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Abstract

An efficient method, using equivalent plate model, is developed for studying the static and vibration

analyses of general built-up wing structures composed of skins, spars, and ribs. The model includes the

transverse shear effects by treating the built-up wing as a plate following the Reissner-Mindlin theory, the

so-called First-order Shear Deformation Theory (FSDT). The Ritz method is used with the Legendre

polynomials being employed as the trial functions. This is in contrast to previous equivalent plate model

methods which have used simple polynomials, known to be prone to numerical ill-conditioning, as the trial

functions. The present developments are evaluated by comparing the results with those obtained using

MSC/NASTRAN, for a set of examples. These examples are: (i) free-vibration analysis of a clamped

trapezoidal plate with (a) uniform thickness, and (b) non-uniform thickness varying as an airfoil, (ii)free-

vibration and static analyses (including skin stress distribution) of a general built-up wing, and (iii)free-

vibration and static analyses of a swept-back box wing. The results obtained by the present equivalent plate

model are in good agreement with those obtained by the finite element method.
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Introduction

For structural analysis, the Finite Element Analysis (FEA) is widely used because of its generality,

versatility and reliability. FEA is also the method of choice in situations where detailed results in the

vicinity of local discontinuities (holes, abrupt dimension variations etc.) are needed. This is accomplished

by refinement of the mesh near the zone of interest. But a wide application of detailed FEA at the late

conceptual design stage or in the early preliminary design stage still faces some major obstacles. First, the

preparation time for a FEA model data may be prohibitive, especially when there is little carry-over from

design to design. Second, for complex structures, a detailed FEA needs huge amount of CPU time and

computation capacity which makes the cost soar.

In view of this situation, often equivalent continuum models are used to simulate complex structures

for the purpose of obtaining global solutions in the early design stages. This idea is reasonable as long as

the complex structure behaves physically in a close manner to the continuum model used and only global

quantities of the response are of concern. For example, significant work exists on using beam or plate

models to simulate repetitive lattice structures _-v

In the area of analyzing aerospace wing structures, a number of studies have been conducted on using

equivalent beam models to represent simple box-wings composed of laminated or anisotropic

materials 8-_0, and they have yielded accurate results for the specific problems studied. But from a realistic

point of view, using an equivalent plate to model a wing structure is more promising, since a wing,

especially the one that has a low aspect ratio, is likely to behave more as a plate than as a beam.

There does exist a considerable body of work on the static or dynamic behaviors of all kinds of plates.

A thorough description of literature on the study of plates was given by Lovejoy and Kapania 11, where

more than 300 references has been listed about all kinds of thin, thick, laminated or composite plates of

trapezoidal shapes. One way of classifying existing methods for the solution of plates is according to the



deformationtheoryused,namely:theClassicalPlateTheory(CPT),theFirst-orderShearDeformation

Theory(FSDT),or theHigher-orderShearDeformationTheory(HSDT)etc.TheCPTis basedon the

Kirchhoff-Lovehypothesis,thatis, a straightline normalto theplatemiddlesurfaceremainsstraightand

normalduringthedeformationprocess.Thisgroupof theorieswork well for truly thin isotropicplates,but

for thick isotropicplatesandfor thin laminatedplatestheytendto overestimatethestiffnessof theplate

sincetheeffectsof through-the-thicknesssheardeformationareignored_2.]3.TheFSDT isbasedon the

Reissner-Mindlinmodelt4,_5wheretheconstraintthatanormalto themid-surfaceremainsnormalto the

mid-surfaceafterdeformationis relaxed,andauniformtransverseshearstrainis allowed.TheFSDT isthe

mostwidely usedtheoryfor thick andanisotropiclaminatedplatesowing to its simplicity andits low

requirementfor computationcapacity.Formoreaccurateresultsor morerealisticlocaldistributionsof the

transversestrainandstress,oneshouldusetheHSDT_6,or theCFSDT(ConsistentFirst-orderShear

DeformationTheory)proposedby Knight andQi _7

Methodsof solvingtheCPT,FSDTor HSDTmainly includefinite element,Galerkin,andRayleigh-

Ritz methods_ . In thecontextof usingequivalentplateto representthebehaviorsof wing structuresatthe

conceptualstageat least,it is obviousthatwhile thecomputationallycostlyfinite elementmethodis to be

avoided,theRayleigh-Ritzmethodis attractive.

