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NONLINEAR TRANSIENT PROBLEMS USING STRUCTURE -

COMPATIBLE HEAT TRANSFER CODE

Gene Hou, Yang Wang and Rufeng Liu

Department of Mechanical Engineering

Old Dominion University

Norfolk, VA 23454

The report documents the recent effort to enhance a transient linear heat transfer

code so as to solve nonlinear problems. The linear heat transfer code was originally

developed by Dr. Kim Bey of NASA Largely and called the Structure-Compatible Heat

Transfer (SCHT) code. The report includes four parts. The first part outlines the

formulation of the heat transfer problem of concern. The second and the third parts give

detailed procedures to construct the nonlinear finite element equations and the required

Jacobian matrices for the nonlinear iterative method, Newton-Raphson method. The final

part summarizes the results of the numerical experiments on the newly enhanced SCHT
code.

I. FORMULATION

The system of the governing differential equations of a heat transfer problem in a

homogeneous material can be expressed as

and

pc---Ot ,=, J=, g j = Q(x,t), in £-'2×(0,T] (1)

u = f(x,t), on a£"2 ×(0,T] (2)

, 3 or (x,t), aa
ZZK"Kn',=I,=, :q' on x (0,T] (3)

u: g(x), in g"2 at t-0 (4)

where the temperature, T (x, t), is the only unknown. Equation (1) represents an initial-

boundary value problem with Eq. (2) and Eq. (3) being the temperature and the heat flux

boundary conditions, respectively, and Eq.(4), the initial conditions. It is assumed that the

heat source, Q, the prescribed temperature, f, and the flux, qs, and the initial value, g, are

all with proper regularity. In case of material nonlinearity, the coefficients in Eq.(l), the
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specific heat, pc(T) and the thermal conductivity, K 0 (7) are assumed to be functions of

temperature.

The weak form of the above equations can be derived based upon the

discontinuous Galerkin method [1] for a time interval, L, = [ t,,-1, t,, ) as

_. , ,OC _t V + K,j 3x, Oxj

(5)
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where the testing function, v = 0 on _f2 u and the temperature be a combination of the

unknown function, u, and an arbitrary function, w. The testing function should satisfy the

boundary condition, w = f, on 0£"2,. Consequently, u = 0 on 0_2. Note that u is the

only unknown in Eq. (5).

The symbols of Tit and T +- ,-1 are the limits of temperatures approach to the point,

t_ 1, from its fight and left sides. It should be noted that the continuity of the temperature,

T, is not enforced pointwisely throughout the entire time domain, rather it is enforced at

the ends of the time interval in a weighted manner. Furthermore, the coefficients, pcand

Kij, also experience discontinuity at the ends of time intervals, as they are functions of the

temperatures, which are allowed to be discontinuous at those points.

II. FINITE ELEMENT EQUATIONS

For simplicity, one will start the derivation with an assumption that the problem is

homogeneous. That is,f= 0 and T= u.

The weak equation defined in Eq. (5) can be discretized as a summation of

integrals over individual "finite elements". In this study, the computational domain of

such a finite element, Vt, is defined as a product of a spatial domain and a time interval,

£'2 × I n . As a result, the discretized equations for time interval, L,, become
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where v is the testing function. The tasks in constructing the equivalent matrix equation

of Eq. (6) involve selection of the interpolation functions, approximation of nonlinear

material properties and integration of elemental matrices.

Interpolation Functions

Following a similar derivation given in [1], a hp-version of interpolation function

is introduced here to approximate the solution in the kth element space domain and the (n

- 1)th time interval as

T(x.,)- X(x.+.,

where X (x, t) is the interpolation function vector and a k is the "nodal value" vector.

