) ANALYTICAL MODEL CONNECTIVITY LATERAL AND VERTICAL

MECHANISMS DESIGN GUIDELINES HANDBOOK INFORMATION TO BE INCLUDED IN A SPACE

- (1) QUALIFICATION OF LIMITATIONS
 - (2) CASE STUDIES (HISTORIES)
 - (3) ENVIRONMENTAL FACTORS
 - (4) SPECIFICATION OF LIMITS
- LIVING DOCUMENT CONTINUOUS REVIEW (SUPPLEMENTS) 2
 - (6) FAILURE CRITERIA
- PROVISION FOR REPORTING SUCCESS AND FAILURE
 - POINTS OF CONTACT EXPERIENCE BASE 8
 - **VOLUNTARY SOURCE LIST BY EXPERTISE** 6
- (8 AND 9 ARE FILTERS FOR PROPRIETARY)
- **GENERIC DESCRIPTIONS OF TYPICAL MECHANISMS** (10)
 - LISTING OF ANALYTICAL TOOLS (MODELS) (11)
- MODEL DESIGN PROCESS GENERIC FLOW CHART (12)

(a) (b) (c) (c)
--

OTHER ISSUES

WHAT NEXT?

- (1) PERMANENT COMMITTEE OR WORKING GROUP - TO EXCHANGE INFORMATION
- (2) COOPERATIVE PROGRAMS
- (3) **REGULAR MEETINGS**
- **CATALOG OF CAPABILITIES (VERY NEAR TERM)** -- PERSONNEL **(7**)
 - FACILITIES
- **ESTABLISH SCHEDULE FOR FOLLOW-UP (ACTION PLAN)** છ

RESPONSES TO OBJECTIVE QUESTIONS

SATELLITES/SPACE PLATFORMS WORKING GROUP II

* DOUG ROHN * PAUL FLEISCHAUER

WILLIAM LOGUE DENNIS SMITH PETER WARD ROBERT GRESHAM KARL MECKLENBURG WILLIAM CLARK JOANNE UBER MICHAEL KHONSARI WAYNE BARTLETT ERV ZARETSKY FRAN MARCHAND MARK SIEBERT GARY WALKER

* Group leader

PRIORITIZED LIST OF OBSTACLES

b

	 (4) LACK OF ADEQUATE MECHANICAL DESIGN - GUIDELINES NEEDED FOR GOOD DESIGN PRACTICES (LIVING DOCUMENT) - ANALYTICAL METHODS (BEARING/LUBE MODELS FOR SERVOS LACKING - ANALYTICAL MATTHODS (BEARING/LUBE MODELS FOR SERVOS LACKING - LACK OF KNOWLEDGE AND USE OF ADVANCED MECHANISM STRUCTURAL MATERIALS - LACK OF KNOWLEDGE AND USE OF ADVANCED MECHANISM STRUCTURAL MATERIALS - LACK OF UTILIZING OF NEW TECHNOLOGY INTO OPERATIONAL AND NEW SYSTEMS - LACK OF ROBUST DESIGNS (5) QUALITY CONTROL - LACK OF PROCESS CONTROL FOR NEW MATERIALS - e.g. NEW SOLID LUBRICANTS AND CERAMIC BEARINGS - QUALITY CONTROL SHOULD BE PART OF DESIGN/PROGRAM
--	---

201

•

PRIORITIZED LIST OF TECHNOLOGY NEEDS

- (1) IMPROVE ACCELERATED TEST METHODS AND ESTABLISH A TEST DATA BASE
- (2) DEVELOP THE CAUSE AND EFFECT RELATIONSHIP BETWEEN LUBRICANT SYSTEM LIFE AND DEGRADED LUBRICANT AND **BEARING MATERIALS**
- (3) RESEARCH INTO NEW MATERIALS AND LUBRICANT SYSTEMS TO LUBRICANT SYSTEM INTO AND OPERATIONAL SATELLITE ANSWER ALL QUESTIONS FOR INTRODUCTION OF THE

MECHANISMS DESIGN GUIDELINES HANDBOOK INFORMATION TO BE INCLUDED IN A SPACE

- (1) INCLUDE ALL INFORMATION DISCUSSED IN THIS WORKING GROUP
- (2) REGISTER OF ADVISORY EXPERT ADVISE AND TEST CAPABILITY FOR LUBRICATED MECHANISMS

E TO IMPROVE TECHNOLOGY	DISSEMINATION OF INFORMATION
3E DONE	L AND
WHAT CAN BE	DEVELOPMENT

- (1) COMMUNICATION IMPROVEMENTS
- ESTABLISH A NASA LEAD CENTER WRITE A NASA SPACE MECHANISM HANDBOOK
- **ESTABLISH ANNUAL MEETINGS** 1
- **INSTITUTE CASE HISTORY AND LESSONS LEARNED DATA** BASES ł ł

OTHER ISSUES

- (1) INVITE SPACE MECHANISM PARTICIPATION FROM COMMERCIAL SATELLITE COMPANIES AND MILITARY SATELLITE COMPANIES
- COMPANIES TO BOB FUSARO/LeRC, TO SUPPORT SPACE SEND LETTERS OF SUPPORT FROM PRIVATE INDUSTRY **MECHANISMS ACTIVITIES** 3
- FORM AN ADVISORY BOARD FROM INDUSTRY TO PROVIDE NASA **HEADQUARTERS GUIDANCE** ල

WHAT NEXT?

- (1) SPACE MECHANISMS HANDBOOK
- INCLUDE ALL WORKING GROUP TOPICS
- PAY WORKING GROUP MEMBERS TO WRITE HANDBOOK
 - **COLLECT LUBRICATION CDR PRESENTATION AND LUBRICATION LIST AS BACKGROUND** ł
- (2) ESTABLISH LeRC AS LEAD CENTER FOR SPACE MECHANISMS
- (3) MEET 1 OR 2 TIMES A YEAR TO ASSURE THE WORKING GROUP **OBJECTIVES ARE ACCOMPLISHED**
- (4) FOLLOW THE ESA EXAMPLE

RESPONSES TO OBJECTIVE QUESTIONS

PLANETARY SURFACE OPERATIONS WORKING GROUP

* BOB FUSARO * DAVID THRASHER

JEFF MILLER WILLIAM WHITTAKER **DALE FERGUSON BEN CLARK LEE MASON TALI SPALVINS MIKE KNASEL MICHAEL SOCHA RICHARD HALL KAZUHISA MIYOSHI ERIC MELLBERG CURT STIDHAM** JIM DILL **KEVIN RADIL STERLING WALKER GERALD LILIENTAHL**

* Group leader

SPACE MECHANISMS CURRENT OR PERCEIVED OBSTACLES. PLANETARY SURFACE OPERATIONS GROUP	OBSTACLE: MATERIALS FOR PLANETARY COMPONENTS	 TECHNOLOGY DEFICIENCIES (KNOWN OR PERCEIVED) Lack of flexible materials for use at high/cold temperatures Unknown property changes in materials exposed to the environment (vacuum, dust, radiation, temperature, abrasion, corrosion) Unknown storage and non-operational effects on mechanism materials Don't know the types of materials exposed to the environment (vacuum, dust, radiation, temperature, abrasion, corrosion) Unknown storage and non-operational effects on mechanism materials Don't know the types of materials to use! CURRENT STATE OF ART SOA is for short life, low-use mechanism Space qualified materials are for Earth orbit only. APPLICABLE NASA MISSIONS AND NON-NASA MISSIONS APPONCINCENS APPONCINCE RESEARCH IN THE ARE APPLICABLE REACENTIAL APPONLOGY NEEDS FOR FUTURE APPLICABLE REAL CORTINE AND ADAVALABLE ADAVALABLE ADAVAL
--	--	--