Therehavebeenseveralstudiesusingequivalentplatemodelsto modelwingstructures.Gilests.t9

developedaRitz methodbasedapproach,whichconsidersanaircraftwing asbeingformedby a seriesof

equivalenttrapezoidalsegments,andrepresentsthetrue internalstructureof aircraftwings in the

polynomialpowerform. In Gilests theCPTwasused,but this shortcomingwasremovedsubsequently19

Tizzi 20 presented a method whose many aspects are similar to that of Giles. In Tizzi's work several

trapezoidal segments in different planes can be considered, but the internal parts of wing structures (spars,

ribs, etc.) were not considered. Livne 2_ formulated the FSDT to be used for modeling solid plates as well



astypicalwing box structuresmadeof coverskinsandanarrayof sparsandribsbasedon simple-

polynomialtrial functions,whichareknownto beproneto numericalill-conditioningproblems.Livne and

Navarrothenfurtherdevelopedthemethodto dealwith nonlinearproblemsof wing box structures22

Thepresentstudyis anextensionof thepreviousworksof KapaniaandSinghvi23,24,Kapaniaand

Lovejoy25.26._andCortial27,whoall usedtheRayleigh-Ritzmethodwith theChebyshevpolynomialsas

thetrial functions,andappliedtheLagrange'sequationsto obtainthestiffnessandmassmatrices.In

KapaniaandSinghvi23.24 the CPT was used to solve generally laminated trapezoidal plates, while in

Kapania and Lovejoy 25,26.L,,the FSDT was used. In all these studies, only uniform plates were considered.

In Cortial 27, efforts were made to use the method of Kapania and Lovejoy zs.26._ to calculate natural

frequencies of box-wing structures, but an assumption of constant wing thickness makes it difficult to

apply the method to general wing structures.

In this paper, it is assumed that the wing plan-form is trapezoidal, and the wing structure is composed

of skins, spars and ribs. The wing is represented as an equivalent plate model, and the Reissner-Mindlin

displacement field model is used. The Rayleigh-Ritz method is applied to solve the resulting equivalent

plate problem, with the Legendre polynomials being used as the trial functions. After the stiffness matrix

and mass matrix are determined by applying the Lagrange's equations, static analysis can be readily

performed and the natural frequencies and mode shapes of the wing can be obtained by solving an

eigenvalue problem. Formulations are such that no limitation is placed on the wing thickness distribution

as was the case in Cortial 27. As examples of verifying the present method, a wing-shaped plate, a wing-

shaped plate with camber, a solid wing and a built-up wing are analyzed respectively and the results are

compared with those obtained from a detailed FE analysis using MSC/NASTRAN.
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Assumptions and Formulations

For the solution of a plate under static or dynamic deformation, the Reissner-Mindlin method, a First-

order Shear Deformation Theory (FSDT), is based on two assumptions for the displacement field: (1) A

normal line to the non-deformed middle surface remains a straight line after deformation; and (2) The

transverse normal stress can be neglected in the constitutive relations.

According to these assumptions, and assuming linearity, the displacement field of the plate is given as:

u(x, y, Z, t) = uo (x, y, t) + Z¢_ (x, y, t) 1
/

v(x, y,z,t) Vo(X, y,t)+ ZOy(x, y,t) I (1)w(x, y, z,t) = Wo(X, y,t)

where as shown in Fig. 1, u, v, w are displacements in the x, y, z direction respectively, subscript 0 refers

to quantities associated with the plane z = 0, ¢x and _y are the rotations about the y and - x axis

respectively. It is assumed here that the middle surface of the plate is witl',out or with a very small

curvature, therefore z = 0 can be considered to be the middle surface.

From (1) we can get the strains:

= bu_ au 0
ex ax - "-g'x+ z aO-- x

3__L = 3Vo+ z aO__z__
ay 3y 3y

aw
e_ = a-7 = 0

3v 3Uo+3Vo aa__- ?- xy_.=2e_. 3u_ _ +z( + )=as 3x ay -fix
av aw _wo

_'yz = 2_','z ="_Z +'-_y =Oy + 3y

3w 3u 3%
Y:_ = 2e= ="_x +-_Z = < +--_x

Now we want to analyze a wing by assuming that it behaves as a plate. This assumption is very

reasonable as long as the wing has a small thickness-chord ratio. For the convenience of calculation, a

(2)



transformation from (x, y) to (_,r/) is performed, with the wing configuration in the (x, y) plane, a

skewed trapezoidal, transformed to a square in the (_,r/) plane, as shown in Fig. 1.