More specifically, the interpolation function can be spanned as a tensor product of

functions with separable variables as

x(x.t)- L(x,

or in the index form,

X m --" L,_jO_

The subscript, m, in the above equation follows the relation, m = (i - 1) p s + (j -

1) s + k where p and s are the ranges of subscripts, j and k. In the case of a triangular

element, the interpolation function, Li, can be simply specified as an area coordinate,

L, = a, + b,x + c, y , i = 1,2,3

The interpolation function through the thickness, A, is a polynomial of a

hierarchical basis. In this study, ¢(z) is given as

L i;

|,+t

.+
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j = 2,...,p

where z ranges from A/2 to A/2, and Pj is a Legendre polynomial of degree j.

The interpolation function for the time domain, g(t), uses a power polynomial in

time. That is,

_j=t j, j=0,...,s

Nonlinear Approximation

It is assumed that in this study, the relations between the material properties, /9c

and K O, and the temperature are defined in a tabulated form, presented as a result of

experiments. Therefore, the material properties can not be explicitly specified as

functions of position and time as required by integration. An approximation is thus

introduced to overcome such a difficulty.

A single hp-element is first divided into regular subdomains. The values of the

material properties at the vertices of each subdomain are read out from the given material

table based upon the values of the temperature found at those points. The values of the

material properties at elsewhere in a subdomain are then obtained through linear

interpolation. In this way, the material properties are explicitly approximated as functions

of position and time throughout the problem domain.

As an example, the spatial and the time domain of an element can be divided into

subdomains as shown in Fig. 1. and the material property, say,oc, can be interpolated

linearly in a typical subdomain bounded by [zl, z2 ] x [ tl, t2 ] as

,DC(X, t)= (L(x, y)® N, (t)® N 2 (z))r c

where c is the vector of the nodal values of the material properties that are found through

the material table and the nodal values of temperature. The area coordinates are in this
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case, a nature choice for linear interpolation functions in x-y plane, L (x, y), because of a

triangular domain. Typical linear shape functions can be used to interpolate Nt and Nz as

N, [N,= ='[(t'-t,)/(t2-t ,

As a result, the vector c has 12 components, which gives an approximation of the

temperature field in the subdomain of concern as

_ _ _ )TC T (C 1 C 2 C3_C4_C5_C 6 C7_C8_C9_C10_C[1_C12

._ _ _ )TCll I _C112 _C121 _C122 C211 _C212_C22 [ _C222_C311 _C312:,C321 C322

where the first subscript of the notation, Cg./k.is associated with the area coordinates, the
second with the vertices of a time subdomain and the third with the vertices of a z

subdomain. Thus, c0_, is read from the given material table based upon the value of the

temperature evaluated at area nodal point i, time vertex j and z vertex k. As an example,

the material property, c122, is obtained at the point ( x,, y_, z2 ) X t2 as

where

C12 2 "-- function of T.j_

To_ = Xr(xl,Yl,Z2,t2)a.,_

= (L(x_, y_ )® gt(t 2)® 9(z z))ra_

Matrix Evaluation

m

w

W

Once the interpolation functions are selected and the nonlinear material properties

are approximated as explicit functions of position and time, one can proceed to integrate

the terms in Eq. (6) to construct the equivalent matrices. The resultant finite element

matrix equation for the time interval I,,, can then be expressed as

(C.+K +M ){a }={q.}+M t{a__}+{bo} (7)

where the subscript, n, indicates that the associated matrix or vector is evaluated with

functions defined in time interval, L, • Note that each term in Eq. (7) is corresponding to

an integral in Eq. (6). As an example, the capacitance matrix is given as
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For a specific element k which includes a triangular slab in space and I,, in time,

the elemental capacitance matrix with constant pc can be further spelled out as

Cn.k

d_ r

2

where A is the area of the triangular element. In the case of nonlinear pc, the elemental

C matrix is a function of temperature, T, and can be written as

( X _X r dx it:'[:".-, I_,(L®N' ®N_)rc" O---t-
\

3 ( r "_££ -
:___ =, r'. f_ L,N,N c,,kX _)X dx dt

3 2 2

: _-_-_-_c,:(a.,_)faL, LIf dxdy®_" N,, q/d--_--_T.s,
i=I j=l k=l )-z f._l

Nz, _T dz (8)

Thus, the elemental capacitance matrix is a summation of the subdomain capacitance

matrices. The more subdomains divided in each element, the more computational efforts

are required.