ł;

SPACE MECHANISMS CURRENT OR PERCEIVED OBSTACLES. PLANETARY SURFACE OPERATIONS GROUP	OBSTACLE: INADEQUATE LUBRICATION	 TECHNOLOGY DEFICIENCIES (KNOWN OR PERCEIVED) No test data for choosing lubricants to use on planetary surfaces Lack of low vapor pressure liquid lubricants for planetary surface use Lack of adequate lubricants for ceramics and advanced materials Lack of low temperature liquid lubricants Lack of solid lubricants for air/vacuum, low/high temperature use Lack of understanding on what types of seals will be needed to protect lubricants Lack of lubricants that can operate in combined environments (lunar, martian) Lack of accelerated testing methods
SPACE ME	OBSTACLE: II	TECHNOLOGY No test data Lack of low Lack of ade Lack of low Lack of low Lack of und Lack of lubr Lack of lubr

đ.	PLANETARY SURFACE OPERATIONS GROUP
OBSTACLE: INADEQUATE DESIGN PROCESS	
TECHNOLOGY DEFICIENCIES (KNOWN OR PERCEIVED) Lack of integrated and structured design tools Lack of understanding of requirements 	CEIVED)
 Lack of standard techniques Lack of Earth based test-beds for demonstration 	
 Prejudiced against advanced technology and unwillingness to invest Lack NASA/Industry dissemination of data 	ngness to invest
 Lack of experience in young engineers Lack of adequate analytical models for mechanisms 	بلموزمه
 Lack of a design manual 	
• Lack of interdisciplinary efforts in the design phase of mechanisms	of mechanisms
 Perception that mechanism development is considered cheap (Better estimates needed) Designing for Reliability and lifetime limitation is difficult 	ed cheap (Better estimates needed) ficult
 No system to promote utilization or development of Earth Applications No Repair or replacement plans 	Earth Applications
 A need for low cost standardized components (off the shelf) for design and building of mechanisms (cheaper, guicker) 	the shelf) for design and building of mechanisms
Lack of commonality among design for moon and Mars	lars
 Designs for sealing an unknown 	
 Lack of drive train component design 	lent design

.

210

b.

.

SPACE MECHANISMS CURRENT OR PERCEIVED OBSTACLES. PLANETARY SUBFACE OPERATIONS CERTIE	
---	--

OBSTACLE: INADEQUATE DESIGN PROCESS

CURRENT STATE OF ART

Evolving but inadequate for mechanism designs

ACTIVE RESEARCH IN THE AREA

- -Seal Design/analysis tool LeRC MSFC
- -Rolling Element D/A tool
- -Computer int. eng. manufacturing Lockheed
- -Environmental power system design EPSAT

TECHNOLOGY NEEDS FOR CURRENT OR FUTURE MISSIONS

- Common NASA Engineering and Analysis data base
 - Effective means of data transmission
- Tools for synthesis, constraint, propagation, documentation, process and analysis)

SPACE MECHANISMS CURRENT OR PERCEIVED OBSTACLES. PLANETARY SURFACE OPERATIONS GROUP OBSTACLE: LACK OF ENVIRONMENTAL UNDERSTANDING AND AFFECTS TECHNOLOGY DEFICIENCIES (KNOWN OR PERCEIVED) • Lack of definition of the working environment • Lack of mechanisms that can operate in an abrasive environment • Lack of information on material/lubication effects due to moon and Mars environment • No prior knowledge of dust impacts for static versus moving parts • Lack of engineering based precursor missions • Unknown electrostatic effects of lunar dust
 Unknown tribological effects of high vacuum and dusty environment in non-lubricated rubbing contact Unknown environmental tribological effects on lubricated contacts No definitions of operating environments are available Lack of system generated environmental data CURRENT STATE OF ART Knowledge of LRV, Apollo, etc.

E.

OBSTACLE: LACK OF ADEQUATE TESTING METHODS
 TECHNOLOGY DEFICIENCIES (KNOWN OR PERCEIVED) Lack of existing test facilities that adequately simulate the lunar environmental conditions Lack of test requirements Lack of a theory on which to validate test results No validity of 1-G testing to predict successful operation on the moon and Mars Lack of demonstration missions to detect problems in mechanism operation No known test beds lack of planned tribology flight experiments
OBSTACLE: LACK OF HISTORICAL MECHANISM DATA FOR PLANETARY SURFACE APPLICATION
TECHNOLOGY DEFICIENCIES (KNOWN OR PERCEIVED)
 No guidelines or handbooks for planetary surface mechanism design No guidelines or handbooks for planetary surface lubricant selection Data from previous missions hard to obtain Lack of low cost, standardized components for design and building of mechanisms (leads to expensive mechanisms) Lack of configuration and performance metrics for mechanisms

.

.

1

MECHANISMS DESIGN GUIDELINES HANDBOOK INFORMATION TO BE INCLUDED IN A SPACE

- (1) STATISTICAL DATA
- (2) HISTORICAL DATA
- (3) PAPERS AND SYMPOSIUM PROCEEDINGS
- (4) LESSONS LEARNED
- (5) WORKING CONDITION DATA - ENVIRONMENT (LUNAR, MARS)
- PRECEDENT COMPONENT INFORMATION 9

 (1) DEFINE SPEC (1) DEFINE SPEC (2) HEALTH MO (2) HEALTH MO (3) INCORPORAT
--

ISSUES	-
OTHER	

- NEED FOR ESTABLISHING A DATABASE OF INFORMATION **CONSISTING OF:** Ξ
 - -- LESSONS LEARNED ON PREVIOUS SPACE MISSIONS
 - **TECHNICAL PAPERS**
- SCOPE STUDY TO DETERMINE EXTENT OF EFFORT IN **ESTABLISHING A DATABASE** 3
- EMPHASIZE COMMON USE OF VARIOUS COMPONENTS (FAMILY **OF PRE-QUALIFIED STANDARDIZED COMPONENTS (FOLLOWS IDEA OF CHEAPER, FASTER)** $\widehat{\mathbf{C}}$
- ATTEMPT TO "PIGGY-BACK" ON OTHER EXPERIMENTS TO GAIN **MECHANISM DATA** €

- PARTICIPANTS TO REVIEW AND RETURN PRIOR TO FINAL **EVALUATE SUMMARIES OF WORKSHOP AND ALLOW CONFERENCE PROCEEDINGS** Ξ
- ESTABLISHMENT OF AN ADVISORY COMMITTEE TO SERVE AS A VOICE FOR THE CONCERNS OF INDUSTRY/NASA/OTHER **GOVERNMENT/UNIVERSITY** 3
- (3) MECHANISM NEWSLETTER
- SELECT BEST CANDIDATES FOR FUNDING A BUILD A CASE FOR PROCUREMENT Ð
- FUTURE WORKSHOP IN CONJUNCTION WITH AEROSPACE **MECHANISMS SYMPOSIUM** 6

PRIORITIZED LIST OF OBSTACLES

- BETTER UNDERSTANDING OF MATERIALS ARE NEEDED FOR PLANETARY SURFACE APPLICATIONS Ξ
- (2) INADEQUATE DESIGN PROCESS
- (3) INADEQUATE LUBRICATION
- (4) LACK OF UNDERSTANDING OF ENVIRONMENT AND EFFECTS
- (5) LACK OF ADEQUATE TESTING METHODS
- LACK OF HISTORICAL MECHANISM DATA FOR PLANETARY SURFACE APPLICATION 9

RESPONSES TO OBJECTIVE QUESTIONS

POWER/PROPULSION WORKING GROUP

* BOB HENDRICKS * JERRY KANNEL

JOHN BOZEK JEFFREY SCHRIEBER BRUCE STEINETZ ROBERT THOM CHUCK LAWRENCE THEO KEITH HAROLD SLINE JOHN COY HOOSHANG HESHMAT GEORGE STEFKO FRANK KUSTAS

* Group leader

h

POWER/PROPULSION		- STABILITY OF LUBED MECHANISMS. ATMOSPHERE ON EARTH MAY DAMAGE SPACE LUBRICANTS
------------------	--	---

.