The transformation can be formulated as

x = Z N,(_,rl)xi
i=l

4

Y : Z N, (¢,rl) Yi
i=1

(3)

where

N, (_, 71) = ¼ (1 - _)(1 - tl) ]

Na(_,_) {(1 + _)(1- r/)

N3 (_, r/) _(1 +_)(t + r/)

N4 (_, r/) ¼(1- _)(1 + r/)

(4)

Write the inverse of the Jacobian matrix as

lax ax]-'=FZ,' Z'=].
[j]_, __ _)r/

= ay ay LJ2,
(5)

We express the displacement components on the plane z = 0 in Eq. (1), i.e. u o, vo , w0, Cx and ¢;, in

the following forms

I J

u0 = {B u }r {qv }= E ZU,j(t)B,(_)Bj(rl)
i=l j=l

K L

Vo = {BKL }r {qv }= _,_Vk,(t)S, (_:)B, (r/)
k=l /=1

M N

Wo = {BMu }r {% }= __.__W_(t)B,.(_)B.(rl)
m=l n=[

(b_ = {Bpo }r {qx } ____ X pq (t)Bp (¢)Bq (r])

p=l q=l

R S

Cy = {BRs }r {q, }= _ _., g_ (t)B r (_)B_ (rl)
r=l s=l

(6)

or



{Uo'Vo'Wo'¢_ '¢s }r = [H]{q}

where I, J, K, L, M, N, P, Q, R and S are integers,

{q} = {{qu }r'{qv }r'{qw }r'{qx }r'{qr }r }r ]

{qv } = {UlJ ,UI2,'",UIJ ,U21 ,"',U2J ,'",UI1 ,'",Uu }r

{qv } = {V.l,'",VKt }r, {qw } = {WI,,'",WMu }r

{qx } ={x,,,''',xeo }r,{qv } = {Y,,,"',YRs }r

is the generalized displacement vector, and

[HI = diag[{B u }r, {Bxt }r, {BMu }r, {BeQ }r, {BRs ]r ]

where

{Buy }= {B,(_)B,(7/),B, (_)Bz(r/),...,Bu(_)B,,(r/)}r"_

Jl.tv= IJ,KL, MN, PQ, RS

isthe Ritzbase functionvector,inwhich B_(x) can be chosen tobe theLegendre polynomials:

B,(x) = P,_,(x)

where

Po(X)= 1
P,(x) = x

2n + 1 xP, n P,-i(x),n = 1,...P..,(x) - (x)- l

(7)

(8)

(9)

(I0)

(11)

Strain Energy of a Wing Structure

The strain energy of a wing structure is

u =_{alTleIdV
V

By introducing the stress-strain relations of the generalized Hooke's law, Eq. (12) becomes

(12)
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,lip

u:  jjj I ITCD]t IdV
v

Note that {o } = [D]{_ } and

includes all and only the spaces the components of the wing occupy.

Using Eqs. (5), we can write

[#]

(13)

I

[D] r = [D] is assumed, and the integration domain V in Eqs. (1 2) and ( 13)

(14)

From Eqs. (2) and (14), we have

Ex

Ev

{e} = 'i 2e,_, 1i -

2eyz

12e_

J_]

0

712

0

0

72, 0 0 0 0 zJz_ z72_ 0 0 0 O

0 JI2 J22 0 0 0 0 zJI2 z J22 0 0

7_ 7,, 7_, o o z7,2 z722 zT,, zT2, o o
0 0 0 J 12 J22 0 0 0 0 0 1

0 0 0 JIL J21 0 0 0 0 1 0

[g}=[r]{g} (15)

in which {g} is

I au,, auo

where

avo avo awo 3wo a¢, be, be, a¢,,,¢,,c) _r
' a¢ ' a,7' a¢ ' a_ " a_ "ao' a_ ' an f =[C]{q} (16)

[C] =

"[Bu,,_rl ] 0 0 0 0

0 [BKL.¢,7] 0 0 0

0 0 [BMN.¢_] 0 0

0 0 0 [Bpo.¢,_] 0

0 0 0 0 [BRs._,r ]

0 0 0 {Bpe }r 0

0 0 0 0 {BRs }r

(17)

in which



{B,v }canbe foundin Eq. (10),and {q} is thegeneraldisplacementvectordefinedin Eq.(8).