6
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III. SOLUTION PROCEDURES

The matrix equation derived above is based upon the discontinuous Galerkin's

method and will be solved in a time-marching fashion. In other words, the matrix

equation of Eq. (7) will be solved for a time interval at a time, with a, as unknown and a,,.

1 as known quantities. The value, ao, is given as the initial condition. The nonlinear

version of Eq.(7) is rewritten below for future reference

[C (a)+ K (a )+ M.(a )]{a }= {q.}+ [M_t(a_,)]{ao__}+{b }

The above equation can be solved by either the fixed point iteration or the Newton-

Raphson's method.

The recursive formula for the fixed point iteration is simply given as

Ion (a:-')+ Kn (a:-])+ Mn (a:-l)](a: } = {qn}+[Mn_l(an_t)]{a,,_l}+{bn}

where the superscript, i , denotes the iteration number. The recursive formula for the

Newton-Raphson's method, however, is more complicated and involves Jacobian

matrices, J_, Jk and Jm as

[_ (Ra,-,'}+ K (a,-, )+ M (a:-, )+.l,-,ai-, _ .i-, i-, .[i-,ai-, _A a,
(9)

and the solution is updated by

a'. =a '-'° + zXa: (10)

In the above equation, Aa _ is the improvement of the solution and R _-_ is the residual of
n tl

the nonlinear equation at the i-1 iteration which is defined as

{R:-t}:[C.(a:-')+ K (a:")+ M (a:-')]{a:-t}-{q._M _l(a _,)]{a _,}-{b }

Moreover, the Jacobian matrices, Jc, ark and J,,, are obtained by differentiating the

coefficient matrices C,,, K,, and M,, with respect to the unknown vector a,,, respectively.

This is usually accomplished at the element level. As an example, the Jacobian matrix of

the element capacitance matrix is obtained for a typical element ( n, k ) as

F3C ,_ a OC°'k 1J"an'_ = I_ "'_' OT 2 a _,...
L t

where OC_ /OT t is obtained by using Eq. (8) as
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j k ,,t.__ N'J gt OJ--f-Vd tot ® ylz_"'-N _ c j__oqF.. . d z I

OC _jk:2ZZfAL, LLTdA®_, '",J , .-, N,jgt dt®_ :'z._,Na OT_ _°qJrdz

= Z_Z_L, LLTdA®f'_N,j_,J , dt®f='_._, Na _Tj k _T_ _o_oTdz

where _co_ ]_Tj, is the derivative of pc with respect to the temperature at x,, y,, z j, and

t k. This derivative is based upon the relation between the material properties and the

temperature described in the material table. Since the temperature T,jk is given as

r,,.: [t(x,,

the derivative, OTj k/0T_, is the coefficient of T t in the above equation.

In the Newton-Raphson's iteration, Eq. (9) is first solved for the solution

improvement Aa,,,k which is then updated based upon Eq. (10) to get a better solution. A

Newton-Raphson's iteration will be restarted with the new solution until the error residual

is reduced to an accepted level.

IV. NUMERICAL RESULTS

Several examples have been studied to verify the accuracy of the solution

procedure, designed to solve the nonlinear finite element equations derived by the

discontinous Galerkin's method for the heat transfer problems. To start the example

problems, an exact solution of temperature is first selected, which gives zero temperature

on the entire surface of the domain. That is, the example problems have zero boundary

temperature. The heat source term, Q, that generates the prescribed temperature, can be

obtained by substituting the given temperature function into the governing differential

equation of Eq. (1). The material properties are assumed to be linear in temperature and

in the form of (a T + b).