	POWER/PROPULSION
	SEALING OF BEARINGS TO PREVENT CONTAMINATION - EFFECT OF TEMPERATURE ON GREASE - FIRCTRICAL MOTODS
(LUBRICATION OF INTERNAL COMBUSTION ENGINES LUBRICATION OF INTERNAL COMBUSTION ENGINES DAMPING EQUIPMENT, SHOCK ABSORBERS, TRANSMISSION DEVICES, ETC. NEED TO BE DESIGNED DIFFERENT
	EMBRITILEMENT OF MATERIALS STERILIZATION OF COMPONENTS FOR TRIPS TO MARS
•	 SPACE ENVIRONMENT ATOMIC OXYGEN, UV, ELECTRONS, PROTONS, ETC. OUTGASSING REQUIREMENTS (VACUUM CONDENSABLE MATERIALS)
	STORABLES HYDRAZINE, SOLIDS, NOZZLE PROBLEMS
•	ARC JET FOR STATION KEEPING ALL HAVE CONTROL VALVES

È.

NEEDS
<i>IECHNOLOGY</i>
LIST OF
PRIORITIZED

POWER/PROPULSION

- PUMPS (COMPRESSOR) Ξ
- FOR PROPULSION (BEARING, SEAL, DYNAMICS, GEARS **BLADES, DESIGNS)**
 - FOR H₂ AND O₂ FOR WET O₂
- MOLTEN LI, NaK, ETC.
- **ROTATING MACHINERY (SYSTEMS INTEGRATION FOR** 3
 - **RECIPROCATING, ROTATING, STERLING, BRAYTON)**
- DESIGN EFFICIENCY TRADEOFFS (e.g.: STERLING MUST BE **BEARINGS: HYDRODYNAMIC, MAGNETIC HYDROSTATIC**
 - **COMPONENT CHANGE OUT AFTER SERVICE LIFE** LOOKED AT AS A SYSTEM) 1
 - SOLAR ELECTRIC POWER $\overline{\mathfrak{O}}$
- **DEPENDENT ON MISSION (ORBIT, MOON, MARS)**
 - **DEPLOYMENT OF ARRAYS**
- SUPPORT STRUCTURE ARTICULATION IN ORBIT
 - SHUTTLE DOCKING
- **MECHANISM RETRACTION**

PR	PRIORITIZED LIST OF TECHNOLOGY NEEDS
	POWER/PROPULSION
(4)	
(5)	- SPACE STAKT UNLY NDE AND ACCELERATED LIFE TESTING INCLUDING ENVIRONMENT
	- HOW TO DETERMINE X YEARS OF LIFE IN A SHORT TIME - WHAT ARE FAILURE MECHANISMS - HEALTH MONTTORING (STORAGE AND TESTING)
9	LUBRICATION SYSTEMS
	- CONTAMINATION, EFFECT OF TEMPERATURE, PRESSURE, RESUPPLY
	WHAT IS BEARING FOR WHEELS, ETC.
Ð	TRANSMISSION DEVICES (POWER TRAINS, BELTS, CHAINS, ARTICULATED DEVICES (POWER TRAINS, BELTS, CHAINS, ARTICULATED DEVICES IL-IOINTS)
(8)	ADDRESS DESIGN ISSUES UP FRONT FOR TRIBOLOGY CONSIDERATIONS
	- DESIGN OF BOTH WITH THE TURBOMACHINERY CFD's - CONCURRENT ENGINEERING

h.

.

PRIORITIZED LIST OF TECHNOLOGY NEEDS

POWER/PROPULSION

- (9) MATERIALS SELECTIONS
- FABRICATION VS LUBRICANT SELECTION
- NEED FOR CONSIDERATION OF BOTH AS TRIBOLOGY PART
 - FOCUS ON HOW TO CONSTRUCT THE DATA BASE
- LIGHT VERSUS HEAVY CONTACTS, LEAD COATINGS (OLD AND SIMPLE MAY BE BEST) ł
 - -- ACCURATE REPRODUCIBLE MOTION
- USEFUL HANDBOOK OF MATERIALS, LUBRICANTS, GUIDES
 - (10) BIG DUMB BOOSTERS
- ROBUSTNESS AND RELIABILITY, SOLID AND LIQUIDS

226

R

	POWER/PROPULSION
(5)	FOCUSED TECHNOLOGY
	PUMPS: TURBO, COMPRESSORS, GENERIC
	- COMPONENT TYPES: BEARINGS, SEALS, GEARS, LUBE- EVETEME DI ADE DEGIZIGI ENC.
	HICH DOWED DENGTRY FOR SCARE DIMANS
	- HIGH COMPATIBILITY RECIFE FOR SIME FUMPS
	STEAM ENGINE (CRYO TO HOT CAS) WET O TO A STEAM
	+ OTHER GASES). LIOUID METALS (Li. NaK. FTC.)
	SMART SYSTEMS NEEDED
	ROTATING MACHINERY SYSTEMS
	- SYSTEMS INTEGRATION APPROACH, TARGET CYCLE &
	MISSION (e.g. NASP ENGINE/AIRFRAME)
	- RECIPROCATING/ROTATING (STIRLING/BRAYTON)
	- SUSPENSION FOR BEARINGS: MAGNETIC, HYDRODYNAMIC.
	FOIL (-STATIC, AND -FILM)
	POWER TRANSMISSIONS, POWER TRAINS DEVICES
	- ARTICULATING JOINTS
	- COMPONENT TYPES: GEARS, BELTS, CHAINS, SCREWS.
	TRACTION DRIVES, μ -ELECTRONICS/SENSORS, AND
	FEEDBACK LOOPS