SubstituteEqs.(15), (16) intoEq. (13),andwehave

U = _{q}T[CIT[T]T[D][T][C]{q}dV
v

(18)

If we write

U =_{q}r[K]{q} (19)

Then comparison of (18) and (19) gives

[K] = fff [C] r [T] r [D][T][C]dV (20)
v

This is the stiffness matrix of the wing in terms of {q}. Note that the constitutive matrix [D] for different

parts of the wing structure should be different.

Kinetic Energy of a Wing Structure

The kinetic energy of a wing structure is

T =12fffp;'dv =_fffpl;: t_dV
v v

(21)

where {_-}, the velocity vector, can be written as

aUo÷zg__
at

{v} = _ = at + Z

[ w0at

Ii 0 z 0-
= 1 0 0 z

0 1 0 0

30'/_at '

(22)

in which



I 0 0 z i]
[Z]= 0 1 0 0 ,

0 0 1 0

[H] is defined in Eq. (9), and {ql is the time-derivative of {q}.

Then we have

-7 p{ }r[Hlr[ZZI[H]{ }dV
V

where

[zz] = [z] _[z] =

-1 0 0 z 0

0 1 0 0 z

0 0 1 0 0

z 0 0 z 2 0

0 z 0 0 z 2

Comparing

(23)

(24)

(25)

T=½{q}r[M]{q} (26)

with Eq. (24) we have

[M]= _p[H]T[ZZl[HldV (27)
V

which is the mass matrix of the wing in terms of the general velocity vector, {q}.

Numerical Integration of Stiffness and Mass Matrices

For a specific wing, now we want to evaluate the integrals in Eqs. (20) and (27).

Assume l=J=K=L=M=N=P=Q=R=S=k,thenweknow[K]and[M] will be matrices of

dimension N x N, where N = 5k 2 .

I0



We knowcoordinatesin (x, y) plane are transformed to (_,r/), but coordinate z remains the same.

Therefore, for an integral in space (x, y, z), we have

III ;;I = F(x, y, z)dV = G(_, rl)d_drl (28)
1 1

V

where

G(_:,r/) : _z,, F[x(¢,0), y(_,r/), z]- J dz (29)
Zt t

i=1

here N z is the number of integration zones in z-direction, and z, and z,2 are integration limits of the i -th

zone.

Using the Gaussian quadrature, we can get the numerical value of integral (28) as

"_Z._'_ (M_ <N,,.-,r_<M,, q_N,,] (30)I --_-- g_ gj Ot_, ,
i=l ./=1

where g{M,) <N,), g j are the weights, _:M,), r//V,) are the sampling points, and M R and N_ represent the

number of sampling points used in the _ and 7"/ directions respectively.

For a wing composed of skins, spars and ribs, the integrals in Eq. (28) can be detailed as follows:

(a) Skins

The sketch of skins at a wing section is shown in Fig. 2. Particulars of integration for skins:

f+++"F' '(f':q"F.,Jdz+[ .Jdz _drl (31)
_F(x'Y'z)dV=_t_'kJ='-½':v J'"-""

where tL.u = t0_/1 + tan 2 a'L,u , subscript L,U indicate the lower and upper skin respectively. It should be

noted that for skins composed of laminated layers the skin contributions can be obtained by simply adding

up the effects of all the layers, with the material constitutive matrix of each layer being treated separately.
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(b) Spars

Their contribution to the stiffness and mass matrices can be calculated by performing the integrals for

each spar. Representative dimensions of a spar are shown in Fig. 3. Thus, for a spar cap, we have:

F(x, y,z)dxdydz = drlJi.{,, - de(J, 7,, .': , [x<_,r/), y(e.rl).z].lJIdzv ' ,.+ _u-i'u -h, (32)

= /c)aCJ_Jz,+_i,,. +Jzo--_,o-h, "]F{x[(ltlc_j +_*(rl)'rll'y[(l'lc_j
)

where c is the chord-length at r/" c = _c0(1 - r/) + {-c_ (1 + 77), co • the chord-length at wing root, c t • the

chord-length at wing tip, and _._(1"/) is the spar position function. Equation (32) can be easily computed

numerically using Eq. (30).

For the spar web:

III F ( x, y, z )dxdydz
V

= f_'@r' r=Uq'U-h' F[x(_,r/), y(g, rt),z].lJ dgdr/dz
%" a-I .Iz,@, +h,

g

/c)agjz, q,L+h F{x[(t,/c}g + ¢,(rl),r/], y[(t,/cY_ +g,(r/),r/],z}- Jldz

(33)

(c) Ribs

The contributions of the ribs to the stiffness and mass matrices can be calculated in a manner similar to

the one used for spars. The dimensions of a rib are also given in Fig. 3.