The convergence criterion used in this study is defined that every component of

the unknown vector, a _, should satisfy the condition
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IV. 1 One Dimensional Problem

The exact temperature field is given as

5

tZ, .oo(,1)
n=2

The fifth order polynomial is used in the finite element equation to approximate

the solution through thickness. The entire thickness is divided into three subdomains, in

each of which the material properties will be expressed as a linear function of position
and time.

Case 1" Effect of Nonlinearity

The constants in the assumed relation between the material properties and the

temperature will be varied to study the effect of nonlinearity on solution accuracy. In

this study, the material properties are assumed to be in the form of ( T + b ). The values

of b ranges from 3 to 15. Since the maximal value of the temperature in this problem is

around 2.5, the problem will experience less nonlinearity with a higher value of b.

Figure 2 shows the temperature solutions with various values of b. It is shown

that, under the current discretization, the solution procedure is not able to reach at the

correct solution when the nonlinearity is high. The results of numerical experiments also

show that using the converged solution of the problem with less nonlinearity as the initial

guess does not improve the solution accuracy of the problem with higher nonlinearity.

Case 2: Approximation of Time Axis

This case will study the effectiveness of the approximation along the time axis.

The exact temperature field is given as a quadratic function of time as

5

rt=2

Figures 3 and 4 compare the calculated temperatures with the exact solution at

time =1 and 2 seconds. The symbols ipt, dt and nt in the figures are referred to the order

of polynomial of time, the time interval for each element and the number of subdomains

along the time axis, respectively. It is shown that increasing ipt and nt, and reducing dt

do not have significant impact on the accuracy of the solution.
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IV. 2 Two Dimensional Examples

The domain of the problem is a 1 x 1 × 1 slab. The exact solution is given as

T(x,t) : txy(x-1)(y - 1)_ nO. (17)
n=2

The central plane of the slab is discretized into three models with 8, 32 and 128

triangular elements, respectively. These models are shown in Figs. 5 to 7. For most of the

cases studied, a 5th order polynomial in z and a linear polynomial in time are used for

interpolation. The material properties are in the form of (T + 1). The convergence

criterion of Eq. (11) is set to be 0.001. Finally, both of the time interval and the thickness
are discretized into three subdomains.

Case l" Better Approximation in Material Nonlinearity

Figures 8 and 9 shows the comparisons of results of the 8-element model reported

at the center of the domain for three time instances. The results in Fig.8 are obtained

with both the z and the time intervals being discretized into 3 subdomains, while those in

Fig. 9 discretized into 6 subdomains. The results reveal that increasing the subdomains to

better the approximation of the material properties does not uniformly improve the

accuracy through the time and the spatial domains.

Similar studies are done with 32-element and 128-element models. The results are

summarized in Figs. 10 and 11 and Figs. 12 and 13. Note that only the number of

subdomains along the z interval is increased in these cases. Again, it is observed that

increasing the number of points to better approximate the material nonlinearity may not

necessarily result in an improvement in the solution accuracy everywhere.

Comparison of Figs. 8 and 9 to Figs. l0 and 11 and to Figs. 12 and 13 reveals

another concern that reducing the size of the h elements does not improve the solution.

Similar study, done on cases with linear material properties, draws a similar conclusion.

The results are shown in Figs. 14 to 16. This observation leads to the next case of study.

l

W

Case 2: Reduction of h-size

The temperatures at the off-centered points, 59 and 61 on Fig. 7, are calculated

and reported in Figs. 17 and 18, respectively. It is clear that the reduction of element size

does not warrant an improved solution uniformly throughout the time and the spatial
domains.

i0
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V. SUGGESTION FOR THE FUTURE STUDY

The initial study shows that more works need to be done in order to make the

discontinous Galerkin's method an effective one for nonlinear transient problems. On

one hand, one needs to develop a theoretical base to control the numerical errors in terms

of orders of the polynomial and size of the elements. On the other hand, one needs to '

develop an effective method to approximate the material nonlinearly and to reduce

computational cumbersome of the Jacobean matrices.
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