TECHNOLOGY NEEDS CLASSIFIED INTO 3 AREAS POWER/PROPULSION	 (2) FOCUSED TECHNOLOGY (CONTINUED) UPFRONT ADDRESS OF DESIGN ISSUES INVOLVE CONTRACTOR/EE DIRECTLY WITH TRIBOLOGIST NEED FOR HANDBOOK OF MATERIALS FOR DESIGNERS PROCEEDINGS FOR DESIGNERS VS RESEARCHERS TRIBO-DEVICES NEURAL NETS, FUZZY LOGIC INTERFACE CONTROLLERS 	 (3) APPLIED TECHNOLOGY SOLAR ARRAY SOLAR ARRAY MISSION DEPENDENT (REQUIREMENTS/LIMITATIONS) MISSION DEPENDENT (REQUIREMENTS/LIMITATIONS) POWER/PROPULSION POWER/PROPULSION SUPPORT DEPLOYMENT, RETRACTION, STORAGE OF ARRAYS ARRAYS ARRAYS ARTICULATED JOINTS (e.g., ALPHA, BETA ON SPACE STATION)
- •		•

b

AREAS
IO
Z
E
E
S
A S
CLA
Ä
EED
Ζ
IN X:
G
3
NOLO
Z
U
EC

POWER/PROPULSION

- (3) APPLIED TECHNOLOGY (CONTINUED)
 NUCLEAR POWER (NTP, NEP)
- COUPLINGS FOR RADIATORS, ARRAYS
 - SAFE SPACE ORBITAL START ONLY
- MECHANISMS RELIABILITY OF X-YEARS
 - WASTE DISPOSAL
- **TETHERING AND SHIELDING OF REACTOR**
 - ROBOTICS ISSUES
- BIG DUMB BOOSTERS
- LOWER TECHNOLOGY MAY BE BETTER (OFF SHELF, NO DEVELOPMENT, LOW COST)
 - ROBUST, RELIABLE, CHEAP
- JOINTS AN ISSUE HOW TO ASSEMBLE
- NEURAL NETS, FUZZY LOGIC INTERFACES/CONTROL
- LIFE, CONTROL, LEARNING, TEACHING, DATA BASES, μ -SENSORS, μ -CIRCUITRY (ALSO MAY BE FOCUSED **TECHNOLOGY** ł

	POWER/PROPULSION
Ξ	BRING SPECIALISTS UP FRONT (i.e. DURING THE CONCEPTIONAL DESIGN)
5	RIGOROUS CHECKS AND BALANCES (HELP NOT ROAD BLOCKS)
3	INTERACTIONS AND REVIEW BY TECHNICALLY COMPETENT ENGINEERS
Ŧ	MAINTAIN IN HOUSE (NASA) CAPABILITY
(2)	REALISTIC TESTING ÀND SIMULATION (THEORY AND EXPERIMENTAL)
9	FEEDBACK
<u>ה</u>	LONG TERM TESTING TO ASSURE DATA BASE
8	CONCLUSION: STABILITY OF PROGRAMS
6	RETURN TO APOLLO PHILOSOPHY!

•

G

MECHANISMS DESIGN GUIDELINES HANDBOOK INFORMATION TO BE INCLUDED IN A SPACE

POWER/PROPULSION

- **TECHNOLOGY ITEMS** Ξ
- -- MATERIALS/FABRICATIONS
- -- NDE (ACCELERATED TESTING)
 - -- MONITORING TECHNIQUES
- -- OUTGASSING DOCUMENTATION
 - **LIST OF EXPERTS (DIRECTORY)**
- DISCUSSION OF PITFALLS OF SPACE ENVIRONMENT $\overline{\mathbb{C}}$
 - LIST OF SUGGESTED MATERIALS/DATA €
- \mathbf{S}
- EASILY AVAILABLE TO THE MASSES (FLOPPY, VIDEO, CD-ROM) DO'S AND DON'TS (HANDBOOK, VIDEO, ETC.)
 - 90
- TWO VOLUMES (COMPONENTS AND TRIBOLOGY)
 - **CONSIDER BUYING PROPRIETARY DATA** 8
 - **OBTAIN BLACK PROGRAM DATA BASE** 6
- HANDBOOK THAT IS FUNCTIONAL AND KEPT CURRENT (10)

	POWER/PROPULSION
(E)	CENTRALIZED CENTER FOR MECHANISMS/TRIBOLOGY (i.e.
33	ANNUAL WORKSHOPS/MEETINGS CONSISTENT FUNDING (SUPPORT) FOR TECHNOLOGY ALLOW FOR
(4)	INTERNAL PRESENTATIONS SUCH AS ONR LINKING UP MECHANISMS TESTING DONE BY
(9)	- TECHNOLOGY TESTING (GENERIC) - FOCUSED TESTING (COMPONENT) - APPLIED TESTING (MISSION, DIRECT APPLICATION) PEER REVIEW OF TECHNOLOGY PROGRAM

i:

	POWER/PROPULSION
	BASIC RESEARCH NEEDED FOR NEW PROPULISION SYSTEMS
•	CUT RED-TAPE COSTS
•	DISCUSSION ON HOW TO PRIORITIZE
	I AT
	WISSIN)
	- LED TO SPLITTING TECH DEVELOPMENT INTO 3 CDOIDS
	- TECHNOLOGY BASE (GENERIC)
	- FOCUSED TECHNOLOGY (COMPONENTS)
	- APPLIED TECHNOLOGY (MISSIONS)
•	NEED FOR HEALTH MONITORING, NEURAL NETS E177V LOCIC
	SMART SYSTEMS, EXPERT SYSTEMS, ACCEI FD ATED TECTION
	FOR NDE
•	ENGINEERING THE INTERFACE IS "BAND AID"
•	RATHER FAIL TRYING THAN TALKING ABOUT IT
•	THEME "NEED TO PUT IT WHERE VOI! WANT IT WHEN VOI!
	WANT TO. RELIABLY"

.

OTHER ISSUES

VEXT?	
F -1	
H	
HA	
$\mathbf{\Sigma}$	

POWER/PROPULSION

- **ON GOING CONFERENCE (ANNUAL)** Ξ
- FLOPPY VIDEO HANDBOOKS
- **QUARTERLY VIDEO CONFERENCES (NASA'S)** 30
 - IMPLEMENT RESEARCH IN: €
- SMART SYSTEMS AND DATA BASE
 - 2 PHASE FLOW
- WET O₂ PUMPING LIQUID METAL SEALS AND BEARINGS
- -- DEMONSTRATE HARDWARE (PUMPS, ETC.)
- 20 YEAR TECHNOLOGY LEAD TIME MANDATES THAT WE START NOW TO ACHIEVE NASA's MARS/MOON MISSIONS 3

SPACE MECHANISMS TECHNOLOGY WORKSHOP OUTPUT

The responses to each objective question (discussed by the four working groups) were tabulated and prioritized according to the number of groups that thought it was an important issue. The following includes tables illustrating those responses and some written comments on each objective question.

CURRENT SPACE MECHANISMS OBSTACLES

The two obstacles mentioned by each of the four working groups were (1) deficient testing methods and (2) deficient lubrication technology for mechanisms. These appear to be the two major needs areas.

The problem with testing is that mechanisms are very systems dependent, if one test parameter is changed, one can not verify that a mechanism will operate as reliably or efficiently under the new condition. Thus, one has to ascertain that all possible operational parameters (that the mechanism will encounter) are evaluated. In addition, it is very hard to simulate a space condition in ground based testing. For example, simulating a zero-g, high vacuum environment or a dusty, wide temperature spectrum, high vacuum environment (as will be the case on the moon) is quite difficult.

Since testing involves tribological effects, the effect of atmosphere type is very important. Tests in air should not be performed unless one is absolutely certain this environment will create no unwanted additional effects. When liquid lubrication is involved there are currently no methods for accelerating the testing because the lubrication mechanism is speed dependent. Testing also must take into account vibrational effects caused during the launch of the mechanism and effects due to storage of the mechanism.