For a rib cap:

III F( x, y, z)dxdydz = + [x(_, r/), y(_:, r/), z] . J d_lrldz
v , : _.. , a=,,-_,,-h, (34)

+| 1

i '/, , x. (r=,. 7',.+<+rz_--i',.j.'. Ir'tXl9 t' /)q £J L£ t' / Y/ ' I)"r-r=,/'2ts_+rl,(=)l,Yr_,_"2t'_'+rl,(_)l, zl" J dz

where s is the wing semi-span, and rL (_) is the rib position function.

For the rib web:
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' F[x(_,r/), y(_X,r/),z]. J d_drldz
III F(x. y.z)dxdydz = IJ, J.-_h.+½,L+h,

V s

= /SgI_7_L+_,L+. ' F{x[_,O21s)rl+rlr(¢)l,y_,O21s_+rl,.(¢)l,z]- J dz

(35)

The same as for the spars, integration on ribs can be obtained by summing up contributions from all the

ribs.

Boundary Conditions and Convergence

Applying linear and rotational springs with very large magnitudes of stiffness on the boundaries can

approximate the boundary conditions of clamped edge. Applying linear springs with very large magnitudes

of stiffness on the boundaries can approximate the boundary conditions of simply supported edge. Details

of these practices can be found in Lovejoy and Kapania _.

A series of convergence study on the number of terms, k, of the polynomials used for various cases of

plates were performed in Lovejoy and Kapania _ . The conclusion is, when more terms are used the

tendency of convergence is obvious, and when k = 8, the first several modes are very close to

convergence. In the present research, it is found that there is little difference in the results if the Legender

or Chebyshev polynomials are used, and the convergence pattern for a built-up wing structure is quite

similar to that for plates. Therefore k = 8 is used throughout the present study.

Formulation for Vibration Problem of Wing

Under the assumption that the wing is a conservative system, the Lagrange's equations 28 for free

vibration are

d (aL
aL

-0 j= l,...,lzv , Itv = H,KL, MN,PQ,RS. (36)
aqj
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SincetheLagrangianfor thewing is

L= T-V = T-U (37)

where V is the potential energy, and by using Eqs. (19), (26) and (36), we can find the natural frequencies

and mode shapes for the free vibrating wing by solving the following eigenvalue problem

[x- z t] xl =0 (38)

where 3. = o_2 is an eigenvalue of the system of equations, co is the corresponding frequency in

radians/second, and {x} is the corresponding eigenvector.

Static Problem Solutions

Assume that an external, distributed force with components P_ (x, y, t), p,, (x, y, t) and P_(x, 3', t) is

applied on the wing structure, then the virtual work done by this load on the infinitesimal area dx. dy is

6Q = 6Q_ + 6Qy + 6Qz (39)

where

_Q, = P, (x, y,t) . _u(x, y, Z,t) "dx . dy

_: = p, (x, y, t). _v(x, y, z, t). dx. dy (40)

_Q: = Pz (x, y,t) . 8w(x, y, z,t) . dx . dy

and by using Eq. (1) we obtain

6Q_ = Px "(6Uo + z "6¢ x ) "dx .dy

_)Q: = Pv "(SVo + z._y).dx.dy (41)

8Q_ = _ . Swo . dx . dy

14



Using Eq. (6), that is, approximating the displacements u o, v o , w o, q_, q_y in terms of the Ritz functions,

the total work done by the external force on the whole wing surfaces is given by

r + . ]. _P_{B,_L} {_,, } P, {B_ 1"{aq.,IffV&l{8. } {aq. } T +
aO = aa [+ zP_{Bpo }r{&_.}+ zP, {BRs}r {,50,} ffxzly (42)

={e}T{aq}

where {P} is the generalized load vector

{P}={{P,} {P2} {P3} {P4} {Ps}}r (43)

in which

{P_,2,3} = II G,y,_( x, Y't){Bu,xL.MN }" dxdy
(44)

(P<, } = zII P,,y(X, Y,t){Beo.Rs }r dxdy

If the external force is a concentrated force, the above derivations can be simplified. For instance for the

first component of the generalized load vector we have

P, = P. (x(_. ,rla ), y(_. ,r/a ),t){B u (_a ,r]a )}T (45)

where (_., rL ) is the transformed coordinates of the point where the load is applied.