Lubrication technology for space applications has not advanced markedly in the last 20 years. The concern is that currently satellites are being put into orbit with the expectation that they will last for longer periods of time and demanding minimal contamination by outgassing of lubricants. Solid lubricants would be ideal, but generally they have limited life. In addition, those that work well in a vacuum usually do not function well in an air environment, and vice versa. New liquid lubricants have been developed with very low vapor pressures, but they have a tendency to break-down under boundary lubrication conditions and thus their life is unreliable. There are other liquid lubricant candidates for space applications, but the problem is that minimal testing has been done for space qualification or the information on them is proprietary. In the propulsion area, lubrication and testing in LOX has been a problem. And for planetary surfaces, we have no experience in operating mechanical equipment in very cold, dusty, high vacuum, or corrosive environments. The next most mentioned area was a lack of communication or lack of data sharing. Three of the four groups mentioned this. The Aerospace Mechanisms Symposium is held every year by NASA, but it was felt that this symposium dealt more with design issues than with technology issues and was not much benefit in disseminating technology information. Three of the four groups also mentioned mechanism design methods. It was felt that new or innovative methods need to be developed. It remains to be seen how to accomplish this?

Two of the four groups mentioned quality control methods, space environmental effects and mechanisms materials as being obstacles. The current state of tribology is such that the performance of many lubricants is dependent more on how they are applied than on what is applied. Similarly with producing quality bearings, gears, etc. for space applications. It is important that these parts are produced according to specifications, thus good quality control practices are required. It is becoming more difficult to find good suppliers. Not many materials are space qualified for mechanisms applications. Because materials are qualified for structural applications, designers often choose such materials, even though tribologically speaking they are poor choices, they are selected only because they are "space qualified". Space environmental effects on mechanisms and lubricants are, for the most part, indeterminate, especially on the moon or Mars.

The other deficient areas mentioned at least once by one of the groups, were: analytical models, storage methods, unknown failure mechanisms, and consistent funding. Basically there are very few analytical models to predict a mechanisms performance or how long it will operate. There is a lack of information on how storage will affect the performance or endurance of mechanisms. We do not know how many mechanisms fail when tribology problems occur. And finally, it was felt that the key to improving the operation of space mechanisms was to have consistent funding from NASA Headquarters in this area.

SPACE MECHANISMS TECHNOLOGY NEEDS

The technology needs that were discussed for the most part parallel the obstacles listed, however, the technology need responses tended desirable specific areas that were not mentioned in the obstacle discussions. Improved lubricating systems and accelerated testing techniques were listed by all groups. Improved component materials was listed by 3 groups although only 2 groups mentioned materials as an obstacle. Two groups mentioned better design processes, knowledge of failure modes and environmental simulation as technology needs. Analytical models, historical data, testing methods, rotating machinery, pumps, solar and nuclear electric, transmissions, and boosters were mentioned by at least one group.

HOW DO WE IMPROVE THE RELIABILITY OF MECHANISMS

The power and propulsion group was the only group that had sufficient time to address the reliability of mechanisms issue, however their responses are very applicable to the other discipline areas. They felt that: (1) a specialist in mechanical components and lubrication should be involved during the conceptual design phase of any project NASA should supply these specialists or have a list of approved specialists. (2) A system incorporating a rigorous systems of checks and balances should be established. (3) All plans should be reviewed by technically competent engineers. (4) NASA needs to maintain a strong in-house capability to guide and direct contractors as well as to develop needed technology. (5) Realistic testing and simulation of the hardware should be conducted. (6) Long term testing is needed to establish and assure a data base. (7) While NASA's overall missions may change, research and technology in key technological disciplines (such as mechanisms) which are important to many programs should be maintained and stabilized. (8) Finally it was felt that we should return to the "Apollo Philosophy".

WHAT SORT OF INFORMATION SHOULD BE IN A SPACE MECHANISMS GUIDELINES HANDBOOK

All the groups felt a space mechanisms guidelines handbook was a good idea. It was also felt that this document should be a "living" document, being continuously updated as new technology and techniques are developed. A large number of items were listed by each group as to the type of information that should be included in this manual. The responses varied somewhat depending upon the discipline and background of the group participants, but everyone agreed that points of contacts or experts in various disciplines was one of the most important items that should be included. The next most important item concerned environmental effects that should be taken into account. Two of the groups suggested that some case histories should be included. The rest of the items mentioned by the groups are listed in the enclosed table.

HOW CAN TECHNOLOGY DEVELOPMENT AND THE DISSEMINATION OF INFORMATION BE IMPROVED

The number one suggestion for improving technology development and the dissemination of information was to establish a lead or central repository. An important consideration that came out of this workshop was that mechanisms technology is very generic. Technology developed for the satellite industry can also be applied to planetary surface operations as well as to power and propulsion problems. It would be beneficial to have one center correlate all the mechanisms work which would apply to all the agency needs. This would reduce costs as well as reduce the duplication of research. It was also felt that regular meetings such as this workshop need to be conducted to foster the exchange of information. It may be possible to have seminars or sessions at engineering conferences that deal with space mechanisms. A number of other items were discussed and they are listed in the enclosed table.

OTHER ISSUES

The groups were also asked to list other issues that they perceived to be important but were not covered in the objective questions given to the groups. Each group tended to have its own issues. The only issue mentioned by two groups was that better military-civilian cooperation is needed in the satellites area. Various areas were discussed ranging from how to advocate a space mechanisms program to very specific technology issues such as the need for smart systems. The issues listed by the groups can be reviewed in the enclosed table.

WHAT NEXT

1.

All four working groups indicated that the first task that should be done in the space mechanisms area is to initiate a space mechanisms handbook. (Note: the production of that handbook is currently underway, being sponsored by Code Q at NASA Headquarters.) The next task that all of the groups agreed upon was that some forum which would permit regular discussions should be established. Three of the groups stated that regular meetings should take place and three said that a permanent advisory committee or working group should be formed. Other items that should be considered include: have cooperative programs, catalog capabilities (personnel and facilities), establish a lead center, have video conferences, develop a newsletter, etc. The table on "What's Next" includes all the items mentioned by the groups.

The Workshop ended with Professor Theo Keith of the OAI outlining a possible plan whereby industry, government and universities could network though OAI to develop educational courses, handbooks, computer databases, etc. (see accompanying figure). Professor Keith also outlined a plan whereby the workshop could lead to a steering group and then to a space mechanisms advisory group to help advocate a program, to form coalitions, form agendas and improve communication between industry, government and universities (see attached figure). COMPILATION OF OBSTACLES LISTED BY SPACE MECHANISMS WORKING GROUPS

OBSTACLES (DEFICIENT AREAS)	SATELITES #1	SATELLITES #2	POWER/ PROPULSION	PLANETARY SURFACES	TOTALS
TESTING METHODS	×	×	×	×	4
LUBRICATION TECHNOLOGY	×	×	×	×	4
DATA SHARING (LACK OF COMMUNICATION)	×	×		×	3
MECHANISMS DESIGN MECHANISMS	×	×		×	3
MECHANISMS MATERIALS		×		×	2
QUALITY CONTROL METHODS		×	×		2
SPACE ENVIRONMENTAL EFFECTS	×			×	2
ANALYTICAL MODELS	×				-
STORAGE METHODS	×				-
CONSISTENT FUNDING		×			-
UNKNOWN FAILURE MECHANISMS	×				-

COMPILATION OF TECHNOLOGY NEEDS LISTED BY SPACE MECHANISMS WORKING GROUPS

TECHNOLOGY NEEDS	SATELUTES	SATELLITES #2	POWER/ PROPULSION	PLANETARY SURFACES	TOTALS
IMPROVED LUBRICATING SYSTEMS	×	×	×	×	4
ACCELERATED TESTING TECHNIQUES AND NDE	×	×	x	x	4
IMPROVED COMPONENT MATERIALS		×	×	×	3
BETTER DESIGN PROCESSES	×			×	2
ENVIRONMENTAL SIMULATION	×			×	2
KNOWLEDGE OF FAILURE MODES	×			x	2
ANALYTICAL MODELS	×				1
HISTORICAL DATA				X	1
TESTING METHODS				×	1
ROTATING MACHINERY	×				1
PUMPS	×				1
SOLAR AND NUCLEAR ELECTRIC	×				1
TRANSMISSIONS	×				1
BOOSTERS	×				+

Compilation of items mentioned by the space Mechanisms working groups that should be in a Handbook

	5	7.4	PROPULSION	SURFACES	
POINTS OF CONTACT (EXPERTS)	×	×	×	×	•
ENVIRONMENTAL EFFECTS FACTORS	×		×	×	, .
SHOULD BE A "LIVING" DOCUMENT	×		×		, .
VOLUNTARY SOURCE LIST	×	×			• •
CASE STUDIES OF HISTORIES	×			×	
QUALFICATION OF LIMITATIONS	×				- 1
EASILY ACCESSIBLE (FLOPPY, VIDEO, CD ROM)			×		
SPECIFICATIONS OF LIMITS	×				
FAILURE CRITERIA	×				- -
PROVISION FOR REPORTING SUCCESSES/FAILURES	×				
GENERIC DESCRIPTIONS	×				- .
ANALYTICAL TOOLS (MODELS)	×				- -
MODEL DESIGN PROCESS	×				- -
CURRENT TESTING CAPABILITY		×			- -
MATENALS/SPECIFICATIONS			×		- -
MONITORING TECHNIQUES			×		- -
OUTGASSING INFORMATION			×		
ACCELERATED TESTING METHODS			×		
DO'S AND DON'TS			×		
PAPER REFERENCES				×	- -
LESSON LEARNED STUDY					
STATISTICAL DATA				: ×	- -
COLLECTION OF WORKING DATA				×	
COMPONENT INFORMATION				×	

COMPILATION OF ITEMS LISTED BY THE SPACE MECHANISMS WORKING GROUPS THAT WOULD IMPROVE TECHNOLOGY DEVELOPMENT AND THE DISSEMINATION **OF INFORMATION**

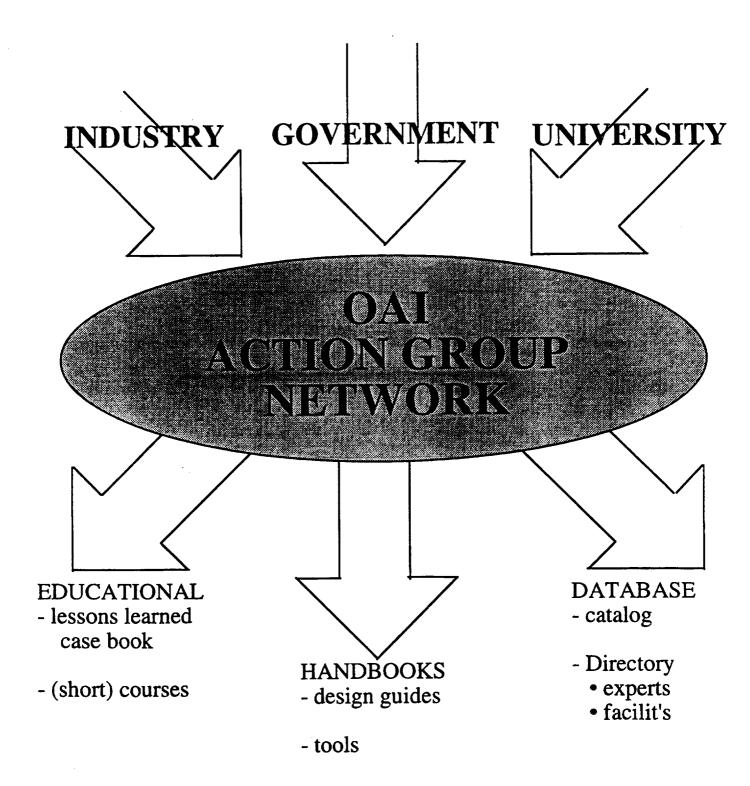
ITEM	SATELLITES #1	SATELLITES #2	POWER/ PROPULSION	PLANETARY SURFACES	TOTALS
ESTABLISH A LEAD CENTER OR CENTRAL REPOSITORY	×·	×	×	*	3
LONG TERM FUNDING COMMITMENT	×		×		2
ENHANCE INFORMATION EXCHANGE	×	×			2
HOLD REGULAR MEETINGS		×	×		2
DECLASSIFY TECHNICAL INFORMATION	×				1
OPEN UP PROPRIETARY FILES	×				-
EXCHANGE EACH OTHERS REFERENCES	×				-
IMPROVE SPEED AND ACCESS OF PUBLICATIONS	×				
DEVELOP A HANDBOOK		×			-
CASE HISTORY/LESSONS LEARNED STUDY		×			-
INTERNAL PRESENTATIONS			×		-
LINK UP TECHNOLOGY, FOCUSED AND APPLIED MECHANISMS TESTINGS			×		-
PEER REVIEW THE TECHNOLOGY			×		-

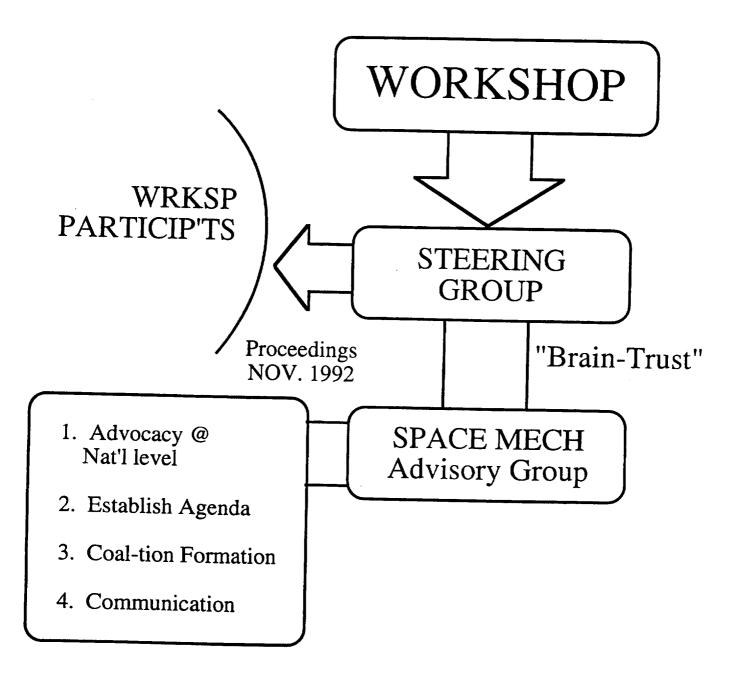
* Planetary Surfaces group did not have time to address this questions.