Using the principle of virtual work, we have, for the static case, the following relation for the

generalized displacement vector {q} and the generalized load vector {P}

[K]{q} = {P} (46)

Results and Discussion

In order to assess the accuracy of the present method and test its performance in various situations, a

series of calculations were carded out for several wing-shaped structures clamped at the root. Results using

MSC/NASTRAN, a commercial finite element code, are provided for comparison. Finally, for the

15



comparison between the present method and an existing FSDT method, a swept-back box wing used as a

test case in Livne 2_ were calculated for its free vibration and static response analyses.

Free Vibration Analysis

(a) A Trapezoidal Plate. The geometric and material parameters for the plate are given as: Span= 192

inches, Root width=72 inches, Tip width=36 inches, Sweep angle (leading edge)= 30 ° , Thickness= 1.8 inch

(thickness ration at tip= 1/20); Mass Density p = 2.526 x 10 -4 lb. sec 2/in 4, Young's Modulus

E = ! .025 x 107 lb / in 2, Poisson's Ratio v = 0.3. The plate is clamped at the root.

Comparisons are made in Fig. 4 between the mode shapes as obtained by the present method and those

by the FEA calculations using MSC/NASTRAN employing 200 shell elements (CQUAD4). The

comparison of the natural frequencies is also shown in Fig. 4. It can be seen that both the mode shapes and

natural frequencies as obtained using the present method, are in good agreement with those obtained using

the FEA. The relative differences of the natural frequencies for the first 8 modes are within -0.62-2.12%.

(b) A Trapezoidal Shell with a Camber. All parameters are the same as with the previous case except

that there is a camber with the camber-chord ratio varying from 2.345% at the root to 0.938% at the tip.

Comparisons are made between the results as obtained by the present method with those obtained using

the FEA in MSC/NASTRAN employing 200 shell elements(CQUAD4), as shown in Fig. 5.

It can be seen that, although this case is very similar to the previous one except for a small camber,

there are significant differences in the natural frequencies of a number of modes. Most of the variations

were predicted quite accurately by the present method, as shown clearly in the comparison with the FEA

results in Fig. 5. But the relative differences were slightly higher than the ones in the previous case,

varying in a range of - 1.31% to 5.26% for the first 8 modes. Larger differences for the present case can be

attributed to the fact that the present method ignores the coupling between the inplane and transverse

displacements caused by the mid-surface curvature.
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(c) A Solid Wing. The middle surface of this wing is the same as that of the previous case. Its

thickness-chord ratio is varied from 0.15 at the root to 0.06 at the tip. The sections were generated by the

Karman-Trefftz transformation 29.

Comparisons are made in Fig. 6 between the results as obtained by the present method with those

obtained by the FEA calculations using MSC/NASTRAN employing 250 solid elements (CHEXA and

CPENTA) and 572 nodes. It can be seen that although there are thickness variations as well as a camber,

the present method yields results that compare quite well with those obtained using the FEA. The relative

differences for the first 8 modes were within -5.82-1.42%, comparable to those in the previous case.

(d) A Built-up Wing Composed of Skins, Spars and Ribs. The outside geometrical shape is the same as

in the previous case, the solid wing. There are 4 spars and 10 ribs distributed uniformly in the wing.

Particulars of the wing are: Skin Thickness t o =. 118in ; Spar Cap Height h_ =. 197in, Spar Cap Width

II = .373in, Spar Web Thickness t_ = .058in ; the ribs have the same cap dimensions and web thickness as

the spars.

The FEA calculations are made by using MSC/NASTRAN employing 370 elements and 110 nodes.

The wing skins were modeled using shell elements (CQUAD4), the spar and rib caps were modeled using

bar elements (CBAR), and the spar and rib webs were modeled using shear panel elements (CSHEAR).

Comparison between the mode shapes as well as the corresponding natural frequencies as obtained by the

two methods are shown in Fig. 7. It can be seen that the mode shapes were simulated equally well by the

present method as compared to the FEA, and it is found that the relative differences for the first 8 modes

were within -4.79-2.15 %, comparable to those in the previous cases.

(e) A Box Wing used as a test case in Livne z_ . This is a cantilevered all aluminum wing swept back by

30*. It has a constant thickness and constant chord length. Its 5 spars and 3 ribs with identical cross

sections are bonded to the top and bottom cover skins. Details of this box wing can be found in Refs. 21
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and30.The same kinds of elements were employed as in the previous case. Results for the natural

frequencies by the FEA using MSC/NASTRAN and the present FSDT are shown in Table 1, in

comparison with those given in Livne 2_ by the FEA using ELFINI and a FSDT based on simple-

polynomial trial functions. While there are some differences between the two FEA calculations, which may

have been caused by different discretization and element choices, the accuracy of the present FSDT results

are promising.