COMPILATION OF IDEAS ON HOW TO IMPROVE THE RELIABILITY SPACE MECHANISMS

IDEA	SATELLITES #1	SATELLITES	POWER/ PROPULISION	PLANETARY
BRING SPECIALIST IN DURING CONCEPTUAL DESIGN PHASE	+	*	×	*
RIGOROUS CHECKS AND BALANCES			×	
INTERACTIONS AND REVIEW BY TECHNICALLY COMPETENT ENGINEERS			×	
MAINTAIN AN IN HOUSE (NASA) CAPABILITY			×	
REALISTIC TESTING AND SIMULATION (THEORY AND DESIGN)			×	
LONG TERM TESTING TO ASSURE DATA BASE			×	
STABILITY OF PROGRAMSI			×	
RETURN TO APOLLO PHILOSOPHYI			×	

* THESE GROUPS DID NOT HAVE TIME TO ADDRESS THIS QUESTION


COMPILATION OF ISSUES LISTED BY SPACE MECHANISMS WORKING GROUPS


ISSUE	SATELLITES #1	SATELLITES	POWER/ PROPULSION	PLANETARY SURFACES	TOTALS
MILITARY-CIVILIAN COOPERATION	×	×			2
AIRCRAFT INDUSTRY MODEL FOR FUNDING	×				ŀ
BIG BUCKS NEEDED FOR HANDBOOK	×				1
REGULATORY ISSUES (CONSTRAINTS)	×				-
COHESIVE LONG TERM PLAN NEEDED	×				-
ENCOURAGE CAREER DEVELOPMENT	×				-
LONG TERM TECH BASE SHOULD BE DEVELOPED	x				L.
GET SUPPORT LETTERS FROM INDUSTRY		×			-
FORM AN INDUSTRY ADVISORY BOARD		×			-
BASIC RESEARCH NEEDED FOR NEW PROPULSION SYSTEMS			×		1
CUT RED TAPE COSTS			×		٢
MUST AIM AT SPECIFIC MISSIONS			×		1
NEED FOR SMART SYSTEMS			×		1
RATHER FAIL TRYING THAN TALKING ABOUT IT			×		۰
ENGINEERING INTERFACE IS A BANDAID			×		F
ESTABLISH A PLANETARY DATA BASE OF INFORMATION				×	1
DEVELOP A COMMON USE OF COMPONENTS				×	1
PIGGY BACK TECHNOLOGY EXPERIMENTS ON SCIENCE MISSIONS				×	-

Ì.

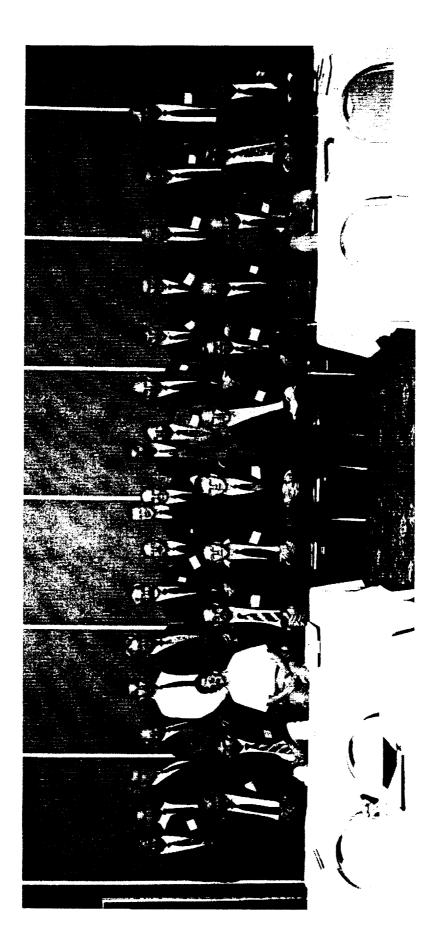
COMPILATION OF ITEMS THAT SPACE MECHANISMS WORKING GROUPS STATED SHOULD BE DONE NEXT

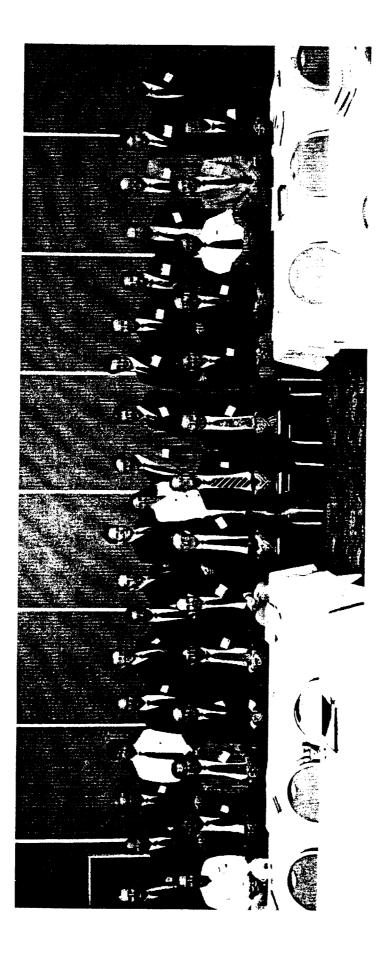
WHAT NEXT? ITEM	SATELLITES	SATELLITES #2	POWER/ PROPULSION	PLANETARY SURFACES	TOTALS
SPACE MECHANISM HANDBOOK	×	×	×	>	
PERMANENT ADVISORY COMMITTEE OR WORKING GROUP	×	: ×	<	< >	+ c
REGULAR MEETINGS	×	:	×	< ×	2 4
COOPERATIVE PROGRAMS	×			:	
CATALOG OF CAPABILITIES (PERSONNEL & FACILITIES)	×				·
DEVELOP A FOLLOW UP PLAN SCHEDULE	×				
ESTABLISH A LEAD CENTER		×			-
FOLLOW THE EUROPEAN SPACE AGENCY EXAMPLE		×			-
VIDEO CONFERENCES			×		
IMPLEMENT RESEARCH			×		
A NEED TO START NOW20 YEAR LEAD TIME			×		1
DEVELOP A NEWSLETTER				×	-
SELECT BEST CANDIDATE AND BUILD A CASE FOR FUNDING				×	-

.

.

Eirat	Mi	ddle Lesiname	Organization	City	State	Zip	Work phone
William	J.	Anderson	Nastec, Inc.	Cleveland,	OH	44142	216/433-1555
Wayne		Bartlett	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-5388
John		Bozek	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-6166
Dave		Brewe	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-6967
Ben		Clark	Martin Marietta Astronautics Group	Denver,	œ	80201	303/977-3000
William		Clark	University of Pittsburgh	Pittsburgh,	PA	15261	412/624-9794
Chris		Dellacorte	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-6056
James		Dill	Mechanical Technology, Inc.	Latham,	NY	12110	518/785-2136
Ben		Ebihara	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-3524
Dale	C.	Ferguson	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-2298
Paul		Fleischauer	Aerospace Corporation	Los Angeles,	CA	90009	310/336-6098
Dave		Fleming	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-6013
Bob		Fusaro	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-6080
Jim		Gleeson	Battelle Labs	Columbus,	OH	43201	614/424-4697
Robert		Gresham	E/M Corporation	West Lafayette,	IN	47906	317/497-6340
Richard	L.	Hall	Battelle Labs	Columbus,	OH	43201-2693	614/424-5499
Bert		Haugen	Lockheed Missiles	Sunnyvale,	CA	94086	408/742-0412
Bob		Hendricks	NASA Lewis Research Center	Cleveland,	OH	44135	216/977-7507
Pilar			oNASA Lewis Research Center	Cleveland,	OH	44135	216/433-6053
Hooshang		Heshmat	Mechanical Technology, Inc.	Latham,	NY	12110	518/785-2533
Ralph		Jansen	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-6054
William	R.	Jones	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-6051
Jerry		Kannel	Battelle Labs	Columbus,	OH	43201	614/424-4626
Theo	G.	Keith	Ohio Aerospace Institute	Brook Park,	OH	44142	216/891-2106
Michael	М.		University of Pittsburgh	Pittsburgh,	PA	15261	412/624-9790
Edward		Kingsbury	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-6051