Displacement under Static Loads

The built-up wing in case (c) of the free vibration analysis is used here. Three cases of static load were

considered and the results compared with the FEA calculations using MSC/NASTRAN are shown as

follows.

(a) Tip Point Force. A downward (- z -direction) force of magnitude of 1 Ib is applied at the middle

point of the wing tip. The displacements along the leading and trailing edge of the wing are shown in Fig.

8. It can be seen that the present method calculated the vertical displacement w accurately compared with

the FEA, and also predicted quite well the trends of variation for the other two displacement components,

u andv.

(b) A Force Distribution. A downward (- z -direction) force of magnitude of 1 Ib is applied at every

upper-surface nodes of the FEA model. This is a case similar to the wing being under uniform pressure

difference between its upper and lower surfaces. The displacements along the leading and trailing edge of

the wing are shown in Fig. 9. Quite similar results to those in load case (a) were obtained.

(c) Tip Torque. A downward (- z -direction) force of magnitude of 1 Ib is applied at the tip of the fore-

most spar, while an upward ( z -direction) force of magnitude of 1 lb is applied at the tip of the aft-most

spar. This is a case in which the wing tip is subjected to a torque. The displacements along the leading and

trailing edges of the wing are shown in Fig. 10. The relative difference for w at the tip/leading-edge comer
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andtip/trailing-edgecomerare26.4%and2.64%respectively.Notethattheabsolutedifferencesare

0.397×10-4 inch and0.181x 10.-4inchrespectively;thereforethelargerelativedifferenceatthe

tip/leading-edgecomerisbecauseof thesmallmagnitudeof w along the leading edge, and the difference

between the twist angles predicted by the two methods would be small.

(d) The Box Wing in Livne 21. The swept-back box wing is under a downward point force of 1 Ib at the

tip of the rear spar. Displacements at the wing tip from measurement, FEA calculation and present method

are shown in Table 2. It can be seen that the present method yielded very good results for this test case.

Skin Stress Distributions

The upper and lower skin stress of the wing in (a) of the above static cases were calculated using the

present method. The Von Mises stress distribution along a line with a distance of 5% span to the root chord

is shown in Fig. I l(a) in comparison with points obtained using MSC/NASTRAN. Also the Von Mises

stress distribution along a span-wise line with a distance of 37.5% chord length to the leading edge is

shown in Fig. I l(b) in comparison with points obtained using MSC/NASTRAN. It can be seen that,

although there are substantial differences (the largest one is about 15%) between the present calculations

and the stresses determined using the FEA, the variation trends of the stresses from both methods are quite

similar. This means that the position of the largest stress determined by the present method will be reliable.

Conclusion

A method capable of static and vibration analyses of the general built-up wing structures composed of

skins, spars and ribs has been developed and comparisons for a series of examples with commercial FEA

calculations have shown the accuracy of the method for design purposes. On the assumption that the wing

structure behaves like a plate whose deformation can be modeled by the FSDT of Reissner-Mindlin, the

Rayleigh-Ritz method is applied to solve the plate problem, with the Legendre polynomials being used as
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thetrial functions.Thestiffnessandmassmatricesaredeterminedby applyingtheLagrange'sequations,

andcanbecalculatednumericallybyusingtheGaussianintegrationquadrature.Thenstaticanalysiscanbe

readilyperformedandthenaturalfrequenciesandthemodeshapesof thewing canbeobtainedby solving

aneigenvalueproblem.

Comparisonof resultsby thepresentmethodwith thoseby thecommercialfiniteelementanalysiscode

MSC/NASTRANfor aseriesof 5 vibrationproblems,4 staticloadingproblems,and 1stressdistribution

problemshowedanoverallgoodagreementbetweenthetwo approacheswith differentmethodologies.

Modeshapesandnaturalfrequenciesfor casesfrom athickwing-shapedplate,thesameplatewith a

camber,a solidwing, to built-upwing structurescomposedof skins,sparsandfibs, haveall shownthatthe

presentmethodhasafairly goodcorrelationto theFEA, althoughresultsfor simplercasesseemto be

moreaccurate.It wasalsoshownthatstaticdisplacementsandstressvariationtrendsof wing structurecan

bepredictedby thepresentmethodquiteaccurately.Thepresentmethodis formulatedmostly in matrix

form andcalculationcanbereadilycarriedout in theMATLAB environment.It is suitableto beusedfor

theearlystagesof wing design.Due to theefficiencyof themethod,it canalsobeusedasa meansto

analyzetheshapesensitivityof wing structures.
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Table 1 Natural frequencies (Hz) of the cantilevered swept-back box wing

Mode

No.