SPACE MECHANISMS TECHNOLOGY WORKSHOP ATTENDEES


First	Mid	tie Lastname	Organization	City	Siate	Zip	Work phone
Mike		Knasel	Ohio Aerospace Institute	Brook Park,	OH	44142	216/891-2147
Frank		Kustas	Martin Marietta Astronautics Group	Denver,	ω	80201	303/971-9107
Geoffrey	A.	Landis	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-2238
Charles		Lawrence	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-6048
Gerald		Lilienthal	NASA Jet Propulsion Lab	Pasadena,	CA	91109	818/354-2400
Stuart		Loewenthal	Lockheed Missiles & Space Co.	Sunnyvale,	CA	94089-3504	408/743-2491
William	M.	Logue	Martin Marietta Astronautics Group	Denver,	ω	80201	303/971-8614
Roy		Marangoni	University of Pittsburgh	Pittsburgh,	PA	15261	412/624-9797
Fran		Marchand	Draper laboratory	Cambridge,	MA	02139	617/258-1170
Lee		Mason	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-7106
Karl	R.	Mecklenburg	Wright Laboratory/MLBT	WPAFB,	OH	45433-6533	513/255-2465
Eric		Mellberg	Lockheed Missiles & Space	Titusville,	FL	32780	407/383-2200x2685
Jeff		Miller	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-6012
Kazuhisa		Miyoshi	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-6078
Yngve		Naerheim	Rockwell International Science Center	Thousand Oaks,	Ca	91360	805/373-4254
Ted		Nye	TRW, Incorporated	Redondo Beach,	CA	90278	310/813-5934
Miroslaw		Ostaszewski	Ball Aerospace Systems Group	Boulder,	ω	80306	303/939-6392
Stephen		Pepper	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-6061
Larry		Pinson	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-3312
Roamer		Predmore	NASA Goddard Space Flight Center	Greenbelt,	MD	20771	301/286-5953
Kevin		Radil	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-5047
Doug		Rohn	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-3325
Kent		Roller	Ball Communications Systems DIV.	Boulder,	ω	80306-1062	303/442-4812
Jeffrey		Schreiber	NASA Lewis Research Center	Cieveland,	OH	4135	216/433-6144
Herbert		Singer	Draper Laboratory	Cambridge,	MA	02139	617/258-3929
Harold		Sliney	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-6055

Eiret	Mid	die Lasiname	Organization	City	State	Zip	Work phone
Rodger	J.	Slutz	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-62993
Dennis		Smith	Honeywell, Inc.	Glendale,	AZ	85308	602/561-3237
Michael	M.	Socha	Draper Laboratory	Cambridge,	MA	02139	617/258-2126
Talivaldis		Spalvins	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-6060
George		Stefko	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-3920
Bruce		Steinetz	NASA Lewis Research Center	Cleveland,	OH :	44135	216/433-3302
Curt		Stidham	NASA Lewis Research Center	Cleveland,	OH	441345	216/433-6106
Robert		Thom	NASA Marshall Space Flight Center	Huntsville,	AL	35812	205/544-2517
Dave		Thrasher	Boeing Aerospace	Huntsville,	AL	35824-6402	205/461-3937
Joanne		Uber	NASA Goddard Space Flight Center	Greenbelt,	MD	20771-0001	301/286-8469
Gary	R.	Walker	ITT Aerospace/Optical Division	Fort Wayne,	IN	46801	219/436-2438
Sterling	W.	Walker	John F. Kennedy Space Center	Kennedy Space	FL	32899	407/867-7770
Peter		Ward	MPB Corporation	Keene,	NH	03431	603/355-4588
Richard		Weinstein	NASA Headquarters	Washington	DC	20546	202/358-0538
William		Whittaker	Carnegie Mellon Universtiy	Pittsburgh,	PA	15213	412/268-6559
Erwin		Zaretsky	NASA Lewis Research Center	Cleveland,	OH	44135	216/433-3241

•

.

REPORT DO	CUMENTATION	PAGE
-----------	-------------	------

Form Approved ~

4

			OMB No. 0704-0188
collection of information, including suggestion Davis Highway, Suite 1204, Arlington, VA 22	nd completing and reviewing the collection of s for reducing this burden, to Washington Hee 202-4302, and to the Office of Management e	information. Send comments regard dquarters Services, Directorate for ind Budget, Paperwork Reduction P	
1. AGENCY USE ONLY (Leave blank		3. REPORT TYPE AN	
4. TITLE AND SUBTITLE	October 1999		onference Publication
	ology Workshop Proceedings		5. FUNDING NUMBERS
6. AUTHOR(S)			WU-323-72-00-00
Robert L. Fusaro, editor			
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
National Aeronautics and S	pace Administration		REPORT NUMBER
John H. Glenn Research Co Cleveland, Ohio 44135–3	E-11770		
9. SPONSORING/MONITORING AGE	ENCY NAME(S) AND ADDRESS(ES)	······································	10. SPONSORING/MONITORING
			AGENCY REPORT NUMBER
National Aeronautics and S Washington, DC 20546–0	NASA CP1999-209200		
11. SUPPLEMENTARY NOTES	······································		
Responsible person, Rober	t L. Fusaro, NASA Glenn Resea	rch Center, organization	code 5950, (216) 433–6080.
12a. DISTRIBUTION/AVAILABILITY	STATEMENT		12b. DISTRIBUTION CODE
Unclassified - Unlimited Subject Categories: 18, 37,	and 27 Distrib	oution: Nonstandard	
This publication is available fro	m the NASA Center for AeroSpace Ir	formation, (301) 621-0390.	
13. ABSTRACT (Maximum 200 word	(s)		
Office of Safety and Missic to determine the obstacles t co-sponsored by NASA/Le in Westlake, Ohio. Seventy space mechanisms obstacle the-art, and applicable NAS technology needs for currer	on Assurance initiated a worksho hat will have to be met in order wis Research Center and the Oh experts in the field attend the w s. For each obstacle, the partici SA, DOD, and industry missions in missions, technology needs for is, what can be done to improve	p to evaluate the current to achieve NASA's futur io Aerospace Institute (C vorkshop. The experts id pants identified technolo . In addition, the partici r future missions, what r	alies. Because of this, the NASA space mechanism state-of-the-art and e missions goals. The workshop was OAI) and was held at the Holiday Inn entified current and perceived future gy deficiencies, the current state-of- pants at the workshop looked at new technology is needed to improve t and the dissemination of informa-
14. SUBJECT TERMS			15. NUMBER OF PAGES
Mechanisms; Systems; Prol Lubrication; Deployables	blems; Space; Mechanical comp	onents; Tribology;	263 16. PRICE CODE A12
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICA	
OF REPORT	OF THIS PAGE	OF ABSTRACT	
Unclassified	Unclassified	Unclassified	Strandard Form 2000 (Day 10 cm)

NSN 7540-01-280-5500

h.

. . . .