4

5

Description of

Mode Shape

Ist bending

FEA

(Livne 21)

115.6

317.6

418.4

576.4

FSDT

(Livne 21)

114.7

312.4

428.9

575.3

FEA

(present)

116.6

327.9

409.4

572.1

In plane
1st torsion

2 "dbending

2 na torsion 1086 1125 1064

FSDT

(present)

118.0

349.7

419.1

571.1

1090

Table 2 Displacement (in) of the cantilevered swept-back box wing

Position Measured 2t.30 FEA(present) FSDT(present)

Front spar tip 1.81 x 10 -4 1.79 x 10-4 1.74 × 10-*

Rear spar tip 2.21 x 10-4 2.19× 10-4 2.20× 10 -4

Z, W y, V

_ "11!"11)) '_Z ('11'1) _

v X,U 3 _ _ (1,1)

Fig. 1 The Coordinate System and Its Transformation
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ZL

Zu It0

C

Fig. 2 Wing Skin

hi ,h 2 Skin

Spar or rib cap
Spar or db web

t Spar or db canter surface

Y,_

Rib, qr(_)

Spar, _,(_)

Fig. 3 Wing Spar or Rib
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z Mode No. I f'=10.449 Mode No. 1 f=10.461

Mode No. 2 f'_5.872 Mode No. 2 .f=56.029

Mode No. 3 f=96.348

Mode No. 4 f=148.723 Mode No. 4 f=149.381

by FEA Equivalent Plate Model

Fig. 4 Mode Shapes and Natural Frequency f (tad / s) for a Trapezoidal Plate
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Mode
z

No. I f-13.264 Mode No. I f=13.090

Mode No. 2 f=64.695

Mode No. 3 f--92.634 Mode No. 3 fffi97.068

Mode No. 4 Mode No. 4 f=166J4:

by FEA Equivalent Plate Model

Fig. 5 Mode Shapes and Natural Frequency f (tad/s)

for Wing-Shaped Shell with a Camber
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Mode No. 1 f_7.62

Mode No. 2 f-199.70 Mode No. 2 f=190.22

Mode No. 3 f=363.33 Mode No. 3 f=364.60

Mode No. 4 f--452.26 Mode No. 4 f--425.96

Mode No. 5 f--468.07 Mode No. 5 f--469.97

Mode No. 6 f=797.84 Mode No. 6 f=795.33

by FEA Equivalent Plate Model

Fig. 6 Mode Shapes and Natural Frequency f (tad / s) for the Solid Wing
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Mode No. I f---'54.82 Mode No. 1 f--54.2

Mode No. 2 f=214.97 Mode No. 2 f=212.3

Mode No. 3 f=307.95

Mode No. 4 fffi369.45 Mode No. 4 fffi373.0

Mode No. 5 f=482.66 Mode No. 5 f=478.3

Mode No. 6 f=716.43 Mode No. 6 f=722.1

by FEA Equivalent Plate Model

Fig. 7 Mode Shapes and Natural Frequency f (tad / s)

for a Built-up Wing Composed of Skins, Spars and Ribs
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Fig. 1 The Coordinate System and Its Transformation

Fig. 2 Wing Skin

Fig. 3 Wing Spar or Rib

Fig. 4 Mode Shapes and Natural Frequency f (tad/s) for a Trapezoidal Plate

Fig. 5

Fig. 6

Fig. 7

Mode Shapes and Natural Frequency f

Mode Shapes and Natural Frequency f

Mode Shapes and Natural Frequency f

Spars and Ribs

(tad / s) for Wing-Shaped Shell with a Camber

(tad / s) for the Solid Wing

(tad / s) for a Built-up Wing Composed of Skin,

Fig. 8 Comparison of Displacements for Load Case of Tip Point Force

Fig. 9 Comparison of Displacements for Load Case of a Force Distribution

Fig. 10 Comparison of Displacements for Load Case of Tip Torque

Fig. 11 Comparison of Von Mises Stress on the Upper and Lower Skins of a Wing under a Point

Force at the Wing Tip
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